Sample records for adjacent ridge segments

  1. PROPAGATION AND LINKAGE OF OCEANIC RIDGE SEGMENTS.

    USGS Publications Warehouse

    Pollard, David D.; Aydin, Atilla

    1984-01-01

    An investigation was made of spreading ridges and the development of structures that link ridge segments using an analogy between ridges and cracks in elastic plates. The ridge-propagation force and a path factor that controls propagation direction were calculated for echelon ridge segments propagating toward each other. The ridge-propagation force increases as ridge ends approach but then declines sharply as the ends pass, so ridge segments may overlap somewhat. The sign of the path factor changes as ridge ends approach and pass, so the overlapping ridge ends may diverge and then converge following a hook-shaped path. The magnitudes of shear stresses in the plane of the plate and orientations of maximum shear planes between adjacent ridge segments were calculated to study transform faulting. For different loading conditions simulating ridge push, plate pull, and ridge suction, a zone of intense mechanical interaction between adjacent ridge ends in which stresses are concentrated was identified. The magnitudes of mean stresses in the plane of the plate and orientations of principal stress planes were also calculated.

  2. Volcanic/Tectonic Characteristics of First and Second Order Segments and Ridge Discontinuities `Under the Hot-spot Influence' - TOBI Imagery from the Central Indian Ridge (CIR) Adjacent to the Rodriguez System.

    NASA Astrophysics Data System (ADS)

    Parson, L.; Murton, B.; Sauter, D.; Curewitz, D.; Okino, K.; German, C.; Leven, J.

    2001-12-01

    Deeptow sidescan sonar data (TOBI, 30kHz) acquired over more than 200 km of the Central Indian Ridge during RRS Charles Darwin cruise CD127 reveal an abundance of neovolcanic activity throughout both spreading segments and ridge non-transform discontinuities alike. Imagery of the previously unsurveyed northern section of the CIR immediately south of the Marie Celeste Fracture Zone confirms the presence of a shallow, magmatically inflated second order segment that is only recently rifted, with a rift floor surfaced throughout by virtually untectonised planar sheet flow units. First and second order segments exhibit a significant component of sheeted extrusives, ponded or in lake form, abutting or overstepped by hummocky and mounded pillow constructs. Non-transform discontinuities are commonly cut by fresh axial volcanic ridges oblique to both axial trend and offset. The depths of segment centers range from 2600m to more than 3700m, and segment forms include robust, hour-glass and rifted/starved end-members - but their overall extrusive pattern is strikingly invariant. Fracture Zone offsets of up to 65 kilometres are tectonically dominated, but their intersections with the axis are often mantled by multiple sheet flows rather than the relatively low proportions of sediment cover. The largest offsets are marked by outcrops of multiple, subparallel displacement surfaces, actively eroding transverse ridges, and ridge transform intersections with classic propagation/recession fabrics - each suggesting some instability in regional plate kinematics. While it is tempting to speculate that the Rodrigues hotspot appears to have a regional effect, enhancing magmatic delivery to the adjacent ridge and offset system, the apparent breadth of influence from what is assumed to be a rather feeble mantle anomaly is problematic.

  3. Effects on Ridge Segmentation, Magmatic Plumbing and Eruption Style Caused by Weak Hot-spot to Ridge Interaction: the Central Indian Ridge and Rodrigues Hot-spot Couplet.

    NASA Astrophysics Data System (ADS)

    Murton, B. J.; Parson, L. M.; Sauter, D.

    2001-12-01

    The intermediate spreading, Central Indian Ridge (CIR) forms a couplet with a weak hot-spot of which the Rodrigues archipelago is an expression. Recently collected bathymetry shows that despite having little in the way of a significant topographic swell, the hot-spot is associated with a change in offset sense across adjacent transforms of the CIR causing the ridge to draw nearer to the Rodrigues island system. The most proximal ridge segment of the CIR is over 20km long and comprises three non-transform bounded sub-segments. The most northerly sub-segment has a shallow (<3000m), narrow (<5km) and featureless flat rift valley. TOBI sidescan sonar imagery shows that the segment is host to a 15km-long, 5km-wide single sheet flow. Elsewhere in the segment the valley floor is characterised by long (>5km), narrow (<1km) ridges that often terminate in conical seamounts. These ridges are the loci of some of the acoustically freshest volcanic facies in the rift valley. Samples recovered from these ridges have similar petrology along strike. With increasing distance south along the CIR, the ridge segments are typically 500m deeper than to the north. Here they are about 75km long and bounded by transform offsets that are 50 km long. However, even in the deepest parts of these segments, where the axial floor is over 4000m deep at the ridge-transform-intersections, there is fresh lava and other evidence for abundant volcanic activity. Within these segments, the rift valley comprises mainly seamounts and hummocky volcanic features. We believe the westward stepping trend of the CIR towards the Rodrigues islands is a function of the hot spot. The elevated temperature and volatile content to the west reduces mantle viscosity which, combined with thinner and hence weaker lithosphere, influencec the loci of initial oceanic rifting and the relative position of the ridge axis. The unusually great length of the northern segment has a similar origin with the presence of thin and weak

  4. Segmentation Control on Crustal Accretion: Insights From the Chile Ridge

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Karsten, J. L.; Milman, M. S.; Klein, E. M.

    2002-12-01

    Controls on crustal accretion at mid-ocean ridges include spreading rate and mantle temperature and composition. Less studied is the effect of the segmentation geometry, although it has been known for some time that large offset transforms have significant effects on the extent of melting and lava compositions produced by ridges in their vicinity. The PANORAMA 4 expedition surveyed the Chile Ridge between 36°-43°S in order to examine the effects of ridge segmentation on crustal accretion. This section of the ridge is spreading uniformly at intermediate rates (~53 mm/yr) and rock sampling and regional data indicate a largely uniform mantle composition with no systematic changes in mantle thermal structure. Thus the segmentation geometry is the primary crustal accretion variable. The survey mapped and sampled 19 first order ridge segments and their transform offsets. The ridges range from 130 to 10 km in length with mapped transform offsets from 168 to 19 km. The segments primarily have axial valley morphology, with segments longer than ~65 km typically displaying central highs deepening toward segment ends. Mantle Bouguer anomalies (MBAs) show that these segments also have bulls eye lows associated with the central highs indicating thicker crust than at segment ends. Overall the mapped segments displays a trend of increasing depth and MBA, implying diminishing crustal production, with decreasing segment length and increasing transform offset. We examine the cause of this trend by modeling the mantle flow pattern generated by finite length ridge segments using the Phipps-Morgan and Forsyth (1988) algorithm. The results indicate that at a constant spreading rate mantle upwelling rates are greatest and extend deeper near the segment center, and that for segments that are significantly offset, upwelling rates decrease overall with decreasing segment length. The modeling implies that segmentation itself, even without cooling and lithospheric relief at transforms has a

  5. A systematic review of definitions and classification systems of adjacent segment pathology.

    PubMed

    Kraemer, Paul; Fehlings, Michael G; Hashimoto, Robin; Lee, Michael J; Anderson, Paul A; Chapman, Jens R; Raich, Annie; Norvell, Daniel C

    2012-10-15

    Systematic review. To undertake a systematic review to determine how "adjacent segment degeneration," "adjacent segment disease," or clinical pathological processes that serve as surrogates for adjacent segment pathology are classified and defined in the peer-reviewed literature. Adjacent segment degeneration and adjacent segment disease are terms referring to degenerative changes known to occur after reconstructive spine surgery, most commonly at an immediately adjacent functional spinal unit. These can include disc degeneration, instability, spinal stenosis, facet degeneration, and deformity. The true incidence and clinical impact of degenerative changes at the adjacent segment is unclear because there is lack of a universally accepted classification system that rigorously addresses clinical and radiological issues. A systematic review of the English language literature was undertaken and articles were classified using the Grades of Recommendation Assessment, Development, and Evaluation criteria. RESULTS.: Seven classification systems of spinal degeneration, including degeneration at the adjacent segment, were identified. None have been evaluated for reliability or validity specific to patients with degeneration at the adjacent segment. The ways in which terms related to adjacent segment "degeneration" or "disease" are defined in the peer-reviewed literature are highly variable. On the basis of the systematic review presented in this article, no formal classification system for either cervical or thoracolumbar adjacent segment disorders currently exists. No recommendations regarding the use of current classification of degeneration at any segments can be made based on the available literature. A new comprehensive definition for adjacent segment pathology (ASP, the now preferred terminology) has been proposed in this Focus Issue, which reflects the diverse pathology observed at functional spinal units adjacent to previous spinal reconstruction and balances

  6. Evolution of fine scale segmentation at intermediate ridges: example of Alarcon Rise and Endeavour Segment.

    NASA Astrophysics Data System (ADS)

    Le Saout, M.; Clague, D. A.; Paduan, J. B.; Caress, D. W.

    2016-12-01

    Mid-ocean ridges are marked by a segmentation of the axis and underlying magmatic system. Fine-scale segmentation is mainly studied along fast spreading ridges. Here we analyze the evolution of the 3rd and 4th order segmentation along two intermediate spreading centers, characterized by contrasting morphologies. Alarcon Rise, with a full spreading rate of 49 mm/yr, is characterized by an axial high and a relatively narrow axial summit trough. Endeavour segment has a spreading rate of 52.5 mm/yr and is represented by a wide axial valley affected by numerous faults. These two ridges are characterized by high and low volcanic periods, respectively. The segmentation is analyzed using high-resolution bathymetric cross-sections perpendicular to the axes. These profiles are 1200-m-long for Alarcon Rise and 2400-m-long at Endeavour Segment and are 100 m apart. The discontinuity order is based on variations, from either side of each offset, in: 1/the geometry and orientation of the axial summit trough or graben 2/ the lava morphology, and 3/ the distribution of hydrothermal vents. Alarcon Rise is marked by a recent southeast jump in volcanic activity. The comparison between actual and previous segmentation reveals a rapid evolution of the 3rd order segmentation in the most active part of the ridge, with a lengthening of the central 3rd segment of 8 km over 3-4 ky. However, no relation is observed in the 4th order segmentation before and after the axis jump. Along Endeavour, traces of the previous 3rd order discontinuities are still perceptible on the walls of the graben. This 3rd order segmentation has persisted at least during the last 4.5 ky. Indeed, it is visible in the distribution of the recent hydrothermal vents observed in the axial valley as well as in the segmentation of the axial magma lens. Analysis of the two ridges suggests that small-scale segmentation varies primarily during high magmatic phases.

  7. Alkalic Basalt in Ridge Axis of 53˚E Amagmatic Segment Center, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wang, J.; Liu, Y.; Ji, F.; Dick, H. J.

    2014-12-01

    Mid-ocean ridge basalt (MORB) is key tracer of composition and process in the mantle. It is interesting to notice that some alkalic basalts occur in amagmatic spreading center of ultraslow spreading ridges, for examples, 9-16˚E of the Southwest Indian ridge (Standish et al., 2008) and Lena Trough of Arctic Ocean (Snow et al., 2011). The latter is interpreted as the result of the pre-existence of continental transform fault or the especially cold thermal structure of ancient continental lithosphere. 53˚E segment, east of the Gallieni transform fault, was discovered as an amagmatic segment (Zhou and Dick, 2013). On both sides of the ridge axis, peridotites with a little gabbro are exposed in an area more than 3200 km2. Basalts exist in the southern portion of 53˚E segment, indicating the transformation from magmatic to amagmatic spreading about 9.4 million years ago. In April of 2014, Leg 4 of the RV Dayang Yihao cruise 30, basaltic glasses was dredged at one location (3500 m water depth) in the ridge axis of 53˚E segment center. It is shown by electric probe analysis that the samples have extremely high sodium content (4.0-4.49 wt% Na­2O ), relative higher potassium content (0.27-0.32 wt% K2O) and silica (50.67-51.87 wt% SiO2), and lower MgO content (5.9-6.4 wt% MgO). Mg-number is 0.55-0.59. It is distinctly different from the N-MORB (2.42-2.68 wt% Na2O, 0.03-0.06 wt% K2O, 48.6-49.6 wt% Si2O, 8.8-9.0 wt% MgO, Mg-numbers 0.63) distributed in the 560-km-long supersegment, west of the Gallieni transform fault, where the active Dragon Flag hydrothermal field was discovered at 49.6˚E in 2007. The reasons for the alkalic basalt in the ridge axis of 53˚E amagmatic segment center, either by low melting degree of garnet stability field, by melting from an ancient subcontinental lithospheric mantle, or by sodium-metasomatism or even other mantle processes or their combination in the deep mantle, are under further studies.

  8. Lumbar intervertebral disc allograft transplantation: long-term mobility and impact on the adjacent segments.

    PubMed

    Huang, Yong-Can; Xiao, Jun; Lu, William W; Leung, Victor Y L; Hu, Yong; Luk, Keith D K

    2017-03-01

    Fresh-frozen intervertebral disc (IVD) allograft transplantation has been successfully performed in the human cervical spine. Whether this non-fusion technology could truly decrease adjacent segment disease is still unknown. This study evaluated the long-term mobility of the IVD-transplanted segment and the impact on the adjacent spinal segments in a goat model. Twelve goats were used. IVD allograft transplantation was performed at lumbar L4/L5 in 5 goats; the other 7 goats were used as the untreated control (5) and for the supply of allografts (2). Post-operation lateral radiographs of the lumbar spine in the neutral, full-flexion and full-extension positions were taken at 1, 3, 6, 9 and 12 months. Disc height (DH) of the allograft and the adjacent levels was calculated and range of motion (ROM) was measured using the Cobb's method. The anatomy of the adjacent discs was observed histologically. DH of the transplanted segment was decreased significantly after 3 months but no further reduction was recorded until the final follow-up. No obvious alteration was seen in the ROM of the transplanted segment at different time points with the ROM at 12 months being comparable to that of the untreated control. The DH and ROM in the adjacent segments were well maintained during the whole observation period. At post-operative 12 months, the ROM of the adjacent levels was similar to that of the untreated control and the anatomical morphology was well preserved. Lumbar IVD allograft transplantation in goats could restore the segmental mobility and did not negatively affect the adjacent segments after 12 months.

  9. Adjacent segment disease after instrumented fusion for adult lumbar spondylolisthesis: Incidence and risk factors.

    PubMed

    Zhong, Zhao-Ming; Deviren, Vedat; Tay, Bobby; Burch, Shane; Berven, Sigurd H

    2017-05-01

    A potential long-term complication of lumbar fusion is the development of adjacent segment disease (ASD), which may necessitate second surgery and adversely affect outcomes. The objective of this is to determine the incidence of ASD following instrumented fusion in adult patients with lumbar spondylolisthesis and to identify the risk factors for this complication. We retrospectively assessed adult patients who had undergone decompression and instrumented fusion for lumbar spondylolisthesis between January 2006 and December 2012. The incidence of ASD was analyzed. Potential risk factors included the patient-related factors, surgery-related factors, and radiographic variables such as sagittal alignment, preexisting disc degeneration and spinal stenosis at the adjacent segment. A total of 154 patients (mean age, 58.4 years) were included. Mean duration of follow-up was 28.6 months. Eighteen patients (11.7%) underwent a reoperation for ASD; 15 patients had reoperation at cranial ASD and 3 at caudal ASD. The simultaneous decompression at adjacent segment (p=0.002) and preexisting spinal stenosis at cranial adjacent segment (p=0.01) were identified as risk factors for ASD. The occurrence of ASD was not affected by patient-related factors, the types, grades and levels of spondylolisthesis, surgical approach, fusion procedures, levels of fusion, number of levels fused, types of bone graft, use of bone morphogenetic proteins, sagittal alignment, preexisting adjacent disc degeneration and preexisting spinal stenosis at caudal adjacent segments. Our findings suggest the overall incidence of ASD is 11.7% in adult patients with lumbar spondylolisthesis after decompression and instrumented fusion at a mean follow-up of 28.6 months, the simultaneous decompression at the adjacent segment and preexisting spinal stenosis at cranial adjacent segment are risk factors for ASD. Copyright © 2017. Published by Elsevier B.V.

  10. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study

    PubMed Central

    Kiapour, Ali; Yerby, Scott A.; Goel, Vijay K.

    2015-01-01

    Background Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. Methods An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. Results The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Conclusions Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated. PMID:26767156

  11. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.

    PubMed

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2015-01-01

    Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated.

  12. Volcanic Eruptions of the EPR and Ridge Axis Segmentation: An Interdisciplinary View

    NASA Astrophysics Data System (ADS)

    White, S.; Soule, S. A.; Tolstoy, M.; Waldhauser, F.; Rubin, K.

    2008-12-01

    The eruption of the EPR in 2005-06 provides an ideal window into the relationship between fine-scale segmentation of the ridge axis and individual eruptive episodes. Lava flow mapping of the eruption by visual and acoustic images, precise dates on multiple eruptive units, stress information from seismicity, long-term records of hydrothermal activity, and well known segment boundaries illustrate the relationships between eruptions and segmentation of mid-ocean ridges. Lava flows emerged from several sections of the axial summit trough (AST) during the eruption, presumably from en echelon fissures between 9 45'N and 9 57'N. Each en echelon fissure is a 4th order segment, and the overall area matches the 3rd Order segment between ~9 45'N and ~9 58'N. Within the eruption, the primary eruptive fissure jumped east by 600 m at 9 53'N, and ran along an inward facing fault scarp, although limited lava effusion also extended northward along the axial fissure. A zone of high seismicity connects the normal fault bounding the eastern fissure eruption with the main locus of eruption on the ridge axis to the south, suggesting that the offset eruption may have occurred in response to stress buildup on this fault. Radiometric ages indicate that the entire along-axis extent of the eruptive fissures activated initially, but that volcanic activity focused to a single fourth-order segment within 1-3 months. Previously indentified breaks in the AST and its overall outline were largely unchanged by the eruption. These observations support the hypothesis that fourth-order segments are offsets controlled by the mechanics of dike emplacement, whereas third-order segments represent discrete volcanic systems. Dike segmentation may be controlled by variations in underlying ridge structure or the magma reservoir. Hydrothermal systems disrupted as far south as 9 37'N may be responding to cracking due to stress interaction or share a common deeper magmatic source. Comparisons between the 1991 EPR

  13. Ridge Segmentation, Tectonic Evolution and Rheology of Slow-Spreading Oceanic Crust

    DTIC Science & Technology

    1996-09-01

    important source of motivation, information, and geological field trips (remember Canarias , HeMn3’?). Dave Aubrey guided me on my first steps in Woods Hole... volcanic Ruppel, C., and P. Shaw. An elastic plate thickness map of the Mid- segmentation of the Mid-Atlantic Ridge: Kane to Atlantis Fracture Atlantic Ridge...76, 156, 1995. Smith, D. K., J. R. Cann, M. E. Dougherty, J. Lin, J. Keeton, E. McAllister, C. J. MacLeod and S. Spencer, Mid-Atlantic ridge volcanism

  14. Off- and Along-Axis Slow Spreading Ridge Segment Characters: Insights From 3d Thermal Modeling

    NASA Astrophysics Data System (ADS)

    Gac, S.; Tisseau, C.; Dyment, J.

    2001-12-01

    Many observations along the Mid-Atlantic Ridge segments suggest a correlation between surface characters (length, axial morphology) and the thermal state of the segment. Thibaud et al. (1998) classify segments according to their thermal state: "colder" segments shorter than 30 km show a weak magmatic activity, and "hotter" segments as long as 90 km show a robust magmatic activity. The existence of such a correlation suggests that the thermal structure of a slow spreading ridge segment explains most of the surface observations. Here we test the physical coherence of such an integrated thermal model and evaluate it quantitatively. The different kinds of segment would constitute different phases in a segment evolution, the segment evolving progressively from a "colder" to a "hotter" so to a "colder" state. Here we test the consistency of such an evolution scheme. To test these hypotheses we have developed a 3D numerical model for the thermal structure and evolution of a slow spreading ridge segment. The thermal structure is controlled by the geometry and the dimensions of a permanently hot zone, imposed beneath the segment center, where is simulated the adiabatic ascent of magmatic material. To compare the model with the observations several geophysic quantities which depend on the thermal state are simulated: crustal thickness variations along axis, gravity anomalies (reflecting density variations) and earthquake maximum depth (corresponding to the 750° C isotherm depth). The thermal structure of a particular segment is constrained by comparing the simulated quantities to the real ones. Considering realistic magnetization parameters, the magnetic anomalies generated from the same thermal structure and evolution reproduce the observed magnetic anomaly amplitude variations along the segment. The thermal structures accounting for observations are determined for each kind of segment (from "colder" to "hotter"). The evolution of the thermal structure from the "colder" to

  15. Best Merge Region Growing Segmentation with Integrated Non-Adjacent Region Object Aggregation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Tarabalka, Yuliya; Montesano, Paul M.; Gofman, Emanuel

    2012-01-01

    Best merge region growing normally produces segmentations with closed connected region objects. Recognizing that spectrally similar objects often appear in spatially separate locations, we present an approach for tightly integrating best merge region growing with non-adjacent region object aggregation, which we call Hierarchical Segmentation or HSeg. However, the original implementation of non-adjacent region object aggregation in HSeg required excessive computing time even for moderately sized images because of the required intercomparison of each region with all other regions. This problem was previously addressed by a recursive approximation of HSeg, called RHSeg. In this paper we introduce a refined implementation of non-adjacent region object aggregation in HSeg that reduces the computational requirements of HSeg without resorting to the recursive approximation. In this refinement, HSeg s region inter-comparisons among non-adjacent regions are limited to regions of a dynamically determined minimum size. We show that this refined version of HSeg can process moderately sized images in about the same amount of time as RHSeg incorporating the original HSeg. Nonetheless, RHSeg is still required for processing very large images due to its lower computer memory requirements and amenability to parallel processing. We then note a limitation of RHSeg with the original HSeg for high spatial resolution images, and show how incorporating the refined HSeg into RHSeg overcomes this limitation. The quality of the image segmentations produced by the refined HSeg is then compared with other available best merge segmentation approaches. Finally, we comment on the unique nature of the hierarchical segmentations produced by HSeg.

  16. Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion.

    PubMed

    Rothenfluh, Dominique A; Mueller, Daniel A; Rothenfluh, Esin; Min, Kan

    2015-06-01

    Several risk factors and causes of adjacent segment disease have been debated; however, no quantitative relationship to spino-pelvic parameters has been established so far. A retrospective case-control study was carried out to investigate spino-pelvic alignment in patients with adjacent segment disease compared to a control group. 45 patients (ASDis) were identified that underwent revision surgery for adjacent segment disease after on average 49 months (7-125), 39 patients were selected as control group (CTRL) similar in the distribution of the matching variables, such as age, gender, preoperative degenerative changes, and numbers of segments fused with a mean follow-up of 84 months (61-142) (total n = 84). Several radiographic parameters were measured on pre- and postoperative radiographs, including lumbar lordosis measured (LL), sacral slope, pelvic incidence (PI), and tilt. Significant differences between ASDis and CTRL groups on preoperative radiographs were seen for PI (60.9 ± 10.0° vs. 51.7 ± 10.4°, p = 0.001) and LL (48.1 ± 12.5° vs. 53.8 ± 10.8°, p = 0.012). Pelvic incidence was put into relation to lumbar lordosis by calculating the difference between pelvic incidence and lumbar lordosis (∆PILL = PI-LL, ASDis 12.5 ± 16.7° vs. CTRL 3.4 ± 12.1°, p = 0.001). A cutoff value of 9.8° was determined by logistic regression and ROC analysis and patients classified into a type A (∆PILL <10°) and a type B (∆PILL ≥10°) alignment according to pelvic incidence-lumbar lordosis mismatch. In type A spino-pelvic alignment, 25.5 % of patients underwent revision surgery for adjacent segment disease, whereas 78.3 % of patients classified as type B alignment had revision surgery. Classification of patients into type A and B alignments yields a sensitivity for predicting adjacent segment disease of 71 %, a specificity of 81 % and an odds ratio of 10.6. In degenerative disease of the lumbar spine a high pelvic incidence with diminished lumbar lordosis seems

  17. The change of adjacent segment after cervical disc arthroplasty compared with anterior cervical discectomy and fusion: a meta-analysis of randomized controlled trials.

    PubMed

    Dong, Liang; Xu, Zhengwei; Chen, Xiujin; Wang, Dongqi; Li, Dichen; Liu, Tuanjing; Hao, Dingjun

    2017-10-01

    Many meta-analyses have been performed to study the efficacy of cervical disc arthroplasty (CDA) compared with anterior cervical discectomy and fusion (ACDF); however, there are few data referring to adjacent segment within these meta-analyses, or investigators are unable to arrive at the same conclusion in the few meta-analyses about adjacent segment. With the increased concerns surrounding adjacent segment degeneration (ASDeg) and adjacent segment disease (ASDis) after anterior cervical surgery, it is necessary to perform a comprehensive meta-analysis to analyze adjacent segment parameters. To perform a comprehensive meta-analysis to elaborate adjacent segment motion, degeneration, disease, and reoperation of CDA compared with ACDF. Meta-analysis of randomized controlled trials (RCTs). PubMed, Embase, and Cochrane Library were searched for RCTs comparing CDA and ACDF before May 2016. The analysis parameters included follow-up time, operative segments, adjacent segment motion, ASDeg, ASDis, and adjacent segment reoperation. The risk of bias scale was used to assess the papers. Subgroup analysis and sensitivity analysis were used to analyze the reason for high heterogeneity. Twenty-nine RCTs fulfilled the inclusion criteria. Compared with ACDF, the rate of adjacent segment reoperation in the CDA group was significantly lower (p<.01), and the advantage of that group in reducing adjacent segment reoperation increases with increasing follow-up time by subgroup analysis. There was no statistically significant difference in ASDeg between CDA and ACDF within the 24-month follow-up period; however, the rate of ASDeg in CDA was significantly lower than that of ACDF with the increase in follow-up time (p<.01). There was no statistically significant difference in ASDis between CDA and ACDF (p>.05). Cervical disc arthroplasty provided a lower adjacent segment range of motion (ROM) than did ACDF, but the difference was not statistically significant. Compared with ACDF, the

  18. Open-door laminoplasty for cervical myelopathy resulting from adjacent-segment disease in patients with previous anterior cervical decompression and fusion.

    PubMed

    Matsumoto, Morio; Nojiri, Kenya; Chiba, Kazuhiro; Toyama, Yoshiaki; Fukui, Yasuyuki; Kamata, Michihiro

    2006-05-20

    This is a retrospective study of patients with cervical myelopathy resulting from adjacent-segment disease who were treated by open-door expansive laminoplasty. The purpose of this study was to evaluate the effectiveness of laminoplasty for cervical myelopathy resulting from adjacent-segment disease. Adjacent-segment disease is one of the problems associated with anterior cervical decompression and fusion. However, the optimal surgical management strategy is still controversial. Thirty-one patients who underwent open-door expansive laminoplasty for cervical myelopathy resulting from adjacent-segment disease and age- and sex-matched 31 patients with myelopathy who underwent laminoplasty as the initial surgery were enrolled in the study. The pre- and postoperative Japanese Orthopedic Association scores (JOA scores) and the recovery rate were compared between the two groups. The average JOA scores in the patients with adjacent-segment disease and the controls were 9.2 +/- 2.6 and 9.4 +/- 2.3 before the expansive laminoplasty and 11.9 +/- 2.8 and 13.3 +/- 1.7 at the follow-up examination, respectively; the average recovery rates in the two groups were 37.1 +/- 22.4% and 50.0 +/- 21.3%, respectively (P = 0.04). The mean number of segments covered by the high-intensity lesions on the T2-weighted magnetic resonance images was 1.87 and 0.9, respectively (P = 0.001). Moderate neurologic recovery was obtained after open-door laminoplasty in patients with cervical myelopathy resulting from adjacent-segment disc disease, although the results were not as satisfactory as those in the control group. This may be attributed to the irreversible damage of the spinal cord caused by persistent compression at the adjacent segments.

  19. Adjacent segment infection after surgical treatment of spondylodiscitis.

    PubMed

    Siam, Ahmed Ezzat; El Saghir, Hesham; Boehm, Heinrich

    2016-03-01

    This is the first case series to describe adjacent segment infection (ASI) after surgical treatment of spondylodiscitis (SD). Patients with SD, spondylitis who were surgically treated between 1994 and 2012 were included. Out of 1187 cases, 23 (1.94 %) returned to our institution (Zentralklinik Bad Berka) with ASI: 10 males, 13 females, with a mean age of 65.1 years and a mean follow-up of 69 months. ASI most commonly involved L3-4 (seven patients), T12-L1 (five) and L2-3 (four). The mean interval between operations of primary infection and ASI was 36.9 months. All cases needed surgical intervention, debridement, reconstruction and fusion with longer instrumentation, with culture and sensitivity-based postoperative antimicrobial therapy. At last follow-up, six patients (26.1 %) were mobilized in a wheelchair with a varying degree of paraplegia (three had pre-existing paralysis). Three patients died within 2 months after the ASI operation (13 %). Excellent outcomes were achieved in five patients, and good in eight. Adjacent segment infection after surgical treatment of spondylodiscitis is a rare complication (1.94 %). It is associated with multimorbidity and shows a high mortality rate and a high neurological affection rate. Possible explanations are: haematomas of repeated micro-fractures around screw loosening, haematogenous spread, direct inoculation or a combination of these factors. ASI may also lead to proximal junctional kyphosis, as found in this series. We suggest early surgical intervention with anterior debridement, reconstruction and fusion with posterior instrumentation, followed by antimicrobial therapy for 12 weeks. Level IV retrospective uncontrolled case series.

  20. Adjacent Segment Disease After Cervical Spine Fusion: Evaluation of a 70 Patient Long-Term Follow-Up.

    PubMed

    Alhashash, Mohamed; Shousha, Mootaz; Boehm, Heinrich

    2018-05-01

    A retrospective study of 70 patients undergoing surgical treatment for adjacent segment disease (ASD) after anterior cervical decompression and fusion (ACDF). To analyze the risk factors for the development of ASD in patients who underwent ACDF. ACDF has provided a high rate of clinical success for the cervical degenerative disc disease; nevertheless, adjacent segment degeneration has been reported as a complication at the adjacent level secondary to the rigid fixation. Between January 2005 and December 2012, 70 consecutive patients underwent surgery for ASD after ACDF in our institution. In all patients thorough clinical and radiological examination was performed preoperatively, postoperatively, and at the final follow-up. The clinical data included the Neck Disability Index (NDI) and the Visual Analogue Scale (VAS). The radiological evaluation included x-rays and magnetic resonance imaging (MRI) for all patients. The duration of follow up after the adjacent segment operation ranged from 3 to 10 years. Surgery for ASD was performed after a mean period of 32 months from the primary ACDF. ASD occurred after single level ACDF in 54% of cases, most commonly after C5/6 fusion (28%). Risk factors for ASD were found to be preexisting radiological signs of degeneration at the primary surgery (74%) and bad sagittal profile after the primary ACDF (90%). ASD occurred predominantly in the middle cervical region (C4-6); especially in patients with preexisting evidence of radiological degeneration in the adjacent segment at the time of primary cervical fusion, notably when this surgery failed to restore or maintain the cervical lordosis. 4.

  1. Ridge Tectonics, Magma Supply, and Ridge-Hotpot Interaction at the Eastern End of the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lin, J.; Park, S.; Choi, H.; Lee, S.

    2013-12-01

    During 2011-2013 the Korea Polar Research Institute (KOPRI) conducted three successive expeditions to the eastern end of the Australian-Antarctic Ridge (AAR) to investigate the tectonics, geochemistry, and hydrothermal activity of this intermediate fast spreading system. On board the Korean icebreaker R/V Araon, the science party collected multiple types of data including multibeam bathymetry, gravity, magnetics, as well as rock and water column samples. In addition, Miniature Autonomous Plume Recorders (MAPRs) were deployed at each of the wax-core rock sampling sites to detect the presence of active hydrothermal vents. In this study, we present a detailed analysis of a 360-km-long super-segment at the eastern end of the AAR to quantify the spatial variations in ridge morphology and investigate its respond to changes in melt supply. The study region contains several intriguing bathymetric features including (1) abrupt changes in the axial topography, alternating between rift valleys and axial highs within relatively short ridge segments; (2) overshooting ridge tips at the ridge-transform intersections; (3) systematic migration patterns of hooked ridges; (4) a 350-km-long mega-transform fault; and (5) robust axial and off-axis volcanisms. To obtain a proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with a shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle than the conjugate northern flank. Furthermore, this N-S asymmetry becomes more prominent toward the super-segment of the AAR. Such regional variations in seafloor topography and RMBA are consistent with the hypothesis that ridge segments in the study area have interacted with the Balleny hotspot, currently lies southwest of the AAR. However, the influence of

  2. [Effect of lumbar hybrid instrumentation and rigid fusion on the treated and the adjacent segments. A biomechanical study].

    PubMed

    Wiedenhöfer, B; Akbar, M; Fürstenberg, C H; Carstens, C; Hemmer, S; Schilling, C

    2011-02-01

    Degeneration of the upper adjacent segment after operative treatment of degenerative spinal diseases of the lumbar spine (degenerative disc disease DDD) is an unsolved problem. There is also no consensus on whether a rigid or dynamic treatment of DDD should be carried out to protect the segments. This study was carried out to evaluate the effect of bisegmental rigid 360° fusion and bisegmental hybrid fusion on the treated segment as well as on the upper adjacent segment under the aspect of segment protection. A total of six human spinal column preparations (L2-5) were tested under native conditions (NAT), with bisegmental rigid fusion (RIG 360°) and with hybrid fusion (Hybrid) in all three movement directions under physical load and with an preload. The range of motion (ROM) and neutral zone (NZ) were evaluated. The intradiscal pressure (IDP) was measured in the upper adjacent segment (OAS). The RIG 360° led to a significant reduction in movement in all directions compared to NAT but Hybrid only in lateral bending (LB). In the OAS the NZ was showed a much greater increase than the ROM. The RIG 360° showed an increase of the NZ in flexion-extension of 86.8% and in LB of 49.6% as well as a significant increase in axial rotation of 52.5%. The increase in the Hybrid was not significant compared to NAT in all directions. Pressure measurements in OAS showed no significant differences for RIG 360° and for Hybrid compared to NAT for both load scenarios. The range of motion of the treated segments for Hybrid were close to NAT in comparison to RIG 360° indicating a segment-protective effect. The hypothesis that rigid fusion has a significant effect on intersegmental mobility and the increase in intradiscal pressure in the upper adjacent segment could not be confirmed. The data indicate that the primary effect of fusion on the adjacent segment is very low but the fusion-linked increased frequency of extreme loads of the OAS falling within the significance level leads to

  3. Carslberg Ridge and Mid-Atlantic Ridge: Slow-spreading Apparent Analogs

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Murton, B. J.; Bostrom, K.; Widenfalk, L.; Melson, W. G.; O'Hearn, T.; Cronan, D. S.; Jenkins, W. J.

    2005-12-01

    We compare morphology, tectonics, petrology, and hydrothermal activity of a known section of the Mid-Atlantic Ridge (MAR) between the Kane and Atlantis fracture zones (full multi-beam coverage 21N to 31N) to the lesser known Carlsberg Ridge (CR; limited multi-beam coverage plus satellite altimetry). The CR extends from the Owen Fracture Zone (10N) to the Vityaz Fracture Zone (5S) and spreads at half-rates (~1.2-1.8 cm/yr) similar to the MAR: 1) Morphology: Both ridges exhibit distinct segmentation (primarily sinistral) and axial valleys with high floor to crest relief (range 1122-1771 m). Average lengths of segments (CR: 70 km; MAR: 50 km) and crest-to crest width of the axial valley are greater on the CR (40 km) than MAR (23 km). Axial volcanic ridges form the neovolcanic zone on both ridges, typically 2.6 km wide and 213 m high on the CR. Average water depth near segment centers is greater on the MAR (3933 m) than the CR (3564 m). V-shaped patterns oblique to the spreading axis are present on both ridges. 2) Tectonics: Segments on each ridge are predominantly separated by short-offset (<30 km) non-transform discontinuities with longer transform faults generally spaced hundreds of kilometers apart. Bulls-eye Mantle Bouguer Lows (-30 to -50 mgal) are present at centers of spreading segments on both ridges. Metamorphic core complexes of lower crust and upper mantle are present on the MAR section (at fracture zones) and at least at one locality at 58.33E on the CR. 3) Petrology: MORB composition from our 20 stations along the CR fall into the MORB family, with no evidence of hotspot inputs (no excess K or Nb), or extreme fractionation, similar to the MAR section. REE and trace element patterns between 57E and 61E on the CR indicate increasing melt depletion to the northwest, while glasses exhibit a striking systematic increase in MgO (decrease in fractionation) to the northwest and attain among the most primitive composition of any ocean ridge adjacent to the Owen

  4. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt compositions

    NASA Astrophysics Data System (ADS)

    Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.

    2016-09-01

    Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal

  5. Segmentation and Contrasting Magma Supply Along the South-East Indian Ridge, 130°E to 140°E: Results of the STORM Cruise

    NASA Astrophysics Data System (ADS)

    Briais, A.; Ruellan, E.; Maia, M.; Hemond, C.; Hanan, B. B.; Ceuleneer, G.; Graham, D. W.; Park, S. H.

    2017-12-01

    We present observations of the South-East Indian Ridge (SEIR) between 130°E to 140°E, mostly collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante. The SEIR displays large variations of axial depth despite an almost constant intermediate full spreading rate of 75 km/m.y. In the study area the analysis of multibeam bathymetry maps shows that the axis displays a rise morphology to the east away from the discontinuities, and a rifted high morphology in the west and near the OSCs, as often observed along intermediate-spreading mid-ocean ridges. The ridge axis is offset by 27 km at 131°E and 20 km at 135°E by two large-offset overlapping spreading centers (OSCs) propagating westward, and by a smaller OSC at 137°17'E. These OSCs define four second-order ridge segments (A2 to A5 from west to east). We observe a general shallowing of the ridge axis from 3100 m depth in the west to 2400 m depth in the east, and a prominent deepening of the axis near the large OSCs. The easternmost segment A5 shows a very shallow axial ridge suggesting a robust magma supply despite its proximity to the George V transform fault (140°E). Major element variations in basalt glasses are systematically related to morphotectonic segmentation of the ridge axis, showing contrasts in crystal fractionation from one segment to another that may relate to differences in replenishment of axial melt lenses by primitive melts. Along segment A5, crystallization increases with proximity to the George V transform fault, consistent with an expected cold edge effect. In contrast, along segment A3 the extent of crystallization increases progressively from east to west in the direction of ridge propagation. *STORM Cruise Scientific Party: F. Barrere, C. Boulart, A. Briais, D. Brunelli, G. Ceuleneer, N. Ferreira, D. Graham, B. Hanan, C. Hémond, S. Macleod, M. Maia, A. Maillard, S. Merkuryev, S.H. Park, S. Révillon, E. Ruellan, A. Schohn, S. Watson, and Y.S. Yang.

  6. Linking Microearthquakes and Seismic Tomography on the Endeavour Segment of the Juan de Fuca Ridge: Implications for Hydrothermal Circulation

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Weekly, R. T.; Hooft, E. E.; Toomey, D. R.; Kim, E.

    2013-12-01

    We report on a remarkable correlation between the patterns of microearthquakes and three-dimensional upper crustal velocity anomalies on the Endeavour segment of the Juan de Fuca Ridge. Microearthquakes were monitored from 2003-2006 by a small seismic network deployed on the central part of the segment. The velocity model was obtained from a tomography experiment comprising over 5500 shots from a large airgun array that were recorded by ocean bottom seismometers deployed at 64 sites along the Endeavour segment and the adjacent overlapping spreading centers (OSCs). On the segment scale, upper crustal velocities are low in the OSCs indicating that the crust is highly fractured. These low velocities persist off-axis and record the history of ridge propagation. In 2005, two swarm sequences that were interpreted in terms of magmatic intrusions on the limbs of the Endeavour-West Valley OSC were accompanied by extensive seismicity within the overlap basin. Throughout the microearthquake experiment earthquakes were concentrated in a region surrounding the southern tip of the West Valley propagator that coincides closely with the southern limit of the low velocities imaged around the OSC. Beneath the hydrothermal vent fields in the center of the Endeavour segment, the earthquakes were mostly located in a 500-m-thick band immediately above the axial magma chamber. There was a close correlation between the rates of seismicity beneath each vent field and their thermal output. The highest rates of seismicity were observed beneath the High Rise and Main Endeavour fields that each have power outputs of several hundred megawatts. Seismic velocities are generally high beneath the vent fields relative to velocities along the ridge axis immediately to the north and south. However, the High Rise and Main Endeavour fields are underlain by a low velocity region at 2 km depth that coincides with the seismically active region. This is consistent with a region of increased fracturing and

  7. Interpretation of bathymetric and magnetic data from the easternmost segment of Australian-Antarctic Ridge, 156°-161°E

    NASA Astrophysics Data System (ADS)

    Choi, H.; Kim, S.; Park, S.

    2013-12-01

    From 2011 to 2013, Korea Polar Research Institute (KOPRI) conducted a series of geophysical and geochemical expeditions on the longest and easternmost segment of Australian-Antarctic Ridge, located at 61°-63°S, and 156°-161°E. This ridge segment plays an important role in constraining the tectonics of the Antarctic plate. Using IBRV ARAON, the detailed bathymetric data and eleven total magnetic profiles were collected. The studied ridge has spread NNW-SSE direction and tends to be shallower to the west and deeper to the east. The western side of the ridge (156°-157.50°E) shows a broad axial high and a plenty of seamounts as an indicative of massive volcanism. Near the center of the ridge (158°-159°E), a seamount chain is formed stretching toward the south from the ridge. Also, the symmetric seafloor fabric is clearly observed at the eastern portion (158.50°-160°E) of the seamount chain. From the topographic change along the ridge axis, the western part of the ridge appears to have a sufficient magma supply. On the contrary, the eastern side of the ridge (160°-161°E) is characterized by axial valley and relatively deeper depth. Nevertheless, the observed total magnetic field anomalies exhibit symmetric patterns across the ridge axis. Although there have not been enough magnetic survey lines, the spreading rates of the ridge are estimated as the half-spreading rate of 37.7 mm/y and 35.3 mm/y for the western portion of the ridge and 42.3 mm/y for the eastern portion. The studied ridge can be categorized as an intermediate spreading ridge, confirming previous studies based on the spreading rate of global ridge system. Here we will present the preliminary results on bathymetric changes along the ridge axis and its relationship with melt supply distribution, and detailed magnetic properties of the ridge constrained by the observed total field anomalies.

  8. U-Series Disequilibria across the New Southern Ocean Mantle Province, Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Scott, S. R.; Sims, K. W. W.; Park, S. H.; Langmuir, C. H.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Michael, P. J.; Choi, H.; Yang, Y. S.

    2017-12-01

    Mid-ocean ridge basalts (MORB) provide a unique window into the temporal and spatial scales of mantle evolution. Long-lived radiogenic isotopes in MORB have demonstrated that the mantle contains many different chemical components or "flavors". U-series disequilibria in MORB have further shown that different chemical components/lithologies in the mantle contribute differently to mantle melting processes beneath mid-ocean ridges. Recent Sr, Nd, Hf, and Pb isotopic analyses from newly collected basalts along the Australian-Antarctic Ridge (AAR) have revealed that a large distinct mantle province exists between the Australian-Antarctic Discordance and the Pacific-Antarctic Ridge, extending from West Antarctica and Marie Byrd Land to New Zealand and Eastern Australia (Park et al., submitted). This southern mantle province is located between the Indian-type mantle and the Pacific-type mantle domains. U-series measurements in the Southeast Indian Ridge and East Pacific Rise provinces show distinct signatures suggestive of differences in melting processes and source lithology. To examine whether the AAR mantle province also exhibits different U-series systematics we have measured U-Th-Ra disequilibria data on 38 basalts from the AAR sampled along 500 km of ridge axis from two segments that cross the newly discovered Southern Ocean Mantle province. We compare the data to those from nearby ridge segments show that the AAR possesses unique U-series disequilibria, and are thus undergoing distinct mantle melting dynamics relative to the adjacent Pacific and Indian ridges. (230Th)/(238U) excesses in zero-age basalts (i.e., those with (226Ra)/(230Th) > 1.0) range from 1.3 to 1.7, while (226Ra)/(230Th) ranges from 1.0 to 2.3. (226Ra)/(230Th) and (230Th)/(238U) are negatively correlated, consistent with the model of mixing between deep and shallow melts. The AAR data show higher values of disequilibria compared to the Indian and Pacific Ridges, which can be explained by either

  9. Segmentation and Accretionary Processes Near the Andrew Bain Mega-Transform Fault: The Southwest Indian Ridge 25°-35°E

    NASA Astrophysics Data System (ADS)

    Takeuchi, C. S.; Sclater, J. G.; Grindlay, N. R.; Madsen, J. A.; Rommevaux-Jestin, C.

    2008-12-01

    The ultra-slow spreading Southwest Indian Ridge (SWIR) separates the Antarctic and African plates. We present results from two surveys covering the SWIR between 26° and 27°30'E and between 32° and 35°E, lying on either side of the long-offset Andrew Bain transform fault. The objectives of the surveys were to characterize the segmentation of an ultra-slow spreading ridge on either side of a long-offset transform fault and to examine the structure of the individual segments. Four transform faults, the Du Toit, Andrew Bain, Marion, and Prince Edward, and one non-transform discontinuity bound four accretionary segments in the survey areas. Two segments lie northeast of the Andrew Bain (32°-35°E). Large central axial volcanoes, deep, broad mantle Bouguer anomaly (MBA) lows, and high magnetization intensities centered on the spreading axis result from high magmatic activity. Increased magmatism on the ridge axis is likely caused by high mantle temperatures produced by the close proximity of the Marion Plume, which abuts the northern end of the Andrew Bain. Two segments lie southwest of the Andrew Bain (26°-27°30'E). Discrepancies in the locations of the axial rift valley, central magnetization high, and an irregularly-shaped MBA low suggest complex accretionary processes at the western segment (~26°-27° E). The eastern segment (~27°-27°30'E), which abuts the southwest end of the Andrew Bain, shows a deep axial valley, MBA values which increase to the east, and nearly nonexistent magnetization intensity. These features are probably the result of amagmatic accretion caused by the transform edge effect of the Andrew Bain. A transition in the character of topography at 26°45'E suggests that the current segment configuration may not be temporally stable. High-relief (~1 km) ridge-trough structures south of the spreading axis may be the result of an episodic interplay between accretion, both magmatic and amagmatic, and tectonic extension.

  10. Controls on mid-ocean ridge segmentation and transform fault formation from laboratory experiments using fluids of complex rheology.

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Mittelstaedt, E. L.; Davaille, A.

    2017-12-01

    Mid-ocean ridges are tectonically segmented at scales of 10s to 100s of kilometers by several types of offsets including transform faults (TF), overlapping spreading centers (OSC), and slow-spreading non-transform offsets (NTO). Differences in segmentation along axis have been attributed to changes in numerous processes including magma supply from the upwelling mantle, viscous flow in the asthenosphere, ridge migration, and plate spreading direction. The wide variety of proposed mechanisms demonstrate that the origin of tectonic offsets and their relationship to segment-scale magmatic processes remain actively debated; each of the above processes, however, invoke combinations of tectonic and magmatic processes to explain changes in segmentation. To address the role of tectonic deformation and magmatic accretion on the development of ridge offsets, we present a series of analogue experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Experiments are performed in a Plexiglas tank with two Plexiglas plates suspended above the base of the tank. The tank is filled with the colloidal fluid to just above the suspended plates, a thin layer of saline water is spread across the surface, and spreading initiated by moving the suspended Plexiglas plates apart at a fixed rate. Results show formation of OSCs, NTOs, and TFs. For parameters corresponding to the Earth, TF offsets are < 5 mm and form at all spreading velocities, corresponding to transform offsets of < 100 km on Earth. Measured TF offset size and ridge segment lengths exhibit a Poisson-type distribution with no apparent dependence on spreading rate. Observations of TF offset size on Earth show a similar distribution for TFs <100 km long and supports the hypothesis that TFform spontaneously through a

  11. Assessing the effects of lumbar posterior stabilization and fusion to vertebral bone density in stabilized and adjacent segments by using Hounsfield unit

    PubMed Central

    Öksüz, Erol; Deniz, Fatih Ersay; Demir, Osman

    2017-01-01

    Background Computed tomography (CT) with Hounsfield unit (HU) is being used with increasing frequency for determining bone density. Established correlations between HU and bone density have been shown in the literature. The aim of this retrospective study was to determine the bone density changes of the stabilized and adjacent segment vertebral bodies by comparing HU values before and after lumbar posterior stabilization. Methods Sixteen patients who had similar diagnosis of lumbar spondylosis and stenosis were evaluated in this study. Same surgical procedures were performed to all of the patients with L2-3-4-5 transpedicular screw fixation, fusion and L3-4 total laminectomy. Bone mineral density measurements were obtained with clinical CT. Measurements were obtained from stabilized and adjacent segment vertebral bodies. Densities of vertebral bodies were evaluated with HU before the surgeries and approximately one year after the surgeries. The preoperative HU value of each vertebra was compared with postoperative HU value of the same vertebrae by using statistical analysis. Results The HU values of vertebra in the stabilized and adjacent segments consistently decreased after the operations. There were significant differences between the preoperative HU values and the postoperative HU values of the all evaluated vertebral bodies in the stabilized and adjacent segments. Additionally first sacral vertebra HU values were found to be significantly higher than lumbar vertebra HU values in the preoperative group and postoperative group. Conclusions Decrease in the bone density of the adjacent segment vertebral bodies may be one of the major predisposing factors for adjacent segment disease (ASD). PMID:29354730

  12. Magnetic resonance imaging evaluation of adjacent segments after cervical disc arthroplasty: magnet strength and its effect on image quality. Clinical article.

