Sample records for adjacent coastal water

  1. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  2. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    USGS Publications Warehouse

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  3. 33 CFR 150.35 - How may an adjacent coastal State request an amendment to the operations manual?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provide equivalent or improved protection and safety. The adjacent coastal State may petition the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How may an adjacent coastal State... § 150.35 How may an adjacent coastal State request an amendment to the operations manual? (a) An...

  4. 33 CFR 150.35 - How may an adjacent coastal State request an amendment to the operations manual?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provide equivalent or improved protection and safety. The adjacent coastal State may petition the... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false How may an adjacent coastal State... § 150.35 How may an adjacent coastal State request an amendment to the operations manual? (a) An...

  5. 33 CFR 150.35 - How may an adjacent coastal State request an amendment to the operations manual?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provide equivalent or improved protection and safety. The adjacent coastal State may petition the... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false How may an adjacent coastal State... § 150.35 How may an adjacent coastal State request an amendment to the operations manual? (a) An...

  6. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The synoptic repetitive coverage of the multispectral imagery from the ERTS-1 satellite, when photographically reprocessed using the state-of-the-art techniques, has given indication of spectral differences in Block Island and adjacent New England waters which were heretofore unknown. Of particular interest was the possible detection of relatively small amounts of phytoplankton prior to the occurrence of the red tide in Massachusetts waters. Preparation of spatial and temporal hydrographic charts using ERTS-1 imagery and ground truth analysis will hopefully determine the environmental impact on New York coastal waters.

  7. 33 CFR 150.35 - How may an Adjacent Coastal State request an amendment to the deepwater port operations manual?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equivalent or improved protection and safety. The Adjacent Coastal State may petition the Commandant (CG-5P... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false How may an Adjacent Coastal State...: OPERATIONS General § 150.35 How may an Adjacent Coastal State request an amendment to the deepwater port...

  8. 33 CFR 150.35 - How may an Adjacent Coastal State request an amendment to the deepwater port operations manual?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalent or improved protection and safety. The Adjacent Coastal State may petition the Commandant (CG-5P... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false How may an Adjacent Coastal State...: OPERATIONS General § 150.35 How may an Adjacent Coastal State request an amendment to the deepwater port...

  9. Variability in physical and biological exchange among coastal wetlands and their adjacent Great Lakes

    EPA Science Inventory

    Hydrology is a major governor of physically-driven exchange among coastal wetlands and the adjacent Great Lake, whereas fish movement is a major governor of biologically-driven exchange. We use data describing coastal wetland morphology, hydrology, water quality, and fish tissue...

  10. Microbial water quality before and after the repair of a failing onsite wastewater treatment system adjacent to coastal waters

    USGS Publications Warehouse

    Conn, K.E.; Habteselassie, M.Y.; Denene, Blackwood A.; Noble, R.T.

    2012-01-01

    Aims: The objective was to assess the impacts of repairing a failing onsite wastewater treatment system (OWTS, i.e., septic system) as related to coastal microbial water quality. Methods and Results: Wastewater, groundwater and surface water were monitored for environmental parameters, faecal indicator bacteria (total coliforms, Escherichia coli, enterococci) and the viral tracer MS2 before and after repairing a failing OWTS. MS2 results using plaque enumeration and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) often agreed, but inhibition limited the qRT-PCR assay sensitivity. Prerepair, MS2 persisted in groundwater and was detected in the nearby creek; postrepair, it was not detected. In groundwater, total coliform concentrations were lower and E.??coli was not detected, while enterococci concentrations were similar to prerepair levels. E.??coli and enterococci surface water concentrations were elevated both before and after the repair. Conclusions: Repairing the failing OWTS improved groundwater microbial water quality, although persistence of bacteria in surface water suggests that the OWTS was not the singular faecal contributor to adjacent coastal waters. A suite of tracers is needed to fully assess OWTS performance in treating microbial contaminants and related impacts on receiving waters. Molecular methods like qRT-PCR have potential but require optimization. Significance and Impact of Study: This is the first before and after study of a failing OWTS and provides guidance on selection of microbial tracers and methods. ?? 2011 The Authors. Journal of Applied Microbiology ?? 2011 The Society for Applied Microbiology.

  11. NITROGEN CONCENTRATIONS IN LOADING SOURCES FOR THREE COASTAL LAGOONS FROM ATMOSPHERIC AND WATERSHED SOURCES, ADJACENT COASTAL MARSHES, TIDAL EXCHANGES

    EPA Science Inventory

    Abstract and Oral Presentation Gulf Estuarine Research Society.

    Standing stocks and inputs of total dissolved nitrogen (TDN) to three coastal lagoons, hereafter referred to as Kee's Bayou, Gongora, and State Park, with varying adjacent land-use, geomorphology, and water re...

  12. Cadmium in the Coastal Upwelling Area Adjacent to the California Mexico Border

    NASA Astrophysics Data System (ADS)

    Segovia-Zavala, J. A.; Delgadillo-Hinojosa, F.; Alvarez-Borrego, S.

    1998-04-01

    Cadmium concentrations ([Cd]) were measured in samples from the water column of the coastal upwelling zone adjacent to the California - Mexico border. Temperature and nutrient distributions showed an intense upwelling event during our sampling. Lowest [Cd] were found at locations offshore (50 km) (0·03-0·058 nM), whereas the maximum concentrations were found inshore (0·14-0·166 nM). Both nutrients and [Cd] were enriched in coastal waters. Our inshore [Cd] values are about 25% of those reported for waters off central California. This is possibly due to the intrusion of oligotrophic waters from the eastern edge of the North Pacific Central Gyre to the Southern California Bight. Multivariate analysis indicates that high [Cd]s were associated with high phytoplankton biomass, nutrients and low temperature. Our data present no evidence of a [Cd] gradient due to the San Diego and Tijuana sewage discharges, which indicates that they maintain a very local effect.

  13. FISH-MEDIATED NUTRIENT AND ENERGY EXCHANGE BETWEEN A LAKE SUPERIOR COASTAL WETLAND AND ITS ADJACENT BAY

    EPA Science Inventory

    Little has been done to quantify fluxes of organisms, nutrients, and energy between freshwater coastal habitats and adjacent offshore waters or to evaluate the ecological implications of these exchanges on a whole-lake basis. To test the hypothesis that fish-mediated transport m...

  14. Effects of a coastal golf complex on water quality, periphyton, and seagrass

    USGS Publications Warehouse

    Lewis, M.A.; Boustany, R.G.; Dantin, D.D.; Quarles, R.L.; Moore, J.C.; Stanley, R.S.

    2002-01-01

    The objective of this study was to provide baseline information on the effects of a golf course complex on water quality, colonized periphyton, and seagrass meadows in adjacent freshwater, near-coastal, and wetland areas. The chemical and biological impacts of the recreational facility, which uses reclaimed municipal wastewater for irrigation, were limited usually to near-field areas and decreased seaward during the 2-year study. Concentrations of chromium, copper, and organochlorine pesticides were below detection in surface water, whereas mercury, lead, arsenic, and atrazine commonly occurred at all locations. Only mercury and lead exceeded water quality criteria. Concentrations of nutrients and chlorophyll a were greater in fairway ponds and some adjacent coastal areas relative to reference locations and Florida estuaries. Periphyton ash free dry weight and pigment concentrations statistically differed but not between reference and non-reference coastal areas. Biomass of Thalassia testudinum (turtle grass) was approximately 43% less in a meadow located adjacent to the golf complex (P < 0.05). The results of the study suggest that the effects of coastal golf courses on water quality may be primarily localized and limited to peripheral near-coastal areas. However, this preliminary conclusion needs additional supporting data. ?? 2002 Elsevier Science (USA).

  15. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  16. Isotope geochemistry and fluxes of carbon and organic matter in tropical small mountainous river systems and adjacent coastal waters of the Caribbean

    USGS Publications Warehouse

    Moyer, Ryan; Bauer, James; Grottoli, Andrea

    2012-01-01

    Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.

  17. Conceptualization and analysis of ground-water flow system in the Coastal Plain of Virginia and adjacent parts of Maryland and North Carolina

    USGS Publications Warehouse

    Harsh, John F.; Laczniak, Randell J.

    1990-01-01

    The ground-water flow system in the Coastal Plain of Virginia and adjacent parts of Maryland and North Carolina consists of a water table aquifer and an underlying sequence of confined aquifers and intervening confining units composed of unconsolidated sand and clay. A digital flow model was developed to enhance knowledge of the behavior of the ground-water flow system in response to its development. Ten pumping periods covering 90 yr of withdrawal simulated the history of ground-water development. Simulated potentiometric-surface maps for 1980 show lowered water levels and the development of coalescing cones of depression around the cities of Franklin, Suffolk, and Williamsburg and the town of West Point, all in Virginia. The largest simulated decline in water level, about 210 ft was near Franklin. Water budgets indicate that over the period of simulation (1891-1980): (1) pumpage from the model area increased by about 105 Mgal/d; (2) lateral boundary outflow increased by about 5 Mgal/d; (3) ground-water flow to streams and coastal water decreased by about 107.5 Mgal/d; (4) lateral boundary inflow increased by about 0.7 Mgal/d, and (5) water released from aquifer storage increased by about 1.6 Mgal/d. Simulated rates of recharge into the confined aquifer system at the end of the final pumping period (1980) varied up to 3.8 in/yr. and simulated rates of discharge out of the confined system varied up to 2.2 in/yr. Results of simulations show an increase of about 110 Mgal/d into the confined system from the unconfined system over the period of simulation. This increase in flow into the confined system affected local discharge of ground water to streams and regional discharge to coastal water. Lowering the storage coefficient of the aquifer had a minimal effect simulated water levels, whereas increasing the storage coefficient had a much more significant effect.

  18. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  19. 33 CFR 148.510 - What happens when a petition for exemption involves the interests of an Adjacent Coastal State?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false What happens when a petition for exemption involves the interests of an Adjacent Coastal State? 148.510 Section 148.510 Navigation and...: GENERAL Exemption From or Adjustments to Requirements in This Subchapter § 148.510 What happens when a...

  20. 33 CFR 148.510 - What happens when a petition for exemption involves the interests of an adjacent coastal State?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What happens when a petition for exemption involves the interests of an adjacent coastal State? 148.510 Section 148.510 Navigation and...: GENERAL Exemption From or Adjustments to Requirements in This Subchapter § 148.510 What happens when a...

  1. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    PubMed

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  3. Water and sediment dynamics in the Red River mouth and adjacent coastal zone

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.

    2007-02-01

    The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.

  4. EFFECTS OF A COASTAL GOLF COMPLEX ON WATER QUALITY, PERIPHYTON, AND SEAGRASS.

    EPA Science Inventory

    The objective of this study was to determine the effects of a golf course complex on water quality, colonized periphyton and seagrass meadows in adjacent freshwater, near-coastal and wetland areas. The environmental impact of the recreational facility, which uses spray wastewater...

  5. Remote Sensing of Coastal and Inland Waters

    NASA Astrophysics Data System (ADS)

    De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.

    2016-02-01

    The new generation of satellites (e.g. Landsat 8, HyspIRI, Sentinel 2 and Sentinel 3 …) contain sensors that enable monitoring at increased spatial and/or spectral resolution. This opens a wide range of new opportunities, amongst others improved observation of coastal and inland waters. Algorithms for the pre-processing of these images and the derivation of Level 2 products for these waters need to take into account the specific nature of these environments, with adjacency effects of the nearby land and complex interactions of the optially active substances with varying degrees of turbidity. Here a new atmospheric correction algorithm, OPERA, is presented which can deal with these highly complex environments and which is sensor generic. OPERA accounts for the contribution of adjacency effects and provides surface reflectances for both land and water targets. OPERA is extended with a level 2 water algorithm providing TSM and turbidity estimates for a wide variety of water types. The algorithm is based on a multi wavelength switching approach using shorter wavelengths in low turbid waters and long NIR and SWIR wavelengths for highly and extremely turbid waters. Results are shown for Landsat-8, Sentinel-2 and MERIS for a variety of scenes, validated with field aeronet and turbidity data.

  6. Comparative water relations of adjacent california shrub and grassland communities.

    PubMed

    Davis, S D; Mooney, H A

    1985-07-01

    Much of the coastal mountains and foothills of central and southern California are covered by a mosaic of grassland, coastal sage scrub, and evergreen sclerophyllous shrubs (chaparral). In many cases, the borders between adjacent plant communities are stable. The cause of this stability is unknown. The purpose of our study was to examine the water use patterns of representative grasses, herbs, and shrubs across a grassland/chaparrel ecotone and determine the extent to which patterns of water use contribute to ecotone stability. In addition, we examined the effects of seed dispersal and animal herbivory. We found during spring months, when water was not limited, grassland species had a much higher leaf conductance to water vapor diffusion than chaparral plants. As the summer drought progressed, grassland species depleted available soil moisture first, bare zone plants second, and chaparral third, with one chaparral species (Quercus durata) showing no evidence of water stress. Soil moisture depletion patterns with depth and time corresponded to plant water status and root depth. Rabbit herbivory was highest in the chaparral and bare zone as indicated by high densities of rabbit pellets. Dispersal of grassland seeds into the chaparral and bare zone was low. Our results support the hypothesis that grassland species deplete soil moisture in the upper soil horizon early in the drought, preventing the establishment of chaparral seedlings or bare zone herbs. Also, grassland plants are prevented from invading the chaparral because of low seed dispersability and high animal herbivory in these regions.

  7. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  8. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  9. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  10. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  11. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  12. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  13. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  14. Local and regional scale exchanges of dissolved organic carbon (DOC) between tidal wetlands and their adjacent coastal waters

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Joshi, I.; Lebrasse, M. C.; Oviedo-Vargas, D.; Bianchi, T. S.; Bohnenstiehl, D. R.; D'Sa, E. J.; He, R.; Ko, D.; Arellano, A.; Ward, N. D.

    2017-12-01

    The contribution of blue carbon from tidal wetlands to the coastal ocean in the form of dissolved organic carbon (DOC) represents a terrestrial-aquatic linkage of increasing importance. DOC flux results will be presented from local (tidal creek) and regional (bays) scale studies in which various combinations of field observations, ocean-color satellite observations, and the outputs of high-resolution hydrodynamic models were used to estimate DOC export. The first project was located in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina (NC). DOC fluxes were computed using a bathymetric data collected via unmanned surface vehicle (USV) and a numerical hydrodynamic model (SCHISM) based on the relationships between colored dissolved organic matter (CDOM) absorption, DOC concentration, and salinity taken from field observations. Model predictions estimated an annual net export of DOC at 54 g C m-2 yr-1 from the tidal creek to the adjacent estuary. Carbon stable isotope (δ13C) values were used to estimate the contribution of wetland carbon to this export. In the second project, DOC fluxes from the Apalachicola Bay, FL, Barataria Bay, LA, were based on the development of algorithms between DOC and CDOM absorption derived from the VIIRS ocean color sensor. The Navy Coastal Ocean Model (NCOM) was used to compute salt flux estimates from each bay to the Louisiana-Texas shelf. The relationship between salinity and CDOM was used to estimate net annual DOC exports of 8.35 x 106 g C m-2 y-1 (Apalachicola Bay) and 7.14 x 106 g C m-2 yr-1 (Barataria Bay). These values approximate 13% and 9% of the annual loads of DOC from the Mississippi River to the Gulf of Mexico, respectively. CDOM and lignin were used in a mixing model to estimate wetland-derived DOC were 2% for Apalachicola Bay and 13% for Barataria Bay, the latter having one of the highest rates of relative sea level rise in North America. Results from our project demonstrated the utility

  15. Atmospheric correction over coastal waters using multilayer neural networks

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Li, W.; Charles, G.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. H.

    2017-12-01

    Standard atmospheric correction (AC) algorithms work well in open ocean areas where the water inherent optical properties (IOPs) are correlated with pigmented particles. However, the IOPs of turbid coastal waters may independently vary with pigmented particles, suspended inorganic particles, and colored dissolved organic matter (CDOM). In turbid coastal waters standard AC algorithms often exhibit large inaccuracies that may lead to negative water-leaving radiances (Lw) or remote sensing reflectance (Rrs). We introduce a new atmospheric correction algorithm for coastal waters based on a multilayer neural network (MLNN) machine learning method. We use a coupled atmosphere-ocean radiative transfer model to simulate the Rayleigh-corrected radiance (Lrc) at the top of the atmosphere (TOA) and the Rrs just above the surface simultaneously, and train a MLNN to derive the aerosol optical depth (AOD) and Rrs directly from the TOA Lrc. The SeaDAS NIR algorithm, the SeaDAS NIR/SWIR algorithm, and the MODIS version of the Case 2 regional water - CoastColour (C2RCC) algorithm are included in the comparison with AERONET-OC measurements. The results show that the MLNN algorithm significantly improves retrieval of normalized Lw in blue bands (412 nm and 443 nm) and yields minor improvements in green and red bands. These results indicate that the MLNN algorithm is suitable for application in turbid coastal waters. Application of the MLNN algorithm to MODIS Aqua images in several coastal areas also shows that it is robust and resilient to contamination due to sunglint or adjacency effects of land and cloud edges. The MLNN algorithm is very fast once the neural network has been properly trained and is therefore suitable for operational use. A significant advantage of the MLNN algorithm is that it does not need SWIR bands, which implies significant cost reduction for dedicated OC missions. A recent effort has been made to extend the MLNN AC algorithm to extreme atmospheric conditions

  16. Primary production of coral ecosystems in the Vietnamese coastal and adjacent marine waters

    NASA Astrophysics Data System (ADS)

    Tac-An, Nguyen; Minh-Thu, Phan; Cherbadji, I. I.; Propp, M. V.; Odintsov, V. S.; Propp, L. H.

    2013-11-01

    Coral reef ecosystems in coastal waters and islands of Vietnam have high primary production. Average gross primary production (GPP) in coral reef waters was 0.39 g C m-2 day-1. GPP of corals ranged from 3.12 to 4.37 g C m-2 day-1. GPP of benthic microalgae in coral reefs ranged from 2 to 10 g C m-2 day-1. GPP of macro-algae was 2.34 g C m-2 day-1. Therefore, the total of GPP of whole coral reef ecosystems could reach 7.85 to 17.10 g C m-2 day-1. Almost all values of the ratio of photosynthesis to respiration in the water bodies are higher than 1, which means these regions are autotrophic systems. Wire variation of GPP in coral reefs was contributed by species abundance of coral and organisms, nutrient supports and environmental characteristics of coral ecosystems. Coral reefs play an important ecological role of biogeochemical cycling of nutrients in waters around the reefs. These results contribute valuable information for the protection, conservation and sustainable exploitation of the natural resources in coral reef ecosystems in Vietnam.

  17. Local government units initiatives on coastal resource management in adjacent municipalities in Camarines Sur, Philippines

    NASA Astrophysics Data System (ADS)

    Faustino, A. Z.; Madela, H. L.

    2018-03-01

    This research was conducted to determine the local government units (LGUs) initiatives on coastal resource management (CRM) in adjacent municipalities in Camarines Sur, Philippines. The respondents of this study are 100 fisherfolk leaders in the municipalities of Calabanga, Tinambac and Siruma. Descriptive, comparative and evaluative methods of research were employed and a survey questionnaire was used as the primary tool in data gathering. On the test of difference, the computed F-value of 12.038 and p-value of .001 revealed a very high difference in the implementation of CRM initiatives in the adjacent municipalities. The respondents in this study live below the poverty threshold. The intrusion of commercial fishers and the use of active fishing gears inside the 15-km municipal waters significantly affect the marine habitat while fishpond conversion kills the natural cycle in the mangrove forests. However, the FOs membership in the Municipal Fisheries and Aquatic Resources Management Council empower them to engage in governance which can be a venue for them to recommend policies related to CRM. As a result of this study, a CRM monitoring and evaluation model was crafted to guide the LGUs in the review, revision and crafting of CRM programs.

  18. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    PubMed

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ocean and Coastal Acidification off New England and Nova Scotia

    EPA Science Inventory

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  20. 33 CFR 148.217 - How can a State be designated as an adjacent coastal State?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: GENERAL Processing Applications... as an adjacent coastal State in the notice may request to be designated as one if the environmental risks to it are equal to or greater than the risks posed to a State directly connected by pipeline to...

  1. Coastal ground water at risk - Saltwater contamination at Brunswick, Georgia and Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Krause, Richard E.; Clarke, John S.

    2001-01-01

    IntroductionSaltwater contamination is restricting the development of ground-water supply in coastal Georgia and adjacent parts of South Carolina and Florida. The principal source of water in the coastal area is the Upper Floridan aquifer—an extremely permeable and high-yielding aquifer—which was first developed in the late 1800s. Pumping from the aquifer has resulted in substantial ground-water-level decline and subsequent saltwater intrusion of the aquifer from underlying strata containing highly saline water at Brunswick, Georgia, and with encroachment of sea-water into the aquifer at the northern end of Hilton Head Island, South Carolina. The saltwater contamination at these locations has constrained further development of the Upper Floridan aquifer in the coastal area and has created competing demands for the limited supply of freshwater. The Georgia Department of Natural Resources, Georgia Environmental Protection Division (GaEPD) has restricted permitted withdrawal of water from the Upper Floridan aquifer in parts of the coastal area (including the Savannah and Brunswick areas) to 1997 rates, and also has restricted additional permitted pumpage in all 24 coastal area counties to 36 million gallons per day above 1997 rates. These actions have prompted interest in alternative management of the aquifer and in the development of supplemental sources of water supply including those from the shallower surficial and upper and lower Brunswick aquifers and from the deeper Lower Floridan aquifer.

  2. Inland and coastal waters

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen; Greb, Steven

    2012-09-01

    Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.

  3. Effects of stream-adjacent logging in fishless headwaters on downstream coastal cutthroat trout

    USGS Publications Warehouse

    Bateman, Douglas S.; Sloat, Matthew R.; Gresswell, Robert E.; Berger, Aaron M.; Hockman-Wert, David; Leer, David W.; Skaugset, Arne E.

    2016-01-01

    To investigate effects of headwater logging on downstream coastal cutthroat trout (Oncorhynchus clarkii clarkii) populations, we monitored stream habitat and biotic indicators including biomass, abundance, growth, movement, and survival over 8 years using a paired-watershed approach. Reference and logged catchments were located on private industrial forestland on ∼60-year harvest rotation. Five clearcuts (14% of the logged catchment area) were adjacent to fishless portions of the headwater streams, and contemporary regulations did not require riparian forest buffers in the treatment catchment. Logging did not have significant negative effects on downstream coastal cutthroat trout populations for the duration of the sample period. Indeed, the only statistically significant response of fish populations following logging in fishless headwaters was an increase in late-summer biomass (g·m−2) of age-1+ coastal cutthroat trout in tributaries. Ultimately, the ability to make broad generalizations concerning effects of timber harvest is difficult because response to disturbance (anthropogenically influenced or not) in aquatic systems is complex and context-dependent, but our findings provide one example of environmentally compatible commercial logging in a regenerated forest setting.

  4. Grey mullet (Mugilidae) as possible indicators of global warming in South African estuaries and coastal waters.

    PubMed

    James, Nicola C; Whitfield, Alan K; Harrison, Trevor D

    2016-12-01

    The grey mullet usually occur in large numbers and biomass in the estuaries of all three South African biogeographic regions, thus making it an ideal family to use in terms of possibly acting as an environmental indicator of global warming. In this analysis the relative estuarine abundance of the dominant three groups of mugilids, namely tropical, warm-water and cool-water endemics, were related to sea surface coastal temperatures. The study suggests a strong link between temperature and the distribution and abundance of the three mullet groups within estuaries and indicates the potential of this family to act as an indicator for future climate change within these systems and adjacent coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Overview of the Pre-YMC2015 campaign over the southwestern coastal land and adjacent sea of Sumatera Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Mori, Shuichi; Katsumata, Masaki; Yoneyama, Kunio; Suzuki, Kenji; Hayati, Noer; Syamsudin, Fadli

    2016-04-01

    An international research project named Years of the Maritime Continent (YMC) is planned during 2017-2019 to expedite the progress of improving understanding and prediction of local multi-scale variability of the Maritime Continent (MC) weather-climate system and its global impact through observations and modeling exercises. We carried out a campaign observation over the southwestern coastal land and adjacent sea of Sumatera Island, Indonesia, during November-December 2015 as a pilot study of the YMC to examine land-ocean coupling processes in mechanisms of coastal heavy rain band (CHeR) along Sumatera Island and further potential scientific themes in the coming YMC. We deployed two land observation sites at Bengkulu city (3.86S, 102.34E) in the southwestern coast of Sumatera Island with various kinds of instruments including an X-band dual polarimetric (DP) radar and a C-band Doppler radar, and the R/V Mirai approximately 50 km southwest (4.07S, 101.90E) of the land stations with a C-band DP radar. We made 3 hourly soundings at Bengkulu and the R/V Mirai during 09 November - 25 December (47 days) and 24 November - 17 December (24 days), respectively. In addition, 18 videosondes observations, which could identify precipitation particles by an onboard camera in and out of rainclouds, were performed under heavy rainfall condition to examine cloud microphysical processes as well as simultaneous RHI observations with the Mirai DP radar. Whereas rainfall amount during the period was less than that of climatological view due to the Godzilla El-Nino event in this rainy season, we found concrete diurnal variation with thunderstorms in the evening along the foothills of coastal land and widely spread stratiform precipitation mainly over the adjacent sea due to the passage of Madden-Julian Oscillation (MJO) convection with strong westerly wind in the lower troposphere during the former and latter halves of the campaign period, respectively. Diurnally developed thunderstorms

  6. Analyzing coastal turbidity under complex terrestrial loads characterized by a 'stress connectivity matrix' with an atmosphere-watershed-coastal ocean coupled model

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Nadaoka, Kazuo

    2018-04-01

    Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.

  7. Artesian water in the Malabar coastal plain of southern Kerala, India

    USGS Publications Warehouse

    Taylor, George C.; Ghosh, P.K.

    1964-01-01

    The present report is based on a geological and hydrological reconnaissance during 1954 of the Malabar Coastal Plain and adjacent island area of southern Kerala to evaluate the availability of ground water for coastal villages and municipalities and associated industries and the potentialities for future development. The work was done in cooperation with the Geological Survey of India and under the auspices of the U.S. Technical Cooperation Mission to India. The State of Kerala, which lies near the southern tip of India and along the eastern shore of the Caspian Sea, contains a total area of 14,937 square miles. The eastern part of the state is s rugged mountainous highland which attains altitudes of more than 6,000 feet. This highland descends westward through piedmont upland to s narrow coastal plain, which reaches a maximum width of about 16 miles in the latitude of Shertalli. A tropical monsoon rain-forest climate prevails in most of Kerala, and annual rainfall ranges from 65 to 130 inches in the southern part of the coastal plain to as much a 200 inches in the highland. The highland and piedmont upland tracts of Kerala are underlain by Precambrian meamorphic and igneous rocks belonging in large parabola-the so-called Charnockite Series. Beneath ahe coastal plain are semiconsolidated asunconsolidated sedimentary deposits whose age ranges from Miocene to Recent. These deposits include sofa sandstone and clay shale containing some marl or limestone and sand, and clay and pea containing some gravel. The sofa sandstone, sand, and gravel beds constitute important aquifers a depths ranging from a few tens of feet to 400 feet or more below the land surface. The shallow ground war is under water-able or unconfined conditions, but the deeper aquifers contain water under artesian pressure. Near the coast, drilled wells tapping the deeper aquifers commonly flow with artesian heads as much as 10 to 12 feet above the land surface. The draft from existing wells in the

  8. Controls on the interannual variability of hypoxia in a subtropical embayment and its adjacent waters in the Guangdong coastal upwelling system, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Cheng, Weicong; Chen, Yuren; Yu, Liuqian; Gong, Wenping

    2018-06-01

    Coastal embayments located downwind of large rivers under an upwelling-favorable wind are prone to develop low-oxygen or hypoxic conditions in their bottom water. One such embayment is Mirs Bay, off the Guangdong coast, which is affected by upwelling and the Pearl River Estuary (PRE) plume during summer. The relative importance of physical and biochemical processes on the interannual variability of hypoxia in Mirs Bay and its adjacent waters was investigated using statistical analyses of monthly hydrographic and water quality monitoring data from 2001 to 2015. The results reveal that the southwesterly wind duration and the PRE river discharge together explain 49% of the interannual variability in the size of the hypoxic area, whereas inclusion of the nutrient concentrations inside Mirs Bay and phytoplankton on the shelf explains 75% of the interannual variability in the size of the hypoxic area. This finding suggests that the interannual variability of hypoxia in Mirs Bay is regulated by coupled physical and biochemical processes. Increase of the hypoxic area under a longer-lasting southwesterly wind is caused by increased stratification, extended bottom water residence time, and onshore transport of a low-oxygen water mass induced by stable upwelling. In contrast, a reduction in the size of the hypoxic area may be attributed to a decrease in the surface water residence time of the particulate organic matter outside Mirs Bay due to increased discharge from the PRE. The results also show that the effects of allochthonous particulate organic matter outside Mirs Bay on bottom hypoxia cannot be neglected.

  9. Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida-predevelopment, 1980, and 2000

    USGS Publications Warehouse

    Payne, Dorothy F.; Rumman, Malek Abu; Clarke, John S.

    2005-01-01

    A digital model was developed to simulate steady-state ground-water flow in a 42,155-square-mile area of coastal Georgia and adjacent parts of South Carolina and Florida. The model was developed to (1) understand and refine the conceptual model of regional ground-water flow, (2) serve as a framework for the development of digital subregional ground-water flow and solute-transport models, and (3) serve as a tool for future evaluations of hypothetical pumping scenarios used to facilitate water management in the coastal area. Single-density ground-water flow was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000 for mean-annual conditions during predevelopment (pre?1900) and the years 1980 and 2000. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. A combination of boundary conditions was applied, including a general-head boundary condition on the top active cells of the model and a time-variable fixed-head boundary condition along part of the southern lateral boundary. Simulated heads for 1980 and 2000 conditions indicate a good match to observed values, based on a plus-or-minus 10-foot (ft) calibration target and calibration statistics. The root-mean square of residual water levels for the Upper Floridan aquifer was 13.0 ft for the 1980 calibration and 9.94 ft for the 2000 calibration. Some spatial patterns of residuals were indicated for the 1980 and 2000 simulations, and are likely a result of model-grid cell size and insufficiently detailed hydraulic-property and pumpage data in some areas. Simulated potentiometric surfaces for predevelopment, 1980, and 2000 conditions all show major flow system features that are indicated by estimated peotentiometric maps. During 1980?2000, simulated water levels at the centers of pumping at Savannah and Brunswick rose more than 20 ft and 8 ft, respectively, in

  10. Analysis of Dynamics in Bays and Coastal Waters Impacted by Hurricanes

    NASA Astrophysics Data System (ADS)

    Li, C.; Lin, H.; Chen, C.

    2012-12-01

    The dynamical processes in coastal bays/estuaries and continental shelf are mostly tidally and wind driven. Under severe weather conditions such as hurricanes and tropical storms, the process is much more dynamic and variable. In an attempt to illustrate the dynamical regimes in coastal bays and adjacent coastal ocean, we have simulated circulation and storm tides in the northern Gulf of Mexico forced by 49 hurricanes, respectively; among which 4 are the most recent real hurricanes: Hurricane Katrina and Hurricane Rita of 2005, and Hurricane Gustav and Hurricane Ike of 2008. The other 45 hurricanes are hypothetical in their tracks, but based on the real hurricanes in terms of forcing conditions. More specifically, these 45 hurricanes are divided into five groups, each corresponding to one of these four real hurricanes plus a group for hypothetical Category 5 hurricanes, based on the information of Hurricane Katrina, except that the strength of the hurricane is increased to Category 5. Using otherwise the same forcing conditions of the hurricanes, we apply variations of each of the hurricane tracks with roughly the same moving speed. Each group has a total of 9 simulations (with 9 different tracks). Our model allows inundation of wetland, and low lying lands on the coast and around the Louisiana Bays. The model for the hurricane storm tide was done with an implementation of the Finite Volume Coastal Ocean Model, or FVCOM. Our analysis of the results reveals rich dynamical processes in the bays and estuaries and on the adjacent continental shelf. It involves various oscillations, depending on the hurricane conditions and track history and positions, long waves, under the influence of earth rotation, and currents. The protruding delta, bathymetry, and the setup of the bays all play some roles in shaping the dynamics, water movement, inundation, and receding of the storm surges.

  11. Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM

    NASA Astrophysics Data System (ADS)

    Beltrán-Abaunza, J. M.; Kratzer, S.; Brockmann, C.

    2013-11-01

    In this study, retrievals of the medium resolution imaging spectrometer (MERIS) reflectances and water quality products using 4 different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http.vattenkvalitet.se). The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL) processor, correcting for adjacency effects, improve the retrieval of spectral reflectance for all processors, Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin) processing algorithm, although overestimations in the range 18-26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (< 2.5 mg m-3), random errors dominated in the retrievals with the MEGS (MERIS ground segment processor) processor. The lowest bias and random errors were obtained with MEGS for suspended particulate matter, for which overestimations in te range of 8-16% were found. Only the FUB retrieved CDOM (Coloured Dissolved Organic Matter) correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a~local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in presence of high CDOM attenuation.

  12. Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM

    NASA Astrophysics Data System (ADS)

    Beltrán-Abaunza, J. M.; Kratzer, S.; Brockmann, C.

    2014-05-01

    In this study, retrievals of the medium resolution imaging spectrometer (MERIS) reflectances and water quality products using four different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http://vattenkvalitet.se). The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL) processor, correcting for adjacency effects, improves the retrieval of spectral reflectance for all processors. Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin) processing algorithm, although overestimations in the range 18-26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (< 2.5 mg m-3), data dispersion dominated in the retrievals with the MEGS (MERIS ground segment processor) processor. The lowest bias and data dispersion were obtained with MEGS for suspended particulate matter, for which overestimations in the range of 8-16% were found. Only the FUB retrieved CDOM (coloured dissolved organic matter) correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in the presence of high CDOM attenuation.

  13. A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek.

    PubMed

    DeLorenzo, Marie E; Thompson, Brian; Cooper, Emily; Moore, Janet; Fulton, Michael H

    2012-01-01

    Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to water-quality problems including nutrient enrichment, chemical contamination, and bacterial contamination. This study presents 5 years of monitoring data assessing water quality of a residential subdivision pond and adjacent tidal creek in coastal South Carolina, USA. The stormwater pond is eutrophic, as described by elevated concentrations of chlorophyll and phosphorus, and experiences periodic cyanobacterial blooms. A maximum monthly average chlorophyll concentration of 318.75 μg/L was measured in the stormwater pond and 227.63 μg/L in the tidal creek. Fecal coliform bacteria (FCB) levels were measured in both the pond and the tidal creek that exceeded health and safety standards for safe recreational use. A maximum monthly average FCB level of 1,247 CFU/100 mL was measured in the stormwater pond and 12,850 CFU/100 mL in the tidal creek. In addition, the presence of antibiotic resistant bacteria and pathogenic bacteria were detected. Low concentrations of herbicides (atrazine and 2,4-D: ), a fungicide (chlorothalonil), and insecticides (pyrethroids and imidacloprid) were measured. Seasonal trends were identified, with the winter months having the lowest concentrations of chlorophyll and FCB. Statistical differences between the stormwater pond and the tidal creek were also noted within seasons. The tidal creek had higher FCB levels than the stormwater pond in the spring and summer, whereas the stormwater pond had higher chlorophyll levels than the tidal creek in the summer and fall seasons. Chlorophyll and FCB levels in the stormwater pond were significantly correlated with monthly average temperature and total rainfall. Pesticide concentrations were also significantly correlated with temperature and rainfall. Pesticide concentrations in the stormwater pond were significantly correlated with

  14. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  15. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  16. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  17. Seasonal dynamics of particulate organic matter in the Changjiang Estuary and adjacent coastal waters illustrated by amino acid enantiomers

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Liu, Zongguang; Hu, Jun; Zhu, Zhuoyi; Liu, Sumei; Zhang, Jing

    2016-02-01

    Total suspended matter (TSM) was collected in the Changjiang Estuary and adjacent areas of the East China Sea in July, August, and November 2011, to study the composition and fate of particulate organic nitrogen (PON) during an August typhoon event and bottom trawling activities. Concentrations of particulate organic carbon (POC), particulate nitrogen (PN), and hydrolyzable particulate amino acids (PAA, D- and L-enantiomers) were higher during July and August than during November; however, D-arginine and alanine levels were significantly higher in November. Seasonal trends in the composition of PAAs indicate that in situ production is a key factor in their temporal distribution. No significant increase in TSM or decrease in labile organic matter was observed during the transit period following a typhoon event in August. In contrast, higher primary production was observed at this time as a result of the penetration of Changjiang Diluted Water caused by the typhoon event. Trawling effects were studied by comparing the calm season (July) with the bottom-trawling period (November) at similar sampling sites. The effect of trawling on the composition of bottom organic matter was studied by comparing D-amino acids concentrations and C/N ratios in the calm season (July) with the bottom-trawling period (November). A substantial contribution of microbial organic matter during the November cruise was indicated by a decrease in glutamic acid, an increase in TSM and D-alanine, and a lower carbon/nitrogen (C/N) ratio. In shallow coastal regions, anthropogenic activities (bottom trawling) may enhance the transfer of low-nutritional-value particulate organic matter into the benthic food chain.

  18. Coastal Freshening Prevents Fjord Bottom Water Renewal in Northeast Greenland: A Mooring Study From 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Boone, Wieter; Rysgaard, Søren; Carlson, Daniel F.; Meire, Lorenz; Kirillov, Sergei; Mortensen, John; Dmitrenko, Igor; Vergeynst, Leendert; Sejr, Mikael K.

    2018-03-01

    The freshwater content of the Arctic Ocean and its bordering seas has recently increased. Observing freshening events is an important step toward identifying the drivers and understanding the effects of freshening on ocean circulation and marine ecosystems. Here we present a 13 year (2003-2015) record of temperature and salinity in Young Sound-Tyrolerfjord (74°N) in Northeast Greenland. Our observations show that strong freshening occurred from August 2005 to August 2007 (-0.92 psu or -0.46 psu yr-1) and from August 2009 to August 2013 (-0.66 psu or -0.17 psu yr-1). Furthermore, temperature-salinity analysis from 2004 to 2014 shows that freshening of the coastal water ( range at sill depth: 33.3 psu in 2005 to 31.4 psu in 2007) prevented renewal of the fjord's bottom water. These data provide critical observations of interannual freshening rates in a remote fjord in Greenland and in the adjacent coastal waters and show that coastal freshening impacts the fjord hydrography, which may impact the ecosystem dynamics in the long term.

  19. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh.

    PubMed

    Shammi, Mashura; Rahman, Md Mostafizur; Islam, Md Atikul; Bodrud-Doza, Md; Zahid, Anwar; Akter, Yeasmin; Quaiyum, Samia; Kurasaki, Masaaki

    2017-06-01

    The study was designed to collect water samples over two seasons-wet-monsoon season (n = 96) (March-April) and dry-monsoon season (n = 44) (September-October)-to understand the seasonal variation in anion and cation hydrochemistry of the coastal rivers and estuaries contributing in the spatial trend in salinity. Hydrochemical examination of wet-monsoon season primarily revealed Ca-Mg-HCO 3 type (66%) and followed by Na-Cl type (17.70%) water. In the dry-monsoon season, the scenario reversed with primary water being Na-Cl type (52.27%) followed by Ca-Mg-HCO 3 type (31.81%). Analysis of Cl/Br molar ratio vs. Cl (mg/L) depicted sampling area affected by seawater intrusion (SWI). Spatial analysis by ordinary kriging method confirmed approximately 77% sample in the dry-monsoon, and 34% of the wet-monsoon season had shown SWI. The most saline-intruded areas in the wet-monsoon seasons were extreme south-west coastal zone of Bangladesh, lower Meghna River floodplain and Meghna estuarine floodplain and south-eastern part of Chittagong coastal plains containing the districts of Chittagong and Cox's Bazar adjacent to Bay of Bengal. In addition, mid-south zone is also affected slightly in the dry-monsoon season. From the analyses of data, this study could further help to comprehend seasonal trends in the hydrochemistry and water quality of the coastal and estuarine rivers. In addition, it can help policy makers to obligate some important implications for the future initiatives taken for the management of land, water, fishery, agriculture and environment of coastal rivers and estuaries of Bangladesh.

  20. Coastal surface water suitability analysis for irrigation in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  1. [Characteristics of ichthyoplankton assemblages in Yangtze Estuary and adjacent waters in spring].

    PubMed

    Liu, Shu-De; Xian, Wei-Wei; Liu, Dong

    2008-10-01

    Based on the investigation data of ichthyoplankton assemblages and environmental factors in Yangtze Estuary and adjacent waters in May 1999 and 2001, the characteristics of ichthyoplankton assemblages in these areas in spring were studied by using TWINSPAN (two-way indicator species analysis) and CCA (canonical correspondence analysis). A total of 11 540 ichthyoplankton individuals were taxonomically identified, belonging to 11 orders, 18 families and 32 species, of which, Coilia mystus, Engraulis japonicus, Chaeturichthys hexanema, Allanetta bleekeri, and Trachidermis fasciatus were the dominant species. The ichthyoplankton communities were classified into three assemblages by using TWINSPAN, i.e., estuarine assemblage dominated by C. mystus, coastal assemblage dominated by A. bleekeri and T. fasciatus; and shelf assemblage featured by E. japonicus and C. hexanema. The CCA ordination of the interrelations among the three assemblages and their correlations to the environmental variables revealed that salinity, depth, dissolved oxygen, and total suspended particulate matter were the major factors affecting the ichthyoplankton assemblages in the study areas.

  2. 33 CFR 110.168 - Hampton Roads, Virginia and adjacent waters (Datum: NAD 83).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hampton Roads, Virginia and adjacent waters (Datum: NAD 83). 110.168 Section 110.168 Navigation and Navigable Waters COAST GUARD..., Virginia and adjacent waters (Datum: NAD 83). (a) Anchorage Grounds—(1) Anchorage A [Naval Anchorage]. The...

  3. Study on water quality around mangrove ecosystem for coastal rehabilitation

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  4. Depositional and diagenetic history and petroleum geology of the Jurassic Norphlet Formation of the Alabama coastal waters area and adjacent federal waters area

    USGS Publications Warehouse

    Kugler, R.L.; Mink, R.M.

    1999-01-01

    The discovery of deep (>20,000 ft) gas reservoirs in eolian sandstone of the Upper Jurassic Norphlet Formation in Mobile Bay and offshore Alabama in the late 1970s represents one of the most significant hydrocarbon discoveries in the nation during the past several decades. Estimated original proved gas from Norphlet reservoirs in the Alabama coastal waters and adjacent federal waters is 7.462 trillion ft3 (Tcf) (75% recovery factor). Fifteen fields have been established in the offshore Alabama area. Norphlet sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in updip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition, resulted in reworking of the upper part of the Norphlet Formation. Norphlet reservoir sandstone is arkose and subarkose, consisting of a simple assemblage of three minerals, quartz, albite, and K-feldspar. The present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex. Important authigenic minerals include carbonate phases (calcite, dolomite, Fe-dolomite, and breunnerite), feldspar (albite and K-feldspar), evaporite minerals (anhydrite and halite), clay minerals (illite and chlorite), quartz, and pyrobitumen. The abundance and distribution of these minerals varies significantly between onshore and offshore regions of Norphlet production. The lack of sufficient internal sources of components for authigenic minerals, combined with unusual chemical compositions of chloride (Mg-rich), breunnerite, and some minor authigenic minerals, suggests that Louann-derived fluids influenced Norphlet diagenesis. In offshore Alabama reservoirs, porosity is dominantly modified primary porosity. Preservation of porosity in deep Norphlet reservoirs is due

  5. Detection of a Planktothrix agardhii Bloom in Portuguese Marine Coastal Waters.

    PubMed

    Churro, Catarina; Azevedo, Joana; Vasconcelos, Vitor; Silva, Alexandra

    2017-12-03

    Cyanobacteria blooms are frequent in freshwaters and are responsible for water quality deterioration and human intoxication. Although, not a new phenomenon, concern exists on the increasing persistence, scale, and toxicity of these blooms. There is evidence, in recent years, of the transfer of these toxins from inland to marine waters through freshwater outflow. However, the true impact of these blooms in marine habitats has been overlooked. In the present work, we describe the detection of Planktothrix agardhii , which is a common microcystin producer, in the Portuguese marine coastal waters nearby a river outfall in an area used for shellfish harvesting and recreational activities. P. agardhii was first observed in November of 2016 in seawater samples that are in the scope of the national shellfish monitoring system. This occurrence was followed closely between November and December of 2016 by a weekly sampling of mussels and water from the sea pier and adjacent river mouth with salinity ranging from 35 to 3. High cell densities were found in the water from both sea pier and river outfall, reaching concentrations of 4,960,608 cells·L -1 and 6810.3 × 10⁶ cells·L -1 respectively. Cultures were also established with success from the environment and microplate salinity growth assays showed that the isolates grew at salinity 10. HPLC-PDA analysis of total microcystin content in mussel tissue, water biomass, and P. agardhii cultures did not retrieve a positive result. In addition, microcystin related genes were not detected in the water nor cultures. So, the P. agardhii present in the environment was probably a non-toxic strain. This is, to our knowledge, the first report on a P. agardhii bloom reaching the sea and points to the relevance to also monitoring freshwater harmful phytoplankton and related toxins in seafood harvesting and recreational coastal areas, particularly under the influence of river plumes.

  6. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  7. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  8. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  9. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  10. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  11. Coastal and Estuarine Waters: Light Behavior. Coastal and Estuarine Waters: Optical Sensors and Remote Sensing.

    EPA Science Inventory

    This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...

  12. Scientific Assessment of Hypoxia in US Coastal Waters ...

    EPA Pesticide Factsheets

    Report from the Interagency Working Group on Harmful Algal Blooms, Hypoxia and Human Health. Joint Subcommittee on Ocean Science and Technology (JOST) This report was prepared by a task force associated with the IWG-4H that included representatives of Federal agencies participating in the science and management of coastal hypoxia. It builds on earlier reports to assess hypoxia in U.S. coastal waters (CENR 2003) by updating the assessments and summarizing the major advances in hypoxia research during the past five years. Specifically, this report draws on An Assessment of Coastal Hypoxia and Eutrophication in U.S. Waters (CENR 2003), which was called for in HABHRCA 1998, and The State of Hypoxia in United States Estuarine and Coastal Waters (Diaz 2009). This report also recommends priorities for future hypoxia-related research across the U.S. government.

  13. The inorganic carbon distribution in Irish coastal waters

    NASA Astrophysics Data System (ADS)

    McGrath, Triona; Cave, Rachel; McGovern, Evin; Kivimae, Caroline

    2014-05-01

    Despite their relatively small surface area, coastal and shelf waters play a crucial role in the global climate through their influence on major biogeochemical cycles. Due to growing concern about ocean acidification as a result of increasing atmospheric CO2 concentrations, measurements of inorganic carbon parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), pH and pCO2) have been made with increasing regularity over the past two decades. While it is clear that open ocean surface waters are acidifying at a fairly uniform rate ( -0.02 pH units per decade), less is known about changes in coastal waters due to the high complexity and spatial variability in these regions. Large spatial and temporal variability in coastal CO2 parameters is mainly due to nutrient inputs, biological activity, upwelling and riverine inputs of alkalinity and inorganic and organic carbon. The inorganic carbon system in Irish coastal waters is presented here, gathered from 9 surveys around the Irish coastline between 2009 and 2013. There are striking contrasts in the CO2 system between different areas, largely attributed to the bedrock composition of the nearby rivers. Freshwater end-member concentrations of TA, calculated from TA-salinity relationships in outer estuarine and nearshore coastal water, were supported by riverine TA data from the Irish Environmental Protection Agency. A large portion of Ireland is covered with limestone bedrock and as a result, many of the rivers have extremely high TA (>5000μmol/kg) due to the carbonate mineral content of the underlying bedrock. While such high TA has resulted in elevated pH and calcium carbonate saturation states in some coastal waters, (e.g. Galway Bay and Dublin Bay), the high TA in other areas was accompanied by particularly high DIC (e.g. River Shannon on the west coast), resulting in lower pH and aragonite/calcite saturation states and even CO2 degassing in the Shannon estuary. Due to non-limestone lithology in many parts

  14. Measuring mercury in coastal fog water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    Mercury, a heavy metal neurotoxin, accumulates in sea life, in some cases reaching levels that make seafood unsafe for humans to eat. How mercury gets into aquatic organisms is debated, but part of the pathway could include mercury carried in precipitation, including rain, snow, and fog. The contribution of mercury in fog water in particular is not well known, especially in foggy coastal areas such as coastal California. To learn more, Weiss-Penzias et al. measured total mercury and monomethyl mercury concentrations in fog water and rainwater samples taken from four locations around Monterey Bay, California, during spring and summer 2011. They found that the mean monomethyl mercury concentrations in their fog water samples were about 34 times higher than the mean concentrations in their rainwater samples. Therefore, the authors believe that fog is an important, previously unrecognized source of mercury to coastal ecosystems. They also explored potential sources of mercury, finding that biotically formed monomethyl mercury from oceanic upwelling may contribute to monomethyl mercury in fog. (Geophysical Research Letters, doi:10.1029/2011GL050324, 2012)

  15. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget Sound...