    PubMed

    Antosh, Ivan J; DeVine, John G; Carpenter, Clyde T; Woebkenberg, Brian J; Yoest, Stephen M

    2010-12-01

    Disc arthroplasty is an alternative to fusion following anterior discectomy when treating either cervical radiculopathy or myelopathy. Its theoretical benefits include preservation of the motion segment and the potential prevention of adjacent-segment degeneration. There is a paucity of data regarding the ability to use MR imaging to evaluate the adjacent segments. The purpose of this study was for the authors to introduce open MR imaging as an alternative method in imaging adjacent segments following cervical disc arthroplasty using a Co-Cr implant and to report their preliminary results using this technique. Postoperative cervical MR images were obtained in the first 16 patients in whom the porous coated motion (PCM-V) cervical arthroplasty system was used to treat a single level between C-3 and C-7. Imaging was performed in all 16 patients with a closed 1.5-T unit, and in the final 6 patients it was also performed with an open 0.2-T unit. All images were evaluated by an independent radiologist observer for the ability to visualize the superior endplate, disc space, and inferior endplate at the superior and inferior adjacent levels. Utilizing the 1.5-T magnet to assess the superior adjacent level, the superior endplate, disc space, and inferior endplate could each be visualized less than 50% of the time on sagittal T1- and sagittal and axial T2-weighted images. Similarly, the inferior adjacent level structures were adequately visualized less than 50% of the time, with the exception of slightly improved visualization of the inferior endplate on T1-weighted images (56%). Axial images allowed worse visualization than sagittal images at both the superior and inferior adjacent levels. Utilizing the 0.2-T magnet to assess the superior and inferior adjacent levels, the superior endplate, disc space, and inferior endplate were adequately visualized in 100% of images. Based on the results of this case series, it appears that the strength of the magnet affects the artifact

  13. Adjacent segment degeneration and disease following cervical arthroplasty: a systematic review and meta-analysis.

    PubMed

    Shriver, Michael F; Lubelski, Daniel; Sharma, Akshay M; Steinmetz, Michael P; Benzel, Edward C; Mroz, Thomas E

    2016-02-01

    Cervical arthroplasty is an increasingly popular alternative for the treatment of cervical radiculopathy and myelopathy. This technique preserves motion at the index and adjacent disc levels, avoiding the restraints of fusion and potentially minimizing adjacent segment pathology onset during the postoperative period. This study aimed to identify all prospective studies reporting adjacent segment pathology rates for cervical arthroplasty. Systematic review and meta-analysis were carried out. Studies reporting adjacent segment degeneration (ASDegeneration) and adjacent segment disease (ASDisease) rates in patients who underwent cervical arthroplasty comprised the patient sample. Outcomes of interest included reported ASDegeneration and ASDisease events after cervical arthroplasty. We conducted a MEDLINE, SCOPUS, and Web of Science search for studies reporting ASDegeneration or ASDisease following cervical arthroplasty. A meta-analysis was performed to calculate effect summary values, 95% confidence intervals (CIs), Q values, and I(2) values. Forest plots were constructed for each analysis group. Of the 1,891 retrieved articles, 32 met inclusion criteria. The patient incidence of ASDegeneration and ASDisease was 8.3% (95% CI 3.8%-12.7%) and 0.9% (95% CI 0.1%-1.7%), respectively. The rate of ASDegeneration and ASDisease at individual levels was 10.5% (95% CI 6.1%-14.9%) and 0.2% (95% CI -0.1% to 0.5%), respectively. Studies following patients for 12-24 months reported a 5.1% (95% CI 2.1%-8.1%) incidence of ASDegeneration and 0.2% (95% CI 0.1%-0.2%) incidence of ASDisease. Conversely, studies following patients for greater than 24 months reported a 16.6% (5.8%-27.4%) incidence of ASDegeneration and 2.6% (95% CI 1.0%-4.2%) of ASDisease. This identified a statistically significant increase in ASDisease diagnosis with lengthier follow-up. Additionally, 1- and 2-level procedures resulted in a 7.4% (95% CI 3.3%-11.4%) and15.6% (95 CI-9.2% to 40.4%) incidence of

  14. Does disc space height of fused segment affect adjacent degeneration in ALIF? A finite element study.

    PubMed

    Tang, Shujie; Meng, Xueying

    2011-01-01

    The restoration of disc space height of fused segment is essential in anterior lumbar interbody fusion, while the disc space height in many cases decreased postoperatively, which may adversely aggravate the adjacent segmental degeneration. However, no literature available focused on the issue. A normal healthy finite element model of L3-5 and four anterior lumbar interbody fusion models with different disc space height of fused segment were developed. 800 N compressive loading plus 10 Nm moments simulating flexion, extension, lateral bending and axial rotation were imposed on L3 superior endplate. The intradiscal pressure, the intersegmental rotation, the tresca stress and contact force of facet joints in L3-4 were investigated. Anterior lumbar interbody fusion with severely decreased disc space height presented with the highest values of the four parameters, and the normal healthy model presented with the lowest values except, under extension, the contact force of facet joints in normal healthy model is higher than that in normal anterior lumbar interbody fusion model. With disc space height decrease, the values of parameters in each anterior lumbar interbody fusion model increase gradually. Anterior lumbar interbody fusion with decreased disc space height aggravate the adjacent segmental degeneration more adversely.

  15. Volcanism, jump and propagation on the Sheba ridge, eastern Gulf of Aden: segmentation evolution and implications for oceanic accretion processes

    NASA Astrophysics Data System (ADS)

    d'Acremont, Elia; Leroy, Sylvie; Maia, Marcia; Gente, Pascal; Autin, Julia

    2010-02-01

    The rifting between Arabia and Somalia, which started around 35 Ma, was followed by oceanic accretion from at least 17.6 Ma leading to the formation of the present-day Gulf of Aden. Bathymetric, gravity and magnetic data from the Encens-Sheba cruise are used to constrain the structure and segmentation of the oceanic basin separating the conjugate continental margins in the eastern part of the Gulf of Aden between 51°E and 55.5°E. Data analysis reveals that the oceanic domain along this ridge section is divided into two distinct areas. The Eastern area is characterized by a shorter wavelength variation of the axial segmentation and an extremely thin oceanic crust. In the western segment, a thicker oceanic crust suggests a high melt supply. This supply is probably due to an off-axis melting anomaly located below the southern flank of the Sheba ridge, 75 km east of the major Alula-Fartak transform fault. This suggests that the axial morphology is produced by a combination of factors, including spreading rate, melt supply and the edge effect of the Alula-Fartak transform fault, as well as the proximity of the continental margin. The oceanic domains have undergone two distinct phases of accretion since the onset of seafloor spreading, with a shift around 11 Ma. At that time, the ridge jumped southwards, in response to the melting anomaly. Propagating ridges were triggered by the melting activity, and propagated both eastward and westward. The influence of the melting anomaly on the ridges decreased, stopping their propagation since less than 9 Ma. From that time up to the present, the N025°E-trending Socotra transform fault developed in association with the formation of the N115°E-trending segment #2. In recent times, a counter-clockwise rotation of the stress field associated with kinematic changes could explain the structural morphology of the Alula-Fartak and Socotra-Hadbeen fracture zones.

  16. The relationship between oceanic transform fault segmentation, seismicity, and thermal structure

    NASA Astrophysics Data System (ADS)

    Wolfson-Schwehr, Monica

    Mid-ocean ridge transform faults (RTFs) are typically viewed as geometrically simple, with fault lengths readily constrained by the ridge-transform intersections. This relative simplicity, combined with well-constrained slip rates, make them an ideal environment for studying strike-slip earthquake behavior. As the resolution of available bathymetric data over oceanic transform faults continues to improve, however, it is being revealed that the geometry and structure of these faults can be complex, including such features as intra-transform pull-apart basins, intra-transform spreading centers, and cross-transform ridges. To better determine the resolution of structural complexity on RTFs, as well as the prevalence of RTF segmentation, fault structure is delineated on a global scale. Segmentation breaks the fault system up into a series of subparallel fault strands separated by an extensional basin, intra-transform spreading center, or fault step. RTF segmentation occurs across the full range of spreading rates, from faults on the ultraslow portion of the Southwest Indian Ridge to faults on the ultrafast portion of the East Pacific Rise (EPR). It is most prevalent along the EPR, which hosts the fastest spreading rates in the world and has undergone multiple changes in relative plate motion over the last couple of million years. Earthquakes on RTFs are known to be small, to scale with the area above the 600°C isotherm, and to exhibit some of the most predictable behaviors in seismology. In order to determine whether segmentation affects the global RTF scaling relations, the scalings are recomputed using an updated seismic catalog and fault database in which RTF systems are broken up according to their degree of segmentation (as delineated from available bathymetric datasets). No statistically significant differences between the new computed scaling relations and the current scaling relations were found, though a few faults were identified as outliers. Finite element

  17. Enhanced Mantle Upwelling/Melting Caused Segment Propagation, Oceanic Core Complex Die Off, and the Death of a Transform Fault: The Mid-Atlantic Ridge at 21.5°N

    NASA Astrophysics Data System (ADS)

    Dannowski, A.; Morgan, J. P.; Grevemeyer, I.; Ranero, C. R.

    2018-02-01

    Crustal structure provides the key to understand the interplay of magmatism and tectonism, while oceanic crust is constructed at Mid-Ocean Ridges (MORs). At slow spreading rates, magmatic processes dominate central areas of MOR segments, whereas segment ends are highly tectonized. The TAMMAR segment at the Mid-Atlantic Ridge (MAR) between 21°25'N and 22°N is a magmatically active segment. At 4.5 Ma this segment started to propagate south, causing the termination of the transform fault at 21°40'N. This stopped long-lived detachment faulting and caused the migration of the ridge offset to the south. Here a segment center with a high magmatic budget has replaced a transform fault region with limited magma supply. We present results from seismic refraction profiles that mapped the crustal structure across the ridge crest of the TAMMAR segment. Seismic data yield crustal structure changes at the segment center as a function of melt supply. Seismic Layer 3 underwent profound changes in thickness and became rapidly thicker 5 Ma. This correlates with the observed "Bull's Eye" gravimetric anomaly in that region. Our observations support a temporal change from thick lithosphere with oceanic core complex formation and transform faulting to thin lithosphere with focused mantle upwelling and segment growth. Temporal changes in crustal construction are connected to variations in the underlying mantle. We propose that there is a link between the neighboring segments at a larger scale within the asthenosphere, to form a long, highly magmatically active macrosegment, here called the TAMMAR-Kane Macrosegment.

  18. Heat Flow and Hydrothermal Circulation of the Lucky Strike Segment, Mid Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Escartin, J.; Lucazeau, F.; Cannat, M.; Gouze, P.; von Herzen, R. P.; Adam, C.; Le Bars, M.; Monoury, E.; Vidal, V.

    2003-12-01

    In June 2003, expedition Luckyflux aboard the R/V Poseidon conducted a heat flow survey of a zone centred on the Lucky Strike segment of the Mid Atlantic ridge south of the Azores between ˜35° N and 39° N. Using a 5 m-long lance with 7 outrigger thermal probes, about 150 successful thermal gradient measurements were obtained, 140 of these with in-situ thermal conductivity. Measurements were made at ˜1 mile intervals along several profiles, where adequately sedimented sites were identified using 6-channel and 3.5 kHz seismic data from the previous Sudazores'98 cruise. We conducted heat flow measurements in two areas: a near axis region within the V-shaped ridge of overthickened crust that emanated from the Azores hotspot between ˜14 and 4 Ma, and an off-axis region East of the V-shaped ridge. The off-axis region is characterized by an homogeneous sediment cover, 300-400 m thick, and crustal ages varying between ˜6 and >10 Ma. Long wavelength (tens of km) low heat flow anomalies can be identified but the mean of 160 mWm-2 is comparable to the conductive heat flow expected for a crust of that age. Along two 80-km profiles perpendicular to the ridge, we observed coherent but different patterns. On the first profile, low heat flow values of 20-50 mWm-2 are observed at the base of the V-shaped ridge. These values are 100 mWm-2 below the profile average, showing that hydrothermal circulations can also affect oceanic crust beneath a thick and relatively impermeable sediment cover. On the other profile, heat flow generally decreases from west to east. On both profiles, higher than average values of heat flow are also present, associated on one of them with a nearly outcropping basement elevation. These contrasting overall heat flow patterns in similar geological context indicate that the likely pattern of hydrothermal circulations is mainly 3D, and not driven only by the presence of basement outcrops. In the near-axis region, where the tectonic structure is more

  19. Interaction of a mantle plume and a segmented mid-ocean ridge: Results from numerical modeling

    NASA Astrophysics Data System (ADS)

    Georgen, Jennifer E.

    2014-04-01

    Previous investigations have proposed that changes in lithospheric thickness across a transform fault, due to the juxtaposition of seafloor of different ages, can impede lateral dispersion of an on-ridge mantle plume. The application of this “transform damming” mechanism has been considered for several plume-ridge systems, including the Reunion hotspot and the Central Indian Ridge, the Amsterdam-St. Paul hotspot and the Southeast Indian Ridge, the Cobb hotspot and the Juan de Fuca Ridge, the Iceland hotspot and the Kolbeinsey Ridge, the Afar plume and the ridges of the Gulf of Aden, and the Marion/Crozet hotspot and the Southwest Indian Ridge. This study explores the geodynamics of the transform damming mechanism using a three-dimensional finite element numerical model. The model solves the coupled steady-state equations for conservation of mass, momentum, and energy, including thermal buoyancy and viscosity that is dependent on pressure and temperature. The plume is introduced as a circular thermal anomaly on the bottom boundary of the numerical domain. The center of the plume conduit is located directly beneath a spreading segment, at a distance of 200 km (measured in the along-axis direction) from a transform offset with length 100 km. Half-spreading rate is 0.5 cm/yr. In a series of numerical experiments, the buoyancy flux of the modeled plume is progressively increased to investigate the effects on the temperature and velocity structure of the upper mantle in the vicinity of the transform. Unlike earlier studies, which suggest that a transform always acts to decrease the along-axis extent of plume signature, these models imply that the effect of a transform on plume dispersion may be complex. Under certain ranges of plume flux modeled in this study, the region of the upper mantle undergoing along-axis flow directed away from the plume could be enhanced by the three-dimensional velocity and temperature structure associated with ridge-transform-ridge

  20. Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, James C., E-mail: jross@bwh.harvard.edu; Surgical Planning Lab, Brigham and Women's Hospital, Boston, Massachusetts 02215; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Boston, Massachusetts 02126

    2013-12-15

    Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and amore » novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The

  1. Spreading History of a Segment of the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Stock, J. M.; Clayton, R. W.

    2001-12-01

    The Falkland-Agulhas fracture zone in the South Atlantic Ocean separates crust that records the entire Cenozoic history of South America-Africa spreading (on the north) from crust on the south that experienced a more complicated plate motion history including major ridge jumps, an additional plate (Malvinas), and plate reorganizations in early Cenozoic time. The Nathaniel B. Palmer cruise 01-02 in April 2001 measured gravity, magnetics, and swath bathymetry on a transit from Cape Town to Punta Arenas, including a survey line in Cenozoic crust on the north side of, and parallel to, the Falkland-Agulhas fracture zone. The objectives were to test previous models of Cenozoic plate motions for this region, and to examine the structure of the Falkland-Agulhas fracture zone by collection of limited single-channel seismic data. From 5° W to 3° W longitude, several seismic lines with accompanying SeaBeam data across the northern flank of the fracture zone reveal it to be a wide zone characterized by multiple parallel southward-facing fault scarps whose strike is 70-80° E of N. From chron 12 time to chron 6 time, the spreading history for this segment of the ridge was relatively simple, with slightly asymmetric spreading rates (more crust accreted to South America than to Africa), as has been previously noted for this part of the southern Mid-Atlantic Ridge. Between chron 5c and chron 2a, the magnetic anomalies are complex and disrupted, suggesting possible small-scale ridge jumps and continued asymmetric spreading. The modern ridge axis is 40 km east of the topographic high ("ridge crest"). The zones of disrupted magnetic anomalies may be due to the effects of pseudofault traces in the same spreading corridor, visible in satellite gravity data in younger seafloor north of the transit. We recorded late Cretaceous and younger magnetic anomalies (chrons 34y to 18) on the Africa plate to improve the distribution of known magnetic anomaly locations in this part of the South

  2. Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices.

    PubMed

    Chen, Liyuan; Shen, Chenyang; Zhou, Zhiguo; Maquilan, Genevieve; Thomas, Kimberly; Folkert, Michael R; Albuquerque, Kevin; Wang, Jing

    2018-06-01

    Because in PET imaging cervical tumors are close to the bladder with high capacity for the secreted 18 FDG tracer, conventional intensity-based segmentation methods often misclassify the bladder as a tumor. Based on the observation that tumor position and area do not change dramatically from slice to slice, we propose a two-stage scheme that facilitates segmentation. In the first stage, we used a graph-cut based algorithm to obtain initial contouring of the tumor based on local similarity information between voxels; this was achieved through manual contouring of the cervical tumor on one slice. In the second stage, initial tumor contours were fine-tuned to more accurate segmentation by incorporating similarity information on tumor shape and position among adjacent slices, according to an intensity-spatial-distance map. Experimental results illustrate that the proposed two-stage algorithm provides a more effective approach to segmenting cervical tumors in 3D 18 FDG PET images than the benchmarks used for comparison. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Hémond, Christophe; Briais, Anne; Maia, Marcia; Scheirer, Daniel S.; Walker, Sharon L.; Wang, Tingting; Chen, Yongshun John

    2014-08-01

    Multiple geological processes affect the distribution of hydrothermal venting along a mid-ocean ridge. Deciphering the role of a specific process is often frustrated by simultaneous changes in other influences. Here we take advantage of the almost constant spreading rate (65-71 mm/yr) along 2500 km of the Southeast Indian Ridge (SEIR) between 77°E and 99°E to examine the spatial density of hydrothermal venting relative to regional and segment-scale changes in the apparent magmatic budget. We use 227 vertical profiles of light backscatter and (on 41 profiles) oxidation-reduction potential along 27 first and second-order ridge segments on and adjacent to the Amsterdam-St. Paul (ASP) Plateau to map ph, the fraction of casts detecting a plume. At the regional scale, venting on the five segments crossing the magma-thickened hot spot plateau is almost entirely suppressed (ph = 0.02). Conversely, the combined ph (0.34) from all other segments follows the global trend of ph versus spreading rate. Off the ASP Plateau, multisegment trends in ph track trends in the regional axial depth, high where regional depth increases and low where it decreases. At the individual segment scale, a robust correlation between ph and cross-axis inflation for first-order segments shows that different magmatic budgets among first-order segments are expressed as different levels of hydrothermal spatial density. This correlation is absent among second-order segments. Eighty-five percent of the plumes occur in eight clusters totaling ˜350 km. We hypothesize that these clusters are a minimum estimate of the length of axial melt lenses underlying this section of the SEIR.

  4. Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? An in vitro human cadaveric assessment.

    PubMed

    Cardoso, Mario J; Dmitriev, Anton E; Helgeson, Melvin; Lehman, Ronald A; Kuklo, Timothy R; Rosner, Michael K

    2008-12-15

    This is an in vitro biomechanical study. The current investigation was performed to evaluate adjacent level kinematic change following unilateral and bilateral facet violation and laminectomy following 1-, 2-, and 3-level reconstruction. The incidence of superior-segment facet violation with lumbar transpedicular fixation has been reported as high as 35%; however, its contribution to biomechanical instability at the supradjacent level is unknown. In addition, superior-segment laminectomy has been implicated as a risk factor for the development of adjacent level disease. The authors assess the acute biomechanical effects of proximal facet violation and subsequent laminectomy in an instrumented posterior fusion model in 10 cadaveric specimens. Biomechanical testing was performed on 10 human cadaveric spines under axial rotation (AR), flexion-extension (FE), and lateral bending (LB) loading. After intact analysis, pedicle screws were inserted from L5-S1 and testing repeated with: (1) preserved L4-L5 facets, (2) unilateral facet breach, (3) bilateral breach, and (4) L5 laminectomy. Following biomechanical analysis, instrumentation was extended to L4, then L3 and biomechanical testing repeated. Full range of motion (ROM) at the proximal adjacent levels were recorded and normalized to intact (100%). Supradjacent level ROM was increased for all groups under all loading methods relative to intact (P < 0.05). However, AR testing revealed progressive instability at the adjacent level in groups 3 and 4, relative to group 1, following 1-, 2- and 3-level fixation (P < 0.05). During FE, supradjacent level ROM was significantly increased for group 4 specimens compared with group 1 after L5-S1 fixation (P < 0.05), and was greater than all other groups for L3-S1 constructs (P < 0.05). Interestingly, under lateral bending, facet joint destabilization did not change adjacent segment ROM. There were significant changes in proximal level ROM immediately after posterior stabilization

  5. Methodology for the systematic reviews on an adjacent segment pathology.

    PubMed

    Norvell, Daniel C; Dettori, Joseph R; Skelly, Andrea C; Riew, K Daniel; Chapman, Jens R; Anderson, Paul A

    2012-10-15

    A systematic review. To provide a detailed description of the methods undertaken in the systematic search and analytical summary of adjacent segment pathology (ASP) issues and to describe the process used to develop consensus statements and clinical recommendations regarding factors associated with the prevention and treatment of ASP. We present methods used in conducting the systematic, evidence-based reviews and development of expert panel consensus statements and clinical recommendations on the classification, natural history, risk factors, and treatment of radiographical and clinical ASP. Our intent is that clinicians will combine the information from these reviews with an understanding of their own capacities and experience to better manage patients at risk of ASP and consider future research for the prevention and treatment of ASP. A systematic search and critical review of the English-language literature was undertaken for articles published on the classification, risk, risk factors, and treatment of radiographical and clinical ASP. Articles were screened for relevance using a priori criteria, and relevant articles were critically reviewed. Whether an article was included for review depended on whether the study question was descriptive, one of therapy, or one of prognosis. The strength of evidence for the overall body of literature in each topic area was determined by 2 independent reviewers considering risk of bias, consistency, directness, and precision of results using a modification of the Grades of Recommendation Assessment, Development and Evaluation (GRADE) criteria. Disagreements were resolved by consensus. Findings from articles meeting inclusion criteria were summarized. From these summaries, consensus statements or clinical recommendations were formulated among subject experts through a modified Delphi process using the GRADE approach. A total of 3382 articles were identified and screened on 14 topics relating to the classification, risks, risk

  6. The crustal structure of the Cocos ridge off Costa Rica

    NASA Astrophysics Data System (ADS)

    Walther, Christian H. E.

    2003-03-01

    The submarine Cocos ridge in the northwestern Panamá basin, a bathymetric feature more than 1000-km long and 250-500 km broad, is about 2 km shallower than the adjacent basin. It is generally interpreted as the trace of the Galápagos hot spot. Two 127- and 260-km long seismic wide-angle sections were recorded along and across this ridge, offshore the Osa peninsula, Costa Rica. Crustal thickening is seen everywhere along the sections. On the northwestern outer ridge flank, increased thickness is exclusively attributed to the upper crust and expressed by 2-km thick flow basalts. The Quepos plateau caps the upper crust in this area. Toward the center of the Cocos ridge, the Moho deepens from 11-12 to 21 km depth and crustal thickening is almost entirely attributed to the lower crust which makes up 80% of the crust and is three times the thickness of normal oceanic lower crust. It is homogeneously structured and the velocities which range from 6.5 km/s at the top to 7.35 km/s at the base are comparable to normal lower crust under these depth conditions and suggest no differences to a gabbroic rock composition. Similarities to the crustal velocity structure of Iceland, central Kerguelen plateau, and Broken ridge are consistent with a formation of this 13-15 Ma old Cocos ridge segment by excessive magmatism in a near-plate boundary setting.

  7. 600 kyr of Hydrothermal Activity on the Cleft Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; Katz, R. F.; Huybers, P. J.; Winckler, G.; Li, Y.

    2017-12-01

    Pressure fluctuations caused by glacially driven variations in sea level may modulate magmatic and hydrothermal output at submarine volcanic centers, with falling sea level driving increased volcanic activity. In turn, glacially paced changes in submarine volcanism could induce globally synchronous variations in the delivery of bioavailable iron and CO2 from mid-ocean ridges and thus provide solid-Earth feedbacks into the climate system. While evaluation of submarine volcanic output on orbital-timescales is technically challenging, near-ridge sediment cores hosting hydrothermal plume precipitates provide continuous, spatially integrated, and datable records to investigate the long-term behavior of hydrothermal systems. We will present new sedimentary records of hydrothermal variability spanning the past 600 kyr on the Cleft Segment of the Juan de Fuca Ridge in the Northeast Pacific. As an intermediate spreading-rate ridge, the Juan de Fuca Ridge is hypothesized to be particularly sensitive to sea level forcing at the Milankovitch frequencies of Pleistocene glacial cycles. Thus, the new records can be used to examine the connection between sea level and hydrothermal activity over multiple glacial cycles. Hydrothermal input is determined from iron and copper, with a titanium-based correction for lithogenic contributions. Sedimentary fluxes are then constrained using excess thorium-230 and extraterrestrial helium-3 as constant flux proxies. Preliminary results indicate 10-fold changes in hydrothermal iron and copper fluxes over the past 600 kyr and suggest a quasiperiodic variability in hydrothermal deposition on 100 to 120 kyr cycles. Comparison of the Juan de Fuca record with model predictions for an intermediate spreading ridge forced by Pleistocene glacial cycles finds frequent coincidence between predicted positive anomalies in magmatic output and observed peaks in hydrothermal deposition. This work encourages the continued exploration of the relationship between

  8. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge

    USGS Publications Warehouse

    Baker, Edward; Christophe Hémond,; Anne Briais,; Marcia Maia,; Scheirer, Daniel S.; Sharon L. Walker,; Tingting Wang,; Yongshun John Chen,

    2014-01-01

    Multiple geological processes affect the distribution of hydrothermal venting along a mid-ocean ridge. Deciphering the role of a specific process is often frustrated by simultaneous changes in other influences. Here we take advantage of the almost constant spreading rate (65–71 mm/yr) along 2500 km of the Southeast Indian Ridge (SEIR) between 77°E and 99°E to examine the spatial density of hydrothermal venting relative to regional and segment-scale changes in the apparent magmatic budget. We use 227 vertical profiles of light backscatter and (on 41 profiles) oxidation-reduction potential along 27 first and second-order ridge segments on and adjacent to the Amsterdam-St. Paul (ASP) Plateau to map ph, the fraction of casts detecting a plume. At the regional scale, venting on the five segments crossing the magma-thickened hot spot plateau is almost entirely suppressed (ph = 0.02). Conversely, the combined ph (0.34) from all other segments follows the global trend of ph versus spreading rate. Off the ASP Plateau, multisegment trends in ph track trends in the regional axial depth, high where regional depth increases and low where it decreases. At the individual segment scale, a robust correlation between ph and cross-axis inflation for first-order segments shows that different magmatic budgets among first-order segments are expressed as different levels of hydrothermal spatial density. This correlation is absent among second-order segments. Eighty-five percent of the plumes occur in eight clusters totaling ∼350 km. We hypothesize that these clusters are a minimum estimate of the length of axial melt lenses underlying this section of the SEIR.

  9. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise

    NASA Astrophysics Data System (ADS)

    Gao, Changgui; Dick, Henry J. B.; Liu, Yang; Zhou, Huaiyang

    2016-03-01

    This paper works on the trace and major element compositions of spatially associated basalts and peridotites from the Dragon Bone amagmatic ridge segment at the eastern flank of the Marion Platform on the ultraslow spreading Southwest Indian Ridge. The rare earth element compositions of basalts do not match the pre-alteration Dragon Bone peridotite compositions, but can be modeled by about 5 to 10% non-modal batch equilibrium melting from a DMM source. The Dragon Bone peridotites are clinopyroxene-poor harzburgite with average spinel Cr# 27.7. The spinel Cr# indicates a moderate degree of melting. However, CaO and Al2O3 of the peridotites are lower than other abyssal peridotites at the same Mg# and extent of melting. This requires a pyroxene-poor initial mantle source composition compared to either hypothetical primitive upper mantle or depleted MORB mantle sources. We suggest a hydrous melting of the initial Dragon Bone mantle source, as wet melting depletes pyroxene faster than dry. According to the rare earth element patterns, the Dragon Bone peridotites are divided into two groups. Heavy REE in Group 1 are extremely fractionated from middle REE, which can be modeled by 7% fractional melting in the garnet stability field and another 12.5 to 13.5% in the spinel stability field from depleted and primitive upper mantle sources, respectively. Heavy REE in Group 2 are slightly fractionated from middle REE, which can be modeled by 15 to 20% fractional melting in the spinel stability field from a depleted mantle source. Both groups show similar melting degree to other abyssal peridotites. If all the melt extraction occurred at the middle oceanic ridge where the peridotites were dredged, a normal 6 km thick oceanic crust is expected at the Dragon Bone segment. However, the Dragon Bone peridotites are exposed in an amagmatic ridge segment where only scattered pillow basalts lie on a partially serpentinized mantle pavement. Thus their depletion requires an earlier melting

  10. Effect of Lumbar Lordosis on the Adjacent Segment in Transforaminal Lumbar Interbody Fusion: A Finite Element Analysis.

    PubMed

    Zhao, Xin; Du, Lin; Xie, Youzhuan; Zhao, Jie

    2018-06-01

    We used a finite element (FE) analysis to investigate the biomechanical changes caused by transforaminal lumbar interbody fusion (TLIF) at the L4-L5 level by lumbar lordosis (LL) degree. A lumbar FE model (L1-S5) was constructed based on computed tomography scans of a 30-year-old healthy male volunteer (pelvic incidence,= 50°; LL, 52°). We investigated the influence of LL on the biomechanical behavior of the lumbar spine after TLIF in L4-L5 fusion models with 57°, 52°, 47°, and 40° LL. The LL was defined as the angle between the superior end plate of L1 and the superior end plate of S1. A 150-N vertical axial preload was imposed on the superior surface of L3. A 10-N/m moment was simultaneously applied on the L3 superior surface along the radial direction to simulate the 4 basic physiologic motions of flexion, extension, lateral bending, and torsion in the numeric simulations. The range of motion (ROM) and intradiscal pressure (IDP) of L3-L4 were evaluated and compared in the simulated cases. In all motion patterns, the ROM and IDP were both increased after TLIF. In addition, the decrease in lordosis generally increased the ROM and IDP in all motion patterns. This FE analysis indicated that decreased spinal lordosis may evoke overstress of the adjacent segment and increase the risk of the pathologic development of adjacent segment degeneration; thus, adjacent segment degeneration should be considered when planning a spinal fusion procedure. Copyright © 2018. Published by Elsevier Inc.

  11. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages

    USGS Publications Warehouse

    Clague, David A.; Dreyer, Brian M; Paduan, Jennifer B; Martin, Julie F; Caress, David W; Gillespie, James B.; Kelley, Deborah S; Thomas, Hans; Portner, Ryan A; Delaney, John R; Guilderson, Thomas P.; McGann, Mary L.

    2014-01-01

    High-resolution bathymetric surveys from autonomous underwater vehicles ABE and D. Allan B. were merged to create a coregistered map of 71.7 km2 of the Endeavour Segment of the Juan de Fuca Ridge. Radiocarbon dating of foraminifera in cores from three dives of remotely operated vehicle Doc Ricketts provide minimum eruption ages for 40 lava flows that are combined with the bathymetric data to outline the eruptive and tectonic history. The ages range from Modern to 10,700 marine-calibrated years before present (yr BP). During a robust magmatic phase from >10,700 yr BP to ~4300 yr BP, flows erupted from an axial high and many flowed >5 km down the flanks; some partly buried adjacent valleys. Axial magma chambers (AMCs) may have been wider than today to supply dike intrusions over a 2 km wide axial zone. Summit Seamount formed by ~4770 yr BP and was subsequently dismembered during a period of extension with little volcanism starting ~4300 yr BP. This tectonic phase with only rare volcanic eruptions lasted until ~2300 yr BP and may have resulted in near-solidification of the AMCs. The axial graben formed by crustal extension during this period of low magmatic activity. Infrequent eruptions occurred on the flanks between 2620–1760 yr BP and within the axial graben since ~1750 yr BP. This most recent phase of limited volcanic and intense hydrothermal activity that began ~2300 yr BP defines a hydrothermal phase of ridge development that coincides with the present-day 1 km wide AMCs and overlying hydrothermal vent fields.

  12. Geochemistry of lavas from the Australian-Antarctic Ridge, easternmost Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Park, S.; Langmuir, C. H.; Lin, J.; Kim, S.; Hahm, D.; Michael, P. J.; Baker, E. T.

    2012-12-01

    The intermediate spreading Australian-Antarctic Ridge (AAR), an easternmost extension of the South East Indian Ridge located in the south of Tasmania, is one of the largest unexplored regions of the global mid-ocean ridge system, owing to its remote location and a very limited workable weather window. In early and late 2011, the Korea Polar Research Institute (KOPRI) conducted two surveys of two segments at 160°E (KR1) and 152.5°E (KR2) using the icebreaker Araon, producing a multi-beam map, 48 rock core samples and a MAPR (Miniature Autonomous Plume Recorder) hydrothermal survey. The full spreading rate of the spreading center in this area is 68 mm/yr. The axial depth of KR1 is relatively shallow (~2,000m) and is a first-order segment bounded by two large offset transform faults. The axial morphology of KR1 varies substantially from an axial high plateau (Segment 1) in the west, to a small rift valley (Segment 2), to an axial high with graben (Segment 3), and to a substantial rift valley (Segment 4) in the east. These changes occur in the absence of marked offsets in the ridge, such as overlapping spreading centers. Even so, these segments can be divided still further into shorter scale segments based on small discontinuities in the linearity of the axis and variations in rock chemistry. Small offsets in bathymetry can be associated with large chemical changes, such as between Segments 2 and 3, where incompatible element abundances change by almost a factor of ten. Incompatible trace element ratios for basalts show a regular pattern that is nonetheless not a single gradient. Along Segments 1 and 2, an axial high changes to a modest rift, (La/Sm)N of basalts decreases from 0.9 to 0.5. Then there is an abrupt step in enrichment to (La/Sm)N of 1.5, associated with a shallower depths and the appearance of an off-axis seamount south of the axis. This enrichment persists eastwards and then declines progressively to values of (La/Sm)N of 0.7 in the pronounced rift

  13. Formation and Elimination of Transform Faults on the Reykjanes Ridge

    NASA Astrophysics Data System (ADS)

    Martinez, Fernando; Hey, Richard

    2017-04-01

    The Reykjanes Ridge is a type-setting for examining processes that form and eliminate transform faults because it has undergone these events systematically within the Iceland gradient in hot-spot influence. A Paleogene change in plate motion led to the abrupt segmentation of the originally linear axis into a stair-step ridge-transform configuration. Its subsequent evolution diachronously and systematically eliminated the just-formed offsets re-establishing the original linear geometry of the ridge over the mantle, although now spreading obliquely. During segmented stages accreted crust was thinner and during unsegmented stages southward pointing V-shaped crustal ridges formed. Although mantle plume effects have been invoked to explain the changes in segmentation and crustal features, we propose that plate boundary processes can account for these changes [Martinez & Hey, EPSL, 2017]. Fragmentation of the axis was a mechanical effect of an abrupt change in plate opening direction, as observed in other areas, and did not require mantle plume temperature changes. Reassembly of the fragmented axis to its original linear configuration was controlled by a deep damp melting regime that persisted in a linear configuration following the abrupt change in opening direction. Whereas the shallow and stronger mantle of the dry melting regime broke up into a segmented plate boundary, the persistent deep linear damp melting regime guided reassembly of the ridge axis back to its original configuration by inducing asymmetric spreading of individual ridge segments. Effects of segmentation on mantle upwelling explain crustal thickness changes between segmented and unsegmented phases of spreading without mantle temperature changes. Buoyant upwelling instabilities propagate along the long linear deep melting regime driven by regional gradients in mantle properties away from Iceland. Once segmentation is eliminated, these propagating upwelling instabilities lead to crustal thickness

  14. Long-term evolution of a propagating non-transform offset on the Mid-Atlantic Ridge over the last 26 m.y.

    NASA Astrophysics Data System (ADS)

    Zheng, T.; Tucholke, B. E.; Lin, J.

    2017-12-01

    By making plate reconstructions from Chron 8n ( 26.54 Ma) to present and analyzing multibeam bathymetry, long-range HMR1 sidescan sonar images, residual mantle Bouguer gravity anomaly (RMBA) and gravity-derived crust thickness, we investigated the structure and evolution of a propagating non-transform discontinuity (NTD) and adjacent ridge segments that now intersect the Mid-Atlantic Ridge (MAR) axis at 25°37'N. The NTD has propagated consistently northward since Chron 8n at a rate of 4.76 km/m.y. Offset across the NTD since Chron 6an (22 Ma) has been right lateral and has ranged from 8-52 km. Key features are: 1) Inside-corner (IC) crust consistently has higher values of RMBA than the adjacent ridge segments, implying thinner crust. 2) IC crust typically exhibits elevated, irregular edifices. Slopes of the NTD walls are steeper at ICs than at outside corners (OCs). Steep (up to 40°), abrupt slopes are particularly pronounced at the IC on the north side of the NTD. 3) OC crust is deeper and normally exhibits long linear ridges that curve toward the MAR axis at the southern edge of the NTD but show little curvature at the northern edge. 4) Width of the NTD between its northern and southern walls (at mid-depth) has ranged from 2 to 22 km, averaging 15 km. 5) The NTD valley was intermittently crossed by individual ridges or blocks every 5-60 km (average 20 km) along the run of the NTD. The ridges curve along the transtensional plate boundary within the NTD but are often discontinuous. HMR1 data show lumpy small-scale topography and occasional volcanic cones on the ridges and blocks. Their intermittency indicates that melt intruded sporadically into the NTD. Propagation of the NTD occurred as the transtensional plate boundary within the NTD jumped northward from a volcanic ridge axis or block, apparently as magmatism waned. The jumps captured crust and transferred it to the east flank only within the NTD, not from the northern IC edifices. We propose two possible

  15. Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw-based dynamic fixator.

    PubMed

    Lee, Chang-Hyun; Kim, Young Eun; Lee, Hak Joong; Kim, Dong Gyu; Kim, Chi Heon

    2017-12-01

    OBJECTIVE Pedicle screw-rod-based hybrid stabilization (PH) and interspinous device-based hybrid stabilization (IH) have been proposed to prevent adjacent-segment degeneration (ASD) and their effectiveness has been reported. However, a comparative study based on sound biomechanical proof has not yet been reported. The aim of this study was to compare the biomechanical effects of IH and PH on the transition and adjacent segments. METHODS A validated finite element model of the normal lumbosacral spine was used. Based on the normal model, a rigid fusion model was immobilized at the L4-5 level by a rigid fixator. The DIAM or NFlex model was added on the L3-4 segment of the fusion model to construct the IH and PH models, respectively. The developed models simulated 4 different loading directions using the hybrid loading protocol. RESULTS Compared with the intact case, fusion on L4-5 produced 18.8%, 9.3%, 11.7%, and 13.7% increments in motion at L3-4 under flexion, extension, lateral bending, and axial rotation, respectively. Additional instrumentation at L3-4 (transition segment) in hybrid models reduced motion changes at this level. The IH model showed 8.4%, -33.9%, 6.9%, and 2.0% change in motion at the segment, whereas the PH model showed -30.4%, -26.7%, -23.0%, and 12.9%. At L2-3 (adjacent segment), the PH model showed 14.3%, 3.4%, 15.0%, and 0.8% of motion increment compared with the motion in the IH model. Both hybrid models showed decreased intradiscal pressure (IDP) at the transition segment compared with the fusion model, but the pressure at L2-3 (adjacent segment) increased in all loading directions except under extension. CONCLUSIONS Both IH and PH models limited excessive motion and IDP at the transition segment compared with the fusion model. At the segment adjacent to the transition level, PH induced higher stress than IH model. Such differences may eventually influence the likelihood of ASD.

  16. Noachian Impact Ejecta on Murray Ridge and Pre-impact Rocks on Wdowiak Ridge, Endeavour Crater, Mars: Opportunity Observations

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Gellert, R.; Ming, D. W.; Morris, R. V.; Schroeder, C.; Yen, A. S.; Farrand, W. H.; Arvidson, R. E.; Franklin, B. J.; Grant, J. A.; hide

    2015-01-01

    Mars Exploration Rover Opportunity has been exploring Meridiani Planum since January 2004, and has completed 4227% of its primary mission. Opportunity has been investigating the geology of the rim of 22 km diameter Endeavour crater, first on the Cape York segment and now on Cape Tribulation. The outcrops are divided York; (ii) the Shoemaker fm, impact breccias representing ejecta from the crater; into three formations: (i) the lower Matijevic fm, a pre-impact lithology on Cape and (iii) the upper Grasberg fm, a post-impact deposit that drapes the lower portions of the eroded rim segments. On the Cape Tribulation segment Opportunity has been studying the rocks on Murray Ridge, with a brief sojourn to Wdowiak Ridge west of the rim segment. team member Thomas Wdowiak, who died in 2013.) One region of Murray Ridge has distinctive CRISM spectral characteristics indicating the presence of a small concentration of aluminous smectite based on a 2.2 micron Al-OH combination band (hereafter, the Al-OH region).

  17. Melt distribution along the axis of ultraslow spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Schlindwein, V. S. N.; Schmid, F.; Meier, M.

    2017-12-01

    Ultraslow spreading mid-ocean ridges (<15 mm/y full spreading rate) differ from faster spreading ridges by their uneven melt distribution. Crustal thickness varies along axis from zero to more than 8 km at volcanic centers. These volcanic centers receive more melt than the regional average and may be sustained for millions of years. The segmentation pattern and active volcanism at ultraslow spreading ridges greatly differs from faster spreading ridges. Using networks of ocean bottom seismometers at three differing ridge segments, we could show that the maximum depth of brittle faulting, equivalent approximately to temperatures of 600-700°C, varies drastically along axis. Ridge sections that lack an igneous crust exhibit a thick lithosphere as evidenced by the deepest mid-ocean ridge earthquakes observed so far at more than 30 km depth. Beneath areas of basalt exposure, in particular beneath pronounced volcanic centers, the axial lithosphere may be more than 15 km thinner allowing for melt flow at the base of the lithosphere towards the volcanoes, a process that has been postulated to explain the uneven along-axis melt distribution. Spreading events at ultraslow spreading ridges are unusual as we found from two spreading episodes at 85°E Gakkel Ridge and Segment 8 volcano on the Southwest Indian Ridge. These eruptions were preceded or accompanied by large (M>5) and long-lasting earthquake swarms and active magmatism lasted over 3-16 years. A massive hydrothermal event plume and sounds from deep submarine explosive volcanism were observed at Gakkel Ridge. At the Segment 8 volcano, we imaged a melt reservoir extending to about 8 km depth below the volcano that potentially fed a sill intrusion recorded by an ocean bottom seismometers about 30 km away at a neighboring subordinate volcanic center. To better understand the segmentation and melt transport at ultraslow spreading rigdes, we recently conducted a segment-scale seismicity survey of Knipovich Ridge in the

  18. Stabilizing potential of anterior, posterior, and circumferential fixation for multilevel cervical arthrodesis: an in vitro human cadaveric study of the operative and adjacent segment kinematics.

    PubMed

    Dmitriev, Anton E; Kuklo, Timothy R; Lehman, Ronald A; Rosner, Michael K

    2007-03-15

    This is an in vitro biomechanical study. The current investigation was performed to evaluate the stabilizing potential of anterior, posterior, and circumferential cervical fixation on operative and adjacent segment motion following 2 and 3-level reconstructions. Previous studies reported increases in adjacent level range of motion (ROM) and intradiscal pressure following single-level cervical arthrodesis; however, no studies have compared adjacent level effects following multilevel anterior versus posterior reconstructions. Ten human cadaveric cervical spines were biomechanically tested using an unconstrained spine simulator under axial rotation, flexion-extension, and lateral bending loading. After intact analysis, all specimens were sequentially instrumented from C3 to C5 with: (1) lateral mass fixation, (2) anterior cervical plate with interbody cages, and (3) combined anterior and posterior fixation. Following biomechanical analysis of 2-level constructs, fixation was extended to C6 and testing repeated. Full ROM was monitored at the operative and adjacent levels, and data normalized to the intact (100%). All reconstructive methods reduced operative level ROM relative to intact specimens under all loading methods (P < 0.05). However, circumferential fixation provided the greatest segmental stability among 2 and 3-level constructs (P < 0.05). Moreover, anterior cervical plate fixation was least efficient at stabilizing operative segments following C3-C6 arthrodesis (P < 0.05). Supradjacent ROM was increased for all treatment groups compared to normal data during flexion-extension testing (P < 0.05). Similar trends were observed under axial rotation and lateral bending loading. At the distal level, flexion-extension and axial rotation testing revealed comparable intergroup differences (P < 0.05), while lateral bending loading indicated greater ROM following 2-level circumferential fixation (P < 0.05). Results from our study revealed greater adjacent level motion

  19. Hotspot-Ridge Interaction: Shaping the Geometry of Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2004-12-01

    Surface manifestations of hotspot-ridge interaction include geochemical anomalies, elevated ridge topography, negative gravity anomalies, off-axis volcanic lineaments, and ridge reorganization events. The last of these is expressed as either "captured" ridge segments due to asymmetric spreading, such as at the Galapagos, or as discrete jumps of the ridge axis toward the hotspot, such as at the Iceland, Tristan de Cuhna, Discovery, Shona, Louisville, Kerguelen, and Reunion hotspots. Mid-ocean ridge axis reorganizations through discrete jumps will cause variations in local volcanic patterns, lead to changes in overall plate shape and ridge axis morphology, and alter local mantle flow patterns. It has been proposed that discrete ridge jumps are a product of interaction between the lithosphere and a mantle plume. We examine this hypothesis using thin plate theory coupled with continuum damage mechanics to calculate the two-dimensional (plan-view) pattern of depth-integrated stresses in a plate of varying thickness with weakening due to volcanism at the ridge and above the plume center. Forces on the plate include plume shear, plate parallel gravitational forces due to buoyant uplift, and a prescribed velocity of plate motion along the edges of the model. We explore these forces and the effect of damage as mechanisms that may be required to predict ridge jumps.

  20. Sr, Nd and Pb Isotope Geochemistry of Near-ridge Seamounts in Eastern Pacific: Implications for Upper Mantle Composition and EPR Magmatic Segmentation

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; White, W. M.; Batiza, R.

    2005-12-01

    Near-ridge seamount lavas tend to reflect the true composition of the upper mantle source of MORB because these are generated by relatively smaller degrees of melting of smaller volumes of the mantle compared to nearby axial lavas; they also by-pass the axial chamber mixing and fractionation processes that are responsible for the relatively more uniform chemical and isotopic composition of normal-MORB. New Sr, Nd and Pb isotope data combined with published data for lavas from near-ridge seamounts on either side of the EPR segment between the 11o45' OSC and Orozco Transform at 15o00' show latitudinal isotopic variation very similar to that shown by the rise axial lavas (Castillo et al., G3 1, 1999). Seamount and axial lavas at both ends of the rise segment have on average slightly higher and more limited range of 143Nd/144Nd, but slightly lower 206Pb/204Pb and 87Sr/86Sr ratios than lavas at the center of the segment. Some of the seamounts are located on ~8 Ma rise flank crust although most of the seamount lavas are fairly young (e.g., lavas from Seamount 6 on ~3 Ma crust are only 3 to 900 kyr - Graham et al., Nature 326, 1987). Thus near-ridge seamount isotope data provide the first documentation for a large-scale (~350 km long x ~720 km wide), systematic compositional variation of the upper mantle source of EPR MORB. Such a scale of variation is larger and longer than the size and <1 myr life span of the majority of non-transform offsets, which are supposed to be responsible for the along-axis compositional variations of EPR MORB according to the "bottoms up" model of magmatic segmentation.

  1. Evidence for lateral mantle plume flow feeding the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Murton, B. J.; Tindle, A. G.

    2003-04-01

    The Central Indian Ridge exhibits morphological and geochemical features indicating lateral flow of shallow plume asthenosphere from the Reunion hot-spot to the ridge axis. South of the Marie Celeste fracture zone, at 18.25°S, the Central Indian Ridge is bound by a southward closing, “V”-shaped region of shallow crust that extends for over 800 km. Over this distance, the ridge axis deepens to the south and is also affected by left-stepping offsets that bring it towards the west. The northern end of the ridge, which is closest to the island of La'Réunion, is shallowest and dominated by an inflated segment with associated sheet flows covering over 50 square kilometres. These morphological features are usually associated with ridge-hot-spot interaction. However, the nearest active hot-spot lies over 1100 km to the west beneath the island of La'Réunion. Geochemical trends for basalts erupted along the Central Indian Ridge demonstrate a gradient of northward decreasing MgO and increasing SiO2, indicating a relationship between shallower crust and increased magmatic fractional crystallisation. Superimposed on this gradient is an excess increase in incompatible element ratios, indicative of mantle enrichment to the north. The enrichment correlates with the spreading-parallel distance between the ridge axis and the edge of the "V"-shaped region of anomalously shallow crust. Locally, the enriched mantle component is found preferentially at third-order ridge offsets and adjacent to the rift walls demonstrating melting of a compositionally stratified, spinel-lherzolite mantle. These features are evidence for shallow, lateral flow of enriched hot-spot asthenosphere at a velocity of ~333 mm yr-1 and with a flux of at least 50 m3 s-1, through a mantle 'worm', towards the ridge axis where it migrates south at a rate of 54 - 67 mm per year. The trend of the geochemical enrichment points to mixing between deeper N-MORB and shallower Reunion hot-spot sources beneath the

  2. Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Ito, Garrett; van Hunen, Jeroen

    2011-01-01

    Repeated shifts, or jumps, of mid-ocean ridge segments toward nearby hot spots can produce large, long-term changes to the geometry and location of the tectonic plate boundaries. Ridge jumps associated with hot spot-ridge interaction are likely caused by several processes including shear on the base of the plate due to expanding plume material as well as reheating of lithosphere as magma passes through it to feed off-axis volcanism. To study how these processes influence ridge jumps, we use numerical models to simulate 2-D (in cross section) viscous flow of the mantle, viscoplastic deformation of the lithosphere, and melt migration upward from the asthenospheric melting zone, laterally along the base of the lithosphere, and vertically through the lithosphere. The locations and rates that magma penetrates and heats the lithosphere are controlled by the time-varying accumulation of melt beneath the plate and the depth-averaged lithospheric porosity. We examine the effect of four key parameters: magmatic heating rate of the lithosphere, plate spreading rate, age of the seafloor overlying the plume, and the plume-ridge migration rate. Results indicate that the minimum value of the magmatic heating rate needed to initiate a ridge jump increases with plate age and spreading rate. The time required to complete a ridge jump decreases with larger values of magmatic heating rate, younger plate age, and faster spreading rate. For cases with migrating ridges, models predict a range of behaviors including repeating ridge jumps, much like those exhibited on Earth. Repeating ridge jumps occur at moderate magmatic heating rates and are the result of changes in the hot spot magma flux in response to magma migration along the base of an evolving lithosphere. The tendency of slow spreading to promote ridge jumps could help explain the observed clustering of hot spots near the Mid-Atlantic Ridge. Model results also suggest that magmatic heating may significantly thin the lithosphere

  3. Ridge 2000 Data Management System

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Carbotte, S. M.; Arko, R. A.; Haxby, W. F.; Ryan, W. B.; Chayes, D. N.; Lehnert, K. A.; Shank, T. M.

    2005-12-01

    Hosted at Lamont by the marine geoscience Data Management group, mgDMS, the NSF-funded Ridge 2000 electronic database, http://www.marine-geo.org/ridge2000/, is a key component of the Ridge 2000 multi-disciplinary program. The database covers each of the three Ridge 2000 Integrated Study Sites: Endeavour Segment, Lau Basin, and 8-11N Segment. It promotes the sharing of information to the broader community, facilitates integration of the suite of information collected at each study site, and enables comparisons between sites. The Ridge 2000 data system provides easy web access to a relational database that is built around a catalogue of cruise metadata. Any web browser can be used to perform a versatile text-based search which returns basic cruise and submersible dive information, sample and data inventories, navigation, and other relevant metadata such as shipboard personnel and links to NSF program awards. In addition, non-proprietary data files, images, and derived products which are hosted locally or in national repositories, as well as science and technical reports, can be freely downloaded. On the Ridge 2000 database page, our Data Link allows users to search the database using a broad range of parameters including data type, cruise ID, chief scientist, geographical location. The first Ridge 2000 field programs sailed in 2004 and, in addition to numerous data sets collected prior to the Ridge 2000 program, the database currently contains information on fifteen Ridge 2000-funded cruises and almost sixty Alvin dives. Track lines can be viewed using a recently- implemented Web Map Service button labelled Map View. The Ridge 2000 database is fully integrated with databases hosted by the mgDMS group for MARGINS and the Antarctic multibeam and seismic reflection data initiatives. Links are provided to partner databases including PetDB, SIOExplorer, and the ODP Janus system. Improved inter-operability with existing and new partner repositories continues to be

  4. Extracranial-intracranial bypass in medial sphenoid ridge meningioma associated with severe stenosis of the intracranial segments of the internal carotid artery: A case report.

    PubMed

    Huang, Yabo; Wang, Zhong; Han, Qingdong

    2018-06-01

    Tumor resection and extracranial-intracranial bypass concerning medial sphenoid ridge meningioma associated with severe stenosis of the internal carotid artery (ICA) of intracranial segments has been rarely presented. Effective treatment as to the complex lesions may be complicated. Tumor resection and cerebrovascular protection should be both taken into consideration. We presented one case of medial sphenoid ridge meningioma associated with severe stenosis of the internal carotid artery of intracranial segments. The patient suffered hyperthyroidism, mirror-image dextrocardia and congenital heart disease atrial septal defect simultaneously. Before the neurosurgical treatment , the colleagues of department of cardiac surgery, anesthesiology and respiratory medicine agreed on our plan of resecting the tumor following the comprehensive evaluation of basal clinical conditions in the patient. For reducing the bleeding intraoperatively, the interventional branch performed digital subtraction angiography(DSA) and found collateral anastomosis between the supplying vessels of left middle meningeal arteries and anterior choroid arteries. No preoperative interventional embolization was determined considering the risk of cerebral ischemia. The following subtotal resection of medial sphenoid ridge meningioma and left extracranial-intracranial bypass were carried out. Additionally, ipsilateral decompressive craniectomy was done. Post-operative imaging Computed tomography (CT), Computed tomography angiography (CTA) and Transcranial Doppler (TCD) indicated subtotal resection of tumor and bypass patency. The patient was discharged with the right limbs of muscle strength of grade IV. The muscle strength of the patient returned to grade V after 6 months of follow-up. Comprehensive treatment of tumor resection and extracranial-intracranial bypass concerning medial sphenoid ridge meningioma associated with severe stenosis of the internal carotid artery of intracranial segments is

  5. Heat flow in the flanks of the Oceanographer-Hayes segment of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Le Gal, V.; Lucazeau, F.; Cannat, M.; Battani, A.; Poort, J.; Guichet, X.; Monnin, C.; Fontaine, F. J.; Leroy, S. D.

    2016-12-01

    It is currently estimated that a third of the oceanic heat loss is due to fluid circulation in the oceanic crust. Besides high and low temperature fluid discharge at ridge axis, off-axis low temperature fluid circulations can affect large volumes of the oceanic crust. Long term investigations of the Eastern Juan de Fuca ridge flank (Hutnak et al.2006) have established a circulation pattern where hydrothermal discharge and recharge occur at basement outcrops and where sediment is mostly impermeable. Here, we present results from the recent Oceanograflu cruise (2013), on the Oceanographer-Hayes segment ridge flanks of the Mid-Atlantic ridge in crust 5 and 12 myrs in age. On both flanks, we obtained 185 temperature gradients and conductivities in-situ, 30 Küllenberg cores (3 to 5 meters long) coupled with temperature gradients in-situ and conductivity measurements onboard. These data are interpreted in terms of heat flow values and are generally lower than the conductive cooling model. Several temperature-depth profiles don't show linear gradients, but rather sigmoid shapes or inverse gradients suggesting superficial circulations through the first meters of sediments. The corresponding heat flow pattern is not similar to the one observed at Juan de Fuca. No systematic links have been observed between basement outcrops and lower or higher heat flow which would point to discharge or recharge sites. Instead, the pattern recalls studies in the North Pond area (Langseth et al.1992), with a clear predominance of low heat flow values over the site. We propose that the North Pond circulation model is applicable to large portions of slow-spreading ridge flanks such as the Atlantic. In this model, seawater cools the uppermost crust below sediments in basins that are typically tens of kms wide, reducing the surface heat flow under cooling model values. Based on subsidence rates, these shallow hydrothermal circulations have a minor impact on the cooling of the diverging plates.

  6. Relationship between screw sagittal angle and stress on endplate of adjacent segments after anterior cervical corpectomy and fusion with internal fixation: a Chinese finite element study.

    PubMed

    Zhang, Yu; Tang, Yibo; Shen, Hongxing

    2017-12-01

    In order to reduce the incidence of adjacent segment disease (ASD), the current study was designed to establish Chinese finite element models of normal 3rd~7th cervical vertebrae (C3-C7) and anterior cervical corpectomy and fusion (ACCF) with internal fixation , and analyze the influence of screw sagittal angle (SSA) on stress on endplate of adjacent cervical segments. Mimics 8.1 and Abaqus/CAE 6.10 softwares were adopted to establish finite element models. For C4 superior endplate and C6 inferior endplate, their anterior areas had the maximum stress in anteflexion position, and their posterior areas had the maximum stress in posterior extension position. As SSA increased, the stress reduced. With an increase of 10° in SSA, the stress on anterior areas of C4 superior endplate and C6 inferior endplate reduced by 12.67% and 7.99% in anteflexion position, respectively. With an increase of 10° in SSA, the stress on posterior areas of C4 superior endplate and C6 inferior endplate reduced by 9.68% and 10.22% in posterior extension position, respectively. The current study established Chinese finite element models of normal C3-C7 and ACCF with internal fixation , and demonstrated that as SSA increased, the stress on endplate of adjacent cervical segments decreased. In clinical surgery, increased SSA is able to play important role in protecting the adjacent cervical segments and reducing the incidence of ASD.

  7. Tectonic evolution of Gorda Ridge inferred from sidescan sonar images

    USGS Publications Warehouse

    Masson, D.G.; Cacchione, D.A.; Drake, D.E.

    1988-01-01

    Gorda Ridge is the southern segment of the Juan de Fuca Ridge complex, in the north-east Pacific. Along-strike spreading-rate variation on Gorda Ridge and deformation of Gorda Plate are evidence for compression between the Pacific and Gorda Plates. GLORIA sidescan sonographs allow the spreading fabric associated with Gorda Ridge to be mapped in detail. Between 5 and 2 Ma, a pair of propagating rifts re-orientated the northern segment of Gorda Ridge by about 10?? clockwise, accommodating a clockwise shift in Pacific-Juan de Fuca plate motion that occurred around 5 Ma. Deformation of Gorda Plate, associated with southward decreasing spreading rates along southern Gorda Ridge, is accommodated by a combination of clockwise rotation of Gorda Plate crust, coupled with left-lateral motion on the original normal faults of the ocean crust. Segments of Gorda Plate which have rotated by different amounts are separated by narrow deformation zones across which sharp changes in ocean fabric trend are seen. Although minor lateral movement may occur on these NW to WNW structures, no major right-lateral movement, as predicted by previous models, is observed. ?? 1988 Kluwer Academic Publishers.

  8. Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian; Itzel, Gary Michael

    2001-01-01

    A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.

  9. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, David A.

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property wheremore » hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from

  10. Fingermark ridge drift.

    PubMed

    De Alcaraz-Fossoul, Josep; Roberts, Katherine A; Feixat, Carme Barrot; Hogrebe, Gregory G; Badia, Manel Gené

    2016-01-01

    Distortions of the fingermark topography are usually considered when comparing latent and exemplar fingerprints. These alterations are characterized as caused by an extrinsic action, which affects entire areas of the deposition and alters the overall flow of a series of contiguous ridges. Here we introduce a novel visual phenomenon that does not follow these principles, named fingermark ridge drift. An experiment was designed that included variables such as type of secretion (eccrine and sebaceous), substrate (glass and polystyrene), and degrees of exposure to natural light (darkness, shade, and direct light) indoors. Fingermarks were sequentially visualized with titanium dioxide powder, photographed and analyzed. The comparison between fresh and aged depositions revealed that under certain environmental conditions an individual ridge could randomly change its original position regardless of its unaltered adjacent ridges. The causes of the drift phenomenon are not well understood. We believe it is exclusively associated with intrinsic natural aging processes of latent fingermarks. This discovery will help explain the detection of certain dissimilarities at the minutiae/ridge level; determine more accurate "hits"; identify potentially erroneous corresponding points; and rethink identification protocols, especially the criteria of "no single minutiae discrepancy" for a positive identification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Morphology and segmentation of the western Galápagos Spreading Center, 90.5°-98°W: Plume-ridge interaction at an intermediate spreading ridge

    NASA Astrophysics Data System (ADS)

    Sinton, John; Detrick, Robert; Canales, J. Pablo; Ito, Garrett; Behn, Mark

    2003-12-01

    Complete multibeam bathymetric coverage of the western Galápagos Spreading Center (GSC) between 90.5°W and 98°W reveals the fine-scale morphology, segmentation and influence of the Galápagos hot spot on this intermediate spreading ridge. The western GSC comprises three morphologically defined provinces: A Western Province, located farthest from the Galápagos hot spot west of 95°30'W, is characterized by an axial deep, rift valley morphology with individual, overlapping, E-W striking segments separated by non-transform offsets; A Middle Province, between the propagating rift tips at 93°15'W and 95°30'W, with transitional axial morphology strikes ˜276°; An Eastern Province, closest to the Galápagos hot spot between the ˜90°50'W Galápagos Transform and 93°15'W, with an axial high morphology generally less than 1800 m deep, strikes ˜280°. At a finer scale, the axial region consists of 32 individual segments defined on the basis of smaller, mainly <2 km, offsets. These offsets mainly step left in the Western and Middle Provinces, and right in the Eastern Province. Glass compositions indicate that the GSC is segmented magmatically into 8 broad regions, with Mg # generally decreasing to the west within each region. Striking differences in bathymetric and lava fractionation patterns between the propagating rifts with tips at 93°15'W and 95°30'W reflect lower overall magma supply and larger offset distance at the latter. The structure of the Eastern Province is complicated by the intersection of a series of volcanic lineaments that appear to radiate away from a point located on the northern edge of the Galápagos platform, close to the southern limit of the Galápagos Fracture Zone. Where these lineaments intersect the GSC, the ridge axis is displaced to the south through a series of overlapping spreading centers (OSCs); abandoned OSC limbs lie even farther south. We propose that southward displacement of the axis is promoted during intermittent times of

  12. Magmatic effects of the Cobb hot spot on the Juan de Fuca Ridge

    USGS Publications Warehouse

    Chadwick, John; Perfit, M.; Ridley, I.; Jonasson, I.; Kamenov, G.; Chadwick, W.; Embley, R.; le, Roux P.; Smith, M.

    2005-01-01

    The interaction of the Juan de Fuca Ridge with the Cobb hot spot has had a considerable influence on the magmatism of the Axial Segment of the ridge, the second-order segment that overlies the hot spot. In addition to the construction of the large volcanic edifice of Axial Seamount, the Axial Segment has shallow bathymetry and a prevalence of constructional volcanic features along its 100-km length, suggesting that hot spot-derived magmas supplement and oversupply the ridge. Lavas are generally more primitive at Axial Seamount and more evolved in the Axial Segment rift zones, suggesting that fractional crystallization is enhanced with increasing distance from the hot spot because of a reduced magma supply and more rapid cooling. Although the Cobb hot spot is not an isotopically enriched plume, it produces lavas with some distinct geochemical characteristics relative to normal mid-ocean ridge basalt, such as enrichments in alkalis and highly incompatible trace elements, that can be used as tracers to identify the presence and prevalence of the hot spot influence along the ridge. These characteristics are most prominent at Axial Seamount and decline in gradients along the Axial Segment. The physical model that can best explain the geochemical observations is a scenario in which hot spot and mid-ocean ridge basalt (MORB) magmas mix to varying degrees, with the proportions controlled by the depth to the MORB source. Modeling of two-component mixing suggests that MORB is the dominant component in most Axial Segment basalts. Copyright 2005 by the American Geophysical Union.

  13. Segmentation along the Queen Charlotte Fault: The long-lived influence of plate-motion rotation and Explorer Ridge fracture zones

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Walton, M. A. L.; Brothers, D. S.; Haeussler, P. J.; Ten Brink, U. S.; Conrad, J. E.; Kluesner, J.; Andrews, B. D.

    2017-12-01

    step marks the southern extent of rupture during the 2012 Mw 7.8 and 1949 M 8.1 Haida Gwaii earthquakes, suggesting that it forms a rupture barrier. Between 54—56 N, ridge-QCF intersections mark other major rupture boundaries, and, in some places, are associated with small pull-apart basins, suggesting that relic step overs continue to control segmentation along the QCF.

  14. Mantle Sources Beneath the SW Indian Ridge - Remelting the African Superplume

    NASA Astrophysics Data System (ADS)

    Dick, H. J. B.; Zhou, H.

    2012-04-01

    The SW Indian Ridge runs some 7700 km from the Bouvet to the Rodgriguez Triple Junction, crossing over or near two postulated mantle plumes. The latter are associated with large oceanic rises where the ridge axis shoals dramatically in the vicinity of the mantle hotspot. The Marion Rise, extends 3100 km from the Andrew Bain FZ to near the Rodriguez TJ, with an along axis rise of 5600-m to it crest north of Marion Island. The rise has thin crust inferred on the basis of abundant exposures of mantle peridotites along its length. We suggest that this is the result of its sub-axial mantle source, which is a depleted residue originally emplaced by the African Superplume into the asthenosphere beneath southern Africa during the Karoo volcanic event ~185 Ma. Based on shallow mantle anisotropy, plate reconstructions, and hotspot traces, it now forms the mantle substrate for the SW Indian Ridge due to the breakup of Gondwanaland. The Marion Rise is associated with Marion Island, the present location of the Marion Hotspot, some 256 km south of the modern ridge. This plume is a vestigial remnant of the African Superplume now imbedded in and centered on asthenospheric mantle derived from the Karoo event. Based on the numerous large offset fracture zones, which would dam sub-axial asthenospheric flow along the ridge, the low postulated flux of the Marion plume, its off-axis position, and the thin crust along the ridge it is clear that the present day plume does not support the Marion Rise. Instead, this must be supported isostatically by the underlying mantle residue of the Karoo event. The Bouvet Rise is much shorter than the Marion Rise, extending ~664 km from the Conrad FZ on the American-Antarctic Ridge to the Shaka FZ on the SW Indian Ridge. It has ~3000-m of axial relief, peaking at Speiss Smt at Speiss Ridge: the last spreading segment of the SW Indian Ridge adjacent to the Bouvet TJ. Unlike the Marion plume, Bouvet is ridge-centered, and much of its rise is likely

  15. Mutation mechanisms that underlie turnover of a human telomere-adjacent segmental duplication containing an unstable minisatellite.

    PubMed

    Hills, Mark; Jeyapalan, Jennie N; Foxon, Jennifer L; Royle, Nicola J

    2007-04-01

    Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.

  16. Observations of sea ice ridging in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Granberg, Hardy B.; Leppaäranta, Matti

    1999-11-01

    Sea ice surface topography data were obtained by helicopter-borne laser profiling during the First Finnish Antarctic Expedition (FINNARP-89). The measurements were made near the ice margin at about 73°S, 27°W in the eastern Weddell Sea on December 31, 1989, and January 1, 1990. Five transects, ranging in length from 127 to 163 km and covering a total length of 724 km, are analyzed. With a lower cutoff of 0.91 m the overall ridge frequency was 8.4 ridges/km and the average ridge height was 1.32 m. The spatial variations in ridging were large; for 36 individual 20-km segments the frequencies were 2-16 ridges/km and the mean heights were 1.16-1.56 m. The frequencies and mean heights were weakly correlated. The distributions of the ridge heights followed the exponential distribution; the spacings did not pass tests for either the exponential or the lognormal distribution, but the latter was much closer. In the 20-km segments the areally averaged thickness of ridged ice was 0.51±0.28 m, ranging from 0.10 to 1.15 m. The observed ridge size and frequency are greater than those known for the Ross Sea. Compared with the central Arctic, the Weddell Sea ridging frequencies are similar but the ridge heights are smaller, possibly as a result of differences in snow accumulation.

  17. In-situ seismic record of potential sill intrusion at the ultraslow spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Meier, M.; Schlindwein, V. S. N.

    2017-12-01

    Ultraslow spreading mid-ocean ridges with full spreading rates up to 15 mm/yr are described as the melt poor endmember of the entire mid-ocean ridge system. The melt supply along ultraslow spreading ridges is uneven resulting in the formation of volcanic centres and amagmatic segments. Amagmatic segments show thicker brittle lithosphere of up to 30 km, whereas magmatic segments have much thinner lithosphere of up to less than 15 km. It is supposed that melt travels along the lithosphere asthenosphere boundary from amagmatic segments to magmatic segments, where it can reach the seafloor and erupt. These spreading events are rare at ultraslow spreading ridges compared to faster spreading ridges and insitu observations hardly exist. During an ocean bottom seismometer (OBS) experiment at the eastern Southwest Indian Ridge two earthquake swarms were accidentally recorded. The swarms occurred in January and April 2013 and both lasted for a few days. The events of the earthquake swarms were relatively located with HypoDD for better spatial resolution. This unique dataset allowed for studying active spreading processes at an ultraslow spreading ridge. The earthquakes occurred in depths, where the magma chamber of the nearby Segment-8 volcano is located. This magma chamber potentially fed a sill intrusion, which was recorded as earthquake swarms. During the first hours of the first earthquake swarm a migration pattern was identified. The hypocentres migrated away from the Segment-8 volcanic centre and slightly downwards. Later events occurred more randomly in the active area. Simultaneously seismic tremor was recorded at the station closest to the swarm locations. The tremor lasted longer for the shorter earthquake swarm in April. During both tremor phases the signal was modulated with a 12 hour period. We speculate that a hydrothermal system was affected by the intrusion and fluid flow modulated by the tides produced the tremor signal.

  18. Magma plumbing system and seismicity of an active mid-ocean ridge volcano.

    PubMed

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-20

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  19. Tectonics of ridge-transform intersections at the Kane fracture zone

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Dick, H. J. B.

    1983-03-01

    The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (<200 m), highly fractured, and discontinuous carapace of volcanic rocks overlying a variably deformed and metamorphosed assemblage of gabbroic rocks. Overprinting relationships reveal a complex history of crustal extension and rapid vertical uplift. In contrast, the opposing flanks of the ridge axes, that intersect the non-transform zones appear to be similar in many respects to those examined elsewhere along slow-spreading ridges. In general, a near-axial horst and graben terrain floored by relatively young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with

  20. Upper crustal densities derived from sea floor gravity measurements: Northern Juan De Fuca Ridge

    USGS Publications Warehouse

    Holmes, Mark L.; Johnson, H. Paul

    1993-01-01

    A transect of sea floor gravity stations has been analyzed to determine upper crustal densities on the Endeavour segment of the northern Juan de Fuca Ridge. Data were obtained using ALVIN along a corridor perpendicular to the axis of spreading, over crustal ages from 0 to 800,000 years. Calculated elevation factors from the gravity data show an abrupt increase in density with age (distance) for the upper 200 m of crust. This density change is interpreted as a systematic reduction in bulk porosity of the upper crustal section, from 23% for the axial ridge to 10% for the off-axis flanking ridges. The porosity decrease is attributed to the collapse and filling of large-scale voids as the abyssal hills move out of the crustal formation zone. Forward modeling of a plausible density structure for the near-axis region agrees with the observed anomaly data only if the model includes narrow, along-strike, low-density regions adjacent to both inner and outer flanks of the abyssal hills. The required low density zones could be regions of systematic upper crustal fracturing and faulting that were mapped by submersible observers and side-scan sonar images, and whose presence was suggested by the distribution of heat flow data in the same area.

  1. Morphology and tectonics of the Mid-Atlantic Ridge, 7°-12°S

    NASA Astrophysics Data System (ADS)

    Bruguier, N. J.; Minshull, T. A.; Brozena, J. M.

    2003-02-01

    We present swath bathymetric, gravity, and magnetic data from the Mid-Atlantic Ridge between the Ascension and the Bode Verde fracture zones, where significant ridge-hot spot interaction has been inferred. The ridge axis in this region may be divided into four segments. The central two segments exhibit rifted axial highs, while the northernmost and southernmost segments have deep rift valleys typical of slow-spreading mid-ocean ridges. Bathymetric and magnetic data indicate that both central segments have experienced ridge jumps since ˜1 Ma. Mantle Bouguer anomalies (MBAs) derived from shipboard free air gravity and swath bathymetric data show deep subcircular lows centered on the new ridge axes, suggesting that mantle flow has been established beneath the new spreading centers for at least ˜1 Myr. Inversion of gravity data indicates that crustal thicknesses vary by ˜4 km along axis, with the thickest crust occurring beneath a large axial volcanic edifice. Once the effects of lithospheric aging have been removed, a model in which gravity variations are attributed entirely to crustal thickness variations is more consistent with data from an axis-parallel seismic line than a model that includes additional along-axis variations in mantle temperature. Both geophysical and geochemical data from the region may be explained by the melting of small (<200 km) mantle chemical heterogeneities rather than elevated temperatures. Therefore, there may be no Ascension/Circe plume.

  2. Geophysical Characteristics of the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Lin, J.; Park, S. H.; Choi, H.; Lee, S. M.

    2014-12-01

    Between 2011 and 2013, the Korea Polar Research Institute (KOPRI) conducted three consecutive geologic surveys at the little explored eastern ends of the Australian-Antarctic Ridge (AAR) to characterize the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Using the Korean icebreaker R/V Araon, the multi-disciplinary research team collected bathymetry, gravity, magnetics, and rock and water column samples. In addition, Miniature Autonomous Plume Recorders (MAPRs) were deployed at wax-core rock sampling sites to detect the presence of active hydrothermal vents. Here we present a detailed analysis of a 300-km-long supersegment of the AAR to quantify the spatial variations in ridge morphology and robust axial and off-axis volcanisms. The ridge axis morphology alternates between rift valleys and axial highs within relatively short ridge segments. To obtain a geological proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle than the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the KR1 supersegment of the AAR. The axial topography of the KR1 supersegment exhibits a sharp transition from axial highs at the western end to rift valleys at the eastern end, with regions of axial highs being associated with more magma supply as indicated by more negative RMBA. We also compare and contrast the characteristics of the AAR supersegment with that of other ridges of intermediate spreading rates, including the Juan de Fuca Ridge, Galápagos Spreading Center, and Southeast Indian Ridge west of the Australian-Antarctic Discordance, to investigate the influence of ridge-hotspot interaction on

  3. Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex

    2012-01-01

    A document discusses an electro-optic sensor that consists of a collimator, attached to one segment, and a quad diode, attached to an adjacent segment. Relative segment-segment motion causes the beam from the collimator to move across the quad diode, thus generating a measureable electric signal. This sensor type, which is relatively inexpensive, can be configured as an edge sensor, or as a remote segment-segment motion sensor.

  4. The Mid-atlantic Ridge (31°S-34°30'S): Temporal and spatial variations of accretionary processes

    NASA Astrophysics Data System (ADS)

    Fox, P. J.; Grindlay, N. R.; MacDonald, K. C.

    1991-02-01

    The ridge located between 31° S and 34°30'S is spreading at a rate of 35 mm yr-1, a transitional velocity between the very slow (≤20 mm yr-1) opening rates of the North Atlantic and Southwest Indian Oceans, and the intermediate rates (60 mm yr-1) of the northern limb of the East Pacific Rise, and the Galapagos and Juan de Fuca Ridges. A synthesis of multi-narrow beam, magnetics and gravity data document that in this area the ridge represents a dynamically evolving system. Here the ridge is partitioned into an ensemble of six distinct segments of variable lengths (12 to 100 km) by two transform faults (first-order discontinuities) and three small offset (< 30 km) discontinuities (second-order discontinuities) that behave non-rigidly creating complex and heterogeneous morphotectonic patterns that are not parallel to flow lines. The offset magnitudes of both the first and second-order discontinuities change in response to differential asymmetric spreading. In addition, along the fossil trace of second-order discontinuities, the lengths of abyssal hills located to either side of a discordant zone are observed to lengthen and shorten creating a saw-toothed pattern. Although the spreading rate remains the same along the length of the ridge studied, the morphology of the spreading segments varies from a deep median valley with characteristics analogous to the rift segments of the North Atlantic to a gently rifted axial bulge that is indistinguishable from the shape and relief of the intermediate rate spreading centers of the East Pacific Rise (i.e., 21°N). Like other carefully surveyed ridge segments at slow and fast rates of accretion, the along-axis profiles of each ridge segment are distinctly convex upwards, and exhibit along-strike changes in relief of 500m to 1500 between the shallowest portion of the segment (approximate center) and the segment ends. Such spatial variations create marked along-axis changes in the morphology and relief of each segment. A

  5. Amagmatic Accretionary Segments, Ultraslow Spreading and Non-Volcanic Rifted Margins (Invited)

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Snow, J. E.

    2009-12-01

    The evolution of non-volcanic rifted margins is key to understanding continental breakup and the early evolution of some of the world’s most productive hydrocarbon basins. However, the early stages of such rifting are constrained by limited observations on ancient heavily sedimented margins such as Newfoundland and Iberia. Ultraslow spreading ridges, however, provide a modern analogue for early continental rifting. Ultraslow spreading ridges (<20 mm/yr) comprise ~30% of the global ridge system (e.g. Gakkel, Southwest Indian, Terceira, and Knipovitch Ridges). They have unique tectonics with widely spaced volcanic segments and amagmatic accretionary ridge segments. The volcanic segments, though far from hot spots, include some of the largest axial volcanoes on the global ridge system, and have, unusual magma chemistry, often showing local isotopic and incompatible element enrichment unrelated to mantle hot spots. The transition from slow to ultraslow tectonics and spreading is not uniquely defined by spreading rate, and may also be moderated by magma supply and mantle temperature. Amagmatic accretionary segments are the 4th class of plate boundary structure, and, we believe, the defining tectonic feature of early continental breakup. They form at effective spreading rates <12 mm/yr, assume any orientation to spreading, and replace transform faults and magmatic segments. At amagmatic segments the earth splits apart with the mantle emplaced directly to the seafloor, and great slabs of peridotite are uplifted to form the rift mountains. A thick conductive lid suppresses mantle melting, and magmatic segments form only at widely spaced intervals, with only scattered volcanics in between. Amagmatic segments link with the magmatic segments forming curvilinear plate boundaries, rather than the step-like morphology found at faster spreading ridges. These are all key features of non-volcanic rifted margins; explaining, for example, the presence of mantle peridotites emplaced

  6. Multi-type Tectonic Responses to Plate Motion Changes of Mega-Offset Transform Faults at the Pacific-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.

    2017-12-01

    Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.

  7. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control

    NASA Astrophysics Data System (ADS)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.

    2017-12-01

    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  8. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance ofmore » the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils

  9. Crustal Thickness on the South East Indian Ridge from OBH data

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Cochran, J. R.; Carbotte, S. M.; Floyd, J. S.

    2002-12-01

    Seismic reflection and refraction data were collected on the intermediate-rate spreading South East Indian Ridge during December 2001 and January 2002 aboard the RV Ewing. A total of six lines of Ocean Bottom Hydrophone (OBH) refraction data were collected along four segments with contrasting ridge axis morphology. All lines were shot ridge parallel, with four lines on-axis, and two lines approximately 20 km off-axis. Each line used four OBHs and the line lengths varied between 102 km and 124 km, depending on the length of each ridge segment. For the two western most segments, an axial magma chamber is observed with crustal arrivals disappearing or being significantly delayed in the 15-20 km range. This indicates a magma chamber deeper than those observed on the faster spreading East Pacific Rise. Off-axis in this area clear crustal arrivals are seen out to 40-50 km. This indicates relatively thick crust in this most inflated of the sections studied, consistent with a higher magma supply. The two eastern most segments have on-axis lines only, and both of these indicate relatively thin crust. This is consistent with the more magma starved character of the bathymetry in these areas. Data will be presented, along with preliminary crustal velocity and thickness models.

  10. Jurassic, slow-spreading ridge in the southeast Gulf of Mexico and its along-strike morpho-volcanic expression explained by a two-phase opening model

    NASA Astrophysics Data System (ADS)

    Lin, P.; Mann, P.

    2016-12-01

    Previous workers have used extensive grids of 2D seismic reflection data to describe the width, structural character, and adjacent oceanic crust of the late Jurassic, slow-spreading ridge in the southeast Gulf of Mexico (SEGOM). Characteristics of the now-buried SEGOM slow spreading ridge include: 1) wide, axial valley segments ranging from 5-20 km; 2) alternating, deep, axial valley segments up to 2 km in depth; 3) normal faults dipping towards the axial valleys; and 4) isolated seamounts within the axial valleys projecting 1 km above regional oceanic basement depth and reflecting along-strike variations in the ridge's magmatic supply. We have used additional seismic reflection, gravity, and magnetic data to map the ridge and its environs to its southern termination, a 2.6-km-high seamount - informally named here Buffler seamount. The southernmost, 427-km long section of the SEGOM ridge from Buffler seamount northwest to the southwestern limit of the DeSoto Canyon arch can be divided into four alternating ridge segments with two distinctive morphologies: 1) wide and deep axial valleys lying below regional oceanic basement depth and characterized by gravity high and magnetic lows; and 2) elevated, linear areas of clustered, seamounts characterized by gravity low and magnetic highs. The continental margins of both Yucatan and Florida exhibit a prominent N60E magnetic fabric created by Phase 1, NW-SE Triassic-early Jurassic continental rifting of the GOM that was subsequently offset at right angles by Phase 2, NE-SW late Jurassic stretching and oceanic spreading. Removal of the V-shaped area of oceanic crust of the SEGOM shows that the wide, axial valleys of the late Jurassic spreading ridge coincide with rifted areas of thicker crust on the "arches" or horst blocks of Triassic-early Jurassic, Phase 1 rifting (Sarasota, Middle Ground) while the elevated areas of elevated and clustered seamounts coincide with thinner crust of the intervening rifts (Apalachicola, Tampa

  11. Biomechanical Analysis of the Proximal Adjacent Segment after Multilevel Instrumentation of the Thoracic Spine: Do Hooks Ease the Transition?

    PubMed Central

    Metzger, Melodie F.; Robinson, Samuel T.; Svet, Mark T.; Liu, John C.; Acosta, Frank L.

    2015-01-01

    Study Design Biomechanical cadaveric study. Objective Clinical studies indicate that using less-rigid fixation techniques in place of the standard all-pedicle screw construct when correcting for scoliosis may reduce the incidence of proximal junctional kyphosis and improve patient outcomes. The purpose of this study is to investigate whether there is a biomechanical advantage to using supralaminar hooks in place of pedicle screws at the upper-instrumented vertebrae in a multilevel thoracic construct. Methods T7–T12 spines were biomechanically tested: (1) intact; (2) following a two-level pedicles screw fusion from T9 to T11; and after proximal extension of the fusion to T8–T9 with (3) bilateral supra-laminar hooks, (4) a unilateral hook + unilateral screw hybrid, or (5) bilateral pedicle screws. Specimens were nondestructively loaded while three-dimensional kinematics and intradiscal pressure at the supra-adjacent level were recorded. Results Supra-adjacent hypermobility was reduced when bilateral hooks were used in place of pedicle screws at the upper-instrumented level, with statistically significant differences in lateral bending and torsion (p < 0.05 and p < 0.001, respectively). Disk pressures in the supra-adjacent segment were not statistically different among top-off techniques. Conclusions The use of supralaminar hooks at the top of a multilevel posterior fusion construct reduces the stress at the proximal uninstrumented motion segment. Although further data is needed to provide a definitive link to the clinical occurrence of PJK, this in vitro study demonstrates the potential benefit of “easing” the transition between the stiff instrumented spine and the flexible native spine and is the first to demonstrate these results with laminar hooks. PMID:27190735

  12. Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  13. Subduction of aseismic ridges beneath the Caribbean Plate: Implications for the tectonics and seismic potential of the northeastern Caribbean

    NASA Astrophysics Data System (ADS)

    McCann, William R.; Sykes, Lynn R.

    1984-06-01

    Normal seafloor entering the Puerto Rico and northern Lesser Antillean trenches in the northeastern Caribbean is interrupted by a series of aseismic ridges on the North and South American plates. These topographic features lie close to the expected trend of fracture zones created about 80-110 m.y. ago when this seafloor was formed at the Mid-Atlantic Ridge. The northernmost of the ridges that interact with the Lesser Antillean subduction zone, the Barracuda Ridge, intersects the arc in a region of high seismic activity. Some of this seismicity including a large shock in 1974, occurs within the overthrust plate and may be related to the deformation of the Caribbean plate as it overrides the ridge. A large bathymetric high, the Main Ridge, is oriented obliquely to the Puerto Rico trench and intersects the subduction zone north of the Virgin Islands in another cluster of seismic activity along the inner wall of the trench. Data from a seismic network in the northeastern Caribbean indicate that this intersection is also characterized by both interpolate and intraplate seismic activity. Magnetic anomalies, bathymetric trends, and the pattern of deformed sediments on the inner wall of the trench strongly suggest that the Main and Barracuda ridges are parts of a formerly continuous aseismic ridge, a segment of which has recently been overridden by the Caribbean plate. Reconstruction of mid-Miocene to Recent plate motions also suggest that at least two aseismic ridges, and possibly fragments of the Bahama Platform, have interacted with the subduction zone in the northeastern Caribbean. The introduction of these narrow segments of anomalous seafloor into the subduction zone has segmented the arc into elements about 200 km long. These ridges may act as tectonic barriers or asperities during the rupture processes involved in large earthquakes. They also leave a geologic imprint on segments of the arc with which they have interacted. A 50-km landward jump of the locus of

  14. Submersible observations along the southern Juan de Fuca Ridge: 1984 Alvin program.

    USGS Publications Warehouse

    Normark, William R.; Morton, Janet L.; Ross, Stephanie L.

    1987-01-01

    In September 1984, the research submersible Alvin provided direct observations of three major hydrothermal vent areas along the southernmost segment of the Juan de Fuca Ridge (JFR). The submersible operations focused on specific volcanologie, structural, and hydrothermal problems that had been identified during the preceding 4 years of photographic, dredging, acoustic imaging, and geophysical studies along a 12-km-long section of the ridge. A continuously maintained (from 1981 to the present) net of seafloor-anchored acoustic transponders allowed the observations from Alvin to be directly tied to all previous U.S. Geological Survey data sets and National Oceanic and Atmospheric Administration water column surveys from 1984 to the present. The three vent areas studied are the largest of at least six areas identified by previous deep-towed camera surveys that lie within a deep cleft, which marks the axis of symmetry of the JFR in this region. The cleft appears to be the locus of eruption for this segment of the JFR. The vent areas, at least in part, are localized near what appear to be previous volcanic eruptive centers marked by extensive lava lake collapse features adjacent to the cleft at these sites. Each hydrothermal area has several active discharge sites, and sulfide deposits occur as clusters (15–100 m2) of small chimneys, individual large chimneys, or clusters of large branched chimneys. We review the dive program and present a brief synthesis of the geology of the vent sites together with sample and track line compilations.

  15. Beach ridges as paleoseismic indicators of abrupt coastal subsidence during subduction zone earthquakes, and implications for Alaska-Aleutian subduction zone paleoseismology, southeast coast of the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Kelsey, Harvey M.; Witter, Robert C.; Engelhart, Simon E.; Briggs, Richard; Nelson, Alan R.; Haeussler, Peter J.; Corbett, D. Reide

    2015-01-01

    The Kenai section of the eastern Alaska-Aleutian subduction zone straddles two areas of high slip in the 1964 great Alaska earthquake and is the least studied of the three megathrust segments (Kodiak, Kenai, Prince William Sound) that ruptured in 1964. Investigation of two coastal sites in the eastern part of the Kenai segment, on the southeast coast of the Kenai Peninsula, identified evidence for two subduction zone earthquakes that predate the 1964 earthquake. Both coastal sites provide paleoseismic data through inferred coseismic subsidence of wetlands and associated subsidence-induced erosion of beach ridges. At Verdant Cove, paleo-beach ridges record the paleoseismic history; whereas at Quicksand Cove, buried soils in drowned coastal wetlands are the primary indicators of paleoearthquake occurrence and age. The timing of submergence and death of trees mark the oldest earthquake at Verdant Cove that is consistent with the age of a well documented ∼900-year-ago subduction zone earthquake that ruptured the Prince William Sound segment of the megathrust to the east and the Kodiak segment to the west. Soils buried within the last 400–450 years mark the penultimate earthquake on the southeast coast of the Kenai Peninsula. The penultimate earthquake probably occurred before AD 1840 from its absence in Russian historical accounts. The penultimate subduction zone earthquake on the Kenai segment did not rupture in conjunction with the Prince William Sound to the northeast. Therefore the Kenai segment, which is presently creeping, can rupture independently of the adjacent Prince William Sound segment that is presently locked.

  16. Inferring the width of the upwelling region at mid-ocean ridges from the throttling effect of small-offset transforms: Implications for the dynamics of `normal' and plume-influenced mid- ocean ridges

    NASA Astrophysics Data System (ADS)

    Phipps Morgan, J.; Ranero, C. R.

    2006-12-01

    The fundamental question "How wide is the upwelling and melting region beneath mid-ocean ridges (MORs)?" remains a subject of ongoing debate after 4 decades of intensive study. The basic observational difficulty is that lateral melt migration has the potential to bring melt produced within a wide subaxial region to the ~2km- wide neovolcanic zone that has been observed to be the site of almost all oceanic crustal emplacement. Here we use an indirect approach to infer this width from the minimum length of the ridge-offsets that mark the limits of the `region of influence' of on-ridge plumes on the axial relief, axial morphology, and crustal thickness along the ridge — e.g. as seen along ridge segments influenced by the Galapagos and Iceland plumes, and at the terminations of fossil volcanic rifted margins and the paleo-Azores plume-ridge interaction. We adopt Vogt's [1972] hypothesis for along-ridge asthenospheric flow in a narrow vertical slot beneath the axis of plume- influenced `macro-segments'. We find that: (1) There is a threshold distance to the lateral offsets that bound plume-influenced macrosegments; all such `barrier offsets' are greater than ~30km, while smaller offsets do not appear to be a barrier to along-axis flow. (2) Recent seismic and E-M observations along the southern EPR are consistent with a narrow westward-dipping subaxial slot. (3) A similar pattern is seen in the often abrupt transitions between volcanic and non-volcanic rifted margins, which is discussed in a companion presentation by Ranero and Phipps Morgan (this meeting). (4) A ~30km width for the region of ridge upwelling and melting offers a simple conceptual explanation for the apparent ~30km threshold length for the existence of strike-slip transform faults and the occurrence of non-transform offsets at smaller ridge offset-distances. (5) It also offers a simple conceptual explanation for the largest scale of segmentation of axial relief seen at fast-spreading ridges; these 500

  17. The distribution of near-axis seamounts at intermediate spreading ridges

    NASA Astrophysics Data System (ADS)

    Howell, J. K.; Bohnenstiehl, D. R.; White, S. M.; Supak, S. K.

    2008-12-01

    The ridge axes along the intermediate-spreading rate Galapagos Spreading Center (GSC, 46-56 mm/yr) and South East Indian Ridge (SEIR, 72-76 mm/yr) vary from rifted axial valleys to inflated axial highs independent of spreading rate. The delivery and storage of melt is believed to control axial morphology, with axial highs typically observed in areas underlain by a shallow melt lens and axial valleys in areas without a significant melt lens [e.g., Baran et al., 2005 G-cubed; Detrick et al. 2002 G-cubed]. To investigate a possible correlation between the style of seafloor volcanism and axial morphology, a closed contour algorithm is used to identify near axis (2.5km off axis) semi-circular seamounts of heights greater than 20m from shipboard multibeam bathymetry. In areas characterized by an axial high, more seamounts are formed at the ends of the segments than in the center. This is consistent with observations at fast-spreading ridges and suggests a tendency of lavas to erupt at lower effusion rates near second-order segment boundaries. Segments with a rift valley along the GSC show the opposite trend, with more seamounts at the center of second-order segments. Both patterns however are observed along SEIR segments with rift valleys where magma supply may be reflected in size and not their abundance.

  18. Ridges and scarps in the equatorial belt of Mars

    USGS Publications Warehouse

    Lucchitta, B.K.; Klockenbrink, J.L.

    1981-01-01

    The morphology and distribution of ridges and scarps on Mars in the ?? 30?? latitude belt were investigated. Two distinct types of ridges were recognized. The first is long and linear, resembling mare ridges on the Moon; it occurs mostly in plains areas. The other is composed of short, anastomosing segments and occurs mostly in ancient cratered terrain and intervening plateaus. Where ridges are eroded, landscape configurations suggest that they are located along regional structures. The age of ridges is uncertain, but some are as young as the latest documented volcanic activity on Mars. The origins of ridges are probably diverse-they may result from wrinkling due to compression or from buckling due to settling over subsurface structures. The similar morphologic expressions of ridge types of various origins may be related to a similar deformation mechanism caused by two main factors: (1) most ridges are developed in thick layers of competent material and (2) ridges formed under stresses near a free surface. ?? 1981 D. Reidel Publishing Co.

  19. Strain gauge ambiguity sensor for segmented mirror active optical system

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.; Howe, T. L. (Inventor)

    1974-01-01

    A system is described to measure alignment between interfacing edges of mirror segments positioned to form a segmented mirror surface. It serves as a gauge having a bending beam with four piezoresistive elements coupled across the interfaces of the edges of adjacent mirror segments. The bending beam has a first position corresponding to alignment of the edges of adjacent mirror segments, and it is bendable from the first position in a direction and to a degree dependent upon the relative misalignment between the edges of adjacent mirror segments to correspondingly vary the resistance of the strain guage. A source of power and an amplifier are connected in circuit with the strain gauge whereby the output of the amplifier varies according to the misalignment of the edges of adjacent mirror segments.

  20. The rise and fall of axial highs during ridge jumps

    NASA Astrophysics Data System (ADS)

    Shah, Anjana K.; Buck, W. Roger

    2006-08-01

    We simulate jumps of ocean spreading centers with axial high topography using elastoplastic thin plate flexure models. Processes considered include ridge abandonment, the breaking of a stressed plate on the ridge flank, and renewed spreading at the site of this break. We compare model results to topography at the East Pacific Rise between 15°25'N and 16°N, where there is strong evidence of a recent ridge jump. At an apparently abandoned ridge, gravity data do not suggest buoyant support of topography. Model deflections during cooling and melt solidification stages of ridge abandonment are of small vertical amplitude because of plate strengthening, resulting in the preservation of a "frozen" fossil high. The present-day high is bounded by slopes with up to a 40% grade, a scenario very difficult to achieve flexurally given generally accepted constraints on lithospheric strength. We model these slopes by assuming that the height at which magma is accreted increases rapidly after the ridge jumps. This increase is attributed to high overburden pressure on melt that resided in an initially deep magma chamber, followed by a rapid increase in temperature and melt supply to the region shortly after spreading began. The high is widest at the segment center, suggesting that magmatic activity began near the center of the segment, propagated south and then north. The mantle Bouguer anomaly exhibits a "bull's-eye" pattern centered at the widest part of the high, but the depth of the axis is nearly constant along the length of the segment. We reconcile these observations by assigning different cross-axis widths to a low-density zone within the crust.

  1. Adjacent-segment disease after thoracic pedicle screw fixation.

    PubMed

    Agarwal, Nitin; Heary, Robert F; Agarwal, Prateek

    2018-03-01

    OBJECTIVE Pedicle screw fixation is a technique widely used to treat conditions ranging from spine deformity to fracture stabilization. Pedicle screws have been used traditionally in the lumbar spine; however, they are now being used with increasing frequency in the thoracic spine as a more favorable alternative to hooks, wires, or cables. Although safety concerns, such as the incidence of adjacent-segment disease (ASD) after cervical and lumbar fusions, have been reported, such issues in the thoracic spine have yet to be addressed thoroughly. Here, the authors review the literature on ASD after thoracic pedicle screw fixation and report their own experience specifically involving the use of pedicle screws in the thoracic spine. METHODS Select references from online databases, such as PubMed (provided by the US National Library of Medicine at the National Institutes of Health), were used to survey the literature concerning ASD after thoracic pedicle screw fixation. To include the authors' experience at Rutgers New Jersey Medical School, a retrospective review of a prospectively maintained database was performed to determine the incidence of complications over a 13-year period in 123 consecutive adult patients who underwent thoracic pedicle screw fixation. Children, pregnant or lactating women, and prisoners were excluded from the review. By comparing preoperative and postoperative radiographic images, the occurrence of thoracic ASD and disease within the surgical construct was determined. RESULTS Definitive radiographic fusion was detected in 115 (93.5%) patients. Seven incidences of instrumentation failure and 8 lucencies surrounding the screws were observed. One patient was observed to have ASD of the thoracic spine. The mean follow-up duration was 50 months. CONCLUSIONS This long-term radiographic evaluation revealed the use of pedicle screws for thoracic fixation to be an effective stabilization modality. In particular, ASD seems to be less of a problem in the

  2. Spatial variations in isostatic compensation mechanisms of the Ninetyeast Ridge and their tectonic significance

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2013-10-01

    Ninetyeast Ridge (NER), one of the longest linear volcanic features on the Earth, offers an excellent opportunity of understanding the isostatic response to the interactions of mantle plume with the migrating mid-ocean ridge. Bathymetry, geoid, and gravity (shipborne and satellite) data along 72 closely spaced transects and 17 overlapping grids on the NER are analyzed and modeled to determine the effective elastic thickness (Te) beneath the entire ridge. The results of 2-D and 3-D flexural modeling of the NER show large spatial variations in Te values ranging from 4 to 35 km, suggesting that the ridge was compensated along its length by different isostatic mechanisms. The southern (south of 22°S latitude) and northern (north of 2°N latitude) parts of the NER have Te values of >10 and >23 km, respectively, revealing that the southern part was emplaced on a lithosphere of intermediate strength possibly on flank of the Indian plate, whereas the northern part was emplaced in an intraplate setting. In contrast, in the central part of the NER (between latitudes 22°S and 2°N), highly variable Te values (4-22 km) are estimated. The scattered Te values in the central NER suggest that this part may have evolved due to the occurrence of frequent ridge jumps caused by the interaction of Kerguelen hot spot with rapid northward migration of the Wharton spreading ridge. Residual Mantle Bouguer Anomaly (RMBA) map of the NER and adjacent basins reveals that the entire length of the NER is associated with a significant negative anomaly up to 200 mGal, indicating the presence of thickened crust or less dense mantle beneath the ridge. 3-D crustal thickness map of the NER, generated by inversion of the RMBA data, shows a thick crust ranging from 15 to 19 km. The present study clearly shows that NER possesses a highly segmented isostatic pattern with the occurrence of subcrustal underplating or subsurface loading.