  16. In situ spectroradiometric calibration of EREP imagery and estuarine and coastal oceanography of Block Island sound and adjacent New York coastal waters. [Willcox, Arizona

    NASA Technical Reports Server (NTRS)

    Yost, E. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The first part of the study resulted in photographic procedures for making multispectral positive images which greatly enhance the color differences in land detail using an additive color viewer. An additive color analysis of the geologic features near Willcox, Arizona using enhanced black and white multispectral positives allowed compilation of a significant number of unmapped geologic units which do not appear on geologic maps of the area. The second part demonstrated the feasibility of utilizing Skylab remote sensor data to monitor and manage the coastal environment by relating physical, chemical, and biological ship sampled data to S190A, S190B, and S192 image characteristics. Photographic reprocessing techniques were developed which greatly enhanced subtle low brightness water detail. Using these photographic contrast-stretch techniques, two water masses having an extinction coefficient difference of only 0.07 measured simultaneously with the acquisition of S190A data were readily differentiated.

  17. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine

    PubMed Central

    Tilburg, Charles E.; Jordan, Linda M.; Carlson, Amy E.; Zeeman, Stephan I.; Yund, Philip O.

    2015-01-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18–24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible. PMID:26587258

  18. Atrazine fate and transport within the coastal zone in southeastern Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Herbicide transport from crop-land to coastal waters may adversely impact water quality. This work examined potential atrazine impact from use on a farm field adjacent to the Jobos Bay National Estuarine Research Reserve on Puerto Rico’s southeastern coast. Atrazine application was linked to residu...

  19. Detection of a Planktothrix agardhii Bloom in Portuguese Marine Coastal Waters

    PubMed Central

    Azevedo, Joana; Vasconcelos, Vitor; Silva, Alexandra

    2017-01-01

    Cyanobacteria blooms are frequent in freshwaters and are responsible for water quality deterioration and human intoxication. Although, not a new phenomenon, concern exists on the increasing persistence, scale, and toxicity of these blooms. There is evidence, in recent years, of the transfer of these toxins from inland to marine waters through freshwater outflow. However, the true impact of these blooms in marine habitats has been overlooked. In the present work, we describe the detection of Planktothrix agardhii, which is a common microcystin producer, in the Portuguese marine coastal waters nearby a river outfall in an area used for shellfish harvesting and recreational activities. P. agardhii was first observed in November of 2016 in seawater samples that are in the scope of the national shellfish monitoring system. This occurrence was followed closely between November and December of 2016 by a weekly sampling of mussels and water from the sea pier and adjacent river mouth with salinity ranging from 35 to 3. High cell densities were found in the water from both sea pier and river outfall, reaching concentrations of 4,960,608 cells·L−1 and 6810.3 × 106 cells·L−1 respectively. Cultures were also established with success from the environment and microplate salinity growth assays showed that the isolates grew at salinity 10. HPLC-PDA analysis of total microcystin content in mussel tissue, water biomass, and P. agardhii cultures did not retrieve a positive result. In addition, microcystin related genes were not detected in the water nor cultures. So, the P. agardhii present in the environment was probably a non-toxic strain. This is, to our knowledge, the first report on a P. agardhii bloom reaching the sea and points to the relevance to also monitoring freshwater harmful phytoplankton and related toxins in seafood harvesting and recreational coastal areas, particularly under the influence of river plumes. PMID:29207501

  20. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    NASA Astrophysics Data System (ADS)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  1. Comprehensive assessment of coastal eutrophication in Taiwan and its implications for management strategy.

    PubMed

    Liu, Ta-Kang; Chen, Ping; Chen, Hou-Yu

    2015-08-15

    Due to the rapid population growth, anthropogenic activities result in agricultural, industrial, and urban diffuse runoffs that elevate the level of nutrients such as nitrogen and phosphorus in coastal waters. Currently there is no integrated analysis for coastal eutrophication in Taiwan. A comprehensive analysis of the coastal eutrophic status was performed in this study based on decade-long coastal water quality monitoring data from Taiwan's Environmental Protection Administration. A 3-tiered monitoring strategy is recommended based on the severity of the current eutrophication state. Results indicate that the most problematic area of coastal eutrophication is located in the estuary of the Donggang River (DGR) and its adjacent coastal waters, i.e., the Kao-Ping mouth (KPM) and Dapeng Bay (DPB) in south-western Taiwan. With a worsening eutrophic status, these areas demand intensive monitoring and research with higher spatial and temporal resolutions to evaluate the stresses of nutrient forcing and predict possible future responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Satellite tagging highlights the importance of productive Mozambican coastal waters to the ecology and conservation of whale sharks.

    PubMed

    Rohner, Christoph A; Richardson, Anthony J; Jaine, Fabrice R A; Bennett, Michael B; Weeks, Scarla J; Cliff, Geremy; Robinson, David P; Reeve-Arnold, Katie E; Pierce, Simon J

    2018-01-01

    The whale shark Rhincodon typus is an endangered, highly migratory species with a wide, albeit patchy, distribution through tropical oceans. Ten aerial survey flights along the southern Mozambican coast, conducted between 2004-2008, documented a relatively high density of whale sharks along a 200 km stretch of the Inhambane Province, with a pronounced hotspot adjacent to Praia do Tofo. To examine the residency and movement of whale sharks in coastal areas around Praia do Tofo, where they may be more susceptible to gill net entanglement, we tagged 15 juveniles with SPOT5 satellite tags and tracked them for 2-88 days (mean = 27 days) as they dispersed from this area. Sharks travelled between 10 and 2,737 km (mean = 738 km) at a mean horizontal speed of 28 ± 17.1 SD km day -1 . While several individuals left shelf waters and travelled across international boundaries, most sharks stayed in Mozambican coastal waters over the tracking period. We tested for whale shark habitat preferences, using sea surface temperature, chlorophyll- a concentration and water depth as variables, by computing 100 random model tracks for each real shark based on their empirical movement characteristics. Whale sharks spent significantly more time in cooler, shallower water with higher chlorophyll- a concentrations than model sharks, suggesting that feeding in productive coastal waters is an important driver of their movements. To investigate what this coastal habitat choice means for their conservation in Mozambique, we mapped gill nets during two dedicated aerial surveys along the Inhambane coast and counted gill nets in 1,323 boat-based surveys near Praia do Tofo. Our results show that, while whale sharks are capable of long-distance oceanic movements, they can spend a disproportionate amount of time in specific areas, such as along the southern Mozambique coast. The increasing use of drifting gill nets in this coastal hotspot for whale sharks is likely to be a threat to regional

  3. Satellite tagging highlights the importance of productive Mozambican coastal waters to the ecology and conservation of whale sharks

    PubMed Central

    Richardson, Anthony J.; Jaine, Fabrice R. A.; Bennett, Michael B.; Weeks, Scarla J.; Cliff, Geremy; Robinson, David P.; Reeve-Arnold, Katie E.; Pierce, Simon J.

    2018-01-01

    The whale shark Rhincodon typus is an endangered, highly migratory species with a wide, albeit patchy, distribution through tropical oceans. Ten aerial survey flights along the southern Mozambican coast, conducted between 2004–2008, documented a relatively high density of whale sharks along a 200 km stretch of the Inhambane Province, with a pronounced hotspot adjacent to Praia do Tofo. To examine the residency and movement of whale sharks in coastal areas around Praia do Tofo, where they may be more susceptible to gill net entanglement, we tagged 15 juveniles with SPOT5 satellite tags and tracked them for 2–88 days (mean = 27 days) as they dispersed from this area. Sharks travelled between 10 and 2,737 km (mean = 738 km) at a mean horizontal speed of 28 ± 17.1 SD km day−1. While several individuals left shelf waters and travelled across international boundaries, most sharks stayed in Mozambican coastal waters over the tracking period. We tested for whale shark habitat preferences, using sea surface temperature, chlorophyll-a concentration and water depth as variables, by computing 100 random model tracks for each real shark based on their empirical movement characteristics. Whale sharks spent significantly more time in cooler, shallower water with higher chlorophyll-a concentrations than model sharks, suggesting that feeding in productive coastal waters is an important driver of their movements. To investigate what this coastal habitat choice means for their conservation in Mozambique, we mapped gill nets during two dedicated aerial surveys along the Inhambane coast and counted gill nets in 1,323 boat-based surveys near Praia do Tofo. Our results show that, while whale sharks are capable of long-distance oceanic movements, they can spend a disproportionate amount of time in specific areas, such as along the southern Mozambique coast. The increasing use of drifting gill nets in this coastal hotspot for whale sharks is likely to be a threat to regional

  4. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change.

  5. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (??13C) and radiocarbon (??14C) isotopes of coastal DIC are influenced by the ??13C and ??14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, ??13C and ??14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the ??13C and ??14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both ??13C and ??14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in ??13C and ??14C than seawater DIC, and (3) the correlation of ??13C and ??14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal ??13C and ??14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change. ?? 2011 United States Geological Survey.

  6. Watershed Influences on Nearshore Waters Across the Entire US Great Lakes Coastal Region

    EPA Science Inventory

    We have combined three elements of observation to enable a comprehensive characterization of the Great Lakes nearshore that links nearshore conditions with their adjacent coastal watersheds. The three elements are: 1) a shore-parallel, high-resolution survey of the nearshore usin...

  7. Differences in coastal and oceanic SST trends north of Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Varela, R.; Costoya, X.; Enriquez, C.; Santos, F.; Gómez-Gesteira, M.

    2018-06-01

    The coastal area north of Yucatan has experienced a cooling SST trend from 1982 to 2015 during the upwelling season (May-September) that contrasts with the warming observed at the adjacent ocean area. Different drivers were analyzed to identify the possible causes of that unusual coastal cooling. Changes in coastal upwelling and in sea-atmosphere heat fluxes are not consistent with the observed coastal cooling. The eastward shift of the Yucatan Current observed over the last decades is hypothesized as the most probable cause of coastal cooling. This shift enhances the vertical transport of cold deeper water to the continental shelf from where it is pumped to the surface by upwelling favorable westerly winds.

  8. Multi-scale trends analysis of landscape stressors in an urbanizing coastal watershed

    EPA Science Inventory

    Anthropogenic land based stressors within a watershed can deliver major impacts to downstream and adjacent coastal waterways affecting water quality and estuarine habitats. Our research focused on a subset of non-point sources of watershed stressors specifically, human population...

  9. View from water showing south facade and adjacent boat slips ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from water showing south facade and adjacent boat slips (Facility Nos. S375 & S376) - U.S. Naval Base, Pearl Harbor, Boat House, Hornet Avenue at Independence Street, Pearl City, Honolulu County, HI

  10. The effect of beaver ponds on water quality in rural coastal plain streams

    USGS Publications Warehouse

    Bason, Christopher W.; Kroes, Daniel; Brinson, Mark M.

    2017-01-01

    We compared water-quality effects of 13 beaver ponds on adjacent free-flowing control reaches in the Coastal Plain of rural North Carolina. We measured concentrations of nitrate, ammonium, soluble reactive phosphorus (SRP), and suspended sediment (SS) upstream and downstream of paired ponds and control reaches. Nitrate and SS concentrations decreased, ammonium concentrations increased, and SRP concentrations were unaffected downstream of the ponds and relative to the control reaches. The pond effect on nitrate concentration was a reduction of 112 ± 55 μg-N/L (19%) compared to a control-reach—influenced reduction of 28 ± 17 μg-N/L. The pond effect on ammonium concentration was an increase of 9.47 ± 10.9 μg-N/L (59%) compared to the control-reach—influenced reduction of 1.49 ± 1.37 μg-N/L. The pond effect on SS concentration was a decrease of 3.41 ± 1.68 mg/L (40%) compared to a control-reach—influenced increase of 0.56 ± 0.27 mg/L. Ponds on lower-order streams reduced nitrate concentrations by greater amounts compared to those in higher-order streams. Older ponds reduced SS concentrations by greater amounts compared to younger ponds. The findings of this study indicate that beaver ponds provide water-quality benefits to rural Coastal Plain streams by reducing concentrations of nitrate and suspended sediment.

  11. VIIRS validation and algorithm development efforts in coastal and inland Waters

    NASA Astrophysics Data System (ADS)

    Stengel, E.; Ondrusek, M.

    2016-02-01

    Accurate satellite ocean color measurements in coastal and inland waters are more challenging than open-ocean measurements. Complex water and atmospheric conditions can limit the utilization of remote sensing data in coastal waters where it is most needed. The Coastal Optical Characterization Experiment (COCE) is an ongoing project at NOAA/NESDIS/STAR Satellite Oceanography and Climatology Division. The primary goals of COCE are satellite ocean color validation and application development. Currently, this effort concentrates on the initialization and validation of the Joint Polar Satellite System (JPSS) VIIRS sensor using a Satlantic HyperPro II radiometer as a validation tool. A report on VIIRS performance in coastal waters will be given by presenting comparisons between in situ ground truth measurements and VIIRS retrievals made in the Chesapeake Bay, and inland waters of the Gulf of Mexico and Puerto Rico. The COCE application development effort focuses on developing new ocean color satellite remote sensing tools for monitoring relevant coastal ocean parameters. A new VIIRS total suspended matter algorithm will be presented for the Chesapeake Bay. These activities improve the utility of ocean color satellite data in monitoring and analyzing coastal and oceanic processes. Progress on these activities will be reported.

  12. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications

    NASA Astrophysics Data System (ADS)

    Vargas, Cristian A.; Contreras, Paulina Y.; Pérez, Claudia A.; Sobarzo, Marcus; Saldías, Gonzalo S.; Salisbury, Joe

    2016-06-01

    A combined data set, combining data from field campaigns and oceanographic cruises, was used to ascertain the influence of both river discharges and upwelling processes, covering spatial and temporal variation in dissolved inorganic carbon (DIC) and aragonite saturation state. This work was conducted in one of the most productive river-influenced upwelling areas in the South Pacific coasts (36°S). Additionally, further work was also conducted to ascertain the contribution of different DIC sources, influencing the dynamics of DIC along the land-ocean range. Six sampling campaigns were conducted across seven stations at the Biobío River basin, covering approximately 200 km. Three research cruises were undertaken simultaneously, covering the adjacent continental shelf, including 12 sampling stations for hydrographic measurements. Additionally, six stations were also sampled for chemical analyses, covering summer, winter, and spring conditions over 2010 and 2011. Our results evidenced that seaward extent of the river plume was more evident during the winter field campaign, when highest riverine DIC fluxes were observed. The carbonate system along the river-ocean continuum was very heterogeneous varying over spatial and temporal scales. High DIC and pCO2 were observed in river areas with larger anthropogenic effects. CO2 supersaturation at the river plume was observed during all campaigns due to the influence of low pH river waters in winter/spring and high-pCO2 upwelling waters in summer. δ13CDIC evidenced that main DIC sources along the river and river plume corresponded to the respiration of terrestrial organic matter. We have linked this natural process to the carbonate saturation on the adjacent river-influenced coastal area, suggesting that Ωaragonite undersaturation in surface/subsurface waters is largely modulated by the influence of both river discharge and coastal upwelling events in this productive coastal area. Conditions of low Ωaragonite might impact

  13. Effects of Withdrawals on Ground-Water Levels in Southern Maryland and the Adjacent Eastern Shore, 1980-2005

    USGS Publications Warehouse

    Soeder, Daniel J.; Raffensperger, Jeff P.; Nardi, Mark R.

    2007-01-01

    Ground water is the primary source of water supply in most areas of Maryland?s Atlantic Coastal Plain, including Southern Maryland. The counties in this area are experiencing some of the most rapid growth and development in the State, resulting in an increased demand for ground-water production. The cooperative, basic water-data program of the U.S. Geological Survey and the Maryland Geological Survey has collected long-term observations of ground-water levels in Southern Maryland and parts of the Eastern Shore for many decades. Additional water-level observations were made by both agencies beginning in the 1970s, under the Power Plant Research Program of the Maryland Department of Natural Resources. These long-term water levels commonly show significant declines over several decades, which are attributed to ground-water withdrawals. Ground-water-level trends since 1980 in major Coastal Plain aquifers such as the Piney Point-Nanjemoy, Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent were compared to water use and withdrawal data. Potentiometric surface maps show that most of the declines in ground-water levels can be directly related to effects from major pumping centers. There is also evidence that deep drawdowns in some pumped aquifers may be causing declines in adjacent, unpumped aquifers. Water-level hydrographs of many wells in Southern Maryland show linear declines in levels year after year, instead of the gradual leveling-off that would be expected as the aquifers equilibrate with pumping. A continual increase in the volumes of water being withdrawn from the aquifers is one explanation for why they are not reaching equilibrium. Although reported ground-water production in Southern Maryland has increased somewhat over the past several decades, the reported increases are often not large enough to account for the observed water-level declines. Numerical modeling simulations indicate that a steady, annual increase in the number of small wells could

  14. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2006-01-01

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of

  15. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2007-09-30

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of

  16. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2008-09-30

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean...umb.edu G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA...02125-3393 phone: (617) 287-7451 fax: (617) 287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences

  17. Evolution of a Man-Made Plume in Coastal Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmaus, Karen L.; Bowles, Jeff; Woodruff, Dana L.

    2006-12-19

    The ability to understand the biogeophysical parameters that create ocean color in coastal waters is fundamental to the ability to exploit remote sensing for coastal applications. This article describes an experiment in which a controlled quantity of a single inorganic material with known absorption and scattering properties was released into a coastal environment. The plume experiment was conducted in conjunction with a Pacific Northwest National Laboratory (PNNL) field collection campaign in and around Sequim Bay on the Strait of Juan de Fuca in Washington State. The objective of the field campaign was to identify and characterize features in the nearmore » shore environment from the standpoint of quantifying environmental parameters to improve operational planning in littoral regions. The aerial component of the mission involved imagery acquisitions from the NRL's PHILLS hyperspectral sensor, and two commercial IR cameras. Coincident satellite data was obtained from commercial sources. Ground truth activities included atmospheric profiles, ground, surface water, and in-water spectral measurements, panels for radiometric calibration, water column water optics, water samples and profiles from support vessels, in-situ tide and weather measurements, and beach and intertidal transects and surveys (via scientific dive teams). This field collection campaign provided a unique opportunity for a multisensor data collection effort in littoral regions, to identify and characterize features from multiple platforms (satellite, aerial, water surface and subsurface) and sensors. Data from this mission is being used as input to both radiative transfer and ocean transport models, for characterizing the water column and the near-shore, and quantitatively estimating circulation and transport in coastal environments.« less

  18. CLASSIFYING COASTAL WATERS: HISTORICAL PERSPECTIVE AND CURRENT FOCUS ON AQUATIC STRESSORS

    EPA Science Inventory

    Coastal ecosystems are ecologically and commercially productive habitats that are experiencing significant impacts associated with accelerated population growth in coastal zones. The Clean Water Act requires identification of impaired water bodies and determination of the causes ...

  19. An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS Satellite Data Record.

    PubMed

    Schaeffer, Blake A; Hagy, James D; Conmy, Robyn N; Lehrter, John C; Stumpf, Richard P

    2012-01-17

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida's waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida's coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (Chl(RS)-a, mg m(-3)) were resolved across Florida's coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of Chl(RS)-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.

  20. An Approach to Developing Numeric Water Quality Criteria for Coastal Waters Using the SeaWiFS Satellite Data Record

    PubMed Central

    2011-01-01

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida’s waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida’s coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (ChlRS-a, mg m–3) were resolved across Florida’s coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of ChlRS-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters. PMID:22192062

  1. Water-quality, bed-sediment, and discharge data for the Mississippi River-Gulf Outlet and adjacent waterways, southeastern Louisiana, August 2008 through December 2009

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Mize, Scott V.; Lovelace, John K.

    2012-01-01

    The Mississippi River-Gulf Outlet navigation channel (MRGO) was constructed in the early 1960s to provide a safer and shorter route between the Gulf of Mexico and the Port of New Orleans for deep-draft, ocean-going vessels and to promote the economic development of the Port of New Orleans. In 2006, the U.S. Army Corps of Engineers developed a plan to de-authorize the MRGO. The plan called for a rock barrier to be constructed across the MRGO near Bayou La Loutre. In 2008, the U.S. Geological Survey, in cooperation with the Louisiana Coastal Area Science and Technology Program began a study to document the impacts of the rock barrier on water-quality and flow before, during, and after its construction. Water-quality, bed-sediment, and discharge data were collected in the MRGO and adjacent water bodies from August 2008 through December 2009.

  2. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  3. Recent Advances in Understanding the Sources of Methylmercury to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Balcom, P.; Chen, C.; Gosnell, K. J.; Jonsson, S.; Mazrui, N.; Ortiz, V.; Seelen, E.; Schartup, A. T.; Sunderland, E. M.

    2015-12-01

    Understanding the sources of methylmercury (MeHg) to the food chain in coastal waters is important given the related health concerns from consumption of seafood containing elevated MeHg. While water column dissolved or particulate MeHg is the best predictor of bioaccumulation into pelagic organisms in coastal waters, there is debate concerning the dominant sources of MeHg to the water column, and how the relative importance of these sources vary with ecosystem characteristics. Potential sources include both external inputs from the watershed and offshore waters and internal sources (net methylation in sediments and the associated flux of MeHg to the water column and/or net MeHg production in the water column). We will report the results from our various studies in estuarine and coastal waters which have examined the distribution and partitioning of sediment and water column MeHg, and its formation and degradation, across a geographic range from Labrador, Canada to the Chesapeake Bay, USA. The ecosystems studied vary from shallow estuarine bays to deeper systems, and from salt wedge to tidally-dynamic systems. Additionally, both pristine and contaminated environments were examined. The studies examined the factors controlling the net production of MeHg in sediments, and in our more recent work, the potential formation of MeHg in the oxic water column of coastal waters. Sediment measurements (core and grab samples) included both solid phase and porewater MeHg and total mercury (HgT) and important ancillary parameters. Water column parameters included dissolved and particulate MeHg and HgT, TSS, nutrients, and DOC. Stable Hg isotope tracer incubations were used to assess the degree of methylation and demethylation in sediments and surface waters. Average suspended particle MeHg ranged from <5 to 120 pmol/g, and was 1-8% of HgT across sites. Mass balance estimates provide insights into the importance of external MeHg sources to coastal waters. We will use the

  4. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  5. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and... Sound and adjacent waters, Washington (a) Notice of enforcement or suspension of enforcement. The tank... Port Puget Sound. Captain of the Port Puget Sound will cause notice of the enforcement of the tank ship...

  6. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and... Sound and adjacent waters, Washington (a) Notice of enforcement or suspension of enforcement. The tank... Port Puget Sound. Captain of the Port Puget Sound will cause notice of the enforcement of the tank ship...

  7. Reflected GPS Power for the Detection of Surface Roughness Patterns in Coastal Water

    NASA Technical Reports Server (NTRS)

    Oertel, George, F.; Allen, Thomas R.

    2000-01-01

    Coastal bays formed by the barrier islands of Delaware, Maryland and Virginia are parts of a coastal region known as a "Coastal Compartment". The coastal compartment between the Chesapeake and Delaware Bays is actually the mosaic of landscapes on the headland of the interfluve that separates these large drainage basins. The coastal compartments form a variety of different-shaped waterways landward of the coastline. Shape differences along the boundaries produce differences in exposure to wind and waves. Different shoreface topographies seaward of the coastline also influence surface roughness by changing wave-refraction patterns. Surface-water roughness (caused by waves) is controlled by a number of parameters, including fetch, shielding, exposure corridors, water-mass boundary conditions, wetland vegetation and water depth in coastal bays. In the coastal ocean, surface roughness patterns are controlled by shoreface shoaling and inlet refraction patterns in the coastal ocean. Knowledge of wave phenomena in the nearshore and backbarrier areas is needed to understand how wave climate influences important ecosystems in estuaries and bays.

  8. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  9. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea

    PubMed Central

    He, Yaodong; Sen, Biswarup; Zhou, Shuangyan; Xie, Ningdong; Zhang, Yongfeng; Zhang, Jianle; Wang, Guangyi

    2017-01-01

    Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01) positive correlation with total phosphorus (TP), which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01) influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria) was the dominant one followed by Family II (phylum Cyanobacteria), representing 19.1–55.2% and 2.3–54.2% of total sequences, respectively. An inverse relationship (r = -0.82) was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was

  10. Accuracy assessment of satellite Ocean colour products in coastal waters.

    NASA Astrophysics Data System (ADS)

    Tilstone, G.; Lotliker, A.; Groom, S.

    2012-04-01

    The use of Ocean Colour Remote Sensing to monitor phytoplankton blooms in coastal waters is hampered by the absorption and scattering from substances in the water that vary independently of phytoplankton. In this paper we compare different ocean colour algorithms available for SeaWiFS, MODIS and MERIS with in situ observations of Remote Sensing Reflectance, Chlorophyll-a (Chla), Total Suspended Material and Coloured Dissolved Organic Material in coastal waters of the Arabian Sea, Bay of Bengal, North Sea and Western English Channel, which have contrasting inherent optical properties. We demonstrate a clustering method on specific-Inherent Optical Properties (sIOP) that gives accurate water quality products from MERIS data (HYDROPT) and also test the recently developed ESA CoastColour MERIS products. We found that for coastal waters of the Bay of Bengal, OC5 gave the most accurate Chla, for the Arabian Sea GSM and OC3M Chla were more accurate and for the North Sea and Western English Channel, MERIS HYDROPT were more accurate than standard algorithms. The reasons for these differences will be discussed. A Chla time series from 2002-2011 will be presented to illustrate differences in algorithms between coastal regions and inter- and intra-annual variability in phytoplankton blooms

  11. CLASSIFYING COASTAL WATERS:CURRENT NECESSITY AND HISTORICAL PERSPECTIVE

    EPA Science Inventory

    Coastal ecosystems are ecologically and commercially valuable, productive habitats that are experiencing escalating compromises of their structural and functional integrity. The Clean Water Act (USC 1972) requires identification of impaired water bodies and determination of the c...

  12. Ecology of coliphages in southern California coastal waters.

    PubMed

    Reyes, V C; Jiang, S C

    2010-08-01

    This study aims to investigate the ecology of coliphages, an important microbial pollution indicator. Specifically, our experiments address (i) the ability of environmental Escherichia coli (E. coli) to serve as hosts for coliphage replication, and (ii) the temporal and spatial distribution of coliphages in coastal waters. Water samples from three locations in California's Newport Bay watershed were tested for the presence of coliphages every 2 weeks for an entire year. A total of nine E. coli strains isolated from various sources served as hosts for coliphage detection. Coliphage occurrence was significantly different between freshwater, estuarine and coastal locations and correlated with water temperature, salinity and rainfall in the watershed. The coliphages isolated on the environmental hosts had a broad host-range relative to the coliphages isolated on an E. coli strain from sewage and a US EPA recommended strain for coliphage detection. Coliphage occurrence was related to the temperature, rainfall and salinity within the bay. The adaptation to a broad host-range may enable the proliferation of coliphages in the aquatic environment. Understanding the seasonal variation of phages is useful for establishing a background level of coliphage presence in coastal waters. The broad host-range of coliphages isolated on the environmental E. coli host calls for investigation of coliphage replication in the aquatic environment.

  13. Water quality of surficial aquifers in the Georgia-Florida Coastal Plain

    USGS Publications Warehouse

    Crandall, C.A.; Berndt, M.P.

    1996-01-01

    The National Water Quality Assessment Program of the U.S. Geological Survey established the Georgia-Florida Coastal Plain study unit in 1991. The ground-water study-unit survey was conducted in 1993 to provide a broad over-view of water quality in surficial aquifers. Three land resource provinces were included in the Georgia-Florida Coastal Plain study-unit survey: the Central Florida Ridge, the Coastal Flatwoods, and the Southern Coastal Plain. The U.S. Geological Survey sampled 37 wells in surficial aquifers, 18 in the Coastal Flatwoods and 19 in the Southern Coastal Plain. The Florida Department of Environmental Protection sampled 27 wells tapping surficial aquifers in the Central Florida Ridge as part of the background ground-water quality monitoring network from 1985 through 1989. The data were used to characterize water quality in surficial aquifers of the Central Florida Ridge. Results of the study-unit survey indicated that dissolved solids concentrations in ground water were mostly less than 100 mg/L (milligrams per liter). Higher medians of pH, specific conductance, and concentrations of calcium, bicarbonate, and dissolved solids were measured in samples from the Central Florida Ridge compared to the Southern Coastal Plain and Coastal Flatwoods, probably because of a greater percentage of carbonate minerals in aquifer materials. The U.S. Environmental Protection Agency secondary maximum contaminant level for iron of 300 ug/L (micrograms per liter) in drinking water was exceeded in 15 of 45 samples. Concentrations of nitrate as nitrogen were less than 3.0 mg/L in most samples (74 percent), indicating little or no influence from human activity. Only five samples (9 percent) had concentrations above 10 mg/L, the U.S. Environmental Protection Agency maximum contaminant level for nitrate concentration in drinking water. Significantly lower median concentrations of nitrate were measured in samples from polyvinyl chloride monitoring wells with diameters less

  14. Coastal Wetland Deterioration, Climate Change and Nutrient Inputs in California and Southern New England Salt Marsh

    EPA Science Inventory

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the i...

  15. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165.1317 Section 165.1317... Vessel Protection, Puget Sound and adjacent waters, Washington. (a) Notice of enforcement or suspension... be enforced only upon notice by the Captain of the Port Puget Sound. Captain of the Port Puget Sound...

  16. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165.1317 Section 165.1317... Vessel Protection, Puget Sound and adjacent waters, Washington. (a) Notice of enforcement or suspension... be enforced only upon notice by the Captain of the Port Puget Sound. Captain of the Port Puget Sound...

  17. ASSESSING COASTAL WATERS OF AMERICAN SAMOA: TERRITORY-WIDE WATER QUALITY DATA PROVIDE A CRITICAL 'BIG-PICTURE' VIEW FOR THIS TROPICAL ARCHIPELAGO

    EPA Science Inventory

    The coastal waters of American Samoa’s 5 high islands (Tutuila, Aunu’u, Ofu, Olosega,and Ta’u) were surveyed in 2004 using a probabilistic design. Water quality data were collected from the near-shore coastal habitat, defined as all near-shore coastal waters including embayments,...

  18. Turnover and release of P-, N-, Si-nutrients in the Mexicali Valley (Mexico): interactions between the lower Colorado River and adjacent ground- and surface water systems.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Camacho-Ibar, V F; Ortiz-Campos, E; Barth, J A C

    2015-04-15

    A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    base of Qva, thereby increasing the potential for landslides. Our analysis simulates the ground-water flow using the results of a 3-D ground-water flow model, MODFLOW-2000 (Harbaugh and others, 2000), to generate a 3-D pore-pressure field. Areas of elevated pore pressure reflect the influence of a perched ground-water table in Qva, as well as ground-water convergence in the coastal re-entrants. We obtain a realistic model of deep-seated landsliding by combining 3-D pore pressures with heterogeneous strength properties. The results show the least-stable areas where pore pressures are locally elevated in Qva. We compare our results with records of past landslides. The predicted leaststable areas include two historically active deep-seated landslides and areas adjacent to these landslides.

  20. HYDROBIOLOGICAL CHARACTERISTICS OF THE COASTAL LAGOONS AT HUGH TAYLOR BIRCH STATE RECREATION AREA, FORT LAUDERDALE, FLORIDA: A HISTORICAL PERSPECTIVE.

    USGS Publications Warehouse

    Brock, Robert J.

    1987-01-01

    The author presents initial results of an ongoing study of Southeast Florida coastal lagoon lakes. Objectives include presenting environmental conditions within and adjacent to the lagoons under a variety of hydrologic conditions and to determine water-quality changes in ground water and surface water and how these changes in water quality affect lagoonal biological communities within the lagoons.

  1. Water exchange between Algeciras Bay and the Strait of Gibraltar: A study based on HF coastal radar

    NASA Astrophysics Data System (ADS)

    Chioua, J.; Dastis, C.; González, C. J.; Reyes, E.; Mañanes, R.; Ruiz, M. I.; Álvarez, E.; Yanguas, F.; Romero, J.; Álvarez, O.; Bruno, M.

    2017-09-01

    This study analyses the water mass exchanges at subinertial scale between Algeciras Bay and the adjacent Strait of Gibraltar. The mechanisms triggering this exchange process is investigated with the aid of recently-acquired data on surface currents obtained using a system of HF coastal radars deployed on the eastern side of the Strait, and remotely-sensed images of sea surface temperature (SST) and chlorophyll from the MODIS sensor of the Aqua satellite. HF radar data on surface currents are analyzed by the application of real empirical orthogonal function (EOF) decomposition, which produces three EOF modes explaining more than 70% of the variance of the surface currents at the mouth of the Bay (modes 2, 3, and 6). Mode 2 is related to the fluctuations of the Atlantic Jet in the central zone of the Strait, mainly due to a combined effect of the atmospheric pressure fluctuations in the Western Mediterranean Sea and local wind in the eastern side of the Strait; mode 3 is related to the coastal currents induced by zonal wind forcing on the north-western coast of the Strait and Alboran Sea; and mode 6 seems to be related to water transport induced by winds blowing with a significant north component into and out of the Bay.

  2. USING SPARROW MODEL RESULTS TO ASSIST WITH COASTAL WATER ASSESSMENT

    EPA Science Inventory

    The National Coastal Assessment (NCA) has proposed a national strategy for research and monitoring in support of coastal water assessment that involves three tiers: Problem Characterization (Tier 1), involving probabilistic surveys to document broad-scale response properties; D...

  3. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Pollution of coastal and navigable waters. 4.66b Section 4.66b Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is...

  4. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Pollution of coastal and navigable waters. 4.66b Section 4.66b Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is...

  5. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Pollution of coastal and navigable waters. 4.66b Section 4.66b Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is...

  6. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Pollution of coastal and navigable waters. 4.66b Section 4.66b Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is...

  7. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Pollution of coastal and navigable waters. 4.66b Section 4.66b Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is...

  8. Wading through Perceptions: Understanding Human Perceptions of Water Quality in Coastal Waters

    EPA Science Inventory

    Water quality perceptions influence people’s preferences for visiting coastal areas and willingness to participate in activities on or near the water. They also influence people’s social values for a waterbody, sense of place, support for protection of a waterbody, an...

  9. Evaluating Radiometric Sensitivity of LandSat 8 Over Coastal-Inland Waters

    NASA Technical Reports Server (NTRS)

    Pahlevan, Nima; Wei, Jian-Wei; Shaaf, Crystal B.; Schott, John R.

    2014-01-01

    The operational Land Imager (OLI) aboard Landsat 8 was launched in February 2013 to continue the Landsat's mission of monitoring earth resources at relatively high spatial resolution. Compared to Landsat heritage sensors, OLI has an additional 443-nm band (termed coastal/aerosol (CA) band), which extends its potential for mapping/monitoring water quality in coastal/inland waters. In addition, OLI's pushbroom design allows for longer integration time and, as a result, higher signal-to-noise ratio (SNR). Using a series of radiative transfer simulations, we provide insights into the radiometric sensitivity of OLI when studying coastal/inland waters. This will address how the changes in water constituents manifest at top-of-atmosphere (TOA) and whether the changes are resolvable at TOA (focal plane) relative to OLI's overall noise.

  10. Hydrology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Treesearch

    Scott V. Harder; Devendra M Amatya; Callahan Timothy J.; Carl C. Trettin; Hakkila Jon

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  11. Hyrdology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Treesearch

    Scott V. Harder; Devendra M. Amatya; Timothy J. Callahan; Carl C. Trettin; Jon Hakkila

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  12. Water resources of Lincoln County coastal area, Oregon

    USGS Publications Warehouse

    Frank, F.J.; Laenen, Antonius

    1976-01-01

    Water supplies for all municipalities in Lincoln County currently (1975) are obtained from surface-water sources. Because of rapid economic development of the coastal area, it is expected that additional water will be needed in the future. Additional water can be supplied (1) by reservoirs on major streams; (2) by the expansion, in some locations, of present surface-water facilities on small streams; and (3) locally, by an additional small volume of supplemental water from ground-water sources.

  13. Biogeochemical and Optical Analysis of Coastal DOM for Satellite Retrieval of Terrigenous DOM in the U.S. Middle Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Mannino, A.; Dyda, R. Y.; Hernes, P. J.; Hooker, Stan; Hyde, Kim; Novak, Mike

    2012-01-01

    Estuaries and coastal ocean waters experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine/estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements (elemental content, molecular analyses), optical properties (absorption) and remote sensing to examine terrestrial DOM contributions into the U.S. Middle Atlantic Bight (MAB). We measured lignin phenol composition, DOC and CDOM absorption within the Chesapeake and Delaware Bay mouths, plumes and adjacent coastal ocean waters to derive empirical relationships between CDOM and biogeochemical measurements for satellite remote sensing application. Lignin ranged from 0.03 to 6.6 ug/L between estuarine and outer shelf waters. Our results demonstrate that satellite-derived CDOM is useful as a tracer of terrigenous DOM in the coastal ocean

  14. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection.

    PubMed

    Xie, Yunxuan; Qiu, Ning; Wang, Guangyi

    2017-05-15

    Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Application of Hyperspectral Remote Sensing Techniques to Evaluate Water Quality in Turbid Coastal Waters of South Carolina.

    NASA Astrophysics Data System (ADS)

    Ali, K. A.; Ryan, K.

    2014-12-01

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide valuable ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. Existing remote sensing ocean color products, such as the water quality proxy chlorophyll-a, are based on ocean derived bio-optical models that are primarily calibrated in Case 1 type waters. These traditional models fail to work when applied in turbid (Case 2 type), coastal waters due to spectral interference from other associated color producing agents such as colored dissolved organic matter and suspended sediments. In this work, we introduce a novel technique for the predictive modeling of chlorophyll-a using a multivariate-based approach applied to in situ hyperspectral radiometric data collected from the coastal waters of Long Bay, South Carolina. This method uses a partial least-squares regression model to identify prominent wavelengths that are more sensitive to chlorophyll-a relative to other associated color-producing agents. The new model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 μg/L. This approach capitalizes on the spectral advantage gained from current and future hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight to point-sources and problem areas that may contribute to a decline in water quality. The utility of this tool is in its versatility to a diverse set of coastal waters and its use by coastal and fisheries managers with regard to recreation, regulation, economic and public health purposes.

  16. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  17. Spatial and seasonal patterns of ichthyoplankton assemblages in the Haizhou Bay and its adjacent waters of China

    NASA Astrophysics Data System (ADS)

    Li, Zengguang; Ye, Zhenjiang; Wan, Rong

    2015-12-01

    Surveys were conducted in five voyages in Haizhou Bay and its adjacent coastal area from March to December 2011 during full moon spring tides. The ichthyoplankton assemblages and the environmental factors that affect their spatial and seasonal patterns were determined. Totally 35 and 12 fish egg and larvae taxa were identified, respectively. Over the past several decades, the egg and larval species composition has significantly changed in Haizhou Bay and its adjacent waters, most likely corresponding with the alteration of fishery resources, which are strongly affected by anthropogenic activities and climate change. The Bray-Curtis dissimilarity index identified four assemblages: near-shore bay assemblage, middle bay assemblage and two closely related assemblages (near-shore/middle bay assemblage and middle/edge of bay assemblage). The primary species of each assemblage principally reflected the spawning strategies of adult fish. The near-shore bay assemblage generally occurred in near-shore bay, with depths measuring <20 m, and the middle bay assemblage generally occurred in the middle of bay, with depths measuring 20 to 40 m. Spatial and seasonal variations in ichthyoplankton in each assemblage were determined by interactions between biological behavioral traits and oceanographic features, particularly the variation of local conditions within the constraint of a general reproductive strategy. The results of Spearman's rank correlation analysis indicated that both fish egg and larval abundance were positively correlated with depth, which is critical to the oceanographic features in Haizhou Bay.

  18. Diurnal changes in ocean color in coastal waters

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  19. Dissolved and particulate trace metals in coastal waters of the Gulf and Western Arabian Sea

    NASA Astrophysics Data System (ADS)

    Fowler, S. W.; Huynh-Ngoc, L.; Fukai, R.

    Concentrations of chemical species of selected heavy metals (Cu, Zn, Cd, Hg and Pb) were determined in surface waters from a series of coastal sites in Bahrain, United Arab Emirates (UAE) and the Sultanate of Oman. Analyses were carried out on bulk sea water samples as well as on suspended particulates by anodic stripping voltammetry. Heavy metal concentrations were relatively low with the exception of some "hot spots" which occurred in the vicinity of industrial and port activities. Average copper levels along the coast of UAE were generally higher than those measured in sea water from either Bahrain of Oman. Waters from the more populated and industrialised northwest coast of Oman were found to contain approximately 3 to 4-fold higher Cd and Zn (pH 4-4.5) concentrations than those from the southern coast, an undeveloped region adjacent to the more open waters of the Arabian Sea. Possible reasons for the observed regional variations in trace metal concentrations in Oman are discussed in terms of natural and anthropogenic input sources. Average concentrations in the Gulf (inside the Strait of Hormuz) were 510 ng 1 -1 (Cu), 340 ng 1 -1 (Zn), 20 ng 1 -1 (Cd), 16 ng 1 -1 (Hg) and 76 ng 1 -1 (Pb); in the western Arabian Sea along the coast of Oman concentrations averaged 290 ng 1 -1 (Cu), 180 ng 1 -1 (Zn), 37 ng 1 -1 (Cd), 11 ng 1 -1 (Hg) and 80 ng 1 -1 (Pb). Ranges of concentrations for these metals in Gulf and western Arabian Sea waters approach those which have been reported for open surface waters of the Atlantic, Pacific, Indian Oceans and the Mediterranean Sea indicating that, in general, the coastal waters of this region are not impacted by metal pollution and that the existing natural levels can be used as a point of reference for future pollutant studies.

  20. Analysis and parameterization of absorption properties of northern Norwegian coastal water

    NASA Astrophysics Data System (ADS)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Knut; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Stamnes, Jakob J.

    2017-02-01

    Coastal water bodies are generally classified as Case 2 water, in which non-algal particles (NAP) and colored dissolved organic matter (CDOM) contribute significantly to the optical properties in addition to phytoplankton. These three constituents vary independently in Case 2 water and tend to be highly variable in space and time. We present data from measurements and analyses of the spectral absorption due to CDOM, total suspended matter (TSM), phytoplankton, and NAP in high-latitude northern Norwegian coastal water based on samples taken in spring, summer, and autumn.

  1. Marine environmental risk assessment and acute water quality criterion for pentachlorophenol in coastal waters.

    PubMed

    Beiras, R; Tato, T

    2018-04-07

    Pentachlorophenol (PCP) is a organochlorine biocide that, unlike most other organochlorines, is still in use as timber preservative. Its water solubility, high toxicity, bioaccumulation potential, and the concentrations reported in estuarine waters (up to 0.1 µg L -1 ) indicate it may pose a risk in coastal environments. Aquatic environrmental regulations are commonly based on standard freshwater organisms that may not represent the sensitivity of marine species. The present study consists of a water quality criteira reevalutation of PCP in coastal waters based on toxicity tests conducted recording sensitive endpoints of marine species representative of coastal ecosystems, following QA/QC standard procedures. The toxicity thresholds (EC 10 ) found were 4.69 µg L -1 for Paracentrotus lividus sea-urchin embryos, 6.47 µg L -1 for Mytilus galloprovincialis mussel larvae, and 78.4 µg L -1 for Isochrysis galbana cells. Therefore, there is only one order of magnitude between the predicted no-effect concentration (PNEC) for early life stages of bivalves and echinoderms and the maximum concentrations actually recorded in coastal water, which yields a remarkable risk quotient for PCP in these highly productive marine habitats. In addition, we have reviewed the ecotoxicological data on PCP toxicity on marine species representative of the main systematic groups, from algae to chordates, and derived a probabilistic acute saltwater quality criterion of 2.66 µg L -1 , intended to protect 95% of the marine species. Lack of adequate protection for marine ecosystems in some current PCP national guidelines has been identified.

  2. The effects of coastal development on sponge abundance, diversity, and community composition on Jamaican coral reefs.

    PubMed

    Stubler, Amber D; Duckworth, Alan R; Peterson, Bradley J

    2015-07-15

    Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ground-water use in the coastal plain of Maryland, 1900-1980

    USGS Publications Warehouse

    Wheeler, J.C.; Wilde, F.D.

    1989-01-01

    This report presents groundwater withdrawal data from 1900 through 1980 for Maryland counties lying with the Coastal Plain physiographic province, as well as a summary section for the total Maryland Coastal Plain. The types of water use included are domestic, military, water supplier, industrial/commercial, and irrigation. The data were obtained from state and county reports, biannual pumpage reports submitted to the Maryland Water Resources Administration, communication with individual owners, and estimates based on existing published data. The amount of groundwater withdrawn from aquifers in the Maryland Coastal Plain in 1900 was approximately 26 million gallons per day (Mgal/d) compared to nearly 134 Mgal/d in 1980. Jurisdictions withdrawing more than 10 Mgal/d for most of the 80-year period were Anne Arundel and Baltimore Counties and Baltimore City. The greatest withdrawals for most of the early part of the period were for domestic and industrial/commercial uses; however, water-supplier use dominated after 1965. Groundwater use for irrigation became important in the Coastal Plain around 1960 and increased steadily from approximately 2 Mgal/d in 1960 to nearly 12 Mgal/d in 1980. (USGS)

  4. Experimental data from coastal diffusion tests. [Smoke diffusion over coastal waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynor, G S; Brown, R M; SethuRaman, S

    1976-10-01

    Data are reported from a series of seven experiments on the diffusion of smoke plumes over northeast Atlantic Ocean coastal waters in response to wind fluctuations and other meteorological variables. A qualitative description of smoke behavior during each experiment is included and photographs of the smoke are included to illustrate the type of diffusion observed. (CH)

  5. Stable isotopes in juvenile marine fishes and their invertebrate prey from the Thames Estuary, UK, and adjacent coastal regions

    NASA Astrophysics Data System (ADS)

    Leakey, Chris D. B.; Attrill, Martin J.; Jennings, Simon; Fitzsimons, Mark F.

    2008-04-01

    Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. Stable isotope analysis may be used to assess relative resource use from isotopically distinct sources. This study comprised two major components: (1) development of a spatial map and discriminant function model of stable isotope variation in selected invertebrate groups inhabiting the Thames Estuary and adjacent coastal regions; and (2) analysis of stable isotope signatures of juvenile bass ( Dicentrarchus labrax), sole ( Solea solea) and whiting ( Merlangius merlangus) for assessment of resource use and feeding strategies. The data were also used to consider anthropogenic enrichment of the estuary and potential energetic benefits of feeding in estuarine nursery habitat. Analysis of carbon (δ 13C), nitrogen (δ 15N) and sulphur (δ 34S) isotope data identified significant differences in the 'baseline' isotopic signatures between estuarine and coastal invertebrates, and discriminant function analysis allowed samples to be re-classified to estuarine and coastal regions with 98.8% accuracy. Using invertebrate signatures as source indicators, stable isotope data classified juvenile fishes to the region in which they fed. Feeding signals appear to reflect physiological (freshwater tolerance) and functional (mobility) differences between species. Juvenile sole were found to exist as two isotopically-discrete sub-populations, with no evidence of mixing between the two. An apparent energetic benefit of estuarine feeding was only found for sole.

  6. Consequences of Climate Change, Eutrophication, and Other Anthropogenic Impacts to Coastal Salt Marshes: Multiple Stressors Reduce Resiliency and Sustainability

    EPA Science Inventory

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the ...

  7. Water-Level Conditions in Selected Confined Aquifers of the New Jersey and Delaware Coastal Plain, 2003

    USGS Publications Warehouse

    dePaul, Vincent T.; Rosman, Robert; Lacombe, Pierre J.