  3. Physical inter-relationships between hydrothermal activity, faulting and magmatic processes at the center of a slow-spreading, magma-rich mid-ocean ridge segment: A case study of the Lucky Strike segment (MAR, 37°03'-37‧N)

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.

    2012-12-01

    The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma

  4. Voluminous lava flow from Axial Seamount's south rift constrains extension rate on northern Vance Segment

    NASA Astrophysics Data System (ADS)

    Le Saout, M.; Clague, D. A.; Paduan, J. B.

    2017-12-01

    Axial Seamount is characterized by a robust magma supply resulting from the interaction between the Cobb hotspot and the Juan de Fuca Ridge. During the last two decades, magmatic activity was focused within the summit caldera and upper and middle portions of the two rift zones, with eruptions in 1998, 2011, and 2015. However, the distal ends of both rift zones have experienced numerous eruptions in the past. The most voluminous flows are located near the extreme ends, greater than 40 kilometers from the caldera. Where Axial's South Rift Zone overlaps with the Vance Segment of the Juan de Fuca Ridge, the 2015 MBARI expedition mapped 16 km2 of the seafloor with our AUV, and collected 33 rocks and 33 sediment cores during two ROV dives. The data were used to confirm the boundaries of an extensive flow tentatively identified using modern ship based bathymetry. This flow is 18 km wide and 6 km long for a total surface area of 63 km2. The flow is modified by superficial ( 5 m deep) and deep (25 to 45 m deep) subsidence pits, with the deepest pits giving an indication of the minimum thickness of the flow. The maximum thickness of 100 m is measured at the margins of the flow. We thus estimate a volume between 2.5 and 6 km3, making this flow the most voluminous known on the global mid ocean ridge system. The minimum volume is equivalent to the present volume of the summit caldera. Radiocarbon ages of foraminifera from the basal sections of sediment cores suggest that this flow is 1000 years old. This flow travelled east and partially filled the axial valley of the adjacent Vance Segment. Since emplacement, this part of the flow has experienced deformation by fissures and faults aligned with the trend of the Vance Segment. The horizontal extension across these features allows us to estimate a local deformation rate of 3 cm/yr of tectonic extension on the northern end of Vance Segment during the last 1000 years.

  5. Glacial modulation of mid-ocean ridge magmatism and anomalous Pacific Antarctic Ridge volcanism during Termination II

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Lewis, M.; Lund, D. C.; Seeley, E.; McCart, S.; Mudahy, A.

    2017-12-01

    Glacially-driven sea level rise and fall may modulate submarine volcanism by superposing pressure changes on the tectonic decompression that causes melt production in the mantle below mid-ocean ridges. A number of recent studies have considered whether this effect is recorded in the periodicity of ridge flank bathymetry (Tolstoy, 2015; Crowley et al., 2015) but interpretation of the bathymetric data remains controversial (Goff, 2016; Olive et al., 2016). We have pursued an independent approach using hydrothermal metals in well-dated near-ridge sediment cores. Along the full length of the East Pacific Rise, in areas of the ocean with widely variable biologic productivity, there are large and consistent rises in Fe, Mn, and As concentrations during the last two glacial terminations. We interpret these cores as records of excess hydrothermal flux due to delayed delivery to the axis of excess melt generated by the preceding falls in sea level. Here we discuss the potentially related discovery, in a core near the Pacific Antarctic Ridge (PAR), of a 10 cm thick layer of basaltic ash shards up to 250 mm in size, coincident with the penultimate deglaciation (Termination II). Although the site was 8 km off-axis at the time, the glasses have major element, volatile, and trace element composition consistent with more evolved members of the axial MORB suite from the nearby ridge axis. Their morphologies are typical of pyroclastic deposits created by explosive submarine volcanism (Clague et al., 2009). We propose that a period of low magmatic flux following a sea-level rise caused cooling of crustal magmatic systems, more advanced fractionation in the axial magma chamber, and increases in viscosity and volatile concentration. We hypothesize subsequent arrival of high magmatic flux during Termination II then reactivated the system and triggered an unusually vigorous series of explosive eruptions along this segment of the PAR. Ash layers recording large eruptions such as this one

  6. Apparatus For Laminating Segmented Core For Electric Machine

    DOEpatents

    Lawrence, Robert Anthony; Stabel, Gerald R

    2003-06-17

    A segmented core for an electric machine includes segments stamped from coated electric steel. The segments each have a first end, a second end, and winding openings. A predetermined number of segments are placed end-to-end to form layers. The layers are stacked such that each of the layers is staggered from adjacent layers by a predetermined rotation angle. The winding openings of each of the layers are in vertical alignment with the winding openings of the adjacent layers. The stack of layers is secured to form the segmented core.

  7. Improvement in Recursive Hierarchical Segmentation of Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2006-01-01

    A further modification has been made in the algorithm and implementing software reported in Modified Recursive Hierarchical Segmentation of Data (GSC- 14681-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 51. That software performs recursive hierarchical segmentation of data having spatial characteristics (e.g., spectral-image data). The output of a prior version of the software contained artifacts, including spurious segmentation-image regions bounded by processing-window edges. The modification for suppressing the artifacts, mentioned in the cited article, was addition of a subroutine that analyzes data in the vicinities of seams to find pairs of regions that tend to lie adjacent to each other on opposite sides of the seams. Within each such pair, pixels in one region that are more similar to pixels in the other region are reassigned to the other region. The present modification provides for a parameter ranging from 0 to 1 for controlling the relative priority of merges between spatially adjacent and spatially non-adjacent regions. At 1, spatially-adjacent-/spatially- non-adjacent-region merges have equal priority. At 0, only spatially-adjacent-region merges (no spectral clustering) are allowed. Between 0 and 1, spatially-adjacent- region merges have priority over spatially- non-adjacent ones.

  8. Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Minshull, T. A.; Edwards, R. A.; Flueh, E. R.

    2015-07-01

    The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding continents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.

  9. Spreading rate dependence of gravity anomalies along oceanic transform faults.

    PubMed

    Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J

    2007-07-12

    Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults.

  10. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  11. East Pacific Rise 18 deg-19 deg S: Asymmetric spreading and ridge reorientation by ultrafast migration of axial discontinuities

    NASA Astrophysics Data System (ADS)

    Cormier, Marie-Helene; MacDonald, Ken C.

    1994-01-01

    A detailed bathymetric, side scan, and magnetic survey of the East Pacific Rise out to a seafloor age of 1 Ma has been carried out between 18 deg and 19 deg S. It reveals that some left-stepping axial discontinuities have been migrating southward at rates an order of magnitude faster than the spreading rates (1000 mm/a or higher). These rapid migration events have left on the Nazca plate discordant features striking nearly parallel to the ridge axis. A discontinuity with an offset of several kilometers has migrated in two stages at around 0.45 and 0.3 Ma, and has left two large discordant zones consisting of a series of unfaulted, hummocky basins bounded to the east by short ridges oriented about N-S, oblique to the ambient 013 deg fabric. The morphology and reflectivity characteristics of these discordant zones are akin to the overlap basins and abandoned ridge tips which make up the migration trails of large, slowly-migrating overlapping spreading centers. Between 18 deg 35 min and 19 deg 03 min S, the ridge axis is flanked a few kilometers to the east by a prominent, sedimented ridge previously recognized as a recent abandoned ridge axis. The present ridge segment steadily deepens and narrows southward, which suggests the abandoned ridge has been rafted onto the Nazca plate during the ultrafast southward propagation of the ridge segment rather than by one discrete ridge jump. By transferring Pacific lithosphere to the Nazca plate, these migration events account for most of the asymmetric accretion observed (faster to the east). This process is consistent with the features common to asymmetric spreading, namely the sudden onset or demise of asymmetric spreading, and the ridge segment to ridge segment variablity. Because the discordant zones left by these rapid migration events are near-parallel to the ambient seafloor fabric, they are unlikely to be detected by conventional bathymetry or magnetic surveys, and so-called 'ridge-jumps' may actually often represent

  12. Scales of magmatic replenishment and differentiation on an intermediate spreading mid-ocean ridge segment: Endeavour, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Gill, J.; Clague, D. A.

    2016-12-01

    The aggregate chemistry of mid-ocean ridge (MOR) basalts cannot be produced by fractional crystallization alone. Recent modeling suggests that repeated magmatic replenishment is required (O'Neill and Jenner, 2012; Coogan and O'Hara, 2015; Shorttle, 2015). Does this inference hold when considering recent advancements in characterizing geological/volcanological context, geochemical variability, and temporal parameters on the scale of individual lava units (Rubin et al., 2009)? We evaluate the scales of magmatic replenishment through examination of compositionally diverse lavas from the Endeavour segment of the Juan de Fuca (JdF) MOR interpreted as comagmatic or coeruptive based on robust geological (Clague et al., 2014), geochemical (Gill et al., 2016), and geochronological (Jamieson et al., 2013; Clague et al., 2014) evidence. This approach is similar to that used for historical MOR eruptions (Rubin et al., 2001). We identified 15 "chemomagmatic" units that are spatially proximate and chemically relatable and separable that collectively represent eruptions since 11ka. Some units may be single lava flows. Other units appear to have erupted batches intermittently over hundreds to thousands of years during which chemically dissimilar lava also erupted. Melt evolution was modeled using MELTS for units with reasonably broad major element variations. Fractional crystallization models can adequately reproduce most of the major and incompatible trace element behavior observed within each unit. Consistent differences in trace element ratios between units argue against intermixing. Thus, magmatic batches typically lie within analytical resolution of fractional crystallizing systems, notwithstanding growing evidence that magmatic systems are repeatedly replenished at the segment scale. Melting and mixing of heterogeneous mantle sources are responsible for the overall compositional diversity at Endeavour. Chemomagmatic units, in contrast, reflect smaller scale processing of

  13. Crustal architecture and deep structure of the Namibian passive continental margin around Walvis Ridge from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion

    2013-04-01

    Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.

  14. Is the behavior of disc replacement adjacent to fusion affected by the location of the fused level in hybrid surgery?

    PubMed

    Wu, Ting-Kui; Meng, Yang; Wang, Bei-Yu; Hong, Ying; Rong, Xin; Ding, Chen; Chen, Hua; Liu, Hao

    2018-04-27

    Hybrid surgery (HS), consisting of cervical disc arthroplasty (CDA) at the mobile level, along with anterior cervical discectomy and fusion at the spondylotic level, could be a promising treatment for patients with multilevel cervical degenerative disc disease (DDD). An advantage of this technique is that it uses an optimal procedure according to the status of each level. However, information is lacking regarding the influence of the relative location of the replacement and the fusion segment in vivo. We conducted the present study to investigate whether the location of the fusion affected the behavior of the disc replacement and adjacent segments in HS in vivo. This is an observational study. The numbers of patients in the arthroplasty-fusion (AF) and fusion-arthroplasty (FA) groups were 51 and 24, respectively. The Japanese Orthopedic Association (JOA), Neck Disability Index (NDI), and Visual Analog Scale (VAS) scores were evaluated. Global and segmental lordosis, the range of motion (ROM) of C2-C7, and the operated and adjacent segments were measured. Fusion rate and radiological changes at adjacent levels were observed. Between January 2010 and July 2016, 75 patients with cervical DDD at two contiguous levels undergoing a two-level HS were retrospectively reviewed. The patients were divided into AF and FA groups according to the locations of the disc replacement. Clinical outcomes were evaluated according to the JOA, NDI, and VAS scores. Radiological parameters, including global and segmental lordosis, the ROM of C2-C7, the operated and adjacent segments, and complications, were also evaluated. Although the JOA, NDI, and VAS scores were improved in both the AF and the FA groups, no significant differences were found between the two groups at any follow-up point. Both groups maintained cervical lordosis, but no difference was found between the groups. Segmental lordosis at the fusion segment was significantly improved postoperatively (p<.001), whereas it was

  15. Topping-off technique prevents aggravation of degeneration of adjacent segment fusion revealed by retrospective and finite element biomechanical analysis.

    PubMed

    Zhu, Zhenqi; Liu, Chenjun; Wang, Kaifeng; Zhou, Jian; Wang, Jiefu; Zhu, Yi; Liu, Haiying

    2015-01-28

    The aim of this study was to evaluate the effect of the Topping-off technique in preventing the aggravation of degeneration caused by adjacent segment fusion. Clinical parameters of patients who underwent L5-S1 posterior lumbar interbody fusion + interspinous process at L4-L5 (PLIF + ISP) with the Wallis system (Topping-off group) were compared retrospectively with those of patients who underwent solely PLIF. Pre- and post-operative x-ray measurements, visual analogue scale (VAS) scores, and Japanese Orthopaedic Association (JOA) scores were assessed in all subjects. Normal L1-S1 lumbosacral finite element models were established in accordance with the two types of surgery in our study, respectively. Virtual loading was added to assess the motility, disc pressure, and facet joint stress of L4-L5. There were 22 and 23 valid cases included in the Topping-off and PLIF groups. No degeneration was observed in either group. Both VAS and JOA scores improved significantly post-operatively (P < 0.01). The intervertebral angle and lumbar lordosis of L4-L5 were both significantly increased (t = -2.89 and -2.68, P < 0.05 in the Topping-off group and t = -2.25 and -2.15, P < 0.05 in the PLIF group). In the Topping-off group, x-ray in dynamic position showed no significant difference in the angulation or distance of the anterior movement of the L4-L5 segment. The angle of hyper-extension and distance of the posterior movement of L4 were significantly decreased. In the PLIF group, both hyper-flexion and hyper-extension and posterior movement were increased significantly. In finite element analysis, displacement of the L4 vertebral body, pressure of the annulus fibrosus and nucleus pulposus, and stress of the bilateral facet joint were less in the Topping-off group under loads of anterior flexion and posterior extension. Facet joint stress on the left side of the L4-L5 segment was also less in the Topping-off group under left flexion loads. Short

  16. Mid-ocean ridge basalt generation along the slow-spreading, South Mid-Atlantic Ridge (5-11°S): Inferences from 238U-230Th-226Ra disequilibria

    NASA Astrophysics Data System (ADS)

    Turner, Simon; Kokfelt, Thomas; Hauff, Folkmar; Haase, Karsten; Lundstrom, Craig; Hoernle, Kaj; Yeo, Isobel; Devey, Colin

    2015-11-01

    U-series disequilibria have provided important constraints on the physical processes of partial melting that produce basaltic magma beneath mid-ocean ridges. Here we present the first 238U-230Th-226Ra isotope data for a suite of 83 basalts sampled between 5°S and 11°S along the South Mid-Atlantic Ridge. This section of the ridge can be divided into 5 segments (A0-A4) and the depths to the ridge axis span much of the global range, varying from 1429 to 4514 m. Previous work has also demonstrated that strong trace element and radiogenic isotope heterogeneity existed in the source regions of these basalts. Accordingly, this area provides an ideal location in which to investigate the effects of both inferred melt column length and recycled materials. 226Ra-230Th disequilibria indicate that the majority of the basalts are less than a few millennia old such that their 230Th values do not require any age correction. The U-Th isotope data span a significant range from secular equilibrium up to 32% 230Th excess, also similar to the global range, and vary from segment to segment. However, the (230Th/238U) ratios are not negatively correlated with axial depth and the samples with the largest 230Th excesses come from the deepest ridge segment (A1). Two sub-parallel and positively sloped arrays (for segments A0-2 and A3 and A4) between (230Th/238U) and Th/U ratios can be modelled in various ways as mixing between melts from peridotite and recycled mafic lithologies. Despite abundant evidence for source heterogeneity, there is no simple correlation between (230Th/238U) and radiogenic isotope ratios suggesting that at least some of the trace element and radiogenic isotope variability may have been imparted to the source regions >350 kyr prior to partial melting to produce the basalts. In our preferred model, the two (230Th/238U) versus Th/U arrays can be explained by mixing of melts from one or more recycled mafic lithologies with melts derived from chemically heterogeneous

  17. Structure and origin of the J Anomaly Ridge, western North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Tucholke, Brian E.; Ludwig, William J.

    1982-11-01

    The J Anomaly Ridge is a structural ridge or step in oceanic basement that extends southwest from the eastern end of the Grand Banks. It lies beneath the J magnetic anomaly at the young end (M-4 to M-0) of the M series magnetic anomalies. Its structural counterpart beneath the J anomaly in the eastern Atlantic is the Madeira-Tore Rise, but this feature has been overprinted by post-middle Cretaceous deformation and volcanism. In order to study the origin and evolution of the J Anomaly Ridge-Madeira-Tore Rise system, we obtained seismic refraction and multichannel reflection profiles across the J Anomaly Ridge near 39°N latitude. The western ridge flank consists of a series of crustal blocks downdropped along west-dipping normal faults, but the eastern slope to younger crust is gentle and relatively unfaulted. The western flank also is subparallel to seafloor isochrons, becoming younger to the south. Anomalously smooth basement caps the ridge crest, and it locally exhibits internal, eastward-dipping reflectors similar in configuration to those within subaerially emplaced basalt flows on Iceland. When isostatically corrected for sediment load, the northern part of the J Anomaly Ridge has basement depths about 1400 m shallower than in our study area, and deep sea drilling has shown that the northern ridge was subaerially exposed during the middle Cretaceous. We suggest that most of the system originated under subaerial conditions at the time of late-stage rifting between the adjacent Grand Banks and Iberia. The excess magma required to form the ridge may have been vented from a mantle plume beneath the Grand Banks-Iberia rift zone and channelled southward beneath the rift axis of the abutting Mid-Atlantic Ridge. Resulting edifice-building volcanism constructed the ridge system between anomalies M-4 and M-0, moving southward along the ridge axis at about 50 mm/yr. About M-0 time, when true drift began between Iberia and the Grand Banks, this southward venting rapidly

  18. Seismic and Tectonic Monitoring of the Endeavour Ridge Segment—Recent and Future Expansion of Ocean Networks Canada's NEPTUNE Observatory on the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.; Scherwath, M.; Kao, H.; Coogan, L. A.; Rogers, G. C.; Wilcock, W. S. D.

    2016-12-01

    Ocean Networks Canada's (ONC) NEPTUNE observatory provides real-time access to sensors on the Endeavour Ridge Segment (Endeavour)—a focus site on the Juan de Fuca Ridge System that is complementary to one on Axial Volcano that is connected through the Ocean Observatories Initiative's (OOI) Cabled Array. While first instruments (including cameras, a short-period seismometer, and vent monitoring instruments) installed at the Main Endeavour vent field have been sending data since summer 2010, unreliable extension cables precluded continuous time-series from other nearby locations. With the successful installation of four extension cables, the summer of 2016 represents an important milestone in the instrumentation of the Endeavour Ridge Segment. We will present an overview of the data that are available in near real-time from Endeavour and new instrumentation that is scheduled for installation in 2017, and highlight first results derived from the new seismo-tectonic network now in operation. This network consists of three short-period seismometers (Mothra Field, Main Endeavour Field, Regional Circulation North), one broadband seismometer (western Ridge Flank), and four bottom pressure recorders (Mothra Field, Regional Circulation South, Main Endeavour Field, western Ridge Flank). The pressure recorders will provide both seismic and oceanographic data, and allow to measure differential vertical motion among the sites. We will also highlight a new technique to determine long period seafloor deformation from broadband seismometer mass-position measurements, using data from the Ridge Flank instrument as an example.

  19. Crustal Thickness on the Mid-Atlantic Ridge: Bull's-Eye Gravity Anomalies and Focused Accretion.

    PubMed

    Tolstoy, M; Harding, A J; Orcutt, J A

    1993-10-29

    Spreading segments of the Mid-Atlantic Ridge show negative bull's-eye anomalies in the mantle Bouguer gravity field. Seismic refraction results from 33 degrees S indicate that these anomalies can be accounted for by variations in crustal thickness along a segment. The crust is thicker in the center and thinner at the end of the spreading segment, and these changes are attributable to variations in the thickness of layer 3. The results show that accretion is focused at a slow-spreading ridge, that axial valley depth reflects the thickness of the underlying crust, and that along-axis density variations should be considered in the interpretation of gravity data.

  20. Exploring tectonomagmatic controls on mid-ocean ridge faulting and morphology with 3-D numerical models

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Ito, G.; Behn, M. D.; Olive, J. A. L.; Kaus, B.; Popov, A.; Mittelstaedt, E. L.; Morrow, T. A.

    2016-12-01

    Previous two-dimensional (2-D) modeling studies of abyssal-hill scale fault generation and evolution at mid-ocean ridges have predicted that M, the ratio of magmatic to total extension, strongly influences the total slip, spacing, and rotation of large faults, as well as the morphology of the ridge axis. Scaling relations derived from these 2-D models broadly explain the globally observed decrease in abyssal hill spacing with increasing ridge spreading rate, as well as the formation of large-offset faults close to the ends of slow-spreading ridge segments. However, these scaling relations do not explain some higher resolution observations of segment-scale variability in fault spacing along the Chile Ridge and the Mid-Atlantic Ridge, where fault spacing shows no obvious correlation with M. This discrepancy between observations and 2-D model predictions illuminates the need for three-dimensional (3-D) numerical models that incorporate the effects of along-axis variations in lithospheric structure and magmatic accretion. To this end, we use the geodynamic modeling software LaMEM to simulate 3-D tectono-magmatic interactions in a visco-elasto-plastic lithosphere under extension. We model a single ridge segment subjected to an along-axis gradient in the rate of magma injection, which is simulated by imposing a mass source in a plane of model finite volumes beneath the ridge axis. Outputs of interest include characteristic fault offset, spacing, and along-axis gradients in seafloor morphology. We also examine the effects of along-axis variations in lithospheric thickness and off-axis thickening rate. The main objectives of this study are to quantify the relative importance of the amount of magmatic extension and the local lithospheric structure at a given along-axis location, versus the importance of along-axis communication of lithospheric stresses on the 3-D fault evolution and morphology of intermediate-spreading-rate ridges.

  1. Comparison of cervical spine kinematics using a fluoroscopic model for adjacent segment degeneration. Invited submission from the Joint Section on Disorders of the Spine and Peripheral Nerves, March 2007.

    PubMed

    Cheng, Joseph S; Liu, Fei; Komistek, Richard D; Mahfouz, Mohamed R; Sharma, Adrija; Glaser, Diana

    2007-11-01

    In this cervical spine kinematics study the authors evaluate the motions and forces in the normal, degenerative, and fused states to assess how alteration in the cervical motion segment affects adjacent segment degeneration and spondylosis. Fluoroscopic images obtained in 30 individuals (10 in each group with disease at C5-6) undergoing flexion/extension motions were collected. Kinematic data were obtained from the fluoroscopic images and analyzed with an inverse dynamic mathematical model of the cervical spine that was developed for this analysis. During 20 degrees flexion to 15 degrees extension, average relative angles at the adjacent levels of C6-7 and C4-5 in the fused patients were 13.4 degrees and 8.8 degrees versus 3.7 degrees and 4.8 degrees in the healthy individuals. Differences at C3-4 averaged only about 1 degrees. Maximum transverse forces in the fused spines were two times the skull weight at C6-7 and one times the skull weight at C4-5, compared with 0.2 times the skull weight and 0.3 times the skull weight in the healthy individuals. Vertical forces ranged from 1.6 to 2.6 times the skull weight at C6-7 and from 1.2 to 2.5 times the skull weight at C4-5 in the patients who had undergone fusion, and from 1.4 to 3.1 times the skull weight and from 0.9 to 3.3 times the skull weight, respectively, in the volunteers. Adjacent-segment degeneration may occur in patients with fusion due to increased motions and forces at both adjacent levels when compared with healthy individuals in a comparable flexion and extension range.

  2. Detailed study of the Cobb offset of the Juan de Fuca ridge: evolution of a propagating rift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, H.P.; Karsten, J.L.; Delaney, J.R.

    The Cobb Offset on the northern portion of the Juan de Fuca Ridge has been identified as the tip of a northward propagating rift (Hey and Wilson, 1982). Map compilations of magnetic and seismic data from four new cruises define the present locus of spreading and volcanism on the two ridge segments abutting the Offset and permit detailed modeling of the recent evolution within this transform zone. The axis of recent spreading on the southern ridge segment bends from the normal rdige trend (N20/sup 0/E) to a N-S trend, north of 47/sup 0/15'N. The spreading axis on the northern ridgemore » segment generally defines a N20/sup 0/E trend, except at the southern terminus, where the spreading center is offset slightly to the east. The two spreading centers overlap by about 33 km in the Offset vicinity, and there is evidence of recent volcanism on both segments. Present ridge axis morphology exhibits a transitional sequence from a symmetrical, axial high along the more 'normal' portions of each ridge segment to a grabenlike depression as the tip is approached. The magnetic anomaly patterns observed in the Cobb Offset vicinity are not consistent with the patterns predicted by models of continuous, northward propagation. The magnetic anomaly patterns of the Brunhes Epoch require an event of rapid northward propagation about 0.7 m.y. B.P., followed by a more gradual southward propagation in the middle Brunhes Epoch; most recently, the spreading center on the southern ridge has extended northward to its present configuration. Prior to the Brunhes Epoch, modeling of the magnetic anomaly patterns does not indicate a unique solution; however, net propagation has been northward. We present alternative models for the period beginning 1.7 m.y. B.P.« less

  3. Maturation of large scale mass-wasting along the Hawaiian Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torresan, M.E.; Clague, D.A.; Moore, J.G.

    1990-06-01

    Extensive GLORIA side-scan sonar mapping of the Hawaiian Ridge from Hawaii to St. Rogatien Bank shows that massive slumps and blocky debris avalanches are the major degradational processes that affect the island and ridge areas. About 30 failures have been imaged in the region surveyed; they range in area from 250 to > 6,000 km{sup 2} and in volume from 500 to > 5,000 km{sup 3}. Four are rotational slumps, and the rest are blocky debris avalanches. Such deposits cover 125,000 km{sup 2} of the Hawaiian Ridge and adjacent seafloor. The slumps are wide (up to 110 km), short (30-35more » km), thick (about 10 km), and slow moving. They are broken into comparatively few major rotational blocks that have not moved far and are characterized by steep toes and transverse ridges. Back rotation of the blocks has elevated their seaward edges, producing transverse ridges and perched basins filled with 5 to > 35 m of sediment. Compared to the slumps, the debris avalanches are lobate, long (up to 230 km), thin (0.5-2 km), and fast-moving. These deposits cross the Hawaiian Trough and run upslope onto the Hawaiian Arch (up to 550 m in elevation over a distance of 140 km). These failures commonly have amphitheaters and subaerial canyons at their heads. Their distal ends are hummocky, and blocky debris litters the seafloor adjacent to the ridge. As one proceeds west from Hawaii to St. Rogatien Bank, the GLORIA sonographs and seismic reflection profiles show a progression from youthful to mature failures and from active to about 12 Ma volcanoes. The Alika and Hilina slide complexes are examples of youthful failures on active volcanoes. Slumping in the Hilina slide is ongoing (7.2 magnitude earthquake in 1975). Little to no sediment covers the blocks and hummocky terrane of the Alika (about 100 ka), whereas the older deposits along the western part of the ridge are covered by up to 30 m of transparent sediment.« less

  4. Mid-ocean ridge jumps associated with hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Ito, Garrett; Behn, Mark D.

    2008-02-01

    hotspots such as ridge jumps in back-arc settings and ridge segment propagation along the Mid-Atlantic Ridge.

  5. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  6. High Tech High School Interns Develop a Mid-Ocean Ridge Database for Research and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, D.; Delaney, R.; Staudigel, H.; Koppers, A. A.; Miller, S. P.

    2004-12-01

    Mid-ocean ridges (MOR) represent one of the most important geographical and geological features on planet Earth. MORs are the locations where plates spread apart, they are the locations of the majority of the Earths' volcanoes that harbor some of the most extreme life forms. These concepts attract much research, but mid-ocean ridges are still effectively underrepresented in the Earth science class rooms. As two High Tech High School students, we began an internship at Scripps to develop a database for mid-ocean ridges as a resource for science and education. This Ridge Catalog will be accessible via http://earthref.org/databases/RC/ and applies a similar structure, design and data archival principle as the Seamount Catalog under EarthRef.org. Major research goals of this project include the development of (1) an archival structure for multibeam and sidescan data, standard bathymetric maps (including ODP-DSDP drill site and dredge locations) or any other arbitrary digital objects relating to MORs, and (2) to compile a global data set for some of the most defining characteristics of every ridge segment including ridge segment length, depth and azimuth and half spreading rates. One of the challenges included the need of making MOR data useful to the scientist as well as the teacher in the class room. Since the basic structure follows the design of the Seamount Catalog closely, we could move our attention to the basic data population of the database. We have pulled together multibeam data for the MOR segments from various public archives (SIOExplorer, SIO-GDC, NGDC, Lamont), and pre-processed it for public use. In particular, we have created individual bathymetric maps for each ridge segment, while merging the multibeam data with global satellite bathymetry data from Smith & Sandwell (1997). The global scale of this database will give it the ability to be used for any number of applications, from cruise planning to data

  7. Structure and kinematics of segment-scale crustal accretion processes in Iceland and implications for analogous mid-ocean ridge systems

    NASA Astrophysics Data System (ADS)

    Siler, Drew Lorenz

    2011-12-01

    The sub-surface geologic structure of the crust is controlled by the magmatic and tectonic processes that construct the crust during plate spreading. As a result, geologic structure provides constraints on the processes that occur during plate spreading. The crust of the Skagi region of northern Iceland, where this study was focused, was accreted by magmatic construction to Iceland ˜7-10 Ma and subsequently glacially eroded, exhuming ˜1-3 km of structural relief. Continuous spreading-parallel and spreading-orthogonal mountain ranges expose the crust accreted at discrete spreading segments, the fundamental intervals upon which plate spreading and crustal accretion occur. As a result, Skagi is an ideal location to employ geologic structure analysis to study magmatic rifting processes. Within spreading segments structural patterns vary significantly between segment centers and distal fissure swarms. While segment centers are characterized by focused magmatic construction and km-scale sub-volcanic subsidence, fissure swarms are characterized by limited magmatic construction, minor sub-axial subsidence and lateral dike injection. Such along-strike variation indicates that both magma in the upper crust and gabbroic material in the lower crust must be redistributed along-strike within spreading segments during plate spreading. Material flow is directed from beneath segment centers towards distal fissure swarms. At the regional scale, each spreading segment is a structurally discrete interval of Iceland's Neovolcanic Zone. As a result of west-northwestward movement of Iceland relative to the Iceland hotspot, the rift zone axis has progressively relocated to the east-southeast with time, leaving a series of abandoned rift zones throughout western Iceland. A compilation of published K/Ar and 40Ar/39Ar age data and geologic data from across northern Iceland shows that rift relocation occurs via frequent (2-3 Ma), small-scale (˜20 km) rift propagations rather than rare, 100

  8. Improved Digitization of Lunar Mare Ridges with LROC Derived Products

    NASA Astrophysics Data System (ADS)

    Crowell, J. M.; Robinson, M. S.; Watters, T. R.; Bowman-Cisneros, E.; Enns, A. C.; Lawrence, S.

    2011-12-01

    Lunar wrinkle ridges (mare ridges) are positive-relief structures formed from compressional stress in basin-filling flood basalt deposits [1]. Previous workers have measured wrinkle ridge orientations and lengths to investigate their spatial distribution and infer basin-localized stress fields [2,3]. Although these plots include the most prominent mare ridges and their general trends, they may not have fully captured all of the ridges, particularly the smaller-scale ridges. Using Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) global mosaics and derived topography (100m pixel scale) [4], we systematically remapped wrinkle ridges in Mare Serenitatis. By comparing two WAC mosaics with different lighting geometry, and shaded relief maps made from a WAC digital elevation model (DEM) [5], we observed that some ridge segments and some smaller ridges are not visible in previous structure maps [2,3]. In the past, mapping efforts were limited by a fixed Sun direction [6,7]. For systematic mapping we created three shaded relief maps from the WAC DEM with solar azimuth angles of 0°, 45°, and 90°, and a fourth map was created by combining the three shaded reliefs into one, using a simple averaging scheme. Along with the original WAC mosaic and the WAC DEM, these four datasets were imported into ArcGIS, and the mare ridges of Imbrium, Serenitatis, and Tranquillitatis were digitized from each of the six maps. Since the mare ridges are often divided into many ridge segments [8], each major component was digitized separately, as opposed to the ridge as a whole. This strategy enhanced our ability to analyze the lengths, orientations, and abundances of these ridges. After the initial mapping was completed, the six products were viewed together to identify and resolve discrepancies in order to produce a final wrinkle ridge map. Comparing this new mare ridge map with past lunar tectonic maps, we found that many mare ridges were not recorded in the previous works. It was noted

  9. Seismic structure of the Mid-Atlantic Ridge, 8-9°S

    NASA Astrophysics Data System (ADS)

    Minshull, T. A.; Bruguier, N. J.; Brozena, J. M.

    2003-11-01

    The Mid-Atlantic Ridge at 8-9°S is characterized by a transition from axial valley to axial high and recent episodes of ridge jumping and ridge propagation. We present constraints on the structure of 0-4 Ma crust in this region on the basis of the analysis of wide-angle seismic data from a grid of profiles across and parallel to the current and abandoned spreading centers. A 350-800 m thick oceanic layer 2A, interpreted as high-porosity extrusive basalts, is underlain by a ˜2.0-2.5 km layer 2B with velocities which increase with age and decrease in the vicinity of the pseudofaults. Layer 3 velocities are uniform across the area except for a possible localized anomaly at the ridge axis. The crustal thickness varies from 6-7 km near the pseudofaults formed by ridge propagation to 9-10 km at the segment center of the recently (˜0.3 Ma) abandoned spreading center. Seismically determined crustal thickness and density variations and age-related lithospheric cooling can plausibly account for all observed variations in gravity across the area, and there is no requirement for the thicker crust at the segment center to be underlain by hot mantle. The transition from axial valley to axial high occurs at a crustal thickness of ˜8 km.

  10. A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: Evidence for temporal changes in mantle dynamics?

    USGS Publications Warehouse

    Coogan, L.A.; Thompson, G.M.; MacLeod, C.J.; Dick, H.J.B.; Edwards, S.J.; Hosford, Scheirer A.; Barry, T.L.

    2004-01-01

    Little is known about temporal variations in melt generation and extraction at midocean ridges largely due to the paucity of sampling along flow lines. Here we present new whole-rock major and trace element data, and mineral and glass major element data, for 71 basaltic samples (lavas and dykes) and 23 peridotites from the same ridge segment (the Atlantis Bank segment of the Southwest Indian Ridge). These samples span an age range of almost 14 My and, in combination with the large amount of published data from this area, allow temporal variations in melting processes to be investigated. Basalts show systematic changes in incompatible trace element ratios with the older samples (from ???8-14 Ma) having more depleted incompatible trace element ratios than the younger ones. There is, however, no corresponding change in peridotite compositions. Peridotites come from the top of the melting column, where the extent of melting is highest, suggesting that the maximum degree of melting did not change over this interval of time. New and published Nd isotopic ratios of basalts, dykes and gabbros from this segment suggest that the average source composition has been approximately constant over this time interval. These data are most readily explained by a model in which the average source composition and temperature have not changed over the last 14 My, but the dynamics of mantle flow (active-to-passive) or melt extraction (less-to-more efficient extraction from the 'wings' of the melting column) has changed significantly. This hypothesised change in mantle dynamics occurs at roughly the same time as a change from a period of detachment faulting to 'normal' crustal accretion. We speculate that active mantle flow may impart sufficient shear stress on the base of the lithosphere to rotate the regional stress field and promote the formation of low angle normal faults. ?? 2004 Elsevier B.V. All rights reserved.

  11. New aerogravity and aeromagnetic anomaly data over Lomonosov Ridge and adjacent areas for bathymetric and tectonic mapping

    NASA Astrophysics Data System (ADS)

    Dossing, A.; Olesen, A. V.; Forsberg, R.

    2010-12-01

    Results of an 800 x 800 km aero-gravity and aeromagnetic survey (LOMGRAV) of the southern Lomonosov Ridge and surrounding area are presented. The survey was acquired by the Danish National Space Center, DTU in cooperation with National Resources Canada in spring 2009 as a net of ~NE-SW flight lines spaced 8-10 km apart. Nominal flight level was 2000 ft. We have compiled a detailed 2.5x2.5 km gravity anomaly grid based on the LOMGRAV data and existing data from the southern Arctic Ocean (NRL98/99) and the North Greenland continental margin (KMS98/99). The gravity grid reveals detailed, elongated high-low anomaly patterns over the Lomonosov Ridge which is interpreted as the presence of narrow ridges and subbasins. Distinct local topography is also interpreted over the southernmost part of the Lomonosov Ridge where existing bathymetry compilations suggest a smooth topography due to the lack of data. A new bathymetry model is presented for the region predicted by formalized inversion of the available gravity data. Finally, a detailed magnetic anomaly grid has been compiled from the LOMGRAV data and existing NRL98/99 and PMAP data. New tectonic features are revealed, particularly in the Amerasia Basin, compared with existing magnetic anomaly data from the region.

  12. A novel line segment detection algorithm based on graph search

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  13. [Hybrid stabilization technique with spinal fusion and interlaminar device to reduce the length of fusion and to protect symptomatic adjacent segments : Clinical long-term follow-up].

    PubMed

    Fleege, C; Rickert, M; Werner, I; Rauschmann, M; Arabmotlagh, M

    2016-09-01

    Determination of the extent of spinal fusion for lumbar degenerative diseases is often difficult due to minor pathologies in the adjacent segment. Although surgical intervention is required, fusion seems to be an overtreatment. Decompression alone may be not enough as this segment is affected by multiple factors such as destabilization, low grade degeneration and an unfavorable biomechanical transition next to a rigid construct. An alternative surgical treatment is a hybrid construct, consisting of fusion and implantation of an interlaminar stabilization device at the adjacent level. The aim of this study was to compare long-term clinical outcome after lumbar fusion with a hybrid construct including an interlaminar stabilization device as "topping-off". A retrospective analysis of 25 lumbar spinal fusions from 2003 to 2010 with additional interlaminar stabilization device was performed. Through a matched case controlled procedure 25 congruent patients who received lumbar spinal fusion in one or two levels were included as a control group. At an average follow-up of 43 months pre- and postoperative pain, ODI, SF-36 as well as clinical parameters, such as leg and back pain, walking distance and patient satisfaction were recorded. Pain relief, ODI improvement and patient satisfaction was significantly higher in the hybrid group compared to the control group. SF-36 scores improved in both groups but was higher in the hybrid group, although without significance. Evaluation of walking distance showed no significant differences. Many outcome parameters present significantly better long-term results in the hybrid group compared to sole spinal fusion. Therefore, in cases with a clear indication for lumbar spinal fusion with the need for decompression at the adjacent level due to spinal stenosis or moderate spondylarthrosis, support of this segment with an interlaminar stabilization device demonstrates a reasonable treatment option with good clinical outcome. Also, the

  14. Transitions in axial morphology along the Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Ma, Ying; Cochran, James R.

    1996-07-01

    a distance of 800 km. In addition, the ridge continues to become shallower away from Amsterdam Island toward the transition to an axial high at 82°E, 350 km to the east of the ASP. The Kerguelen hotspot appears to exert a major influence on the morphology of the SEIR by feeding asthenospheric material to the ridge axis. A long, narrow finger-like gravity high extends ENE away from the Kerguelen Plateau for a distance of 500 km. Shipboard data show that the gravity high results from a large volcanic ridge. The ridge appears analogous to the Rodriguez Ridge extending from the Reunion hotspot toward the Central Indian Ridge. A series of lower and broader lineated gravity highs extend from the volcanic ridge toward the SEIR in the ridge segment between the 81°E and 85°E transforms, which is the westernmost segment with an axial high. The only region of significant off-ridge seismicity on the Antarctic flank of the SEIR is a diffuse band of epicenters extending from Kerguelen to the SEIR within the segment between the 81°E and 85°E fracture zones. The along-axis gradient in depth from 86°E to the AAD and the transitions in axial morphology at 104°E and 114°E most likely reflect along-axis variations in mantle temperature and melt production rate due to distance from the Kerguelen hotspot and the influence of the AAD.

  15. Morphology of oceanic ridges in spreading colloidal suspensions: Influence of spreading rate and lithospheric thickness

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Davaille, A.; Mittelstaedt, E. L.

    2016-12-01

    Oceanic ridges exhibit significant changes in their structural, morphological, and volcanic characteristics with changes in spreading velocity. However, separating the role of correlated affects such as spreading rate and lithospheric thickness on the segmentation of the ridge axis is difficult with only field data. The goal of this study is (a) to conduct properly scaled laboratory simulations of oceanic ridges, and (b) to investigate how the morphology and geometry of spreading-normal oceanic ridges vary separately with extension rate and lithospheric thickness. We present a series of analogue experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Applying a fixed spreading rate to this pre-formed, brittle plate resulting in cracks, faults and axial ridge structures. Lithospheric (skin) thickness at a given extension rate is varied by changing salinity of the surface water layer. With increasing spreading rate, we observe several regimes: (1) at the slowest spreading rates, the spreading axis is composed of several segments separated by non-transform offsets and has a fault-bounded, deep, U-shaped axial valley. The axis has a large sinuosity, rough topography, and jumps repeatedly. (2) At intermediate spreading rates, the spreading axis shows low sinuosity, overlapping spreading centers (OSC) , a smooth axial morphology, and very few to no jumps. The axial valley is shallow and shows a V-shape morphology. The OSCs have a ratio of length to width of 3 to 1. (3) At faster spreading rates, the axis is continuous and presents an axial high topography. (4) At the fastest spreading rates tested, the spreading axis is again segmented. Each segment is offset by well developed transform faults and the axis has a sinuosity comparable to those of regimes 2 and 3

  16. Imaging hydrothermal roots along the Endeavour segment of the Juan de Fuca ridge using elastic full waveform inversion.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2016-12-01

    The Endeavour segment is a 90 km-long, medium-spreading-rate, oceanic spreading center located on the northern Juan de Fuca ridge (JDFR). The central part of this segment forms a 25-km-long volcanic high that hosts five of the most hydrothermally active vent fields on the MOR system, namely (from north to south): Sasquatch, Salty Dawg, High Rise, Main Endeavour and Mothra. Mass, heat and chemical fluxes associated to vigorous hydrothermal venting are large, however the geometry of the fluid circulation system through the oceanic crust remains almost completely undefined. To produce high-resolution velocity/reflectivity structures along the axis of the Endeavour segment, here, we combined a synthetic ocean bottom experiment (SOBE), 2-D traveltime tomography, 2D elastic full waveform and reverse time migration (RTM). We present velocity and reflectivity sections along Endeavour segment at unprecedented spatial resolutions. We clearly image a set of independent, geometrically complex, elongated low-velocity regions linking the top of the magma chamber at depth to the hydrothermal vent fields on the seafloor. We interpret these narrow pipe-like units as focused regions of hydrothermal fluid up-flow, where acidic and corrosive fluids form pipe-like alteration zones as previously observed in Cyprus ophiolites. Furthermore, the amplitude of these low-velocity channels is shown to be highly variable, with the strongest velocity drops observed at Main Endeavour, Mothra and Salty Dawg hydrothermal vent fields, possibly suggesting more mature hydrothermal cells. Interestingly, the near-seafloor structure beneath those three sites is very similar and highlights a sharp lateral transition in velocity (north to south). On the other hand, the High-Rise hydrothermal vent field is characterized by several lower amplitudes up-flow zones and relatively slow near-surface velocities. Last, Sasquatch vent field is located in an area of high near-surface velocities and is not

  17. Tier-Adjacency Is Not a Necessary Condition for Learning Phonotactic Dependencies

    ERIC Educational Resources Information Center

    Koo, Hahn; Callahan, Lydia

    2012-01-01

    One hypothesis raised by Newport and Aslin to explain how speakers learn dependencies between nonadjacent phonemes is that speakers track bigram probabilities between two segments that are adjacent to each other within a tier of their own. The hypothesis predicts that a dependency between segments separated from each other at the tier level cannot…

  18. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  19. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  20. Groups of adjacent contour segments for object detection.

    PubMed

    Ferrari, V; Fevrier, L; Jurie, F; Schmid, C

    2008-01-01

    We present a family of scale-invariant local shape features formed by chains of k connected, roughly straight contour segments (kAS), and their use for object class detection. kAS are able to cleanly encode pure fragments of an object boundary, without including nearby clutter. Moreover, they offer an attractive compromise between information content and repeatability, and encompass a wide variety of local shape structures. We also define a translation and scale invariant descriptor encoding the geometric configuration of the segments within a kAS, making kAS easy to reuse in other frameworks, for example as a replacement or addition to interest points. Software for detecting and describing kAS is released on lear.inrialpes.fr/software. We demonstrate the high performance of kAS within a simple but powerful sliding-window object detection scheme. Through extensive evaluations, involving eight diverse object classes and more than 1400 images, we 1) study the evolution of performance as the degree of feature complexity k varies and determine the best degree; 2) show that kAS substantially outperform interest points for detecting shape-based classes; 3) compare our object detector to the recent, state-of-the-art system by Dalal and Triggs [4].

  1. Symptomatic adjacent segment disease after cervical total disc replacement: re-examining the clinical and radiological evidence with established criteria.

    PubMed

    Nunley, Pierce D; Jawahar, Ajay; Cavanaugh, David A; Gordon, Charles R; Kerr, Eubulus J; Utter, Phillip Andrew

    2013-01-01

    Although several publications in the last decade have proved equality in safety and efficacy of the total disc replacement (TDR) to the anterior fusion procedure in cervical spine, the claim that TDR may reduce the incidence of adjacent segment disease (ASD) has not been corroborated by clinical evidence. We attempt to predict the true incidence of symptomatic ASD after TDR surgery in the cervical spine at one or two levels at a median follow-up period of 4 years. A total of 763 patients were screened to participate in four different Food and Drug Administration device exemption trials for artificial cervical disc replacement at three collaborating institutions. Two hundred seventy-one patients qualified and enrolled in the trials. One hundred seventy-three randomized to receive artificial disc replacement surgery, and 167 have completed a 4-year or longer follow-up. Patients experiencing cervical radiculopathy symptoms in the follow-up period were worked-up with clinical examinations, magnetic resonance imaging of the cervical spine, and other diagnostic studies. Once a clinical correlation was established with the imaging evidence of adjacent segment degeneration, a careful record was maintained to document the subsequent medical and/or surgical treatment received by these patients. Statistical analysis was performed to determine the true incidence of and factors affecting the ASD after cervical disc replacement in these patients. Twenty-six patients (15.2%) were identified to satisfy our criteria for ASD at the median follow-up of 51 months, with the annual incidence of 3.1% as calculated by life tables. The actuarial 5-year freedom from ASD rate was 71.6%±0.6%, and the mean period for freedom from ASD was 70.4±2.1 months. The incidence of symptomatic ASD after cervical TDR is 3.1% annually regardless of the patient's age, sex, smoking habits, and design of the TDR device. The presence of osteopenia and lumbar degenerative disease significantly increase the

  2. Volcanism and hydrothermalism on a hotspot-influenced ridge: Comparing Reykjanes Peninsula and Reykjanes Ridge, Iceland

    NASA Astrophysics Data System (ADS)

    Pałgan, Dominik; Devey, Colin W.; Yeo, Isobel A.

    2017-12-01

    Current estimates indicate that the number of high-temperature vents (one of the primary pathways for the heat extraction from the Earth's mantle) - at least 1 per 100 km of axial length - scales with spreading rate and should scale with crustal thickness. But up to present, shallow ridge axes underlain by thick crust show anomalously low incidences of high-temperature activity. Here we compare the Reykjanes Ridge, an abnormally shallow ridge with thick crust and only one high-temperature vent known over 900 km axial length, to the adjacent subaerial Reykjanes Peninsula (RP), which is characterized by high-temperature geothermal sites confined to four volcanic systems transected by fissure swarms with young (Holocene) volcanic activity, multiple faults, cracks and fissures, and continuous seismic activity. New high-resolution bathymetry (gridded at 60 m) of the Reykjanes Ridge between 62°30‧N and 63°30‧N shows seven Axial Volcanic Ridges (AVR) that, based on their morphology, geometry and tectonic regime, are analogues for the volcanic systems and fissure swarms on land. We investigate in detail the volcano-tectonic features of all mapped AVRs and show that they do not fit with the previously suggested 4-stage evolution model for AVR construction. Instead, we suggest that AVR morphology reflects the robust or weak melt supply to the system and two (or more) eruption mechanisms may co-exist on one AVR (in contrast to 4-stage evolution model). Our interpretations indicate that, unlike on the Reykjanes Peninsula, faults on and around AVRs do not cluster in orientation domains but all are subparallel to the overall strike of AVRs (orthogonal to spreading direction). High abundance of seamounts shows that the region centered at 62°47‧N and 25°04‧W (between AVR-5 and -6) is volcanically robust while the highest fault density implies that AVR-1 and southern part of AVR-6 rather undergo period of melt starvation. Based on our observations and interpretations we

  3. Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data

    NASA Astrophysics Data System (ADS)

    Gegiuc, Alexandru; Similä, Markku; Karvonen, Juha; Lensu, Mikko; Mäkynen, Marko; Vainio, Jouni

    2018-01-01

    For ship navigation in the Baltic Sea ice, parameters such as ice edge, ice concentration, ice thickness and degree of ridging are usually reported daily in manually prepared ice charts. These charts provide icebreakers with essential information for route optimization and fuel calculations. However, manual ice charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean) is not feasible. Here, we propose a method for automatic estimation of the degree of ice ridging in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture features and sea ice concentration information extracted from Finnish ice charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized ice charts. The overall agreement between the ice-chart-based degree of ice ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice ridging reported in the ice charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal sea ice regime in the Arctic Ocean.

  4. Geophysical Evidence for Magma Intrusion across the Non-Transform Offset between the Famous and North Famous segments of The Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Giusti, M.; Dziak, R. P.; Maia, M.; Perrot, J.; Sukhovich, A.

    2017-12-01

    In August of 2010 an unusually large earthquake sequence of >700 events occurred at the Famous and North Famous segments (36.5-37°N) of the Mid-Atlantic Ridge (MAR), recorded by an array of five hydrophones moored on the MAR flanks. The swarm extended spatially >70 km across the two segments. The non-transform offset (NTO) separating the two segements, which is thought to act as strucutural barrier, did not appear to impede or block the earthquake's spatial distribution. Broadband acoustic energy (1-30 Hz) was also observed and accompanied the onset of the swarm, lasting >20 hours. A total of 18 earthquakes from the swarm were detected teleseismically, four had Centroid-Moment Tensor (CMT) solutions derived. The CMT solutions indicated three normal faulting events, and one non-double couple (explosion) event. The spatio-temporal distribution of the seismicity and broadband energy show evidence of two magma dike intrusions at the North Famous segment, with one intrusion crossing the NTO. This is the first evidence for an intrusion event detected on the MAR south of the Azores since the 2001 Lucky Strike intrusion. Gravimetric data were required to identify whether or not the Famous area is indeed comprised of two segments down to the level of the upper mantle. A high resolution gravity anomaly map of the two segments has been realized, based on a two-dimensional polygons model (Chapman, 1979) and will be compared to gravimetric data originated from SUDACORES experiment (1998, Atalante ship, IFREMER research team). Combined with the earthquake observations, this gravity anomaly map should provide a better understanding the geodynamic processes of this non-transform offset and of the deep magmatic system driving the August 2010 swarm.

  5. Scaling Relations for the Thermal Structure of Segmented Oceanic Transform Faults

    NASA Astrophysics Data System (ADS)

    Wolfson-Schwehr, M.; Boettcher, M. S.; Behn, M. D.

    2015-12-01

    Mid-ocean ridge-transform faults (RTFs) are a natural laboratory for studying strike-slip earthquake behavior due to their relatively simple geometry, well-constrained slip rates, and quasi-periodic seismic cycles. However, deficiencies in our understanding of the limited size of the largest RTF earthquakes are due, in part, to not considering the effect of short intra-transform spreading centers (ITSCs) on fault thermal structure. We use COMSOL Multiphysics to run a series of 3D finite element simulations of segmented RTFs with visco-plastic rheology. The models test a range of RTF segment lengths (L = 10-150 km), ITSC offset lengths (O = 1-30 km), and spreading rates (V = 2-14 cm/yr). The lithosphere and upper mantle are approximated as steady-state, incompressible flow. Coulomb failure incorporates brittle processes in the lithosphere, and a temperature-dependent flow law for dislocation creep of olivine activates ductile deformation in the mantle. ITSC offsets as small as 2 km affect the thermal structure underlying many segmented RTFs, reducing the area above the 600˚C isotherm, A600, and thus the size of the largest expected earthquakes, Mc. We develop a scaling relation for the critical ITSC offset length, OC, which significantly reduces the thermal affect of adjacent fault segments of length L1 and L2. OC is defined as the ITSC offset that results in an area loss ratio of R = (Aunbroken - Acombined)/Aunbroken - Adecoupled) = 63%, where Aunbroken = C600(L1+L2)1.5V-0.6 is A600 for an RTF of length L1 + L2; Adecoupled = C600(L11.5+L21.5)V-0.6 is the combined A600 of RTFs of lengths L1 and L2, respectively; and Acombined = Aunbroken exp(-O/ OC) + Adecoupled (1-exp(-O/ OC)). C600 is a constant. We use OC and kinematic fault parameters (L1, L2, O, and V) to develop a scaling relation for the approximate seismogenic area, Aseg, for each segment of a RTF system composed of two fault segments. Finally, we estimate the size of Mc on a fault segment based on Aseg. We

  6. Spatial and temporal distribution of the seismicity along two mid-oceanic ridges with contrasted spreading rates in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, E.; Perrot, J.; Royer, J. Y.

    2015-12-01

    The seismicity of the ultra-slow spreading Southwest (14 mm/y) and intermediate spreading Southeast (60 mm/y) Indian ridges was monitored from February 2012 to March 2013 by the OHASISBIO array of 7 autonomous hydrophones. A total of 1471 events were located with 4 instruments or more, inside the array, with a median location uncertainty < 5 km and a completeness magnitude of mb = 3. Both ridges display similar average rates of seismicity, suggesting that there is no systematic relationship between seismicity and spreading rates. Accretion modes do differ, however, by the along-axis distribution of the seismic events. Along the ultra-slow Southwest Indian Ridge, events are sparse but regularly spaced and scattered up to 50 km off-axis. Along the fast Southeast Indian Ridge, events are irregularly distributed, focusing in narrow regions near the ridge axis at segment ends and along transform faults, whereas ridge-segment centers generally appear as seismic gaps (at the level of completeness of the array). Only two clusters, 6 months apart, are identified in a segment-center at 29°S. From the temporal distribution of the clustered events and comparisons with observations in similar mid-oceanic ridge setting, both clusters seem to have a volcanic origin and to be related to a dike emplacement or a possible eruption on the seafloor. Their onset time and migration rate are comparable to volcanic swarms recorded along the Juan de Fuca Ridge. Overall, the rate of seismicity along the two Indian spreading ridges correlates with the large-scale variations in the bathymetry and shear-wave velocity anomaly in the upper mantle, suggesting that the distribution of the low-magnitude seismicity is mainly controlled by along-axis variations in the lithosphere rheology and temperature.

  7. Assessment of Contaminant Bioaccumulation in Aquatic Biota on and Adjacent to the Oak Ridge Reservation - 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John G.; Peterson, Mark J.; Mathews, Teresa J.

    This report provides information on contaminant concentrations in multiple wildlife prey species inhabiting or associated with water bodies on and downstream from the Oak Ridge Reservation (ORR), including regional reference sites.

  8. Abundant Hydrothermal Venting in the Southern Ocean Near 62°S/159°E on the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Hahm, D.; Rhee, T. S.; Park, S. H.; Lupton, J. E.; Walker, S. L.; Choi, H.

    2014-12-01

    Circum-Antarctic Ridges (CARs) comprise almost one-third of the global Mid-Ocean Ridge, yet remain terra incognita for hydrothermal activity and chemosynthetic ecosystems. The InterRidge Vents Database lists only 3 confirmed (visualized) and 35 inferred (plume evidence) active sites along the ~21,000 km of CARs. Here, we report on a multi-year effort to locate and characterize hydrothermal activity on two 1st-order segments of the Australian-Antarctic Ridge that are perhaps more isolated from other known vent fields than any other vent site on the Mid-Ocean Ridge. KR1 is a 300-km-long segment near 62°S/159°E, and KR2 a 90-km-long segment near 60°S/152.5°E. We used profiles collected by Miniature Autonomous Plume Recorders (MAPRs) on rock corers in March and December of 2011 to survey each segment, and an intensive CTD survey in Jan/Feb 2013 to pinpoint sites and sample plumes on KR1. Optical and oxidation-reduction potential (ORP, aka Eh) anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ~25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The densest site concentration on KR1 occurred along a relatively inflated, 90-km-long section near the segment center. CTD tows covered 20 km of the eastern, most inflated portion of this area, finding two 6-km-long zones centered near 158.6°E and 158.8°E with multiple plume anomalies. Three ORP anomalies within 50 m of the seafloor indicate precise venting locations. We call this area the Mujin "Misty Harbor" vent field. Vent frequency sharply decreases away from Mujin. 3He/heat ratios determined from 20 plume samples in the Mujin field were mostly <0.015 fM/J, indicative of chronic venting, but 3 samples, 0.021-0.034 fM/J, are ratios typical of a recent eruption. The spatial density of hydrothermal activity along KR1 and KR2 is similar to other intermediate-rate spreading ridges. We calculate the plume incidence (ph) along

  9. Ridge suction drives plume-ridge interactions

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hékinian, R.

    2003-04-01

    Deep-sourced mantle plumes, if existing, are genetically independent of plate tectonics. When the ascending plumes approach lithospheric plates, interactions between the two occur. Such interactions are most prominent near ocean ridges where the lithosphere is thin and the effect of plumes is best revealed. While ocean ridges are mostly passive features in terms of plate tectonics, they play an active role in the context of plume-ridge interactions. This active role is a ridge suction force that drives asthenospheric mantle flow towards ridges because of material needs to form the ocean crust at ridges and lithospheric mantle in the vicinity of ridges. This ridge suction force increases with increasing plate separation rate because of increased material demand per unit time. As the seismic low-velocity zone atop the asthenosphere has the lowest viscosity that increases rapidly with depth, the ridge-ward asthenospheric flow is largely horizontal beneath the lithosphere. Recognizing that plume materials have two components with easily-melted dikes/veins enriched in volatiles and incompatible elements dispersed in the more refractory and depleted peridotitic matrix, geochemistry of some seafloor volcanics well illustrates that plume-ridge interactions are consequences of ridge-suction-driven flow of plume materials, which melt by decompression because of lithospheric thinning towards ridges. There are excellent examples: 1. The decreasing La/Sm and increasing MgO and CaO/Al_2O_3 in Easter Seamount lavas from Salas-y-Gomez Islands to the Easter Microplate East rift zone result from progressive decompression melting of ridge-ward flowing plume materials. 2. The similar geochemical observations in lavas along the Foundation hotline towards the Pacific-Antarctic Ridge result from the same process. 3. The increasing ridge suction force with increasing spreading rate explains why the Iceland plume has asymmetric effects on its neighboring ridges: both topographic and

  10. Agulhas Ridge, South Atlantic: the peculiar structure of a transform fault

    NASA Astrophysics Data System (ADS)

    Uenzelmann-Neben, G.; Gohl, K.

    2003-04-01

    Transform faults constitute conservative plate boundaries, where adjacent plates are in tangential contact. Transform faults in the ocean are marked by fracture zones, which are long, linear, bathymetric depressions. One of the largest transform offsets on Earth can be found in the South Atlantic. The 1200 km long Agulhas Falkland Fracture Zone (AFFZ), form by this, developed during the Early Cretaceous break-up of West Gondwana. Between approx. 41°S, 16°E and 43°S, 9°E the Agulhas Falkland Fracture Zone is characterised by a pronounced topographic anomaly, the Agulhas Ridge. The Agulhas Ridge rises more than 2 km above the surrounding seafloor. The only equivalent to this kind of topographic high, as part of the AFFZ, is found in form of marginal ridges along the continental parts of the fracture zone, namely the Falkland Escarpment at the South American continent and the Diaz Ridge adjacent to South Africa. But the Agulhas Ridge differs from both the Falkland Escarpment and the Diaz Ridge in the facts (1) that it was not formed during the early rift-drift phase, and (2) that it separates oceanic crust of different age and not continental from oceanic crust. A set of high-resolution seismic reflection data (total length 2000 km) and a seismic refraction line across the Agulhas Ridge give new information on the crustal and basement structure of this tectonic feature. We have observed that within the Cape Basin, to the North, the basement and sedimentary layers are in parts strongly deformed. We observe basement highs, which point towards intrusions. Both the basement and the sedimentary sequence show strong faulting. This points towards a combined tectono-magmatic activity, which led to the formation of basement ridges parallel to the Agulhas Ridge. Since at least the pre-Oligocene parts and, locally, the whole sedimentary column are affected we infer that the renewed activity began in the Middle Oligocene and may have lasted into the Quaternary. As an origin

  11. Hydrothermal Activity Along the Central Indian Ridge: Ridges, Hotspots and Philately.

    NASA Astrophysics Data System (ADS)

    German, C. R.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Curewitz, D.; Okino, K.; Statham, P. J.; Parson, L. M.

    2001-12-01

    The global mid-ocean ridge crest extends 50-60,000km and the majority remains unexplored for hydrothermal activity. Even those areas which are reasonably familiar continue to spring surprises (e.g. the "Lost City" site found in late 2000). Within the confines of conceivable research budgets, therefore, choosing new areas for investigation and exploration demands an intelligent approach, beyond flicking through holiday brochures or identifying missing entries for the John Edmond Memorial Stamp Collection. With that caveat, the Southampton Oceanography Centre led a 10-week expedition to the Central Indian Ridge, earlier this year, based in and around Mauritius. During cruise CD127 (23 April-23 May) we conducted a systematic investigation of the ridge crest (seafloor and overlying water column) between 18 deg 16 min and 20 deg 49 min South. We chose this area to investigate the distribution of hydrothermal activity both close to, and away from, that section of the ridge crest which continues to reflect past influence of the migrating Rodrigues hot-spot. Our hypothesis was that the high incidence of hydrothermal activity we had located previously, near the Azores Triple Junction, may result from waning influence of the Azores Hot-Spot nearby and that similar effects might be found resulting from interaction of the CIR with the Rodrigues hot-spot. The primary scientific package we employed was the SOC's TOBI deep-tow sidescan vehicle, now up-graded with an extra Light Scattering Sensor string. In concert, this instrumentation allowed us to prospect for particle-laden hydrothermal plumes in the water column overlying the ridge-crest, in real-time, whilst simultaneously acquiring high-resolution sidescan images of the underlying seafloor. Using this approach, particle-rich anomalies were observed at 5 locations along ca. 300km of surveyed ridge-crest, including 4 sites all within the extended (hot-spot influenced) segment 15, which stretches from 18 deg 45 to 20 deg 14

  12. Three-dimensional Gravity Modeling of Ocean Core Complexes at the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Chandler, M. T.; Pak, S. J.; Son, S. K.

    2017-12-01

    The spatial distribution of ocean core complexes (OCCs) on mid-ocean ridge flanks can indicate the variation of magmatism and tectonic extension at a given spreading center. A recent study revealed 11 prominent OCCs developed along the middle portion of the Central Indian Ridge (CIR) based on the high-resolution shipboard bathymetry. The CIR is located between the Carlsberg Ridge and the Indian Ocean triple junction. The detailed morphotectonic interpretations from the recent study suggested that the middle ridge segments of the CIR were mainly developed through tectonic extension with little magmatism. Furthermore, the OCCs exposed by detachment faults appear to the main host for active off-axis hydrothermal circulations. Here we form a three-dimensional gravity model to investigate the crustal structures of OCCs developed between 12oS and 14oS at the CIR. These OCCs exhibit domal topographic highs with corrugated surface. The rock samples from these areas include deep-seated rocks such as serpentinized harzburgite and gabbro. A typical gravity study on mid-ocean ridges assumes a constant density contrast along the water-crust interface and constant crustal thickness and removes its gravitational contributions and thermal effects of lithospheric cooling from the free-air gravity anomaly. This approach is effective to distinguish anomalous regions that deviate from the applied crustal and thermal models. The oceanic crust around the OCCs, however, tends to be thinned due to detachment faulting and tectonic extension. In this study, we include multi-layers with different density contrast and variable thickness to approximate gravity anomalies resulting from the OCCs. In addition, we aim to differentiate the geophysical characteristics of the OCCs from the nearby ridge segments and infer tectonic relationship between the OCCs and ridges.

  13. Olivine-Rich Troctolite from the Southwest Indian Ridge: Constrains on Melt-Rock Reaction beneath Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Yang, A. Y.

    2017-12-01

    The origin of olivine-rich troctolite, which have been recovered in the plutonic sample suites from the fast-spreading East Pacific Rise, and slow-spreading Mid-Atlantic Ridge and Central Indian Ridge, has been highly debated. They can form either by fractionation of primitive mid-ocean ridge basalt (MORB) melts or by melt migrating through pre-existing (possibly mantle) olivine matrix, thus recording valuable information of magmatic process at mantle-crust transition. This study presents in situ major and trace element study on the olivine-rich troctolite first reported from the ultraslow-spreading Southwest Indian Ridge (SWIR), together with a series of samples from peridotite, gabbro to basalt from an amagmatic segment at 53°E during Dayangyihao Cruises, to investigate the magmatic processes occurred at mantle-crust transition and origin of olivine-rich troctolite. The olivine in the troctolite shows cumulate textures with interstitial clinopyroxene, plagioclase and minor spinel, which is cross-cut by an olivine gabbro vein. Olivine in the troctolite show only mildly decreasing NiO contents (from 0.31-0.25 wt.%) with decreasing Fo (from 86 to 81), and even olivine in the gabbro have NiO up to 0.24 wt.% with Fo of 75. The Fo vs. Ni correlation of olivine is shifted to uniquely higher NiO at a certain Fo compared to the trends defined by either olivine from other lower oceanic crust (LOC) cumulates worldwide or olivine compositions from classic fractionation model for primitive MORB magma. Interstitial clinopyroxene in the troctolite have high Mg# (88-90), Cr2O3 (up to 1.51 wt.%) and TiO2 contents (up to 1.01 wt.%) with Eu/Eu* from 0.4-0.6. Such high-Ti-Cr-Mg# clinopyroxene is rare among global LOC cumulates, and cannot result from simple fractionation of MORB magma. The mineral compositions in the olivine-rich troctolite could be modeled by reaction between a primitive olivine matrix and a highly evolved melt (with 2.4 wt.% TiO2), and such a melt composition is

  14. Plate convergence and deformation, North Luzon Ridge, Philippines

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.; Hayes, Dennis E.

    1989-10-01

    Marine geophysical and earthquake seismology data indicate that the North Luzon Ridge, a volcano-capped bathymetrie ridge system that extends between Luzon and Taiwan, is presently undergoing deformation in response to the relative motion between the Asian and Philippine Sea plates. Plate motion models predict convergence along the western side of the Philippine Sea plate, from Japan in the north to Indonesia in the south, and most of this plate margin is defined by active subduction zones. However, the western boundary of the Philippine Sea plate adjacent to the North Luzon Ridge shows no evidence of an active WNW-dipping subduction zone; this is in marked contrast to the presence of both the Philippine Trench/East Luzon Trough subduction zones to the south and the Ryukyu Trench subduction zone to the north. Crustal shortening, in response to ongoing plate convergence in the North Luzon Ridge region, apparently takes place through a complex pattern of strike-slip and thrust faulting, rather than by the typical subduction of oceanic lithosphere along a discreet zone. The curvilinear bathymetrie trends within the North Luzon Ridge represent the traces of active faults. The distribution of these faults, mapped by both multichannel and single-channel seismic reflection methods and earthquake seismicity patterns and focal mechanism solutions, suggest that right-lateral, oblique-slip faulting occurs along NE-trending faults, and left-lateral, oblique-slip faulting takes place on N- and NNW-trending faults. The relative plate convergence accommodated by the deformation of the North Luzon Ridge will probably be taken up in the future by the northward-propagating East Luzon Trough subduction zone.

  15. Ridge-branch-based blood vessel detection algorithm for multimodal retinal images

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hutchings, N.; Knighton, R. W.; Gregori, G.; Lujan, B. J.; Flanagan, J. G.

    2009-02-01

    Automatic detection of retinal blood vessels is important to medical diagnoses and imaging. With the development of imaging technologies, various modals of retinal images are available. Few of currently published algorithms are applied to multimodal retinal images. Besides, the performance of algorithms with pathologies is expected to be improved. The purpose of this paper is to propose an automatic Ridge-Branch-Based (RBB) detection algorithm of blood vessel centerlines and blood vessels for multimodal retinal images (color fundus photographs, fluorescein angiograms, fundus autofluorescence images, SLO fundus images and OCT fundus images, for example). Ridges, which can be considered as centerlines of vessel-like patterns, are first extracted. The method uses the connective branching information of image ridges: if ridge pixels are connected, they are more likely to be in the same class, vessel ridge pixels or non-vessel ridge pixels. Thanks to the good distinguishing ability of the designed "Segment-Based Ridge Features", the classifier and its parameters can be easily adapted to multimodal retinal images without ground truth training. We present thorough experimental results on SLO images, color fundus photograph database and other multimodal retinal images, as well as comparison between other published algorithms. Results showed that the RBB algorithm achieved a good performance.

  16. First hydrothermal discoveries on the Australian-Antarctic Ridge: Discharge sites, plume chemistry, and vent organisms

    NASA Astrophysics Data System (ADS)

    Hahm, Doshik; Baker, Edward T.; Siek Rhee, Tae; Won, Yong-Jin; Resing, Joseph A.; Lupton, John E.; Lee, Won-Kyung; Kim, Minjeong; Park, Sung-Hyun

    2015-09-01

    The Australian-Antarctic Ridge (AAR) is one of the largest unexplored regions of the global mid-ocean ridge system. Here, we report a multiyear effort to locate and characterize hydrothermal activity on two first-order segments of the AAR: KR1 and KR2. To locate vent sites on each segment, we used profiles collected by Miniature Autonomous Plume Recorders on rock corers during R/V Araon cruises in March and December of 2011. Optical and oxidation-reduction-potential anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ˜25 km. Forty profiles on KR1 identified 17 sites, some within a few kilometer of each other. The spatial density of hydrothermal activity along KR1 and KR2 (plume incidence of 0.34) is consistent with the global trend for a spreading rate of ˜70 mm/yr. The densest area of hydrothermal activity, named "Mujin," occurred along the 20 km-long inflated section near the segment center of KR1. Continuous plume surveys conducted in January-February of 2013 on R/V Araon found CH4/3He (1 - 15 × 106) and CH4/Mn (0.01-0.5) ratios in the plume samples, consistent with a basaltic-hosted system and typical of ridges with intermediate spreading rates. Additionally, some of the plume samples exhibited slightly higher ratios of H2/3He and Fe/Mn than others, suggesting that those plumes are supported by a younger hydrothermal system that may have experienced a recent eruption. The Mujin-field was populated by Kiwa crabs and seven-armed Paulasterias starfish previously recorded on the East Scotia Ridge, raising the possibility of circum-Antarctic biogeographic connections of vent fauna.

  17. Wavelet energy-guided level set-based active contour: a segmentation method to segment highly similar regions.

    PubMed

    Achuthan, Anusha; Rajeswari, Mandava; Ramachandram, Dhanesh; Aziz, Mohd Ezane; Shuaib, Ibrahim Lutfi

    2010-07-01

    This paper introduces an approach to perform segmentation of regions in computed tomography (CT) images that exhibit intra-region intensity variations and at the same time have similar intensity distributions with surrounding/adjacent regions. In this work, we adapt a feature computed from wavelet transform called wavelet energy to represent the region information. The wavelet energy is embedded into a level set model to formulate the segmentation model called wavelet energy-guided level set-based active contour (WELSAC). The WELSAC model is evaluated using several synthetic and CT images focusing on tumour cases, which contain regions demonstrating the characteristics of intra-region intensity variations and having high similarity in intensity distributions with the adjacent regions. The obtained results show that the proposed WELSAC model is able to segment regions of interest in close correspondence with the manual delineation provided by the medical experts and to provide a solution for tumour detection. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Petrologic Evolution of Lavas Erupted between 13N and 14N, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Bendana, S.; Wanless, V. D.; Kurz, M. D.; Soule, S. A.; Mittelstaedt, E. L.; Fornari, D. J.; Lytle, M. L.

    2017-12-01

    Along many slow spreading ridge segments, the morphology of the axis varies from a symmetric central rift valley where magmatism accommodates a relatively higher proportion of plate spreading to a deeper, asymmetric axial valley where faulting and ductile deformation dominate and oceanic core complexes are common. This transition in morphology correlates with changes in lithospheric thickness, which may influence the total extents of melting and erupted lava compositions. To explore how magmatic processes vary along a slow spreading mid-ocean ridge, we sampled the Mid-Atlantic Ridge (MAR) from 13° 46'N to 14° 06'N on the R/V Atlantis using AUV Sentry and HOV Alvin. Three sections of the ridge were investigated in detail: (1) the asymmetrically spreading (magma-poor) section of the MAR at 13° 48'N, (2) the symmetrically spreading (magma-rich) center of the segment, near 14° 04'N, and (3) the transition between the two sections. To determine how crystallization depths and melting systematics vary from a magma-rich to magma-poor segment, we analyzed all the lavas for major element concentrations by electron microprobe and a subset of lavas for trace element contents using solution ICP-MS. Preliminary geochemical results from the magma-poor region indicate the eruption of a range of slightly to moderately enriched basaltic compositions. Out of 134 samples, fifteen samples collected in the magma-poor region are "popping rocks", containing a high abundance of vesicles and elevated volatile and noble gas contents. All "popping rocks" collected are relatively homogeneous in composition (e.g. [La]N 39-42, [Sm]N 22-24; K2O/TiO2 0.32-0.35) compared to the other lavas erupted in the magma-poor region (e.g. [La]N 13-47, [Sm]N 11-24; K2O/TiO2 0.17-0.5). This suggests that the non-popping rocks formed from variable extents of melting or heterogeneous mantle sources. We will combine bathymetry with results of analyses of lavas from the magma-rich segment and petrologic models

  19. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.

    PubMed

    Smith, Deborah K; Cann, Johnson R; Escartín, Javier

    2006-07-27

    Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.

  20. Tomographic imaging of the transition from asthenospheric to lithospheric melt migration processes: 3-D structure of the topmost mantle and crust at the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Arnoux, G. M.; Toomey, D. R.; Hooft, E. E. E.; Wilcock, W. S. D.

    2017-12-01

    We present tomographic images of the intermediate-spreading Endeavour Segment that constrain the nature of an axial magmatic system as it transitions from asthenospheric- to lithospheric-dominated rheologies. We use seismic energy from 5500 air gun shots refracted through the crust (Pg), reflected off the Moho (PmP), and refracted below the Moho (Pn)—as recorded by 64 OBSs from the Endeavour tomography experiment—to image the isotropic and anisotropic P-wave velocity structure of the topmost mantle and crust, as well as crustal thickness. At crustal depths, results reveal a low-velocity zone (LVZ)—inferred to be the axial magmatic system—that: (i) is continuous along the entire Endeavour Segment at depths of 2-3 km below seafloor and closely follows the axis of spreading, (ii) broadens and becomes more discontinuous at lower crustal depths, and (iii) has its largest amplitude from the mid- to lower-crust at the segment center. The ridge-tracking trend of the mid-crustal LVZ is in contrast to the crustal thickness pattern; in particular, a swath of thin crust is skewed with respect to both the ridge axis and the mid-crustal magmatic system and connects two overlapping spreading centers bounding the segment. The trend of thinner crust, however, is aligned with the mantle LVZ, which constrains the thermal structure and distribution of melt within the topmost mantle. The systematic depth variation of the map-view orientation and structure of the magmatic system indicates a distinct transition from a broad, cross-axis regime in the topmost asthenosphere governed by a regional, north-south trending thermal structure, to a narrow, cross-axis regime in the mid- to upper-crust governed by lithospheric rifting, magma injection, and hydrothermal processes. The lower-crustal magmatic system connects these two regimes. We also postulate that accumulation and differentiation of magma immediately beneath the crust-mantle boundary increases temperatures and suppresses

  1. Fully automatic lesion segmentation in breast MRI using mean-shift and graph-cuts on a region adjacency graph.

    PubMed

    McClymont, Darryl; Mehnert, Andrew; Trakic, Adnan; Kennedy, Dominic; Crozier, Stuart

    2014-04-01

    To present and evaluate a fully automatic method for segmentation (i.e., detection and delineation) of suspicious tissue in breast MRI. The method, based on mean-shift clustering and graph-cuts on a region adjacency graph, was developed and its parameters tuned using multimodal (T1, T2, DCE-MRI) clinical breast MRI data from 35 subjects (training data). It was then tested using two data sets. Test set 1 comprises data for 85 subjects (93 lesions) acquired using the same protocol and scanner system used to acquire the training data. Test set 2 comprises data for eight subjects (nine lesions) acquired using a similar protocol but a different vendor's scanner system. Each lesion was manually delineated in three-dimensions by an experienced breast radiographer to establish segmentation ground truth. The regions of interest identified by the method were compared with the ground truth and the detection and delineation accuracies quantitatively evaluated. One hundred percent of the lesions were detected with a mean of 4.5 ± 1.2 false positives per subject. This false-positive rate is nearly 50% better than previously reported for a fully automatic breast lesion detection system. The median Dice coefficient for Test set 1 was 0.76 (interquartile range, 0.17), and 0.75 (interquartile range, 0.16) for Test set 2. The results demonstrate the efficacy and accuracy of the proposed method as well as its potential for direct application across different MRI systems. It is (to the authors' knowledge) the first fully automatic method for breast lesion detection and delineation in breast MRI.

  2. The Tribolium castaneum Ortholog of Sex combs reduced Controls Dorsal Ridge Development

    PubMed Central

    Shippy, Teresa D.; Rogers, Carmelle D.; Beeman, Richard W.; Brown, Susan J.; Denell, Robin E.

    2006-01-01

    In insects, the boundary between the embryonic head and thorax is formed by the dorsal ridge, a fused structure composed of portions of the maxillary and labial segments. However, the mechanisms that promote development of this unusual structure remain a mystery. In Drosophila, mutations in the Hox genes Sex combs reduced and Deformed have been reported to cause abnormal dorsal ridge formation, but the significance of these abnormalities is not clear. We have identified three mutant allele classes of Cephalothorax, the Tribolium castaneum (red flour beetle) ortholog of Sex combs reduced, each of which has a different effect on dorsal ridge development. By using Engrailed expression to monitor dorsal ridge development in these mutants, we demonstrate that Cephalothorax promotes the fusion and subsequent dorsolateral extension of the maxillary and labial Engrailed stripes (posterior compartments) during dorsal ridge formation. Molecular and genetic analysis of these alleles indicates that the N terminus of Cephalothorax is important for the fusion step, but is dispensable for Engrailed stripe extension. Thus, we find that specific regions of Cephalothorax are required for discrete steps in dorsal ridge formation. PMID:16849608

  3. Correlation between cervical lordosis and adjacent segment pathology after anterior cervical spinal surgery.

    PubMed

    Lee, Soo Eon; Jahng, Tae-Ahn; Kim, Hyun Jib

    2015-12-01

    To evaluate the incidence and risk factors for adjacent segment pathology (ASP) after anterior cervical spinal surgery. Fourteen patients (12 male, mean age 47.1 years) who underwent single-level cervical disk arthroplasty (CDA group) and 28 case-matched patients (24 male, mean age 53.6 years) who underwent single-level anterior cervical discectomy and fusion (ACDF group) were included. Presence of radiologic ASP (RASP) was based on observed changes in anterior osteophytes, disks, and calcification of the anterior longitudinal ligament on lateral radiographs. The mean follow-up period was 43.4 months in the CDA group and 44.6 months in the ACDF group. At final follow-up, ASP was observed in 5 (35.7%) CDA patients and 16 (57.1%) ACDF patients (p = 0.272). The interval between surgery and ASP development was 33.8 months in the CDA group and 16.3 months in the ACDF group (p = 0.046). The ASP risk factor analysis indicated postoperative cervical angle at C3-7 being more lordotic in non-ASP patients in both groups. Restoration of lordosis occurred in the CDA group regardless of the presence of ASP, but heterotopic ossification development was associated with the presence of ASP in the CDA group. And the CDA group had significantly greater clinical improvements than those in the ACDF group when ASP was present. In both CDA and ACDF patients, RASP developed, but CDA was associated with a delay in ASP development. A good clinical outcome was expected in CDA group, even when ASP developed. Restoration of cervical lordosis was an important factor in anterior cervical spine surgery.

  4. Geochemical and Isotopic Variations Along the Southeast Indian Ridge (126°-140°E) Related to Mantle Flow Originating from Beneath Antarctica

    NASA Astrophysics Data System (ADS)

    Hanan, B. B.; Graham, D. W.; Hemond, C.; Dufour, F.; Briais, A.; Ceuleneer, G.; Maia, M.; Park, S. H.; Revillon, S.; Yang, Y. S.

    2017-12-01

    We present data for glassy basalts from 37 localities along the spreading axis of the Southeast Indian Ridge (SEIR) between 126°-140°E, eastward of the Australian-Antarctic Discordance (AAD). Each of the five ridge segments (A1 to A5, west to east) show well-defined major element trends. An isotopic and negative axial depth anomaly is present, centered on the overlapping tips of segments A3 and A4 at 135°E. Segment A4 basalts have distinct radiogenic Pb and He isotopes plus enriched MORB-like ɛHf, relative to segments to the west and east. Crystal fractionation is more extensive at the A3 and A5 overlapping segment tips adjacent to A4, and decreases both to the west and east. The along axis pattern suggests a mantle heterogeneity located beneath the A3-A4 segments. Pb-Pb isotopic co-variations for the 5 segments define two linear arrays, with a western trend (A1-A3) and an eastern trend (A4-A5) that intersects it at the composition of the anomalous A4 segment, at a 206Pb/204Pb 19. The western trend has higher 208Pb/204Pb for a given 206Pb/204Pb, revealing a gradient in the asthenosphere, with Δ208Pb/204Pb decreasing to the east away from the AAD. Overall, 206,207,208Pb/204Pb and 4He/3He of the A4 anomaly define trends that vector toward the fields for Cenozoic lavas from west Antarctica (Marie Byrd Land and Balleny Islands). West Antarctica has a history of mantle plume underplating and lithosphere modification by subduction [1,2], and there is a broad seismic anomaly below 250 km underlying the West Antarctic Rift system [3]. Our data supports a model in which flow of underplated material plus lithosphere may be guided by the underside topography of the lithosphere beneath the Transantarctic mountains. This flow emerges from beneath east Antarctica, where it leads to volcanism in the Balleny Islands [4]. The material apparently continues to flow northward to the SEIR at 135°E. The geochemical anomaly beneath Zone A is potentially explained by the presence of

  5. The effect of fault-bend folding on seismic velocity in the marginal ridge of accretionary prisms

    USGS Publications Warehouse

    Cai, Y.; Wang, Chun-Yong; Hwang, W.-t.; Cochrane, G.R.

    1995-01-01

    Fluid venting in accretionary prisms, which feeds chemosynthetic biological communities, occurs mostly on the marginal thrust ridge. New seismic data for the marginal ridge of the Cascadia prism show significantly lower velocity than that in the adjacent oceanic basin and place important constraints on the interpretations of why fluid venting occurs mostly on the marginal ridge. We employed a finite-element method to analyze a typical fault-bend folding model to explain the phenomenon. The fault in the model is simulated by contact elements. The elements are characterized not only by finite sliding along a slide line, but also by elastoplastic deformation. We present the results of a stress analysis which show that the marginal ridge is under subhorizontal extension and the frontal thrust is under compression. This state of stress favors the growth of tensile cracks in the marginal ridge, facilitates fluid flow and reduces seismic velocities therein; on the other hand, it may close fluid pathways along the frontal thrust and divert fluid flow to the marginal ridge. ?? 1995 Birkha??user Verlag.

  6. Reconstructive periodontal therapy with simultaneous ridge augmentation. A clinical and histological case series report.

    PubMed

    Windisch, Péter; Szendroi-Kiss, Dóra; Horváth, Attila; Suba, Zsuzsanna; Gera, István; Sculean, Anton

    2008-09-01

    Treatment of intrabony periodontal defects with a combination of a natural bone mineral (NBM) and guided tissue regeneration (GTR) has been shown to promote periodontal regeneration in intrabony defects. In certain clinical situations, the teeth presenting intrabony defects are located at close vicinity of the resorbed alveolar ridge. In these particular cases, it is of clinical interest to simultaneously reconstruct both the intrabony periodontal defect and the resorbed alveolar ridge, thus allowing insertion of endosseous dental implants. The aim of the present study was to present the clinical and histological results obtained with a new surgical technique designed to simultaneously reconstruct the intrabony defect and the adjacently located resorbed alveolar ridge. Eight patients with chronic advanced periodontitis displaying intrabony defects located in the close vicinity of resorbed alveolar ridges were consecutively enrolled in the study. After local anesthesia, mucoperiosteal flaps were raised, the granulation tissue removed, and the roots meticulously scaled and planed. A subepithelial connective tissue graft was harvested from the palate and sutured to the oral flap. The intrabony defect and the adjacent alveolar ridge were filled with a NBM and subsequently covered with a bioresorbable collagen membrane (GTR). At 11-20 months (mean, 13.9+/-3.9 months) after surgery, implants were placed, core biopsies retrieved, and histologically evaluated. Mean pocket depth reduction measured 3.8+/-1.7 mm and mean clinical attachment level gain 4.3+/-2.2 mm, respectively. Reentry revealed in all cases a complete fill of the intrabony component and a mean additional vertical hard tissue gain of 1.8+/-1.8 mm. The histologic evaluation indicated that most NBM particles were surrounded by bone. Mean new bone and mean graft area measured 17.8+/-2.8% and 32.1+/-8.3%, respectively. Within their limits, the present findings indicate that the described surgical approach may be

  7. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    NASA Astrophysics Data System (ADS)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this

  8. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  9. Segmented amplifier configurations for laser amplifier

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.

  10. Mantle heterogeneity in the source region of mid-ocean ridge basalts along the northern Central Indian Ridge (8°S-17°S)

    NASA Astrophysics Data System (ADS)

    Kim, Jonguk; Pak, Sang-Joon; Moon, Jai-Woon; Lee, Sang-Mook; Oh, Jihye; Stuart, Finlay M.

    2017-04-01

    The northern Central Indian Ridge (CIR) between 8°S and 17°S is composed of seven segments whose spreading rates increase southward from ˜35 to ˜40 mm/yr. During expeditions of R/V Onnuri to study hydrothermal activity on the northern CIR in 2009-2011, high-resolution multibeam mapping was conducted and ridge axis basalts were dredged. The major and trace element and Sr-Nd-Pb-He isotopic compositions of basaltic glasses dredged from the spreading axis require three mantle sources: depleted mantle and two distinct enriched mantle sources. The southern segments have Sr, Nd, and Pb that are a mix of depleted mantle and an enriched component as recorded in southern CIR MORB. This enrichment is indistinguishable from Rèunion plume mantle, except for He isotopes. This suggests that the southern segments have incorporated a contribution of the fossil Rèunion plume mantle, as the CIR migrated over hot-spot-modified mantle. The low 3He/4He (7.5-9.2 RA) of this enriched component may result from radiogenic 4He ingrowth in the fossil Rèunion mantle component. Basalts from the northern segments have high 206Pb/204Pb (18.53-19.15) and low 87Sr/86Sr (0.70286-0.70296) that are distinct from the Rèunion plume but consistent with derivation from mantle with FOZO signature, albeit with 3He/4He (9.2-11.8 RA) that are higher than typical. The FOZO-like enriched mantle cannot be attributed to the track of a nearby mantle plume. Instead, this enrichment may have resulted from recycling oceanic crust, possibly accompanied by small plume activity.

  11. Adjacent-level arthroplasty following cervical fusion.

    PubMed

    Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Konar, Subhas; Sharma, Ankit

    2017-02-01

    OBJECTIVE Adjacent-level disc degeneration following cervical fusion has been well reported. This condition poses a major treatment dilemma when it becomes symptomatic. The potential application of cervical arthroplasty to preserve motion in the affected segment is not well documented, with few studies in the literature. The authors present their initial experience of analyzing clinical and radiological results in such patients who were treated with arthroplasty for new or persistent arm and/or neck symptoms related to neural compression due to adjacent-segment disease after anterior cervical discectomy and fusion (ACDF). METHODS During a 5-year period, 11 patients who had undergone ACDF anterior cervical discectomy and fusion (ACDF) and subsequently developed recurrent neck or arm pain related to adjacent-level cervical disc disease were treated with cervical arthroplasty at the authors' institution. A total of 15 devices were implanted (range of treated levels per patient: 1-3). Clinical evaluation was performed both before and after surgery, using a visual analog scale (VAS) for pain and the Neck Disability Index (NDI). Radiological outcomes were analyzed using pre- and postoperative flexion/extension lateral radiographs measuring Cobb angle (overall C2-7 sagittal alignment), functional spinal unit (FSU) angle, and range of motion (ROM). RESULTS There were no major perioperative complications or device-related failures. Statistically significant results, obtained in all cases, were reflected by an improvement in VAS scores for neck/arm pain and NDI scores for neck pain. Radiologically, statistically significant increases in the overall lordosis (as measured by Cobb angle) and ROM at the treated disc level were observed. Three patients were lost to follow-up within the first year after arthroplasty. In the remaining 8 cases, the duration of follow-up ranged from 1 to 3 years. None of these 8 patients required surgery for the same vertebral level during the follow

  12. Geodetic investigation of plate spreading along a propagating ridge: the Eastern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Scheiber-Enslin, Stephanie E.; Lafemina, Peter C.; Sturkell, Erik; Hooper, Andrew J.; Webb, Susan J.

    2011-12-01

    Hotspot-ridge interactions lead to the dynamic evolution of divergent plate boundaries, including propagating and overlapping ridge segments. In southern Iceland, the Eastern Volcanic Zone (EVZ) formed approximately 2-3 Ma ago during the last eastward ridge jump from the Western Volcanic Zone (WVZ), and is propagating to the southwest into the Tertiary lithosphere of the Eastern Volcanic Flank Zone. North America-Eurasia relative plate motion is partitioned between the Eastern and WVZs. We utilize new terrestrial (dry-tilt) and space (GPS and InSAR) geodetic data to investigate the nature of plate spreading and magma-tectonic interaction at the southern terminus of this propagating ridge system. We present a new GPS derived horizontal velocity field covering the period 1994-2006, new InSAR analyses for the periods 1993-2000 and 2003-2007, and models of plate spreading across this region. The velocity field indicates horizontal surface deformation consistent with plate spreading across and the propagation of the EVZ. The dry-tilt and InSAR data show transient deformation signals associated with magmatic processes. The velocity field is corrected for these transient deformation sources in order to investigate the nature of secular plate motion. Our model results indicate a decrease in spreading rate from northeast (15 mm yr-1) to southwest (9 mm yr-1) across the Torfajökull caldera and the intersection of the South Iceland Seismic Zone and EVZ, consistent with the propagating ridge model. Plate spreading south of the intersection demonstrates that spreading must be partitioned with the Reykjanes Peninsula to the west at this latitude. Our results also constrain the minimum flux (0.05 km3 km-1 kyr-1) of magma to this segment of the Mid-Atlantic Ridge and indicate that the Hekla magmatic system strains the Torfajökull caldera during pre- and co-eruptive periods.

  13. Raccoon (Procyon lotor) movements and dispersal associated with ridges and valleys of Pennsylvania: implications for rabies management.

    PubMed

    Puskas, Robert B; Fischer, Justin W; Swope, Craig B; Dunbar, Mike R; McLean, Robert G; Root, J Jeffrey

    2010-12-01

    The raccoon (Procyon lotor) continues to be a prominent terrestrial rabies reservoir in the eastern United States. Describing the dispersal and movements of these animals and determining geographic features that are natural hindrances or corridors to movements could be used to assist oral rabies vaccination efforts. The landscape of the ridge-and-valley system in Pennsylvania exhibits characteristics of both natural potential hindrances and travel corridors to the movements of wildlife. The movements of 49 raccoons were monitored throughout a ridge and two adjacent valley sites to assess their movements related to these landscape features. Results suggest that few raccoons cross the ridge we studied over the short-term and that long-distance movements of these animals are uncommon in this region. Consequently, movement corridors within the ridge were largely confined to spur valleys within the ridge system. These results may be useful in strategic oral rabies vaccination programs in Pennsylvania and other areas where natural hindrances and travel corridors to movement are identified.

  14. Intraplate compressional deformation in West-Congo and the Congo basin: related to ridge-puch from the South Atlantic spreading ridge?

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Everaerts, Michel; Kongota Isasi, Elvis; Ganza Bamulezi, Gloire

    2016-04-01

    After the break-up and separation of South America from Africa and the initiation of the South-Atlantic mid-oceanic ridge in the Albian, at about 120 Ma, ridge-push forces started to build-up in the oceanic lithosphere and were transmitted to the adjacent continental plates. This is particularly well expressed in the passive margin and continental interior of Central Africa. According to the relations of Wiens and Stein (1985) between ridge-push forces and basal drag in function of the lithospheric age of oceanic plates, the deviatoric stress reaches a compressional maximum between 50 and 100, Ma after the initiation of the spreading ridge, so broadly corresponding to the Paleocene in this case (~70-20 Ma). Earthquake focal mechanism data show that the West-Congo margin and a large part of the Congo basin are still currently under compressional stresses with an horizontal compression parallel to the direction of the active transform fracture zones. We studied the fracture network along the Congo River in Kinshasa and Brazzaville which affect Cambrian sandstones and probably also the late Cretaceous-Paleocene sediments. Their brittle tectonic evolution is compatible with the buildup of ridge-push forces related to the South-Atlantic opening. Further inland, low-angle reverse faults are found affecting Jurassic to Middle Cretaceous cores from the Samba borehole in the Congo basin and strike-slip movements are recorded as a second brittle phase in the Permian cores of the Dekese well, at the southern margin of the Congo basin. An analysis of the topography and river network of the Congo basin show the development of low-amplitude (50-100 m) long wavelengths (100-300 km) undulations that can be interpreted as lithospheric buckling in response to the compressional intraplate stress field generated by the Mid-Atlantic ridge-push. Wiens, D.A., Stein, S., 1985. Implications of oceanic intraplate seismicity for plate stresses, driving forces and theology. Tectonophysics

  15. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges

    NASA Astrophysics Data System (ADS)

    Langmuir, Charles H.; Klein, Emily M.; Plank, Terry

    distribution of enriched components from hot spots in the two ocean basins. In the Atlantic, the hot spot influence is in discrete areas, and produces clear depth and chemical anomalies. Ridge segments far from hot spots do not contain enriched basalts. Melting processes associated with slow-spreading ridges vary substantially over short distances along strike and lead to the local trends discussed above, irrespective of hot spot influence. In the Pacific, enriched components appear to have been more thoroughly mixed into the mantle, leading to ubiquitous small scale heterogeneities. Melting processes do not vary appreciably along strike, so local chemical variations are dominated by the relative contribution of enriched component on short time and length scales. Thus the extent of mixing and distribution of enriched components influences strongly the contrasting local major element trends. Despite the difference in the distribution of enriched components, the mean compositions of each data set are equivalent. This suggests that the hot spot influence is similar in the two ocean basins, but its distribution in the upper mantle is different. These contrasting relationships between hot spots and ridges may result from differences in both spreading rate and tectonic history. Unrecognized hot spots may play an important role in diverse aspects of EPR volcanism, and in the chemical systematics of the erupted basalts. The observations and successful models have consequences for melt formation and segregation. (1) The melting process must be closer to fractional melting than equilibrium melting. This result is in accord with inferences from abyssal peridotites [Johnson et al., 1990]. (2) Small melt fractions generated over a range of pressures must be extracted rapidly and efficiently from high pressures within the mantle without experiencing low pressure equilibration during ascent. This requires movement in large channels, and possibly more efficient extraction mechanisms than

  16. MeltMigrator: A MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach

    NASA Astrophysics Data System (ADS)

    Bai, Hailong; Montési, Laurent G. J.; Behn, Mark D.

    2017-01-01

    MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.

  17. Plume-ridge interaction: Shaping the geometry of mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric L.

    Manifestations of plume-ridge interaction are found across the ocean basins. Currently there are interactions between at least 21 hot spots and nearby ridges along 15--20% of the global mid-ocean ridge network. These interactions produce a number of anomalies including the presence of elevated topography, negative gravity anomalies, and anomalous crustal production. One form of anomalous crustal production is the formation of volcanic lineaments between hotspots and nearby mid-ocean ridges. In addition, observations indicate that mantle plumes tend to "capture" nearby mid-ocean ridges through asymmetric spreading, increased ridge propagation, and discrete shifts of the ridge axis, or ridge jumps. The initiation of ridge jumps and the formation of off-axis volcanic lineaments likely involve similar processes and may be closely related. In the following work, I use theoretical and numerical models to quantify the processes that control the formation of volcanic lineaments (Chapter 2), the initiation of mid-ocean ridge jumps associated with lithospheric heating due to magma passing through the plate (Chapter 3), and the initiation of jumps due to an upwelling mantle plume and magmatic heating governed by melt migration (Chapter 4). Results indicate that lineaments and ridge jumps associated with plume-ridge interaction are most likely to occur on young lithosphere. The shape of lineaments on the seafloor is predicted to be controlled by the pattern of lithospheric stresses associated with a laterally spreading, near-ridge mantle plume. Ridge jumps are likely to occur due to magmatic heating alone only in lithosphere ˜1Myr old, because the heating rate required to jump increases with spreading rate and plate age. The added effect of an upwelling plume introduces competing effects that both promote and inhibit ridge jumps. For models where magmatic heating is controlled by melt migration, repeat ridge jumps are predicted to occur as the plume and ridge separate, but

  18. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock

    PubMed Central

    Lleras Forero, Laura; Narayanan, Rachna; Huitema, Leonie FA; VanBergen, Maaike; Apschner, Alexander; Peterson-Maduro, Josi; Logister, Ive; Valentin, Guillaume

    2018-01-01

    Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. PMID:29624170

  19. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock.

    PubMed

    Lleras Forero, Laura; Narayanan, Rachna; Huitema, Leonie Fa; VanBergen, Maaike; Apschner, Alexander; Peterson-Maduro, Josi; Logister, Ive; Valentin, Guillaume; Morelli, Luis G; Oates, Andrew C; Schulte-Merker, Stefan

    2018-04-06

    Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. © 2018, Lleras Forero et al.

  20. Pelagic erosion and sedimentation north of Carnegie Ridge, eastern equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Brooks, C. K.; Lyle, M. W.; Marcantonio, F.; Lewis, D. M.; Paul, C.