    2009-01-01

    The Coastal Plain aquifers of New Jersey provide an important source of water for more than 2 million people. Steadily increasing withdrawals from the late 1800s to the early 1990s resulted in declining water levels and the formation of regional cones of depression. In addition to decreasing water supplies, declining water levels in the confined aquifers have led to reversals in natural hydraulic gradients that have, in some areas, induced the flow of saline water from surface-water bodies and adjacent aquifers to freshwater aquifers. In 1978, the U.S. Geological Survey began mapping the potentiometric surfaces of the major confined aquifers of New Jersey every 5 years in order to provide a regional assessment of ground-water conditions in multiple Coastal Plain aquifers concurrently. In 1988, mapping of selected potentiometric surfaces was extended into Delaware. During the fall of 2003, water levels measured in 967 wells in New Jersey, Pennsylvania, northeastern Delaware, and northwestern Maryland were used estimate the potentiometric surface of the principal confined aquifers in the Coastal Plain of New Jersey and five equivalent aquifers in Delaware. Potentiometric-surface maps and hydrogeologic sections were prepared for the confined Cohansey aquifer of Cape May County, the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, the Vincentown aquifer, and the Englishtown aquifer system in New Jersey, as well as for the Piney Point aquifer, the Wenonah-Mount Laurel aquifer, and the Upper Potomac-Raritan-Magothy, the Middle and undifferentiated Potomac-Raritan-Magothy, and the Lower Potomac-Raritan-Magothy aquifers in New Jersey and their equivalents in Delaware. From 1998 to 2003, water levels in many Coastal Plain aquifers in New Jersey remained stable or had recovered, but in some areas, water levels continued to decline as a result of pumping. In the Cohansey aquifer in Cape May County, water levels near the center of the cone of depression

  8. Progress and limitations on quantifying nutrient and carbon loading to coastal waters

    NASA Astrophysics Data System (ADS)

    Stets, E.; Oelsner, G. P.; Stackpoole, S. M.

    2017-12-01

    Riverine export of nutrients and carbon to estuarine and coastal waters are important determinants of coastal ecosystem health and provide necessary insight into global biogeochemical cycles. Quantification of coastal solute loads typically relies upon modeling based on observations of concentration and discharge from selected rivers draining to the coast. Most large-scale river export models require unidirectional flow and thus are referenced to monitoring locations at the head of tide, which can be located far inland. As a result, the contributions of the coastal plain, tidal wetlands, and concentrated coastal development are often poorly represented in regional and continental-scale estimates of solute delivery to coastal waters. However, site-specific studies have found that these areas are disproportionately active in terms of nutrient and carbon export. Modeling efforts to upscale fluxes from these areas, while not common, also suggest an outsized importance to coastal flux estimates. This presentation will focus on illustrating how the problem of under-representation of near-shore environments impacts large-scale coastal flux estimates in the context of recent regional and continental-scale assessments. Alternate approaches to capturing the influence of the near-coastal terrestrial inputs including recent data aggregation efforts and modeling approaches will be discussed.

  9. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  10. Bidirectional reflectance function in coastal waters: modeling and validation

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir

    2011-11-01

    The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.

  11. Floating marine debris in coastal waters of the SE-Pacific (Chile).

    PubMed

    Thiel, M; Hinojosa, I; Vásquez, N; Macaya, E

    2003-02-01

    Herein we report on the abundance and composition of floating marine debris (FMD) in coastal waters of the SE-Pacific (off the Chilean coast) during the austral summer 2002. The observed FMD consisted mainly of plastic material (86.9%). Densities of FMD were highest between 20 degrees S and 40 degrees S, corresponding to the main concentrations of human population and activities. Low densities of FMD were found in the south between 40 degrees S and 50 degrees S (<1 item km(-2)). Generally, the highest densities were recorded in nearshore waters of major port cities (>20 items km(-2)), but occasionally high concentrations of debris were also found 50 km offshore. Densities of FMD in coastal waters of the SE-Pacific are of similar magnitudes as those found in coastal waters or inland seas of highly populated regions in the northern hemisphere, indicating the need for improved regulation and legislation in the countries of the SE-Pacific.

  12. USGS ground-water flow model : an essential tool for managing the water supply of the Virginia Coastal Plain

    USGS Publications Warehouse

    Erwin, Martha L.; McFarland, Randolph E.; Scott, Bruce T.

    1999-01-01

    Virginia needs a reliable water supply to sustain its growing population and expanding economy. In 1990, the aquifers in the Coastal Plain supplied about 100 million gallons per day (mgd) to the citizens, businesses, and industries of Virginia. It is estimated that by the year 2000, demand will increase by another 10 mgd and likely will continue to increase in future years.Ground water is the only source of usable water in rural areas of the Coastal Plain and increasingly is being used to support a growing urban population. Current withdrawals have led to declining water levels in most Coastal Plain aquifers. Further declines are likely to occur, posing a threat that saltwater will move into parts of these freshwater aquifers.

  13. Management-focused approach to investigating coastal water-quality drivers and impacts in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Vigouroux, G.; Destouni, G.; Chen, Y.; Bring, A.; Jönsson, A.; Cvetkovic, V.

    2017-12-01

    Coastal areas link human-driven conditions on land with open sea conditions, and include crucial and vulnerable ecosystems that provide a variety of ecosystem services. Eutrophication is a common problem that is not least observed in the Baltic Sea, where coastal water quality is influenced both by land-based nutrient loading and by partly eutrophic open sea conditions. Robust and adaptive management of coastal systems is essential and necessitates integration of large scale catchment-coastal-marine systems as well as consideration of anthropogenic drivers and impacts, and climate change. To address this coastal challenge, relevant methodological approaches are required for characterization of coupled land, local coastal, and open sea conditions under an adaptive management framework for water quality. In this paper we present a new general and scalable dynamic characterization approach, developed for and applied to the Baltic Sea and its coastal areas. A simple carbon-based water quality model is implemented, dividing the Baltic Sea into main management basins that are linked to corresponding hydrological catchments on land, as well as to each other though aggregated three-dimensional marine hydrodynamics. Relevant hydrodynamic variables and associated water quality results have been validated on the Baltic Sea scale and show good accordance with available observation data and other modelling approaches. Based on its scalability, this methodology is further used on coastal zone scale to investigate the effects of hydrodynamic, hydro-climatic and nutrient load drivers on water quality and management implications for coastal areas in the Baltic Sea.

  14. Coastal inshore waters in the NW Mediterranean: Physicochemical and biological characterization and management implications

    NASA Astrophysics Data System (ADS)

    Flo, Eva; Garcés, Esther; Manzanera, Marta; Camp, Jordi

    2011-07-01

    The physicochemical and biological characteristics of coastal waters form a gradient extending from land to ocean. In the Mediterranean this gradient is particularly large, due to the sea's weak tides. Within coastal waters, those waters in contact with land are called coastal inshore waters (CIW), defined herein as between 0 and 200 m from the shoreline. Here we present the first physicochemical and biological characterization of CIW of the NW Mediterranean Sea. This case study is based on 19 years of data collected from coastal inshore (CIW; 0-200 m), nearshore (CNW; 200-1500 m), and offshore (COW; >1500 m) waters of the Catalan coast. Analyses of these data showed that the physicochemical and biological characteristics of CIW differ significantly from those of CNW and COW due to: (1) significantly higher concentrations of dissolved inorganic nutrients (nitrate = 11.07 μM, nitrite = 0.52 μM, ammonium = 6.43 μM, phosphate = 0.92 μM, silicates = 5.99 μM) and chlorophyll- a (=2.42 μg/L) in CIW than in either CNW or COW (in some cases up to one order of magnitude); (2) a greater variability of dissolved inorganic nutrients and chlorophyll- a in CIW than in CNW and COW, and (3) the presence of a mostly urban population and the effects of river inflows as a primary source of CIW variability but with minimal impact on CNW or COW. In addition, the risk of eutrophication was found to be highest in CIW, placing human and environmental interests at greater risk than in the outermost coastal waters. The results highlight the importance of considering the distinctive physicochemical and biological properties of CIW in future coastal waters studies. This is of major importance in assessments of eutrophication and coastal water quality, not only to identify the pressure-impact relationships but also to allow the timely detection of local environmental problems and thus avoid endangering the unique communities of CIW and ensuring the sustainability of human activities. In

  15. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    PubMed

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  16. The influence of submarine groundwater discharge on greenhouse gas evasion from coastal waters (Invited)

    NASA Astrophysics Data System (ADS)

    Santos, I. R.

    2013-12-01

    Coastal waters are thought to play a major role on global carbon budgets but we still lack a quantitative understanding about some mechanisms driving greenhouse gas cycling in coastal waters. Very little is known about the role of submarine groundwater discharge (SGD) in delivering carbon to rivers, estuaries and coastal waters even though the concentrations of most carbon species in groundwater are often much higher than those in surface waters. I hypothesize that SGD plays a significant role in coastal carbon and greenhouse gas budgets even if the volumetric SGD contribution is small. I will report new, detailed observations of radon (a natural groundwater tracer) and carbon dioxide and methane concentrations and stable isotopes in tidal rivers, estuaries, coastal wetlands, mangroves and coral reef lagoons. Groundwater exchange at these contrasting sites was driven by a wide range of processes, including terrestrial hydraulic gradients, tidal pumping, and convection. In all systems, SGD was an important source of carbon dioxide, DIC, and methane to surface waters. In some cases, groundwater seepage alone could account for 100% of carbon dioxide evasion from surface waters to the atmosphere. Combining high precision in situ radon and greenhouse gas concentration and stable isotope observations allows for an effective, unambiguous assessment of how groundwater seepage drives carbon dynamics in surface waters.

  17. Coastal Studies in a Comprehensive Summer Field Geology Course.

    ERIC Educational Resources Information Center

    Cameron, Barry; Jones, Richard J.

    1979-01-01

    Describes a college geology course that incorporates a coastal segment. Field studies are done on Plum Island and include examining beaches, dune fields, and an adjacent marsh and spit. Topics include sedimentation, coastal geomorphology, botanical effects, and coastal studies methodology. (MA)

  18. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  19. Monitoring water quality in Northwest Atlantic coastal waters using dinoflagellate cysts

    EPA Science Inventory

    Nutrient pollution is a major environmental problem in many coastal waters around the US. Determining the total input of nutrients to estuaries is a challenge. One method to evaluate nutrient input is through nutrient loading models. Another method relies upon using indicators as...

  20. Emerging organic contaminants in coastal waters: anthropogenic impact, environmental release and ecological risk.

    PubMed

    Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der

    2014-08-30

    This study provides a first estimate of the sources, distribution, and risk presented by emerging organic contaminants (EOCs) in coastal waters off southwestern Taiwan. Ten illicit drugs, seven nonsteroidal anti-inflammatory drugs (NSAIDs), five antibiotics, two blood lipid regulators, two antiepileptic drugs, two UV filters, caffeine, atenolol, and omeprazole were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Thirteen EOCs were detected in coastal waters, including four NSAIDs (acetaminophen, ibuprofen, ketoprofen, and codeine), three antibiotics (ampicillin, erythromycin, and cefalexin), three illicit drugs (ketamine, pseudoephedrine, and MDMA), caffeine, carbamazepine, and gemfibrozil. The median concentrations for the 13 EOCs ranged from 1.47 ng/L to 156 ng/L. Spatial variation in concentration of the 13 EOCs suggests discharge into coastal waters via ocean outfall pipes and rivers. Codeine and ampicillin have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in coastal waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. EPA's National Coastal Condition Assessment: Pilot research ...

    EPA Pesticide Factsheets

    The EPA Office of Water’s 5-year cycles of national surveys of wetlands, lakes, rivers, and coastal areas help satisfy the assessment and antidegradation provisions of the Clean Water Act. Measuring extant conditions precedes measuring change in conditions. Surveys are challenged to adequately sample extreme conditions occurring in small areas. Extremely bad conditions are targets for remediation. Extremely good conditions are targets for protection. In 2010, the National Coastal Condition Assessment (NCCA) found the majority of the coastal Great Lakes (by area) was in good condition for water (60%) and sediment (51%) quality but not benthos (20%) and fish tissue contaminants (<1%). Low sampling success for biological sampling was an issue. As part of the 2014 Lake Erie CSMI field year, EPA’s Great Lakes National Program Office, working with the Office of Research and Development, began pilot research to integrate connecting channels into Great Lakes surveys. Assessments of the Huron-Erie corridor (HEC; 2014, 2015) and St Marys River (SMR; 2015, 2016) which have previously gone unassessed by NCCA, are being developed. Water, sediment, and benthic quality data from the 2014 HEC survey (n=60) were compared to 2010 NCCA data from adjacent lakes. Water quality rated “poor” (as % area) in HEC was intermediate compared to Lake Huron and Erie regardless of which lake-specific thresholds were used. However, the amount of area classified as “good” was highl

  2. Using Multitemporal Remote Sensing Imagery and Inundation Measures to Improve Land Change Estimates in Coastal Wetlands

    USGS Publications Warehouse

    Allen, Y.C.; Couvillion, B.R.; Barras, J.A.

    2012-01-01

    Remote sensing imagery can be an invaluable resource to quantify land change in coastal wetlands. Obtaining an accurate measure of land change can, however, be complicated by differences in fluvial and tidal inundation experienced when the imagery is captured. This study classified Landsat imagery from two wetland areas in coastal Louisiana from 1983 to 2010 into categories of land and water. Tide height, river level, and date were used as independent variables in a multiple regression model to predict land area in the Wax Lake Delta (WLD) and compare those estimates with an adjacent marsh area lacking direct fluvial inputs. Coefficients of determination from regressions using both measures of water level along with date as predictor variables of land extent in the WLD, were higher than those obtained using the current methodology which only uses date to predict land change. Land change trend estimates were also improved when the data were divided by time period. Water level corrected land gain in the WLD from 1983 to 2010 was 1 km 2 year -1, while rates in the adjacent marsh remained roughly constant. This approach of isolating environmental variability due to changing water levels improves estimates of actual land change in a dynamic system, so that other processes that may control delta development such as hurricanes, floods, and sediment delivery, may be further investigated. ?? 2011 Coastal and Estuarine Research Federation (outside the USA).

  3. Remote sensing reflectance simulation of coastal optical complex water in the East China Sea

    NASA Astrophysics Data System (ADS)

    He, Shuo; Lou, Xiulin; Zhang, Huaguo; Zheng, Gang

    2018-02-01

    In this work, remote sensing reflectance (Rrs) spectra of the Zhejiang coastal water in the East China Sea (ECS) were simulated by using the Hydrolight software with field data as input parameters. The seawater along the Zhejiang coast is typical Case II water with complex optical properties. A field observation was conducted in the Zhejiang coastal region in late May of 2016, and the concentration of ocean color constituents (pigment, SPM and CDOM), IOPs (absorption and backscattering coefficients) and Rrs were measured at 24 stations of 3 sections covering the turbid to clear inshore coastal waters. Referring to these ocean color field data, an ocean color model suitable for the Zhejiang coastal water was setup and applied in the Hydrolight. A set of 11 remote sensing reflectance spectra above water surface were modeled and calculated. Then, the simulated spectra were compared with the filed measurements. Finally, the spectral shape and characteristics of the remote sensing reflectance spectra were analyzed and discussed.

  4. [Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].

    PubMed

    Li, Xue-Ding

    2012-07-01

    There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters.

  5. Declining oxygen in the global ocean and coastal waters.

    PubMed

    Breitburg, Denise; Levin, Lisa A; Oschlies, Andreas; Grégoire, Marilaure; Chavez, Francisco P; Conley, Daniel J; Garçon, Véronique; Gilbert, Denis; Gutiérrez, Dimitri; Isensee, Kirsten; Jacinto, Gil S; Limburg, Karin E; Montes, Ivonne; Naqvi, S W A; Pitcher, Grant C; Rabalais, Nancy N; Roman, Michael R; Rose, Kenneth A; Seibel, Brad A; Telszewski, Maciej; Yasuhara, Moriaki; Zhang, Jing

    2018-01-05

    Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems. Copyright © 2018, American Association for the Advancement of Science.

  6. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970s. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is employed in this study, due to its abundance of coastal habitats and its vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated from multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  7. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970's. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is imployed in this study, due to its abundance of coastal habitats and ist vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density-sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated form multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  8. Coastal water monitoring using a vertical profiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong Guk; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik

    2017-04-01

    Using a profiler system, the Aqualog, composed of a moored wire and a carrier in which a CTD was installed, we have been monitoring coastal water in Korea since August 2016. With this monitoring system, we were able to observe rapid warming of surface water that resulted in large damage to fish farms. The profiles showed that the warming was associated with low salinity water due to the fresh water discharge from the Yangtze River. We also observed change in water properties due to a typhoon. Along the Korean coast there are many aquafarms, which are becoming more vulnerable to environmental change. With the data from the profiler we would be able to help the aquafarms to sustain.

  9. How Historical Information Can Improve Extreme Value Analysis of Coastal Water Levels

    NASA Astrophysics Data System (ADS)

    Le Cozannet, G.; Bulteau, T.; Idier, D.; Lambert, J.; Garcin, M.

    2016-12-01

    The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces outliers, those particularly extreme values distant from the others. In a recent work (Bulteau et al., 2015), we investigated how historical information of past events reported in archives can reduce statistical uncertainties and relativize such outlying observations. We adapted a Bayesian Markov Chain Monte Carlo method, initially developed in the hydrology field (Reis and Stedinger, 2005), to the specific case of coastal water levels. We applied this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide gauge measurements and 8 historical events since 1890, the results showed a significant decrease in statistical uncertainties on return levels when historical information is used. Also, Xynthia's water level no longer appeared as an outlier and we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data until the end of 2009 of the same order of magnitude as the standard estimative probability using data until the end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.

  10. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters.

    PubMed

    Leonard, Anne F C; Zhang, Lihong; Balfour, Andrew J; Garside, Ruth; Gaze, William H

    2015-09-01

    Infections caused by antibiotic resistant bacteria (ARB) are associated with poor health outcomes and are recognised globally as a serious health problem. Much research has been conducted on the transmission of ARB to humans. Yet the role the natural environment plays in the spread of ARB and antibiotic resistance genes is not well understood. Antibiotic resistant bacteria have been detected in natural aquatic environments, and ingestion of seawater during water sports is one route by which many people could be directly exposed. The aim was to estimate the prevalence of resistance to one clinically important class of antibiotics (third-generation cephalosporins (3GCs)) amongst Escherichia coli in coastal surface waters in England and Wales. Prevalence data was used to quantify ingestion of 3GC-resistant E. coli (3GCREC) by people participating in water sports in designated coastal bathing waters. A further aim was to use this value to derive a population-level estimate of exposure to these bacteria during recreational use of coastal waters in 2012. The prevalence of 3GC-resistance amongst E. coli isolated from coastal surface waters was estimated using culture-based methods. This was combined with the density of E. coli reported in designated coastal bathing waters along with estimations of the volumes of water ingested during various water sports reported in the literature to calculate the mean number of 3GCREC ingested during different water sports. 0.12% of E. coli isolated from surface waters were resistant to 3GCs. This value was used to estimate that in England and Wales over 6.3 million water sport sessions occurred in 2012 that resulted in the ingestion of at least one 3GCREC. Despite the low prevalence of resistance to 3GCs amongst E. coli in surface waters, there is an identifiable human exposure risk for water users, which varies with the type of water sport undertaken. The relative importance of this exposure is likely to be greater in areas where a

  11. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

    DTIC Science & Technology

    2011-09-30

    BRDF model was developed for coastal waters, and validated on the data of the two LISCO instruments, and its comparison with MODIS satellite imagery...in field conditions to validate radiative transfer modeling and assess possibilities for the separation of organic and inorganic particulate...to retrieve water components and compared with NOMAD and field CCNY data. Simulated datasets were also used to develop a BRDF model for coastal

  12. Correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, indonesia

    NASA Astrophysics Data System (ADS)

    Sharani, Jeanny; Hidayat, Jafron W.; Putro, Sapto P.

    2018-05-01

    Macrobenthic community play important role in sedimentary habitats as a part of food chain. Their structure may be influenced by environmental characteristic spatially and temporally. The purpose of this study is to access the correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, Indonesia. Water and sediments samples were taken twice, where the first and second sampling time were taken in June and October 2016, respectively. Samples were taken in the area of fish farming at coastal area of policulture/IMTA (as Location I), site of 1 km away from fish farming area as a reference site (as Location II), and monoculture sites (as Location III), with three stations for each location. Data of abiotic parameters included the composition of sediment substrate and DO, pH, salinity, temperature, and. Sediment samples were taken using Ekman grab. The organisms were 1 mm -size sieved and fixed using 10% formalin for further analysis, i.e. sorting, preserving, enumerating, identifying, and grouping. The relationship between biotics (macrobentos) and abiotics (physical-chemical factors) was assessed using a non-parametric multivariate procedure (BIOENV). This study found 61 species consisting of 46 families and 5 classes of macrobenthos. The most common classes were member of Mollusca and Polychaeta. Total nitrogen, silt, and clay were the abiotic factors most influencing macrobenthic structure (BIO-ENV; r = 0.46; R2 = 21.16%).

  13. Developing Data-driven models for quantifying Cochlodinium polykrikoides in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Kwon, Yongsung; Jang, Eunna; Im, Jungho; Baek, Seungho; Park, Yongeun; Cho, Kyunghwa

    2017-04-01

    Harmful algal blooms have been worldwide problems because it leads to serious dangers to human health and aquatic ecosystems. Especially, fish killing red tide blooms by one of dinoflagellate, Cochlodinium polykrikoides (C. polykrikoides), have caused critical damage to mariculture in the Korean coastal waters. In this work, multiple linear regression (MLR), regression tree (RT), and random forest (RF) models were constructed and applied to estimate C. polykrikoides blooms in coastal waters. Five different types of input dataset were carried out to test the performance of three models. To train and validate the three models, observed number of C. polykrikoides cells from National institute of fisheries science (NIFS) and remote sensing reflectance data from Geostationary Ocean Color Imager (GOCI) images for 3 years from 2013 to 2015 were used. The RT model showed the best prediction performance when using 4 bands and 3 band ratios data were used as input data simultaneously. Results obtained from iterative model development with randomly chosen input data indicated that the recognition of patterns in training data caused a variation in prediction performance. This work provided useful tools for reliably estimate the number of C. polykrikoides cells by using reasonable input reflectance dataset in coastal waters. It is expected that the RT model is easily accessed and manipulated by administrators and decision-makers working with coastal waters.

  14. Satellite-based virtual buoy system to monitor coastal water quality

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Barnes, Brian B.; Murch, Brock; Carlson, Paul

    2014-05-01

    There is a pressing need to assess coastal and estuarine water quality state and anomaly events to facilitate coastal management, but such a need is hindered by lack of resources to conduct frequent ship-based or buoy-based measurements. Here, we established a virtual buoy system (VBS) to facilitate satellite data visualization and interpretation of water quality assessment. The VBS is based on a virtual antenna system (VAS) that obtains low-level satellite data and generates higher-level data products using both National Aeronautics and Space Administration standard algorithms and regionally customized algorithms in near real time. The VB stations are predefined and carefully chosen to cover water quality gradients in estuaries and coastal waters, where multiyear time series at monthly and weekly intervals are extracted for the following parameters: sea surface temperature (°C), chlorophyll-a concentration (mg m-3), turbidity (NTU), diffuse light attenuation at 490 nm [Kd(490), m-1] or secchi disk depth (m), absorption coefficient of colored dissolved organic matter (m-1), and bottom available light (%). The time-series data are updated routinely and provided in both ASCII and graphical formats via a user-friendly web interface where all information is available to the user through a simple click. The VAS and VBS also provide necessary infrastructure to implement peer-reviewed regional algorithms to generate and share improved water quality data products with the user community.

  15. A simulation-optimization model for effective water resources management in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection

  16. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  17. Water-Level Changes in Aquifers of the Atlantic Coastal Plain, Predevelopment to 2000

    USGS Publications Warehouse

    dePaul, Vincent T.; Rice, Donald E.; Zapecza, Otto S.

    2008-01-01

    The Atlantic Coastal Plain aquifer system, which underlies a large part of the east coast of the United States, is an important source of water for more than 20 million people. As the population of the region increases, further demand is being placed on those ground-water resources. To define areas of past and current declines in ground-water levels, as well as to document changes in those levels, historical water-level data from more than 4,000 wells completed in 13 regional aquifers in the Atlantic Coastal Plain were examined. From predevelopment to 1980, substantial water-level declines occurred in many areas of the Atlantic Coastal Plain. Regional variability in water-level change in the confined aquifers of the Atlantic Coastal Plain resulted from regional differences in aquifer properties and patterns of ground-water withdrawals. Within the Northern Atlantic Coastal Plain, declines of more than 100 ft were observed in New Jersey, Delaware, Maryland, Virginia, and North Carolina. Regional declines in water levels were most widespread in the deeper aquifers that were most effectively confined?the Upper, Middle, and Lower Potomac aquifers. Within these aquifers, water levels had declined up to 200 ft in southern Virginia and to more than 100 ft in New Jersey, Delaware, Maryland, and North Carolina. Substantial water-level declines were also evident in the regional Lower Chesapeake aquifer in southeastern New Jersey; in the Castle Hayne-Piney Point aquifer in Delaware, Maryland, southern Virginia and east-central North Carolina; in the Peedee-Severn aquifer in east-central New Jersey and southeastern North Carolina; and in the Black Creek-Matawan aquifer in east-central New Jersey and east-central North Carolina. Conversely, declines were least severe in the regional Upper Chesapeake aquifer during this period. In the Southeastern Coastal Plain, declines of more than 100 ft in the Chattahoochee River aquifer occurred in eastern South Carolina and in southwestern

  18. Impacts of Potential Changes in Land Use, Climate, and Water Use on Water Availability, Coastal Carolinas Region, Southeastern United States

    NASA Astrophysics Data System (ADS)

    Gurley, L. N.; Garcia, A. M.

    2017-12-01

    Sustainable growth in coastal areas with rapidly increasing populations, such as the coastal regions of North and South Carolina, relies on an understanding of the current state of coastal natural resources coupled with the ability to assess future impacts of changing coastal communities and resources. Changes in climate, water use, population, and land use (e.g. urbanization) will place additional stress on societal and ecological systems that are already competing for water resources. The potential effects of these stressors on water availability are not fully known. To meet societal and ecological needs, water resources management and planning efforts require estimates of likely impacts of population growth, land-use, and climate. Two Soil and Water Assessment (SWAT) hydrologic models were developed to help address the challenges that water managers face in the Carolinas: the (1) Cape Fear and (2) Pee Dee drainage basins. SWAT is a basin-scale, process-based watershed model with the capability of simulating water-management scenarios. Model areas were divided into two square mile sub-basins to evaluate ecological response at headwater streams. The sub-basins were subsequently divided into smaller, discrete hydrologic response units based on land use, slope, and soil type. Monthly and annual water-use data were used for 2000 to 2014 and included estimates of municipal, industrial, agricultural, and commercial water use. Models were calibrated for 2000 to 2014 and potential future streamflows were estimated through 2060 based on a suite of scenarios that integrated land use change projections, climate projections and water-use forecasts. The approaches and new techniques developed as part of this research could be applied to other coastal areas that face similar current and future water availability demands.

  19. Greenhouse gas emissions and denitrification within depressional wetlands of the southeastern US coastal plain in an agricultural landscape

    USDA-ARS?s Scientific Manuscript database

    Carolina Bays are depressional wetlands on the Coastal Plain of the southeastern USA. These wetlands are often adjacent to agricultural land and may be the recipients of nutrient runoff. Because of their saturated conditions, nutrient cycling may be important for water quality. Three small bays in S...

  20. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    NASA Astrophysics Data System (ADS)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  1. A numerical study on flow and pollutant transport in Singapore coastal waters.

    PubMed

    Xu, Ming; Chua, Vivien P

    2016-10-15

    Intensive economic and shipping activities in Singapore Strait have caused Singapore coastal waters to be under high risk of water pollution. A nested three-dimensional unstructured-grid SUNTANS model is applied to Singapore coastal waters to simulate flow and pollutant transport. The small domain (~50m resolution) Singapore coastal model is nested within a large domain (~200m resolution) regional model. The nested model is able to predict water surface elevations and velocities with high R(2) values of 0.96 and 0.91, respectively. Model results delineate the characteristics of circulation pattern in Singapore coastal waters during the Northeast and Southwest monsoons. The pollutants are modeled as passive tracers, and are released at six key sailing locations Points 1-6 in Singapore coastal waters and are named as Passive Tracers 1-6, respectively. Our results show that the rate of dispersion is twice as large for the Northeast monsoon compared to the Southwest monsoon due to differences in large-scale monsoons and small-scale local winds. The volume averaged concentration (VAC) diminishes faster and the local flushing time is shorter during the Northeast monsoon than the Southwest monsoon. Dispersion coefficients K and the VAC decreasing rate are maximum for Tracers 2 and 3 with shortest local flushing time due to the strong surrounding currents and abrupt bathymetry changes near Senang and St. John Islands. Dispersion coefficients K and the VAC decreasing rate are minimum for Tracer 1 due to weak currents induced by the semi-enclosed coastline near Tuas. It is found that both the lateral dispersion coefficient Ky and the compound dispersion coefficient K obey a "4/3-law", which defines a linear correlation between dispersion coefficients and 4/3-power of selected length scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Influence of aerosol estimation on coastal water products retrieved from HICO images

    NASA Astrophysics Data System (ADS)

    Patterson, Karen W.; Lamela, Gia

    2011-06-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is a hyperspectral sensor which was launched to the International Space Station in September 2009. The Naval Research Laboratory (NRL) has been developing the Coastal Water Signatures Toolkit (CWST) to estimate water depth, bottom type and water column constituents such as chlorophyll, suspended sediments and chromophoric dissolved organic matter from hyperspectral imagery. The CWST uses a look-up table approach, comparing remote sensing reflectance spectra observed in an image to a database of modeled spectra for pre-determined water column constituents, depth and bottom type. In order to successfully use this approach, the remote sensing reflectances must be accurate which implies accurately correcting for the atmospheric contribution to the HICO top of the atmosphere radiances. One tool the NRL is using to atmospherically correct HICO imagery is Correction of Coastal Ocean Atmospheres (COCOA), which is based on Tafkaa 6S. One of the user input parameters to COCOA is aerosol optical depth or aerosol visibility, which can vary rapidly over short distances in coastal waters. Changes to the aerosol thickness results in changes to the magnitude of the remote sensing reflectances. As such, the CWST retrievals for water constituents, depth and bottom type can be expected to vary in like fashion. This work is an illustration of the variability in CWST retrievals due to inaccurate aerosol thickness estimation during atmospheric correction of HICO images.

  3. Using Coastal Fog to Support Sustainable Water Use in a California Agricultural System

    NASA Astrophysics Data System (ADS)

    Baguskas, S. A.; Loik, M. E.

    2015-12-01

    Impacts of climate change threaten California farmers in a number of ways, most importantly through a decline in freshwater availability, concurrent with a rise in water demand. The future of California's multibillion-dollar agricultural industry depends on increasing water use efficiency on farms. In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. While the impacts of coastal fog on plant biology have been extensively studied in natural ecosystems, very few studies have evaluated its direct effects on the water and energy budgets of agricultural systems. The objective of this study was to develop a mechanistic understanding of the relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration rates, which has potential to curtail groundwater use based on local cloud meteorology. We established three sites on strawberry farms along a coastal-inland gradient in the Salinas Valley, California. At each site, we installed a passive fog collector and a micrometeorological station to monitor variation in microclimate conditions. Flow meters were installed in drip lines to quantify irrigation amount and timing. To assess plant response to foggy and non-foggy conditions, we collected measurements of photosynthesis and transpiration rates at the leaf and canopy-scale between June-September 2015. We found that canopy-level transpiration rates on foggy days were reduced by half compared to sunny, clear days (1.5 and 3 mmol H2O m-2 s-1, respectively). Whereas the amount of direct fog water inputs to the soil did not differ significantly between foggy and clear days, average photosynthetically active radiation between 0900-1100 hr. was reduced from 1500 to 500 μmol photons m-2 s-1 between these sampling periods. Our results provide convincing

  4. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    PubMed

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Retrieval of aerosol properties and water leaving radiance from multi-angle spectro-polarimetric measurement over coastal waters

    NASA Astrophysics Data System (ADS)

    Gao, M.; Zhai, P.; Franz, B. A.; Hu, Y.; Knobelspiesse, K. D.; Xu, F.; Ibrahim, A.

    2017-12-01

    Ocean color remote sensing in coastal waters remains a challenging task due to the complex optical properties of aerosols and ocean water properties. It is highly desirable to develop an advanced ocean color and aerosol retrieval algorithm for coastal waters, to advance our capabilities in monitoring water quality, improve our understanding of coastal carbon cycle dynamics, and allow for the development of more accurate circulation models. However, distinguishing the dissolved and suspended material from absorbing aerosols over coastal waters is challenging as they share similar absorption spectrum within the deep blue to UV range. In this paper we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters. The main features of our algorithm include: 1) combining co-located measurements from a hyperspectral ocean color instrument (OCI) and a multi-angle polarimeter (MAP); 2) using the radiative transfer model for coupled atmosphere and ocean system (CAOS), which is based on the highly accurate and efficient successive order of scattering method; and 3) incorporating a generalized bio-optical model with direct accounting of the total absorption of phytoplankton, CDOM and non-algal particles(NAP), and the total scattering of phytoplankton and NAP for improved description of ocean light scattering. The non-linear least square fitting algorithm is used to optimize the bio-optical model parameters and the aerosol optical and microphysical properties including refractive indices and size distributions for both fine and coarse modes. The retrieved aerosol information is used to calculate the atmospheric path radiance, which is then subtracted from the OCI observations to obtain the water leaving radiance contribution. Our work aims to maximize the use of available information from the co-located dataset and conduct the atmospheric correction with minimal assumptions. The algorithm will contribute to the success of current MAP

  6. A Method to Identify Estuarine Water Quality Exceedances Associated with Ocean Conditions

    EPA Science Inventory

    Wind driven coastal upwelling along the Pacific Northwest Coast of the US results in oceanic water that may be periodically entrained into adjacent estuaries and which possess high nutrients and low dissolved oxygen (DO). Measurement of water quality indicators during these upwe...

  7. Pesticides in Ground Water of the Maryland Coastal Plain

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  8. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  9. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic...

  10. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic...

  11. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic...

  12. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic...

  13. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    PubMed

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Modeling water exchange and contaminant transport through a Baltic coastal region.

    PubMed

    Engqvist, Anders; Döös, Kristofer; Andrejev, Oleg

    2006-12-01

    The water exchange of the Baltic coastal zone is characterized by its seasonally varying regimes. In the safety assessment of a potential repository for spent nuclear fuel, it is important to assess the consequences of a hypothetical leak of radionuclides through the seabed into a waterborne transport phase. In particular, estimates of the associated residence times in the near-shore coastal zone are of interest. There are several methods to quantify such measures, of which three are presented here. Using the coastal location of Forsmark (Sweden) as an example, methods based on passive tracers, particle trajectories, and the average age distribution of exogeneous water parcels are compared for a representative one-year cycle. Tracer-based methods can simulate diffusivity more realistically than the other methods. Trajectory-based methods can handle Lagrangian dispersion processes due to advection but neglect diffusion on the sub-grid scale. The method based on the concept of average age (AvA) of exogeneous water can include all such sources simultaneously not only boundary water bodies but also various (fresh)-water discharges. Due to the inclusion of sub-grid diffusion this method gives a smoother measure of the water renewal. It is shown that backward in time trajectories and AvA-times are basically equipollent methods, yielding correlated results within the limits set by the diffusivity.

  15. Use of carbonated water in reduction of adjacent gastric activity in 456 consecutive technetium-99m myocardial perfusion imaging studies.

    PubMed

    Thomas, Dustin M; Lee, Joshua S; Charmforoush, Anthony; Rubal, Bernard J; Rosenblatt, Stephen A; Butler, Joshua T; Clemenshaw, Michael; Cheezum, Michael K; Slim, Ahmad M

    2015-12-01

    Small, observational trials have suggested a reduction in adjacent gastric activity with ingestion of soda water in myocardial perfusion imaging (MPI). We report our findings prior to and after implementation of soda water in 467 consecutive MPI studies. Consecutive MPI studies performed at a high-volume facility referred for vasodilator (VD) or exercise treadmill testing (ETT) were retrospectively reviewed before and after implementation of the soda water protocol. Patients undergoing the soda water protocol received 100 ml of soda water administered 30 min prior to image acquisition and after stress. Studies were performed using a same day rest/stress protocol. Incidence of adjacent gastric activity, diaphragmatic attenuation, stress and rest perfusion defects, and major adverse cardiovascular events (MACE) outcomes defined as death, myocardial infarction, stroke, reevaluation for chest pain, and late revascularization (>90 days from MPI) were abstracted using International Classification of Diseases, Ninth Revision (ICD-9) search. Two hundred and eighteen studies were performed prior to implementation of the soda water protocol and 249 studies were performed with the use of soda water. Baseline demographic data were equal between the groups with the exception of more patients undergoing VD stress receiving soda water (p < 0.001). Soda water was not associated with a decreased incidence of adjacent gastric activity with stress (54.7% versus 61.9% with no soda water, p = 0.129) or rest (68.6% versus 69.5% with no soda water, p = 0.919) imaging. Less adjacent gastric activity was observed with patients undergoing ETT who received soda water (42.5% versus 56.9% with no soda water, p = 0.031), but no difference was observed between the groups with VD stress (69.0% versus 68.1% with no soda water, p = 1.000). The use of soda water prior to technetium-99m MPI was associated with lower rates of adjacent gastric activity only in patients undergoing ETT stress but not

  16. SPATIAL AND TEMPORAL DISTRIBUTION OF COLORED DISSOLOVED ORGANIC MATTER (CDOM) IN SOUTHERN NEW ENGALND COASTAL WATERS

    EPA Science Inventory

    The concentration of colored dissolved organic matter (CDOM) is a primary factor affecting the absorption of incident sunlight in coastal and estuarine waters. CDOM is extracted from water-soluble humic substances and transported by runoff into lakes and coastal waters. CDOM is a...

  17. The magnitude and origin of groundwater discharge to eastern U.S. and Gulf of Mexico coastal waters

    USGS Publications Warehouse

    Befus, Kevin; Kroeger, Kevin D.; Smith, Christopher G.; Swarzenski, Peter W.

    2017-01-01

    Fresh groundwater discharge to coastal environments contributes to the physical and chemical conditions of coastal waters, but the role of coastal groundwater at regional to continental scales remains poorly defined due to diverse hydrologic conditions and the difficulty of tracking coastal groundwater flow paths through heterogeneous subsurface materials. We use three-dimensional groundwater flow models for the first time to calculate the magnitude and source areas of groundwater discharge from unconfined aquifers to coastal waterbodies along the entire eastern U.S. We find that 27.1 km3/yr (22.8–30.5 km3/yr) of groundwater directly enters eastern U.S. and Gulf of Mexico coastal waters. The contributing recharge areas comprised ~175,000 km2 of U.S. land area, extending several kilometers inland. This result provides new information on the land area that can supply natural and anthropogenic constituents to coastal waters via groundwater discharge, thereby defining the subterranean domain potentially affecting coastal chemical budgets and ecosystem processes.

  18. Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-1980

    USGS Publications Warehouse

    Vowinkel, E.F.

    1984-01-01

    Withdrawals and site data for wells with a pump capacity of 100 ,000 gallons per day or greater in the Coastal Plain of New Jersey are stored in computer files for 1956-80. The data are aggregated by computer into tables, graphs and maps to show the distribution of ground-water withdrawals. Withdrawals are reported by type of use and aquifer for each county in the Coastal Plain. Public-supply wells withdraw the largest quantity of ground water in the Coastal Plain, followed by industrial and agricultural wells. In 1980 public-supply withdrawals were about 280 million gallons per day; the maximum monthly rate was about 355 million gallons per day in July, and the lowest was about 215 million gallons per day in February. Average industrial withdrawals were about 65 million gallons per day. Ground-water withdrawals used for agriculture vary significantly during the year. In 1980, about 75 percent of the agricultural withdrawals occurred from June through September. Several aquifers are used as sources of water supply in the Coastal Plain. Five regional aquifers are the major sources of water for public-supply, industrial, or agricultural use. In decreasing order of withdrawals in 1980, in million gallons per day, they are: The Potomac-Raritan-Magothy aquifer system, 243; Kirkwood-Cohansey aquifer system, 70; Atlantic City 800-foot sand, 21; Englishtown aquifer, 12; and the Wenonah-Mount Laurel aquifer system, 5. (USGS)

  19. Editorial: Eutrophication and hypoxia and their impacts on the ecosystem of the Changjiang Estuary and adjacent coastal environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Xiao, Tian; Huang, Daji; Liu, Su Mei; Fang, Jianguang

    2016-02-01

    The Changjiang (Yangtze River) Estuary plays an important role in the land-ocean interactions of East Asia, particularly in regard to the fate of land-derived materials and their impact on marine ecosystems in the Northwest Pacific Ocean. The 12 papers included in this special issue describe results from the MEcoPAM Study, an IMBER-China project, which occurred in 2011-2015. This project used a multi-disciplinary approach to understand ecosystem function of the Changjiang Estuary in response to multiple stressors (i.e. combined external forcings). The results presented here show that human activities in the watersheds have greatly changed the flux and variation of dissolved and particulate materials from the river. Further interactions between the Changjiang Watersheds and the East China Sea can dramatically modify the pathways of biogeochemistry and food web dynamics of the estuary and adjacent coastal environment at seasonal and inter-annual scales.

  20. Influence of microorganism content in suspended particles on the particle-water partitioning of mercury in semi-enclosed coastal waters.

    PubMed

    Jang, Jiyi; Kim, Hyunji; Han, Seunghee

    2014-02-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle-water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a]<0.6 μg L(-1), the bacterial number, instead of chlorophyll-a concentration in particle, showed a positive correlation with the particle-water partition coefficient of Hg. Overall, microbial abundance seems to play a critical role in particle scavenging of Hg in coastal water. Taking this result in light of Hg in pristine coastal zones, we predict that increases in algal biomass amplify the potential for algae to transfer Hg to marine food chains. © 2013.

  1. Seismic Interface Waves in Coastal Waters: A Review

    DTIC Science & Technology

    1980-11-15

    Being at the low- 4 frequency end of classical sonar activity and at the high-frequency end of seismic research, the propagation of infrasonic energy...water areas. Certainly this and other seismic detection methods will never replace the highly-developed sonar techniques but in coastal waters they...for many sonar purposes [5, 85 to 90) shows that very simple bottom models may already be sufficient to make allowance for the influence of the sea

  2. Detection of pharmaceuticals and other personal care products in groundwater beneath and adjacent to onsite wastewater treatment systems in a coastal plain shallow aquifer.

    PubMed

    Del Rosario, Katie L; Mitra, Siddhartha; Humphrey, Charles P; O'Driscoll, Michael A

    2014-07-15

    Onsite wastewater treatment systems (OWTS) are the predominant disposal method for human waste in areas without municipal sewage treatment alternatives. Relatively few studies have addressed the release of pharmaceuticals and personal care products (PPCPs) from OWTS to groundwater. PPCP fate and transport from OWTS are important, particularly where these systems are adjacent to sensitive aquatic ecosystems such as coastal areas or wetlands. The objectives of this study were to identify PPCPs in residential wastewater and groundwater beneath OWTS and to characterize the environmental conditions affecting the OWTS discharge of PPCPs to nearby streams. The study sites are in coastal plain aquifers, which may be considered vulnerable "end-members" for subsurface PPCP transport. The PPCPs most commonly detected in the OWTS, at concentrations ranging from 0.12 μg L(-1) to 12.04 μg L(-1) in the groundwater, included: caffeine, ibuprofen, DEET, and homosalate. Their presence was related to particulate and dissolved organic carbon abundance. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Contribution of hydrolysis in the abiotic attenuation of RDX and HMX in coastal waters.

    PubMed

    Monteil-Rivera, Fanny; Paquet, Louise; Giroux, Romain; Hawari, Jalal

    2008-01-01

    Sinking of military ships, dumping of munitions during the two World Wars, and military training have resulted in the undersea deposition of numerous unexploded ordnances (UXOs). Leaching of energetic compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from these UXOs may cause adverse ecological effects so that the long-term fate of these chemicals in the sea should be known. The present study assesses the contribution of alkaline hydrolysis into the natural attenuation of RDX and HMX in coastal waters. Alkaline hydrolysis rates were shown to be unaffected by the presence of sodium chloride, the most common component in marine waters. Kinetic parameters (E(a), ln A, k(2)) quantified for the alkaline hydrolysis of RDX and HMX in deionized water (30-50 degrees C, pH 10-12) agreed relatively well with abiotic degradation rates determined in sterilized natural coastal waters (50 and 60 degrees C, variable salinity) even if the latter were generally slightly faster than the former. Furthermore, similar products (HCHO, NO(2)(-), O(2)NNHCH(2)NHCHO) were obtained on alkaline hydrolysis in deionized water and abiotic degradation in coastal waters. These two findings suggested that degradation of nitramines in sterilized natural coastal waters, away from light, was mainly governed by alkaline hydrolysis. Kinetic calculations using the present parameters showed that alkaline hydrolysis of RDX and HMX in marine waters at 10 degrees C would respectively take 112 +/- 10 and 2408 +/- 217 yr to be completed (99.0%). We concluded that under natural conditions hydrolysis should not contribute significantly to the natural attenuation of HMX in coastal waters whereas it could play an active role in the natural attenuation of RDX.

  4. OCTS And Seawifs Bio-Optical Algorithm and Product Vaildattion and Intercomparison in US Coastal Waters

    NASA Technical Reports Server (NTRS)

    Brow, Chirstopher; Subramaniam, Ajit; Culver, Mary; Brock, John C.

    2000-01-01

    Monitoring the health of U.S. coastal waters is an important goal of the National Oceanic and Atmospheric Administration (NOAA). Satellite sensors are capable of providing daily synoptic data of large expanses of the U.S. coast. Ocean color sensor, in particular, can be used to monitor the water quality of coastal waters on an operational basis. To appraise the validity of satellite-derived measurements, such as chlorophyll concentration, the bio-optical algorithms used to derive them must be evaluated in coastal environments. Towards this purpose, over 21 cruises in diverse U.S. coastal waters have been conducted. Of these 21 cruises, 12 have been performed in conjunction with and under the auspices of the NASA/SIMBIOS Project. The primary goal of these cruises has been to obtain in-situ measurements of downwelling irradiance, upwelling radiance, and chlorophyll concentrations in order to evaluate bio-optical algorithms that estimate chlorophyll concentration. In this Technical Memorandum, we evaluate the ability of five bio-optical algorithms, including the current SeaWiFS algorithm, to estimate chlorophyll concentration in surface waters of the South Atlantic Bight (SAB). The SAB consists of a variety of environments including coastal and continental shelf regimes, Gulf Stream waters, and the Sargasso Sea. The biological and optical characteristics of the region is complicated by temporal and spatial variability in phytoplankton composition, primary productivity, and the concentrations of colored dissolved organic matter (CDOM) and suspended sediment. As such, the SAB is an ideal location to test the robustness of algorithms for coastal use.

  5. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  6. 77 FR 74923 - Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... proposing numeric water quality criteria to protect ecological systems, aquatic life, and human health from... Technical Support Section. http://www.dep.state.fl.us/water/wqssp/.everglades/docs/pctsd/IIIChapter.2.pdf... Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida Inland...

  7. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    NASA Astrophysics Data System (ADS)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  8. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Yao, Peng; Bianchi, Thomas S.; Xu, Yahong; Liu, Hui; Mi, Tiezhu; Zhang, Xiao-Hua; Liu, Jiwen; Yu, Zhigang

    2017-08-01

    Large-river delta-front estuaries (LDEs) and their adjacent shelf margins are sites of dynamic diagenetic processes that play a significant role in coastal biogeochemical cycling. In this study, we used dissolved inorganic carbon (DIC), redox sensitive elements (Fe2 + and Mn2 +), dissolved inorganic nitrogen (DIN) nutrients (NH4+, NO3-, and NO2-), major cations and anions (K+, Ca2 +, Mg2 +, SO42 -, and Cl-) in bottom-water and sediment pore-waters, to investigate the early chemical diagenesis and authigenic mineral formation in mobile-mud deposits of the Changjiang Estuary and adjacent inner shelf of the East China Sea (ECS). Vertical profiles of DIC and NH4+ in pore-waters had similar trends at most sites, showing a significant increase with depth near the Changjiang Estuary and being relatively constant at offshore sites. Higher pore-water DIC and NH4+ concentrations were observed in nearshore sites in winter, which were likely attributed to exposure of deeper deposits by winter coastal erosion. Nitrification was observed at most sites, and AOB (ammonia-oxidizing bacteria) played a leading role in ammonia oxidation in the study areas. The nitrification-denitrification was likely important in contributing to the loss of DIN in offshore sites during summer. Large inputs of organic carbon (OC) and terrestrial materials from Changjiang River resulted in intense sulfate reduction and Fe and Mn reduction in nearshore sites. Lower C/N and C/S ratios coupled with an apparent decrease in pore-water Ca2 + and Mg2+ concentrations with depth near the Changjiang Estuary, which indicated that authigenic carbonate formation occurs in these sediments. Decreases in K+ and Mg2 + with depth reflected that reverse weathering was an important process of authigenic mineral formation in these sediments. We conclude that adsorption process, seasonal erosion-redeposition, and summer hypoxic conditions of bottom-waters may play an important role in early diagenesis processes and

  9. Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters.