    2011-12-01

    The Carnegie Ridge is one of three bathymetric highs bounding the Panama Basin and is known to exhibit erosion and redeposition of pelagic sediments. The extent of erosion and redeposition was studied during the R/V Melville cruise MV1014 in November 2010 to compare with geochemical estimates of sediment focusing. The MV1014 cruise acquired geochemical, geological and geophysical data using multichannel 2-D seismic and 3.5 kHz sub-bottom profiler, swathmap bathymetry, coring, and water casts. The seismic reflection, digital sub-bottom profiler and swathmap bathymetry data were used to investigate biogenic sedimentary deposition in the Panama Basin and erosion from Carnegie Ridge. We compare the new geophysical results with drilling on ODP Leg 202, the NEMO-03 site survey cruise for Leg 202, an early survey from 1969 and other data compiled by Ecuadorian surveys. Areas of non-deposition and/or erosion include the bathymetric highs along the ridge, seamounts, and an area of interest, a valley located on the northwestern flank of the ridge. The valley encompasses 183 km2 and exhibits large scale erosion, cutting down through sediments deposited over the 10-million year life of this segment of the Carnegie Ridge. All other valleys located within the Carnegie Ridge study area demonstrate ample deposition with sedimentary packages ranging from 200-800m with an average value trending around 400m. Higher sediment deposition is found in basins to the north of the erosional valley but similar sedimentation is also found even further north, beyond intervening high topography. The thickest sediment deposit near the Carnegie Ridge is actually found on the southern flank of the ridge, more than 100 km to the south of the survey area. Digital chirp sub-bottom profiler data combined with high-resolution seismic illustrate changes in sedimentation and erosion on the Carnegie Ridge, highlighting the dynamic sedimentary environment.

  1. Results from a 14-month hydroacoustic monitoring of the three mid-oceanic ridges in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Royer, J.-Y.; Dziak, R. P.; Delatre, M.; Chateau, R.; Brachet, C.; Haxel, J. H.; Matsumoto, H.; Goslin, J.; Brandon, V.; Bohnenstielh, D. R.

    2009-04-01

    From October 2006 to January 2008, an hydroacoustic experiment in the Indian Ocean was carried out by the CNRS/University of Brest and NOAA/Oregon State University to monitor the low-level seismic activity associated with the three contrasting spreading ridges and deforming zones in the Indian Ocean. Three autonomous hydrophones were moored in the SOFAR channel by R/V Marion Dufresne for 14 months in the Madagascar Basin, and northeast and southwest of Amsterdam Island, complementing the two permanent hydroacoustic stations of the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) located near Diego Garcia Island and off Cape Leeuwin. The three instruments successfully collected 14 month of continuous acoustic records. Combined with the records from the permanent stations, the array detected 1780 acoustic events consisting mostly of earthquake generated T-waves, but also of iceberg tremors from Wilkes Land, Antarctica. Within the triangle defined by the temporary array, the three ridges exhibit contrasting seismicity patterns. Along the Southeast Indian ridge (SEIR), the 272 acoustic events (vs 24 events in the NEIC catalog) occur predominantly along the transform faults ; only one ridge segment (76˚E) displays a continuous activity for 10 months. Along the Central Indian Ridge (CIR), seismicity is distributed along fracture zones and ridge segments (269 events vs 45 NEIC events), with two clusters of events near the triple junction (24-25S) and south of Marie-Celeste FZ (18.5S). Along the Southwest Indian Ridge (SWIR), the 222 events (vs 31 NEIC events) are distributed along the ridge segments with a larger number of events west of Melville FZ and a cluster at 58E. The immediate vicinity of the Rodrigues triple junction shows periods of quiescence and of intense activity. Some large earthquakes (Mb>5) near the triple junction (SEIR and CIR) seem to be preceded by several acoustic events that may be precursors. Finally, off-ridge seismicity is mostly

  2. Geochronology and petrogenesis of MORB from the Juan de Fuca and Gorda ridges by 238U230Th disequilibrium

    USGS Publications Warehouse

    Goldstein, S.J.; Murrell, M.T.; Janecky, D.R.; Delaney, J.R.; Clague, D.A.

    1991-01-01

    A highly precise mass spectrometric method of analysis was used to determine 238U234U230Th232Th in axial and off-axis basalt glasses from Juan de Fuca (JDF) and Gorda ridges. Initial 230Th activity excesses in the axial samples range from 3 to 38%, but generally lie within a narrow range of 12 to 15%. Secondary alteration effects were evaluated using ??234U and appear to be negligible; hence the 230Th excesses are magmatic in origin. Direct dating of MORB was accomplished by measuring the decrease in excess 230Th in off-axis samples. 238U230Th ages progressively increase with distance from axis. Uncertainties in age range from 10 to 25 ka for UTh ages of 50 to 200 ka. The full spreading rate based on UTh ages for Endeavour segment of JDF is 5.9 ?? 1/2 cm/yr, with asymmetry in spreading between the Pacific (4.0 ?? 0.6 cm/yr) and JDF (1.9 ?? 0.6 cm/yr) plates. For northern Gorda ridge, the half spreading rate for the JDF plate is found to be 3.0 ?? 0.4 cm/yr. These rates are in agreement with paleomagnetic spreading rates and topographic constraints. This suggests that assumptions used to determine ages, including constancy of initial 230Th 232Th ratio over time, are generally valid for the areas studied. Samples located near the axis of spreading are typically younger than predicted by these spreading rates, which most likely reflects recent volcanism within a 1-3 km wide zone of crustal accretion. Initial 230Th/232Th ratios and 230Th activity were also used to examine the recent Th/U evolution and extent of melting of mantle sources beneath these ridges. A negative anomaly in 230Th 232Th for Axial seamount lavas provides the first geochemical evidence of a mantle plume source for Axial seamount and the Cobb-Eickelberg seamount chain and indicates recent depletion of other JDF segment sources. Large 230Th activity excesses for lavas from northern Gorda ridge and Endeavour segment indicate formation from a lower degree of partial melting than other segments. An

  3. Extinct mid-ocean ridges and insights on the influence of hotspots at divergent plate boundaries

    NASA Astrophysics Data System (ADS)

    MacLeod, Sarah; Dietmar Müller, R.; Williams, Simon; Matthews, Kara

    2016-04-01

    We review all global examples of confirmed or suspected extinct mid-ocean ridges that are preserved in present-day ocean basins. Data on their spreading rate prior to extinction, time of cessation, length of activity, bathymetric and gravity signature are analysed. This analysis identifies some differences between subgroups of extinct ridges, including microplate spreading ridges, back-arc basin ridges and large-scale mid-ocean ridges. Crustal structure of extinct ridges is evaluated using gravity inversion to seek to resolve a long-standing debate on whether the final stages of spreading leads to development of thinned or thickened crust. Most of the ridges we assess have thinner crust at their axes than their flanks, yet a small number are found to have a single segment that is overprinted by an anomalous feature such as a seamount or volcanic ridge. A more complex cessation mechanism is necessary in these cases. The location of spreading centres at their time of cessation relative to hotspots was also evaluated using a global plate reconstruction. This review provides strong evidence for the long-term interaction of spreading centres with hotspots and plate boundaries have been frequently modified within the radius of a hotspot zone of influence.

  4. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  5. Preliminary Analysis of Multibeam, Subbottom, and Water Column Data Collected from the Juan de Fuca Plate and Gorda Ridge Earthquake Swarm Sites, March-April 2008.

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Dziak, R. P.; Embley, R. W.; Lupton, J. E.; Greene, R. R.; Chadwick, W. W.; Lilley, M.; Bohnenstiehl, D. R.; Braunmiller, J.; Fowler, M.; Resing, J.

    2008-12-01

    Two oceanographic expeditions were undertaken in the northeast Pacific during April and September of 2008 to collect a variety of scientific data at the sites of intense earthquake swarms that occurred from 30 March to 9 April 2008. The earthquake swarms were detected by the NOAA/PMEL and US Navy SOSUS hydrophone system in the northeast Pacific. The first swarm occurred within the central Juan de Fuca Plate, ~280 km west of the Oregon coast and ~70 km north of the Blanco Transform Fault Zone (BTFZ). Time history of the events indicate this swarm was not a typical mainshock-aftershock sequence, and was the largest SOSUS detected swarm within the intraplate. This intraplate swarm activity was followed by three distinct clusters of earthquakes located along the BTFZ. Two of the clusters, which began on 10 and 12 April, were initiated by MW 5+ earthquakes suggesting these were mainshock-aftershock sequences, and the number of earthquakes on the BTFZ were small relative to the intraplate swarm. On 22 April, another intense earthquake swarm began on the northern Gorda Ridge segment adjacent to the BTFZ. The Gorda swarm produced >1000 SOSUS detected earthquakes over a five-day duration, with activity distributed between the mid-segment high and the ridge-transform intersection. This swarm was of special interest because of previous magmatic activity near its location in 1996. Overall, the March-April earthquake activity showed an interesting spatio-temporal progression, beginning at the intraplate, to the transform, then to a spreading event at the ridge. This pattern once again demonstrates the Juan de Fuca plate is continually moving and converging with North America at the Cascadia Subduction Zone. As the initial swarm was not focused on the ridge crest, it was not interpreted as a significant eruptive event, and we did not advocate a large-scale Ridge2000 response effort. The earthquake activity, however, did have an unusual character and therefore a short (four

  6. Morphometric variability within the axial zone of the southern Juan de Fuca Ridge: Interpretation from Sea MARC II, Sea MARC I, and deep-sea photography

    USGS Publications Warehouse

    Kappel, Ellen S.; Normark, William R.

    1987-01-01

    The morphometric characteristics of the axial regions of oceanic spreading centers are determined by (1) the type of volcanic flows, (2) the relation between primary volcanic relief (on a scale of a few meters to tens of meters) and degree of sediment cover, and (3) the extent of surficial expression and timing of tectonic disruption of the young oceanic crust. Even within a single, continuous, linear spreading-ridge segment with relatively uniform axial valley dimensions over a distance of 50 or more kilometers, such as along the southern Juan de Fuca Ridge, the changes in morphometric characteristics along axis within the youngest crust indicate distinct variation in tectonic and volcanic activity over short distances within short time periods. An integrated analysis of Sea MARC I, Sea MARC II, and photographic data for the southernmost continuous segment of the Juan de Fuca Ridge shows that generalizations about tectonic and volcanic processes at spreading ridges must consider both the temporal scale of processes as well as the physical scales of observations if predictive models are to be successful. Comparison of the morphometric expression within the major hydrothermal vent area and the rest of the southernmost ridge segment suggests that the mapped distribution of hydrothermal vents may reflect the extent of survey effort rather than uniqueness of geologic setting.

  7. Curiosity at Vera Rubin Ridge: Testable Hypotheses, First Results, and Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Fraeman, A.; Bedford, C.; Bridges, J.; Edgar, L. A.; Hardgrove, C.; Horgan, B. H. N.; Gabriel, T. S. J.; Grotzinger, J. P.; Gupta, S.; Johnson, J. R.; Rampe, E. B.; Morris, R. V.; Salvatore, M. R.; Schwenzer, S. P.; Stack, K.; Pinet, P. C.; Rubin, D. M.; Weitz, C. M.; Wellington, D. F.; Wiens, R. C.; Williams, A. J.; Vasavada, A. R.

    2017-12-01

    As of sol 1756, Curiosity was 250 meters from ascending Vera Rubin Ridge, a unique geomorphic feature preserved in the lower foothills of Aeolis Mons (informally known as Mt. Sharp) that is distinguishable from orbit. Vera Rubin Ridge (previously termed the Hematite Ridge) is characterized by a higher thermal inertia than the surrounding terrain, is comparatively resistant to erosion, and is capped with a hematite-bearing layer that is visible in 18 m/pixel CRISM data. A key hypothesis associated with this unit is that it represents a redox interface where ferrous iron oxidized and precipitated either as hematite or another ferric precursor. The Curiosity integrated payload is being used to determine the depositional environment(s), stratigraphic context and geochemical conditions associated with this interface, all of which will provide key insights into its past habitability potential and the relative timing of processes. Specifically, analysis of Curiosity data will address four major questions related to the history and evolution of ridge-forming strata: (1) What is the stratigraphic relationship between the units in the ridge and the Mt. Sharp group (see Grotzinger et al., 2015)? (2) What primary and secondary geologic processes deposited and modified the ridge units over time? (3) What is the nature and timing of the hematite precipitation environment, and how does it relate to similar oxidized phases in the Murray formation? (4) What are the implications for habitability and the preservation of organic molecules? Initial results of a systematic imaging campaign along the contact between the lower portion or the ridge and the Murray formation has revealed dm-scale cross bedding within the ridge stratigraphy, which provide clues about the depositional environments; these can be compared to suites of sedimentary structures within the adjacent Murray formation. Long distance ChemCam passive and Mastcam multispectral data show that hematite and likely other

  8. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique

    PubMed Central

    Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  9. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge

    NASA Astrophysics Data System (ADS)

    Michard, A.; Montigny, R.; Schlich, R.

    1986-05-01

    Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.

  10. Exploring the Morphology of oceanic ridges with experiments using colloidal dispersions

    NASA Astrophysics Data System (ADS)

    Davaille, Anne; Sibrant, Aurore; Mittelstaedt, Eric; Aubertin, Alban; Auffray, Lionel; Pidoux, Raphael

    2017-04-01

    Mid-ocean ridges exhibit significant changes in their structural, morphological, and volcanic characteristics with changes in lithospheric thickness and/or spreading velocity. However, to separate the respective roles of those two partly correlated effects is difficult with only field data. We therefore designed a series of laboratory experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Applying a fixed spreading rate to this pre- formed, brittle plate results in cracks, faults and axial ridge structures. Lithospheric (skin) thickness at a given extension rate can be varied by changing the surface water layer salinity. Moreover, the mechanical properties of the skin can also be independently controlled by changing the type of colloid. We focus here on cases where the spreading direction is perpendicular to the ridge axis. For a given dispersion and salinity, we observe four regimes as the spreading rate increases: (1) at the slowest spreading rates, the spreading axis is composed of several segments separated by non-transform offsets and has a fault-bounded, deep, U-shaped axial valley. The axis has a large sinuosity, rough topography, and jumps repeatedly. (2) At intermediate spreading rates, the spreading axis shows low sinuosity, overlapping spreading centers (OSC) , a smooth axial morphology, and very few to no jumps. The axial valley is shallow and shows a V-shape morphology. The OSCs have a ratio of length to width of 3 to 1. (3) At faster spreading rates, the axis is continuous and presents an axial high topography. (4) At the fastest spreading rates tested, the spreading axis is again segmented. Each segment is offset by well developed transform faults and the axis has a sinuosity comparable to those of regimes 2 and 3. Rotating and growing

  11. Ridge expansion and immediate placement with piezosurgery and screw expanders in atrophic maxillary sites: two case reports.

    PubMed

    Kelly, Andrew; Flanagan, Dennis

    2013-02-01

    Endosseous dental implants may require bone augmentation before implant placement. Herein is described an approach to edentulous ridge expansion with the use of piezosurgery and immediate placement of implants. This may allow for a shortened treatment time and the elimination of donor-site morbidity. Two cases are reported. This technique uses a piezoelectric device to cut the crestal and proximal facial cortices. Space is then created with motorized osteotomes to widen the split ridge. This technique allows for expansion of narrow, anatomically limiting, atrophic ridges, creating space for immediate implant placement. The facial and lingual cortices provide support with vital osteocytes for osteogenesis. The 2 patients presented had adequate bone height for implant placement but narrow edentulous ridges. In patient 1 at site #11, the ridge crest was 3.12 mm thick and was expanded to accept a 4.3 mm × 13 mm implant. The resulting ridge width was 8.88 mm, which was verified using cone beam computerized tomography (CBCT). In patient 2 at site #8 and site #9, the narrow ridge was expanded using the same technique to accept 2 adjacent 3.5 mm × 14 mm implants. The implants were restored to a functional and esthetic outcome.

  12. Petrogenesis of Near-Ridge Seamounts: AN Investigation of Mantle Source Heterogeneity and Melting Processes

    NASA Astrophysics Data System (ADS)

    Baxter, N. L.; Perfit, M. R.; Lundstrom, C.; Clague, D. A.

    2010-12-01

    Near-ridge (NR) seamounts offer an important opportunity to study lavas that have similar sources to ridge basalts but have been less affected by fractionation and homogenization that takes place at adjacent spreading ridge axes. By studying lavas erupted at these off-axis sites, we have the potential to better understand source heterogeneity and melting and transport processes that can be applied to the ridge system as a whole. One purpose of our study is to investigate the role of dunite conduits in the formation of near-ridge seamount chains. We believe that near-ridge seamounts could form due to focusing of melts in dunite channels located slightly off-axis and that such conduits may be important in the formation and transport of melt both on- and off-axis (Lundstrom et al., 2000). New trace element and isotopic analyses of glasses from Rogue, Hacksaw, and T461 seamounts near the Juan de Fuca Ridge (JdFR), the Lamont Seamounts adjacent to the East Pacific Rise (EPR) ~ 10°N, and the Vance Seamounts next to the JdFR ~45°N provide a better understanding of the petrogenesis of NR seamounts. Our data indicate that lavas from these seamounts have diverse incompatible trace element compositions that range from highly depleted to slightly enriched in comparison to associated ridge basalts. Vance A lavas (the oldest in the Vance chain) have the most enriched signatures and lavas from Rogue seamount on the JdFR plate have the most depleted signatures. Sr-Nd-Pb isotopic ratios indicate that NR seamount lava compositions vary within the chains as well as within individual seamounts, and that there is some mixing between heterogeneous, small-scale mantle sources. Using the program PRIMELT2.XLS (Herzberg and Asimow, 2008), we calculated mantle potential temperatures (Tp) for some of the most primitive basalts erupted at these seamounts. Our data indicate that NR seamount lavas have Tp values that are only slightly higher than that of average ambient mantle. Variations in

  13. Coarse-clast ridge complexes of the Caribbean: A preliminary basis for distinguishing tsunami and storm-wave origins

    USGS Publications Warehouse

    Morton, R.A.; Richmond, B.M.; Jaffe, B.E.; Gelfenbaum, G.

    2008-01-01

    Coastal gravel-ridge complexes deposited on islands in the Caribbean Sea are recorders of past extreme-wave events that could be associated with either tsunamis or hurricanes. The ridge complexes of Bonaire, Jamaica, Puerto Rico (Isla de Mona), and Guadeloupe consist of polymodal clasts ranging in size from sand to coarse boulders that are derived from the adjacent coral reefs or subjacent rock platforms. Ridge-complex morphologies and crest elevations are largely controlled by availability of sediments, clast sizes, and heights of wave runup. The ridge complexes are internally organized, display textural sorting and a broad range of ages including historical events. Some display seaward-dipping beds and ridge-and-swale topography, and some terminate in fans or steep avalanche slopes. Together, the morphologic, sedimentologic, lithostratigraphic, and chronostratigraphic evidence indicates that shore-parallet ridge complexes composed of gravel and sand that are tens of meters wide and several meters thick are primarily storm-constructed features that have accumulated for a few centuries or millennia as a result of multiple high-frequency intense-wave events. They are not entirely the result of one or a few tsunamis as recently reported. Tsunami deposition may account for some of the lateral ridge-complex accretion or boulder fields and isolated blocks that are associated with the ridge complexes. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).

  14. Effect of multilevel lumbar disc arthroplasty on the operative- and adjacent-level kinematics and intradiscal pressures: an in vitro human cadaveric assessment.

    PubMed

    Dmitriev, Anton E; Gill, Norman W; Kuklo, Timothy R; Rosner, Michael K

    2008-01-01

    With lumbar arthroplasty gaining popularity, limited data are available highlighting changes in adjacent-level mechanics after multilevel procedures. Compare operative- and adjacent-segment range of motion (ROM) and intradiscal pressures (IDPs) after two-level arthroplasty versus circumferential arthrodesis. Cadaveric biomechanical study. Ten human cadaveric lumbar spines were used in this investigation. Biomechanical testing was performed according to a hybrid testing protocol using an unconstrained spine simulator under axial rotation (AR), flexion extension (FE), and lateral-bending (LB) loading. Specimens were tested in the following order: 1) Intact, 2) L3-L5 total disc replacement (TDR), 3) L3-L5 anterior interbody cages+pedicle screws. IDP was recorded at proximal and distal adjacent levels and normalized to controls (%intact). Full ROM was monitored at the operative and adjacent levels and reported in degrees. Kinematics assessment revealed L3-L5 ROM reduction after both reconstructions versus intact controls (p < .05). However, global quality of segmental motion distributed over L2-S1 was preserved in the arthroplasty group but was significantly altered after circumferential fixation. Furthermore, adjacent-level ROM was increased for the arthrodesis group under LB at both segments and during AR at L2-L3 relative to controls (p < .05). FE did not reveal any intergroup statistical differences. Nonetheless, after arthrodesis IDPs were increased proximally under all three loading modalities, whereas distally a significant IDP rise was noted during AR and LB (p < .05). No statistical differences in either biomechanical parameter were recorded at the adjacent levels between intact control and TDR groups. Our results indicate no significant adjacent-level biomechanical changes between arthroplasty and control groups. In contrast, significant alterations in ROM and IDP were recorded both proximally (ROM=LB & AR; IDP=AR, FE, LB) and distally (ROM=LB; IDP=AR & LB

  15. Petrology of the axial ridge of the Mariana Trough backarc spreading center

    NASA Astrophysics Data System (ADS)

    Hawkins, J. W.; Lonsdale, P. F.; Macdougall, J. D.; Volpe, A. M.

    1990-10-01

    The axial ridge of the Mariana Trough backarc basin, between 17°40'N and 18°30'N rises as much as 1 km above the floor of a 10-15 km wide rift valley. Physiographic segmentation, with minor ridge offsets and overlaps, coincides with a petrologic segmentation seen in trace element and isotope chemistry. Analyses of 239 glass and 40 aphyric basalt samples, collected with ALVIN and by dredging, show that the axial ridge is formed largely of (olivine) hypersthene-normative tholeiitic basalt. About half of these are enriched in both LIL elements and volatiles, but are depleted in HFS elements like other rocks found throughout much of the Mariana Trough. The LIL enrichments distinguish these rocks from N-MORB even though Nd and Sr isotope ratios indicate that much of the crust formed from a source similar to that for N-MORB. In addition to LIL-enriched basalt there is LIL depleted basalts even more closely resembling N-MORB in major and trace elements as well as Sr, Nd and Pb isotopes. Both basalt varieties have higher Al and lower total Fe than MORB at equivalent Mg level. Mg# ranges from relatively "primitive" (e.g. Mg# 65-70) to more highly fractionated (e.g. Mg# 45-50). Highest parts of the axial ridge are capped by pinnacles with elongated pillows of basaltic andesite (e.g. 52-56%) SiO 2. These are due to extreme fractional crystallization of basalts forming the axial ridge. Active hydrothermal vents with chimneys and mats of opaline silica, barite, sphalerite and lesser amounts of pyrite, chalcopyrite and galena formed near these silicic rocks. The vents are surrounded by distinctive vent animals, polychaete worms, crabs and barnacles. Isotope data indicate that the Mariana Trough crust was derived from a heterogeneous source including mantle resembling the MORB-source and an "arc-source" component. The latter was depleted in HFS elements in previous melting events and later modified by addition of H 2O and LIL elements.

  16. Seismicity Along the Endeavour Segment of the Juan de Fuca Ridge: Automated Event Locations for an Ocean-Bottom Seismometer Network

    NASA Astrophysics Data System (ADS)

    Weekly, R. T.; Wilcock, W. S.; Hooft, E. E.; Toomey, D. R.; McGill, P. R.

    2004-12-01

    From 2003-2006, the W.M. Keck Foundation supported the operation of a network of eight ocean-bottom seismometers (OBSs) that were deployed with a remotely operated vehicle along the central portion of the Endeavour Segment of the Juan de Fuca mid-ocean ridge as part of a multidisciplinary prototype NEPTUNE experiment. Data from 2003-2004 were initially analyzed during a research apprenticeship class at the University of Washington's Friday Harbor Laboratories. Eight student analysts located ~13,000 earthquakes along the Endeavour Segment. Analysis of data from 2004-2005 has to date been limited to locating ~6,000 earthquakes associated with a swarm in February-March 2005 near the northern end of the Endeavour Segment. The remaining data includes several significant swarms and it is anticipated that tens of thousands of earthquakes still need to be located. In order to efficiently obtain a complete catalog of high-quality locations for the 3-year experiment, we are developing an automatic method for earthquake location. We first apply a 5-Hz high-pass filter and identify triggers when the ratio of the root-mean square (RMS) amplitudes in short- and long- term windows exceeds a specified threshold. We search for events that are characterized by triggers within a short time interval on the majority of stations and use the signal spectra to eliminate events that are the result of 20-Hz Fin and Blue whale vocalizations. An autoregressive technique is applied to a short time window centered on the trigger time to pick P-wave times on each station's vertical channel. We locate the earthquake with these picks and either attempt to repick or eliminate arrivals with unacceptable residuals. Preliminary S-wave picks are then made on the horizontal channels by applying a 5-12 Hz bandpass filter, identifying the peak RMS amplitude for a short running window, and making a pick at the time the RMS amplitude rises above 50% of this value. The picks are refined using the

  17. Seismicity Along the Endeavour Segment of the Juan de Fuca Ridge: Automated Event Locations for an Ocean-Bottom Seismometer Network

    NASA Astrophysics Data System (ADS)

    Weekly, R. T.; Wilcock, W. S.; Hooft, E. E.; Toomey, D. R.; McGill, P. R.

    2007-12-01

    From 2003-2006, the W.M. Keck Foundation supported the operation of a network of eight ocean-bottom seismometers (OBSs) that were deployed with a remotely operated vehicle along the central portion of the Endeavour Segment of the Juan de Fuca mid-ocean ridge as part of a multidisciplinary prototype NEPTUNE experiment. Data from 2003-2004 were initially analyzed during a research apprenticeship class at the University of Washington's Friday Harbor Laboratories. Eight student analysts located ~13,000 earthquakes along the Endeavour Segment. Analysis of data from 2004-2005 has to date been limited to locating ~6,000 earthquakes associated with a swarm in February-March 2005 near the northern end of the Endeavour Segment. The remaining data includes several significant swarms and it is anticipated that tens of thousands of earthquakes still need to be located. In order to efficiently obtain a complete catalog of high-quality locations for the 3-year experiment, we are developing an automatic method for earthquake location. We first apply a 5-Hz high-pass filter and identify triggers when the ratio of the root-mean square (RMS) amplitudes in short- and long- term windows exceeds a specified threshold. We search for events that are characterized by triggers within a short time interval on the majority of stations and use the signal spectra to eliminate events that are the result of 20-Hz Fin and Blue whale vocalizations. An autoregressive technique is applied to a short time window centered on the trigger time to pick P-wave times on each station's vertical channel. We locate the earthquake with these picks and either attempt to repick or eliminate arrivals with unacceptable residuals. Preliminary S-wave picks are then made on the horizontal channels by applying a 5-12 Hz bandpass filter, identifying the peak RMS amplitude for a short running window, and making a pick at the time the RMS amplitude rises above 50% of this value. The picks are refined using the

  18. Magmatic tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model

    NASA Astrophysics Data System (ADS)

    Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé

    2000-11-01

    High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies

  19. CHARACTERIZATION REPORT FOR STRONTIUM TITANATE IN SWSA 7 AND ADJACENT PARCELS IN SUPPORT OF THE NATIONAL PRIORITIES LIST SITE BOUNDARY DEFINITION PROGRAM OAK RIDGE, TENNESSEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office requested support from the Oak Ridge Institute for Science and Education (ORISE) contract to delineate the extent of strontium titanate (SrTiO3) contamination in and around Solid Waste Storage Area (SWSA) 7 as part of the Oak Ridge National Priorities List Site boundary definition program. The study area is presented in Fig. 1.1 relative to the Oak Ridge Reservation (ORR). The investigation was executed according to Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) (DOE 2011) to supplement previous investigations noted below and to determine what areas, if any, have been adverselymore » impacted by site operations.« less

  20. New insights on the remarkable longevity of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Carazzo, G.

    2011-12-01

    Observations of the temporal variability of hydrothermal activity over the Juan de Fuca Ridge provide valuable clues for understanding the dynamics of hydrothermal plumes in the deep ocean. Analyses of hydrothermal temperature and light attenuation anomalies show that the structure of these plumes varies on an interannual rather than weekly or monthly time scale. This surprising stability is in complete disagreement with calculations of the residence time for the suspended particles, which suggest a complete particle sedimentation within a few days or weeks. In order to understand this difference, we performed analog experiments simulating particle-laden hydrothermal plumes. These experiments consist in injecting upwards at a fixed rate a hot mixture of fresh water and solid particles in a tank containing stratified salt water. Measurements of light attenuation, temperature and salinity anomalies are conducted during the experiments in order to decipher the causal links between real-time observations and venting conditions. Our results show that depending on the source conditions and the strength of density stratification in the tank, large-scale instabilities may develop due to the differential diffusion of heat and fine particles. Diffusive particle convection enhances the dispersion of fine particles and increases the longevity of the plume. We show that this process is a common phenomenon in natural submarine plumes, which not only increases the longevity of the plumes up to at least 5 years, but also permits dissolution processes to occur providing large amounts of dissolved chemical species far from the point of emission. A new model for particle sedimentation from hydrothermal plumes is presented and tested against natural data collected over the Cleft segment of the Juan de Fuca Ridge between 1987 and 1991. This model is found to be in good agreement with measurements of the rate of change of light attenuation within the chronic plume overlying the north

  1. Ridge: a computer program for calculating ridge regression estimates

    Treesearch

    Donald E. Hilt; Donald W. Seegrist

    1977-01-01

    Least-squares coefficients for multiple-regression models may be unstable when the independent variables are highly correlated. Ridge regression is a biased estimation procedure that produces stable estimates of the coefficients. Ridge regression is discussed, and a computer program for calculating the ridge coefficients is presented.

  2. Using bathymetry and reflective seismic profiles to tests a suspected link between melt flux and cumulative fault heave at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Haughton, G.; Murton, B. J.; Le Bas, T.; Henstock, T.

    2017-12-01

    The interplay between magma supply and spreading rate is believed to play a major role in determining large scale seafloor morphology. Here we use bathymetry to test this relationship in areas with similar spreading rates and differing magma supplies. By using open source bathymetry data we have developed a repeatable, automated method for categorising seafloor cumulative fault heave and then attempt to identify the controlling variables. We measure the total apparent fault heave along axis and off-axis at 29°N and 60°N on the Mid-Atlantic Ridge then compare this to proxies for deformation and magma supply. Two approaches are adopted for identifying faults: one using bathymetry and the other spreading-parallel seismic reflection data. The first re-examines the orthogonally spreading Broken Spur segment (26°N) spreading at 23 mm yr-1 (full rate). The other examines the Reykjanes Ridge (60°N) spreading obliquely at 21 mm yr-1 (full rate), which may be influenced by the Icelandic hotspot. Each have contrasting residual depth and structure, with the former being typical of slow spreading ridges, with marked axial valleys, whereas the latter is more typical of fast spreading ridge morphology, with smooth axial rise. We find that high total heave (indicating high tectonic spreading) on the Broken Spur segment does not correlate with high mantle Bouguer anomalies (indicating thin crust and low melt flux). From this we hypothesise that total heave on the large scale at the Broken Spur segment is not controlled by crustal thickness or melt supply. At the Raykjanes Ridge, V-shaped ridges have thicker crust (measured seismically) which converge south of Iceland. These are thought to reflect transient (every 4-6 Myrs) pulses of hot mantle radiating away from the Iceland plume. We find ridge-symmetrical variation in fault heave but with a lower frequency (6-8 Myrs) and longer wavelength (3-7 Myrs) than the V-shaped ridges. Our analysis shows that plume pulses do not

  3. Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12-14°S)

    NASA Astrophysics Data System (ADS)

    Li, Bing; Shi, Xuefa; Wang, Jixin; Yan, Quanshu; Liu, Chenguang; DY125-21 (Leg 3) Science Party; DY125-22 (Legs 2-5) Science Party; DY125-26 (Leg 3) Science Party

    2018-05-01

    Systematic hydrothermal exploration and multi-beam bathymetry mapping have been conducted along a 220-km-long section of the Southern Mid-Atlantic Ridge (SMAR) from 12°S (Bode Verde Fracture Zone) to 14°S (Cardno Fracture Zone), and previously reported deposits (Tao et al., 2011) are now being thoroughly investigated. Here, we present the characterization of three possible hydrothermal fields, a complete bathymetry data set of the ridge segment, gravity data, and the petrologic characteristics of collected rock samples. The magmatism characteristics, evolution of the ridge segment, and the local geological controls of the possible hydrothermal fields are then discussed. The studied segment can be divided into two segments by a Non-Transform Discontinuity (NTD). Our morphotectonic analysis shows significant along-axis heterogeneity in the surveyed segments: three distinctive cross-axis grabens were identified in the northern segment, and two were identified in the southern segment. Moreover, based on the gravity data (a relatively low spherical Bouguer anomaly) and petrologic data (low Mg# values and relatively low FeO and relatively high Al2O3 and CaO contents compared to nearby seafloor samples), a volcanic feature, the ZouYu seamount, on this segment is considered to be associated with strong magmatic activity, and the magmatic activity of the inside corner at the southern end of the segment has increased and decreased. The three possible hydrothermal fields occur in different local geological settings: a shallow magmatic seamount (ZouYu), an NTD (TaiJi), and an inside-corner high (CaiFan). These potential hydrothermal fields are significantly different from other fields in similar tectonic settings in terms of local geologic controls and products. The ZouYu field is primarily related to a newly formed cone, resulting in the production of sulfides, and differs from other fields on shallow magmatic seamounts. The TaiJi field is largely controlled by the tectonic

  4. A possible transoceanic tsunami directed toward the U.S. west coast from the Semidi segment, Alaska convergent margin

    USGS Publications Warehouse

    von Huene, Roland E.; Miller, John J.; Dartnell, Peter

    2016-01-01

    The Semidi segment of the Alaska convergent margin appears capable of generating a giant tsunami like the one produced along the nearby Unimak segment in 1946. Reprocessed legacy seismic reflection data and a compilation of multibeam bathymetric surveys reveal structures that could generate such a tsunami. A 200 km long ridge or escarpment with crests >1 km high is the surface expression of an active out-of-sequence fault zone, recently referred to as a splay fault. Such faults are potentially tsunamigenic. This type of fault zone separates the relatively rigid rock of the margin framework from the anelastic accreted sediment prism. Seafloor relief of the ridge exceeds that of similar age accretionary prism ridges indicating preferential slip along the splay fault zone. The greater slip may derive from Quaternary subduction of the Patton Murray hot spot ridge that extends 200 km toward the east across the north Pacific. Estimates of tsunami repeat times from paleotsunami studies indicate that the Semidi segment could be near the end of its current inter-seismic cycle. GPS records from Chirikof Island at the shelf edge indicate 90% locking of plate interface faults. An earthquake in the shallow Semidi subduction zone could generate a tsunami that will inundate the US west coast more than the 1946 and 1964 earthquakes because the Semidi continental slope azimuth directs a tsunami southeastward.

  5. Crustal structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a hotspot?

    NASA Astrophysics Data System (ADS)

    Jokat, Wilfried; Hagen, Claudia

    2017-10-01

    The southern South Atlantic Ocean contains several features believed to document the traces of hotspot volcanism during the early formation of the ocean basin, namely the Agulhas Ridge and the Cape Rise seamounts located in the southeast Atlantic between 36°S and 50°S. The Agulhas Ridge parallels the Agulhas-Falkland Fracture Zone, one of the major transform zones of the world. The morphology of the ridge changes dramatically from two parallel segments in the southwest, to the broad plateau-like Agulhas Ridge in the northeast. Because the crustal fabric of the ridge is unknown relating its evolution to hotspots in the southeast Atlantic is an open question. During the RV Polarstern cruise ANT-XXIII-5 seismic reflection and refraction data were collected along a 370 km long profile with 8 Ocean Bottom Stations to investigate its crustal fabric. The profile extends in NNE direction from the Agulhas Basin, 60 km south of the Agulhas Ridge, and continues into the Cape Basin crossing the southernmost of the Cape Rise seamounts. In the Cape Basin we found a crustal thickness of 5.5-7.5 km, and a velocity distribution typical for oceanic crust. The Cape Rise seamounts, however, show a higher velocity in comparison to the surrounding oceanic crust and the Agulhas Ridge. Underplated material is evident below the southernmost of the Cape Rise seamounts. It also has a 5-8% higher density compared to the Agulhas Plateau. The seismic velocities of the Agulhas Ridge are lower, the crustal thickness is approximately 14 km, and age dating of dredge samples from its top provides clear evidence of rejuvenated volcanism at around 26 Ma. Seismic data indicate that although the Cape Rise seamounts formed above a mantle thermal anomaly it had a limited areal extent, whereas the hotspot material that formed the Agulhas Ridge likely erupted along a fracture zone.

  6. Along-strike supply of volcanic rifted margins: Implications for plume-influenced rifting and sudden along-strike transitions between volcanic and non-volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Phipps Morgan, J.

    2006-12-01

    The existence of sudden along-strike transitions between volcanic and non-volcanic rifted margins is an important constraint for conceptual models of rifting and continental breakup. We think there is a promising indirect approach to infer the maximum width of the region of upwelling that exists beneath a rifted margin during the transition from rifting to seafloor-spreading. We infer this width of ~30km from the minimum length of the ridge-offsets that mark the limits of the `region of influence' of on-ridge plumes on the axial relief, axial morphology, and crustal thickness along the ridge and at the terminations of fossil volcanic rifted margins. We adopt Vogt's [1972] hypothesis for along-ridge asthenospheric flow in a narrow vertical slot beneath the axis of plume-influenced `macro-segments' and volcanic rifted margins. We find that: (1) There is a threshold distance to the lateral offsets that bound plume-influenced macrosegments; all such `barrier offsets' are greater than ~30km, while smaller offsets do not appear to be a barrier to along-axis flow. This pattern is seen in the often abrupt transitions between volcanic and non-volcanic rifted margins; these transitions coincide with >30km ridge offsets that mark the boundary between the smooth seafloor morphology and thick crust of a plume- influenced volcanic margin and a neighboring non-volcanic margin, as recorded in 180Ma rifting of the early N. Atlantic, the 42Ma rifting of the Kerguelen-Broken Ridge, and the 66Ma Seychelles-Indian rifting in the Indian Ocean. (2) A similar pattern is seen in the often abrupt transitions between `normal' and plume-influenced mid- ocean ridge segments, which is discussed in a companion presentation by Phipps Morgan and Ranero (this meeting). (3) The coexistance of adjacent volcanic and non-volcanic rifted margin segments is readily explained in this conceptual framework. If the volcanic margin macrosegment is plume-fed by hot asthenosphere along an axial ridge slot

  7. Reconstructing paleo-discharge from geometries of fluvial sinuous ridges on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Hayden, A.; Lamb, M. P.; Mohrig, D. C.; Williams, R. M. E.; Myrow, P.; Ewing, R. C.; Cardenas, B. T.; Findlay, C. P., III

    2017-12-01

    Sinuous, branching networks of topographic ridges resembling river networks are common across Mars, and show promise for quantifying ancient martian surface hydrology. There are two leading formation mechanisms for ridges with a fluvial origin. Inverted channels are ridges that represent casts (e.g., due to lava fill) of relict river channel topography, whereas exhumed channel deposits are eroded remnants of a more extensive fluvial deposit, such as a channel belt. The inverted channel model is often assumed on Mars; however, we currently lack the ability to distinguish these ridge formation mechanisms, motivating the need for Earth-analog study. To address this issue, we studied the extensive networks of sinuous ridges in the Ebro basin of northeast Spain. The Ebro ridges stand 3-15 meters above the surrounding plains and are capped by a cliff-forming sandstone unit 3-10 meters thick and 20-50 meters in breadth. The caprock sandstone bodies contain bar-scale cross stratification, point-bar deposits, levee deposits, and lenses of mudstone, indicating that these are channel-belt deposits, rather than casts of channels formed from lateral channel migration, avulsion and reoccupation. In plan view, ridges form segments branching outward to the north resembling a distributary network; however, crosscutting relationships indicate that ridges cross at different stratigraphic levels. Thus, the apparent network in planview reflects non-uniform exhumation of channel-belt deposits from multiple stratigraphic positions, rather than an inverted coeval river network. As compared to the inverted channel model, exhumed fluvial deposits indicate persistent fluvial activity over geologic timescales, indicating the potential for long-lived surface water on ancient Mars.

  8. Seismotectonic segmentation along the Chilean megathrust (Invited)

    NASA Astrophysics Data System (ADS)

    Melnick, D.; Moreno, M.

    2010-12-01

    This study focuses on understanding seismotectonic segmentation of megathrusts (MT). Recent research suggests elements associated to MT segmentation include: oceanic features, such as seamounts, seismic and aseismic ridges, and fracture zones; thickness and nature of trench sediments; and upper-plate heterogeneities as changes in density, lithology, and presence of splay faults or microplates, features usually manifested in coastline morphology. The 3500-km-long Chilean MT includes all these elements with various amplitudes under fairly constant kinematics and strike. Along the Nazca-South America boundary, the dense GPS network and knowledge of MT geometry allows inverting for the degree of interplate coupling or locking rate. Here we compare locking, historical MT ruptures, and long-term structure. Along-strike changes in locking rate occur at wavelengths of ~100-500 km, and locally correlate with historical ruptures as well as with lower and/or upper plate features, but without a clear systematic pattern. The transition between the 1960 M9.5 and 2010 M8.8 earthquake segments at Arauco (38.5S) has 100 km overlap deduced from land-level changes. Coherent deformation suggest this boundary has been stationary over 4 Myr, and is associated to margin-parallel collision of a forearc microplate along a Paleozoic shear zone. Seismically-active reverse splay faults bound the Peninsula and may absorb coseismic MT slip and stall rupture propagation. To the north, rupture of the 2010 M8.8 event stopped before the prominent J.Fernandez Ridge and its boundary may be associated to the Pichilemu fault, a steep oblique structure that generated a M6.9 aftershock. The change from accretionary to erosive character across this Ridge, from variable thickness of trench sediments, is manifested in narrowing of the coupling zone northwards and a small local decrease in locking rate. This local decrease is coincident with the Maipo orocline axis and a sharp bend in the orogen, which

  9. Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Costa, Kassandra M.; McManus, Jerry F.; Middleton, Jennifer L.; Langmuir, Charles H.; Huybers, Peter J.; Winckler, Gisela; Mukhopadhyay, Sujoy

    2017-12-01

    Hydrothermal systems play an important role in modern marine chemistry, but little is known about how they may have varied on 100,000 year timescales. Here we present high-resolution records of non-lithogenic metal fluxes within sediment cores covering the last 500,000 years of hydrothermal deposition on the flanks of the Juan de Fuca Ridge. Six adjacent, gridded cores were analyzed by x-ray fluorescence for Fe, Mn, and Cu concentrations, corrected for lithogenic inputs with Ti, and normalized to excess initial 230Th to generate non-lithogenic metal flux records that provide the longest orbitally resolved reconstructions of hydrothermal activity currently available. Fe fluxes vary with global sea level over the last two glacial cycles, suggesting higher hydrothermal deposition during interglacial periods. The observed negative relationship between Fe and Mn indicates variable sediment redox conditions and diagenetic remobilization of sedimentary Mn over time. Thus, Mn fluxes may not be a reliable indicator for hydrothermal activity in the Juan de Fuca Ridge sediment cores. Cu fluxes show substantial high-frequency variability that may be linked to changes in vent temperature related to increased magmatic production during glacial periods. Deglacial hydrothermal peaks on the Juan de Fuca Ridge are consistent with previously published records from the Mid-Atlantic Ridge and the East Pacific Rise. Moreover, on the Juan de Fuca Ridge, the deglacial peaks in hydrothermal activity are followed by relatively high hydrothermal fluxes throughout the ensuing interglacial periods relative to the previous glacial period.

  10. The geology of the Oceanographer Transform: The ridge-transform intersection

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Fox, P. J.; Sloan, H.; Crane, K. T.; Kidd, W. S. F.; Bonatti, E.; Stroup, J. B.; Fornari, D. J.; Elthon, D.; Hamlyn, P.; Casey, J. F.; Gallo, D. G.; Needham, D.; Sartori, R.

    1984-06-01

    Seven dives in the submersible ALVIN and four deep-towed (ANGUS) camera lowerings have been made at the eastern ridge-transform intersection of the Oceanographer Transform with the axis of the Mid-Atlantic Ridge. These data constrain our understanding of the processes that create and shape the distinctive morphology that is characteristic of slowly-slipping ridge-transform-ridge plate boundaries. Although the geological relationships observed in the rift valley floor in the study area are similar to those reported for the FAMOUS area, we observe a distinct change in the character of the rift valley floor with increasing proximity to the transform. Over a distance of approximately ten kilometers the volcanic constructional terrain becomes increasingly more disrupted by faulting and degraded by mass wasting. Moreover, proximal to the transform boundary, faults with orientations oblique to the trend of the rift valley are recognized. The morphology of the eastern rift valley wall is characterized by inward-facing scarps that are ridge-axis parallel, but the western rift valley wall, adjacent to the active transform zone, is characterized by a complex fault pattern defined by faults exhibiting a wide range of orientations. However, even for transform parallel faults no evidence for strike-slip displacement is observed throughout the study area and evidence for normal (dip-slip) displacement is ubiquitous. Basalts, semi-consolidated sediments (chalks, debris slide deposits) and serpentinized ultramafic rocks are recovered from localities within or proximal to the rift valley. The axis of accretion-principal transform displacement zone intersection is not clearly established, but appears to be located along the E-W trending, southern flank of the deep nodal basin that defines the intersection of the transform valley with the rift floor.

  11. Unfaulting the Sardarapat Ridge, Southwest Armenia

    NASA Astrophysics Data System (ADS)

    Wetmore, P.; Connor, C.; Connor, L. J.; Savov, I. P.; Karakhanyan, A.

    2012-12-01

    Armenia is located near the core of contractional deformation associated with the collision between the Arabian and Eurasian tectonic plates. Several studies of this region, including portions of adjacent Georgia, Iran, and Turkey, have indicated that 1-2 mm/yr of intra-plate, north-south shortening is primarily accommodated by a network of E-W trending thrust faults, and NW-trending (dextral) and NE-trending (sinistral) strike-slip faults. One proposed fault in this network, the Sardarapat Fault (SF), was investigated as part of a regional seismic hazard assessment ahead of the installation of a replacement reactor at the Armenian Nuclear Power Plant (ANPP). The SF is primarily defined by the Sardarapat Ridge (SR), which is a WNW-trending, 40-70 m high topographic feature located just north of the Arax River and the Turkey-Armenia border. The stratigraphy comprising this ridge includes alluvium overlying several meters of lacustrine deposits above a crystal-rich basaltic lava flow that yields an Ar-Ar age of 0.9 +/- 0.02 Ma. The alluvial sediments on the ridge contain early Bronze age (3832-3470 BP) artifacts at an elevation 25 m above those of the surrounding alluvial plane. This has lead to the suggestion that the SR is bound to the south (the steepest side) by the SF, which is uplifting the ridge at a rate of 0.7 mm/yr. However, despite the prominence and trend of the ridge there are no unequivocal observations, such as scarps or exposures of fault rocks, to support the existence of the SF. The goal of the investigation of the SR area was to test various models for the formation of the ridge including faulting and combined volcanic and erosional processes. We therefore collected gravimetric, magnetic, magneto-tellurics (MT), and transient electromagnetic (TEM) data across an area of ~400 km2, and used correlations of stratigraphic data from coreholes drilled proximal to the study area to define the geometry of the contact between the basement and basin fill to

  12. Evolution of the Mothra Hydrothermal Field, Endeavour Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Kelley, D. S.; Delaney, J.