    PubMed

    Hlaing, Soe; Gilerson, Alexander; Harmel, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-10

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current

  10. Development of a coastal information system for the management of Jeddah coastal waters in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.

    2016-04-01

    This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.

  11. Dispersal of fine sediment in nearshore coastal waters

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2013-01-01

    Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore

  12. Albemarle Sound demonstration study of the national monitoring network for US coastal waters and their tributaries

    Treesearch

    Michelle Moorman; Sharon Fitzgerald; Keith Loftin; Elizabeth Fensin

    2016-01-01

    The U.S. Geological Survey’s (USGS) is implementing a demonstration project in the Albemarle Sound for the National Monitoring Network for U.S. coastal waters and their tributaries. The goal of the National Monitoring Network is to provide information about the health of our oceans and coastal ecosystems and inland influences on coastal waters for improved resource...

  13. Use of SeaWiFS, MODIS, and MERIS in developing water quality numeric criteria for Florida’s coastal waters

    EPA Science Inventory

    Human activities on land often increase nutrient loads to coastal waters and may cause increased phytoplankton production, algal biomass, and eutrophication. The U. S. Environmental Protection Agency determined that numeric criteria were necessary to protect Florida's coastal wa...

  14. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165.1317 Section 165.1317 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS...

  15. Sea water in coastal aquifers

    USGS Publications Warehouse

    Cooper, Hilton Hammond

    1964-01-01

    Investigations in the coastal part of the Biscayne aquifer, a highly productive aquifer of limestone and sand in the Miami area, Florida, show that the salt-water front is dynamically stable as much as 8 miles seaward of the position computed according to the Ghyben-Herzberg principle. This discrepancy results, at least in part, from the fact that the salt water in the Biscayne aquifer is not static, as explanations of the dynamic balance commonly assume. Cross sections showing lines of equal fresh-water potential indicate that during periods of heavy recharge, the fresh-water head is high enough to cause the fresh water, the salt water, and the zone of diffusion between them to move seaward. When the fresh-water head is low, salt water in the lower part of the aquifer intrudes inland, but some of the diluted sea water in the zone of diffusion continues to flow seaward. Thus, salt water circulates inland from the floor of the sea through the lower part of the aquifer becoming progressively diluted with fresh water to a line along which there is no horizontal component of flow, after which it moves upward and returns to the sea. This cyclic flow is demonstrated by a flow net which is constructed by the use of horizontal gradients determined from the low-head equipotential diagram. The flow net shows that about seven-eights of the total discharge at the shoreline originates as fresh water in inland parts of the aquifer. The remaining one-eighth represents a return of sea water entering the aquifer through the floor of the sea.

  16. Skylab and ERTS-1 investigations of coastal land use and water properties. [Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Bartlett, D.; Rogers, R.

    1974-01-01

    The author has identified the following significant results. ERTS-1 multispectral scanner and Skylab's S190A, S190B, and S192 data products were evaluated for their utility in studying current circulation, suspended sediment concentrations and pollution dispersal in Delaware Bay and in mapping coastal vegetation and land use. Imagery from the ERTS-1 MSS, S190A and S190B cameras shows considerable detail in water structure, circulation, suspended sediment distribution and within waste disposal plumes in shelf waters. These data products were also used in differentiating and mapping twelve coastal vegetation and land use classes. The spatial resolution of the S190A multispectral facility appears to be about 30 to 70 meters while that of the S190B earth terrain camera is about 10 to 30 meters. Such resolution, along with good cartographic quality, indicates a considerable potential for mapping coastal land use and monitoring water properties in estuaries and on the continental shelf. The ERTS-1 MSS has a resolution of about 70-100 meters. Moreover, its regular 18-day cycle permits observation of important changes, including the environmental impact of coastal zone development on coastal vegetation and ecology.

  17. Fluvial fluxes of water, suspended particulate matter, and nutrients and potential impacts on tropical coastal water Biogeochemistry: Oahu, Hawai'i

    USGS Publications Warehouse

    Hoover, D.J.; MacKenzie, F.T.

    2009-01-01

    Baseflow and storm runoff fluxes of water, suspended particulate matter (SPM), and nutrients (N and P) were assessed in conservation, urban, and agricultural streams discharging to coastal waters around the tropical island of Oahu, Hawai'i. Despite unusually low storm frequency and intensity during the study, storms accounted for 8-77% (median 30%) of discharge, 57-99% (median 93%) of SPM fluxes, 11-79% (median 36%) of dissolved nutrient fluxes and 52-99% (median 85%) of particulate nutrient fluxes to coastal waters. Fluvial nutrient concentrations varied with hydrologic conditions and land use; land use also affected water and particulate fluxes at some sites. Reactive dissolved N:P ratios typically were ???16 (the 'Redfield ratio' for marine phytoplankton), indicating that inputs could support new production by coastal phytoplankton, but uptake of dissolved nutrients is probably inefficient due to rapid dilution and export of fluvial dissolved inputs. Particulate N and P fluxes were similar to or larger than dissolved fluxes at all sites (median 49% of total nitrogen, range 22-82%; median 69% of total phosphorus, range 49-93%). Impacts of particulate nutrients on coastal ecosystems will depend on how efficiently SPM is retained in nearshore areas, and on the timing and degree of transformation to reactive dissolved forms. Nevertheless, the magnitude of particulate nutrient fluxes suggests that they represent a significant nutrient source for many coastal ecosystems over relatively long time scales (weeks-years), and that reductions in particulate nutrient loading actually may have negative impacts on some coastal ecosystems.

  18. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida

    PubMed Central

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-01-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled – the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  19. A resilience framework for chronic exposures: water quality and ecosystem services in coastal social-ecological systems

    EPA Science Inventory

    We outline a tailored resilience framework that applies ecosystem service concepts to coastal social-ecological systems (SES) affected by water quality degradation. Unlike acute coastal disturbances such as hurricanes or oil spills, water quality issues, particularly those relate...

  20. Water Column Variability in Coastal Regions

    DTIC Science & Technology

    1998-01-01

    Bay off the HKUST campus. Endeco/YSI sondes were placed at 0.4 m depth below the surface and at 1 m off the bottom in 6 m of water to make...with colleagues at the Hong Kong University of Science and Technology ( HKUST ) using these methods to examine coastal variability in southern China due...the University of Rhode Island in order to devote the year to an intensive set of field measurements at HKUST . Wendy Woods also spent the past year

  1. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  2. Non-energy resources, Connecticut and Rhode Island coastal waters

    USGS Publications Warehouse

    Neff, N.F.; Lewis, R.S.

    1989-01-01

    Cores collected from Long Island Sound, Connecticut, were used to establish control on the geologic framework of the area. Lithologic and stratigraphic analyses verified the presence of the following units: (1) Cretaceous coastal plain, (2) Pleistocene glacial till, (3) late Pleistocene glacial lake, (4) late Pleistocene glacial outwash, and (5) Holocene fluvial, estuarine and marine deposits. Cores collected in Block Island Sound, Rhode Island, were obtained from inferred, relict shoreline features and were analyzed for heavy mineral content. Concentrations ranged from 0.3 to 3.4%; no significant downcore changes were found. The results indicated that surficial sediments in areas of high-velocity tidal flow yield greater amounts of heavy minerals than do inferred placer deposits. During the second phase of the program of study, Connecticut and Rhode Island pooled resources to develop a study plan for the comprehensive quantification of all non-energy resources in the adjacent waters of the states. A literature and data survey was conducted to assess the occurrence, extent, and accessibility of these resources. Sand and gravel and heavy minerals were found in concentrations offering potential for resource exploitation. Constraints on exploitation include (1) water depth restrictions for the protection of shellfish beds and public beaches, (2) fishing activities, (3) military, commercial, and fishing vessel traffic, (4) seafloor cable routes and (5) dump sites. Deposits composed of Pleistocene glacial sediments and/or Holocene marine sediments in regions of little or no user conflict were identified as sites potentially suitable for resource exploitation. The study plan stated additional data needs (geophysical profiling and vibracore sampling) at these sites. Subsequent to these recommendations, high-resolution seismic profiles and sidescan sonographs were obtained from these sites. Seismic stratigraphic analyses confirm the presence of extensive deposits of

  3. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown

    Treesearch

    J. Mason Earles; Or Sperling; Lucas C. R. Silva; Andrew J. McElrone; Craig R. Brodersen; Malcolm P. North; Maciej A. Zwieniecki

    2015-01-01

    Coastal redwood (Sequoia sempervirens), the world’s tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water...

  4. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Areas Thirteenth Coast Guard District § 165.1313 Security zone regulations, tank ship protection, Puget... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and...

  5. The assessment of waters ecological state of the Crimea coastal near high-rise construction zones

    NASA Astrophysics Data System (ADS)

    Vetrova, Natalya; Ivanenko, Tatyana; Mannanov, Emran

    2018-03-01

    The relevance of our study is determined by the significant level of coastal sea waters pollution by sewage near high-rise construction zones, which determines the violation of the sanitary and hygienic of sea waters `characteristics and limits the possibilities for organizing recreational activities. The purpose of this study is to identify the ecological state of the marine aquatic area by the example of the Western Crimea near high-rise construction zones. The studies confirmed that the recreational and coastal area wastewater is intensely mixed with seawater, as a result, the pollution in the coastal strip of the sea in the area of deep water discharges sharply decrease. This happens because of water rapid rise to the surface and under the influence of the continuous movement of sea water huge masses with deep-water discharge, fresh wastewater is actively mixed with sea water. However, with no doubt, it is inadmissible to discharge sewage into the sea directly from the shore, but only at the estimated distance from the coast. The materials of the article can be useful for the management bodies and organizations involved in monitoring the quality of the coastal zone of the sea, teachers and students of higher educational institutions when assessing the ecological situation of the territories.

  6. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown

    USDA-ARS?s Scientific Manuscript database

    Coastal redwood (Sequoia sempervirens), the world’s tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, along with potential flow mechanisms and biological significance. Using isotopic labeling...

  7. The Effects Of Tides And Waves On Water-Table Elevations In Coastal Zones

    NASA Astrophysics Data System (ADS)

    Turner, Ian L.; Coates, Bruce P.; Acworth, R. Ian

    1996-02-01

    A resurgence of interest in the literature about coastal zones has highlighted the fact that ocean processes can have a significant influence on unconfined coastal aquifers, resulting in a net super-elevation of the water table at the land-ocean boundary to groundwater discharge. This theoretical and experimental notion appears to be less well recognized in the field of groundwater investigation, where it is more usual to assume that the coastal boundary is equivalent to mean sea level. Coastal over-height is due to the ability of a sloping beach face to `fill' (vertical infiltration) at a greater rate than it can `drain' (horizontal seepage). The results of a three-month monitoring of the groundwater profile within a narrow coastal aquifer at New South Wales, Australia, confirms the significance of tide and wave processes to groundwater elevation. The mean height of the water table on the upper beach face was about 1.2 m above mean sea level, rising to 2.0 m during a period of coincident spring tides, storm waves, and rainfall. This elevation was sufficient to temporarily reverse the direction of groundwater flow. Fourier analysis and cross-correlation are used to help distinguish the role of tides in maintaining groundwater super-elevation from the role of storm waves in further raising the coastal water table for periods of two to three days. The results of a simple numerical simulation demonstrate that estimated rates of groundwater discharge at the study site were halved when the effect of tides and waves was incorporated in the definition of the ocean boundary.

  8. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  9. Spatio-temporal distribution patterns of the epibenthic community in the coastal waters of Suriname

    NASA Astrophysics Data System (ADS)

    Willems, Tomas; De Backer, Annelies; Wan Tong You, Kenneth; Vincx, Magda; Hostens, Kris

    2015-10-01

    This study aimed to characterize the spatio-temporal patterns of the epibenthic community in the coastal waters of Suriname. Data were collected on a (bi)monthly basis in 2012-2013 at 15 locations in the shallow (<40 m) coastal area, revealing three spatially distinct species assemblages, related to clear gradients in some environmental parameters. A species-poor coastal assemblage was discerned within the muddy, turbid-water zone (6-20 m depth), dominated by Atlantic seabob shrimp Xiphopenaeus kroyeri (Crustacea: Penaeoidea). Near the 30 m isobath, sediments were much coarser (median grain size on average 345±103 μm vs. 128±53 μm in the coastal assemblage) and water transparency was much higher (on average 7.6±3.5 m vs. 2.4±2.1 m in the coastal assemblage). In this zone, a diverse offshore assemblage was found, characterized by brittle stars (mainly Ophioderma brevispina and Ophiolepis elegans) and a variety of crabs, sea stars and hermit crabs. In between both zones, a transition assemblage was noted, with epibenthic species typically found in either the coastal or offshore assemblages, but mainly characterized by the absence of X. kroyeri. Although the epibenthic community was primarily structured in an on-offshore gradient related to depth, sediment grain size and sediment total organic carbon content, a longitudinal (west-east) gradient was apparent as well. The zones in the eastern part of the Suriname coastal shelf seemed to be more widely stretched along the on-offshore gradient. Although clear seasonal differences were noted in the environmental characteristics (e.g. dry vs. rainy season), this was not reflected in the epibenthic community structure. X. kroyeri reached very high densities (up to 1383 ind 1000 m-²) in the shallow coastal waters of Suriname. As X. kroyeri is increasingly exploited throughout its range, the current study provides the ecological context for its presence and abundance, which is crucial for an ecosystem approach and the

  10. Effect of climate change on sea water intrusion in coastal aquifers

    NASA Astrophysics Data System (ADS)

    Sherif, Mohsen M.; Singh, Vijay P.

    1999-06-01

    There is increasing debate these days on climate change and its possible consequences. Much of this debate has focused in the context of surface water systems. In many arid areas of the world, rainfall is scarce and so is surface runoff. These areas rely heavily on groundwater. The consequences of climate change on groundwater are long term and can be far reaching. One of the more apparent consequences is the increased migration of salt water inland in coastal aquifers. Using two coastal aquifers, one in Egypt and the other in India, this study investigates the effect of likely climate change on sea water intrusion. Three realistic scenarios mimicking climate change are considered. Under these scenarios, the Nile Delta aquifer is found to be more vulnerable to climate change and sea level rise.

  11. Pharmaceuticals, alkylphenols and pesticides in Mediterranean coastal waters: Results from a pilot survey using passive samplers

    NASA Astrophysics Data System (ADS)

    Munaron, Dominique; Tapie, Nathalie; Budzinski, Hélène; Andral, Bruno; Gonzalez, Jean-Louis

    2012-12-01

    21 pharmaceuticals, 6 alkylphenols and 27 hydrophilic pesticides and biocides were investigated using polar organic contaminant integrative samplers (POCIS) during a large-scale study of contamination of French Mediterranean coastal waters. Marine and transitional water-bodies, defined under the EU Water Framework Directive were monitored. Our results show that the French Mediterranean coastal waters were contaminated with a large range of emerging contaminants, detected at low concentrations during the summer season. Caffeine, carbamazepine, theophilline and terbutaline were detected with a detection frequency higher than 83% in the coastal waters sampled, 4-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and 4-nonylphenol diethoxylate (NP2EO) were detected in all coastal waters sampled, and diuron, terbuthylazine, atrazine, irgarol and simazine were detected in more than 77% of samples. For pharmaceuticals, highest time-weighted average (TWA) concentrations were measured for caffeine and carbamazepine (32 and 12 ng L-1, respectively). For alkylphenols, highest TWA concentrations were measured for 4-nonylphenol mono-ethoxylate and 4-nonylphenol (41 and 33 ng L-1, respectively), and for herbicides and biocides, they were measured for diuron and irgarol (33 and 2.5 ng L-1, respectively). Except for Diana lagoon, lagoons and semi-enclosed bays were the most contaminated areas for herbicides and pharmaceuticals, whilst, for alkylphenols, levels of contamination were similar in lagoons and coastal waters. This study demonstrates the relevance and utility of POCIS as quantitative tool for measuring low concentrations of emerging contaminants in marine waters.

  12. Sunscreen products as emerging pollutants to coastal waters.

    PubMed

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO₂ and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6-577.5 ng L⁻¹ BZ-3; 51.4-113.4 ng L⁻¹ 4-MBC; 6.9-37.6 µg L⁻¹ Ti; 1.0-3.3 µg L⁻¹ Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC₅₀ = 125±71 mg L⁻¹). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO₄³⁻ is released by these products in notable amounts (up to 17 µmol PO₄³⁻g⁻¹). We conservatively estimate an increase of up to 100% background PO₄³⁻ concentrations (0.12 µmol L⁻¹ over a background level of 0.06 µmol L⁻¹) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem.

  13. Monitoring bacterial contamination of piped water supply in rural coastal Bangladesh.

    PubMed

    Ahsan, Md Sabbir; Akber, Md Ali; Islam, Md Atikul; Kabir, Md Pervez; Hoque, Md Ikramul

    2017-10-31

    Safe drinking water is scarce in southwest coastal Bangladesh because of unavailability of fresh water. Given the high salinity of both groundwater and surface water in this area, harvested rainwater and rain-fed pond water became the main sources of drinking water. Both the government and non-government organizations have recently introduced pipe water supply in the rural coastal areas to ensure safe drinking water. We assessed the bacteriological quality of water at different points along the piped water distribution system (i.e., the source, treatment plant, household taps, street hydrants, and household storage containers) of Mongla municipality under Mongla Upazila in Bagerhat district. Water samples were collected at 2-month interval from May 2014 to March 2015. Median E. coli and total coliform counts at source, treatment plant, household taps, street hydrants, and household storage containers were respectively 225, 4, 7, 7, and 15 cfu/100 ml and 42,000, 545, 5000, 6150, and 18,800 cfu/100 ml. Concentrations of both of the indicator bacteria reduced after treatment, although it did not satisfy the WHO drinking water standards. However, re-contamination in distribution systems and household storage containers indicate improper maintenance of distribution system and lack of personal hygiene.

  14. Monitoring Dissolved Oxygen in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  15. Estimated water use and availability in the South Coastal Drainage Basin, southern Rhode Island, 1995-99

    USGS Publications Warehouse

    Wild, Emily C.; Nimiroski, Mark T.

    2005-01-01

    The South Coastal Drainage Basin includes approximately 59.14 square miles in southern Rhode Island. The basin was divided into three subbasins to assess the water use and availability: the Saugatucket, Point Judith Pond, and the Southwestern Coastal Drainage subbasins. Because there is limited information on the ground-water system in this basin, the water use and availability evaluations for these subbasins were derived from delineated surface-water drainage areas. An assessment was completed to estimate water withdrawals, use, and return flow over a 5-year study period from 1995 through 1999 in the basin. During the study period, one major water supplier in the basin withdrew an average of 0.389 million gallons per day from the sand and gravel deposits. Most of the potable water is imported (about 2.152 million gallons per day) from the adjacent Pawcatuck Basin to the northwest. The estimated water withdrawals from the minor water suppliers, which are all in Charlestown, during the study period were 0.064 million gallons per day. The self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin were 0.574 million gallons per day. Water use in the basin was 2.874 million gallons per day. The average return flow in the basin was 1.190 million gallons per day, which was entirely from self-disposed water users. In this basin, wastewater from service collection areas was exported (about 1.139 million gallons per day) to the Narragansett Bay Drainage Basin for treatment and discharge. During times of little to no recharge, in the form of precipitation, the surface- and ground-water system flows are from storage primarily in the stratified sand and gravel deposits, although there is flow moving through the till deposits at a slower rate. The ground water discharging to the streams, during times of little to no precipitation, is referred to as base flow. The PART program, a computerized hydrograph-separation application, was used at the

  16. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    NASA Astrophysics Data System (ADS)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  17. Changes in soil organic carbon fractions following remediation of a degraded coastal floodplain wetland

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; McNaughton, Caitlyn; Pearson, Amy

    2017-04-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise, largely due to drainage of floodplains to decrease water levels, to form coastal acid sulfate soils (CASS). Following oxidation, pH of both soil and water decrease, and acidity and mobilisation of trace metals increases to adversely affect vegetation and adjacent aquatic ecosystems. In extreme cases, vegetation death occurs resulting in the formation of scalds, which are large bare patches. Remediation of these degraded coastal soils generally involves neutralisation of acidity via application of lime and the re-introduction of anoxic conditions by raising water levels. Our understanding of the geochemical changes which occur as a result of remediation is relatively well established. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a degraded and scalded coastal floodplain. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m. The particulate organic C fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production.

  18. Concentration and Variety of Carbapenemase Producers in Recreational Coastal Waters Showing Distinct Levels of Pollution

    PubMed Central

    Paschoal, Raphael P.; Campana, Eloiza H.; Corrêa, Laís L.; Montezzi, Lara F.; Barrueto, Lina R. L.; da Silva, Isadora R.; Castro, Laura de S.

    2017-01-01

    ABSTRACT Carbapenemase-producing bacteria cause difficult-to-treat infections related to increased mortality in health care settings. Their occurrence has been reported in raw sewage, sewage-impacted rivers, and polluted coastal waters, which may indicate their spread to the community. We assessed the variety and concentration of carbapenemase producers in coastal waters with distinct pollution levels for 1 year. We describe various bacterial species producing distinct carbapenemases not only in unsuitable waters but also in waters considered suitable for primary contact. PMID:28971868

  19. Monitoring of hourly variations in coastal water turbidity using the geostationary ocean color imager (GOCI)

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ryu, J.

    2011-12-01

    Temporal variations of suspended sediment concentration (SSC) in coastal water are the key to understanding the pattern of sediment movement within coastal area, in particular, such as in the west coast of the Korean Peninsula which is influenced by semi-diurnal tides. Remote sensing techniques can effectively monitor the distribution and dynamic changes in seawater properties across wide areas. Thus, SSC on the sea surface has been investigated using various types of satellite-based sensors. An advantage of Geostationary Ocean Color Imager (GOCI), the world's first geostationary ocean color observation satellite, over other ocean color satellite images is that it can obtain data every hour during the day and makes it possible to monitor the ocean in real time. In this study, hourly variations in turbidity on the coastal waters were estimated quantitatively using GOCI. Thirty three water samples were obtained on the coastal water surface in southern Gyeonggi Bay, located on the west coast of Korea. Water samples were filtered using 25-mm glass fiber filters (GF/F) for the estimation of SSC. The radiometric characteristics of the surface water, such as the total water-leaving radiance (LwT, W/m2/nm/sr), the sky radiance (Lsky, W/m2/nm/sr) and the downwelling irradiance, were also measured at each sampling location. In situ optical properties of the surface water were converted into remote sensing reflectance (Rrs) and then were used to develop an algorithm to generate SSC images in the study area. GOCI images acquired on the same day as the samples acquisition were used to generate the map of turbidity and to estimate the difference in SSC displayed in each image. The estimation of the time-series variation in SSC in a coastal, shallow-water area affected by tides was successfully achieved using GOCI data that had been acquired at hourly intervals during the daytime.

  20. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  1. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  2. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  3. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  4. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  5. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  6. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  7. Investigation of different coastal processes in Indonesian waters using SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Hendiarti, Nani; Siegel, Herbert; Ohde, Thomas

    2004-01-01

    SeaWiFS data were applied to investigate coastal processes in Indonesian waters around the most populated island of Java. Coastal processes due to wind forcing were studied the first time using SeaWiFS-derived chlorophyll and TSM concentrations in combination with AVHRR-derived SST in the period from September 1997 to December 2001. Upwelling events were studied along the southern coast of Java during the southeast monsoon (June to September). Satellite-derived chlorophyll concentrations higher than 0.8 mg/ m3 and sea-surface temperatures lower than 28°C are indications of upwelling. Upwelling events influence the distribution and growth of phytoplankton and provide by that good feeding condition for zooplankton, larvae, juvenile and adult of pelagic fish. Coastal discharge into the western Java Sea contains organic and inorganic materials originating from different sources. Diffuse impacts, particularly from fish farms and aquaculture, as well as coastal erosion influence large coastal areas during the rainy season (December to March), and to a lesser extent during the dry season. Strong Citarum river discharge was observed during the transition phase from the rainy to the dry season (March and April), when the maximum amount of transported material reaches the sea. The river plume is evident from chlorophyll concentrations higher than 2.5 mg/ m3, and suspended particulate matter concentrations of more than 8 mg/dm3. The Sunda Strait is seasonally influenced by water transport from the Java Sea and from the Indian Ocean. The satellite data show that water transport from the Java Sea occurs during the pre-dominantly easterly winds period (June to September). This is characterized by warm water (SST higher than 29.5°C) and chlorophyll concentrations higher than 0.5 mg/ m3. This water transport influences the fish abundance in the Sunda Strait. High fish catches coincide with the presence of Java Sea water, while the surface currents lead to the migration of

  8. Salmonella rarely detected in Mississippi coastal waters and sediment.

    PubMed

    Carr, M R; Wang, S Y; McLean, T I; Flood, C J; Ellender, R D

    2010-12-01

    Standards for the rapid detection of individual pathogens from environmental samples have not been developed, but in their absence, the use of molecular-based detection methods coupled with traditional microbiology techniques allows for rapid and accurate pathogen detection from environmental waters and sediment. The aim of this research was to combine the use of enrichment with PCR for detection of Salmonella in Mississippi coastal waters and sediment and observe if that presence correlated with levels of enterococci and climatological variables. Salmonella were primarily found in samples that underwent nutrient enrichment and were present more frequently in freshwater than marine waters. Salmonella were detected infrequently in marine and freshwater sediments. There was a significant positive correlation between the presence of detectable Salmonella and the average enterococcal count. An inverse relationship, however, was observed between the frequency of detection and the levels of salinity, turbidity and sunlight exposure. Results from this study indicated the presence of Salmonella in Mississippi coastal waters, and sediments are very low with significant differences between freshwater and marine environments. Using pathogenic and novel nonpathogenic molecular markers, Salmonella do not appear to be a significant pathogenic genus along the Mississippi Coast. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  9. Wind Stress Variability Observed Over Coastal Waters

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these

  10. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies.

  11. Adaptation and application of multivariate AMBI (M-AMBI) in US coastal waters.

    PubMed

    Pelletier, Marguerite C; Gillett, David J; Hamilton, Anna; Grayson, Treda; Hansen, Virginia; Leppo, Erik W; Weisberg, Stephan B; Borja, Angel

    2018-06-01

    The multivariate AMBI (M-AMBI) is an extension of the AZTI Marine Biotic Index (AMBI) that has been used extensively in Europe, but not in the United States. In a previous study, we adapted AMBI for use in US coastal waters (US AMBI), but saw biases in salinity and score distribution when compared to locally calibrated indices. In this study we modified M-AMBI for US waters and compared its performance to that of US AMBI. Index performance was evaluated in three ways: 1) concordance with local indices presently being used as management tools in three geographic regions of US coastal waters, 2) classification accuracy for sites defined a priori as good or bad and 3) insensitivity to natural environmental gradients. US M-AMBI was highly correlated with all three local indices and removed the compression in response seen in moderately disturbed sites with US AMBI. US M-AMBI and US AMBI did a similar job correctly classifying sites as good or bad in local validation datasets (83 to 100% accuracy vs. 84 to 95%, respectively). US M-AMBI also removed the salinity bias of US AMBI so that lower salinity sites were not more likely to be incorrectly classified as impaired. The US M-AMBI appears to be an acceptable index for comparing condition across broad-scales such as estuarine and coastal waters surveyed by the US EPA's National Coastal Condition Assessment, and may be applicable to areas of the US coast that do not have a locally derived benthic index.

  12. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  13. Dependency of high coastal water level and river discharge at the global scale

    NASA Astrophysics Data System (ADS)

    Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.

    2017-12-01

    It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.

  14. Sea water - basalt interactions and genesis of the coastal thermal waters of Maharashtra, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthuraman, K.

    1986-01-01

    The thermal waters close to the western coastal belt of India (in Maharashtra State) generally discharge Na-Ca-Cl and Ca-Na-Cl types of waters through the basic lava flows of late Cretaceous-early Tertiary age. Experimental work to study the reactions between the dilute sea water and basalt conducted in static autoclaves at selected elevated temperatures, indicates the possibility of producing chloride waters with relatively high calcium, similar to these thermal waters. In view of the increase in Ca in the resultant solutions during sea water-basalt reactions at elevated temperatures, the base temperatures computed by Na-K-Ca geothermometry would be far lower than themore » actual temperatures of the system. At lower temperatures (around 100/sup 0/C) absorption by K by basalt is possible and, hence, alkali geothermometry also may not be reliable for such systems. Anhydrite saturation temperature seems to be a reliable geothermometer for such coastal thermal water systems involving a sea water component. The results of the computer processing of the chemistry of some of these thermal waters using ''WATEQ'' are discussed. Two of these waters are oversaturated with diopside, tremolite, calcite and aragonite, indicating a rather low temperature of origin. In two other cases, interaction with ultramafic rocks is indicated, as these waters are oversaturated with diopside, tremolite, talc, chrysotile, sepiolite and its precipitate. There is no clear evidence to show that the thermal waters of the west coast of India emerge directly from either marine evaporites or oil field waters. It is proposed that the majority of these thermal waters should have originated through interaction of an admixture of sea water and meteoric water with the local basalt flows at some elevated temperatures.« less

  15. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  16. Potable water scarcity: options and issues in the coastal areas of Bangladesh.

    PubMed

    Islam, Atikul; Sakakibara, Hiroyuki; Karim, Rezaul; Sekine, Masahiko

    2013-09-01

    In the coastal areas of Bangladesh, scarcity of drinking water is acute as freshwater aquifers are not available at suitable depths and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filters and pond water for drinking purposes. Thus, individuals in these areas often suffer from waterborne diseases. In this paper, water consumption behaviour in two southwestern coastal districts of Bangladesh has been investigated. The data for this study were collected through a survey conducted on 750 rural households in 39 villages of the study area. The sample was selected using a random sampling technique. Households' choice of water source is complex and seasonally dependent. Water sourcing patterns, households' preference of water sourcing options and economic feasibility of options suggest that a combination of household and community-based options could be suitable for year-round water supply. Distance and time required for water collection were found to be difficult for water collection from community-based options. Both household and community-based options need regular maintenance. In addition to installation of water supply facilities, it is necessary to make the residents aware of proper operation and maintenance of the facilities.

  17. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in themore » samples.« less

  18. Occurrence and distribution of bacteria indicators, chemical tracers and pathogenic vibrios in Singapore coastal waters.

    PubMed

    Goh, Shin Giek; Bayen, Stéphane; Burger, David; Kelly, Barry C; Han, Ping; Babovic, Vladan; Gin, Karina Yew-Hoong

    2017-01-15

    Water quality in Singapore's coastal area was evaluated with microbial indicators, pathogenic vibrios, chemical tracers and physico-chemical parameters. Sampling sites were grouped into two clusters (coastal sites at (i) northern and (ii) southern part of Singapore). The coastal sites located at northern part of Singapore along the Johor Straits exhibited greater pollution. Principal component analysis revealed that sampling sites at Johor Straits have greater loading on carbamazepine, while turbidity poses greater influence on sampling sites at Singapore Straits. Detection of pathogenic vibrios was also more prominent at Johor Straits than the Singapore Straits. This study examined the spatial variations in Singapore's coastal water quality and provided the baseline information for health risk assessment and future pollution management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Distribution patterns of phytoplankton in the Changjiang River estuary and adjacent waters in spring 2009

    NASA Astrophysics Data System (ADS)

    Kong, Fanzhou; Xu, Zijun; Yu, Rencheng; Yuan, Yongquan; Zhou, Mingjiang

    2016-09-01

    The Changjiang River estuary and adjacent waters are one of the most notable regions for red tides/harmful algal blooms in China's coastal waters. In this study, phytoplankton samples were collected and analyzed during the outbreak stage of red tides in May 2009. It was found that dinoflagellates, Prorocentrum donghaiense and Karenia mikimotoi, and diatoms, Skeletonema spp. and Paralia sulcata, were the major taxa dominating the phytoplankton community. Cluster analysis, non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) was conducted on a data matrix including taxa composition and cell abundance of the phytoplankton samples. The analyses categorized the samples into three groups at a similarity level of 30%. Group I was characterized by estuarine diatoms and distributed mainly in the highly turbid estuarine region. Group II, which was dominated by the diatom Skeletonema spp. and represented the red tide of Skeletonema spp., was situated around Group I in the sea area west of 122°50'E. Group III was characterized by a high proportion of dinoflagellates and was found further offshore compared with Groups I and II. Group III was further divided into two subgroups (III-S1 and III-S2) at a similarity level of 40%. Group III-S1 was characterized by the presence of the benthic diatom P. sulcata, representing phytoplankton samples collected either from the bottom or from the sea area affected by upwelling. Group III-S2 was dominated by dinoflagellates and represented red tides formed by P. donghaiense and K. mikimotoi. A gradual change of red-tide causative species was observed from the estuary to the offshore sea area, from diatoms to armored dinoflagellates and then unarmored dinoflagellates. Environmental factors associated with each group, and thus affecting the distribution of phytoplankton and red tides, are discussed.

  20. Towards the development of a combined Norovirus and sediment transport model for coastal waters

    NASA Astrophysics Data System (ADS)

    Barry, K.; O'Kane, J. P. J.

    2009-04-01

    Sewage effluent in coastal waters used for oyster culture poses a risk to human health. The primary pathogen in outbreaks of gastroenteritis following consumption of raw oysters is the Norovirus or "winter vomiting bug". The Norovirus is a highly infectious RNA virus of the Caliciviridae taxonomic family. It has a long survival time in coastal waters (T90 = 30 days in winter). Oysters selectively concentrate Norovirus in their digestive ducts. The virus cannot be removed by conventional depuration. The primary goal of the research is to quantify the risk of Norovirus infection in coastal waters through physically-based high-resolution numerical modelling. Cork Harbour and Clew Bay in Ireland provide case studies for the research. The models simulate a number of complex physical, chemical and biological processes which influence the transport and decay of the virus as well as its bioaccumulation in oyster tissue. The current phase of the research is concerned with the adsorption of the virus to suspended sediment in the water column. Adsorbed viruses may be taken out of the water column when sedimentation occurs and, subsequently, be added to it with resuspension of the bed sediment. Preliminary simulations of the Norovirus-sediment model indicate that suspended sediment can influence the transport of the virus in coastal waters when a high sediment-water partitioning coefficient is used and the model is run under calm environmental conditions. In this instance a certain fraction of the adsorbed viruses are taken out of the water column by sedimentation and end up locked in the bed sediment. Subsequently, under storm conditions, a large number of viruses in the bed are released into the water column by erosion of the bed and a risk of contamination occurs at a time different to when the viruses were initially released into the body of water.

  1. Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: Implications for aquifer susceptibility

    USGS Publications Warehouse

    Tesoriero, A.J.; Spruill, T.B.; Eimers, J.L.

    2004-01-01

    Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O2) and nitrate (NO 3-) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (p<0.05) higher concentrations of NO3- found in this setting. Herbicides and their transformation products were frequently detected (36% of wells sampled), however concentrations were typically low (<0.1 ??g/L). Shallow water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone.

  2. The Impact of Sea Ice Loss on Wave Dynamics and Coastal Erosion Along the Arctic Coast

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Anderson, R. S.; Wobus, C. W.; Matell, N.; Urban, F. E.; Clow, G. D.; Stanton, T. P.

    2010-12-01

    The extent of Arctic sea ice has been shrinking rapidly over the past few decades, and attendant acceleration of erosion is now occurring along the Arctic coast. This both brings coastal infrastructure into harm’s way and promotes a complex response of the adjacent landscape to global change. We quantify the effects of declining sea ice extent on coastal erosion rates along a 75-km stretch of coastal permafrost bluffs adjacent to the Beaufort Sea, Alaska, where present-day erosion rates are among the highest in the world at ~14 m yr-1. Our own observations reinforce those of others, and suggest that the rate-limiting process is thermal erosion at the base of the several-meter tall bluffs. Here we focus on the interaction between the nearshore sea ice concentration, the location of the sea ice margin, and the fetch-limited, shallow water wave field, since these parameters ultimately control both sea surface temperatures and the height to which these waters can bathe the frozen bluffs. Thirty years of daily or bi-daily passive microwave data from Nimbus-7 SMMR and DMSP SSM/I satellites reveal that the nearshore open water season lengthened ~54 days over 1979-2009. The open water season, centered in August, expands more rapidly into the fall (September and October~0.92 day yr-1) than into the early summer (July~0.71 days yr-1). Average fetch, defined for our purposes as the distance from the sea ice margin to the coast over which the wind is blowing, increased by a factor 1.7 over the same time-span. Given these time series, we modeled daily nearshore wave heights during the open water season for each year, which we integrated to provide a quantitative metric for the annual exposure of the coastal bluffs to thermal erosion. This “annual wave exposure” increased by 250% during 1979-2009. In the same interval, coastal erosion rates reconstructed from satellite and aerial photo records show less acceleration. We attribute this to a disproportionate extension of the

  3. Radium Isotope Ratios as Tracers for Estimating the Influence of Changjiang Outflow Water to the Adjacent Seas

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, S.

    2006-12-01

    In order to understand the influence of Changjiang (Yangtze River) outflow water to the adjacent seas during rainy and draught seasons, we studied the origin and mixing of surface water masses in the East China Sea and the South Sea of Korea. We used Ra-228/Ra-226 activity ratio and salinity as two conservative tracers in three end-members: Changjiang water (CW); Yellow Sea water (YSW); and Kuroshio water (KW). Radium isotopes in each 300-liter of surface water samples were extracted by passing through manganese-fiber cartridges, dissolved in hydroxylamine hydrochloride solution, coprecipitated as barium sulfate, dried and measured by gamma-ray spectroscopy. Results show that surface water of the East China Sea includes all three end-member waters during the rainy season, in the order of KW (50-80%), YSW (20-50%) and CW (5-15%). Surface water of the South Sea of Korea, however, includes a little fraction of, or almost no, CW in drought season. These are the preliminary results from an ongoing 6-year project ending in 2009 which aims to predict the influence of heavily polluted Changjiang outflow water to the adjacent seas after the completion of the gigantic Three Gorges (Sanxia) Dam.

  4. Ecological Condition of Coastal Ocean Waters along the U.S. Western Continental Shelf: 2003

    EPA Science Inventory

    The western National Coastal Assessment program of EPA, in conjunction with the NOAA National Ocean Service, west coast states (WA, OR, and CA), and the Southern California Coastal Water Research Project Bight ’03 program, assessed the ecological condition of soft sediment habita...

  5. Development of Benthic Indicators for Nearshore Coastal Waters of New Jersey - A REMAP Project

    EPA Science Inventory

    EPA's National Coastal Assessment (NCA) is providing the first complete, consistent dataset on the condition of benthic communities in the nation's estuaries. Prior to NCA, New Jersey based its evaluation of the ecological condition of its coastal waters solely on dissolved oxyg...

  6. Ground-water flow in the New Jersey Coastal Plain

    USGS Publications Warehouse

    Martin, Mary

    1998-01-01

    Ground-water flow in 10 aquifers and 9 intervening confining units of the New Jersey Coastal Plain was simulated as part of the Regional Aquifer System Analysis. Data on aquifer and confining unit characteristics and on pumpage and water levels from 1918 through 1980 were incorporated into a multilayer finite-difference model. The report describes the conceptual hydrogeologic model of the unstressed flow systems, the methods and approach used in simulating flow, and the results of the simulations.

  7. Ground-water hydrology of Pahvant Valley and adjacent areas, Utah

    USGS Publications Warehouse

    1990-01-01

    The primary ground-water reservoir in Pahvant Valley and adjacent areas is in the unconsolidated basin fill and interbedded basalt. Recharge in 1959 was estimated to be about 70,000 acre-feet per year and was mostly by seepage from streams, canals, and unconsumed irrigation water and by infiltration of precipitation. Discharge in 1959 was estimated to be about 109,000 acre-feet and was mostly from springs, evapotranspiration, and wells.Water-level declines of more than 50 feet occurred in some areas between 1953 and 1980 because of less-than-normal precipitation and extensive pumping for irrigation. Water levels recovered most of these declines between 1983 and 1986 because of reduced withdrawals and record quantities of precipitation.The quality of ground water in the area west of Kanosh has deteriorated since large ground-water withdrawals began in about 1953. The cause of the deterioration probably is movement of poor quality water into the area from the southwest and possibly the west during periods of large ground-water withdrawals and recycling of irrigation water. The quality of water from some wells has improved since 1983, due to increased recharge and decreased withdrawals for irrigation.Water-level declines of m:>re than 80 feet in some parts of Pahvant Valley are projected if ground-water withdrawals continue for 20 years at the 1977 rate of about 96,000 acre-feet. Rises of as much as 58 feet and declines of as much as 47 feet are projected with withdrawals of 48,000 acre-feet per year for 20 years. The elimination of recharge from the Central Utah Canal is projected to cause water-level declines of up to 8 feet near the canal.

  8. [Algorithms of multiband remote sensing for coastal red tide waters].

    PubMed

    Mao, Xianmou; Huang, Weigen

    2003-07-01

    The spectral characteristics of the coastal waters in East China Sea was studied using in situ measurements, and the multiband algorithms of remote sensing for bloom waters was discussed and developed. Examples of red tide detection using the algorithms in the East China Sea were presented. The results showed that the algorithms could provide information about the location and the area coverage of the red tide events.

  9. Resting Stage of Plankton Diversity from Singapore Coastal Water: Implications for Harmful Algae Blooms and Coastal Management

    NASA Astrophysics Data System (ADS)

    Trottet, Aurore; Wilson, Bryan; Sew Wei Xin, Genevieve; George, Christaline; Casten, Lemuel; Schmoker, Claire; Rawi, Nurul Syazana Binte Modh; Chew Siew, Moon; Larsen, Ole; Eikaas, Hans S.; Tun, Karenne; Drillet, Guillaume

    2018-02-01

    Resting strategies of planktonic organisms are important for the ecological processes of coastal waters and their impacts should be taken into consideration in management of water bodies used by multiple industries. We combined different approaches to evaluate the importance of resting stages in Singapore coastal waters. We used molecular approaches to improve the knowledge on Singapore biodiversity, we sampled and extracted cysts from sediments to evaluate the density of resting stages in Johor Strait, and we compared systematically information on Singapore planktonic biodiversity to existing published information on resting stages from these reported organisms. This is the first study evaluating the importance of resting stages in Singapore waters. Above 120 species reported in Singapore are known to produce resting stages though no previous work has ever been done to evaluate the importance of these strategies in these waters. The results from the resting stage survey confirmed 0.66 to 5.34 cyst g-1 dry weight sediment were present in the Johor Strait suggesting that cysts may be flushed by tidal currents into and out of the strait regularly. This also suggest that the blooms occurring in Singapore are likely due to secondary growth of Harmful Algae Bloom species in the water rather than from direct germination of cysts from sediment. Finally, we discuss the importance of these resting eggs for three main national industries in Singapore (shipping, marine aquaculture and provision of drinking water through seawater desalination). We argue that this study will serve as a baseline for some of the future management of Singapore waters.

  10. Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons

    NASA Astrophysics Data System (ADS)

    Joyce, Chris B.; Vina-Herbon, Cristina; Metcalfe, Daniel J.

    2005-12-01

    Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and

  11. Ground-water resources of southern Tangipahoa Parish and adjacent areas, Louisiana

    USGS Publications Warehouse

    Rapp, T.R.

    1994-01-01

    Groundwater resources in southern Tangipahoa Parish and adjacent areas were studied to determine their potential for development as an alternative to the Mississippi River as a water-supply source for Jefferson Parish. Eight major aquifers consisting of thick sand units that underlie the study area are, in descending order: (1) shallow, (2) upper Ponchatoula, (3) lower Ponchatoula, (4) Abita, (5) Covington, (6) Tchefuncta, (7) Hammond, and (8) Amite. A fault zone, referred to as the Baton Rouge fault, crosses southern Tangipahoa Parish. Analyses of geophysical logs indicated that the deep aquifers south of the fault zone had been displaced from 350 to 400 feet, and that the deeper aquifers were not in hydraulic connection with the flow system north of the fault. The groundwater resources of southeastern Louisiana are immense and the quality of groundwater in Tangipahoa Parish is suitable for most uses. The quality of water in these aquifers generally meets the U.S. Environmental Protection Agency's standards for public supply. The hydrologic system underlying Tangipahoa Parish and adjacent areas in 1990 supplied about 19 Mgal/d of water that was suitable for public supply. However, substantial increases in pumping from the aquifer system would result in renewed water-level declines throughout the hydrologic system until a new equilibrium is established. A test we11 in southern Tangipahoa Parish, penetrated all eight aquifers. Total thickness of freshwater sand beds penetrated by the 3003-ft test hole was more than 1900 ft. Resistivity values from an electric log of the test typically averaged 200 ohm-meters, which indicates that the water has low dissolved-solids and chloride concentrations. An analysis of the Abita aquifer at Ruddock in St. John the Baptist Parish, for two of three hypothetical well fields, indicated that for a hypothetical we11 field with a pumping rate of 112 Mgal/d, the freshwater/saltwater interface could arrive at the outer perimeter we11 in

  12. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico.

    NASA Astrophysics Data System (ADS)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.

    2017-12-01

    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  13. Late Holocene evolution of a coupled, mud-dominated delta plain-chenier plain system, coastal Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Hijma, Marc P.; Shen, Zhixiong; Törnqvist, Torbjörn E.; Mauz, Barbara

    2017-11-01

    Major deltas and their adjacent coastal plains are commonly linked by means of coast-parallel fluxes of water, sediment, and nutrients. Observations of the evolution of these interlinked systems over centennial to millennial timescales are essential to understand the interaction between point sources of sediment discharge (i.e. deltaic distributaries) and adjacent coastal plains across large spatial (i.e. hundreds of kilometres) scales. This information is needed to constrain future generations of numerical models to predict coastal evolution in relation to climate change and other human activities. Here we examine the coastal plain (Chenier Plain, CP) adjacent to the Mississippi River delta, one of the world's largest deltas. We use a refined chronology based on 22 new optically stimulated luminescence and 22 new radiocarbon ages to test the hypothesis that cyclic Mississippi subdelta shifting has influenced the evolution of the adjacent CP. We show that over the past 3 kyr, accumulation rates in the CP were generally 0-1 Mt yr-1. However, between 1.2 and 0.5 ka, when the Mississippi River shifted to a position more proximal to the CP, these rates increased to 2.9 ±1.1 Mt yr-1 or 0.5-1.5 % of the total sediment load of the Mississippi River. We conclude that CP evolution during the past 3 kyr was partly a direct consequence of shifting subdeltas, in addition to changing regional sediment sources and modest rates of relative sea-level (RSL) rise. The RSL history of the CP during this time period was constrained by new limiting data points from the base of overwash deposits associated with the cheniers. These findings have implications for Mississippi River sediment diversions that are currently being planned to restore portions of this vulnerable coast. Only if such diversions are located in the western portion of the Mississippi Delta plain could they potentially contribute to sustaining the CP shoreline. Our findings highlight the importance of a better

  14. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    EPA Science Inventory

    The Hyperspectral Imager for the Coastal Ocean (HICO) offers the coastal environmental monitoring community an unprecedented opportunity to observe changes in coastal and estuarine water quality across a range of spatial scales not feasible with traditional field-based monitoring...

  15. Determining return water levels at ungauged coastal sites: a case study for northern Germany

    NASA Astrophysics Data System (ADS)

    Arns, Arne; Wahl, Thomas; Haigh, Ivan D.; Jensen, Jürgen

    2015-04-01

    We estimate return periods and levels of extreme still water levels for the highly vulnerable and historically and culturally important small marsh islands known as the Halligen, located in the Wadden Sea offshore of the coast of northern Germany. This is a challenging task as only few water level records are available for this region, and they are currently too short to apply traditional extreme value analysis methods. Therefore, we use the Regional Frequency Analysis (RFA) approach. This originates from hydrology but has been used before in several coastal studies and is also currently applied by the local federal administration responsible for coastal protection in the study area. The RFA enables us to indirectly estimate return levels by transferring hydrological information from gauged to related ungauged sites. Our analyses highlight that this methodology has some drawbacks and may over- or underestimate return levels compared to direct analyses using station data. To overcome these issues, we present an alternative approach, combining numerical and statistical models. First, we produced a numerical multidecadal model hindcast of water levels for the entire North Sea. Predicted water levels from the hindcast are bias corrected using the information from the available tide gauge records. Hence, the simulated water levels agree well with the measured water levels at gauged sites. The bias correction is then interpolated spatially to obtain correction functions for the simulated water levels at each coastal and island model grid point in the study area. Using a recommended procedure to conduct extreme value analyses from a companion study, return water levels suitable for coastal infrastructure design are estimated continuously along the entire coastline of the study area, including the offshore islands. A similar methodology can be applied in other regions of the world where tide gauge observations are sparse.