    2005-12-01

    The Mothra Hydrothermal Field (MHF) is a 600 m long, high-temperature hydrothermal field. It is located 2.7 km south of the Main Endeavour Field at the southern end of the central Endeavour Segment. Mothra is the most areally extensive field along the Endeavour Segment, composed of six active sulfide clusters that are 40-200 m apart. Each cluster contains rare black smokers (venting up to 319°C), numerous diffusely venting chimneys, and abundant extinct chimneys and sulfide talus. From north to south, these clusters include Cauldron, Twin Peaks, Faulty Towers, Crab Basin, Cuchalainn, and Stonehenge. As part of the Endeavour Integrated Study Site (ISS), the MHF is a site of intensive interdisciplinary studies focused on linkages among geology, geochemistry, fluid chemistry, seismology, and microbiology. Axial valley geology at MHF is structurally complex, consisting of lightly fissured flows that abut the walls and surround a core of extensively fissured, collapsed terrain. Fissure abundance and distribution indicates that tectonism has been the dominant process controlling growth of the axial graben. Past magmatic activity is shown by the 200 m long chain of collapse basins between Crab Basin and Stonehenge, which may have held at least ~7500 m3 of lava. Assuming a flow thickness of 0.5 m, this amount of lava could cover over half the valley floor during a single volcanic event. At a local scale, MHF clusters vary in size, activity, and underlying geology. They range in size from 400-1600 m2 and consist of isolated chimneys and/or coalesced cockscomb arrays atop ramps of sulfide talus. In the northern part of the field, Cauldron, Twin Peaks, Faulty Towers, and Crab Basin are located near the western valley wall, bounded by basalt talus and a combination of collapsed sheet flows, intermixed lobate and sulfide, disrupted terrain, and isolated pillow ridges. The southern clusters, Cuchalainn and Stonehenge, are associated with collapse basins in the central valley

  13. Tectonics at the Southeast Indian Ridge 79 to 99 E. Results from the GEISEIR cruises

    NASA Astrophysics Data System (ADS)

    Briais, A.; Hemond, C.; Maia, M. A.; Hanan, B. B.; Graham, D. W.; Geiseir Scientific Team; Geiseir2 Scientific Team

    2011-12-01

    During the GEISEIR (Géochimie Isotopique de la SEIR) and GEISEIR2 cruises on N/O Marion Dufresne in 2009 and 2010, we collected geophysical data, high-density wax-core or dredge basalt samples, and water column profiles along the Southeast Indian Ridge (SEIR) between 79E and 99E. This section of the intermediate-spreading SEIR is located between the St Paul-Amsterdam hotspot plateau and the Australia-Antarctic Discordance. We completed the multibeam bathymetry mapping of the axis and transform faults of the 79-88E and the 96-99E sections, and mapped the axial zone and discontinuities of the 88-96E section up to 800 kyr. These ridge sections were sampled at 20 km, 5 km and 10 km spacing, respectively. This presentation focusses on the results of a structural and geophysical analysis of the axial domain and the off-axis area up to 800 kyr. We merged the bathymetry data collected during the GEISEIR and GEISEIR2 cruises with those of the previous (Westward 9 and 10 and Boomerang 6) cruises. We also compiled the shipborne gravity data and estimated mantle Bouguer anomalies (MBA). The ridge displays large variations in axial depth and morphology, from a rifted axial high to an axial valley, at the scale of ridge segments. Ridge offsets vary in morphology from overlapping-spreading centers, to propagating rifts, to transform faults. Shalllow segments have pronounced axial MBA lows, probably resulting from a thicker ocean crust, and the presence of hotter mantle beneath the ridge axis. Water-column profiling at each wax-core sampling site reveals numerous moderate to strong signals of hydrothermal activity. The distribution of the hydrothermal vent signals does not always coincide with the magmatic robustness of the ridge axis, suggesting that tectonic activity also controls the vent setting. The recent evolution of the ridge discontinuities is marked by southeastward propagators at 92E and 95E, and by the eastward migration of the 96E transform fault. These areas

  14. Sucrose-Metabolizing Enzymes in Transport Tissues and Adjacent Sink Structures in Developing Citrus Fruit 1

    PubMed Central

    Lowell, Cadance A.; Tomlinson, Patricia T.; Koch, Karen E.

    1989-01-01

    Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import

  15. Biomechanics of Artificial Disc Replacements Adjacent to a 2-Level Fusion in 4-Level Hybrid Constructs: An In Vitro Investigation.

    PubMed

    Liao, Zhenhua; Fogel, Guy R; Wei, Na; Gu, Hongsheng; Liu, Weiqiang

    2015-12-23

    BACKGROUND The ideal procedure for multilevel cervical degenerative disc diseases remains controversial. Recent studies on hybrid surgery combining anterior cervical discectomy and fusion (ACDF) and artificial cervical disc replacement (ACDR) for 2-level and 3-level constructs have been reported in the literature. The purpose of this study was to estimate the biomechanics of 3 kinds of 4-level hybrid constructs, which are more likely to be used clinically compared to 4-level arthrodesis. MATERIAL AND METHODS Eighteen human cadaveric spines (C2-T1) were evaluated in different testing conditions: intact, with 3 kinds of 4-level hybrid constructs (hybrid C3-4 ACDR+C4-6 ACDF+C6-7ACDR; hybrid C3-5ACDF+C5-6ACDR+C6-7ACDR; hybrid C3-4ACDR+C4-5ACDR+C5-7ACDF); and 4-level fusion. RESULTS Four-level fusion resulted in significant decrease in the C3-C7 ROM compared with the intact spine. The 3 different 4-level hybrid treatment groups caused only slight change at the instrumented levels compared to intact except for flexion. At the adjacent levels, 4-level fusion resulted in significant increase of contribution of both upper and lower adjacent levels. However, for the 3 hybrid constructs, significant changes of motion increase far lower than 4P at adjacent levels were only noted in partial loading conditions. No destabilizing effect or hypermobility were observed in any 4-level hybrid construct. CONCLUSIONS Four-level fusion significantly eliminated motion within the construct and increased motion at the adjacent segments. For all 3 different 4-level hybrid constructs, ACDR normalized motion of the index segment and adjacent segments with no significant hypermobility. Compared with the 4-level ACDF condition, the artificial discs in 4-level hybrid constructs had biomechanical advantages compared to fusion in normalizing adjacent level motion.

  16. Near-ridge seamount chains in the northeastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Reynolds, Jennifer R.; Davis, Alicé S.

    2000-07-01

    High-resolution bathymetry and side-scan data of the Vance, President Jackson, and Taney near-ridge seamount chains in the northeast Pacific were collected with a hull-mounted 30-kHz sonar. The central volcanoes in each chain consist of truncated cone-shaped volcanoes with steep sides and nearly flat tops. Several areas are characterized by frequent small eruptions that result in disorganized volcanic regions with numerous small cones and volcanic ridges but no organized truncated conical structure. Several volcanoes are crosscut by ridge-parallel faults, showing that they formed within 30-40 km of the ridge axis where ridge-parallel faulting is still active. Magmas that built the volcanoes were probably transported through the crust along active ridge-parallel faults. The volcanoes range in volume from 11 to 187 km3, and most have one or more multiple craters and calderas that modify their summits and flanks. The craters (<1 km diameter) and calderas (>1 km diameter) range from small pit craters to calderas as large as 6.5×8.5 km, although most are 2-4 km across. Crosscutting relationships commonly show a sequence of calderas stepping toward the ridge axis. The calderas overlie crustal magma chambers at least as large as those that underlie Kilauea and Mauna Loa Volcanoes in Hawaii, perhaps 4-5 km in diameter and ˜1-3 km below the surface. The nearly flat tops of many of the volcanoes have remnants of centrally located summit shields, suggesting that their flat tops did not form from eruptions along circumferential ring faults but instead form by filling and overflowing of earlier large calderas. The lavas retain their primitive character by residing in such chambers for only short time periods prior to eruption. Stored magmas are withdrawn, probably as dikes intruded into the adjacent ocean crust along active ridge-parallel faults, triggering caldera collapse, or solidified before the next batch of magma is intruded into the volcano, probably 1000-10,000 years

  17. The Effect of Arc Proximity on Hydrothermal Activity Along Spreading Centers: New Evidence From the Mariana Back Arc (12.7°N-18.3°N)

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Walker, Sharon L.; Resing, Joseph A.; Chadwick, William W.; Merle, Susan G.; Anderson, Melissa O.; Butterfield, David A.; Buck, Nathan J.; Michael, Susanna

    2017-11-01

    Back-arc spreading centers (BASCs) form a distinct class of ocean spreading ridges distinguished by steep along-axis gradients in spreading rate and by additional magma supplied through subduction. These characteristics can affect the population and distribution of hydrothermal activity on BASCs compared to mid-ocean ridges (MORs). To investigate this hypothesis, we comprehensively explored 600 km of the southern half of the Mariana BASC. We used water column mapping and seafloor imaging to identify 19 active vent sites, an increase of 13 over the current listing in the InterRidge Database (IRDB), on the bathymetric highs of 7 of the 11 segments. We identified both high and low (i.e., characterized by a weak or negligible particle plume) temperature discharge occurring on segment types spanning dominantly magmatic to dominantly tectonic. Active sites are concentrated on the two southernmost segments, where distance to the adjacent arc is shortest (<40 km), spreading rate is highest (>48 mm/yr), and tectonic extension is pervasive. Re-examination of hydrothermal data from other BASCs supports the generalization that hydrothermal site density increases on segments <90 km from an adjacent arc. Although exploration quality varies greatly among BASCs, present data suggest that, for a given spreading rate, the mean spatial density of hydrothermal activity varies little between MORs and BASCs. The present global database, however, may be misleading. On both BASCs and MORs, the spatial density of hydrothermal sites mapped by high-quality water-column surveys is 2-7 times greater than predicted by the existing IRDB trend of site density versus spreading rate.

  18. Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.

    2013-12-01

    Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine

  19. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    NASA Astrophysics Data System (ADS)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at

  20. Migrating Toward Fully 4-D Geodynamical Models of Asthenospheric Circulation and Melt Production at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    van Dam, L.; Kincaid, C. R.; Pockalny, R. A.; Sylvia, R. T.; Hall, P. S.

    2017-12-01

    Lateral migration of mid-ocean ridge spreading centers is a well-documented phenomenon leading to asymmetric melt production and the surficial expressions thereof. This form of plate motion has been difficult to incorporate into both numerical and analogue geodynamical models, and consequently, current estimates of time-dependent flow, material transport, and melting in the mantle beneath ridges are lacking. To address this, we have designed and built an innovative research apparatus that allows for precise and repeatable simulations of mid-ocean ridge spreading and migration. Three pairs of counter-rotating belts with adjustable lateral orientations are scaled to simulate spreading at, and flow beneath, three 600km wide ridge segments with up to 300km transform offsets. This apparatus is attached to a drive system that allows us to test a full range of axis-parallel to axis-normal migration directions, and is suspended above a reservoir of viscous glucose syrup, a scaled analogue for the upper mantle, and neutrally buoyant tracers. We image plate-driven flow in the syrup with high-resolution digital cameras and use particle image velocimetry methods to obtain information about transport pathlines and flow-induced anisotropy. Suites of experiments are run with and without ridge migration to determine the overall significance of migration on spatial and temporal characteristics of shallow mantle flow. Our experiments cover an expansive parameter space by including various spreading rates, migration speeds and directions, degrees of spreading asymmetry, transform-offset lengths, and upper mantle viscosity conditions. Preliminary results highlight the importance of modeling migratory plate forces. Mantle material exhibits a significant degree of lateral transport, particularly between ridge segments and towards the melt triangle. Magma supply to the melting region is highly complex; parcels of material do not necessarily move along fixed streamlines, rather, they can

  1. Three-Dimensional Seismic Structure of the Mid-Atlantic Ridge: An Investigation of Tectonic, Magmatic, and Hydrothermal Processes in the Rainbow Area

    NASA Astrophysics Data System (ADS)

    Dunn, Robert A.; Arai, Ryuta; Eason, Deborah E.; Canales, J. Pablo; Sohn, Robert A.

    2017-12-01

    To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.

  2. Iterative cross section sequence graph for handwritten character segmentation.

    PubMed

    Dawoud, Amer

    2007-08-01

    The iterative cross section sequence graph (ICSSG) is an algorithm for handwritten character segmentation. It expands the cross section sequence graph concept by applying it iteratively at equally spaced thresholds. The iterative thresholding reduces the effect of information loss associated with image binarization. ICSSG preserves the characters' skeletal structure by preventing the interference of pixels that causes flooding of adjacent characters' segments. Improving the structural quality of the characters' skeleton facilitates better feature extraction and classification, which improves the overall performance of optical character recognition (OCR). Experimental results showed significant improvements in OCR recognition rates compared to other well-established segmentation algorithms.

  3. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, James A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.

  4. Geophysical Investigation of Upper Mantle Anomalies of the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Choi, H.; Kim, S. S.; Lin, J.

    2017-12-01

    Australian-Antarctic Ridge (AAR) is situated between the Pacific-Antarctic Ridge (PAR) and Southeast Indian Ridge (SEIR), extending eastward from the Australian-Antarctic Discordance (AAD). Much of the AAR has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. Since 2011, four multidisciplinary expeditions initiated by the Korea Polar Research Institute (KOPRI) have surveyed the little-explored eastern ends of the AAR and investigated the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Recent isotope studies using the new basalt samples from the AAR have led to the new hypothesis of the Southern Ocean mantle domain (SOM), which may have originated from the super-plume activity associated with the Gondwana break-up. In this study, we characterize the geophysics of the Southern Ocean mantle using the newly acquired shipboard bathymetry and available geophysical datasets. First, we computed residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography along the AAR in order to obtain a geological proxy for regional variations in magma supply. The results of these analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the central ridge segments of the AAR. Interestingly, the along-axis depths of the entire AAR are significantly shallower than the neighboring ridge systems and the global ridges of intermediate spreading rates. Such shallow depths are also correlated with regional negative geoid anomalies. Furthermore, recent mantle tomography models consistently showed that the upper mantle (< 250 km) below the AAR has low S-wave velocities, suggesting that it may be hotter than the nearby ridges. Such regional-scale anomalies of the

  5. Recent off-axis volcanism in the eastern Gulf of Aden: Implications for plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Leroy, Sylvie; d'Acremont, Elia; Tiberi, Christel; Basuyau, Clémence; Autin, Julia; Lucazeau, Francis; Sloan, Heather

    2010-04-01

    Evidence of anomalous volcanism is readily observed in the Gulf of Aden, although, much of this oceanic basin remains as yet unmapped. In this paper, we investigate the possible connection of the Afar hotspot with a major off-axis volcanic structure and its interpretation as a consequence of a the anomalous presence of melt by integrating several data sets, both published and unpublished, from the Encens-Sheba cruise, the Aden New Century (ANC) cruise and several other onshore and marine surveys. These include bathymetric, gravity, magnetic, magneto-telluric data, and rock samples. Based upon these observations, interpretations were made of seafloor morphology, gravity and magnetic models, seafloor age, geochemical analyses and tectonic setting. We discuss the possible existence of a regional melting anomaly in the Gulf of Aden area and of the probability of its connection to the Afar plume. Several models that might explain the anomalous volcanism are taken into account, such as a local melting anomaly unrelated to the Afar plume, an anomalously large volume of melt associated with seafloor spreading, and interaction of the ridge with the Afar plume. A local melting anomaly and atypical seafloor spreading prove inconsistent with our observations. Two previously proposed models of plume-ridge interactions are examined: the diffuse plume dispersion called pancaked flow and channelized along-axis flow. We conclude that the configuration and structure of this young ocean basin may have the effect of channeling material away from the Afar plume along the Aden and Sheba Ridges to produce the off-axis volcanism observed on the ridge flanks. This interpretation implies that the influence of the Afar hotspot may extend much farther eastwards into the Gulf of Aden than previously believed. The segmentation of the Gulf of Aden and the configuration of the Aden-Sheba system may provide a potential opportunity to study channeled flow of solid plume mantle from the plume along

  6. Along-axis hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: Insights from numerical models of the Lucky Strike vent field (MAR)

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Cannat, Mathilde; Escartin, Javier; Crawford, Wayne C.

    2014-07-01

    processes and efficiency of hydrothermal heat extraction along the axis of mid-ocean ridges are controlled by lithospheric thermal and permeability structures. Hydrothermal circulation models based on the structure of fast and intermediate spreading ridges predict that hydrothermal cell organization and vent site distribution are primarily controlled by the thermodynamics of high-temperature mid-ocean ridge hydrothermal fluids. Using recent constraints on shallow structure at the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge, we present a physical model of hydrothermal cooling that incorporates the specificities of a magma-rich slow spreading environment. Using three-dimensional numerical models, we show that, in contrast to the aforementioned models, the subsurface flow at Lucky Strike is primarily controlled by across-axis permeability variations. Models with across-axis permeability gradients produce along-axis oriented hydrothermal cells and an alternating pattern of heat extraction highs and lows that match the distribution of microseismic clusters recorded at the Lucky Strike axial volcano. The flow is also influenced by temperature gradients at the base of the permeable hydrothermal domain. Although our models are based on the structure and seismicity of the Lucky Strike segment, across-axis permeability gradients are also likely to occur at faster spreading ridges and these results may also have important implications for the cooling of young crust at fast and intermediate spreading centers.

  7. Image segmentation using joint spatial-intensity-shape features: application to CT lung nodule segmentation

    NASA Astrophysics Data System (ADS)

    Ye, Xujiong; Siddique, Musib; Douiri, Abdel; Beddoe, Gareth; Slabaugh, Greg

    2009-02-01

    Automatic segmentation of medical images is a challenging problem due to the complexity and variability of human anatomy, poor contrast of the object being segmented, and noise resulting from the image acquisition process. This paper presents a novel feature-guided method for the segmentation of 3D medical lesions. The proposed algorithm combines 1) a volumetric shape feature (shape index) based on high-order partial derivatives; 2) mean shift clustering in a joint spatial-intensity-shape (JSIS) feature space; and 3) a modified expectation-maximization (MEM) algorithm on the mean shift mode map to merge the neighboring regions (modes). In such a scenario, the volumetric shape feature is integrated into the process of the segmentation algorithm. The joint spatial-intensity-shape features provide rich information for the segmentation of the anatomic structures or lesions (tumors). The proposed method has been evaluated on a clinical dataset of thoracic CT scans that contains 68 nodules. A volume overlap ratio between each segmented nodule and the ground truth annotation is calculated. Using the proposed method, the mean overlap ratio over all the nodules is 0.80. On visual inspection and using a quantitative evaluation, the experimental results demonstrate the potential of the proposed method. It can properly segment a variety of nodules including juxta-vascular and juxta-pleural nodules, which are challenging for conventional methods due to the high similarity of intensities between the nodules and their adjacent tissues. This approach could also be applied to lesion segmentation in other anatomies, such as polyps in the colon.

  8. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean

    NASA Astrophysics Data System (ADS)

    Fan, Jian-Jun; Li, Cai; Sun, Zhen-Ming; Xu, Wei; Wang, Ming; Xie, Chao-Ming

    2018-04-01

    New zircon U-Pb ages, major- and trace-element data, and Hf isotopic compositions are presented for bimodal volcanic rocks of the Zhaga Formation (ZF) in the western-middle segment of the Bangong-Nujiang suture zone (BNSZ), northern Tibet. The genesis of these rocks is described, and implications for late-stage evolution of the Bangong-Nujiang Tethyan Ocean (BNTO) are considered. Detailed studies show that the ZF bimodal rocks, which occur as layers within a typical bathyal to abyssal flysch deposit, comprise MORB-type basalt that formed at a mid-ocean ridge, and low-K calc-alkaline A-type rhyolite derived from juvenile crust. The combination of MORB-type basalt, calc-alkaline A-type rhyolite, and bathyal to abyssal flysch deposits in the ZF leads us to propose that they formed as a result of ridge subduction. The A-type ZF rhyolites yield LA-ICP-MS zircon U-Pb ages of 118-112 Ma, indicating formation during the Early Cretaceous. Data from the present study, combined with regional geological data, indicate that the BNTO underwent conversion from ocean opening to ocean closure during the Late Jurassic-Early Cretaceous. The eastern segment of the BNTO closed during this period, while the western and western-middle segments were still at least partially open and active during the Early Cretaceous, accompanied by ridge subduction within the Bangong-Nujiang Tethyan Ocean.

  9. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  10. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately,more » develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.« less

  11. Support for context effects on segmentation and segments depends on the context.

    PubMed

    Heffner, Christopher C; Newman, Rochelle S; Idsardi, William J

    2017-04-01

    Listeners must adapt to differences in speech rate across talkers and situations. Speech rate adaptation effects are strong for adjacent syllables (i.e., proximal syllables). For studies that have assessed adaptation effects on speech rate information more than one syllable removed from a point of ambiguity in speech (i.e., distal syllables), the difference in strength between different types of ambiguity is stark. Studies of word segmentation have shown large shifts in perception as a result of distal rate manipulations, while studies of segmental perception have shown only weak, or even nonexistent, effects. However, no study has standardized methods and materials to study context effects for both types of ambiguity simultaneously. Here, a set of sentences was created that differed as minimally as possible except for whether the sentences were ambiguous to the voicing of a consonant or ambiguous to the location of a word boundary. The sentences were then rate-modified to slow down the distal context speech rate to various extents, dependent on three different definitions of distal context that were adapted from previous experiments, along with a manipulation of proximal context to assess whether proximal effects were comparable across ambiguity types. The results indicate that the definition of distal influenced the extent of distal rate effects strongly for both segments and segmentation. They also establish the presence of distal rate effects on word-final segments for the first time. These results were replicated, with some caveats regarding the perception of individual segments, in an Internet-based sample recruited from Mechanical Turk.

  12. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  13. Reconstruction of a Severely Atrophied Alveolar Ridge by Computer-Aided Gingival Simulation and 3D-Printed Surgical Guide: A Case Report.

    PubMed

    Song, In-Seok; Lee, Mi-Ran; Ryu, Jae-Jun; Lee, Ui-Lyong

    Dental implants positioned in severely atrophied anterior maxillae require esthetic or functional compromises. This case report describes the rehabilitation of a severely atrophied alveolar ridge with a three-dimensional (3D) computer-aided design/computer-aided manufacture (CAD/CAM) surgical guide. A 50-year-old woman had a severely atrophied anterior maxilla with unfavorably positioned dental implants. Functional and esthetic prosthodontic restoration was difficult to achieve. An anterior segmental osteotomy was planned to reposition the dental implants. A 3D surgical guide was designed for precise relocation of the segment. The surgical guide firmly grasped the impression copings of the dental implants, minimizing surgical errors. Three-dimensional gingival simulation was used preoperatively to estimate the appropriate position of the gingiva. Rigid fixation to the surrounding bone allowed immobilization of the implant-bone segment. Satisfactory esthetic and functional outcomes were attained 6 months after surgery. Finally, a severely atrophied alveolar ridge with unfavorably positioned dental implants was recovered with minimal esthetic and functional deterioration using gingival simulation and a 3D CAD/CAM surgical guide.

  14. Handwritten text line segmentation by spectral clustering

    NASA Astrophysics Data System (ADS)

    Han, Xuecheng; Yao, Hui; Zhong, Guoqiang

    2017-02-01

    Since handwritten text lines are generally skewed and not obviously separated, text line segmentation of handwritten document images is still a challenging problem. In this paper, we propose a novel text line segmentation algorithm based on the spectral clustering. Given a handwritten document image, we convert it to a binary image first, and then compute the adjacent matrix of the pixel points. We apply spectral clustering on this similarity metric and use the orthogonal kmeans clustering algorithm to group the text lines. Experiments on Chinese handwritten documents database (HIT-MW) demonstrate the effectiveness of the proposed method.

  15. [Analyses of segment motor function in patients with degenerative lumbar disease on the treatment of WavefleX dynamic stabilization system].

    PubMed

    Wu, Junsong; Du, Junhua; Jiang, Xiangyun; Wang, Quan; Li, Xigong; Du, Jingyu; Lin, Xiangjin

    2014-06-17

    To explore the changes of range-of-motion (ROM) in patients with degenerative lumbar disease on the treatment of WavefleX dynamic stabilization system and examine the postoperative lumbar regularity and tendency of ROM. Nine patients with degenerative lumbar disease on the treatment of WavefleX dynamic stabilization system were followed up with respect to ROMs at 5 timepoints within 12 months. Records of ROM were made for instrumented segments, adjacent segments and total lumbar. Compared with preoperation, ROMs in non-fusional segments with WavefleX dynamic stabilization system decreased statistical significantly (P < 0.05 or P < 0.01) at different timepoints; ROMs in adjacent segments increased at some levels without wide statistical significance. The exception was single L3/4 at Month 12 (P < 0.05) versus control group simultaneously at the levels of L3/4, L4/5 and L5/S1, ROMs decreased at Months 6 and 12 with wide statistical significance (P < 0.05 or P < 0.01). ROMs in total lumbar had statistical significant decrease (P < 0.01) in both group of non-fusional segments and hybrid group of non-fusion and fusion. The trends of continuous augments were observed during follow-ups. Statistically significant augments were also acquired at 4 timepoints as compared to control group (P < 0.01). The treatment of degenerative lumbar diseases with WavefleX dynamic stabilization system may limit excessive extension/inflexion and preserve some motor functions. Moreover, it can sustain physiological lordosis, decrease and transfer disc load in adjacent segments to prevent early degeneration of adjacent segment. Trends of motor function augment in total lumbar need to be confirmed during future long-term follow-ups.

  16. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, J.A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.

  17. Biomechanics of Artificial Disc Replacements Adjacent to a 2-Level Fusion in 4-Level Hybrid Constructs: An In Vitro Investigation

    PubMed Central

    Liao, Zhenhua; Fogel, Guy R.; Wei, Na; Gu, Hongsheng; Liu, Weiqiang

    2015-01-01

    Background The ideal procedure for multilevel cervical degenerative disc diseases remains controversial. Recent studies on hybrid surgery combining anterior cervical discectomy and fusion (ACDF) and artificial cervical disc replacement (ACDR) for 2-level and 3-level constructs have been reported in the literature. The purpose of this study was to estimate the biomechanics of 3 kinds of 4-level hybrid constructs, which are more likely to be used clinically compared to 4-level arthrodesis. Material/Methods Eighteen human cadaveric spines (C2–T1) were evaluated in different testing conditions: intact, with 3 kinds of 4-level hybrid constructs (hybrid C3–4 ACDR+C4–6 ACDF+C6–7ACDR; hybrid C3–5ACDF+C5–6ACDR+C6–7ACDR; hybrid C3–4ACDR+C4–5ACDR+C5–7ACDF); and 4-level fusion. Results Four-level fusion resulted in significant decrease in the C3–C7 ROM compared with the intact spine. The 3 different 4-level hybrid treatment groups caused only slight change at the instrumented levels compared to intact except for flexion. At the adjacent levels, 4-level fusion resulted in significant increase of contribution of both upper and lower adjacent levels. However, for the 3 hybrid constructs, significant changes of motion increase far lower than 4P at adjacent levels were only noted in partial loading conditions. No destabilizing effect or hypermobility were observed in any 4-level hybrid construct. Conclusions Four-level fusion significantly eliminated motion within the construct and increased motion at the adjacent segments. For all 3 different 4-level hybrid constructs, ACDR normalized motion of the index segment and adjacent segments with no significant hypermobility. Compared with the 4-level ACDF condition, the artificial discs in 4-level hybrid constructs had biomechanical advantages compared to fusion in normalizing adjacent level motion. PMID:26694835

  18. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    general. Additionally, these processes are likely to be more common in regions of episodic magma supply and enhanced magma-crust interaction such as at the ends of ridge segments. ?? The Author 2010. Published by Oxford University Press. All rights reserved.

  19. Open-source software platform for medical image segmentation applications

    NASA Astrophysics Data System (ADS)

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  20. Disc replacement adjacent to cervical fusion: a biomechanical comparison of hybrid construct versus two-level fusion.

    PubMed

    Lee, Michael J; Dumonski, Mark; Phillips, Frank M; Voronov, Leonard I; Renner, Susan M; Carandang, Gerard; Havey, Robert M; Patwardhan, Avinash G

    2011-11-01

    A cadaveric biomechanical study. To investigate the biomechanical behavior of the cervical spine after cervical total disc replacement (TDR) adjacent to a fusion as compared to a two-level fusion. There are concerns regarding the biomechanical effects of cervical fusion on the mobile motion segments. Although previous biomechanical studies have demonstrated that cervical disc replacement normalizes adjacent segment motion, there is a little information regarding the function of a cervical disc replacement adjacent to an anterior cervical decompression and fusion, a potentially common clinical application. Nine cadaveric cervical spines (C3-T1, age: 60.2 ± 3.5 years) were tested under load- and displacement-control testing. After intact testing, a simulated fusion was performed at C4-C5, followed by C6-C7. The simulated fusion was then reversed, and the response of TDR at C5-C6 was measured. A hybrid construct was then tested with the TDR either below or above a single-level fusion and contrasted with a simulated two-level fusion (C4-C6 and C5-C7). The external fixator device used to simulate fusion significantly reduced range of motion (ROM) at C4-C5 and C6-C7 by 74.7 ± 8.1% and 78.1 ± 11.5%, respectively (P < 0.05). Removal of the fusion construct restored the motion response of the spinal segments to their intact state. Arthroplasty performed at C5-C6 using the porous-coated motion disc prosthesis maintained the total flexion-extension ROM to the level of the intact controls when used as a stand-alone procedure or when implanted adjacent to a single-level fusion (P > 0.05). The location of the single-level fusion, whether above or below the arthroplasty, did not significantly affect the motion response of the arthroplasty in the hybrid construct. Performing a two-level fusion significantly increased the motion demands on the nonoperated segments as compared to a hybrid TDR-plus fusion construct when the spine was required to reach the same motion end points

  1. High resolution bathymetric and sonar images of a ridge southeast of Terceira Island (Azores plateau)

    NASA Astrophysics Data System (ADS)

    Lourenço, N.; Miranda, J. M.; Luis, J.; Silva, I.; Goslin, J.; Ligi, M.

    2003-04-01

    The Terceira rift is a oblique ultra-slow spreading system where a transtensive regime results from differential movement between Eurasian and African plates. So far no classical ridge segmentation pattern has here been observed. The predominant morphological features are fault controlled rhombic shaped basins and volcanism related morphologies like circular seamounts and volcanic ridges. We present SIMRAD EM300 (bathymetry + backscatter) images acquired over one of these ridges located SE of Terceira Island, during the SIRENA cruise (PI J. Goslin), which complements previous TOBI mosaics performed over the same area during the AZZORRE99 cruise (PI M. Ligi). The ridge presents a NW-SE orientation, it is seismically active (a seismic crisis was documented in 1997) and corresponds to the southern branch of a V shape bathymetric feature enclosing the Terceira Island and which tip is located west of the Island near the 1998 Serreta ridge eruption site. NE of the ridge, the core of the V, corresponds to the North Hirondelle basin. All this area corresponds mainly to Brunhes magnetic epoch. The new bathymetry maps reveal a partition between tectonic processes, centred in the ridge, and volcanism present at the bottom of the North Hirondelle basin. The ridge high backscatter surface is cut by a set of sub-parallel anastomosed normal faults striking between N130º and N150º. Some faults present horse-tail terminations. Fault splays sometimes link to neighbour faults defining extensional duplexes and fault wedge basins and highs of rhombic shape. The faulting geometry suggests that a left-lateral strike slip component should be present. The top of the ridge consists on an arched demi-.horst, and it is probably a volcanic structure remnant (caldera system?), existing prior to onset of the tectonic stage in the ridge. Both ridge flanks display gullies and mass wasting fans at the base of the slope. The ridge vicinities are almost exclusively composed of a grayish homogeneous

  2. Geologic framework of the Aleutian arc, Alaska

    USGS Publications Warehouse

    Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.

    1994-01-01

    The Aleutian arc is the arcuate arrangement of mountain ranges and flanking submerged margins that forms the northern rim of the Pacific Basin from the Kamchatka Peninsula (Russia) eastward more than 3,000 km to Cooke Inlet (Fig. 1). It consists of two very different segments that meet near Unimak Pass: the Aleutian Ridge segment to the west and the Alaska Peninsula-the Kodiak Island segment to the east. The Aleutian Ridge segment is a massive, mostly submerged cordillera that includes both the islands and the submerged pedestal from which they protrude. The Alaska Peninsula-Kodiak Island segment is composed of the Alaska Peninsula, its adjacent islands, and their continental and insular margins. The Bering Sea margin north of the Alaska Peninsula consists mostly of a wide continental shelf, some of which is underlain by rocks correlative with those on the Alaska Peninsula.There is no pre-Eocene record in rocks of the Aleutian Ridge segment, whereas rare fragments of Paleozoic rocks and extensive outcrops of Mesozoic rocks occur on the Alaska Peninsula. Since the late Eocene, and possibly since the early Eocene, the two segments have evolved somewhat similarly. Major plutonic and volcanic episodes, however, are not synchronous. Furthermore, uplift of the Alaska Peninsula-Kodiak Island segment in late Cenozoic time was more extensive than uplift of the Aleutian Ridge segment. It is probable that tectonic regimes along the Aleutian arc varied during the Tertiary in response to such factors as the directions and rates of convergence, to bathymetry and age of the subducting Pacific Plate, and to the volume of sediment in the Aleutian Trench.The Pacific and North American lithospheric plates converge along the inner wall of the Aleutian trench at about 85 to 90 mm/yr. Convergence is nearly at right angles along the Alaska Peninsula, but because of the arcuate shape of the Aleutian Ridge relative to the location of the plates' poles of rotation, the angle of convergence

  3. Diffusion-Weighted MRI Assessment of Adjacent Disc Degeneration After Thoracolumbar Vertebral Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noriega, David C., E-mail: dcnoriega1970@gmail.com; Marcia, Stefano, E-mail: stemarcia@gmail.com; Ardura, Francisco, E-mail: fardura@ono.com

    ObjectiveThe purpose of this study was to assess, by the mean apparent diffusion coefficient (ADC), if a relationship exists between disc ADC and MR findings of adjacent disc degeneration after thoracolumbar fractures treated by anatomic reduction using vertebral augmentation (VAP).Materials and MethodsTwenty non-consecutive patients (mean age 50.7 years; range 45–56) treated because of vertebral fractures, were included in this study. There were 10 A3.1 and 10 A1.2 fractures (AO classification). Surgical treatment using VAP was applied in 14 cases, and conservative in 6 patients. MRI T2-weighted images and mapping of apparent diffusion coefficient (ADC) of the intervertebral disc adjacent to themore » fractured segment were performed after a mean follow-up of 32 months. A total of 60 discs, 3 per patient, were analysed: infra-adjacent, supra-adjacent and a control disc one level above the supra-adjacent.ResultsNo differences between patients surgically treated and those following a conservative protocol regarding the average ADC values obtained in the 20 control discs analysed were found. Considering all discs, average ADC in the supra-adjacent level was lower than in the infra-adjacent (1.35 ± 0.12 vs. 1.53 ± 0.06; p < 0.001). Average ADC values of the discs used as a control were similar to those of the infra-adjacent level (1.54 ± 0.06). Compared to surgically treated patients, discs at the supra-adjacent fracture level showed statistically significant lower values in cases treated conservatively (p < 0.001). The variation in the delay of surgery had no influence on the average values of ADC at any of the measured levels.ConclusionsADC measurements of the supra-adjacent discs after a mean follow-up of 32 months following thoracolumbar fractures, showed that restoration of the vertebral collapse by minimally invasive VAP prevents posttraumatic disc degeneration.« less

  4. Rediscovery and Exploration of Magic Mountain, Explorer Ridge, NE Pacific

    NASA Astrophysics Data System (ADS)

    Embley, R. W.

    2002-12-01

    A two-part exploration program at Explorer Ridge, the northernmost spreading segment of the NE Pacific spreading centers, was conducted in two phases during June to August of 2002. A robust hydrothermal system (Magic Mountain) was found in this area in the early 1980s by the Canadian PISCES IV submersible, but its dimensions and geologic relationships were not well determined due to limited dives and poor navigation. The first part of the 2002 exploration program utilized an EM300 multibeam sonar on T. G. Thompson, the autonomous vehicle ABE, and a CTD/rosette system to map the seafloor and conduct hydrothermal plume surveys. While ABE conducted detailed surveys in the area where the most intense hydrothermal plume was found on the initial CTD survey, the T. G. Thompson conducted additional multibeam surveys, CTD casts and CTD tow-yos on the other second order segments up to 60 km away. This increased the efficiency of the expedition by at least 30%. After 12 days on site, a multibeam map was completed of the entire segment, the spatial distribution and character of the hydrothermal plumes were mapped out and a section of seafloor measuring 2 x 5.5 km was mapped in detail with ABE. The ABE used two sonar systems, a previously proven Imagenex pencil beam sonar, and, for the first time, a multibeam sonar (SM2000). In addition to the high-resolution bathymetry (1 m grid-cell size resolution for the SM2000), ABE collected temperature, optical backscatter, eH redox potential, and magnetic field data. Using the CTD and ABE data, a major hydrothermal system was easily located on the seafloor during the second part of the exploration program using the ROPOS remotely operated vehicle. The Magic Mountain hydrothermal system is located almost entirely on the eastern constructional shoulder of the ridge eastward of the rim of the eastern boundary fault of the axial valley. This is in contrast to most other hydrothermal systems on intermediate rate spreading ridges, which are

  5. Mantle-crust interaction at the Blanco Ridge segment of the Blanco Transform Fault Zone: Results from the Blanco Transform Fault OBS Experiment

    NASA Astrophysics Data System (ADS)

    Kuna, V. M.; Nabelek, J.; Braunmiller, J.

    2016-12-01

    We present results of the Blanco Transform OBS Experiment, which consists of the deployment of 55 three-component broadband and short-period ocean bottom seismometers in the vicinity of the Blanco Fault Zone for the period between September 2012 and October 2013. Our research concentrates on the Blanco Ridge, a purely transform segment of the Blanco Fault Zone, that spans over 130 km between the Cascadia and the Gorda pull-apart depressions. Almost 3,000 well-constrained earthquakes were detected and located along the Blanco Ridge by an automatic procedure (using BRTT Antelope) and relocated using a relative location algorithm (hypoDD). The catalog magnitude of completeness is M=2.2 with an overall b value of 1. Earthquakes extend from 0 km to 20 km depth, but cluster predominantly at two depth levels: in the crust (5-7 km) and in the uppermost mantle (12-17 km). Statistical analysis reveals striking differences between crustal and mantle seismicity. The temporal distribution of crustal events follows common patterns given by Omori's law, while most mantle seismicity occurs in spatially tight sequences of unusually short durations lasting 30 minutes or less. These sequences cannot be described by known empirical laws. Moreover, we observe increased seismic activity in the uppermost mantle about 30 days before the largest (M=5.4) earthquake. Two mantle sequences occurred in a small area of 3x3 km about 4 and 2 weeks before the M=5.4 event. In the week leading up to the M=5.4 event we observe a significant downward migration of crustal seismicity, which results in the subsequent nucleation of the main event at the base of the crust. We hypothesize that the highly localized uppermost mantle seismicity is triggered by aseismic slow-slip of the surrounding ductile mantle. We also suggest that the mantle slip loads the crust eventually resulting in relatively large crustal earthquakes.

  6. Lomonosov Ridge, Arctic Ocean: New MCS Data for the Definition of Targets for Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Y.; Coakley, B.; Hall, J. K.

    2001-12-01

    The 1500 km long and 50-150 km wide Lomonosov Ridge rises more than 3000 m above the adjacent abyssal plains, separating the Mesozoic-aged Amerasian basin from the Cenozoic-Recent Eurasian basin. Multichannel seismic reflection data collected from icebreakers on four cruises together with swath bathymetry and high resolution chirp sonar data collected by nuclear submarines across the central ridge show a cap of hemipelagic drape (c. 450 m thick) on top of normal faulted and peneplained sedimentary sequences, the remnants of the Mesozoic Barents margin, which pre-dates the opening of the Eurasian Basin. A new multichannel seismic survey to augment the site survey data base for ODP proposal 533 was carried out on the Lomonosov Ridge under difficult ice conditions in late July 2001 from the Swedish icebreaker Oden. The primary objectives of ODP Proposal 533 are to obtain continuous paleoceanographic records for most of the Cenozoic from the hemipelagic sequence and to sample the underlying passive margin sequence below the regional unconformity, which would provide the first direct constraints on the early tectonic history of the ridge. Of particular interest is the extent of mass wasting along the ridge perimeter. This regional unconformity offers an opportunity for implementing a strategy of offset shallow drill holes to obtain a complete hemi-pelagic section as well as to penetrate the regional unconformity. The new data, which will, in conjunction with the existing MCS data base, provide the first 3-D control on the passive margin structures and overlying unconformity, will be presented.

  7. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    USGS Publications Warehouse

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  8. Min-cut segmentation of cursive handwriting in tabular documents

    NASA Astrophysics Data System (ADS)

    Davis, Brian L.; Barrett, William A.; Swingle, Scott D.

    2015-01-01

    Handwritten tabular documents, such as census, birth, death and marriage records, contain a wealth of information vital to genealogical and related research. Much work has been done in segmenting freeform handwriting, however, segmentation of cursive handwriting in tabular documents is still an unsolved problem. Tabular documents present unique segmentation challenges caused by handwriting overlapping cell-boundaries and other words, both horizontally and vertically, as "ascenders" and "descenders" overlap into adjacent cells. This paper presents a method for segmenting handwriting in tabular documents using a min-cut/max-flow algorithm on a graph formed from a distance map and connected components of handwriting. Specifically, we focus on line, word and first letter segmentation. Additionally, we include the angles of strokes of the handwriting as a third dimension to our graph to enable the resulting segments to share pixels of overlapping letters. Word segmentation accuracy is 89.5% evaluating lines of the data set used in the ICDAR2013 Handwriting Segmentation Contest. Accuracy is 92.6% for a specific application of segmenting first and last names from noisy census records. Accuracy for segmenting lines of names from noisy census records is 80.7%. The 3D graph cutting shows promise in segmenting overlapping letters, although highly convoluted or overlapping handwriting remains an ongoing challenge.

  9. Occurrence of high-Al N-MORB along the Easternmost Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Meyzen, C. M.; Humler, E.; Ludden, J. N.

    2017-12-01

    One of the deepest and slowest part of the mid-ocean-ridge system lies within the easternmost part of the Southwest Indian Ridge between 61°E and 69° E. In this region, a distinctive sea-floor terrain characterized by high-relief segments separated by long, deep tectonized sections shows a predominance of tectonic over magmatic extensional processes, suggesting an unstable and weak, but locally focalized magma supply. Other features of this section include the absence of long-lived transforms, thick lithosphere, high upper mantle seismic wave velocities and thin oceanic crust (4-5 km). When compared to other ridge segments, most MORB erupted along this section distinguish themselves by their higher Na2O, Sr and Al2O3 compositions, very low CaO/Al2O3 ratios relative to TiO2 and depleted heavy rare-earth element (REE) distributions. Another peculiar feature is their subparallel LREE enriched patterns. The high-Al-MgO magma type erupted periodically around the ridge system is also found in this region at 61.93°E. These lavas are characterized by high Al2O3 (> 17 wt. %), MgO (> 8.8 wt. %) and FeO contents, low SiO2 (< 49 wt. %) and Na2O and very low TiO2 (< 1 wt. %), and a LREE depleted pattern compared to the main population. At slightly lower MgO, sporadically, two other dredges located at 63.36-63.66°E share some of these distinct compositional characteristics. As a whole, these lavas are the most depleted in highly incompatible elements, but are also characterized by an offset toward lower MREE/HREE ratios relative to the main population. These peculiar basalts are not parental to the more common lower MgO compositions and cannot be related to them by fractional crystallization alone. Instead, their major element features, and the occasional presence of positive Eu and Sr anomalies might indicate assimilation of plagioclase cumulates, while their offset in MREE/HREE might require a multistage melting evolution with an earlier event in the garnet stability field.

  10. The Loyalty—New Hebrides Arc collision: Effects on the Loyalty Ridge and basin system, Southwest Pacific (first results of the ZoNéCo programme)

    NASA Astrophysics Data System (ADS)

    Lafoy, Yves; Missegue, Francois; Cluzel, Dominique; Le Suave, Raymond

    1996-06-01

    The ZoNéCo 1 and 2 cruises of Ifremer's Research Vessel L'Atalante, collected new swath bathymetry and geophysical data over the southern and northern segments of the basins and ridges forming the Loyalty system. Between the two surveyed areas, previous studies found evidence for the resistance of the Loyalty Ridge to subduction beneath the New Hebrides trench near 22°S 169°E. On the subducted plate, except for seismicity related to the downbending of the Australian plate, recorded shallow seismicity is sparse within the Loyalty system (Ridge and Basin) where reliable focal mechanism solutions are almost absent. Swath bathymetry, seismic reflection and magnetic data acquired during the ZoNéCo 1 and 2 cruises revealed a transverse asymmetric morphology in the Loyalty system, and an along-strike horst and graben structure on the discontinuous Loyalty Ridge. South of 23°50'S and at 20°S, the two WSW-ENE-trending fault systems, respectively, sinistral and dextral, that crosscut the southern and northern segments of the Loyalty system, are interpreted as due to the early effects of collision with the New Hebrides Arc. A NNW-SSE trend, evident along the whole Loyalty system and on the island of New Caledonia, is interpreted as an inherited structural trend that may have been reactivated through flexure of the Australian lithospheric plate at the subduction zone. Overall then, the morphology, structure and evolution of the southern and northern segments of the Loyalty system probably result from the combined effects of the Australian plate lithospheric bulge, the active Loyalty-New Hebrides collision and the overthrust of the New Caledonian ophiolite.

  11. In vivo and in vitro heterogeneity of segment length changes in the semimembranosus muscle of the toad

    PubMed Central

    Ahn, A N; Monti, R J; Biewener, A A

    2003-01-01

    Many studies examine sarcomere dynamics in single fibres or length–tension dynamics in whole muscles in vivo or in vitro, but few studies link the various levels of organisation. To relate data addressing in vitro muscle segment behaviour with in vivo whole muscle behaviour during locomotion, we measured in vivo strain patterns of muscle segments using three sonomicrometry crystals implanted along a fascicle of the semimembranosus muscle in the American toad (Bufo americanus; n = 6) during hopping. The centre crystal emitted an ultrasonic signal, while the outer crystals received the signal allowing the instantaneous measurement of lengths from two adjacent muscle segments. On the first day, we recorded from the central and distal segments. On the second day of recordings, the most distal crystal was moved to a proximal position to record from a proximal segment and the same central segment. When the toads hopped a distance of two body lengths, the proximal and central segments strained −15.1 ± 6.1 and −14.0 ± 4.9 % (i.e. shortening), respectively. Strain of the distal segment, however, was significantly lower and more variable in pattern, often lengthening before shortening during a hop. From rest length, the distal segment initially lengthened by 2.6 ± 2.0 % before shortening by 6.5 ± 3.2 % at the same hop distance. Under in vitro conditions, the central segment always shortened more than the distal segment, except when passively cycled, during which the segments strained similarly. When the whole muscle was cycled sinusoidally and stimulated phasically in vitro, the two adjacent segments strained in opposite directions over much (up to 34 %) of the cycle. These differences in strain amplitude and direction imply that two adjacent segments can not only produce and/or absorb varying amounts of mechanical energy, but can also operate on different regions of their force–length and force–velocity relationships when activated by the same neural signal

  12. RESEARCH NOTE: Slow-ridge/hotspot interactions from global gravity, seismic tomography and 87Sr/86Sr isotope data

    NASA Astrophysics Data System (ADS)

    Goslin, Jean; Thirot, Jean-Louis; Noël, Olivier; Francheteau, Jean

    1998-11-01

    Among the mantle hotspots present under oceanic areas, a large number are located on-or close to-active oceanic ridges. This is especially true in the slow-spreading Atlantic and Indian oceans. The recent availability of worldwide gravity grids and the increasing coverage of geochemical data sets along active spreading centres allow a fruitful comparison of these data with global geoid and seismic tomography models, and allow one to study interactions between mantle plumes and active slow-spreading ridges. The observed correlations allow us to draw preliminary conclusions on the general links between surficial processes, which shape the detailed morphology of the ridge axes, and deeper processes, active in the upper mantle below the ridge axial domains as a whole. The interactions are first studied at the scale of the Atlantic (the Mid-Atlantic Ridge from Iceland to Bouvet Island) from the correlation between the zero-age free-air gravity anomaly, which reflects the zero-age depth of the ridge axis, and Sr isotopic ratios of ridge axis basalts. The study is then extended to a more global scale (the slow ridges from Iceland to the Gulf of Aden) by including geoid and upper-mantle tomography models. The interactions appear complex, ranging from the effect of large and very productive plumes, almost totally overprinting the long-wavelength segmentation pattern of the ridge, to that of weaker hotspots, barely marking some of the observables in the ridge axial domain. Intermediate cases are observed, in which hotspots of medium activity (or whose activity has gradually decreased) located at some distance from the ridge axis produce geophysical or geochemical signals whose variation along the axis can be correlated with the geometry of the plume head in the upper mantle. Such observations tend to preclude the use of a single hotspot/ridge interaction model and stress the need for additional observations in various plume/ridge configurations.

  13. Alveolar ridge expansion-assisted orthodontic space closure in the mandibular posterior region.

    PubMed

    Ozer, Mete; Akdeniz, Berat Serdar; Sumer, Mahmut

    2013-12-01

    Orthodontic closure of old, edentulous spaces in the mandibular posterior region is a major challenge. In this report, we describe a method of orthodontic closure of edentulous spaces in the mandibular posterior region accelerated by piezoelectric decortication and alveolar ridge expansion. Combined piezosurgical and orthodontic treatments were used to close 14- and 15-mm-wide spaces in the mandibular left and right posterior areas, respectively, of a female patient, aged 18 years and 9 months, diagnosed with skeletal Class III malocclusion, hypodontia, and polydiastemas. After the piezoelectric decortication, segmental and full-arch mechanics were applied in the orthodontic phase. Despite some extent of root resorption and anchorage loss, the edentulous spaces were closed, and adequate function and esthetics were regained without further restorative treatment. Alveolar ridge expansion-assisted orthodontic space closure seems to be an effective and relatively less-invasive treatment alternative for edentulous spaces in the mandibular posterior region.

  14. Biomechanical comparison of a novel engine-driven ridge spreader and conventional ridge splitting techniques.

    PubMed

    Jung, Gyu-Un; Kim, Jun Hwan; Lim, Nam Hun; Yoon, Gil Ho; Han, Ji-Young

    2017-06-01

    Ridge splitting techniques are used for horizontal ridge augmentation in implant dentistry. Recently, a novel engine-driven ridge splitting technique was introduced. This study compared the mechanical forces produced by conventional and engine-driven ridge splitting techniques in porcine mandibles. In 33 pigs, mandibular premolar areas were selected for the ridge splitting procedures, designed as a randomized split-mouth study. The conventional group underwent a chisel-and-mallet procedure (control group, n = 20), and percussive impulse (Newton second, Ns) was measured using a sensor attached to the mallet. In the engine-driven ridge spreader group (test group, n = 23), a load cell was used to measure torque values (Newton centimeter, Ncm). Horizontal acceleration generated during procedures (control group, n = 10 and test group, n = 10) was compared between the groups. After ridge splitting, the alveolar crest width was significantly increased both in the control (1.23 ± 0.45 mm) and test (0.98 ± 0.41 mm) groups with no significant differences between the groups. The average impulse of the control group was 4.74 ± 1.05 Ns. Torque generated by rotation in the test group was 9.07 ± 2.15 Ncm. Horizontal acceleration was significantly less in the test group (0.82 ± 1.05 g) than the control group (64.07 ± 42.62 g) (P < 0.001). Narrow edentulous ridges can be expanded by novel engine-driven ridge spreaders. Within the limits of this study, the results suggested that an engine-driven ridge splitting technique may be less traumatic and less invasive than a conventional ridge splitting technique. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.