  16. Sunscreen Products as Emerging Pollutants to Coastal Waters

    PubMed Central

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L.; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO2 and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6–577.5 ng L-1 BZ-3; 51.4–113.4 ng L-1 4-MBC; 6.9–37.6 µg L-1 Ti; 1.0–3.3 µg L-1 Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC50 = 125±71 mg L-1). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO4 3− is released by these products in notable amounts (up to 17 µmol PO4 3− g−1). We conservatively estimate an increase of up to 100% background PO4 3− concentrations (0.12 µmol L-1 over a background level of 0.06 µmol L-1) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem. PMID:23755233

  17. [Assessment of resource situation of Collichthys lucidus in coastal waters of the Yangtze estuary].

    PubMed

    Hu, Yan; Zhang, Tao; Yang, Gang; Zhao, Feng; Hou, Jun-li; Zhang, Long-zhen; Zhuang, Ping

    2015-09-01

    In order to assess the resource status of Collichthys lucidus in coastal waters of Yangtze estuary, the growth and population parameters were studied by the length frequency distribution method based on the bottom trawl investigation data from 2012 to 2013. Von Bertalanffy growth parameters were calculated by using the ELEFAN module in FiSAT II software while the natural mortality rate (M) was estimated via Pauly's empirical equation. Besides, the Beverton-Holt dynamic model was developed to predict the variation trend of C. lucidus resource in coastal waters of Yangtze estuary. The results showed that in 2012-2013, a total of 4201 samples of C. lucidus with body lengths ranging from 18 to 155 mm were collected from the coastal waters of Yangtze estuary. The growth parameter (K) and limit length (L.) were 1.1 and 162.75 mm while the total mortality rate (Z), the natural mortality rate (M) and the fishing mortality rate (F) were 4.040, 1.683 and 2.357, respectively. Moreover, the current exploitation (E) of C. lucidus in coastal waters of Yangtze estuary was 0.583 per year, which was larger than Fopt (0.5). Corresponding to the average stock of 576.02 t, the resource amount of C. lucidus reached up to 1.33 x 10(8) individuals. These indicated that C. lucidus has been overfished in Yangtze estuary area.

  18. Assessing the Nation's Coastal Waters....Better

    EPA Science Inventory

    The USEPA has been assessing estuarine and coastal condition in the United States since 1999 via the National Coastal Assessment (NCA) and National Aquatic Resources Surveys (NARS) programs. Approximately 1500 randomly selected coastal sites were surveyed annually during summers ...

  19. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  20. Spatial distribution of dinoflagellates from the tropical coastal waters of the South Andaman, India: Implications for coastal pollution monitoring.

    PubMed

    Narale, Dhiraj Dhondiram; Anil, Arga Chandrashekar

    2017-02-15

    Dinoflagellate community structure from two semi-enclosed areas along the South Andaman region, India, was investigated to assess the anthropogenic impact on coastal water quality. At the densely inhabited Port Blair Bay, the dominance of mixotrophs in water and Protoperidinoids in sediments was attributed to anthropogenic nutrient enrichment and prey availability. A significant decrease in dinoflagellate abundance from inner to outer bay emphasize the variation in nutrient availability. The dominance of autotrophs and Gonyaulacoid cysts at the North Bay highlight low nutrient conditions with less anthropogenic pressure. The occurrence of oceanic Ornithocercus steinii and Diplopsalis sp. could evince the oceanic water intrusion into the North Bay. Nine potentially harmful and red-tide-forming species including Alexandrium tamarense complex, A. minutum were identified in this study. Although there are no harmful algal bloom (HABs) incidences in this region so far, increasing coastal pollution could support their candidature towards the future HABs initiation and development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Transport processes near coastal ocean outfalls

    USGS Publications Warehouse

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  2. Evidence of local and regional freshening of Northeast Greenland coastal waters.

    PubMed

    Sejr, Mikael K; Stedmon, Colin A; Bendtsen, Jørgen; Abermann, Jakob; Juul-Pedersen, Thomas; Mortensen, John; Rysgaard, Søren

    2017-10-13

    The supply of freshwater to fjord systems in Greenland is increasing as a result of climate change-induced acceleration in ice sheet melt. However, insight into the marine implications of the melt water is impaired by lack of observations demonstrating the fate of freshwater along the Greenland coast and providing evaluation basis for ocean models. Here we present 13 years of summer measurements along a 120 km transect in Young Sound, Northeast Greenland and show that sub-surface coastal waters are decreasing in salinity with an average rate of 0.12 ± 0.05 per year. This is the first observational evidence of a significant freshening on decadal scale of the waters surrounding the ice sheet and comes from a region where ice sheet melt has been less significant. It implies that ice sheet dynamics in Northeast Greenland could be of key importance as freshwater is retained in southward flowing coastal currents thus reducing density of water masses influencing major deep water formation areas in the Subarctic Atlantic Ocean. Ultimately, the observed freshening could have implications for the Atlantic meridional overturning circulation.

  3. Long-term spatiotemporal trends and health risk assessment of oyster arsenic levels in coastal waters of northern South China Sea.

    PubMed

    Wang, Xuefeng; Wang, Lifei; Jia, Xiaoping; Jackson, Donald A

    2017-09-01

    Long-term spatiotemporal trends and health risk assessment of oyster arsenic levels in the coastal waters of northern South China Sea were investigated in order to help improve the quality and safety control and sustainable aquaculture for mollusks in China. Cultured oysters (Crassostrea rivularis) collected from the waters of 23 bays, harbors, and estuaries along the coast of northern South China Sea from 1989 to 2012 were examined for spatial patterns and long-term temporal trends of oyster arsenic levels. Single-factor index and health risk assessment were used to quantify arsenic exposure to human health through oyster consumption. Overall, arsenic was detected in 97.4% of the oyster samples, and oyster arsenic levels were non-detectable-2.51 mg/kg with an average of 0.63 ± 0.54 mg/kg. Oyster arsenic levels in the coastal waters of northern South China Sea showed an overall decline from 1989 to 2012, remained relatively low since 2005, and slightly increased after 2007. Oyster arsenic levels in Guangdong coastal waters were much higher with more variation than in Guangxi and Hainan coastal waters, and the long-term trends of oyster arsenic levels in Guangdong coastal waters dominated the overall trends of oyster arsenic levels in the coastal waters of northern South China Sea. Within Guangdong Province, oyster arsenic levels were highest in east Guangdong coastal waters, followed by the Pearl River estuary and west Guangdong coastal waters. Single-factor index ranged between 0.27 and 0.97, and average health risk coefficient was 3.85 × 10 -5 , both suggesting that oyster arsenic levels in northern South China Sea are within the safe range for human consumption. However, long-term attention should be given to seafood market monitoring in China and the risk of arsenic exposure to human health through oyster consumption.

  4. Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge

    2017-03-01

    Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the south-western Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol L-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 2.4-19.0 times more methane was oxidized than emitted to the atmosphere, whereas about the same amount was consumed and emitted during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol L-1 revealed a submicromolar oxygen optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidized methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results

  5. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    PubMed

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.

  6. Experimental evidence of nitrogen control on pCO(2) in phosphorus-enriched humic and clear coastal lagoon waters.

    PubMed

    Peixoto, Roberta B; Marotta, Humberto; Enrich-Prast, Alex

    2013-01-01

    Natural and human-induced controls on carbon dioxide (CO(2)) in tropical waters may be very dynamic (over time and among or within ecosystems) considering the potential role of warmer temperatures intensifying metabolic responses and playing a direct role on the balance between photosynthesis and respiration. The high magnitude of biological processes at low latitudes following eutrophication by nitrogen (N) and phosphorus (P) inputs into coastal lagoons waters may be a relevant component of the carbon cycle, showing controls on partial pressure of CO(2) (pCO(2)) that are still poorly understood. Here we assessed the strength of N control on pCO(2) in P-enriched humic and clear coastal lagoons waters, using four experimental treatments in microcosms: control (no additional nutrients) and three levels of N additions coupled to P enrichments. In humic coastal lagoons waters, a persistent CO(2) supersaturation was reported in controls and all nutrient-enriched treatments, ranging from 24- to 4-fold the atmospheric equilibrium value. However, both humic and clear coastal lagoons waters only showed significant decreases in pCO(2) in relation to the controlled microcosms in the two treatments with higher N addition levels. Additionally, clear coastal lagoons water microcosms showed a shift from CO(2) sources to CO(2) sinks, in relation to the atmosphere. Only in the two more N-enriched treatments did pCO(2) substantially decrease, from 650 µatm in controls and less N-enriched treatments to 10 µatm in more N-enriched microcosms. Humic substrates and N inputs can modulate pCO(2) even in P-enriched coastal lagoons waters, thereby being important drivers on CO(2) outgassing from inland waters.

  7. Experimental evidence of nitrogen control on pCO2 in phosphorus-enriched humic and clear coastal lagoon waters

    PubMed Central

    Peixoto, Roberta B.; Marotta, Humberto; Enrich-Prast, Alex

    2013-01-01

    Natural and human-induced controls on carbon dioxide (CO2) in tropical waters may be very dynamic (over time and among or within ecosystems) considering the potential role of warmer temperatures intensifying metabolic responses and playing a direct role on the balance between photosynthesis and respiration. The high magnitude of biological processes at low latitudes following eutrophication by nitrogen (N) and phosphorus (P) inputs into coastal lagoons waters may be a relevant component of the carbon cycle, showing controls on partial pressure of CO2 (pCO2) that are still poorly understood. Here we assessed the strength of N control on pCO2 in P-enriched humic and clear coastal lagoons waters, using four experimental treatments in microcosms: control (no additional nutrients) and three levels of N additions coupled to P enrichments. In humic coastal lagoons waters, a persistent CO2 supersaturation was reported in controls and all nutrient-enriched treatments, ranging from 24- to 4-fold the atmospheric equilibrium value. However, both humic and clear coastal lagoons waters only showed significant decreases in pCO2 in relation to the controlled microcosms in the two treatments with higher N addition levels. Additionally, clear coastal lagoons water microcosms showed a shift from CO2 sources to CO2 sinks, in relation to the atmosphere. Only in the two more N-enriched treatments did pCO2 substantially decrease, from 650 µatm in controls and less N-enriched treatments to 10 µatm in more N-enriched microcosms. Humic substrates and N inputs can modulate pCO2 even in P-enriched coastal lagoons waters, thereby being important drivers on CO2 outgassing from inland waters. PMID:23390422

  8. Perfluoroalkyl acids in the water cycle from a freshwater river basin to coastal waters in eastern China.

    PubMed

    Zhu, Xiaobin; Jin, Ling; Yang, Jingping; Wu, Jianfeng; Zhang, Beibei; Zhang, Xiaowei; Yu, Nanyang; Wei, Si; Wu, Jichun; Yu, Hongxia

    2017-02-01

    The distribution of perfluoroalkyl acids (PFAAs), one class of persistent organic pollutants, in groundwater, especially in confined aquifers remains poorly understood. In this study, we investigated the occurrence of 12 PFAAs through a water cycle from the Huai River Basin to the Yellow Sea, including confined aquifers, unconfined aquifers, rivers, and coastal waters. We found the ubiquity of PFAAs in all types of samples, including those from confined aquifers (2.7-6.8 ng/L). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were the major PFAAs in all samples, accounting for an average of 49.1% (0.8-84.8%) and 33.3% (6.3-92.2%) of total PFAAs, respectively. Comparing the concentration of PFOA with that of PFOS, we found a higher concentration of PFOA in rivers and a higher concentration of PFOS in confined aquifers. Short-chain perfluoropentanoic acid accounted for an average of 10.3% (1.9-24.6%) of total PFAAs in rivers and coastal waters. Branched isomers of both PFOA and PFOS were detected in most samples (36/42 and 39/42, respectively). One-way analysis of variance indicated a significant difference in the profiles of PFAAs among the different types of water samples. Principal component analysis suggested that rainwater and recent uses of PFAAs could be the major sources of PFAAs in confined aquifers, while recent and current uses of PFAAs could be the major source of PFAAs in unconfined aquifers, rivers and coastal waters. The risk quotients of PFOA and PFOS in groundwater and rivers were 2-3 orders of magnitude lower than unity, indicating no immediate risks via drinking water consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983

    USGS Publications Warehouse

    Eckel, J.A.; Walker, R.L.

    1986-01-01

    Water levels and changes in water levels in the major aquifers of the New Jersey Coastal Plain are documented. Water levels in 1,071 wells were measured in 1983, and are compared with 827 water level measurements made in the same wells in 1978. Increased groundwater withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused large cones of depression in the artesian heads. These cones are delineated on detailed potentiometric surface maps based on water level data collected in the fall of 1983. Hydrographs from observation wells show trends of water levels for the 6-year period of 1978 through 1983. The Potomac-Raritan-Magothy aquifer system is divided into the lower, middle, and upper aquifers. The potentiometric surfaces in these aquifers form large cones of depression centered in the Camden and Middlesex-Monmouth County areas. Measured water levels declined as much as 23 ft in these areas for the period of study. The lowest levels are 96 ft below sea level in Camden County and 91 ft below sea level in the Middlesex-Monmouth County area. Deep cones of depression in coastal Monmouth and Ocean counties in both the Englishtown aquifer system and Wenonah-Mount Laurel aquifer are similar in location and shape. This is because of an effective hydraulic connection between these aquifers. Measured water levels declined as much as 29 ft in the Englishtown aquifer system and 21 ft in the Wenonah-Mount Laurel aquifer during the period of study. The lowest levels are 249 ft below sea level in the Englishtown aquifer system and 196 ft below sea level in the Wenonah-Mount Laurel aquifer. Water levels in the Piney Point aquifer are as low as 75 ft below sea level at Seaside Park, Ocean County and 35 ft below sea level in southern Cumberland County. Water levels in Cumberland County are affected by large withdrawals of groundwater in Kent County, Delaware. Water levels in the Atlantic City 800 ft sand of the Kirkwood Formation define an

  10. Identification of Individual Efficiency for Barometric Pressure and Ocean Tide Load Simultaneously Acted on Deep Aquifers Adjacent to the West Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Shih, David Ching-Fang

    2018-06-01

    Groundwater fluctuation usually reflects the property of aquifer in nature. Actually, water level change can be caused not only by barometric pressure changes resulted from atmospheric motion, but also by the tidal effect from nearby marine system or water body. In confined aquifer, an increase in barometric pressure usually will cause a decrease in water level in well to an amount described by the barometric efficiency. The barometric efficiency can be also used as a correction factor to remove barometric effects on water levels in wells during an aquifer test. With the rise of the tidal sea on the coastal aquifer, it indicates that there will be compensating increases of water pressure and stress in the skeleton of aquifer. External forcing on groundwater level in the coastal aquifer, such as barometric effect and tidal sea, usually affect the water level to fluctuate with different phases to some extent. An adaptive adjustment to remove the combination of barometric and oceanic tidal efficiency is presented in this study. This research suggests that the presented formula can simultaneously identify the individual efficiency for barometric effect and load of tidal sea considering their combined observation of groundwater level in aquifer system. An innovative application has been demonstrated for the deep aquifers adjacent to the West Pacific Ocean.

  11. Modeling and water quality assessment during realisation of the coastal projects in Sochi region (Black sea coast of Russia)

    NASA Astrophysics Data System (ADS)

    Prokhoda-Shumskikh, L.

    2012-04-01

    Sochi region is the unique subtropical resort on the Black Sea coast of Russia. Nowadays due to Sochi is the capital of the Olympic game 2014, the government of the Russian Federation accepts the special federal program of Black Sea coast development. Program foresees the existing and creation of new coastal recreational and touristic complexes along the Russian Black Sea coast, such as complex of yacht harbors, water centers (aqua-centers), network of port localities and etc. These coastal projects are different, but the main problems of the environmental impact assessment are the same. The environmental impact and the relative damage should be assessed at the stage of construction as well as at the stage of operation. The key problem for the recreation coastal zone is water quality management. The port localities network as example is considered. To increase the accuracy and informative of forecasts for the coastal zone conditions the system-dynamic model has been developed, what allows to estimate the quality of the sea water, including that in the semi-enclosed coastal water areas with the limited water exchange. The model of water quality in the coastal zone includes the equations of deposit concentration changes and chemical substances evolution in the studied areas. The model incorporates joint description of cycles of two biogenic elements - nitrogen and phosphorus. The system is completely defined by the biogeochemical reactions. The sizes of such water areas allow the applying the full mixing and zero-dimensional models of water quality. The circulation of water inside the area is taken into account additionally. Water exchange in the semi-enclosed coastal water areas is defined by the discharge through the open parts of area border. The novelty of the offered model is its adaptation to the specific conditions of semi-enclosed coastal water areas. At the same time, the model contains details of the biogeochemical processes to complete modelling of the

  12. Hydrogeologic setting and potential for denitrification in ground water, coastal plain of southern Maryland

    USGS Publications Warehouse

    Krantz, David E.; Powars, David S.

    2000-01-01

    The types and distribution of Coastal Plain sediments in the Patuxent River Basin may contribute to relatively low concentrations of nitrate (typically less than 1 milligram per liter) in stream base flow because of the chemical reduction of dissolved nitrate (denitrification) in ground water. Water chemistry data from synoptic stream base-flow surveys in the Patuxent River Basin show higher dissolved nitrate concentrations in the Piedmont than in the Coastal Plain section of the watershed. Stream base flow reflects closely the chemistry of ground water discharging from the surficial (unconfined) aquifer to the stream. Because land use in the sampled subbasins is virtually the same in each section, differences in the physical and geochemical characteristics of the surficial aquifer may explain the observed differences in water chemistry. One possible cause of lower nitrate concentrations in the Coastal Plain is denitrification within marine sediments that contain chemically reduced compounds. During denitrification, the oxygen atoms on the nitrate (N03-) molecule are transferred to a reduced compound and N gas is produced. Organic carbon and ferrous iron (Fe2+), derived from the dissolution of minerals such as pyrite (FeS2) and glauconite (an iron aluminosilicate clay), can act as reducing substrates; these reduced chemical species are common in the marine and estuarine deposits in Southern Maryland. The spatial distribution of geologic units and their lithology (sediment type) has been used to create a map of the potential for denitrification of ground water in the surficial aquifer of the Coastal Plain in Southern Maryland.

  13. Influence of Coastal Upwelling on SST Trends along the South Coast of Java

    PubMed Central

    Varela, R.; Santos, F.; Gómez-Gesteira, M.; Álvarez, I.; Costoya, X.; Días, J. M.

    2016-01-01

    The south coast of Java has warmed at a much lower rate than adjacent ocean locations over the last three decades (1982–2015). This behavior can be observed during the upwelling season (July-October) and it is especially patent in August and September when upwelling attains the highest values. Although different warming rates (ocean-coast) had been previously observed in other areas around the world, this behavior was always linked to situations where upwelling increased or remained unchanged. South Java warming is observed at ocean locations and cooling near shore but under a scenario of decreasing upwelling (~30% in some cases). The origin of coastal cooling is due to changes in the vertical structure of the water column. A vein of subsurface water, which has cooled at a rate higher than 0.3°C per decade, is observed to enter from the northwestern part of the study area following the South Java Current. This water only manifests at surface near coast, where it is pumped up by coastal upwelling. PMID:27606676

  14. Summary of ground-water data, Post Headquarters and adjacent areas, White Sands Missile Range

    USGS Publications Warehouse

    Kelly, T.E.

    1973-01-01

    Geohydrologic data have been obtained from more than 100 wells and test holes that have been drilled in the Post Headquarters and adjacent areas of White Sands Missile Range. Observation-well data show that, in general, a continuous decline of the water table has occurred in the vicinity of the well field since production began in 1949. Approximately 40,000 acre-feet of water has been produced from the aquifer to date (1972). A series of maps are presented which show the changes that have occurred in the well field as the result of development.

  15. Coastal barium cycling at the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Pyle, K. M.; Hendry, K. R.; Sherrell, R. M.; Meredith, M. P.; Venables, H.; Lagerström, M.; Morte-Ródenas, A.

    2017-05-01

    Barium cycling in the ocean is associated with a number of processes, including the production and recycling of organic matter, freshwater fluxes, and phenomena that affect alkalinity. As a result, the biogeochemical cycle of barium offers insights into past and present oceanic conditions, with barium currently used in various forms as a palaeoproxy for components of organic and inorganic carbon storage, and as a quasi-conservative water mass tracer. However, the nature of the oceanic barium cycle is not fully understood, particularly in cases where multiple processes may be interacting simultaneously with the dissolved and particulate barium pools. This is particularly the case in coastal polar regions such as the West Antarctic Peninsula, where biological drawdown and remineralisation occur in tandem with sea ice formation and melting, glacial meltwater input, and potential fluxes from shelf sediments. Here, we use a high-precision dataset of dissolved barium (Bad) from a grid of stations adjacent to the West Antarctic Peninsula in conjunction with silicic acid (Si(OH)4), the oxygen isotope composition of water, and salinity measurements, to determine the relative control of various coastal processes on the barium cycle throughout the water column. There is a strong correlation between Bad and Si(OH)4 present in deeper samples, but nevertheless persists significantly in surface waters. This indicates that the link between biogenic opal and barium is not solely due to barite precipitation and dissolution at depth, but is supplemented by an association between Bad and diatom tests in surface waters, possibly due to barite formation within diatom-dominated phytodetritus present in the photic zone. Sea-ice meltwater appears to exert a significant secondary control on barium concentrations, likely due to non-conservative biotic or abiotic processes acting as a sink for Bad within the sea ice itself, or sea-ice meltwater stimulating non-siliceous productivity that acts

  16. Characterizing Groundwater Sources of Organic Matter to Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spencer, R. G.; Cardenas, M. B.; Bennett, P. C.; McNichol, A. P.; McClelland, J. W.

    2016-12-01

    The Arctic is projected to transition from a runoff-dominated system to a groundwater-dominated system as permafrost thaws due to climate change. This fundamental shift in hydrology is expected to increase groundwater flow to Arctic coastal waters, which may be a significant source of dissolved organic matter (DOM) to these waters—even under present conditions—that has been largely overlooked. Here we quantify and elucidate sources of groundwater DOM inputs to lagoons along the eastern Alaskan Beaufort Sea coast using an approach that combines concentration measurements and radiocarbon dating of groundwater, soil profiles, and soil leachable dissolved organic carbon (DOC). Samples were collected in late summer, when soil thaw depths (active layer) were near their maximum extent. As anticipated, the radiocarbon age of bulk soil organic matter increased with depth (modern - 6,100 yBP), while the amount of extractable DOC decreased with depth within the active layer. However, amounts of extractable DOC increased dramatically in thawed permafrost samples collected directly below the actively layer. Concentrations of DOM in groundwater (ranging from 902 to 5,118 μmolL-1 DOC) are one to two orders of magnitude higher than those measured in lagoons and nearby river water. In contrast, the 14C-DOC ages of groundwater (1,400 ± 718 s.d. yBP), lagoon water (1,750 yBP), and river water (1,610 yBP) are comparable. Together these results suggest that: (1) groundwater provides a highly concentrated input of old DOC to Arctic coastal waters; (2) groundwater DOM is likely sourced from organic matter spanning the entire soil profile; and (3) the DOM in rivers along the eastern Alaskan Beaufort Sea coast during late summer is strongly influenced by groundwater sources, but is much lower in concentration due to photo-mineralization and/or biological consumption. These results are key for assessing how changes in land-ocean export of organic matter as permafrost thaws will change

  17. Contrasting Impact of Floodwaters on Coastal Biogeochemistry in the Great Barrier Reef Ecosystem

    NASA Astrophysics Data System (ADS)

    Crosswell, J.; Carlin, G.; Steven, A. D.; Franklin, H.

    2017-12-01

    Delivery of terrestrial nutrients and organic material to Great Barrier Reef (GBR) ecosystem is dominated by episodic floods, and the biogeochemical impact of these events is expected to change under future climatic and man-made stressors. Here we compare the biogeochemical response of coastal waters to floods from two of the largest catchment in northeast Australia, the Fitzroy and Normanby River basins. The Fitzroy catchment is dominated by agriculture, principally grazing, whereas the Normanby is regarded as relatively pristine. High-resolution spatial surveys showed that flood plumes in both regions extended 30-100 km seaward and along the coast, reaching interior reefs and islands of the GBR. Floodwaters from both catchments were characterized by elevated nutrients and dissolved organic carbon (DOC), but the fate of flood-borne material in coastal waters showed significant differences between the two systems. In the Normanby, nutrients were rapidly removed near the estuary mouth and chlorophyll a was low throughout the adjacent Princess Charlotte Bay. Elevated DOC levels persisted in the Normanby flood plume, but high dissolved oxygen and low CO2 throughout a stratified water column suggested that the flood-borne organic matter was recalcitrant. By contrast, there was a clear source of DOC and nutrients in the hypoxic bottom waters of the Fitzroy flood plume, suggesting that the flood-borne particulate organic matter was highly labile. Decoupling of autotrophic surface waters from heterotrophic bottom waters in the Fitzroy plume supported a large phytoplankton bloom that extended >100 km and led to low pH and low light availability at nearby reefs. The contrasting impact of major floods in these two coastal systems appeared to be primarily driven by the quality of flood-borne organic matter, as well as differences in coastal morphology.

  18. The use of satellites in environmental monitoring of coastal waters

    NASA Technical Reports Server (NTRS)

    Philpot, W.; Klemas, V.

    1979-01-01

    The feasibility of using satellites in an operational system for monitoring the type, concentration, location, drift, and dispersion of pollutants in coastal waters is evaluated. Visible, microwave, and thermal infrared sensing are considered. Targets to be detected include photosynthetic pigments, iron acid waste, and sewage sludge.

  19. External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies.

    PubMed

    Bryhn, Andreas C; Dimberg, Peter H; Bergström, Lena; Fredriksson, Ronny E; Mattila, Johanna; Bergström, Ulf

    2017-01-30

    Identifying the main sources of nutrient loading is a key factor for efficient mitigation of eutrophication. This study has investigated the pathways of external nutrient loading to 656 coastal water bodies along the entire Swedish coastline. The studied water bodies have been delineated to meet requirements in the European Union's Water Framework Directive, and recent status assessments have shown that 57% of them fail to attain good or high ecological status with respect to nutrients. The analysis in the study was performed on data from mass-balance based nutrient budgets computed using the modelling framework Vattenwebb. The external nutrient contribution from the sea to the water bodies was highly variable, ranging from about 1% to nearly 100%, but the median contribution was >99% of the total external loading regarding both nitrogen and phosphorus. External loading from the atmosphere and local catchment area played a minor role in general. However, 45 coastal water bodies received >25% of the external nitrogen and phosphorus from their catchments. Loading from land typically peaked in April following ice-break and snow melting and was comparatively low during summer. The results indicate that for many eutrophicated Swedish coastal water bodies, nutrient abatement is likely to be optimally effective when potential measures in all of the catchment area of the concerned sea basin are considered. Local-scale mitigation in single water bodies will likely be locally effective only in the small proportion of areas where water and thereby also nutrient input from the catchment is high compared to the influx from the sea. Future studies should include nutrient reduction scenarios in order to refine these conclusions and to identify relevant spatial scales for coastal eutrophication mitigation measures from a water body perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.

    PubMed

    Ruddick, K G; Ovidio, F; Rijkeboer, M

    2000-02-20

    The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.

  2. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water.

    PubMed

    Agunbiade, Foluso O; Olu-Owolabi, Bamidele I; Adebowale, Kayode O

    2009-10-01

    The potential of Eichornia crassipes to serve as a phytoremediation plant in the cleaning up of metals from contaminated coastal areas was evaluated in this study. Ten metals, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, V and Zn were assessed in water and the plant roots and shoots from the coastal area of Ondo State, Nigeria and the values were used to evaluate the enrichment factor (EF) and translocation factor (TF) in the plant. The critical concentrations of the metals were lower than those specified for hyperaccumulators thus classifying the plant as an accumulator but the EF and TF revealed that the plant accumulated toxic metals such as Cr, Cd, Pb and As both at the root and at the shoot in high degree, which indicates that the plant that forms a large biomass on the water surface and is not fed upon by animals can serve as a plant for both phytoextraction and rhizofiltration in phytoremediation technology.

  3. 76 FR 30023 - Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... DEPARTMENT OF DEFENSE Corps of Engineers, Department of the Army 33 CFR Part 334 Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations AGENCY: United States Army Corps of Engineers, DoD. ACTION: Final rule. SUMMARY: The U.S. Army Corps of Engineers is amending its regulations to...

  4. Diurnal dynamics of the CO2 concentration in water of the coastal zone of lake Baikal in the ice period (testing of the DIEL - CO2 method for assessment of lake metabolic rate)

    NASA Astrophysics Data System (ADS)

    Panchenko, M. V.; Domysheva, V. M.; Pestunov, D. A.; Sakirko, M. V.; Ivanov, V. G.; Shamrin, A. M.

    2017-11-01

    Results of three long cycles of 24-hour measurements of the carbon dioxide content in the surface and bottom water in the ice period of 2014-2016 in the Baikal coastal zone are analyzed. The diurnal dynamics of the CO2 concentration in the subglacial water, in which photosynthesis plays the leading role, is described. It is found that, in comparison with the surface subglacial water (that is, directly adjacent to the ice bottom), the more pronounced diurnal rhythm of CO2 is observed in the bottom layer in all realizations. This rhythm is well correlated with pyranometer readings. The data on the diurnal dynamics of CO2 are used to estimate the gross primary production in the bottom water with the DIEL method based on the analysis of temporal variability of the carbon dioxide concentration in water in situ.

  5. A revisitation of TRIX for trophic status assessment in the light of the European Water Framework Directive: application to Italian coastal waters.

    PubMed

    Pettine, Maurizio; Casentini, Barbara; Fazi, Stefano; Giovanardi, Franco; Pagnotta, Romano

    2007-09-01

    The trophic status classification of coastal waters at the European scale requires the availability of harmonised indicators and procedures. The composite trophic status index (TRIX) provides useful metrics for the assessment of the trophic status of coastal waters. It was originally developed for Italian coastal waters and then applied in many European seas (Adriatic, Tyrrhenian, Baltic, Black and Northern seas). The TRIX index does not fulfil the classification procedure suggested by the WFD for two reasons: (a) it is based on an absolute trophic scale without any normalization to type-specific reference conditions; (b) it makes an ex ante aggregation of biological (Chl-a) and physico-chemical (oxygen, nutrients) quality elements, instead of an ex post integration of separate evaluations of biological and subsequent chemical quality elements. A revisitation of the TRIX index in the light of the European Water Framework Directive (WFD, 2000/60/EC) and new TRIX derived tools are presented in this paper. A number of Italian coastal sites were grouped into different types based on a thorough analysis of their hydro-morphological conditions, and type-specific reference sites were selected. Unscaled TRIX values (UNTRIX) for reference and impacted sites have been calculated and two alternative UNTRIX-based classification procedures are discussed. The proposed procedures, to be validated on a broader scale, provide users with simple tools that give an integrated view of nutrient enrichment and its effects on algal biomass (Chl-a) and on oxygen levels. This trophic evaluation along with phytoplankton indicator species and algal blooms contribute to the comprehensive assessment of phytoplankton, one of the biological quality elements in coastal waters.

  6. Summer water use by California coastal prairie grasses: fog, drought, and community composition.

    PubMed

    Corbin, Jeffrey D; Thomsen, Meredith A; Dawson, Todd E; D'Antonio, Carla M

    2005-10-01

    Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species' distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the deltaH versus deltaO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28-66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.

  7. Variability of adjacency effects in sky reflectance measurements.

    PubMed

    Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M

    2017-09-01

    Sky reflectance R sky (λ) is used to correct in situ reflectance measurements in the remote detection of water color. We analyzed the directional and spectral variability in R sky (λ) due to adjacency effects against an atmospheric radiance model. The analysis is based on one year of semi-continuous R sky (λ) observations that were recorded in two azimuth directions. Adjacency effects contributed to R sky (λ) dependence on season and viewing angle and predominantly in the near-infrared (NIR). For our test area, adjacency effects spectrally resembled a generic vegetation spectrum. The adjacency effect was weakly dependent on the magnitude of Rayleigh- and aerosol-scattered radiance. The reflectance differed between viewing directions 5.4±6.3% for adjacency effects and 21.0±19.8% for Rayleigh- and aerosol-scattered R sky (λ) in the NIR. Under which conditions in situ water reflectance observations require dedicated correction for adjacency effects is discussed. We provide an open source implementation of our method to aid identification of such conditions.

  8. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA

    USGS Publications Warehouse

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  9. Interacting Coastal Based Ecosystem Services: Recreation and Water Quality in Puget Sound, WA

    PubMed Central

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments. PMID:23451067

  10. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Armament Center...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. 334.730... Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. (a) The areas—(1) The... CFR part 329, including the waters of Santa Rosa Sound and Gulf of Mexico within a circle one nautical...

  11. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Armament Center...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. 334.730... Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. (a) The areas—(1) The... CFR part 329, including the waters of Santa Rosa Sound and Gulf of Mexico within a circle one nautical...

  12. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Armament Center...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. 334.730... Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. (a) The areas—(1) The... CFR part 329, including the waters of Santa Rosa Sound and Gulf of Mexico within a circle one nautical...

  13. Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database

    USGS Publications Warehouse

    Danielson, Jeffrey J.; Poppenga, Sandra K.; Brock, John C.; Evans, Gayla A.; Tyler, Dean; Gesch, Dean B.; Thatcher, Cindy A.; Barras, John

    2016-01-01

    During the coming decades, coastlines will respond to widely predicted sea-level rise, storm surge, and coastalinundation flooding from disastrous events. Because physical processes in coastal environments are controlled by the geomorphology of over-the-land topography and underwater bathymetry, many applications of geospatial data in coastal environments require detailed knowledge of the near-shore topography and bathymetry. In this paper, an updated methodology used by the U.S. Geological Survey Coastal National Elevation Database (CoNED) Applications Project is presented for developing coastal topobathymetric elevation models (TBDEMs) from multiple topographic data sources with adjacent intertidal topobathymetric and offshore bathymetric sources to generate seamlessly integrated TBDEMs. This repeatable, updatable, and logically consistent methodology assimilates topographic data (land elevation) and bathymetry (water depth) into a seamless coastal elevation model. Within the overarching framework, vertical datum transformations are standardized in a workflow that interweaves spatially consistent interpolation (gridding) techniques with a land/water boundary mask delineation approach. Output gridded raster TBDEMs are stacked into a file storage system of mosaic datasets within an Esri ArcGIS geodatabase for efficient updating while maintaining current and updated spatially referenced metadata. Topobathymetric data provide a required seamless elevation product for several science application studies, such as shoreline delineation, coastal inundation mapping, sediment-transport, sea-level rise, storm surge models, and tsunami impact assessment. These detailed coastal elevation data are critical to depict regions prone to climate change impacts and are essential to planners and managers responsible for mitigating the associated risks and costs to both human communities and ecosystems. The CoNED methodology approach has been used to construct integrated TBDEM models

  14. Physico-chemical analysis of ground water samples of coastal areas of south Chennai in the post-Tsunami scenario.

    PubMed

    Rajendran, A; Mansiya, C

    2015-11-01

    The study of changes in ground water quality on the east coast of chennai due to the December 26, 2004 tsunami and other subsequent disturbances is a matter of great concern. The post-Tsunami has caused considerable plant, animal, material and ecological changes in the entire stretch of chennai coastal area. Being very close to sea and frequently subjected to coastal erosion, water quality has been a concern in this coastal strip, and especially after the recent tsunami this strip seems to be more vulnerable. In the present investigation, ten ground water samples were collected from various parts of south chennai coastal area. Physico-chemical parameters such as pH, temperature, Biochemical oxygen demand (BOD), Dissolved oxygen (DO), total solids; turbidity and fecal coliform were analyzed. The overall Water quality index (WQI) values for all the samples were found to be in the range of 68.81-74.38 which reveals a fact that the quality of all the samples is only medium to good and could be used for drinking and other domestic uses only after proper treatment. The long term adverse impacts of tsunami on ground water quality of coastal areas and the relationships that exist and among various parameters are carefully analyzed. Local residents and corporation authorities have been made aware of the quality of their drinking water and the methods to conserve the water bodies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Spatial and temporal variation of water quality in the coastal lagoons of Sinaloa

    NASA Astrophysics Data System (ADS)

    Paez-Osuna, F.; Lopez-Aguiar, L. K.; Del Río-Chuljak, A.; Ruiz-Fernandez, A. C.

    2007-05-01

    The Mexican state of Sinaloa has 656 km of coastline and 221,600 ha of coastal lagoons, and is characterized by a high fishing and agriculture activity. It is well known that agricultural activities constitute a major factor affecting the water quality in the coastal waters. The current study focused on the 6 more important coastal lagoons of Sinaloa (Topolobampo-Ohuira-Santa María, Navachiste-San Ignacio-Macapule, Santa María-La Reforma, Altata-Ensenada del Pabellón, Ceuta and Teacapán-Agua Brava) with the aim to evaluate the water quality spatial and temporal variation at the lagoons (physico-chemical parameters, nutrients (N, P and Si), dissolved oxygen, total suspended solids and chlorophyll a) and to assess its eutrophication status. The water samples were collected in several stations at each lagoon (between 9 and 23 stations depending on the lagoon area) at low and high tides, during three different weather periods (dry-warm, rainy and dry-cold seasons) between May 2004 and April 2005. Mean concentrations of nutrients (μM), dissolved oxygen (mg/L) and chlorophyll a (mg/m3) obtained for each variable were comparable between lagoons (total N=51±45; total P= 2.5±1.5; Si=23±31; DO=6.7±1.8; Chll=1.7±1.9) although seasonal and spatial differences were observed at each lagoon. The nutrient concentrations measured fell in the typical concentration intervals for coastal lagoons; however, critical sampling points were identified and related to direct discharges of untreated effluents from municipal wastes, aquaculture farms and agriculture drain ditches.

  16. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui

    PubMed Central

    Bishop, James M.

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawaiʻi. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands. PMID:27812171

  17. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    PubMed

    Amato, Daniel W; Bishop, James M; Glenn, Craig R; Dulai, Henrietta; Smith, Celia M

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  18. 75 FR 65278 - Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... DEPARTMENT OF DEFENSE Corps of Engineers, Department of the Army 33 CFR Part 334 Pamlico Sound and... (Corps) is proposing to amend its regulations to establish one new danger zone in Pamlico Sound near... described in Sec. 334.420(b)(1)(i)] in the Pamlico Sound and adjacent waters in Carteret County, North...

  19. Contingency plan improvement for managing oil spills in the coastal waters of Thailand.

    PubMed

    Singkran, Nuanchan

    2014-12-15

    The estimated risks of being impacted by oil spills in the coastal waters were used to improve the oil spill contingency plan of Thailand. Functional roles of local agencies are integrated into the plan. Intensive measures are suggested for the coastal provinces located in high-very high risk zones, whereas light and moderate measures are suggested for the coastal provinces located in low and moderate risk zones, respectively. The estimated percentage risks due to simulated oil slicks hitting the coast and/or important resources (PRoilspill) were used to guide the year-round water activities that should be carefully handled at a certain radius with a low-moderate PRoilspill, whereas they should be avoided at a certain radius with a high-very high PRoilspill. Important measures before, during, and post periods of an oil spill incident are suggested to prevent and monitor oil spill incidents and mitigate their impacts on the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. WATER QUALITY IN THE NEAR COASTAL WATERS OF THE GULF OF MEXICO AFFECTED BY HURRICANE KATRINA: BEFORE AND AFTER THE STORM

    EPA Science Inventory

    Water quality was assessed following Hurricane Katrina in the affected waters of Alabama, Mississippi and Louisiana. Post-landfall water quality was compared to pre-hurricane conditions using indicators assessed by EPA's National Coastal Assessment program and additional indicat...

  1. Dependence of waterbirds and shorebirds on shallow-water habitats in the Mid-Atlantic coastal region: An ecological profile and management recommendations

    USGS Publications Warehouse

    Erwin, R.M.

    1996-01-01

    Waterbirds (waterfowl, colonially nesting wading and seabirds, ospreys [Pandion haliaetus], and bald eagles [Haliaeetus leucocephalus]) and shorebirds (sandpipers, plovers, and relatives) may constitute a large fraction of the top level carnivore trophic component in many shallow-water areas of the mid-Atlantic region. The large biomass of many species (>1 kg body mass for the two raptors and some waterfowl) and enormous populations (e.g., >1 million shorebirds in late May in parts of Delaware Bay) reveal the importance of waterbirds as consumers and as linkages in nutrient flux in many shallow-water habitats. Salt and brackish marsh shallow-water habitats, including marsh pannes and tidal pools and creeks as well as constructed impoundments, are used intensively during most months of the year; in fall and winter, mostly by dabbling ducks, in spring and summer by migrant shorebirds and breeding colonial wading birds and seabirds. In adjacent estuaries, the intertidal flats and littoral zones of shallow embayments are heavily used by shorebirds, raptors, and colonial waterbirds in the May to September periods, with use by duck and geese heaviest from October to March. With the regional degradation of estuarine habitats and population declines of many species of waterbirds in the past 20 yr, some management recommendations relevant to shallow waters include: better protection, enhancement, and creation of small bay islands (small and isolated to preclude most mammalian predators) for nesting and brooding birds, especially colonial species; establishment of sanctuaries from human disturbance (e.g., boating, hunting) both in open water (waterfowl) and on land, better allocation of sandy dredged materials to augment islands or stabilize eroding islands; improvement in water management of existing impoundments to ensure good feeding, resting, and nesting opportunities for all the waterbirds, support for policies to preclude point and nonpoint source runoff of chemicals

  2. Modeling of coastal water contamination in Fortaleza (Northeastern Brazil).

    PubMed

    Pereira, S P; Rosman, P C C; Alvarez, C; Schetini, C A F; Souza, R O; Vieira, R H S F

    2015-01-01

    An important tool in environmental management projects and studies due to the complexity of environmental systems, environmental modeling makes it possible to integrate many variables and processes, thereby providing a dynamic view of systems. In this study the bacteriological quality of the coastal waters of Fortaleza (a state capital in Northeastern Brazil) was modeled considering multiple contamination sources. Using the software SisBaHiA, the dispersion of thermotolerant coliforms and Escherichia coli from three sources of contamination (local rivers, storm drains and submarine outfall) was analyzed. The models took into account variations in bacterial decay due to solar radiation and other environmental factors. Fecal pollution discharged from rivers and storm drains is transported westward by coastal currents, contaminating strips of beach water to the left of each storm drain or river. Exception to this condition only occurs on beaches protected by the breakwater of the harbor, where counterclockwise vortexes reverse this behavior. The results of the models were consistent with field measurements taken during the dry and the rainy season. Our results show that the submarine outfall plume was over 2 km from the nearest beach. The storm drains and the Maceió stream are the main factors responsible for the poor water quality on the waterfront of Fortaleza. The depollution of these sources would generate considerable social, health and economic gains for the region.

  3. Assessment of acidification and eutrophication in the coastal waters of Bolinao, Pangasinan, Philippines

    NASA Astrophysics Data System (ADS)

    Lagumen, M. C. T.; San Diego-McGlone, M. L.

    2014-12-01

    Ocean acidification is becoming a global concern due to its potential effects on marine resources. In coastal areas, an emerging problem is ocean acidicification due to eutrophication resulting from human activities. The coastal water of Bolinao, Pangasinan, Philippines has become eutrophic due to increased nutrient loading from unconsumed fish feeds in fish cages. Mariculture is a big industry in Bolinao. In over a decade, the area has experienced decreased oxygen levels leading to hypoxia, fish kills, and algal blooms. The decomposition of organic matter from unconsumed fish feeds results not only to high nutrient buildup but also increased CO2 and acidity in the area. Nutrients (ammonia, nitrate, nitrite, phosphate and silicate), total alkalinity (TA), dissolved inorganic carbon (DIC), pH, dissolved oxygen (DO), aragonite saturation state (Ωarg) and partial pressure of carbon dioxide (pCO2) were measured to determine the combined effect of acidification and eutrophication in Bolinao. Monitoring results have shown an increase in nutrients by 30% to 70% in over a decade. Stratified water during rainy season have resulted in low DO (<5.5) and acidic water (<7.5) with high pCO2 level (>900 μatm). Shallow stations with poor water circulation have shown undersaturated aragonite state (< 2.0) and high pCO2 levels of 800 matm. The eutrophic and acidified coastal waters of Bolinao are already affecting the seagrass and coral reef ecosystems in the area.

  4. An analytical solution of groundwater level fluctuation in a U-shaped leaky coastal aquifer

    NASA Astrophysics Data System (ADS)

    Huang, Fu-Kuo; Chuang, Mo-Hsiung; Wang, Shu-chuan

    2017-04-01

    Tide-induced groundwater level fluctuations in coastal aquifers have attracted much attention in past years, especially for the issues associated with the impact of the coastline shape, multi-layered leaky aquifer system, and anisotropy of aquifers. In this study, a homogeneous but anisotropic multi-layered leaky aquifer system with U-shaped coastline is considered, where the subsurface system consisting of an unconfined aquifer, a leaky confined aquifer, and a semi-permeable layer between them. The analytical solution of the model obtained herein may be considered as an extended work of two solutions; one was developed by Huang et al. (Huang et al. Tide-induced groundwater level fluctuation in a U-shaped coastal aquifer, J. Hydrol. 2015; 530: 291-305) for two-dimensional interacting tidal waves bounded by three water-land boundaries while the other was by Li and Jiao (Li and Jiao. Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system, J. Hydrol. 2002; 268: 234-243) for two-dimensional interacting tidal waves of leaky coastal aquifer system adjacent to a cross-shore estuary. In this research, the effects of leakage and storativity of the semi-permeable layer on the amplitude and phase shift of the tidal head fluctuation, and the influence of anisotropy of the aquifer are all examined for the U-shaped leaky coastal aquifer. Some existing solutions in literatures can be regarded as the special cases of the present solution if the aquifer system is isotropic and non-leaky. The results obtained will be beneficial to coastal development and management for water resources.

  5. Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain

    USGS Publications Warehouse

    Back, William

    1966-01-01

    Flow patterns of fresh ground water shown on maps and in cross sections have been deduced from available water-level data. These patterns are controlled by the distribution of the higher landmasses and by the depth to either bedrock or to the salt-water interface. The mapping of hydrochemical facies shows that at shallow depths within the Coastal Plain (less than about 200 ft) the calcium-magnesium cation facies generally predominates. The bicarbonate anion facies occurs within more of the shallow Coastal Plain sediments than does the sulfate or the chloride facies. In deeper formations, the sodium chloride character predominates. The lower dissolved-solids content of the ground water in New Jersey indicates less upward vertical leakage than in Maryland and Virginia, where the shallow formations contain solutions of higher concentration.

  6. Extreme flood impact on estuarine and coastal biogeochemistry: the 2013 Elbe flood

    NASA Astrophysics Data System (ADS)

    Voynova, Yoana G.; Brix, Holger; Petersen, Wilhelm; Weigelt-Krenz, Sieglinde; Scharfe, Mirco

    2017-02-01

    Within the context of the predicted and observed increase in droughts and floods with climate change, large summer floods are likely to become more frequent. These extreme events can alter typical biogeochemical patterns in coastal systems. The extreme Elbe River flood in June 2013 not only caused major damages in several European countries but also generated large-scale biogeochemical changes in the Elbe estuary and the adjacent German Bight. The high-frequency monitoring network within the Coastal Observing System for Northern and Arctic Seas (COSYNA) captured the flood influence on the German Bight. Data from a FerryBox station in the Elbe estuary (Cuxhaven) and from a FerryBox platform aboard the M/V Funny Girl ferry (traveling between Büsum and Helgoland) documented the salinity changes in the German Bight, which persisted for about 2 months after the peak discharge. The Elbe flood generated a large influx of nutrients and dissolved and particulate organic carbon on the coast. These conditions subsequently led to the onset of a phytoplankton bloom, observed by dissolved oxygen supersaturation, and higher than usual pH in surface coastal waters. The prolonged stratification also led to widespread bottom water dissolved oxygen depletion, unusual for the southeastern German Bight in the summer.

  7. Seasonal phenology of the heterotrophic dinoflagellate Noctiluca scintillans (Macartney) in Jiaozhou Bay and adjacent coastal Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Wang, Weicheng; Sun, Song; Sun, Xiaoxia; Zhang, Fang; Zhang, Guangtao; Zhu, Mingliang

    2017-11-01

    Seasonal variations in numerical abundance, cell diameter and population carbon biomass of the heterotrophic dinoflagellate Noctiluca scintillans were studied for 10 years from 2004 to 2013 in Jiaozhou Bay and adjacent coastal Yellow Sea, China, and their ecological functions were evaluated. In both areas, N. scintillans occurred throughout the year and demonstrated an essentially similar seasonality; the cell abundance increased rapidly from the winter minimum to an annual peak in late spring and early summer, and decreased gradually toward the autumn-winter minimum. The peak abundance differed by years, and there was no consistent trend in long-term numerical variations. The cell diameter also showed a seasonal fluctuation, being larger in spring and early summer than the other seasons. Estimated carbon biomass of N. scintillans population reached to a peak as high as 90.3 mg C/m3, and occasionally exceed over phytoplankton and copepod biomass. Our results demonstrate that N. scintillans in northwestern Yellow Sea displays the seasonal phenology almost identical to the populations in other temperate regions, and play important trophic roles as a heterotroph to interact with sympatric phytoplankton and copepods.

  8. Approach to developing numeric water quality criteria for coastal waters: a transition from SeaWiFS to MODIS and MERIS satellites.

    EPA Science Inventory

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and potentially cause harmful ecological effects. States can adopt numeric water quality criteria into their water quality standards to protect the designa...

  9. On influencing factors of hypoxia in waters adjacent to the Changjiang estuary

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan; Wei, Hao; Fan, Renfu; Liu, Zhe; Zhao, Liang; Lu, Youyu

    2018-01-01

    Based on observational data from ten cruises carried out in 2012 and 2013, the distribution of dissolved oxygen (DO) and the evolution of hypoxia (DO concentrations < 2.0 mg L-1) in waters adjacent to the Changjiang estuary are studied. The linkage between summer hypoxia and hydrodynamic conditions is explored. The results suggest that hypoxia frequently occurred from June to October to the south of the Changjiang estuary near the 30-50 m isobaths and was prone to happening under strong stratification without the presence of the Kuroshio Subsurface Water (KSW). Over the Changjiang Bank, hypoxia mainly occurred in July, August and September. Low-oxygen areas initially appeared under strong stratification induced by the spreading of the Changjiang Diluted Water (CDW), and developed into hypoxic zones due to lack of DO replenishment from the relatively DO-rich Yellow Sea Water and the KSW. The yearly evolution of hypoxia was influenced by shelf circulation especially the path of the KSW in the bottom layer of the water to the south of the Changjiang estuary, and the extension of the CDW in the surface layer over the Changjiang Bank.

  10. Modeling the Monthly Water Balance of a First Order Coastal Forested Watershed

    Treesearch

    S. V. Harder; Devendra M. Amatya; T. J. Callahan; Carl C. Trettin

    2006-01-01

    A study has been conducted to evaluate a spreadsheet-based conceptual Thornthwaite monthly water balance model and the process-based DRAINMOD model for their reliability in predicting monthly water budgets of a poorly drained, first order forested watershed at the Santee Experimental Forest located along the Lower Coastal Plain of South Carolina. Measured precipitation...

  11. Exchange of nitrogen and phosphorus between a shallow lagoon and coastal waters

    USGS Publications Warehouse

    Hayn, Melanie; Howarth, Robert W.; Ganju, Neil K.; Berg, Peter; Foreman, Kenneth H.; Giblin, Anne E.; McGlathery, Karen

    2014-01-01

    West Falmouth Harbor, a shallow lagoon on Cape Cod, has experienced a threefold increase in nitrogen load since the mid- to late 1990s due to input from a groundwater plume contaminated by a municipal wastewater treatment plant. We measured the exchange of nitrogen and phosphorus between the harbor and the coastal waters of Buzzards Bay over several years when the harbor was experiencing this elevated nitrogen load. During summer months, the harbor not only retained the entire watershed nitrogen load but also had a net import of nitrogen from Buzzards Bay. During the spring and fall, the harbor had a net export of nitrogen to Buzzards Bay. We did not measure the export in winter, but assuming the winter net export was less than 112 % of the load, the harbor exported less than half of the watershed nitrogen load on an annual basis. For phosphorus, the harbor had a net import from coastal waters in the spring and summer months and a net export in the fall. Despite the large increase in nitrogen load to the harbor, the summertime import of phosphorus from Buzzards Bay was sufficient to maintain nitrogen limitation of primary productivity during the summer. Our findings illustrate that shallow systems dominated by benthic producers have the potential to retain large terrestrial nitrogen loads when there is sufficient supply of phosphorus from exchange with coastal waters.

  12. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    NASA Astrophysics Data System (ADS)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  13. Tracing organic carbon processes in a shallow coastal sandy aquifer

    NASA Astrophysics Data System (ADS)

    Meredith, K.; Andersen, M. S.; Baker, A.; O'Carrol, D. M.; Bryan, E.; Zainuddin, N. S.; Rutlidge, H.; McDonough, L.

    2017-12-01

    Coastal groundwater resources are likely to be impacted by climate change due to changes in recharge patterns, surface water flow and sea-level rise, which all have the potential to change how carbon is transported and stored within a catchment. Large quantities of carbon are currently stored within coastal wetland systems, so understanding carbon dynamics is important for climate change predictions into the future. Furthermore, dissolved organic carbon (DOC) can play a major role in weathering processes and deterioration of water quality, therefore understanding the sources, degradation pathways and its reactivity is important. Groundwater samples were collected from five nested sites (15 wells) from a shallow (0-20m) coastal sandy aquifer system located at Anna Bay, New South Wales, Australia. Surface water samples were also collected from the adjacent wetland. Waters were measured for major ion chemistry, carbon isotopes (δ13CDIC, δ13CDOC and 14CDIC) and tritium (3H). The dissolved organic matter (DOM) character was determined using optical spectroscopy and liquid chromatography. DOC was found to be elevated in the wetland (18 ppm) and had the lowest δ13CDOC value (-30.3 ‰). The shallow (3.5 m) groundwater located closest to but downgradient of the wetland (5 m) had similar characteristics to the wetland sample but contained significantly lower DOC concentrations (5 ppm) and were 1 ‰ more enriched in δ13CDOC values. This suggests that the aquifer is a sink for organic matter and the process fractionates the carbon isotopes. Higher resolution studies are underway to characterise and constrain timescales for the DOC transformation processes.

  14. Spatial and temporal behavior and acute ecotoxicological effects of Tributyltin (TBT) on coral reef and adjacent ecosystems around Okinawa Island, Japan.

    NASA Astrophysics Data System (ADS)

    Sheikh, M. A.; Higuchi, T.; Imo, T. S.; Fujimura, H.; Oomori, T.

    2007-12-01

    Spatial and temporal behavior of the tributyl tin (TBT) were investigated in the coastal areas around Okinawa Island, Japan. A seasonal monitoring study was conducted between February and October 2006. The effects of TBT on the carbon metabolisms (net production and calcification) on the intact coral-alga association Galaxea fascicularis were also investigated. Mean concentration of TBT (2.45 ng/L) found in the Manko estuary waters have exceeded some international permissible targets of waters quality guideline for TBT (1ng/L). The sediments in Manko estuary sediments can be considered lightly contaminated (0-20 ng/g dw) and Okukubi estuary as uncontaminated (below 3ng/g dw) with TBT. The seasonal concentration pattern of TBT at the Manko estuary was autumn > spring > summer > winter. The acute ecotoxicological results show that the photosynthesis rate and calcification rate were significantly reduced by 78 % and 72 % relative to the control (ANOVA, p<0.001) when corals were exposed to 5000 ng/LTBT, respectively. No significant effects (ANOVA, p>0.05) were observed when corals were exposed to 1000 ng/LTBT. The present study reports the occurrence and continuous input of TBT in the coastal areas around Okinawa Island, even 16 years after legal restriction of TBT usage in coastal waters was implemented by the Japanese Environmental Authorities. However, the nominal sensitive concentration of TBT that causes alteration of carbon metabolisms of coral within 96 hrs exposure are much higher than those recently found in the coral reef waters and adjacent ecosystems.

  15. Application of chemometric methods for assessment and modelling of microbiological quality data concerning coastal bathing water in Greece.

    PubMed

    Papaioannou, Agelos; Rigas, George; Papastergiou, Panagiotis; Hadjichristodoulou, Christos

    2014-12-02

    Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006) by chemometric methods. Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean), group B (clean) and group C (contaminated). The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece. Significance for public healthThe microbiological protection of coastal bathing water quality is of great interest for the public health authorities as well as for the economy. The present study proves that this protection can be achieved by monitoring only two microbiological parameters, E. coli and faecal streptococci/enterococci instead four microbiological parameters (the

  16. Connectivity of a large embayment and coastal fishery: spawning aggregations in one bay source local and broad-scale fishery replenishment.

    PubMed

    Hamer, P A; Acevedo, S; Jenkins, G P; Newman, A

    2011-04-01

    Ichthyoplankton sampling and otolith chemistry were used to determine the importance of transient spawning aggregations of snapper Chrysophrys auratus (Sparidae) in a large embayment, Port Phillip Bay (PPB), Australia, as a source of local and broad-scale fishery replenishment. Ichthyoplankton sampling across five spawning seasons within PPB, across the narrow entrance to the bay and in adjacent coastal waters, indicated that although spawning may occur in coastal waters, the spawning aggregations within the bay were the primary source of larval recruitment to the bay. Otolith chemical signatures previously characterized for 0+ year C. auratus of two cohorts (2000 and 2001) were used as the baseline signatures to quantify the contribution that fish derived from reproduction in PPB make to fishery replenishment. Sampling of these cohorts over a 5 year period at various widely dispersed fishery regions, combined with maximum likelihood analyses of the chemistry of the 0+ year otolith portions of these older fish, indicated that C. auratus of 1 to 3+ years of age displayed both local residency and broad-scale emigration from PPB to populate coastal waters and an adjacent bay (Western Port). While the PPB fishery was consistently dominated (>70%) by locally derived fish irrespective of cohort or age, the contribution of fish that had originated from PPB to distant populations increased with age. At 4 to 5+ years of age, when C. auratus mature and fully recruit to the fishery, populations of both cohorts across the entire central and western Victorian fishery, including two major embayments and c. 800 km of coastal waters, were dominated (>70%) by fish that had originated from the spawning aggregations and nursery habitat within PPB. Dependence of this broadly dispersed fishery on replenishment from heavily targeted spawning aggregations within one embayment has significant implications for management and monitoring programmes. © 2011 The Authors. Journal of Fish

  17. Groundwater-surface water interactions and their effects on ecosystem metabolism in a coastal wetland: example from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Price, R. M.; Zapata, X.; Koch, G. R.

    2013-05-01

    Groundwater typically has higher concentrations of salts and nutrients as compared to surface waters in coastal wetlands affected by saltwater intrusion. Discharge of the nutrient-laden brackish groundwater is expected to influence ecosystem function in the overlying surface water. In the coastal Everglades, elevated concentrations of phosphorus have been observed in the underlying groundwater due to water-rock interactions occurring as seawater intrudes into the coastal carbonate aquifer. The objective of this research was to determine the timing and amount of brackish groundwater discharge to the coastal wetlands of the Everglades and to evaluate the effects of the groundwater discharge on the surface water chemistry and ecosystem metabolism. The timing of groundwater discharge was determined by four techniques including a water balance, hydraulic gradient, temperature, and geochemical tracers. Groundwater discharge rates were quantified from well data using Darcy's Law. Ecosystem metabolism was estimated as daily rates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) from free-water, diel changes in dissolved oxygen. Over 2 years, all four groundwater discharge techniques converged as to the timing of groundwater discharge which was greatest between May and July. Surface water chemistry was fresh from September through February, but became brackish to hypersaline between March and July, concurrent with the times of highest brackish groundwater discharge. Phosphorus concentrations as well as GPP and R were observed to spike in the surface water during the times of greatest groundwater discharge. The results of this research support the conclusions that brackish groundwater discharge effects surface water chemistry and ecosystem function in the coastal Everglades.

  18. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  19. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.

  20. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base... Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The danger zones—(1) Prohibited area. Waters of Santa Rosa Sound and Gulf of Mexico...

  1. Environmental setting and factors that affect water quality in the Georgia-Florida Coastal Plain study unit

    USGS Publications Warehouse

    Berndt, M.P.; Oaksford, E.T.; Darst, M.R.; Marella, R.L.

    1996-01-01

    The Georgia-Florida Coastal Plain study unit covers an area of nearly 62,000 square miles in the southeastern United States, mostly in the Coastal Plain physiographic province. Land resource provinces have been designated based on generalized soil classifications. Land resource provinces in the study area include: the Coastal Flatwoods, the Southern Coastal Plain, the Central Florida Ridge, the Sand Hills, and the Southern Piedmont. The study area includes all or parts of seven hydrologic subregions: the Ogeechee-Savannah, the Altamaha- St.Marys, the Suwannee, the Ochlockonee, the St. Johns, the Peace-Tampa Bay, and the Southern Florida. The primary source of water for public supply in the study area is ground water from the Upper Floridan aquifer. In 1990, more than 90 percent of the 2,888 million gallons per day of ground water used came from this aquifer. The population of the study area was 9.3 million in 1990. The cities of Jacksonville, Orlando, St. Petersburg, Tallahassee, and Tampa, Florida, and parts of Atlanta and Savannah, Georgia, are located in the study area. Forest and agricultural areas are the most common land uses in the study area, accounting for 48 percent and 25 percent of the study area, respectively. Climatic conditions range from temperate in Atlanta, Georgia, where mean annual temperature is about 61.3 degrees Fahrenheit, to subtropical in Tampa, Florida, where mean annual temperature is about 72.4 degrees Fahrenheit. Long-term average precipitation (1961-90) ranges from 43.9 inches per year in Tampa, Florida, and 44.6 in Macon, Georgia, to 65.7 inches per year in Tallahassee, Florida. Floods in the study area result from frontal systems, hurricanes, tropical storms, or severe thunderstorms. Droughts are not common in the study area,especially in the Florida part of the study area due to extensive maritime exposure. The primary physical and cultural characteristics in the study area include physiography, soils and land resource provinces

  2. Going coastal: shared evolutionary history between coastal British Columbia and Southeast Alaska wolves (Canis lupus).

    PubMed

    Weckworth, Byron V; Dawson, Natalie G; Talbot, Sandra L; Flamme, Melanie J; Cook, Joseph A

    2011-05-04

    Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.

  3. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. F. (Principal Investigator); Hollman, R.; Alexander, J.; Nuzzi, R.

    1974-01-01

    The author has identified the following significant results. Photo-optical additive color quantitative measurements were made of ERTS-1 reprocessed positives of New York Bight and Block Island Sound. Regression of these data on almost simultaneous ship sample data of water's physical, chemical, biological, and optical properties showed that ERTS bands 5 and 6 can be used to predict the absolute value of the total number of particles and bands 4 and 5 to predict the relative extinction coefficient in New York Bight. Water masses and mixing patterns in Block Island Sound heretofore considered transient were found to be persistent phenomena requiring revision of existing mathematical and hydraulic models.

  4. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    USGS Publications Warehouse

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  5. Assessment of a Bidirectional Reflectance Distribution Correction of Above-Water and Satellite Water-Leaving Radiance in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Hlaing, Soe; Gilerson, Alexander; Harmal, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-01

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm.

  6. Vertical patterns of ichthyoplankton at the interface between a temperate estuary and adjacent coastal waters: Seasonal relation to diel and tidal cycles

    NASA Astrophysics Data System (ADS)

    Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Ré, Pedro; Pardal, Miguel A.

    2012-07-01

    Vertical distribution and migration pattern of ichthyoplankton assemblage in the Mondego estuary were investigated in relation to diel and tidal cycle. Summer and winter communities were sampled, at surface and bottom, over a diel cycle during spring and neap tides at a fixed station at the mouth of the estuary. Summer presented higher larvae density mainly of Pomatoschistus spp., Gobius niger and Parablennius pilicornis. Main species in winter assemblages were Pomatoschistus spp. and Sardina pilchardus. There were no differences between depth stratums across diel or tide cycle. Nevertheless, main species larval densities showed significant periodic variation associated with tide (M2) and diel (K1) cycles presenting generally, higher density at night and around low tide. Conversely, vertical patterns observed could not be related with diel or tidal cycle. Tough, main species presented some extent of vertical migration. Vertical patterns observed appear to be related to seasonal stratification and river flow, increasing amplitude during periods of less stratification and lower water currents. Present study provides a better understanding of ichthyoplankton vertical movement patterns and of small scale dynamics at the interface of two coastal European systems.

  7. Toward N Criteria in Coastal Waters: Normalizing N Loading for Estuarine Volume and Local Residence Time

    EPA Science Inventory

    One approach to developing criteria for nitrogen (N) in coastal waters has been to determine quantitative relationships between N loading and ecological effects (e.g., hypoxia) in coastal estuaries. Although this approach has met with some success, data obtained from field sites ...

  8. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; hide

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  9. Desalination Brine Discharge Impacts on Coastal Biology and Water Chemistry - A Case Study from Carlsbad Southern California

    NASA Astrophysics Data System (ADS)

    Petersen, K. L.; Heck, N.; Potts, D. C.; Paytan, A.

    2017-12-01

    Fresh water demand is increasing world-wide due to on-going droughts, climate change and increasing human population and associated demand for food and water. Desalination of seawater is a reliable source of potable water; however the effects of byproduct brine discharge from desalination plants on coastal areas have not been thoroughly assessed. Here we report results from in-situmeasurements of the effects of brine discharge on water chemistry and coastal biology from a desalination plant in Carlsbad, Southern California. We compared select parameters in the coastal zone around the discharge site before and after operation began and conducted additional controlled laboratory incubations with key coastal species and brine effluent. Our in-situ data shows differences in salinity and temperature between the discharge area and a control site both before and after the desalination plant started operation. The discharge water is warmer by 3-5 Co than the ambient seawater and a temperature gradient is seen around the discharge channel. This is likely a result of mixing of the desalination brine with power plant cooling water for dilution prior to discharge and the higher temperatures are not directly attributed to the desalination. Our post-discharge results show a decipherable salinity plume at the bottom of the water column ( 6 m depth) reaching up to 600 m offshore from the discharge site. This indicates inefficient mixing of the brine in the coastal discharge zone. No significant differences are found in nutrient levels, organic carbon or chlorophyll a concentrations around the discharge. The benthic biology assemblage post-discharge is significantly different from the pre-discharge organisms' assemblage. However, the role of seasonal changes in temperature may also have impacted the data as the sampling was conducted during different seasons. Controlled incubation experiments of brittle stars (Ophiothrix spiculata) shows no significant difference in growth or

  10. Structure of Mesozooplankton Communities in the Coastal Waters of Morocco

    NASA Astrophysics Data System (ADS)

    Lidvanov, V. V.; Grabko, O. G.; Kukuev, E. I.; Korolkova, T. G.

    2018-03-01

    Mero- and holoplanktonic organisms from 23 large taxa have been detected in the coastal waters of Morocco. Seven Cladocera species and 164 Copepoda species were identified. Copepod fauna mostly consisted of oceanic epipelagic widely tropical species, but the constant species group (frequency of occurrence over 50%) included neritic and neritic-oceanic widely tropical species. The neritic community that formed a biotopic association with coastal upwelling waters and the distant-neritic community associated with Canary Current waters were the two major communities detected. The former community was characterized by a high abundance and biomass (5700 ind./m3 and 260 mg/m3) and predominance of neritic species. The trophic structure was dominated by thin filter feeders, mixed-food consumers, and small grabbers; the species structure was dominated by Paracalanus indicus, Acartia clausi, and Oncaea curta; the indices of species diversity (3.07 bit/ind.) and evenness (0.63) were relatively low. The latter community was characterized by low abundance and biomass (1150 ind./m3 and 90 mg/m3); variable biotopic, trophic, and species structure; and higher Shannon indices (3.99 bit/ind.) and Pielou (0.75). Seasonal variation of the abundance of organisms was not detected in the communities. Anomalous mesozooplankton states were observed in summer 1998 and winter 1998-1999.

  11. Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina

    USGS Publications Warehouse

    Giese, G.I.; Eimers, J.L.; Coble, R.W.

    1997-01-01

    A three-dimensional finite-difference digital model was used to simulate ground-water flow in the 25,000-square-mile aquifer system of the North Carolina Coastal Plain. The model was developed from a hydrogeologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which make up a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in the State of North Carolina. The model was calibrated by comparing observed and simulated water levels. The model calibration was achieved by adjusting model parameters, primarily leakance of confining units and transmissivity of aquifers, until differences between observed and simulated water levels were within acceptable limits, generally within 15 feet. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 feet squared per day in a part of the Castle Hayne aquifer, which consists predominantly of limestone. The maximum value for simulated vertical hydraulic conductivity in a confining unit was 2.5 feet per day, in a part of the confining unit overlying the upper Cape Fear aquifer. The minimum value was 4.1x10-6 feet per day, in part of the confining unit overlying the lower Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakance near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 inches per year in areas having clay at the surface to about 20 inches per year in areas having sand at the surface. Most of this recharge moves laterally to streams, and only about 1 inch per year moves downward to the confined parts of the aquifer system. Under predevelopment conditions, the confined aquifers were generally recharged in updip interstream areas and discharged through streambeds and in downdip coastward

  12. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide

    DTIC Science & Technology

    2016-04-01

    SERDP NOAA USACE Ocean MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR DEPARTMENT OF DEFENSE COASTAL SITES...WORLDWIDE APRIL 2016 REGIONAL SEA LEVEL SCENARIOS FOR COASTAL RISK MANAGEMENT: COVER PHOTOS, FROM LEFT TO RIGHT: - Overwash of the island of Roi-Namur on...J.A., S. Gill, J. Obeysekera, W. Sweet, K. Knuuti, and J. Marburger. 2016. Regional Sea Level Scenarios for Coastal Risk Management: Managing the

  13. Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species

    USGS Publications Warehouse

    Carstensen, Jacob; Klais, Riina; Cloern, James E.

    2015-01-01

    Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February–March) at lower latitudes and later (April–May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarine-coastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from meta-analyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and

  14. Anthropogenic Impacts on Biological Carbon Sequestration in the Coastal Waters

    NASA Astrophysics Data System (ADS)

    Jiao, N.

    2016-02-01

    be considered in management, especially in the coastal waters where eutrophication and hypoxia are severe. Currently, farm over-fertilization is found world widely to be responsible for coastal water eutrophication. Therefore nutrients input must be under control for optimum outputs of the sum of BP and MCP towards sustainable coastal ecosystems.

  15. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

    DTIC Science & Technology

    2013-09-30

    site, compared with WaveCIS site in Gulf of Mexico . Two Neural Networks (NN) approaches are explored for the retrieval of chlorophyll concentration...AERONET-OC sites (Long Island Sound and Gulf of Mexico respectively) as well as OC retrievals of the MODIS sensor. The underlying cause of the...cases of water conditions ranging from clear oceanic waters to turbid coastal waters, while ξ for both types of particles is fixed at 4.0, and for

  16. Echolocation by the harbour porpoise: life in coastal waters.

    PubMed

    Miller, Lee A; Wahlberg, Magnus

    2013-01-01

    The harbor porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats, and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbor porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using narrow bandwidth high frequency biosonar signals.

  17. Establishing physiographic provinces for an integrative approach of the coastal zone management - The case of Rhodes Island, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Anagnostou, Vasileios; Angelos Hatiris, Georgios; Sioulas, Andreas

    2017-04-01

    The coastal zone is a dynamic natural system affected by terrestrial and marine processes as well as human intervention. The sediments derived by the land and supplied by the adjacent catchment are reworked and distributed according to the prevailing hydrodynamic regime. Based on inland and coastal physiography of Rhodes Island, six (6) main Physiographic Provinces were identified, which incorporate 56 main drainage basins and 168 interfluves. Moreover, the variety of coastal types was mapped and the total length of the island's coastline ( 285 km) was measured by using geospatial tools (ArcGIS and Google Earth). The coastline is comprised of depositional sandy beaches (44.5%), rocky coasts (47%) and coasts altered from anthropogenic constructions (8.5%). The Physiographic Provinces were defined in order to facilitate an Integrated Coastal Zone Management (ICZM) scheme for Rhodes Island and also adaptation measures. Overexploitation of the island's natural coastal environment by the tourism industry, mainly in the northern and northeastern parts of the island, left a series of adverse effects on the coastal area, such as erosion of beaches, water and energy overconsumption and land degradation.

  18. Distribution of Vibrio alginolyticus-like species in Shenzhen coastal waters, China

    PubMed Central

    Chen, Ming-Xia; Li, He-Yang; Li, Gang; Zheng, Tian-Ling

    2011-01-01

    We investigated the distribution of vibrios in Shenzhen coastal waters in order to obtain valuable information for the aquaculture industry and a health warning system. Quantities of vibrios from surface waters ranged from 0 to 4.40×104 CFUs mL-1 in April (spring), while from 0 to 2.57×103 CFUs mL-1 in September (autumn); the abundance of V. alginolyticus-like species from surface water ranged from 0 to 6.72×103 CFUs mL-1 in April (spring) and from 0 to 1.28×103 CFUs mL-1 in September (autumn); higher counts were observed in spring. The V. alginolyticus-like species was dominant in Shenzhen coastal waters, with the highest abundance in the clean region (stations YMK001 and GDN064) in April, suggesting that Vibrio spp. were naturally occurring bacteria in marine environments. The correlation between the abundance of vibrios (including V. alginolyticus-like species) and environmental factors varied in different regions and different seasons. There were no vibrios detected when the salinity was less than 11.15‰ in the Zhujiang River estuary, which indicated that salinity played a key role in the distribution of vibrios and V. alginolyticus-like species. PMID:24031704

  19. Optimum contracted-for water supply for hotels in arid coastal regions.

    PubMed

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area).

  20. Spatio-temporal variability of hydro-chemical characteristics of coastal waters of Gulf of Mannar Marine Biosphere Reserve (GoMMBR), South India

    NASA Astrophysics Data System (ADS)

    Kathiravan, K.; Natesan, Usha; Vishnunath, R.

    2017-03-01

    The intention of this study was to appraise the spatial and temporal variations in the physico-chemical parameters of coastal waters of Rameswaram Island, Gulf of Mannar Marine Biosphere Reserve, south India, using multivariate statistical techniques, such as cluster analysis, factor analysis and principal component analysis. Spatio-temporal variations among the physico-chemical parameters are observed in the coastal waters of Gulf of Mannar, especially during northeast and post monsoon seasons. It is inferred that the high loadings of pH, temperature, suspended particulate matter, salinity, dissolved oxygen, biochemical oxygen demand, chlorophyll a, nutrient species of nitrogen and phosphorus strongly determine the discrimination of coastal water quality. Results highlight the important role of monsoonal variations to determine the coastal water quality around Rameswaram Island.

  1. 75 FR 44938 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery AGENCY: National... moratorium on fishing for Atlantic coastal sharks in the State waters of New Jersey. NMFS canceled the moratorium, as required by the Atlantic Coastal Fisheries Cooperative Management Act (Atlantic Coastal Act...

  2. Large and local-scale influences on physical and chemical characteristics of coastal waters of Western Europe during winter

    NASA Astrophysics Data System (ADS)

    Tréguer, Paul; Goberville, Eric; Barrier, Nicolas; L'Helguen, Stéphane; Morin, Pascal; Bozec, Yann; Rimmelin-Maury, Peggy; Czamanski, Marie; Grossteffan, Emilie; Cariou, Thierry; Répécaud, Michel; Quéméner, Loic

    2014-11-01

    There is now a strong scientific consensus that coastal marine systems of Western Europe are highly sensitive to the combined effects of natural climate variability and anthropogenic climate change. However, it still remains challenging to assess the spatial and temporal scales at which climate influence operates. While large-scale hydro-climatic indices, such as the North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) and the weather regimes such as the Atlantic Ridge (AR), are known to be relevant predictors of physical processes, changes in coastal waters can also be related to local hydro-meteorological and geochemical forcing. Here, we study the temporal variability of physical and chemical characteristics of coastal waters located at about 48°N over the period 1998-2013 using (1) sea surface temperature, (2) sea surface salinity and (3) nutrient concentration observations for two coastal sites located at the outlet of the Bay of Brest and off Roscoff, (4) river discharges of the major tributaries close to these two sites and (5) regional and local precipitation data over the region of interest. Focusing on the winter months, we characterize the physical and chemical variability of these coastal waters and document changes in both precipitation and river runoffs. Our study reveals that variability in coastal waters is connected to the large-scale North Atlantic atmospheric circulation but is also partly explained by local river influences. Indeed, while the NAO is strongly related to changes in sea surface temperature at the Brest and Roscoff sites, the EAP and the AR have a major influence on precipitations, which in turn modulate river discharges that impact sea surface salinity at the scale of the two coastal stations.

  3. Estimating Chlorophyll Conditions in Southern New England Coastal Waters from Hyperspectral Aircraft Remote Sensing

    EPA Science Inventory

    Chlorophyll a (chl a) is commonly measured in water quality monitoring programs for coastal and freshwater systems. The concentration of chl a, when evaluated with other condition indicators such as water clarity and dissolved oxygen concentrations, provides information on the en...

  4. Impacts of Extreme Flooding on Hydrologic Connectivity and Water Quality in the Atlantic Coastal Plain and Implications for Vulnerable Populations

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.

    2017-12-01

    In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.

  5. Temporal and Spatial Diversity of Bacterial Communities in Coastal Waters of the South China Sea

    PubMed Central

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns. PMID:23785512

  6. Holocene melt-water variations recorded in Antarctic coastal marine benthic assemblages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkman, P.A.

    Climate changes can influence the input of meltwater from the polar ice sheets. In Antarctica, signatures of meltwater input during the Holocene may be recorded in the benthic fossils which exist at similar altitudes above sea level in emerged beaches around the continent Interpreting the fossils as meltwater proxy records would be enhanced by understanding the modern ecology of the species in adjacent marine environments. Characteristics of an extant scallop assemblage in West McMurdo Sound, Antarctica, have been evaluated across a summer meltwater gradient to provide examples of meltwater records that may be contained in proximal scallop fossils. Integrating environmentalmore » proxies from coastal benthic assemblages around Antarctica, over ecological and geological time scales, is a necessary step in evaluating the marginal responses of the ice sheets to climate changes during the Holocene.« less

  7. National water quality assessment of the Georgia-Florida Coastal Plain study unit; water withdrawals and treated wastewater discharges, 1990

    USGS Publications Warehouse

    Marella, R.L.; Fanning, J.L.

    1996-01-01

    The Georgia-Florida Coastal Plain study unit covers nearly 62,600 square miles along the southeastern United States coast in Georgia and Florida. In 1990, the estimated population of the study unit was 9.3 million, and included all or part of the cities of Atlanta, Jacksonville, Orlando, Tampa, and St. Petersburg. Estimated freshwater withdrawn in the study unit in 1990 was nearly 5,075 million gallons per day. Ground-water accounted for more than 57 percent of the water withdrawn during 1990 and the Floridan aquifer system provided nearly 91 percent of the total ground-water withdrawn. Surface-water accounted for nearly 43 percent of the water withdrawn in the study unit in 1990 with large amounts of withdrawals from the Altamaha River, Hillsborough River, the Ocmulgee River, the Oconee River, the St. Johns River, and the Suwannee River. Water withdrawn for public supply in the Georgia-Florida Coastal Plain study unit in 1990 totaled 1,139 million gallons per day, of which 83 percent was ground water and 17 percent was surface water. Self-supplied domestic withdrawals in the Georgia-Florida Coastal Plain study unit in 1990 totaled nearly 230 million gallons per day. Ground water supplied over 80 percent of the study units population for drining water purposes; nearly 5.8 million people were served by public supply and 1.8 million people were served by self-supplied systems. Water withdrawn for self-supplied domestic use in Georgia and Florida is derived almost exclusively from ground water, primarily because this source can provide the quantity and quality of water needed for drinking purposes. Nearly 1.7 million people served by public supply utilized surface water for their drinking water needs. Water withdrawn for self-supplied commercial-industrial uses in the study unit in 1990 totaled 862 million gallons per day, of which 93 percent was ground water and 7 percent was surface water. Water withdrawn for agriculture purposes in the study unit in 1990 totaled 1

  8. An interdisciplinary study of the estaurine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E.; Hollman, R.; Alexander, J.; Nuzzi, R.

    1974-01-01

    ERTS-1 photographic data products have been analyzed using additive color viewing and electronic image analysis techniques. Satellite data were compared to water sample data collected simultaneously with the data of ERTS-1 coverage in New York Bight. Prediction of the absolute value of total suspended particles can be made using composites of positives of MSS bands 5 and 6 which have been precisely made using the step wedge supplied on the imagery. Predictions of the relative value of the extinction coefficient can be made using bands 4 and 5. Thematic charts of total suspended particles (particles per litre) and extinction coefficient provide scientists conducting state and federal water sampling programs in New York Bight with data which improves the performance of these programs.

  9. Variation of optical properties at Lucinda Jetty Coastal Observatory and its input into an optical model of coastal waters in Great Barrier Reef region.

    NASA Astrophysics Data System (ADS)

    Wozniak, Monika; Baird, Mark; Schroeder, Thomas; Clementson, Lesley; Jones, Emlyn

    2017-04-01

    The water column optical properties from an observation station located at the end of a 5.8 km long jetty in the coastal waters of the Great Barrier Reef World Heritage Area (18.52 S, 146.39 E) were studied. Due to the location of the Lucinda Jetty Coastal Observatory (LJCO), at the interface of large riverine nutrient and sediment sources and clear open ocean waters, it is an optically variable and interesting region. LJCO is the only Southern Hemisphere ocean colour validation site integrated into NASA's AERONET-OC global network of ground-based radiometers. LJCO has a 3 years long time series (2014-2016) of continuous in-water optical measurements of absorption (AC-S), scattering (AC-S) and backscattering (BB-9) spectra together with water-leaving radiance spectra (SeaPRISM) acquired above the water surface and concentration of water components (WQM). Further HPLC and spectrophotometrically-retrieved absorption and scattering were determined fortnightly. These detailed bio-optical observations are rarely available as a time-series for model assessment. We use these data to quantify the relationship between optical properties and water constituents and to developing a more accurate optical model for coastal, optically complex water like GBR model. Pigment analysis show that studied area is dominated by alternatively freshwater and oceanic phytoplankton species depending on weather condition, tides and season. Absorption spectra at 440 nm and 550 nm are dominated by detritus but also have a significant CDOM contribution, which influences reflectance values in that range of spectrum and negatively affects wavebands used in satellite and remote algorithms for water constituents. These emergent features are compared to the model outputs, demonstrating when the model produces accurate optical signals with realistic process representation.

  10. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.

    PubMed

    Fujioka, R S

    2001-01-01

    The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely

  11. OCTS and SeaWiFS Bio-Optical Algorithm and Product Validation and Intercomparison in US Coastal Waters. Chapter 5

    NASA Technical Reports Server (NTRS)

    Brown, Christopher W.; Subramaniam, Ajit; Culver, Mary; Brock, John C.

    2001-01-01

    Monitoring the health of US coastal waters is an important goal of the National Oceanic and Atmospheric Administration (NOAA). Satellite sensors are capable of providing daily synoptic data of large expanses of the US coast. Ocean color sensors, in particular, can be used to monitor the water quality of coastal waters on an operational basis. To appraise the validity of satellite-derived measurements, such as chlorophyll concentration, the bio-optical algorithms used to derive them must be evaluated in coastal environments. Towards this purpose, over 21 cruises in diverse US coastal waters have been conducted. Of these 21 cruises, 12 have been performed in conjunction with and under the auspices of the NASA/Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project. The primary goal of these cruises has been to obtain in-situ measurements of downwelling irradiance, upwelling radiance, and chlorophyll concentrations in order to evaluate bio-optical algorithms that estimate chlorophyll concentration. In this Technical Memorandum, we evaluate the ability of five bio-optical algorithms, including the current Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) algorithm, to estimate chlorophyll concentration in surface waters of the South Atlantic Bight (SAB). The SAB consists of a variety of environments including coastal and continental shelf regimes, Gulf Stream waters, and the Sargasso Sea. The biological and optical characteristics of the region is complicated by temporal and spatial variability in phytoplankton composition, primary productivity, and the concentrations of colored dissolved organic matter (CDOM) and suspended sediment. As such, the SAB is an ideal location to test the robustness of algorithms for coastal use.

  12. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  13. Transforming management of tropical coastal seas to cope with challenges of the 21st century.

    PubMed

    Sale, Peter F; Agardy, Tundi; Ainsworth, Cameron H; Feist, Blake E; Bell, Johann D; Christie, Patrick; Hoegh-Guldberg, Ove; Mumby, Peter J; Feary, David A; Saunders, Megan I; Daw, Tim M; Foale, Simon J; Levin, Phillip S; Lindeman, Kenyon C; Lorenzen, Kai; Pomeroy, Robert S; Allison, Edward H; Bradbury, R H; Corrin, Jennifer; Edwards, Alasdair J; Obura, David O; Sadovy de Mitcheson, Yvonne J; Samoilys, Melita A; Sheppard, Charles R C

    2014-08-15

    Over 1.3 billion people live on tropical coasts, primarily in developing countries. Many depend on adjacent coastal seas for food, and livelihoods. We show how trends in demography and in several local and global anthropogenic stressors are progressively degrading capacity of coastal waters to sustain these people. Far more effective approaches to environmental management are needed if the loss in provision of ecosystem goods and services is to be stemmed. We propose expanded use of marine spatial planning as a framework for more effective, pragmatic management based on ocean zones to accommodate conflicting uses. This would force the holistic, regional-scale reconciliation of food security, livelihoods, and conservation that is needed. Transforming how countries manage coastal resources will require major change in policy and politics, implemented with sufficient flexibility to accommodate societal variations. Achieving this change is a major challenge - one that affects the lives of one fifth of humanity. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture

  15. Analysis of Water Resource Utilization Potential for Jiangsu Coastal Area ' in Nantong City

    NASA Astrophysics Data System (ADS)

    Ren, Li; Liu, Jin-Tao; Ni, Jian-Jun

    2015-04-01

    Along with the advance of the growth of population and social economy, requirements for water quality and quantity in coastal areas is getting higher and higher, but due to the uneven distribution of rainfall years and water exploitation, use and management level, the influence of the shortage of water resources is increasingly prominent, seriously restricting the social and economic sustainable development in this region. Accordingly, water resource utilization potential in Jiangsu coastal region is vital for water security in the region. Taking Nantong City as the study area, the regional water resources development and utilization status were evaluated. In this paper, the meaning of water resources, water resources development and utilization, and water resources development and utilization of the three stages of concepts such as system were discussed. Then the development and utilization of regional water resource evaluation were carried out, and the significance of regional society, economy, resources and environment and its development status quo of water resources were exploited. According to conditions and area source, an evaluation index system for development and utilization of water resources of Nantong was built up. The index layer was composed of 16 indicators. In this study, analytic hierarchy process (AHP) was used to determine of weights of indicators at all levels in the index system. Multistage fuzzy comprehensive evaluation model was selected to evaluate the water resources development and utilization status of Nantong, and then water resource utilization potential of Nantong was analyzed.

  16. Impact of coastal fog on the energy and water balance of a California agricultural system

    NASA Astrophysics Data System (ADS)

    Baguskas, S. A.; Oliphant, A. J.; Loik, M. E.

    2016-12-01

    In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. The objective of our study was to develop relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration (ET) rates, which has potential to reduce groundwater use based on local cloud meteorology. Our study site was a coastal strawberry farm located in fog-belt of the Salinas Valley, California. We installed an eddy covariance tower to quantify surface energy budgets and actual ET at the field scale from July-September 2016. We also measured leaf and canopy-scale strawberry physiology on foggy and clear-sky days. Flow meters and soil moisture probes were installed in drip lines to quantify irrigation amount, timing, and soil wetting depth. We found that downward longwave radiation was higher on foggy compared to clear-sky days, indicating that emission of longwave radiation from the surface was absorbed by water droplets and vapor in the fog. Midday latent heat flux decreased by 125 W m-2 from a clear to foggy day, suggesting that water loss from the surface to the atmosphere decreases substantially during fog events. Likewise, we found a decrease in leaf and canopy-level transpiration on foggy compared to clear-sky days. While drawdown of CO2 at the field-scale decreased from -1.2 to -0.6 gC m-2 s-1 during fog events, canopy-level carbon and water vapor flux measurements show that water use efficiency (carbon gain per water loss) increased significantly on foggy days. Our results show that strawberry crops do not demand as much water during fog events, yet still maintain relatively high levels of carbon uptake. Therefore, the amount of irrigation could potentially be reduced during foggy periods without sacrificing yield.

  17. Using National Coastal Assessment Data to Model Estuarine Water Quality at Large Spatial Scales.

    EPA Science Inventory

    The water quality of the Nation’s estuaries is attracting scrutiny in light of population growth and enhanced nutrient delivery. The USEPA has evaluated water quality in the National Coastal Assessment (NCA) and National Aquatic Resource Surveys (NARS) programs. Here we rep...

  18. Using National Coastal Assessment Data to Model Estuarine Water Quality at Large Spatial Scales

    EPA Science Inventory

    Background/Question/MethodThe water quality of the Nation’s estuaries is attracting increasing scrutiny in light of burgeoning coastal population growth and enhanced delivery of nutrients via riverine flux. The USEPA has evaluated water quality in US estuaries in the Nation...

  19. [Estuary health assessment using a benthic-index of biotic integrity in Yangtze Estuary and its adjacent waters].

    PubMed

    Zhou, Xiao-wei; Wang, Li-ping; Zheng, Bing-hui; Liu, Lu-san; Fu, Qing

    2009-01-01

    A benthic index of biotic integrity (B-IBI) was developed for application in estuaries health assessment of the Yangtze Estuary and its adjacent waters. Benthic macro-invertebrate samples were collected from 41 stream sites (13 non-degraded stations and 28 degraded stations) in the Yangtze Estuary and its adjacent waters in July, 2005. The analyses of the range of index value distribution, Pearson correlation and judgment ability were performed on fourteen candidate metrics. Six biological metrics were selected for the establishment of B-IBI, which were Shannon-Wiener index, the species number, total density, total biomass, Carapace Animals density percentage and Echinoderms density percentage. B-IBI was obtained by sum up all these indices after which were transformed into a uniform score by using the ratio scoring method. Base on 50 percentile of B-IBI value in reference sites, the criteria of health ranking was determined. The proposed criteria of benthic-index of biotic integrity were as follows: B-IBI > 2.48 was regarded as health, 1.86-2.48 sub-health, 1.24-1.86 fair, 0.62-1.24 poor, and B-IBI < 0.62 very poor. Assessing with these criteria, the results showed that among the 41 sites in Yangtze Estuary and its adjacent waters, 7 sites were health, 2 sites were sub-health, 8 sites were fair, 8 sites were poor and 16 sites were very poor. An independent data set sampled in June of 2006 was used to validate the index, the results indicated that final combined index correctly classified 89% of stations in the validation data set.

  20. Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Gurrola, Larry D.; Keller, Edward A.; Brandt, Theodore R.

    2009-01-01

    of Los Angeles. The coastal plain surface includes several mesas and hills that are geomorphic expressions of potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB) that transects the coastal plain. Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude), and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara, Goleta, and Carpinteria. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the coastal plain region.

  1. Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters

    PubMed Central

    DiMento, Brian P.; Mason, Robert P.

    2018-01-01

    Many studies have recognized abiotic photochemical degradation as an important sink of methylmercury (CH3Hg) in sunlit surface waters, but the rate-controlling factors remain poorly understood. The overall objective of this study was to improve our understanding of the relative importance of photochemical reactions in the degradation of CH3Hg in surface waters across a variety of marine ecosystems by extending the range of water types studied. Experiments were conducted using surface water collected from coastal sites in Delaware, New Jersey, Connecticut, and Maine, as well as offshore sites on the New England continental shelf break, the equatorial Pacific, and the Arctic Ocean. Filtered water amended with additional CH3Hg at environmentally relevant concentrations was allowed to equilibrate with natural ligands before being exposed to natural sunlight. Water quality parameters – salinity, dissolved organic carbon, and nitrate – were measured, and specific UV absorbance was calculated as a proxy for dissolved aromatic carbon content. Degradation rate constants (0.87–1.67 day−1) varied by a factor of two across all water types tested despite varying characteristics, and did not correlate with initial CH3Hg concentrations or other environmental parameters. The rate constants in terms of cumulative photon flux values were comparable to, but at the high end of, the range of values reported in other studies. Further experiments investigating the controlling parameters of the reaction observed little effect of nitrate and chloride, and potential for bromide involvement. The HydroLight radiative transfer model was used to compute solar irradiance with depth in three representative water bodies – coastal wetland, estuary, and open ocean – allowing for the determination of water column integrated rates. Methylmercury loss per year due to photodegradation was also modeled across a range of latitudes from the Arctic to the Equator in the three model water types

  2. A regional classification of the effectiveness of depressional wetlands at mitigating nitrogen transport to surface waters in the Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.; LaMotte, Andrew E.; Sekellick, Andrew J.

    2013-01-01

    Nitrogen from nonpoint sources contributes to eutrophication, hypoxia, and related ecological degradation in Atlantic Coastal Plain streams and adjacent coastal estuaries such as Chesapeake Bay and Pamlico Sound. Although denitrification in depressional (non-riparian) wetlands common to the Coastal Plain can be a significant landscape sink for nitrogen, the effectiveness of individual wetlands at removing nitrogen varies substantially due to varying hydrogeologic, geochemical, and other landscape conditions, which are often poorly or inconsistently mapped over large areas. A geographic model describing the spatial variability in the likely effectiveness of depressional wetlands in watershed uplands at mitigating nitrogen transport from nonpoint sources to surface waters was constructed for the Northern Atlantic Coastal Plain (NACP), from North Carolina through New Jersey. Geographic and statistical techniques were used to develop the model. Available medium-resolution (1:100,000-scale) stream hydrography was used to define 33,799 individual watershed catchments in the study area. Sixteen landscape metrics relevant to the occurrence of depressional wetlands and their effectiveness as nitrogen sinks were defined for each catchment, based primarily on available topographic and soils data. Cluster analysis was used to aggregate the 33,799 catchments into eight wetland landscape regions (WLRs) based on the value of three principal components computed for the 16 original landscape metrics. Significant differences in topography, soil, and land cover among the eight WLRs demonstrate the effectiveness of the clustering technique. Results were used to interpret the relative likelihood of depressional wetlands in each WLR and their likely effectiveness at mitigating nitrogen transport from upland source areas to surface waters. The potential effectiveness of depressional wetlands at mitigating nitrogen transport varies substantially over different parts of the NACP

  3. Cyanobacterial blooms and biomagnification of the neurotoxin BMAA in South Florida coastal waters

    NASA Astrophysics Data System (ADS)

    Brand, L.; Mash, D.

    2008-12-01

    Blooms of cyanobacteria have developed in Florida Bay, Biscayne Bay and other coastal waters of South Florida. It has recently been shown that virtually all cyanobacteria produce the potent neurotoxin, beta-N- methylamino-L-alanine (BMAA). Studies in Guam indicate that BMAA can biomagnify up the food chain from cyanobacteria to human food and humans. Recent studies in Guam and on human brains in North America suggest an association between BMAA and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Amyotrophic Lateral Sclerosis (ALS). A variety of organisms from South Florida coastal waters are being analyzed for BMAA content to determine if BMAA is biomagnifying in these food chains and if it is a potential human health hazard. Some have extremely high concentrations of BMAA.

  4. Phytoplankton and nutrient distributions in a front-eddy area adjacent to the coastal upwelling zone off Concepcion (Chile): implications for ecosystem productivity.

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson

    2016-04-01

    The impact that sub-mesoscale (1-10 km) to mesocale (50-100 km) oceanographic variability has on plankton and nutrient distributions (horizontal and vertical) in the coastal upwelling and transition zones off Concepcion was the focus of this study. Satellite time-series data (wind, sea-surface temperature (SST), and altimetry) were used to understand the dynamic context of in situ data derived from a short-term front survey (3 d) during the upwelling period (3-6 February, 2014). The survey included two transects perpendicular to the coast, covering the shelf and shelf-break areas just north of Punta Lavapie, a main upwelling center (˜37° S). Wind and SST time-series data indicated that the survey was undertaken just after a moderate upwelling event (end of January) which lead to a relaxation phase during early February. A submesoscale thermal front was detected previous to and during the survey and results from an eddy tracking algorithm based on altimetry data indicated that this front (F1) was flanked on its oceanic side by an anticyclonic, mesoscale eddy (M1), which was ˜25 d old at the sampling time. M1 strengthened the thermal gradient of F1 by bringing warmer oceanic water nearer to the colder coastal upwelling zone. The distributions of hydrographic variables and nutrients in the water column (<300 m depth) also denoted these two features. Phytoplankton biomass (Chl-a) and diatom abundance were highest in the surface layer (<20 m depth) between the coast and F1, with primary maxima in the latter, whereas they were highest at the subsurface (20-40 m depth) towards M1 and associated with secondary maxima. The distribution of dominant diatoms in the top layer (<100 m depth) indicated that both coastal and oceanic species were aggregated at F1 and in M1. These results suggest that the front-eddy interaction creates a complex field of submesoscale processes in the top layer, including vertical nutrient injections and lateral stirring, which contributes to the

  5. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp.

    PubMed Central

    Teichberg, Mirta; Fox, Sophia E; Olsen, Ylva S; Valiela, Ivan; Martinetto, Paulina; Iribarne, Oscar; Muto, Elizabeti Yuriko; Petti, Monica A V; Corbisier, Thaïs N; Soto-Jiménez, Martín; Páez-Osuna, Federico; Castro, Paula; Freitas, Helena; Zitelli, Andreina; Cardinaletti, Massimo; Tagliapietra, Davide

    2010-01-01

    Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.

  6. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    NASA Astrophysics Data System (ADS)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  7. Hydrogeology, water quality, and water-supply potential of the Lower Floridan Aquifer, coastal Georgia, 1999-2002

    USGS Publications Warehouse

    Falls, W. Fred; Harrelson, Larry G.; Conlon, Kevin J.; Petkewich, Matthew D.

    2005-01-01

    The hydrogeology and water quality of the upper permeable and Fernandina permeable zones of the Lower Floridan aquifer were studied at seven sites in the 24-county study area encompassed by the Georgia Coastal Sound Science Initiative. Although substantially less than the Upper Floridan aquifer in coastal Georgia, transmissivities for the Lower Floridan aquifer are in the same range as other water-supply aquifers in Georgia and South Carolina and could meet the needs of public drinking-water supply. Water of the upper permeable zone of the Lower Floridan aquifer exceeds the Federal secondary drinking-water standards for sulfate and total dissolved solids at most coastal Georgia sites and the Federal secondary drinking-water standard for chloride at the Shellman Bluff site. The top of the Lower Floridan aquifer correlates within 50 feet of the previously reported top, except at the St Simons Island site where the top is more than 80 feet higher. Based on the hydrogeologic characteristics, the seven sites are divided into the northern sites at Shellman Bluff, Richmond Hill, Pembroke, and Pineora; and southern sites at St Marys, Brunswick, and St Simons Island. At the northern sites, the Lower Floridan aquifer does not include the Fernandina permeable zone, is thinner than the overlying Upper Floridan aquifer, and consists of only strata of the middle Eocene Avon Park Formation. Transmissivities in the Lower Floridan aquifer are 8,300 feet squared per day at Richmond Hill and 6,000 feet squared per day at Shellman Bluff, generally one tenth the transmissivity of the Upper Floridan aquifer at these sites. At the southern sites, the upper permeable zone of the Lower Floridan aquifer is thicker than the Upper Floridan aquifer and consists of porous limestone and dolomite interbedded with nonporous strata of the middle Eocene Avon Park and early Eocene Oldsmar Formations. Transmissivities for the upper permeable zone of the Lower Floridan aquifer are 500 feet squared per

  8. Echolocation by the harbour porpoise: life in coastal waters

    PubMed Central

    Miller, Lee A.; Wahlberg, Magnus

    2013-01-01

    The harbor porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats, and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbor porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using narrow bandwidth high frequency biosonar signals. PMID:23596420

  9. DEVELOPING A MULTI-AGENCY 305(B) MONITORING PROGRAM FOR THE COASTAL WATERS OF ALABAMA

    EPA Science Inventory

    Proceedings of the National Water Quality Monitoring Conference "Monitoring Critical Foundations to Protect Our Waters," 7-9 July 1998, Reno, NV.

    With the ability of many federal agencies to maintain long-term coastal monitoring in jeopardy due to shrinking budgets, many s...

  10. Spatial and Temporal Monitoring of Dissolved Oxygen in NJ Coastal Waters using AUVs (Presentation)

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  11. Evaluation of on-site wastewater system Escherichia coli contributions to shallow groundwater in coastal North Carolina.

    PubMed

    Humphrey, C P; O'Driscoll, M A; Zarate, M A

    2011-01-01

    The study goal was to determine if on-site wastewater systems (OSWWS) installed in coastal areas were effective at reducing indicator bacteria densities before discharge to groundwater. Groundwater Escherichia coli (E. coli) densities and groundwater levels adjacent to 16 OSWWS in three different soil groups (sand, sandy loam, and sandy clay loam) were monitored and compared to background groundwater conditions on four occasions between March 2007 and February 2008 in coastal North Carolina. Groundwater beneath OSWWS had significantly (p≤0.05) lower densities of E. coli than septic tank effluent, but significantly higher densities of E. coli than background conditions for each soil type. Twenty three percent of all groundwater samples near OSWWS had E. coli densities that exceeded the EPA freshwater contact standards (single sample 235 cfu/100 mL) for surface waters. Groundwater E. coli densities near OSWWS were highest during shallow water table periods. The results indicate that increasing the required vertical separation distance from drainfield trenches to seasonal high water table could improve shallow groundwater quality.

  12. Going coastal: Shared evolutionary history between coastal British Columbia and Southeast Alaska wolves (canis lupus)

    USGS Publications Warehouse

    Weckworth, B.V.; Dawson, N.G.; Talbot, S.L.; Flamme, M.J.; Cook, J.A.

    2011-01-01

    Background: Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. Methodology/Principal Findings: By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. Conclusions/Significance: We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species. ?? 2011 This is an open-access article.

  13. EUTROPHICATION OF COASTAL WATER BODIES: RELATIONSHIPS BETWEEN NUTRIENT LOADING AND ECOLOGICAL RESPONSE

    EPA Science Inventory

    This newly initiated research will provide environmental managers with an empirical method to develop regional nutrient input limits for East Coast estuaries/coastal water bodies. The goal will be to reduce the current uncertainty associated with nutrient load-response relationsh...

  14. National Coastal Condition Report I Factsheet

    EPA Pesticide Factsheets

    The National Coastal Condition Report describes the ecological and environmental conditions in U.S. coastal waters. This first-of-its-kind Report, presents a broad baseline picture of the overall condition of U.S. coastal waters as fair to poor.

  15. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiela, I.; Foreman, K.; LaMontagne, M.

    1992-12-01

    Human activities on coastal watersheds provide the major sources of nutrients entering shallow coastal ecosystems. Nutrient loadings from watersheds alter structure and function of receiving aquatic ecosystems. To investigate this coupling of land to marine systems, a series of subwatersheds of Waquoit Bay differing in degree of urbanization and with widely different nutrient loading rates was studied. The subwatersheds differ in septic tanks numbers and forest acreage. Ground water is the major mechanism that transports nutrients to coastal waters. Some attenuation of nutrient concentrations within the aquifer or at the sediment-water interface, but significant increases in the nutrient content ofmore » groundwater arriving at the shore's edge are in urbanized areas. The groundwater flows through the sediment-water boundary, and sufficient groundwater-borne nutrients (nitrogen in particular) traverse the sediment-water boundary to cause significant changes in the aquatic ecosystem. These loading-dependent alterations include increased nutrients in water, greater primary production by phytoplankton, and increased macroalgal biomass and growth. The increased macroalgal biomass dominates the bay ecosystem through second- or third-order effects such as alterations of nutrient status of water columns and increasing frequency of anoxic events. The increases in seaweeds have decreased the areas covered by eelgrass habitats. The change in habitat type, plus the increased frequency of anoxic events, change the composition of the benthic fauna. The importance of bottom-up control in shallow coastal food webs is evident. The coupling of land to sea by groundwater-borne nutrient transport is mediated by a complex series of steps, making it unlikely to find a one-to-one relation between land use and conditions in the aquatic ecosystem. Appropriate models may provide a way to deal with the complexities of the coupling. 22 refs., 14 figs., 5 tabs.« less

  16. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; hide

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  17. Water-quality, water-level, and lake-bottom-sediment data collected from the defense fuel supply point and adjacent properties, Hanahan, South Carolina, 1990-96

    USGS Publications Warehouse

    Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.

    1997-01-01

    A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.

  18. National Coastal Geology Program: a plan of geologic research on coastal erosion, coastal wetlands, polluted sediments, and coastal hard-mineral resources

    USGS Publications Warehouse

    ,

    1990-01-01

    More than 50 percent of the U.S. population currently live within 50 miles of an ocean, Great Lake, or major estuary. According to forecasts, the concentration of people along our coastlines will continue to increase into the 21st century. In addition to residential and commercial buildings and facilities worth tens of billions of dollars, the coasts and associated wetlands are natural resources of tremendous value, with estimates in excess of $13 billion per year for commercial and recreational fisheries alone. Human activities and natural processes are stressing the coastal environment. * Each of the coastal states and island territories is suffering problems related to coastal erosion. * Deterioration of wetlands is widespread and of great public concern. * Pollutants carried by rivers or runoff are discharged directly into coastal waters and accumulate in the sediments on the sea floor, in some areas causing damage to living resources and presenting a threat to public health. * Onshore sources for hard-mineral resources, such as sand and gravel used for construction purposes, are becoming increasingly difficult to find. New sources are being sought in coastal waters. Coastal issues will become even more important into the next century if sea level is significantly influenced by climate change and other factors.

  19. Relationships between microbial water quality and environmental conditions in coastal recreational waters: the Fylde coast, UK.

    PubMed

    Crowther, J; Kay, D; Wyer, M D

    2001-12-01

    This paper explores ways in which the analysis of microbial data from routine compliance monitoring, in combination with basic environmental data, can provide insight into the factors affecting faecal-indicator organism concentrations in coastal waters. In the case study presented, eight designated bathing waters on the Fylde coast are continuing to exhibit unreliable compliance with the Imperative standards for total coliform (TC) and faecal coliform (FC) concentrations specified in the EU Bathing Water Directive (76/160/EEC), despite significant reductions in geometric mean concentrations following recent major investment in the sewerage infrastructure. Faecal streptococci (FS) concentrations have remained high and have not been improved by the new sewerage schemes. The results suggest that, prior to the schemes, higher bacterial concentrations were strongly associated with rainfall; and sewage sources were important for TC and FC, but less important for FS, which may have been more strongly affected by diffuse catchment sources. In the post-schemes period, catchment sources appear to be of greater significance; rainfall remains as a significant, though less important, predictor; and tide height at time of sampling, together with variables such as sunshine and the proportion of onshore winds (which affect the survival and movement of bacteria that have already entered the coastal waters), assume greater significance. The approach used here provides a cost-effective management tool for the exploratory investigation of any monitoring point that is failing to meet recreational water quality standards.

  20. Seasonal variation in physicochemical properties of coastal waters of Kalpakkam, east coast of India with special emphasis on nutrients.

    PubMed

    Satpathy, K K; Mohanty, A K; Natesan, U; Prasad, M V R; Sarkar, S K

    2010-05-01

    A study pertaining to the seasonal variation in physicochemical properties of the coastal waters was carried out at Kalpakkam coast for a period of 1 year (February 2006 to January 2007). It revealed that the coastal water was significantly influenced by freshwater input during North East (NE) monsoon and post-monsoon periods. Concentration of all the nutrients and dissolved oxygen (DO) was relatively high during the NE monsoon, whereas, salinity and chlorophyll-a (chl-a) were at their minimum level during this period. Phytoplankton production peak was observed in summer during which a typical marine condition prevailed. The present observed values of nitrate, phosphate, silicate, and turbidity are significantly high (five to ten times) compared to that of the pre-Tsunami period from this coast. Relatively low DO and chl-a concentration was noticed during the post-Tsunami period. A notable feature of this study is that though nutrient concentration in the coastal waters during post-Tsunami period has increased significantly, turbidity, the most single dominating factor, was found to adversely affect the phytoplankton production during post-Tsunami period as reflected by relatively low chl-a concentration. Thus, the post-Tsunami period may result in a change in coastal biodiversity pattern concomitant with change in coastal water quality.

  1. The epipelagic fish community of Beaufort Sea coastal waters, Alaska

    USGS Publications Warehouse

    Jarvela, L.E.; Thorsteinson, L.K.

    1999-01-01

    A three-year study of epipelagic fishes inhabiting Beaufort Sea coastal waters in Alaska documented spatial and temporal patterns in fish distribution and abundance and examined their relationships to thermohaline features during summer. Significant interannual, seasonal, and geographical differences in surface water temperatures and salinities were observed. In 1990, sea ice was absent and marine conditions prevailed, whereas in 1988 and 1991, heavy pack ice was present and the dissolution of the brackish water mass along the coast proceeded more slowly. Arctic cod, capelin, and liparids were the most abundant marine fishes in the catches, while arctic cisco was the only abundant diadromous freshwater species. Age-0 arctic cod were exceptionally abundant and large in 1990, while age-0 capelin dominated in the other years. The alternating numerical dominances of arctic cod and age-0 capelin may represent differing species' responses to wind-driven oceanographic processes affecting growth and survival. The only captures of age-0 arctic cisco occurred during 1990. Catch patterns indicate they use a broad coastal migratory corridor and tolerate high salinities. As in the oceanographic data, geographical anti temporal patterns were apparent in the fish catch data, but in most cases these patterns were not statistically testable because of excessive zero catches. The negative binomial distribution appeared to be a suitable statistical descriptor of the aggregated catch patterns for the more common species.

  2. Revised hydrogeologic framework of the Floridan aquifer system in the northern coastal area of Georgia and adjacent parts of South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Gill, Harold E.

    2010-01-01

    The hydrogeologic framework for the Floridan aquifer system has been revised for eight northern coastal counties in Georgia and five coastal counties in South Carolina by incorporating new borehole geophysical and flowmeter log data collected during previous investigations. Selected well logs were compiled and analyzed to determine the vertical and horizontal continuity of permeable zones that make up the Upper and Lower Floridan aquifers and to define more precisely the thickness of confining beds that separate these aquifers. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual permeable zones that compose these aquifers. The revised boundaries of the Floridan aquifer system were mapped by taking into account results from local studies and regional correlations of geologic and hydrogeologic units. Because the revised framework does not match the previous regional framework along all edges, additional work will be needed to expand the framework into adjacent areas. The Floridan aquifer system in the northern coastal region of Georgia and parts of South Carolina can be divided into the Upper and Lower Floridan aquifers, which are separated by a middle confining unit of relatively lower permeability. The Upper Floridan aquifer includes permeable and hydraulically connected carbonate rocks of Oligocene and upper Eocene age that represent the most transmissive part of the aquifer system. The middle confining unit consists of low permeability carbonate rocks that lie within the lower part of the upper Eocene in Beaufort and Jasper Counties, South Carolina, and within the upper to middle parts of the middle Eocene elsewhere. Locally, the middle confining unit contains thin zones that have moderate to high permeability and can produce water to wells that tap them. The Lower Floridan aquifer

  3. Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters

    NASA Astrophysics Data System (ADS)

    Mueller, James L.; Trees, Charles C.; Arnone, Robert A.

    1990-09-01

    The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.

  4. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  5. Solubility of Particulate Mercury in Coastal Waters of the Central U.S. Gulf Coast

    NASA Astrophysics Data System (ADS)

    Engle, M.; Krabbenhoft, D. P.; Sabin, T. G.; Geboy, N. J.; Kolker, A.

    2010-12-01

    There is growing awareness that dry deposition can contribute substantially to the overall atmospheric mercury (Hg) load, especially in near-coastal settings. Previous studies have shown that a significant portion of particulate mercury (Hg-P) in coastal environments is contained in the coarse (≥2.5 μm) fraction, and it is assumed that much of this coarse Hg-P is derived from reactive gaseous Hg adsorbed onto sea salt aerosols in the marine boundary layer. While enhanced Hg-P deposition in coastal areas is the likely result, there is little understanding of the post-depositional fate of Hg dry deposition to aquatic ecosystems. This study was conducted to better understand potential dry-to-wet transfer of Hg in coastal aquatic environments. In some portions of the U.S., these coastal ecosystems are susceptible to enhanced methyl Hg production. Coarse and fine (<2.5 μm) fractions of atmospheric particulate matter (PM) were collected at the Grand Bay National Estuarine Research Reserve in coastal Mississippi during the first half of May, 2010 (after the Deepwater Horizon Blowout, but before oil made landfall at the study area) over 30-hour intervals using Hi-Vol cascade impactors. Portions of the filters containing the fine and coarse PM were brought to the lab and incubated in aliquots of water from Grand Bay, which is a mixture of roughly 30% seawater and 70% freshwater, and from the Escatawpa River, a nearby low-TDS, acidic black water stream. Incubations were conducted for periods of 1-hour, 4-hours, 12-hours, and 1-week for each size fraction and water type. The post-incubation solutions and remaining portions of the filters used in the incubations were analyzed for total and methyl Hg at the USGS Mercury Laboratory in Middleton, Wisconsin. In addition, a set of 10 fractions of PM, ranging in size from <0.18 to >18 μm, was collected during the study using a micro-orifice uniform-deposit impactor (MOUDI) and analyzed for trace elements via ICP-MS. Overall

  6. Human impacts and changes in the coastal waters of south China.

    PubMed

    Wang, Linlin; Li, Qiang; Bi, Hongsheng; Mao, Xian-Zhong

    2016-08-15

    Human impact on the environment remains at the center of the debate on global environmental change. Using the Hong Kong-Shenzhen corridor in south China as an example, we present evidence that rapid urbanization and economic development in coastal areas were the dominant factors causing rapid changes in coastal waters. From 1990 to 2012, coastal seawater temperature increased ~0.060°C per year, sea level rose 4.4mm per year and pH decreased from 8.2 to 7.7, much faster than global averages. In the same period, there were exponential increases in the local population, gross domestic product and land fill area. Empirical analyses suggest that the large increase in the population affected local temperature, and economic development had a major impact on local pH. Results also show that pH and temperature were significantly correlated with local sea level rise, but pH had more predictive power, suggesting it could be considered a predictor for changes in local sea level. We conclude that human activities could significantly exacerbate local environmental changes which should be considered in predictive models and future development plans in coastal areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [The marine coastal water monitoring program of the Italian Ministry of the Environment].

    PubMed

    Di Girolamo, Irene

    2003-01-01

    The Ministry of the Environment carries out marine and coastal monitoring programs with the collaboration of the coastal Regions. The program in progress (2001-2003), on the basis of results of the previous one, has identified 73 particulary significant areas (57 critical areas and 16 control areas). The program investigates several parameters on water, plancton, sediments, mollusks and benthos with analyses fortnightly, six-monthly and annual. The main aim of these three year monitoring programs is to assess the quality of national marine ecosystem.

  8. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    USGS Publications Warehouse

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  9. Hydrology and chemistry of groundwater and seasonal ponds in the Atlantic Coastal Plain in Delaware, USA

    USGS Publications Warehouse

    Phillips, P.J.; Shedlock, R.J.

    1993-01-01

    The hydrochemistry of small seasonal ponds was investigated by studying relations between ground-water and surface water in a forested Coastal Plain drainage basin. Observation of changes in the water table in a series of wells equipped with automatic water-level recorders showed that the relation between water-table configuration and basin topography changes seasonally, and particularly in response to spring recharge. Furthermore, in this study area the water table is not a subdued expression of the land surface topography, as is commonly assumed. During the summer and fall months, a water-table trough underlies sandy ridges separating the seasonal ponds, and maximum water-table altitudes prevail in the sediments beneath the dry pond bottoms. As the ponds fill with water during the winter, maximum water-table altitudes shift to the upland-margin zone adjacent to the seasonal ponds. Increases in pond stage are associated with the development of transient water-table mounds at the upland-margin wells during the spring. The importance of small local-flow systems adjacent to the seasonal ponds also is shown by the similarities in the chemistry of the shallow groundwater in the upland margin and water in the seasonal ponds. The upland margin and surface water samples have low pH (generally less than 5.0), and contain large concentrations of dissolved aluminum (generally more than 100 ??g 1-1), and low bicarbonate concentrations (2 mg l4 or less). In contrast, the parts of the surficial aquifer that do not experience transient mounding have higher pH and larger concentrations of bicarbonate. These results suggest that an understanding of the hydrochemistry of seasonally ponded wetlands requires intensive study of the adjacent shallow groundwater-flow system. ?? 1993.

  10. Do Mangroves Subsidize Carbon to Adjacent Mudflat Fish Communities?

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Hartmann, J.; Staubwasser, M.; Hernandez, M. F.; West, L.; Midway, S. R.; Polito, M. J.

    2017-12-01

    Mangroves are often implicated as energetic sources for fisheries productivity. However, the validity of this connection still remains in contention. Stable isotopes may provide answers by tracking the use of specific basal carbon sources in fish and invertebrates living in mangrove-mudflat habitat mosaics. We analyzed 307 consumer samples representing n=44 fish and invertebrate species collected from mangrove forest creeks and adjacent mudflats in coastal Tanzania using bulk carbon and nitrogen stable isotope analysis. Given the proposed high productivity of mangrove habitats, we hypothesize that mudflat communities will have carbon stable isotope values similar to mangrove communities either through the flux of mangrove carbon into adjacent mudflats and/or via the movement of mudflat fish communities into and out of mangrove habitats. Alternatively, mangrove carbon is often refractory, which may result in mudflat communities with isotopic values that differ from those found in adjacent mangrove communities. This scenario would suggest limited carbon flow between mudflat and mangrove food webs and that the movement of fish into and out of mangrove habitats is related to shelter from predation more than feeding. Data analysis is ongoing to test these competing hypotheses. By understanding the contribution of mangrove carbon to adjacent habitats, managers in Tanzania can make better informed decisions regarding the protection of mangroves and the local fisheries, which are a crucial source of income and food.

  11. Modeling Compound Flood Hazards in Coastal Embayments

    NASA Astrophysics Data System (ADS)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the

  12. Distribution of chloride concentrations in the principal aquifers of the New Jersey coastal plain, 1977-81

    USGS Publications Warehouse

    Schaefer, F.L.

    1983-01-01

    The U.S. Geological Survey maintains a saltwater monitoring network in New Jersey to document and evaluate the movement of saline water into freshwater aquifers that serve as sources of water supply. Areas in the Coastal Plain with existing or potential saltwater intrusion are delineated. Data collected through 1981 indicate that freshwater aquifers in parts of seven Coastal-Plain counties are contaminated by saline water. Encroachment of saltwater into freshwater aquifers in the Sayreville area of Middlesex County and in the lower peninsula of Cape May County has been reported for about 40 years and is now more extensive. Several other areas are experiencing limited saltwater intrusion. These include the Keyport-Union Beach area in Monmouth County, areas along the Delaware estuary in Gloucester and Salem Counties, and at Point Pleasant Beach and Seaside Heights in Ocean County. The continuing updip movement of saline water in the Potomac-Raritan-Magothy aquifer system is also threatening existing freshwater supplies in the interior areas of Gloucester and Salem Counties. Saltwater intrusion has resulted from extensive ground-water withdrawals. The resultant freshwater head declines have caused reversals in the natural hydraulic gradients that permit inland movement of saline water from adjacent saltwater bodies. (USGS)

  13. Morphology and phylogeny of Triadinium polyedricum (Pouchet) Dodge (Dinophyceae) from Korean coastal waters

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Ho; Li, Zhun; Kim, Eun Song; Youn, Joo Yeon; Jeon, Seul Gi; Oh, Seok Jin; Lim, Weol-Ae

    2016-12-01

    To identify features that can be used to differentiate Triadinium polyedricum from other related species, such as Fukuyoa paulensis and Alexandrium species, the detailed morphology and phylogeny of T. polyedricum collected from Korean coastal waters were investigated. The cells had a plate formula of Po, 3', 7″, 5‴, 1p and 2″″, which is consistent with morphological descriptions in previous reports. Large subunit ribosomal DNA sequences also revealed that T. polyedricum from Korean coastal waters is identical to previously recorded isolates. T. polyedricum is morphologically characterized by a ventral pore in the 1″ plate that is comparable to F. paulensis and Alexandrium species. This result indicates that the location and presence of this ventral pore seems suitable for differentiating T. polyedricum from other related species.

  14. Corrosiveness of ground water in the Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain

    USGS Publications Warehouse

    Barringer, J.L.; Kish, G.R.; Velnich, A.J.

    1993-01-01

    Ground water from the unconfined part of the Kirkwood-Cohansey aquifer system in the New Jersey Coastal Plain typically is corrosive-- that is, it is acidic, soft, and has low concentrations of alkalinity. Corrosive ground water has the potential to leach trace elements and asbestos fibers from plumbing materials used in potable- water systems, thereby causing potentially harmful concentrations of these substances in drinking water. Corrosion indices were calculated from water-quality data for 370 wells in the unconfined Kirkwood-Cohansey aquifer system. Values of the Langelier Saturation Index are predominantly negative, indicating that the water is undersaturated with respect to calcium carbonate, and, therefore, is potentially corrosive. Values of the Aggressive Index, a similar estimator of the corrosiveness of water, range from 3.9 (highly corrosive) to 11.9 (moderately corrosive). The median Aggressive Index value calculated for the 370 wells is 6.0, a value that indicates that the water is highly corrosive. Moderately corrosive ground water is found in some coastal areas. Isolated instances of moderately corrosive water are found in northern Ocean County, and in Burlington, Camden, and Salem Counties. In the vicinity of Ocean County corrosion-index values change little with depth, but in Atlantic, Burlington, and Salem Counties the corrosiveness of ground water generally appears to decrease with depth. Analyses of standing tap water from newly constructed homes in the Coastal Plain show concentrations of lead and other trace elements are significantly higher than those in ambient ground water. The elevated trace-element concentrations are attributed to the corrosion of plumbing materials by ground water. Results of the tap-water analyses substantiate the corrosiveness of Kirkwood-Cohansey ground water, as estimated by corrosion-index values.

  15. Government conservation policies on Mexican coastal areas: is "top-down" management working?

    PubMed

    Nava, Héctor; Ramírez-Herrera, M Teresa

    2011-12-01

    Marine and terrestrial ecosystems are declining globally due to environmental degradation and poorly planned resource use. Traditionally, local government agencies have been responsible of the management of natural reserves to preserve biodiversity. Nonetheless, much of these approaches have failed, suggesting the development of more integrative strategies. In order to discuss the importance of a holistic approach in conservation initiatives, coastal and underwater landscape value and biological/environmental indicators of coral reef degradation were assessed using the study case of Zihuatanejo, Guerrero coastal area. This area shelters representative coral reef structures of the Eastern Pacific coast and its terrestrial biodiversity and archaeology enhance the high value of its coastal area. This study explored the landscape value of both terrestrial and marine ecosystems using the geomorphosite approach in two sites on the Zihuatanejo coastal area: Caleta de Chon and Manzanillo Beach. Sedimentation rate, water transparency, chlorophyll and total suspended solids were recorded underwater in each site for environmental characterization. 50 photo-quadrants on five transects were surveyed between 3-4m depth to record coverage (%) of living corals, dead corals, algae, sand and rocks. The conservation status of coral reefs was assessed by the coral mortality index (MI). Landscape values showed that both terrestrial and marine ecosystems had important scientific and aesthetic values, being Manzanillo Beach the site with the highest potential for conservation initiatives (TtV = 14.2). However, coral reefs face elevated sedimentation rates (up to 1.16 kg/m2d) and low water transparency (less of 5m) generated by coastal land use changes that have increased soil erosion in the adjacent coastal area. High coverage of dead corals (23.6%) and algae (up to 29%) confirm the low values in conservation status of coral reefs (MI = 0.5), reflecting a poorly-planned management

  16. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick

    2015-08-01

    For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.

  17. Estimating the beam attenuation coefficient in coastal waters from AVHRR imagery

    NASA Astrophysics Data System (ADS)

    Gould, Richard W.; Arnone, Robert A.

    1997-09-01

    This paper presents an algorithm to estimate particle beam attenuation at 660 nm ( cp660) in coastal areas using the red and near-infrared channels of the NOAA AVHRR satellite sensor. In situ reflectance spectra and cp660 measurements were collected at 23 stations in Case I and II waters during an April 1993 cruise in the northern Gulf of Mexico. The reflectance spectra were weighted by the spectral response of the AVHRR sensor and integrated over the channel 1 waveband to estimate the atmospherically corrected signal recorded by the satellite. An empirical relationship between integrated reflectance and cp660 values was derived with a linear correlation coefficient of 0.88. Because the AVHRR sensor requires a strong channel 1 signal, the algorithm is applicable in highly turbid areas ( cp660 > 1.5 m -1) where scattering from suspended sediment strongly controls the shape and magnitude of the red (550-650 nm) reflectance spectrum. The algorithm was tested on a data set collected 2 years later in different coastal waters in the northern Gulf of Mexico and satellite estimates of cp660 averaged within 37% of measured values. Application of the algorithm provides daily images of nearshore regions at 1 km resolution for evaluating processes affecting ocean color distribution patterns (tides, winds, currents, river discharge). Further validation and refinement of the algorithm are in progress to permit quantitative application in other coastal areas. Published by Elsevier Science Ltd

  18. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane; Kudela, Raphael; Hooker, Stanford; Morrow, John; Russell, Philip; Palacios, Sherry; Livingston, John M.; Negrey, Kendra; Torres-Perez, Juan; Broughton, Jennifer

    2014-01-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of

  19. [Distribution of polycyclic aromatic hydrocarbons in water and sediment from Zhoushan coastal area, China].

    PubMed

    Jiang, Min; Tuan, Le Huy; Mei, Wei-Ping; Ruan, Hui-Hui; Wu, Hao

    2014-07-01

    The spatial and temporal distribution of 16 polycyclic aromatic hydrocarbons (PAHs) has been investigated in water and sediments of Zhoushan coastal area every two months in 2012. The concentrations of total PAHs ranged from 382.3 to 816.9 ng x L(-1), with the mean value of 552.5 ng x L(-1) in water; whereas it ranged from 1017.9 to 3047.1 ng x g(-1), with the mean value of 2 022.4 ng x g(-1) in sediment. Spatial distribution showed that Yangshan and Yanwoshan offshore area had the maximum and minimum of total PAHs contents in water, while the maximum and minimum occurred at Yangshan and Zhujiajian Nansha offshore area in sediment. Temporal distribution revealed that total PAHs contents in water reached the maximum and minimum values in October and June, however in sediments these values were found in August and June, respectively. The PAHs pollution was affected by oil emission, charcoal and coal combustion. Using the biological threshold and exceeded coefficient method to assess the ecological risk of PAHs in Zhoushan coastal area, the result showed that sigma PAHs had a lower probability of potential risk, while there was a higher probability of potential risk for acenaphthylene monomer, and there might be ecological risk for acenaphthene and fluorene. Distribution of PAHs between sediment and water showed that Zhoushan coastal sediment enriched a lot of PAHs, meanwhile the enrichment coefficient (K(d) value) of sediment in Daishan island was larger than that in Zhoushan main island.

  20. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006-2012).

    PubMed

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-11-19

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 10(5), 3.1 × 10(6) and 2.8 × 10(5) tons, respectively, while in 2006, the nutrient load was 7.4 × 10(5), 2.2 × 10(6) and 1.6 × 10(5) tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 10(5) tons), 70% of TN (2.2 × 10(6) tons) and 87% of TP (2.5 × 10(5) tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger.

  1. National Coastal Condition Assessment Report 2010

    EPA Science Inventory

    This National Coastal Condition Assessment 2010 (NCCA 2010) is the fifth in a series of reports assessing the condition of the coastal waters of the United States, including a vast array of estuarine, Great Lakes, and coastal embayment waters. It is part of the National Aquatic R...

  2. A new methodology to assess antimicrobial resistance of bacteria in coastal waters; pilot study in a Mediterranean hydrosystem

    NASA Astrophysics Data System (ADS)

    Almakki, Ayad; Estèves, Kevin; Vanhove, Audrey S.; Mosser, Thomas; Aujoulat, Fabien; Marchandin, Hélène; Toubiana, Mylène; Monfort, Patrick; Jumas-Bilak, Estelle; Licznar-Fajardo, Patricia

    2017-10-01

    The global resistome of coastal waters has been less studied than that of other waters, including marine ones. Here we develop an original method for characterizing the antimicrobial resistance of bacterial communities in coastal waters. The method combines the determination of a new parameter, the community Inhibitory Concentration (c-IC) of antibiotics (ATBs), and the description of the taxonomic richness of the resistant bacteria. We test the method in a Mediterranean hydrosystem, in the Montpellier region, France. Three types of waters are analyzed: near coastal river waters (Lez), lagoon brackish waters (Mauguio), and lake freshwaters (Salagou). Bacterial communities are grown in vitro in various conditions of temperature, salinity, and ATB concentrations. From these experiments, we determine the concentrations of ATB that decrease the bacterial community abundance by 50% (c-IC50) and by 90% (c-IC90). In parallel, we determine the taxonomic repertory of the resistant growing bacteria communities (repertory of Operational Taxonomic Units [OTU]). Temperature and salinity influence the abundance of the cultivable bacteria in presence of ATBs and hence the c-ICs. Very low ATB concentrations can decrease the bacterial abundance significantly. Beside a few ubiquitous genera (Bacillus, Pseudomonas, Shewanella, Vibrio), most resistant OTUs are specific of a type of water. In brackish water, resistant OTUs are more diverse and their community structure less vulnerable to ATBs than those in freshwater. We anticipate that c-IC measurement combined with taxonomic description can be applied to any littoral region to characterize the resistant bacterial communities in the coastal waters. This would help us to evaluate the vulnerability of aquatic ecosystems to antimicrobial pressure.

  3. The "shallow-waterness" of the wave climate in European coastal regions

    NASA Astrophysics Data System (ADS)

    Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind

    2017-07-01

    In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.

  4. Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.

    1996-01-01

    Field and laboratory evidence shows that deeply buried (90-888 m) fine-grained sediments of the Atlantic Coastal Plain contain viable acetogenic microorganisms, and that these microorganisms actively produce organic acids. Concentrations of formate, acetate, and propionate in pore waters extracted from fine-grained sediments ranged from 50 ??M to 5 mM and were much higher than in adjacent pore waters associated with sandy sediments (<2 ??M). Laboratory studies showed that asceptically cored fine-grained sediments incubated under a H2 atmosphere produced formate and acetate, and that H14CO-3 was converted to 14C-acetate and 14C-formate over time. An enrichment culture of these acetogenic microorganisms was recovered from one long-term incubation that showed the presence of several morphologically distinct gram-positive, rod-shaped bacteria. These microorganisms were capable of growth under autotrophic (H2 + CO2), heterotrophic (syringate), and mixotrophic (H2 + CO2 + syringate) conditions. These results suggest that microbial acetogenesis, rather than abiotic processes, is the most important organic acid-producing mechanism during low-temperature (???30 ??C) diagenesis of Atlantic Coastal Plain sediments.

  5. STRUCTURE AND FUNCTION OF ANTHROPOGENICALLY ALTERED MICROBIAL COMMUNITIES IN COASTAL WATERS. (R825243)

    EPA Science Inventory

    Human-based (anthropogenic) nutrient and other pollutant enrichment of the world's coastal waters is causing unprecedented changes in microbial community structure and function. Symptoms of these changes include accelerating eutrophication, the proliferation of harmful microal...

  6. Evidence of chronic anthropogenic nutrient within coastal lagoon reefs adjacent to urban and tourism centers, Kenya: A stable isotope approach.

    PubMed

    Mwaura, Jelvas; Umezawa, Yu; Nakamura, Takashi; Kamau, Joseph

    2017-06-30

    The source of anthropogenic nutrient and its spatial extent in three fringing reefs with differing human population gradients in Kenya were investigated using stable isotope approaches. Nutrient concentrations and nitrate-δ 15 N in seepage water indicated that population density and tourism contributed greatly to the extent of nutrient loading to adjacent reefs. Although water-column nutrient analyses did not show any significant difference among the reefs, higher δ 15 N and N contents in macrophytes showed terrestrial nutrients affected primary producers in onshore areas in Nyali and Bamburi reefs, but were mitigated by offshore water intrusion especially at Nyali. On the offshore reef flat, where the same species of macroalgae were not available, complementary use of δ 15 N in sedimentary organic matter suggested inputs of nutrients originated from the urban city of Mombasa. If population increases in the future, nutrient conditions in the shallower reef, Vipingo, may be dramatically degraded due to lower water exchange ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Summary of hydraulic properties of the Floridan Aquifer system in coastal Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Leeth, David C.; Taylor-Harris, DaVette; Painter, Jaime A.; Labowski, James L.

    2005-01-01

    Hydraulic-property data for the Floridan aquifer system and equivalent clastic sediments in a 67-county area of coastal Georgia and adjacent parts of South Carolina and Florida were evaluated to provide data necessary for development of ground-water flow and solute-transport models. Data include transmissivity at 324 wells, storage coefficient at 115 wells, and vertical hydraulic conductivity of 72 core samples from 27 sites. Hydraulic properties of the Upper Floridan aquifer vary greatly in the study area due to the heterogeneity (and locally to anisotropy) of the aquifer and to variations in the degree of confinement provided by confining units. Prominent structural features in the areathe Southeast Georgia Embayment, the Beaufort Arch, and the Gulf Troughinfluence the thickness and hydraulic properties of the sediments comprising the Floridan aquifer system. Transmissivity of the Upper Floridan aquifer and equivalent updip units was compiled for 239 wells and ranges from 530 feet squared per day (ft2/d) at Beaufort County, South Carolina, to 600,000 ft2/d in Coffee County, Georgia. In carbonate rock settings of the lower Coastal Plain, transmissivity of the Upper Floridan aquifer generally is greater than 20,000 ft2/d, with values exceeding 100,000 ft2/d in the southeastern and southwestern parts of the study area (generally coinciding with the area of greatest aquifer thickness). Transmissivity of the Upper Floridan aquifer generally is less than 10,000 ft2/d in and near the upper Coastal Plain, where the aquifer is thin and consists largely of clastic sediments, and in the vicinity of the Gulf Trough, where the aquifer consists of low permeability rocks and sediments. Large variability in the range of transmissivity in Camden and Glynn Counties, Georgia, and Nassau County, Florida, demonstrates the anisotropic distribution of hydraulic properties that may result from fractures or solution openings in the carbonate rocks. Storage coefficient of the Upper

  8. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    PubMed Central

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain

    2008-01-01

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach. PMID:27879929

  9. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters.

    PubMed

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain

    2008-07-10

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.

  10. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  11. Applications of MODIS Fluorescence Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity in Coastal and Estuarine Waters

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Ryan, J. P.; Moreno-Madriñán, M. J.

    2012-12-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS), calibration updates, improved aerosol retrievals, and new aerosol models have led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean-color. This has opened the way for studying coastal ocean phenomena and processes at finer spatial scales. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and increases in local concentrations of phytoplankton, which could result in harmful algal blooms. In two case studies we present improved and validated MODIS coastal observations of fluorescence line height (FLH) to: (1) assess trends in water quality for Tampa Bay, Florida; and (2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California, as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and imagery from Tampa Bay, we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout this large, optically complex estuarine system. A systematic analysis of sampling sites throughout the bay illustrates that the correlations between FLH and in situ chlorophyll-a are influenced by water quality parameters of total nitrogen, total phosphorous, turbidity and biological oxygen demand. Sites that correlated well with satellite imagery were in depths

  12. Hydrology of Cache Valley, Cache County, Utah, and adjacent part of Idaho, with emphasis on simulation of ground-water flow

    USGS Publications Warehouse

    Kariya, Kim A.; Roark, D. Michael; Hanson, Karen M.

    1994-01-01

    A hydrologic investigation of Cache Valley was done to better understand the ground-water system in unconsolidated basin-fill deposits and the interaction between ground water and surface water. Ground-water recharge occurs by infiltration of precipitation and unconsumed irrigation water, seepage from canals and streams, and subsurface inflow from adjacent consolidated rock and adjacent unconsolidated basin-fill deposit ground-water systems. Ground-water discharge occurs as seepage to streams and reservoirs, spring discharge, evapotranspiration, and withdrawal from wells.Water levels declined during 1984-90. Less-than-average precipitation during 1987-90 and increased pumping from irrigation and public-supply wells contributed to the declines.A ground-water-flow model was used to simulate flow in the unconsolidated basin-fill deposits. Data primarily from 1969 were used to calibrate the model to steady-state conditions. Transient-state calibration was done by simulating ground-water conditions on a yearly basis for 1982-90.A hypothetical simulation in which the dry conditions of 1990 were continued for 5 years projected an average lO-foot water-level decline between Richmond and Hyrum. When increased pumpage was simulated by adding three well fields, each pumping 10 cubic feet per second, in the Logan, Smithfield, and College Ward areas, water-level declines greater than 10 feet were projected in most of the southeastern part of the valley and discharge from springs and seepage to streams and reservoirs decreased.

  13. Spaceborne imaging spectrometer for environmental assessment of the coastal ocean

    NASA Astrophysics Data System (ADS)

    Davis, Curtiss O.

    1996-10-01

    With half of the world's population living within 50 km of the coastal ocean the coast and adjacent land areas are heavily used for recreation, and for frequently conflicting uses, such as, fisheries, oil and gas production, disposal of wastes, transportation and naval operations. Coastal ecosystems are sensitive, highly productive systems which are being heavily impacted by human activities, but which are not adequately sampled by any present or planned spaceborne remote sensing system. To remedy that situation we propose building a coastal ocean imaging spectrometer (COIS) with adequate spectral and spatial resolution and high signal to noise to provide long term monitoring and real-time characterization of the coastal environment. COIS would provide a snapshot of the effects of human activities and natural processes, including runoff, tides, currents and storms, on the distributions of phytoplankton, suspended sediments, colored dissolved organic matter, including sediment resuspension and changes in bathymetry. COIS will also be an excellent tool to assess changing land use practices and the health of corps and natural vegetation on the adjacent land areas. This paper reviews the scientific rationale for such an instrument, and the recent scientific and engineering innovations that make it possible to build a small inexpensive spaceborne instrument to meet these requirements.

  14. NATIONAL COASTAL CONDITION REPORT IV | Science ...

    EPA Pesticide Factsheets

    The National Coastal Condition Report IV (NCCR IV) is the fourth in a series of environmental assessments of U.S. coastal waters and the Great Lakes. The report includes assessments of all the nation’s estuaries in the contiguous 48 states and Puerto Rico, south-eastern Alaska, Hawaii, the U.S. Virgin Islands, Guam, and American Samoa. The NCCR IV presents four main types of data: (1) coastal monitoring data, (2) coastal ocean/ offshore monitoring data, (3) offshore fisheries data, and (4) assessment and advisory data (new to NCCR IV). The NCCR IV relies heavily on coastal monitoring data from EPA’s National Coastal Assessment (NCA) to assess coastal condition by evaluating five indicators of condition—water quality, sediment quality, benthic community condition, coastal habitat loss, and fish tissue contaminants. To assess and report on the condition of the nation's coastal resources

  15. Rainwater Harvesting-based Safe Water Access in Diarrhea-endemic Coastal Communities of Bangladesh under Threats of Climate Change

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Redwan, A. M.; Ali, M. A.; Alam, M.; Jutla, A.; Colwell, R. R.

    2014-12-01

    The highly populated coastal floodplains of the Bengal Delta have a long history of water-related natural calamities such as droughts, floods, and cyclones. Population centers along the floodplain corridors of the GBM (Ganges-Brahmaputra-Meghna) river system remain vulnerable to such natural hazards and waterborne epidemic outbreaks due to increasing intensity and changing frequency of extreme events over many areas in the delta region. Such changes in hydrologic extremes and resulting environmental conditions would likely lengthen the transmission seasons of prevalent waterborne diseases and alter their geographic range as well as seasonality. In addition, the combination of changing upstream precipitation and temperature, and coastal sea-level rise are exposing a vast area in Southwestern Bangladesh to increased diarrheal disease outbreaks due to higher salinity and water scarcity in the dry season as well as coastal flooding and water resources contamination in the wet season. It is thus essential to establish sustainable safe water access practices in these regions for the rural communities of low-income people. The impact of climate change in the recent past on the people of coastal rural areas of Bangladesh has been severe, and the water sector is one of its biggest victims. Previously, pond and groundwater sources were considered dependable, but salinity intrusion in both water resources have left the vulnerable people with only a few scarce ponds and forced them to depend more on rainwater than before. The poorest group is suffering the most for this crisis even though paying more of the percentage of their income especially in the dry season (December-March). As rainwater is their most preferred and dependable option during this part of the year, outbreaks of waterborne diseases can be minimized by installing rainwater harvesting systems with effective disinfection system at both household and community levels. In this study, we explore the technical

  16. Development of a Florida Coastal Mapping Program Through Local and Regional Coordination

    NASA Astrophysics Data System (ADS)

    Hapke, C. J.; Kramer, P. A.; Fetherston-Resch, E.; Baumstark, R.

    2017-12-01

    The State of Florida has the longest coastline in the contiguous United States (2,170 km). The coastal zone is heavily populated and contains 1,900 km of sandy beaches that support economically important recreation and tourism. Florida's waters also host important marine mineral resources, unique ecosystems, and the largest number of recreational boats and saltwater fishermen in the country. There is increasing need and demand for high resolution data of the coast and adjacent seafloor for resource and habitat mapping, understanding coastal vulnerability, evaluating performance of restoration projects, and many other coastal and marine spatial planning efforts. The Florida Coastal Mapping Program (FCMP), initiated in 2017 as a regional collaboration between four federal and three state agencies, has goals of establishing the priorities for high resolution seafloor mapping of Florida's coastal environment, and developing a strategy for leveraging funds to support mapping priorities set by stakeholders. We began by creating a comprehensive digital inventory of existing data (collected by government, the private sector, and academia) from 1 kilometer inland to the 200 meter isobath for a statewide geospatial database and gap analysis. Data types include coastal topography, bathymetry, and acoustic data such as sidescan sonar and subbottom profiles. Next, we will develop appropriate proposals and legislative budget requests in response to opportunities to collect priority data in high priority areas. Data collection will be undertaken by a combination of state and federal agencies. The FCMP effort will provide the critical baseline information that is required for characterizing changes to fragile ecosystems, assessing marine resources, and forecasting the impacts on coastal infrastructure and recreational beaches from future storms and sea-level rise.

  17. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    PubMed

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations.

    PubMed

    Tong, Yindong; Wang, Mengzhu; Bu, Xiaoge; Guo, Xin; Lin, Yan; Lin, Huiming; Li, Jing; Zhang, Wei; Wang, Xuejun

    2017-12-01

    We assessed mercury (Hg) pollution in China's coastal waters, including the Bohai Sea, the Yellow Sea, the East China Sea and the South China Sea, based on a nationwide dataset from 301 sampling sites. A methylmercury (MeHg) intake model for humans based on the marine food chain and human fish consumption was established to determine the linkage between water pollutants and the pollutant intake by humans. The predicted MeHg concentration in fish from the Bohai Sea was the highest among the four seas included in the study. The MeHg intake through dietary ingestion was dominant for the fish and was considerably higher than the MeHg intake through water respiration. The predicted MeHg concentrations in human blood in the coastal regions of China ranged from 1.37 to 2.77 μg/L for pregnant woman and from 0.43 to 1.00 μg/L for infants, respectively, based on different diet sources. The carnivorous fish consumption advisory for pregnant women was estimated to be 288-654 g per week to maintain MeHg concentrations in human blood at levels below the threshold level (4.4 μg/L established by the US Environmental Protection Agency). With a 50% increase in Hg concentrations in water in the Bohai Sea, the bioaccumulated MeHg concentration (4.5 μg/L) in the fish consumers will be higher than the threshold level. This study demonstrates the importance in controlling Hg pollution in China's coastal waters. An official recommendation guideline for the fish consumption rate and its sources will be necessary for vulnerable populations in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    NASA Astrophysics Data System (ADS)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  20. Numerical model of the circulation and dispersion in the east Adriatic coastal waters

    NASA Astrophysics Data System (ADS)

    Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan

    2017-04-01

    The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.

  1. Factors affecting the accumulation of phytoplankton biomass in Irish estuaries and nearshore coastal waters: A conceptual model

    NASA Astrophysics Data System (ADS)

    O'Boyle, Shane; Wilkes, Robert; McDermott, Georgina; Ní Longphuirt, Sorcha; Murray, Clare

    2015-03-01

    A multivariate statistical approach was used to investigate the response of phytoplankton in Irish estuaries and nearshore coastal waters to nutrient enrichment and to examine the factors which modulate this response. The analysis suggests that while many estuaries are nutrient-enriched, relatively few display phytoplankton-related symptoms of eutrophication as the response to nutrients is primarily affected by insufficient retention time, in some by inadequate light availability, and only rarely by both factors acting together. Nearshore coastal waters are nitrogen (N) and silica (Si) limited in summer, but in some nearshore waters along the south coast, where N is elevated, phosphorus (P) is potentially limiting. The reduction in P loadings to estuarine waters is likely to lead to an improvement in the eutrophication status of these mainly P-limited waters. The disproportionate reduction in loadings of P compared to N (52% versus 24%, since the early 1990s), and the potential weakening of the estuarine N filter, as eutrophication symptoms lessen, may result in the downstream movement of nitrogen to N-limited coastal waters. These findings support the view that an integrated dual-nutrient reduction strategy is required to address eutrophication along the freshwater-marine continuum. The outcome of the analysis is a conceptual model which is of direct value and use to water managers in determining the relative susceptibility of these waters to nutrient enrichment. This understanding can in turn be used to develop informed programmes of measures which are targeted and ultimately cost effective.

  2. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    USGS Publications Warehouse

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  3. Adaptation and application of multivariate AMBI (M-AMBI) in US coastal waters

    EPA Science Inventory

    The multivariate AMBI (M-AMBI) is an extension of the AZTI Marine Biotic Index (AMBI) that has been used extensively in Europe, but not in the United States. In a previous study, we adapted AMBI for use in US coastal waters (US AMBI), but saw biases in salinity and score distribu...

  4. ON THE WIND-INDUCED EXCHANGE BETWEEN INDIAN RIVER BAY, DELAWARE AND THE ADJACENT CONTINENTAL SHELF. (R826945)

    EPA Science Inventory

    The structure of the wind-induced exchange between Indian River Bay, Delaware and the adjacent continental shelf is examined based on current measurements made at the Indian River Inlet which represents the only conduit of exchange between the bay and the coastal ocean. Local ...

  5. Relationship between organic pollution and the occurrence of toxic Phytoplankton species in the Lebanese coastal waters

    NASA Astrophysics Data System (ADS)

    El Rahman Hassoun, Abed

    2017-04-01

    Aiming to evaluate the effects of organic pollution, environmental parameters and phytoplankton community were monitored during a two-year period (from April 2010 till March 2012) in the central coast of Lebanon in the Levantine Sub-basin. Data were collected for hydrological (temperature and salinity), chemical (nitrites, nitrates and phosphates), and biological (chlorophyll-a and phytoplankton populations) parameters. Our results show that temperature follows its normal seasonal and annual cycles, usually noted in the Lebanese coastal waters. Salinity presents spatial and temporal variations with low values (19.07 - 39.6) in the areas affected by continental inputs. Significant fluctuations (P < 0.05) of nutrients, Chl-a concentrations and density of total phytoplanktonic cells were observed between the sites and through the years. Moreover, a perturbation of the natural phytoplanktonic succession and an occurrence of toxic or potentially harmful algae were noticed in the polluted sites, reflecting the influence of wastewater effluents on the coastal seawater equilibrium and thus on the Lebanese marine biodiversity. This study sheds the light on the current environmental condition of few coastal areas which could facilitate the management of their pollution sources. Keywords: Organic pollution, phytoplankton community, toxic algae, coastal water quality, Lebanon, Mediterranean Sea.

  6. Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh.

    PubMed

    Islam, Md Atikul; Sakakibara, Hiroyuki; Karim, Md Rezaul; Sekine, Masahiko; Mahmud, Zahid Hayat

    2011-06-01

    This study was conducted to assess the bacteriological quality of alternative drinking water supply options in southwest coastal areas of Bangladesh. A total of 90 water samples were collected during both dry and wet seasons from household based rainwater harvesting systems (RWHSS), community based rain water harvesting systems (CRWHSs), pond-sand filters (PSFs) and ponds. The samples were evaluated for faecal coliform, Escherichia coli and Heterotrophic Plate Count, as well as Vibrio cholerae, Salmonella spp., Shigella spp. and Pseudomonas spp. Physico-chemical parameters (pH, electrical conductivity, and color) were also examined. In addition, sanitary inspections were conducted to identify faecal contamination sources. All options showed varying degrees of indicator bacterial contamination. The median E. coli concentrations measured for RWHSs, CRWHSS, PSFS, and ponds were 16, 7, 11, and 488 cfu/100 ml during the wet season, respectively. Vibrio cholerae 01/0139, Salmonella and Shigella spp. were not found in any samples. However, Vibrio cholerae Non-01/Non-0139 and Pseudomonas spp. were isolated from 74.4% and 91.1% of the water samples collected during the wet season. A maximum pH of 10.4 was found in CRWHSS. Estimation of the disease burden for all options in disability adjusted life years (DALYs) showed an increased disease burden during the wet season. According to sanitary inspections, poor maintenance and unprotected ponds were responsible for rainwater and PSF water contamination, respectively. The findings of the present study suggest that alternative drinking water supply options available in southwest coastal Bangladesh pose a substantial risk to public health.

  7. Carbon and Water Fluxes in a Drained Coastal Clearcut and a Pine Plantation in Eastern North Carolina

    Treesearch

    J. L. Deforest; Ge Sun; A. Noormets; J. Chen; Steve McNulty; M. Gavazzi; Devendra M. Amatya; R. W. Skaggs

    2006-01-01

    The effects of clear-cutting and cultivating for timber on ecosystem carbon and water fluxes were evaluated by comparative measurements of two drained coastal wetland systems in the North Carolina coastal plain. Measurements were conducted from January through September, 2005 in a recent clearcut (CC) of native hardwoods and a loblolly pine (Pinus tacda...

  8. Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE): A study in seasonally oligotrophic waters off the eastern U.S.

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Sedwick, P.; Mulholland, M. R.; Friedrichs, M. A.; Thompson, A. M.; Martins, D. K.; Bernhardt, P. W.; Herrmann, M.; Price, L. M.; Sohst, B. M.; Sookhdeo, C.; St-Laurent, P.; Widner, B.

    2016-02-01

    We carried out a program of process-oriented field measurements and biogeochemical modeling in oligotrophic coastal waters off the eastern U.S.—a region that currently receives high levels of atmospheric nitrogen deposition (AND)—to test whether wet AND events stimulate primary productivity and accumulation of algal biomass in coastal waters following summer storms. Our results from shipboard incubations and numerical modeling indicate that nitrogen in rain stimulated primary production in these waters during the summer of 2014. We will present isotopic, tracer, and modeling analyses that determine the relative roles of vertical mixing and atmospheric deposition during the wet AND events in two anticyclonic eddies north and south of the Gulf Stream. 3-D atmospheric and oceanic modeling results will also be presented, which allow the understanding gained during the summer 2014 field campaign to be applied to quantifying the role of atmospheric deposition throughout coastal waters of the eastern US over many years.

  9. Assessment of the Temporal Evolution of Storm Surge via Land to Water Isopleths in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Siverd, C. G.; Hagen, S. C.; Bilskie, M. V.; Braud, D.; Gao, S.; Peele, H.; Twilley, R.

    2017-12-01

    The low-lying coastal Louisiana deltaic landscape features an intricate system of fragmented wetlands, natural ridges, man-made navigation canals and flood protection infrastructure. Since 1900 and prior to the landfall of Hurricane Katrina in 2005, Louisiana lost approximately 480,000 ha (1,850 sq mi) of coastal wetlands and an additional 20,000 ha (77 sq mi) due to Katrina. This resulted in a total wetland storm protection value loss of USD 28.3 billion and USD 1.1 billion, respectively (Costanza 2008). To investigate the response of hurricane storm surge (e.g. peak water levels, inundation time and extent) through time due to land loss, hydrodynamic models that represent historical eras of the Louisiana coastal landscape were developed. Land:Water (L:W) isopleths (Gagliano 1970, 1971, Twilley 2016) have been calculated along the coast from the Sabine River to the Pearl River. These isopleths were utilized to create a simplified coastal landscape (bathymetry, topography, bottom roughness) representing circa 2010. Similar methodologies are employed with the objective of developing storm surge models that represent the coastal landscape for past eras. The goal is to temporally examine the evolution of storm surge along coastal Louisiana. The isopleths determined to best represent the Louisiana coast as a result of the methodology devised to develop the simple storm surge model for c.2010 are applied in the development of surge models for historical eras c.1930 and c.1970. The ADvaced CIRCulation (ADCIRC) code (Luettich 2004) is used to perform storm surge simulations with a predetermined suite of hurricane wind and pressure forcings. Hydrologic Unit Code 12 (HUC12) sub-watersheds provide geographical bounds to quantify mean maximum water surface elevations (WSEs), volume of inundation, and area of inundation. HUC12 sub-watersheds also provide a means to compare/contrast these quantified surge parameters on a HUC12-by-HUC12 basis for the c.1930, c.1970 and c.2010

  10. Factors regulating early life history dispersal of Atlantic cod (Gadus morhua) from coastal Newfoundland.

    PubMed

    Stanley, Ryan R E; deYoung, Brad; Snelgrove, Paul V R; Gregory, Robert S

    2013-01-01

    To understand coastal dispersal dynamics of Atlantic cod (Gadus morhua), we examined spatiotemporal egg and larval abundance patterns in coastal Newfoundland. In recent decades, Smith Sound, Trinity Bay has supported the largest known overwintering spawning aggregation of Atlantic cod in the region. We estimated spawning and dispersal characteristics for the Smith Sound-Trinity Bay system by fitting ichthyoplankton abundance data to environmentally-driven, simplified box models. Results show protracted spawning, with sharply increased egg production in early July, and limited dispersal from the Sound. The model for the entire spawning season indicates egg export from Smith Sound is 13%•day(-1) with a net mortality of 27%•day(-1). Eggs and larvae are consistently found in western Trinity Bay with little advection from the system. These patterns mirror particle tracking models that suggest residence times of 10-20 days, and circulation models indicating local gyres in Trinity Bay that act in concert with upwelling dynamics to retain eggs and larvae. Our results are among the first quantitative dispersal estimates from Smith Sound, linking this spawning stock to the adjacent coastal waters. These results illustrate the biophysical interplay regulating dispersal and connectivity originating from inshore spawning of coastal northwest Atlantic.

  11. Factors Regulating Early Life History Dispersal of Atlantic Cod (Gadus morhua) from Coastal Newfoundland

    PubMed Central

    Stanley, Ryan R. E.; deYoung, Brad; Snelgrove, Paul V. R.; Gregory, Robert S.

    2013-01-01

    To understand coastal dispersal dynamics of Atlantic cod (Gadus morhua), we examined spatiotemporal egg and larval abundance patterns in coastal Newfoundland. In recent decades, Smith Sound, Trinity Bay has supported the largest known overwintering spawning aggregation of Atlantic cod in the region. We estimated spawning and dispersal characteristics for the Smith Sound-Trinity Bay system by fitting ichthyoplankton abundance data to environmentally-driven, simplified box models. Results show protracted spawning, with sharply increased egg production in early July, and limited dispersal from the Sound. The model for the entire spawning season indicates egg export from Smith Sound is 13%•day−1 with a net mortality of 27%•day–1. Eggs and larvae are consistently found in western Trinity Bay with little advection from the system. These patterns mirror particle tracking models that suggest residence times of 10–20 days, and circulation models indicating local gyres in Trinity Bay that act in concert with upwelling dynamics to retain eggs and larvae. Our results are among the first quantitative dispersal estimates from Smith Sound, linking this spawning stock to the adjacent coastal waters. These results illustrate the biophysical interplay regulating dispersal and connectivity originating from inshore spawning of coastal northwest Atlantic. PMID:24058707

  12. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–2012)

    PubMed Central

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-01-01

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 105, 3.1 × 106 and 2.8 × 105 tons, respectively, while in 2006, the nutrient load was 7.4 × 105, 2.2 × 106 and 1.6 × 105 tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 105 tons), 70% of TN (2.2 × 106 tons) and 87% of TP (2.5 × 105 tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger. PMID:26582206

  13. Evaluation of Trace Metal Levels in Tissues of Two Commercial Fish Species in Kapar and Mersing Coastal Waters, Peninsular Malaysia

    PubMed Central

    Bashir, Fathi Alhashmi; Shuhaimi-Othman, Mohammad; Mazlan, A. G.

    2012-01-01

    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards. PMID:22046193

  14. Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling

    USGS Publications Warehouse

    Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.

    2001-01-01

    TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.

  15. Monsoon-induced changes in the size-fractionated phytoplankton biomass and production rate in the estuarine and coastal waters of southwest coast of India.

    PubMed

    Madhu, N V; Jyothibabu, R; Balachandran, K K

    2010-07-01

    Changes in the autotrophic pico- (0.2-2 microm), nano- (2-20 microm), and microplankton (>20 microm) biomass (chlorophyll a) and primary production were measured in the estuarine and coastal waters off Cochin, southwest coast of India during the onset and establishment of a monsoon. During this period, the estuary was dominated by nutrient-rich freshwater, whereas the coastal waters were characterized with higher salinity values (>30 psu) and less nutrients. The average surface chlorophyll a concentrations and primary production rates were higher in the estuary (average 13.7 mg m(-3) and 432 mgC m(-3) day(-1)) as compared to the coastal waters (5.3 mg m(-3) and 224 mgC m(-3) day(-1)). The nanoplankton community formed the major fraction of chlorophyll a and primary production, both in the estuary (average 85 +/- SD 8.3% and 81.2 +/- SD 3.2%) and the coastal waters (average 73.2 +/- SD 17.2% and 81.9 +/- 15.7%). Nanoplankton had the maximum photosynthetic efficiency in the coastal waters (average 4.8 +/- SD 3.9 mgC mgChl a m(-3) h(-1)), whereas in the estuary, the microplankton had higher photosynthetic efficiency (average 7.4 +/- 7 mgC mgChl a m(-3) h(-1)). The heavy cloud cover and increased water column turbidity not only limit the growth of large-sized phytoplankton in the Cochin estuary and coastal waters but also support the proliferation of nanoplankton community during the monsoon season, even though large variation in nanoplankton chlorophyll a and production exists between these two areas.

  16. Storms do not alter long-term watershed development influences on coastal water quality.

    PubMed

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Simulation of ground-water flow and movement of the freshwater-saltwater interface in the New Jersey coastal plain

    USGS Publications Warehouse

    Pope, Daryll A.; Gordon, Alison D.

    1999-01-01

    The confined aquifers of the New Jersey Coastal Plain are sands that range in thickness from 50 to 600 feet and are separated by confining units. The confining units are composed of silts and clays that range in thickness from 500 to 1,000 feet. The aquifers are recharged by precipitation on their outcrop areas. This water then flows laterally downdip and vertically to the deeper confined aquifers. The confined aquifers ultimately discharge to the Raritan and Delaware Bays and to the Atlantic Ocean. In 1988, ground-water withdrawals from confined and unconfined New Jersey Coastal Plain aquifers were approximately 345 million gallons per day, more than 75 percent of which was pumped from the confined aquifers. These withdrawals have created large cones of depression in several Coastal Plain aquifers near populated areas, particularly in Camden and Monmouth Counties. The continued decline of water levels in confined aquifers can cause saltwater intrusion, reduce stream discharge near the outcrop areas, and threaten the quality of the ground-water supply. SHARP, a quasi-three-dimensional finite-difference computer model that can simulate freshwater and saltwater flow, was used to simulate the ground-water flow system in the New Jersey Coastal Plain, including the location and movement of the freshwater-saltwater interface in nine aquifers and eight intervening confining units. The freshwater-saltwater interface is defined as the hypothetical line seaward of which the chloride concentration is equal to or greater than 10,000 milligrams per liter. Model simulations were used to estimate the location and movement of the freshwater-saltwater interface resulting from (1) eustatic sea-level changes over the past 84,000 years, (2) ground-water withdrawals from 1896 through 1988, (3) and future ground-water withdrawals from 1988 to 2040 from Coastal Plain aquifers. Simultion results showed that the location and movement of the freshwater-saltwater interface are more dependent

  18. Chemical Interactions of Uranium in Water, Sediments, and Plants Along a Watershed Adjacent to the Abandoned Jackpile Mine

    NASA Astrophysics Data System (ADS)

    Blake, J.; De Vore, C. L.; Avasarala, S.; Ali, A.; Roldan, C.; Bowers, F.; Spilde, M.; Artyushkova, K.; Cerrato, J.

    2015-12-01

    The chemical interactions, mobility, and plant uptake of uranium (U) near abandoned mine wastes was investigated along the Rio Paguate, adjacent to the Jackpile Mine, located in Laguna Pueblo, New Mexico. Elevated U concentrations in surface water adjacent to mine waste range from 30 to 710 μg/L seasonally and decrease to 5.77 to 10.0 μg/L at a wetland 4.5 kilometers downstream of the mine. Although U concentrations in stream water are elevated, aqua regia acid digestions performed on co-located stream bed and stream bank sediments reveal that there is limited U accumulation on sediments along the reach between the mine and wetland, with most sediment concentrations being near the 3 mg/kg crustal average. However, U concentrations in sediments in the wetland are 4 times the background concentrations in the area. Individual results from salt cedar roots, stems, and leaves collected along the river transect show higher U concentrations in the roots adjacent to the mine waste (20 and 55 mg/kg) and lower in the stems and leaves. Translocation values calculated below 1 are evident in many of the plant samples, suggesting that U root to shoot translocation is minimal and U is accumulating in the roots. Concentrations of U in salt cedar roots from downstream of the mine waste decrease to 15 mg/kg. X-ray photoelectron spectroscopy analysis on sediment samples adjacent to the mine waste show a 75:25% ratio of Fe(III) to Fe(II), which can have an effect on adsorption properties. Electron microprobe results suggest that the ore in this area is present as a uranium-phosphate phase. Our results suggest that dilution, uptake by plants, and U sorption to wetland sediments are the dominant factors that help to decrease the U concentrations downstream of the mine.

  19. Response of bacterial community structure to seasonal fluctuation and anthropogenic pollution on coastal water of Alang-Sosiya ship breaking yard, Bhavnagar, India.

    PubMed

    Patel, Vilas; Munot, Hitendra; Shouche, Yogesh S; Madamwar, Datta

    2014-06-01

    Bacterial community structure was analyzed from coastal water of Alang-Sosiya ship breaking yard (ASSBY), world's largest ship breaking yard, near Bhavnagar, using 16S rRNA gene sequencing (cultured dependent and culture independent). In clone libraries, total 2324 clones were retrieved from seven samples (coastal water of ASSBY for three seasons along with one pristine coastal water) which were grouped in 525 operational taxonomic units. Proteobacteria was found to be dominant in all samples. In pristine samples, Gammaproteobacteria was found to be dominant, whereas in polluted samples dominancy of Gammaproteobacteria has shifted to Betaproteobacteria and Epsilonproteobacteria. Richness and diversity indices also indicated that bacterial community in pristine sample was the most diverse followed by summer, monsoon and winter samples. To the best of knowledge, this is the first study describing bacterial community structure from coastal water of ASSBY, and it suggests that seasonal fluctuation and anthropogenic pollutions alters the bacterial community structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Storms do not alter long-term watershed development influences on coastal water quality

    EPA Science Inventory

    A twelve year (2000 − 2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially i...

  1. A coastal three-dimensional water quality model of nitrogen in Jiaozhou Bay linking field experiments with modelling.

    PubMed

    Lu, Dongliang; Li, Keqiang; Liang, Shengkang; Lin, Guohong; Wang, Xiulin

    2017-01-15

    With anthropogenic changes, the structure and quantity of nitrogen nutrients have changed in coastal ocean, which has dramatically influenced the water quality. Water quality modeling can contribute to the necessary scientific grounding of coastal management. In this paper, some of the dynamic functions and parameters of nitrogen were calibrated based on coastal field experiments covering the dynamic nitrogen processes in Jiaozhou Bay (JZB), including phytoplankton growth, respiration, and mortality; particulate nitrogen degradation; and dissolved organic nitrogen remineralization. The results of the field experiments and box model simulations showed good agreement (RSD=20%±2% and SI=0.77±0.04). A three-dimensional water quality model of nitrogen (3DWQMN) in JZB was improved and the dynamic parameters were updated according to field experiments. The 3DWQMN was validated based on observed data from 2012 to 2013, with good agreement (RSD=27±4%, SI=0.68±0.06, and K=0.48±0.04), which testifies to the model's credibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Real-time eutrophication status evaluation of coastal waters using support vector machine with grid search algorithm.

    PubMed

    Kong, Xianyu; Sun, Yuyan; Su, Rongguo; Shi, Xiaoyong

    2017-06-15

    The development of techniques for real-time monitoring of the eutrophication status of coastal waters is of great importance for realizing potential cost savings in coastal monitoring programs and providing timely advice for marine health management. In this study, a GS optimized SVM was proposed to model relationships between 6 easily measured parameters (DO, Chl-a, C1, C2, C3 and C4) and the TRIX index for rapidly assessing marine eutrophication states of coastal waters. The good predictive performance of the developed method was indicated by the R 2 between the measured and predicted values (0.92 for the training dataset and 0.91 for the validation dataset) at a 95% confidence level. The classification accuracy of the eutrophication status was 86.5% for the training dataset and 85.6% for the validation dataset. The results indicated that it is feasible to develop an SVM technique for timely evaluation of the eutrophication status by easily measured parameters. Copyright © 2017. Published by Elsevier Ltd.

  3. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    PubMed Central

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  4. National Coastal Condition Report IV Factsheet

    EPA Pesticide Factsheets

    Overall condition of the Nation’s coastal waters is fair. This rating is based on five indices of ecologicalcondition: water quality index, sediment quality index, benthic index, coastal habitat index, and fish tissue contaminants index.

  5. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters

    NASA Astrophysics Data System (ADS)

    Ges, Xavier; Bará, Salvador; García-Gil, Manuel; Zamorano, Jaime; Ribas, Salvador J.; Masana, Eduard

    2018-05-01

    Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the

  6. Effects of a small seagull colony on trophic status and primary production in a Mediterranean coastal system (Marinello ponds, Italy)

    NASA Astrophysics Data System (ADS)

    Signa, Geraldina; Mazzola, Antonio; Vizzini, Salvatrice

    2012-10-01

    Colonies of seabirds have been shown to influence nutrient cycling and primary production of coastal areas, but knowledge is still limited above all for smaller colonies. This study evaluates the influence of a small resident seagull colony (Larus michahellis Naumann, 1840) on a Mediterranean coastal system (Marinello ponds, Sicily, Italy). The presence of ornithogenic organic matter from seagull guano was first assessed at increasing distances from the colony using δ15N to indicate the effects of guano on the trophic status and primary production. The pond directly affected by guano deposition showed an anomalous water and sediment chemistry, especially regarding physico-chemical variables (pH), nitrogen isotopic signature, nutrient balance and phytoplankton biomass. These effects were not observed in the adjacent ponds, highlighting pronounced, small spatial-scale variability. Given the worldwide presence of seabird colonies and the scarcity of research on their effect on coastal marine areas, the study shows that seabird-mediated input may be important in influencing ecosystem dynamics of coastal areas, even where both the system in question and the colony are small.

  7. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model.

    PubMed

    Gao, Pei; Li, Zhengyan; Gibson, Mark; Gao, Huiwang

    2014-06-01

    Nonylphenol (NP) is an endocrine disruptor and causes feminization and carcinogenesis in various organisms. Consequently, the environmental distribution and ecological risks of NP have received wide concern. China accounts for approximately 10% of the total NP usage in the world, but the water quality criteria of NP have not been established in China and the ecological risks of this pollutant cannot be properly assessed. This study thus aims to determine the predicted no effect concentration (PNEC) of NP and to assess the ecological risks of NP in coastal waters of China with the PNEC as water quality criteria. To obtain the HC5 (hazardous concentration for 5% of biological species) and PNEC estimates, the species sensitivity distributions (SSDs) models were built with chronic toxicity data of NP on aquatic organisms screened from the US Environmental Protection Agency (USEPA) ECOTOX database. The results showed that the PNEC for NP in freshwater and seawater was 0.48 μg L(-1) and 0.28 μg L(-1), respectively. The RQ (risk quotient) values of NP in coastal waters of China ranged from 0.01 to 69.7. About 60% of the reported areas showed a high ecological risk with an RQ value ≥ 1.00. NP therefore exists ubiquitously in coastal waters of China and it poses various risks to aquatic ecosystems in the country. This study demonstrates that the SSD methodology can provide a feasible tool for the establishment of water quality criteria for emergent new pollutants when sufficient toxicity data is available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest.

    PubMed

    Baguskas, Sara A; Still, Christopher J; Fischer, Douglas T; D'Antonio, Carla M; King, Jennifer Y

    2016-05-01

    Fog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs. We place these measurements within a water balance framework that incorporates the varying climatic and soil property impacts on water budgets and deficit. We conducted our study at a coastal and an inland site within the largest stand of the regionally endemic bishop pine (Pinus muricata D. Don) on Santa Cruz Island. Our results show conclusively that summer drought negatively affects the water status of sapling more than adult trees and that sapling trees are also more responsive to changes in shallow soil moisture inputs from fog water deposition. Moreover, between the beginning and end of a large, late-season fog drip event, water status increased more for saplings than for adults. Relative to non-foggy conditions, we found that fog water reduces modeled peak water deficit by 80 and 70 % at the inland and coastal sites, respectively. Results from our study inform mechanistically based predictions of how population dynamics of this and other coastal species may be affected by a warmer, drier, and potentially less foggy future.

  9. DENITRIFICATION ENZYME ACTIVITY OF FRINGE SALT MARSHES IN NEW ENGLAND (USA)

    EPA Science Inventory

    Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seaso...

  10. THE NATIONAL COASTAL ASSESSMENT: PARTNERSHIP FOR SUCCESS COASTAL ZONE SYMPOSIUM, CLEVELAND, OH JULY 15-19, 2001

    EPA Science Inventory

    Partnering for Success (Abstract). Presented at Coastal Zone 01: Hands Across the Water - Linking Land, Lake, and Sea, 15-19 July 2001, Cleveland, OH. 1 p. (ERL,GB R843).

    The National Coastal Assessment (Coastal 2000) is a coastal monitoring survey that responds to the ne...

  11. Evaluating pond sand filter as sustainable drinking water supplier in the Southwest coastal region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Harun, M. A. Y. A.; Kabir, G. M. M.

    2013-03-01

    This study investigates existing water supply scenario, and evaluates the performance of pond sand filter (PSF) in meeting drinking water demand of Dacope Upazila in southwest coastal Bangladesh. Questionnaire survey to the villagers reveals that PSF is the major drinking water sources (38 %) of the study area followed by tubewells (30.4 %), rainwater harvesting (RWH) systems (12.6 %), ponds (10.3 %) and others (8.7 %). The spot test and laboratory analysis show that odour, colour, pH, dissolved oxygen, hardness, calcium, magnesium, nitrate, sulphate and phosphate of the PSFs water meet Bangladesh standard. The efficiency of PSF in reducing total dissolved solids (TDS) (15 %) and potassium (8.2 %) is not enough to meet the standard of 20 % PSFs for TDS and one-third PSFs for potassium. The study proves that PSF is unable to remove coliform bacteria by 100 % from highly contaminated water. Hence, disinfection should be adopted before distribution to ensure safe drinking water. Majority of the PSF's users (80 %) are either partially satisfied or dissatisfied with the existing system. The beneficiary's willingness to pay for drinking water technologies seems that the combination of PSF and RWH could ensure sustainable drinking water in coastal region of Bangladesh.

  12. Multivariate analysis of the influences of oceanic and meteorological processes on suspended particulate matter distributions in Mississippi coastal waters

    NASA Astrophysics Data System (ADS)

    O'Brien, S. J.; Fitzpatrick, P. J.; Dzwonkowski, B.; Dykstra, S. L.; Wallace, D. J.; Church, I.; Wiggert, J. D.

    2016-02-01

    The Mississippi Sound is influenced by a high volume of sediment discharge from the Biloxi River, Mobile Bay via Pas aux Herons, Pascagoula River, Pearl River, Wolf River, and Lake Pontchartrain through the Rigolets. The river discharge, variable wind speed, wind direction and tides have a significant impact on the turbidity and transport of sediments in the Sound. Level 1 Moderate Resolution Imaging Spectroradiometer (MODIS) data is processed to extract the remote sensing reflectance at the wavelength of 645 nm and binned into an 8-day composite at a resolution of 500 m. The study uses a regional ocean color algorithm to compute suspended particulate matter (SPM) concentration based on these 8-day composite images. Multivariate analysis is applied between the SPM and time series of tides, wind, turbidity and river discharge measured at federal and academic institutions' stations and moorings. The multivariate analysis also includes in situ measurements of suspended sediment concentration and advective exchanges through the Mississippi Sound's tidal inlets between the coastal shelf and the nearshore estuarine waters. Mechanisms underlying the observed spatiotemporal distribution of SPM, including material exchange between the Sound and adjacent shelf waters, will be explored. The results of this study will contribute to current understanding of exchange mechanisms and pathways with the Mississippi Bight via the Mississippi Sound's tidal inlets.

  13. A Science Plan for a Comprehensive Regional Assessment of the Atlantic Coastal Plain Aquifer System in Maryland

    USGS Publications Warehouse

    Shedlock, Robert J.; Bolton, David W.; Cleaves, Emery T.; Gerhart, James M.; Nardi, Mark R.

    2007-01-01

    The Maryland Coastal Plain region is, at present, largely dependent upon ground water for its water supply. Decades of increasing pumpage have caused ground-water levels in parts of the Maryland Coastal Plain to decline by as much as 2 feet per year in some areas of southern Maryland. Continued declines at this rate could affect the long-term sustainability of ground-water resources in Maryland's heavily populated Coastal Plain communities and the agricultural industry of the Eastern Shore. In response to a recommendation in 2004 by the Advisory Committee on the Management and Protection of the State's Water Resources, the Maryland Geological Survey and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information and new data management and analysis tools for the State to use in allocating ground water in the Coastal Plain. The comprehensive assessment has five goals aimed at improving the current information and tools used to understand the resource potential of the aquifer system: (1) document the geologic and hydrologic characteristics of the aquifer system in the Maryland Coastal Plain and appropriate areas of adjacent states; (2) conduct detailed studies of the regional ground-water-flow system and water budget for the aquifer system; (3) improve documentation of patterns of water quality in all Coastal Plain aquifers, including the distribution of saltwater; (4) enhance ground-water-level, streamflow, and water-quality-monitoring networks in the Maryland Coastal Plain; and (5) develop science-based tools to facilitate sound management of the ground-water resources in the Maryland Coastal Plain. The assessment, as designed, will be conducted in three phases and if fully implemented, is expected to take 7 to 8 years to complete. Phase I, which was initiated in January 2006, is an effort to assemble all the information and investigation tools needed to do a more comprehensive assessment of

  14. Spatial and Temporal Monitoring of Dissolved Oxygen (DO) in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  15. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    PubMed

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.

  16. How climate change threats water resource: the case of the Thau coastal lagoon (Mediterranean Sea, France)

    NASA Astrophysics Data System (ADS)

    La Jeunesse, Isabelle; Sellami, Haykel; Cirelli, Claudia

    2014-05-01

    The latest reports of the intergovernmental panel on climate change explained that the Mediterranean regions are especially vulnerable to the impacts of climate change. These latest are expected to have strong impacts on the management of water resources and on regional economies. The aim of this paper is to discuss impacts of climate changes on the Thau case study in relation to the evolution of water balance, water uses and adaptation to climate change. The Thau coastal lagoon is located in the Mediterranean coast in south of France in the Languedoc-Roussillon Region. Economic activities are diverse from shellfish farming, fertilizers industries to agriculture and tourism. However, tourism and shellfish farming are of major importance for local economy. If tourism is mainly turned to the Sea coast, shellfishes grow within the lagoon and rely on water quality. Previous studies have demonstrated the link between the coastal lagoon water quality and inputs of freshwater from the catchment. Thus, changes in rainfalls, runoff and water balance would not only affect water uses but also water quality. Climate changes projections are presented following the implementation of 4 downscaled climatic models. Impacts on water balance are modelled with SWAT (Soil Water Assessment Tool) for 2041-2070 compared to the 1971-2000 reference period. The decrease of precipitations and water balance will impact discharges and thus decrease the freshwater inputs to the coastal lagoon. A study of water uses conducted in interactions with stakeholders within the Thau area has permitted to assess both current and evolution of water uses. It has revealed local water resources are depleting while water demand is increasing and is planned to continue to increase in the really near future. To prevent water scarcity events, mainly due to the climate change context, the Regional authorities have connected the catchment to the Rhône river to import water. The conclusion of this study is while

  17. Transport of terrigenous polycyclic aromatic hydrocarbons affected by the coastal upwelling in the northwestern coast of South China Sea.

    PubMed

    Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong

    2017-10-01

    Coastal upwelling prevails in the coast of Hainan Island, the northern South China Sea (SCS) during summer. We studied the influences of the upwelling on the horizontal and vertical transport of terrigenous polycyclic aromatic hydrocarbons (PAHs). PAHs in dissolved and suspended particulate phase of water samples were determined in the upper (depth < 1 m) and water column (depth > 10 m). PAH levels decreased sharply from inshore to offshore to open sea. The results showed that terrestrial input was the main source of coastal PAHs. Perylene, an important indicator of land plant-derived PAH, showed the significant correlation with PAHs (p < 0.005). This implied that fluvial transport was the primary pathway of terrigenous PAHs into the coast of northern SCS. Variations of the concentrations, compositions and diagnostic ratios of PAHs, accompanied the partition equilibrium in the water column, could indicate the selective degradation of PAHs by the plankton affected by upwelling. Different from the "traditional" transport pathway of PAHs in the water column (surface enrichment-depth depletion distribution), the upwelling could provide the original driver to elevate the upward diffusion of sediment entrained contaminants towards the intermediate even the upper waters. It could also enhance the outward diffusion of terrigenous PAHs accompanied by the offshore transport of the upper waters. Therefore, the transport pathway of PAHs can be summarized by the coastal upwelling rising PAHs with their subsequent transport offshore and settling in the adjacent open sea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dinitrogen Fixation Within and Adjacent to Oxygen Deficient Waters of the Eastern Tropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Widner, B.; Mulholland, M. R.; Bernhardt, P. W.; Chang, B. X.; Jayakumar, A.

    2016-02-01

    Recent work suggests that planktonic diazotrophs are geographically more widely distributed than previously thought including relatively warm (14-23oC) aphotic oxygenated pelagic waters and in aphotic waters within oxygen deficient zones. Because the volume of aphotic water in the ocean is large and may increase in the future, if dinitrogen (N2) fixation is widely occurring at sub-euphotic depths, this could result in a dramatic upward revision of global nitrogen (N) inputs via this process. N2 fixation rates were measured during a cruise in the Eastern Tropical South Pacific using stable isotope tracer techniques that account for slow gas dissolution. Results are compared with light, nutrient, and oxygen gradients (and necessarily temperature gradients). In addition, rates of N2 fixation made in vertical profiles within and above oxygen deficient waters are compared with those measured in vertical profiles adjacent to oxygen deficient waters. Results suggest that while rates of N2 fixation were measurable in deeper anoxic waters, volumetric N2 fixation rates were higher in surface waters.

  19. Water quality impacts from on-site waste disposal systems to coastal areas through groundwater discharge

    NASA Astrophysics Data System (ADS)

    Harris, P. J.

    1995-12-01

    This report summarizes research studies linking on-site waste disposal systems (OSDS) to pathogen and nutrient concentrations in groundwater with the potential to impact coastal embayments. Few studies connect OSDS to coastal water quality. Most studies examined pathogen and nutrient impacts to groundwater and omitted estimations of contaminants discharged to surface water. The majority of studies focused on nitrogen, with little information on pathogens and even less on phosphorus. Nitrogen discharged from OSDS poses the greatest threat to water quality. Vertical distance of septic tank infiltration system from the water table, septic system design, and siting remain the key components in minimizing potential impacts from OSDS for control of both pathogens and nutrients. The most comprehensive information connecting nutrient contributions from OSDS to surface water quality was the study conducted on Buttermilk Bay in Massachusetts where 74% of nitrogen to the bay was attributed to onsite disposal systems. In conclusion, further studies on the viability and transport of pathogens and nutrients through the groundwater aquifer and across the groundwater/surface-water interface are needed. Additional research on the importance of septic system design on the availability of contaminants to groundwater as well as the minimum distance between the septic system and water table necessary to protect groundwater are also indicated.

  20. Methods of eutrophication assessment in the context of the water framework directive: Examples from the Eastern Mediterranean coastal areas

    NASA Astrophysics Data System (ADS)

    Pavlidou, Alexandra; Simboura, Nomiki; Rousselaki, Eleni; Tsapakis, Manolis; Pagou, Kalliopi; Drakopoulou, Paraskevi; Assimakopoulou, Georgia; Kontoyiannis, Harilaos; Panayotidis, Panayotis

    2015-10-01

    A set of methodological tools were tested in order to assess the eutrophication quality of selected coastal areas in Eastern Mediterranean Sea, Greece, in the context of the Water Framework Directive under various anthropogenic pressures. Three, five-step tools, namely, TRIX, chlorophyll-a (chl-a) biomass classification scheme, and eutrophication index (E.I.) were applied in oligotrophic waters for (a) the whole water column and (b) the euphotic zone. The relationship among the eutrophication assessment indices and the ecological quality status (EcoQ) assessment indices for benthic macroinvertebrates (BENTIX index) and macroalgae (ecological evaluation index-EEIc) was also explored. Agricultural activities and mariculture are the pressures mostly related to the eutrophication assessment of the selected Greek coastal water bodies. Chl-a proved to be the criterion with the best overall correlation with the EcoQ indices, while TRIX with the lowest. Moreover, among the eutrophication indices, E.I. showed better overall agreement with BENTIX showing that probably it reflects the indirect relation of macroinvertebrates with water eutrophication in a better way. Among the eutrophication indices used, TRIX rather overestimated the eutrophication status of the selected coastal areas. The first stage of eutrophication was reflected more efficiently using E.I. than TRIX, but E.I. seems to be a rather sensitive index. A future modification of the high to good boundary of E.I. may be needed in order to demonstrate the high status of the relatively undisturbed Greek coastal sites.

  1. A benchmark-multi-disciplinary study of the interaction between the Chesapeake Bay and adjacent waters of the Virginian Sea

    NASA Technical Reports Server (NTRS)

    Hargis, W. J., Jr.

    1981-01-01

    The social and economic importance of estuaries are discussed. Major focus is on the Chesapeake Bay and its interaction with the adjacent waters of the Virginia Sea. Associated multiple use development and management problems as well as their internal physical, geological, chemical, and biological complexities are described.

  2. National Coastal Condition Assessment

    EPA Pesticide Factsheets

    It is important to monitor coastal waters for potentially harmful trends and to identify areas in good condition. That is the purpose of the National Coastal Condition Assessment, which EPA conducts every few years.

  3. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    PubMed Central

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  4. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    PubMed

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  5. Integrated Hydrological Modeling for Water Resources Management of Heeia Coastal Wetland in Hawaii

    NASA Astrophysics Data System (ADS)

    Ghazal, Kariem A.

    The integrated hydrological models are an important tools that can be used to assess the water resources availability and sustainability for food security and ecological health of the coastal regions. In addition, such models are useful in assessing the current and future water budget under different conditions of climate and land use changes. This study addresses the Heeia Wetlands Restoration whereby different scenarios were developed to assess the effects of land cover change (LU), climate change (CL), and sea level rise (SLR) on the water balance components (WBCs), fresh water submarine groundwater discharge (FSGD), seawater intrusion, dissolved silicate (DSi) fluxes, and heat transport within the Heeia Coastal Wetland. The watershed (SWAT) model, the groundwater flow (MODFLOW) model, and the density dependent groundwater flow (SEAWAT) model were utilized in this integrated approach. The SWAT model was used to assess the impact of CL and LU on the WBCs. The LU mainly focused on the conversion of a fallow wetland covered by california grass (invasive plant) to taro field (native plant). The groundwater recharge of the SWAT model output was used as input for both the steady state and transient-MODFLOW model to study the interaction between surface water and groundwater and its effect on the FSGD within the Watershed. The SEAWAT model was used to study the seawater intrusion, DSi fluxes and cold groundwater transport under several CL, LU, and SLR scenarios. The results indicated that the baseflow was the main components of the Heeia streamflow, especially during dry season. The annual recharge, surface runoff, lateral flow and ET comprised about 34%, 6%, 15%, and 45% of the annual rainfall, respectively. The WBCs were more impacted in the late of 2080s compared to the 2050s period. To understand the comprehensive relationships between coastal hydrological processes and ecosystems, the FSGD was estimated under different scenarios of LU, CL, and SLR. The current

  6. NATIONAL COASTAL ASSESSMENT

    EPA Science Inventory

    The purpose of the National Coastal Assessment (NCA) is to estimate the status and trends of the condition of the nation's coastal resources on a state, regional and national basis. Based on NCA monitoring from 1999-2001, 100% of the nation's estuarine waters (at over 2500 locati...

  7. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: a case study for the Minho region

    NASA Astrophysics Data System (ADS)

    Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.

    2012-04-01

    Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water

  8. Ground water contamination and costs of pesticide restrictions in the southeastern coastal plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danielson, L.E.; Carlson, G.A.; Liu, S.

    The project developed new methodology for estimating: (1) groundwater contamination potential (GWCP) in the Southeast Coastal Plain, and (2) the potential economic impacts of selected policies that restrict pesticide use. The potential for ground water contamination was estimated by use of a simple matrix for combining ratings for both soil leaching potential and pesticide leaching potential. Key soil variables included soil texture, soil acidity and organic matter content. Key pesticide characteristics included Koc, pesticide half-life, the rate of application and the fraction of the pesticide hitting the soil. Comparisons of pesticide use from various farmer and expert opinion surveys weremore » made for pesticide groups and for individual pesticide products. Methodology for merging the GWCP changes and lost benefits from selected herbicide cancellations was developed using corn production in the North Carolina Coastal Plain. Economic evaluations of pesticide cancellations for corn included national and Coastal Plain estimates for atrazine; metolachlor; dicamba; dicamba and atrazine; and dicamba, atrazine and metolachlor.« less

  9. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  10. Avoiding the Water-Climate-Poverty Trap: Adaptive Risk Management for Bangladesh's Coastal Embankments

    NASA Astrophysics Data System (ADS)

    Hall, J. W.

    2015-12-01

    Our recent research on water security (Sadoff et al., 2015, Dadson et al., 2015) has revealed the dynamic relationship between water security and human well-being. A version of this dynamic is materialising in the coastal polder areas of Khulna, Bangladesh. Repeated coastal floods increase salinity, wipe out agricultural yields for several years and increase out-migration. As a tool to help inform and target future cycles of investment in improvements to the coastal embankments, in this paper we propose a dynamical model of biophysical processes and human well-being, which downscales our previous research to the Khulna region. State variables in the model include agricultural production, population, life expectancy and child mortality. Possible infrastructure interventions include embankment improvements, groundwater wells and drainage infrastructure. Hazard factors include flooding, salinization and drinking water pollution. Our system model can be used to inform adaptation decision making by testing the dynamical response of the system to a range of possible policy interventions, under uncertain future conditions. The analysis is intended to target investment and enable adaptive resource reallocation based on learning about the system response to interventions over the seven years of our research programme. The methodology and paper will demonstrate the complex interplay of factors that determine system vulnerability to climate change. The role of climate change uncertainties (in terms of mean sea level rise and storm surge frequency) will be evaluated alongside multiple other uncertain factors that determine system response. Adaptive management in a 'learning system' will be promoted as a mechanism for coping with climate uncertainties. References:Dadson, S., Hall, J.W., Garrick, D., Sadoff, C. and Grey, D. Water security, risk and economic growth: lessons from a dynamical systems model, Global Environmental Change, in review.Sadoff, C.W., Hall, J.W., Grey, D

  11. Evaluating the Economic and Social Benefits of Nutrient Reductions in Coastal New England Waters

    EPA Science Inventory

    New England’s coastal social-ecological systems are subject to chronic environmental problems, including water quality degradation. Researchers at EPA’s Office of Research and Development (ORD) Atlantic Ecology Division (AED) are piloting an effort to further understand how reduc...

  12. The geographical conditions of intensity of salty waters intrusions to coastal lakes on Polish Southern Baltic coast

    NASA Astrophysics Data System (ADS)

    Cieslinski, R.

    2009-04-01

    Lakes situated on the coast of the southern Baltic function in different conditions than those in which typically inland reservoirs occur. They are situated in the contact zone of two environments: land and sea. These reservoirs together with their direct catchments form specific hydrographic arrangement, in which the course of physical, chemical and biological processes depends on the fact which of these two environments exerts a stronger influence at a given moment. This is important as the lakes situated in the shore zone of the southern Baltic are not exposed to phenomena caused by constant tides, as it is the case in open seas (Ataie-Ashtiani et al., 1999), but only to extreme hydrometeorological conditions, which lead to the formation of the phenomenon of intrusions of sea waters and of damming the free outflow of potamic waters (Demirel, 2004; Cieśliński, Drwal, 2005). What should also be remembered are the local hydrographic, hydrological and morphometric conditions. As a result of intrusions, in the waters of coastal lakes, apart from inland waters there are also waters of sea origin. The proportions of these genetically distinct waters are variable and differ in individual lakes (Grassi, Netti, 2000; Drwal, Cieśliński, 2007). Despite the difference in the causal factor triggering the phenomenon of salt water intrusions, the effect is usually the same as that observed, for instance, in lakes and lagoons of seas with tides (Ishitobi et al., 1999; De Louw, Oude Essink, 2001) and poorly flushed lagoon (Hsing-Juh et al., 2006) or estuaries (Uncles et al., 2002), though the scale of qualitative changes is greater in the case of open seas than in half-closed and closed seas. The status of the research carried out so far enables proposing a hypothesis that chlorides concentrations, as the best indicators for establishing the occurrence of the phenomenon of intrusions, depend not only on the meteorological factor but in some of the lakes on various

  13. Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

    PubMed Central

    Vargas-González, Héctor Hugo; Arreola-Lizárraga, José Alfredo; Mendoza-Salgado, Renato Arturo; Méndez-Rodríguez, Lía Celina; Lechuga-Deveze, Carlos Hernando; Padilla-Arredondo, Gustavo; Cordoba-Matson, Miguel

    2014-01-01

    This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr−1 and 811 ton P yr−1 and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove. PMID:24711731

  14. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    USGS Publications Warehouse

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the

  15. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  16. Toxic heavy metals in sediments, seawater, and molluscs in the eastern and western coastal waters of Guangdong Province, South China.

    PubMed

    Zhang, Ling; Shi, Zhen; Zhang, Jingping; Jiang, Zhijian; Wang, Fei; Huang, Xiaoping

    2016-05-01

    Heavy metal concentrations and distribution were studied in sediments, seawater, and molluscs, and the possible heavy metal sources in the coastal waters of Guangdong Province, South China were discussed. The results showed that the concentrations of Cu, Pb, Zn, and Cr in sediments in eastern coastal waters were generally higher than those in the western coastal waters. However, concentrations of most metals in seawater and molluscs in western waters were higher than in the eastern waters, which was tightly related to the local economics and urbanization development, especially, the different industrial structure in two regions. The main heavy metal sources were attributed to the industrial and agricultural effluent, domestic sewage, and even waste gas. Furthermore, heavy metal contamination assessment indicated that high contamination levels of Cd, Zn, and Pb occurred in sediments in local areas, especially in the bays and harbors. The metal accumulation levels by molluscs ranked following the order of Cd > Cu > As > Zn > Pb > Cr, and the ecological risks introduced by heavy metals in different areas were in the order of Zhanjiang > Yangmao > Shantou > Shanhui.

  17. Movement patterns of Brook Trout in a restored coastal stream system in southern Massachusetts

    USGS Publications Warehouse

    Snook, Erin L.; Letcher, Benjamin H.; Dubreuil, Todd L.; Zydlewski, Joseph D.; O'Donnell, Matthew J.; Whiteley, Andrew R.; Hurley, Stephen T.; Danylchuk, Andy J.

    2016-01-01

    Coastal Brook Trout (Salvelinus fontinalis) populations are found from northern Canada to New England. The extent of anadromy generally decreases with latitude, but the ecology and movements of more southern populations are poorly understood. We conducted a 33-month acoustic telemetry study of Brook Trout in Red Brook, MA, and adjacent Buttermilk Bay (marine system) using 16 fixed acoustic receivers and surgically implanting acoustic transmitters in 84 individuals. Tagged Brook Trout used the stream, estuary (50% of individuals) and bay (10% of individuals). Movements into full sea water were brief when occurring. GAMM models revealed that transitions between habitat areas occurred most often in spring and fall. Environmental data suggest that use of the saline environment is limited by summer temperatures in the bay. Movements may also be related to moon phase. Compared to more northern coastal populations of Brook Trout, the Red Brook population appears to be less anadromous overall, yet the estuarine segment of the system may have considerable ecological importance as a food resource.

  18. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  19. Impacts of preferential flow on coastal groundwater-surface water interactions: The heterogeneous volcanic aquifer of Hawaii

    NASA Astrophysics Data System (ADS)

    Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.

    2017-12-01

    Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.

  20. Coastal circulation and sediment dynamics in Hanalei Bay, Kauai. Part I: Measurements of waves, currents, temperature, salinity and turbidity : June - August, 2005

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Kathy; Logan, Joshua B.; Field, Michael E.

    2006-01-01

    Introduction: High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, northern Kauai, Hawaii, during the summer of 2005 to better understand coastal circulation and sediment dynamics in coral reef habitats. A series of bottom-mounted instrument packages were deployed in water depths of 10 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. These data were supplemented with a series of vertical instrument casts to characterize the vertical and spatial variability in water column properties within the bay. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties vary spatially and temporally in an embayment that hosts a nearshore coral reef ecosystem adjacent to a major river drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the first part in a series, describes data acquisition, processing and analysis.