    PubMed

    Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I

    2009-11-01

    Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.

  16. Eskers in Ireland, analogs for sinuous ridges on Mars

    NASA Astrophysics Data System (ADS)

    Pellicer, Xavier; Bourke, Mary

    2014-05-01

    Sinuous ridges on the surface of Mars are often inferred as putative esker ridges. Eskers cover several hundred kilometers of the Irish landscape and are one of the dominant landforms in the Irish Midlands. Well exposed stratigraphic sections and the body of existing knowledge due to extensive research carried out on these landforms make the Irish eskers an excellent analog for sinuous ridges on Mars. The Irish Eskers are sinuous ridges 0.1 - 80 km long, 20 - 500 m wide and 4 - 50 m high laid down by glacial meltwater in tunnels and crevasses in stationary or retreating ice sheets. They are commonly composed of sands and gravels with rounded boulders and cobbles. The gravels are usually bedded and the beds often slump towards the flank of the esker, indicating collapse as the confining ice walls melt. Four types of eskers have been identified in Ireland: (i) Continuous subglacial tunnel fill represents deposition within tunnels underneath or within an ice body originally used as water escape conduits; (ii) Continuous fluvial ice-channel fill deposit in channels cut into the ice on top of the glacier or down to the substrate subsequently infilled by sediments; (iii) Long beads - subglacial tunnel fill are segmented ridges, with a length-width ratio of 5:1 to 10:1, representing sequential deposition near or at the ice margin as the ice sheet retreats; (iv) Short beads are glaciolacustrine deposits interpreted as sequential deposition of ice-contact subaqueous outwash fans. Irish eskers have significant morphological similarities with those identified on Mars providing an opportunity for an insightful morphological and morphometric analysis to determine potential formative environments on Mars. Putative Martian eskers are 2-300 km long, 50-3000 m wide and 10-150 m high. The Irish eskers are similar in scale and present dimensions within these ranges. Eskers in Ireland are composed of sand and gravel with cobbles and boulders. Mars esker-like ridges observed in high

  17. Unexpected HIMU-type late-stage volcanism on the Walvis Ridge

    NASA Astrophysics Data System (ADS)

    Homrighausen, S.; Hoernle, K.; Geldmacher, J.; Wartho, J.-A.; Hauff, F.; Portnyagin, M.; Werner, R.; van den Bogaard, P.; Garbe-Schönberg, D.

    2018-06-01

    Volcanic activity at many oceanic volcanoes, ridges and plateaus often reawakens after hiatuses of up to several million years. Compared to the earlier magmatic phases, this late-stage (rejuvenated/post-erosional) volcanism is commonly characterized by a distinct geochemical composition. Late-stage volcanism raises two hitherto unanswered questions: Why does volcanism restart after an extended hiatus and what is the origin of this volcanism? Here we present the first 40Ar/39Ar age and comprehensive trace element and Sr-Nd-Pb-Hf isotopic data from seamounts located on and adjacent to the Walvis Ridge in the South Atlantic ocean basin. The Walvis Ridge is the oldest submarine part of the Tristan-Gough hotspot track and is famous as the original type locality for the enriched mantle one (EM I) end member. Consistent with the bathymetric data, the age data indicates that most of these seamounts are 20-40 Myr younger than the underlying or nearby Walvis Ridge basement. The trace element and isotope data reveal a distinct compositional range from the EM I-type basement. The composition of the seamounts extend from the St. Helena HIMU (high time-integrated 238U/204Pb mantle with radiogenic Pb isotope ratios) end member to an enriched (E) Mid-Ocean-Ridge Basalt (MORB) type composition, reflecting a two-component mixing trend on all isotope diagrams. The EMORB end member could have been generated through mixing of Walvis Ridge EM I with normal (N) MORB source mantle, reflecting interaction of Tristan-Gough (EM I-type) plume melts with the upper mantle. The long volcanic quiescence and the HIMU-like geochemical signature of the seamounts are unusual for classical hotspot related late-stage volcanism, indicating that these seamounts are not related to the Tristan-Gough hotspot volcanism. Two volcanic arrays in southwestern Africa (Gibeon-Dicker Willem and Western Cape province) display similar ages to the late-stage Walvis seamounts and also have HIMU-like compositions

  18. Polygonal Ridge Networks on Mars

    NASA Astrophysics Data System (ADS)

    Kerber, Laura; Dickson, James; Grosfils, Eric; Head, James W.

    2016-10-01

    Polygonal ridge networks, also known as boxwork or reticulate ridges, are found in numerous locations and geological contexts across Mars. While networks formed from mineralized fractures hint at hot, possibly life-sustaining circulating ground waters, networks formed by impact-driven clasting diking, magmatic dikes, gas escape, or lava flows do not have the same astrobiological implications. Distinguishing the morphologies and geological context of the ridge networks sheds light on their potential as astrobiological and mineral resource sites of interest. The most widespread type of ridge morphology is characteristic of the Nili Fossae and Nilosyrtis region and consists of thin, criss-crossing ridges with a variety of heights, widths, and intersection angles. They are found in ancient Noachian terrains at a variety of altitudes and geographic locations and may be a mixture of clastic dikes, brecciated dikes, and mineral veins. They occur in the same general areas as valley networks and ancient lake basins, but they are not more numerous where these features are concentrated, and can appear in places where they morphologies are absent. Similarly, some of the ridge networks are associated with hydrated mineral detections, but some occur in locations without detections. Smaller, light-toned ridges of variable widths have been found in Gale Crater and other rover sites and are interpreted to be smaller version of the Nili-like ridges, in this case formed by the mineralization of fractures. This type of ridge is likely to be found in many other places on Mars as more high-resolution data becomes available. Hellas Basin is host to a third type of ridge morphology consisting of large, thick, light-toned ridges forming regular polygons at several superimposed scales. While still enigmatic, these are most likely to be the result of sediment-filled fractures. The Eastern Medusae Fossae Formation contains large swaths of a fourth, previously undocumented, ridge network type

  19. Electromagnetic constraints on a melt region beneath the central Mariana back-arc spreading ridge

    NASA Astrophysics Data System (ADS)

    Matsuno, Tetsuo; Evans, Rob L.; Seama, Nobukazu; Chave, Alan D.

    2012-10-01

    An electrical resistivity profile across the central Mariana subduction system shows high resistivity in the upper mantle beneath the back-arc spreading ridge where melt might be expected to exist. Although seismic data are equivocal on the extent of a possible melt region, the question arises as to why a 2-D magnetotelluric (MT) survey apparently failed to image any melt. We have run forward models and inversions that test possible 3-D melt geometries that are consistent with the MT data and results of other studies from the region, and that we use to place upper bounds on the possible extent of 3-D melt region beneath the spreading center. Our study suggests that the largest melt region that was not directly imaged by the 2-D MT data, but that is compatible with the observations as well as the likely effects of melt focusing, has a 3-D shape on a ridge-segment scale focused toward the spreading center and a resistivity of 100 Ω-m that corresponds to ˜0.1-˜1% interconnected silicate melt embedded in a background resistivity of ˜500 Ω-m. In contrast to the superfast spreading southern East Pacific Rise, the 3-D melt region suggests that buoyant mantle upwelling on a ridge-segment scale is the dominant process beneath the slow-spreading central Mariana back-arc. A final test considers whether the inability to image a 3-D melt region was a result of the 2-D survey geometry. The result reveals that the 2-D transect completed is useful to elucidate a broad range of 3-D melt bodies.

  20. Variations in pockmark composition at the Vestnesa Ridge: Insights from marine controlled source electromagnetic and seismic data

    NASA Astrophysics Data System (ADS)

    Goswami, Bedanta K.; Weitemeyer, Karen A.; Bünz, Stefan; Minshull, Timothy A.; Westbrook, Graham K.; Ker, Stephan; Sinha, Martin C.

    2017-03-01

    The Vestnesa Ridge marks the northern boundary of a known submarine gas hydrate province in the west Svalbard margin. Several seafloor pockmarks at the eastern segment of the ridge are sites of active methane venting. Until recently, seismic reflection data were the main tool for imaging beneath the ridge. Coincident controlled source electromagnetic (CSEM), high-resolution two-dimensional (2-D) airgun, sweep frequency SYSIF, and three-dimensional (3-D) p-cable seismic reflection data were acquired at the south-eastern part of the ridge between 2011 and 2013. The CSEM and seismic data contain profiles across and along the ridge, passing several active and inactive pockmarks. Joint interpretation of resistivity models obtained from CSEM and seismic reflection data provides new information regarding the fluid composition beneath the pockmarks. There is considerable variation in transverse resistance and seismic reflection characteristics of the gas hydrate stability zone (GHSZ) between the ridge flanks and chimneys beneath pockmarks. Layered seismic reflectors on the flanks are associated with around 300 Ωm2 transverse resistance, whereas the seismic reflectors within the chimneys exhibit amplitude blanking and chaotic patterns. The transverse resistance of the GHSZ within the chimneys vary between 400 and 1200 Ωm2. Variance attributes obtained from the 3-D p-cable data also highlight faults and chimneys, which coincide with the resistivity anomalies. Based on the joint data interpretation, widespread gas hydrate presence is likely at the ridge, with both hydrates and free gas contained within the faults and chimneys. However, at the active chimneys the effect of gas likely dominates the resistive anomalies.

  1. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic

  2. [LOCATION CHANGE OF ROTATION CENTER AFTER SINGLE SEGMENTAL CERVICAL DISC REPLACEMENT WITH ProDisc-C].

    PubMed

    Lou, Jigang; Liu, Hao; Rong, Xin; Gong, Quan; Song, Yueming; Li, Tao

    2015-01-01

    To evaluate the effectiveness of the single segmental cervical disc replacement with ProDisc-C, and to explore the location change of the flexion/extension center of rotation (COR) of the target level as well as its clinical significance. Between June 2010 and February 2012, 23 patients underwent single segmental cervical disc replacement with ProDisc-C, and the clinical data were retrospectively analyzed. Of 23 patients, 9 were male, and 14 were female with the age range from 27 to 65 years (mean, 45 years), and the disease duration ranged from 10 to 84 months (mean, 25 months). There were 15 patients with radiculopathy, 5 patients with myelopathy, and 3 patients with mixed cervical spondylosis. The involved segments were C4,5 in 5 cases, C5,6 in 14 cases, and C6,7 in 4 cases. Japanese Orthopaedic Association (JOA) score and neck disability index (NDI) were adopted to evaluate the effectiveness. Preoperative and Postoperative radiographic parameters, such as cervical overall range of motion (ROM), target segmental ROM, the adjacent segmental ROM, and intervertebral height were compared. Besides, the location changes of the COR of the target level were further analyzed by the alteration of its coordinates (COR-X, COR-Y), and the relationships between the location changes of the COR and the effectiveness or the radiographic results were analyzed. All the operations were completed successfully; 1 case had hoarseness after operation, which disappeared at 3 months after operation. All cases were followed up 18.3 months on average (range, 6-36 months). There was no device migration, loosening, subsidence, or fracture at last follow-up. The JOA score increased significantly and the NDI score decreased significantly at last follow-up when compared with preoperative scores (P < 0.05). No difference was found in the cervical overall ROM, target segmental ROM, the adjacent segmental ROM, and the COR-Y of the target level between pre-operation and last follow-up (P > 0

  3. Deformation of Forearcs during Aseismic Ridge Subduction

    NASA Astrophysics Data System (ADS)

    Zeumann, S.; Hampel, A.

    2014-12-01

    Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To identify the crucial parameters for forearc deformation we created 3D finite-element models representing both erosive and accretive forearcs as well as migrating and non-migrating ridges. As natural examples we choose the Cocos ridge subducting stationary beneath the erosive margin of Costa Rica and the Nazca and Gagua Ridges that migrate along the erosive Peruvian margin and the accretive accretive Ryukyu margin, respectively. A series of models show that the deformation of the forearc depends on the ridge shape (height, width), on the frictional coupling along the plate interface and the mechanical strength of the forearc. The forearc is uplifted and moved sideward during ridge subduction. Strain components show domains of both, shortening and extension. Along the ridge axis, extension occurs except at the ridge tip, where shortening prevails. The strain component normal to the ridge axis reveals extension at the ridge tip and contraction above the ridge flanks. Shortening and extension increase with increasing ridge height. Higher friction coefficients lead to less extension and more shortening. Accretive wedges show larger indentation at the model trench. For stationary ridges (Cocos Ridge) the deformation pattern of the forearc is symmetric with respect to the ridge axis whereas for migrating ridges (Nazca Ridge, Gagua Ridge) the oblique convergence direction leads to asymmetric deformation of the forearc. In case of ridge migration, uplift occurs at the leading flank of the ridge and subsidence at the trailing flank, in agreement with field observations and analogue models. For a model with a 200-km-wide and 1500-m-high ridge (i.e. similar to the dimensions of the Nazca Ridge), the modelled uplift rate at the southern ridge flank of the ridge is ~1 mm/a, which agrees well with uplift rates of ~0.7 mm/a derived from the elevation of marine terraces in southern Peru.

  4. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness <2km) (Zhou and Dick, 2013) that opens a window to the mantle thus provides a chance to detect the mantle composition directly. We examine the mineral compositions of 17 peridotite samples from the 53°E amagmatic segment. The results show that the peridotites can be divided into two groups. The Group 1 peridotites are characterized by clinopyroxenes having LREE depleted patterns that is typical for the abyssal peridotite, thus are thought to be the residue of the mantle melting. The Group 2 peridotites show the lowest HREE content within the SWIR peridotites but are anomaly enriched in LREE, with flat or U-type REE patterns, thus cannot be the pure residue of mantle melting. Mineral compositions of the Group 2 peridotites are more depleted than that of peridotites sampled near the Bouvet hot spot (Johnson et al., 1990), implying that the depleted mantle beneath the 53°E segment may be the residue of ancient melting event. This hypothesis is supported by the the low Ol/Opx ratios, coarse grain sizes (>1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of

  5. Continuity in fire disturbance between riparian and adjacent sideslopes in the Douglas-fire forest series.

    Treesearch

    Richard L. Everett; Richard Schellhaas; Pete Ohlson

    2000-01-01

    Fire scar and stand cohort records were used to estimate the number and timing of fire disturbance events that impacted riparian and adjacent sideslope forests in the Douglas-fir series. Data were gathered from 49 stream segments on 24 separate streams on the east slope of the Washington Cascade Range. Upslope forests had more traceable disturbance events than riparian...

  6. Anterior Cervical Discectomy and Fusion for Adjacent Segment Disease: Clinical Outcomes and Cost Utility of Surgical Intervention.

    PubMed

    O'Neill, Kevin R; Wilson, Robert J; Burns, Katharine M; Mioton, Lauren M; Wright, Brian T; Adogwa, Owoicho; McGirt, Matthew J; Devin, Clinton J

    2016-07-01

    Retrospective review. Determine clinical outcomes and cost utility of anterior cervical discectomy and fusion (ACDF) for the treatment of adjacent segment disease (ASD). The incidence of symptomatic ASD after ACDF has been estimated to occur in up to 26% of patients. Commonly, these patients will undergo an additional ACDF procedure. However, there are currently no studies available that adequately describe the clinical outcomes or cost utility of performing ACDF for ASD. A retrospective review of 40 patients undergoing ACDF for ASD was performed. Baseline and 2-year neck and arm pain (NRS-NP, NRS-AP), neck disability index (NDI), physical and mental quality of life (SF-12 PCS & MCS), and Zung depression score (ZDS) were assessed. Two-year total neck-related medical resource utilization, amount of missed work, and health-state values were determined. Quality-adjusted life years (QALYs) were calculated from EQ-5D assessments with US valuation. Comprehensive costs (indirect, direct, and total cost) and the value (cost-per-QALY gained) of performing ACDF for ASD were assessed. Performing ACDF to treat ASD resulted in significant improvements (P<0.05) in NRS-NP, NRS-AP, NDI, SF-12 PCS, and ZDS outcome measures. Patient-reported health states also significantly improved, with a mean cumulative 2-year gain of 0.54 QALYs. The mean 2-year cost of surgery was $32,616 (direct cost: $25,391; indirect cost: $7225). ACDF for the treatment of ASD was associated with a mean 2-year cost per QALY gained of $60,526. Performing ACDF for ASD resulted in significant improvements in patient pain, disability, and quality of life. Further, the mean 2-year cost-per-QALY was determined to be $60,526, which suggests surgical intervention to be cost effective. This study is the first to provide evidence that performing an ACDF for ASD is both clinically and cost effective.

  7. Moho depth variations over the Maldive Ridge and adjoining Arabian and Central Indian Basins, Western Indian Ocean, from three dimensional inversion of gravity anomalies

    NASA Astrophysics Data System (ADS)

    Kunnummal, Priyesh; Anand, S. P.; Haritha, C.; Rama Rao, P.

    2018-05-01

    Analysis of high resolution satellite derived free air gravity data has been undertaken in the Greater Maldive Ridge (GMR) (Maldive Ridge, Deep Sea Channel, northern limit of Chagos Bank) segment of the Chagos Laccadive Ridge and the adjoining Arabian and Central Indian Basins. A Complete Bouguer Anomaly (CBA) map was generated from the Indian Ocean Geoidal Low removed Free Air Gravity (hereinafter referred to as "FAG-IOGL") data by incorporating Bullard A, B and C corrections. Using the Parker method, Moho topography was initially computed by inverting the CBA data. From the CBA the Mantle Residual Gravity Anomalies (MRGA) were computed by incorporating gravity effects of sediments and lithospheric temperature and pressure induced anomalies. Further, the MRGA was inverted to get Moho undulations from which the crustal thickness was also estimated. It was found that incorporating the lithospheric thermal and pressure anomaly correction has provided substantial improvement in the computed Moho depths especially in the oceanic areas. But along the GMR, there was not much variation in the Moho thickness computed with and without the thermal and pressure gravity correction implying that the crustal thickness of the ridge does not depend on the oceanic isochrones used for the thermal corrections. The estimated Moho depths in the study area ranges from 7 km to 28 km and the crustal thickness from 2 km to 27 km. The Moho depths are shallower in regions closer to Central Indian Ridge in the Arabian Basin i.e., the region to the west of the GMR is thinner compared to the region in the east (Central Indian Basin). The thickest crust and the deepest Moho are found below the N-S trending GMR segment of the Chagos-Laccadive Ridge. Along the GMR the crustal thickness decreases from north to south with thickness of 27 km below the Maldives Ridge reducing to ∼9 km at 3°S and further increasing towards Chagos Bank. Even though there are similarities in crustal thickness between

  8. Lung tumor segmentation in PET images using graph cuts.

    PubMed

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Supracrustal origin of plagiogranite from the Gallieni Fracture Zone, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jihao; Li, Zhenggang; Chu, Fengyou; Fu, Bin; Dong, Yanhui; Chen, Ling; Liu, Jiqiang

    2017-04-01

    Small amounts of felsic rocks such as tonalite, trondjhemite and diorite often called oceanic plagiogranites were found at all structure levels of the oceanic crust. They can be formed either by partial melting of hydrated gabbros and/or sheeted dikes, or by late-stage differentiation of parental mid-ocean ridge basalt melts. Here we report a granodiorite sampled in the Gallieni Fracture Zone, Southwest Indian Ridge, shows no ocean crust affinity but the nature of the continental crust. The granodiorite is extremely enriched in K2O (3.72%) and its rare-earth-element distribution pattern is incomparable to any type of oceanic plagiogranites from mid-ocean ridge and ophiolites, but similar to the Upper Continental Crust. Moreover, the in-situ zircon O isotopes (δ18O=5.9-7.5‰) are much higher than the plagiogranites from all the tectonic settings relevant to ocean crust generation, while Hf isotope compositions (ɛHf(0) =-4.0 to -7.9) are much lower than global oceanic basalts. In addition, the granodiorite suffered low-grade metamorphism as reflected by the penetration of late-stage felsic veins and the occurrence of metamorphic minerals such as epidote and chlorite. Secondary vein quartz has negative δ18O values as low as -3.9‰, suggesting the involvement of meteoric water. Zircon U-Pb age (183.7±1.2Ma) shows that the granodiorite was formed contemporarily with Karoo volcanism associating with the breakup of Gondwanaland. We suggest that it may be formed by the anataxis of continental crustal materials by underplated Karoo basaltic magma. Combining our unreported high-grade quartzite with zircon U-Pb ages of more than 500Ma and a Jurassic quartz diorite reported earlier which all sampled in or near the Gallieni Fracture Zone, we propose that a continental block probably from the South Madagascar was split during continental breakup but retained near the ridge segment as a result of repeated ridge jumping and transform migration. Keywords: zircon Hf-O isotopes

  10. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits.

    PubMed

    Gebreyesus, Grum; Lund, Mogens S; Buitenhuis, Bart; Bovenhuis, Henk; Poulsen, Nina A; Janss, Luc G

    2017-12-05

    Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls. Single-nucleotide polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping genome segments. A segment was defined as one SNP, or a group of 50, 100, or 200 adjacent SNPs, or one chromosome, or the whole genome. Traditional univariate and bivariate genomic best linear unbiased prediction (GBLUP) models were also run for comparison. Reliabilities were calculated through a resampling strategy and using deterministic formula. BayesAS models improved prediction reliability for most of the traits compared to GBLUP models and this gain depended on segment size and genetic architecture of the traits. The gain in prediction reliability was especially marked for the protein composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were improved by 49 percentage points on average using the MT-BayesAS model with a 100-SNP segment size compared to the bivariate GBLUP. Prediction reliabilities were highest with the BayesAS model that uses a 100-SNP segment size. The bivariate versions of our BayesAS models resulted in extra gains of up to 6% in

  11. Effects of Cocos Ridge Collision on the Western Caribbean: Is there a Panama Block?

    NASA Astrophysics Data System (ADS)

    Kobayashi, D.; La Femina, P. C.; Geirsson, H.; Chichaco, E.; Abrego M, A. A.; Fisher, D. M.; Camacho, E. I.

    2011-12-01

    earthquake relocation and geologic data are used to define block boundaries and fault geometries. We invert the three-dimensional GPS velocity vectors and earthquake slip vectors to estimate the magnitude and spatial distribution of interplate mechanical coupling on active plate and block boundaries around the Panama block; the Middle America Trench - South Panama Deformed Belt, the Central Costa Rican Deformed Belt, and the North Panama Deformed Belt in particular, and the rates of relative plate motion between the Panama block and the adjacent Cocos, Nazca, and Caribbean plates. This study tests whether the Panama block responds to the ridge collision as a rigid tectonic block or as a deforming zone consisting of multiple blocks.

  12. Segmentation and disruption of the East Pacific Rise in the mouth of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Lonsdale, Peter

    1995-08-01

    Analysis of new multibeam bathymetry and all available magnetic data shows that the 340 km-long crest of the East Pacific Rise between Rivera and Tamayo transforms contains segments of both the Pacific-Rivera and the Pacific-North America plate boundaries. Another Pacific-North America spreading segment (“Alarcon Rise”) extends 60 km further north to the Mexican continental margin. The Pacific-North America-Rivera triple junction is now of the RRR type, located on the risecrest 60 km south of Tamayo transform. Slow North America-Rivera rifting has ruptured the young lithosphere accreted to the east flank of the rise, and extends across the adjacent turbidite plain to the vicinity of the North America-Rivera Euler pole, which is located on the plate boundary. The present absolute motion of the Rivera microplate is an anticlockwise spin at 4° m.y.-1 around a pole located near its southeast corner; its motion has recently changed as the driving forces applied to its margins have changed, especially with the evolution of the southern margin from a broad shear zone between Rivera and Mathematician microplates to a long Pacific-Rivera transform. Pleistocene rotations in spreading direction, by as much as 15° on the Pacific-Rivera boundary, have segmented the East Pacific Rise into a staircase of en echelon spreading axes, which overlap at lengthening and migrating nontransform offsets. The spreading segments vary greatly in risecrest geomorphology, including the full range of structural types found on other rises with intermediate spreading rates: axial rift valleys, split shield volcanoes, and axial ridges. Most offsets between the segments have migrated southward, but within the past 1 m.y. the largest of them (with 14 27 km of lateral displacement) have shown “dueling” behavior, with short-lived reversals in migration direction. Migration involves propagation of a spreading axis into abyssal hill terrain, which is deformed and uplifted while it occupies the

  13. Controls on Explosive Eruptions along the Pacific-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Lewis, M.; Asimow, P. D.; Lund, D. C.

    2016-12-01

    Sediment core OC170-26-159 was retrieved at 38.967°S, 111.35°W, a location that was 8-9km away from the Pacific-Antarctic Ridge (PAR) axis at the time of Glacial Termination II (T-II), 130ka, a period characterized by enhanced flux of hydrothermal metals to the near-ridge sediments on the East Pacific Rise (Lund et. al. 2016). An interval of enhanced Ti content in OC170-26-159 during T-II is rich in basaltic glass shards that we interpret to be the products of explosive submarine volcanic eruptions. Explosive eruptions of this scale are rare at mid-ocean ridges, so we studied the glass to evaluate whether sea level driven modulation in magmatic flux might be related to the frequency of such events though emplacement of distinct compositions or volatile contents. We report major element and volatile content data for the basaltic glasses and compare the results to literature data (PetDB) from on-axis sampling of the nearest ridge segment, to assess whether the glass was derived from the ridge axis and if it is unusual compared to the axial samples. Major element compositional data show that the glasses are a nearly homogenous population (MgO 5.8 to 6.5%). The heterogeneity is similar to that in single flows in Iceland (Maclennan et. al. 2003) and Hawaii (Garcia et. al. 2000), but the shards are dispersed across a gradient in δ18O, suggesting a closely spaced series of similar eruptions. The glasses are more evolved than any effusively erupted basalts on the PAR, yet are consistent with the same liquid line of descent, linking the explosive products to the axial magmatic system. The MELTS thermodynamic model allows us to calculate the changes in multiple variables along the liquid line of descent between the axial and explosive liquid compositions. Comparison of H2O and CO2 contents to those from axial flows will constrain whether variations in these components are related to eruption styles. These results will constrain the connection between sea level driven

  14. Alveolar ridge expansion-assisted orthodontic space closure in the mandibular posterior region

    PubMed Central

    Akdeniz, Berat Serdar; Sumer, Mahmut

    2013-01-01

    Orthodontic closure of old, edentulous spaces in the mandibular posterior region is a major challenge. In this report, we describe a method of orthodontic closure of edentulous spaces in the mandibular posterior region accelerated by piezoelectric decortication and alveolar ridge expansion. Combined piezosurgical and orthodontic treatments were used to close 14- and 15-mm-wide spaces in the mandibular left and right posterior areas, respectively, of a female patient, aged 18 years and 9 months, diagnosed with skeletal Class III malocclusion, hypodontia, and polydiastemas. After the piezoelectric decortication, segmental and full-arch mechanics were applied in the orthodontic phase. Despite some extent of root resorption and anchorage loss, the edentulous spaces were closed, and adequate function and esthetics were regained without further restorative treatment. Alveolar ridge expansion-assisted orthodontic space closure seems to be an effective and relatively less-invasive treatment alternative for edentulous spaces in the mandibular posterior region. PMID:24396740

  15. Unusual Rocks of the Yap Ridge - Metamorphosed Basal Cumulates of an Arc ?

    NASA Astrophysics Data System (ADS)

    Hawkins, J. W.; Castillo, P. R.; Batiza, R.

    2002-12-01

    The 8 to 9 km deep Yap trench, and adjacent Yap Ridge, extend from the southwest end of the Mariana Trench near 11o N, to near 7o 15' N where the trench swings west to intersect the Palau Trench. Unlike other western Pacific subduction systems, the Yap Ridge rises directly from the trench, it has no forearc, neither a remnant nor active volcanic arc, and no inclined seismic zone. The few seismic events recorded are mainly < 70 km depth. Yap Ridge crest depths range from 2.5 km to emergent; there are no emergent volcanoes. Rocks from the islands Yap and Map, are mainly strongly schistose, amphibole-rich, mafic and ultramafic rocks. Metamorphic lineations, and meter-sized mullions having lenticular cross-sections, define inclined (15o southerly dip) tectonic transport. Yap and Map schists are in greenschist facies (actinolite - chlorite - Na-plagioclase, rare titanite and epidote). Talc - tremolite schists, serpentinite, and chlorite-pyroxenite are less common. Small areas of altered andesite are present; quartz diorite and hornblende-rich gabbro occur as clasts in breccias, bomb craters yielded fragments of basalt and diabase. Scattered blankets of laterite several meters thick, and jungle, obscure many details. Deeper crustal rocks exposed on inner wall of Yap Trench, (5 - 2.5 km depths) include amphibolite (Al-hornblende-andesine-titanite) interlayered with calcite- diopside - grossularite marble, and calc-silicate gneisses. Rocks dredged from Yap Ridge include metabasite similar toYap schists, island arc tholeiite series basalt, basaltic andesite, and 2-PX gabbro. These have late Miocene ages (Beccaluva et al., AGU Mon. 23, 1980). Assuming isochemical behavior for immobile elements, protolith for mafic and ultramafic schists had high Mg# (52-83), CaO/Al2O3 0.7-6, Cr 288-1490, Ni 64-609, Zr 13-145, Y 3-28 (ppm).These data suggest picrite, high-Mg basalt, boninite, or OL-PX rich ultramafic cumulates as parents. REE data, e.g. negative slope and (La/Sm)N 0

  16. Fine-Branched Ridges

    NASA Image and Video Library

    2015-10-14

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows numerous branching ridges with various degrees of sinuosity. These branching forms resemble tributaries funneling and draining into larger channel trunks towards the upper portion of the scene. The raised relief of these branching ridges suggests that these are ancient channels are inverted due to lithification and cementation of the riverbed sediment, which made it more resistant to erosion than the surrounding material. Wind-blown bedforms are abundant and resemble small ridges that are aligned in an approximately north-south direction. http://photojournal.jpl.nasa.gov/catalog/PIA20006

  17. Contextual view of Point Bonita Ridge, showing Bonita Ridge access ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of Point Bonita Ridge, showing Bonita Ridge access road retaining wall and location of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation (see stake at center left), camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  18. Changing characteristics of arctic pressure ridges

    NASA Astrophysics Data System (ADS)

    Wadhams, Peter; Toberg, Nick

    2012-04-01

    The advent of multibeam sonar permits us to obtain full three-dimensional maps of the underside of sea ice. In particular this enables us to distinguish the morphological characteristics of first-year (FY) and multi-year (MY) pressure ridges in a statistically valid way, whereas in the past only a small number of ridges could be mapped laboriously by drilling. In this study pressure ridge distributions from two parts of the Arctic Ocean are compared, in both the cases using mainly data collected by the submarine “Tireless” in March 2007 during two specific grid surveys, in the Beaufort Sea at about 75° N, 140° W (N of Prudhoe Bay), and north of Ellesmere Island at about 83° 20‧ N, 64° W. In the Beaufort Sea the ice was mainly FY, and later melted or broke up as this area became ice-free during the subsequent summer. N of Ellesmere Island the ice was mainly MY. Ridge depth and spacing distributions were derived for each region using the boat's upward looking sonar, combined with distributions of shapes of the ridges encountered, using the Kongsberg EM3002 multibeam sonar. The differing shapes of FY and MY ridges are consistent with two later high-resolution multibeam studies of specific ridges by AUV. FY ridges are found to fit the normal triangular shape template in cross-section (with a range of slope angles averaging 27°) with a relatively constant along-crest depth, and often a structure of small ice blocks can be distinguished. MY ridges, however, are often split into a number of independent solid, smooth blocks of large size, giving an irregular ridge profile which may be seemingly without linearity. Our hypothesis for this difference is that during its long lifetime an MY ridge is subjected to several episodes of crack opening; new cracks in the Arctic pack often run in straight lines across the ridges and undeformed ice alike. Such a crack will open somewhat before refreezing, interpolating a stretch of thin ice into the structure, and breaking up

  19. Seismotectonics of the Lwandle-Nubia plate boundary between South Africa and the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Hartnady, Chris; Okal, Emile; Calais, Eric; Stamps, Sarah; Saria, Elifuraha

    2013-04-01

    The Lwandle (LW) plate shares a boundary with the Nubia (NU) plate, extending from a diffuse triple junction with the Rovuma plate in Southern Mozambique to a triple junction with the Antarctic plate along a segment of the Southwest Indian Ridge (SWIR). The LW-NU boundary terminates in the ~750 km-long, complex transform of the Andrew Bain Fracture Zone (ABFZ), but its exact locus is still unclear. Recent works locate it along the eastern boundary of the submarine Mozambique Ridge, parallel to the pre-existing, oceanic transform-fault fabric. However, an early concept of the LW block ('ambiguous region' of Hartnady, 1990, Fig. 2) indicates a more westerly trajectory in the north that includes parts of South Africa, with a southerly extension across old oceanic crust of the submarine Natal Valley and Transkei Basin. This proposed boundary is marked by several, aligned epicentres of moderate to strong earthquakes (1941, 1942, 1956, 1969, 1972, 1975, 1981 and 1989). Our re-examination of seismographic records from the 1975 'intraplate' earthquake (-37.62°N, 30.98°E, mb5.0), in the oceanic crust of the distal Transkei Basin, shows a thrust-faulting focal mechanism along a nodal plane striking N272°E. The largest (ML4.2) of a series of three small earthquakes in the Natal Valley in 2009, close to a zone of recent seafloor deformation mapped in 1992, has similar first-motion patterns at Southern African seismograph stations. When the 1975 slip-vector result (N173°E) is combined with a normal-faulting slip vector (N078°E) from a 1986 onland earthquake (-30.53°N, 28.84°E, mb5.0) near the Lesotho-KZN border, and both are incorporated into the wider data-set previously used to solve for East African Rift kinematics, they produce a LW-NU rotation pole that is located south of Africa, near the Agulhas Plateau, and approximately 950 km from the Natal Valley deformation zone. The modeled low rate of right-lateral, LW-NU slip (~0.50-0.75 mm/yr) across this LW-NU boundary

  20. Variational Ridging in Sea Ice Models

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  1. Formation of the insect head involves lateral contribution of the intercalary segment, which depends on Tc-labial function.

    PubMed

    Posnien, Nico; Bucher, Gregor

    2010-02-01

    The insect head is composed of several segments. During embryonic development, the segments fuse to form a rigid head capsule where obvious segmental boundaries are lacking. Hence, the assignment of regions of the insect head to specific segments is hampered, especially with respect to dorsal (vertex) and lateral (gena) parts. We show that upon Tribolium labial (Tc-lab) knock down, the intercalary segment is deleted but not transformed. Furthermore, we find that the intercalary segment contributes to lateral parts of the head cuticle in Tribolium. Based on several additional mutant and RNAi phenotypes that interfere with gnathal segment development, we show that these segments do not contribute to the dorsal head capsule apart from the dorsal ridge. Opposing the classical view but in line with findings in the vinegar fly Drosophila melanogaster and the milkweed bug Oncopeltus fasciatus, we propose a "bend and zipper" model for insect head capsule formation.

  2. Segmentation and clustering as complementary sources of information

    NASA Astrophysics Data System (ADS)

    Dale, Michael B.; Allison, Lloyd; Dale, Patricia E. R.

    2007-03-01

    This paper examines the effects of using a segmentation method to identify change-points or edges in vegetation. It identifies coherence (spatial or temporal) in place of unconstrained clustering. The segmentation method involves change-point detection along a sequence of observations so that each cluster formed is composed of adjacent samples; this is a form of constrained clustering. The protocol identifies one or more models, one for each section identified, and the quality of each is assessed using a minimum message length criterion, which provides a rational basis for selecting an appropriate model. Although the segmentation is less efficient than clustering, it does provide other information because it incorporates textural similarity as well as homogeneity. In addition it can be useful in determining various scales of variation that may apply to the data, providing a general method of small-scale pattern analysis.

  3. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian

    2018-06-01

    Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.

  4. Thoracoscopic stapler-based "bidirectional" segmentectomy for posterior basal segment (S10) and its variants.

    PubMed

    Sato, Masaaki; Murayama, Tomonori; Nakajima, Jun

    2018-04-01

    Thoracoscopic segmentectomy for the posterior basal segment (S10) and its variant (e.g., S9+10 and S10b+c combined subsegmentectomy) is one of the most challenging anatomical segmentectomies. Stapler-based segmentectomy is attractive to simplify the operation and to prevent post-operative air leakage. However, this approach makes thoracoscopic S10 segmentectomy even more tricky. The challenges are caused mostly from the following three reasons: first, similar to other basal segments, "three-dimensional" stapling is needed to fold a cuboidal segment; second, the belonging pulmonary artery is not directly facing the interlobar fissure or the hilum, making identification of target artery difficult; third, the anatomy of S10 and adjacent segments such as superior (S6) and medial basal (S7) is variable. To overcome these challenges, this article summarizes the "bidirectional approach" that allows for solid confirmation of anatomy while avoiding separation of S6 and the basal segment. To assist this approach under limited thoracoscopic view, we also show stapling techniques to fold the cuboidal segment with the aid of "standing stiches". Attention should also be paid to the anatomy of adjacent segments particularly that of S7, which tends to be congested after stapling. The use of virtual-assisted lung mapping (VAL-MAP) is also recommended to demark resection lines because it flexibly allows for complex procedures such as combined subsegmentectomy such as S10b+c, extended segmentectomy such as S10+S9b, and non-anatomically extended segmentectomy.

  5. Contrasted hydrothermal activity along the South-East Indian Ridge (130°E-140°E): From crustal to ultramafic circulation

    NASA Astrophysics Data System (ADS)

    Boulart, Cédric; Briais, Anne; Chavagnac, Valérie; Révillon, Sidonie; Ceuleneer, Georges; Donval, Jean-Pierre; Guyader, Vivien; Barrere, Fabienne; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès.; Merkuryev, Sergey; Park, Sung-Hyun; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok

    2017-07-01

    Using a combined approach of seafloor mapping, MAPR and CTD survey, we report evidence for active hydrothermal venting along the 130°-140°E section of the poorly-known South-East Indian Ridge (SEIR) from the Australia-Antarctic Discordance (AAD) to the George V Fracture Zone (FZ). Along the latter, we report Eh and CH4 anomalies in the water column above a serpentinite massif, which unambiguously testify for ultramafic-related fluid flow. This is the first time that such circulation is observed on an intermediate-spreading ridge. The ridge axis itself is characterized by numerous off-axis volcanoes, suggesting a high magma supply. The water column survey indicates the presence of at least ten distinct hydrothermal plumes along the axis. The CH4:Mn ratios of the plumes vary from 0.37 to 0.65 denoting different underlying processes, from typical basalt-hosted to ultramafic-hosted high-temperature hydrothermal circulation. Our data suggest that the change of mantle temperature along the SEIR not only regulates the magma supply, but also the hydrothermal activity. The distribution of hydrothermal plumes from a ridge segment to another implies secondary controls such as the presence of fractures and faults along the axis or in the axial discontinuities. We conclude from these results that hydrothermal activity along the SEIR is controlled by magmatic processes at the regional scale and by the tectonics at the segment scale, which influences the type of hydrothermal circulation and leads to various chemical compositions. Such variety may impact global biogeochemical cycles, especially in the Southern Ocean where hydrothermal venting might be the only source of nutrients.

  6. Late Holocene forest dynamics, volcanism, and climate change at Whitewing Mountain and San Joaquin Ridge, Mono County, Sierra Nevada, CA, USA

    Treesearch

    Constance I. Millar; John C. King; Robert D. Westfall; Harry A. Alden; Diane L. Delany

    2006-01-01

    Deadwood tree stems scattered above treeline on tephra-covered slopes of Whitewing Mtn (3051 m) and San Joaquin Ridge (3122 m) show evidence of being killed in an eruption from adjacent Glass Creek Vent, Inyo Craters. Using tree-ring methods, we dated deadwood to AD 815-1350 and infer from death dates that the eruption occurred in late summer AD 1350. Based on wood...

  7. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    USGS Publications Warehouse

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  8. Fishing along the Clinch River arm of Watts Bar reservoir adjacent to the Oak Ridge Reservation, Tennessee: behavior, knowledge and risk perception.

    PubMed

    Rouse Campbell, Kym; Dickey, Richard J; Sexton, Richard; Burger, Joanna

    2002-11-01

    Catching and eating fish is usually viewed as a fun, healthy and safe activity. However, with continuing increases in fish consumption advisories due to the contamination of our environment, anglers have to decide whether or not to eat the fish they catch. The Clinch River arm of Watts Bar Reservoir is under a fish consumption advisory because of elevated PCB concentrations in striped bass (Morone saxatilis), catfish (Ictalurus spp.) and sauger (Stizostedion canadense) due in part from contaminants released from the US Department of Energy's (USDOE's) Oak Ridge Reservation (ORR) in East Tennessee. To obtain information about the demographics, fishing behavior, knowledge, fish consumption and risk perception of anglers, a survey was conducted of 202 people actively fishing either on land or by boat along the Clinch River arm of Watts Bar Reservoir adjacent to the ORR from Melton Hill Dam to the Poplar Creek confluence or on Poplar Creek within ORR boundaries from mid-March to early November 2001. Even though 81% of people interviewed knew about the fish consumption advisories for the study area, 48% of them thought the fish were safe to eat, while 38% ate the fish that they caught from the study area. Approximately 36% of anglers who had knowledge of the fish consumption warnings ate fish from the study area. Providing confirmation that people fish for many reasons, 35% of anglers interviewed did not eat fish at all. The majority of anglers interviewed knew about the fish consumption advisories because of the signs posted throughout the study area. However, few people knew the correct fish advisories. Significantly fewer blacks had knowledge of the fish consumption warnings than whites. Information resulting from this study could be used to design a program with the objective of reaching the people who may be most at risk from eating fish caught from the Clinch River arm of Watts Bar Reservoir.

  9. Ridge Jumps Associated with Plume-Ridge Interaction 1: Off-axis Heating due to Lithospheric Magma Penetration

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2005-12-01

    In many hot spot-ridge systems, changes in the ridge axis geometry occur between the hot spot centers and nearby mid-ocean ridges in the form of ridge jumps. Such ridge jumps likely occur as a result of anomalous lithospheric stresses associated with mantle plume-lithosphere interaction, as well as weakening of the hot spot lithosphere due to physical and thermal thinning caused by rising buoyant asthenosphere and magma transport through the lithosphere. In this study, we use numerical models to quantify the effects of excess magmatism through the near-ridge lithosphere. Hot spot magmatism can weaken the lithosphere both mechanically through fracturing and thermally through conduction and advection of heat into the plate. Here we focus on the effects of thermal weakening. Using a plane-strain approximation, we examine deformation in a 2-D cross section of a visco-elastic-plastic lithosphere with the finite element code FLAC. The model has isothermal top and bottom boundaries and a prescribed velocity equal to the half spreading rate is imposed on the sides to drive seafloor spreading. The initial condition, as predicted for normal mid-ocean ridges, is a square root of lithospheric age cooling curve with a corner flow velocity field symmetric about the ridge axis. A range of heat inputs are introduced at various plate ages and spreading rates to simulate off-axis magma transport. To reveal the physical conditions that allow for a ridge jump and control its timing, we vary 4 parameters: spreading rate, lithospheric age, crustal thickness and heat input. Results indicate that the heating rate required to produce a ridge jump increases as a function of lithospheric age at the location of magma intrusion. The time necessary for a ridge jump to develop in lithosphere of a particular age decreases with increasing crustal thicknesses. For magma fluxes comparable to those estimated for Galapagos and Iceland, lithospheric heating by the penetrating magma alone is sufficient

  10. A seismic gap along an accreting plate boundary : Example of the Djibouti Ridge, Afar, East Africa

    NASA Astrophysics Data System (ADS)

    Ruegg, Jean-Claude; Lépine, Jean-Claude

    1983-05-01

    A segment of the Gulf of Tadjoura (Djibouti, East-Africa) accreting plate boundary, shows a period of quiescence in the seismic activity since 1974. This segment corresponds to the extension area of the aftershock activity that has occured after a cluster of magnitude 5.5 earthquakes in April 1973. From this example we propose that the seismic gap concept can be extended to moderate earthquakes occuring at extensional plate boundaries. The magnitude of the largest earthquakes at the spreading axis is limited by the size of the rupture length and by the strength of the brittle lithosphere. In the case of the Djibouti ridge recurrence time of 10-20 years are found for earthquakes of about M =6.

  11. 27 CFR 9.182 - Ribbon Ridge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Ribbon Ridge. (a) Name. The name of the viticultural area described in this section is “Ribbon Ridge.” (b) Approved Maps. The appropriate maps used to determine the boundaries of the Ribbon Ridge viticultural area... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ribbon Ridge. 9.182...

  12. 27 CFR 9.182 - Ribbon Ridge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Ribbon Ridge. (a) Name. The name of the viticultural area described in this section is “Ribbon Ridge.” (b) Approved Maps. The appropriate maps used to determine the boundaries of the Ribbon Ridge viticultural area... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ribbon Ridge. 9.182...

  13. Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2012-12-01

    Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).

  14. Long-term effects of vertebroplasty: adjacent vertebral fractures.

    PubMed

    Baroud, Gamal; Vant, Christianne; Wilcox, Ruth

    2006-01-01

    In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre

  15. Difference of the seismic structure between the Hyuga-nada and the Nankai seismogenic segments

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2010-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. In the Hyuga-nada region, interplate earthquakes of M~7 occur repeatedly at intervals of about 20 years whereas no megathrust (M > 8) earthquakes had been recognized up to now. However, recent studies show the possibility of simultaneous rupture of the Tokai, Tonankai, Nankai and Hyuga-nada segments was also pointed out [e.g., Hori et al., 2009 AOGS]. To understand the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a wide-angle active source survey and local seismic observation in the western end of the Nankai seismogenic zone, as a part of Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Nakanishi et al [2009, AGU] showed that subducting Philippine Sea Plate can be divided into three zones and there is the zone of the thin oceanic crust of the subducting Philippine Sea Plate between Nankai segment and Kyushu-Palau Ridge segment by analyzing of the active source survey. Deep structure of the subducting slab is also important to consider the possibility of the seismic linkage and the location of the boundary among three zones described above. To obtain the deep seismic image, we performed a three-dimensional seismic tomography using the local seismic data recorded on 158 ocean bottom seismographs and 105 land seismic stations. From these data, we could detect 1141 earthquakes in the Hyuga-nada region. From the result of hypocenter relocation, microseismicity near the trough axis is active on the western part of the ‘thin oceanic crust’, whereas inactive on the eastern part. Besides, velocity structure of the

  16. Ridges and tidal stress on Io

    USGS Publications Warehouse

    Bart, G.D.; Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; Greenberg, R.

    2004-01-01

    Sets of ridges of uncertain origin are seen in twenty-nine high-resolution Galileo images, which sample seven locales on Io. These ridges are on the order of a few kilometers in length with a spacing of about a kilometer. Within each locale, the ridges have a consistent orientation, but the orientations vary from place to place. We investigate whether these ridges could be a result of tidal flexing of Io by comparing their orientations with the peak tidal stress orientations at the same locations. We find that ridges grouped near the equator are aligned either north-south or east-west, as are the predicted principal stress orientations there. It is not clear why particular groups run north-south and others east-west. The one set of ridges observed far from the equator (52?? S) has an oblique azimuth, as do the tidal stresses at those latitudes. Therefore, all observed ridges have similar orientations to the tidal stress in their region. This correlation is consistent with the hypothesis that tidal flexing of Io plays an important role in ridge formation. ?? 2004 Elsevier Inc. All rights reserved.

  17. Two Vent Fields Discovered at the Ultraslow Spreading Arctic Ridge System

    NASA Astrophysics Data System (ADS)

    Pedersen, R. B.; Thorseth, I. H.; Hellevang, B.; Schultz, A.; Taylor, P.; Knudsen, H. P.; Steinsbu, B. O.

    2005-12-01

    Two high-temperature vent fields were discovered at the Mohns Ridge during an expedition with the Norwegian research vessel "G.O. Sars" in July 2005. Both vent fields are located within the southernmost segment of the Mohns Ridge approximately 50 km north of the West Jan Mayen Fracture Zone. Water depths along this segment range from 3800 meters close to the fracture zone to ~500 meters at the segment centre where the vent fields are located. The largest field - named "Gallionella Garden" - is situated within a rift graben where high- and low-temperature venting occurs along ridge-parallel normal faults and fissures. Presently we have documented high- and low-temperature venting along more then 2 km of the fault and fissure system in the area. The high-temperature venting takes place at around 550 mbsl at the base of a 100 meter high fault wall and was traced ~500 meters along strike. The field consists of at least 10 major vent sites, each composed of multiple chimneys that are up to 5-10 meters tall. There are also large areas of diffuse flow. The temperature of the vent fluids was measured to be above 260°C at a chimney orifice. This is at the boiling point of seawater at these water depths, and gas bubbling was observed at several of the vent sites. A sample of the top of a chimney consists of anhydrite, barite, sphalerite and pyrite. Outside the high-temperature vent area mounds of ferric iron are abundant. Such deposits have presently been traced along ~2 km of the faults and fissure system in the area. The deposits are predominantly made up of branching and twisted stalks comparable to those formed by the iron oxidizing bacteria Gallionella ferruginea showing that the precipitation is mediated by microbial activity. The temperatures below the upper crust of a mound were measured to be one degree above the ambient water temperature. The Fe-oxyhydroxides show Nd-isotope compositions similar to the basaltic crust and Sr-isotope compositions close to that of

  18. Split-remerge method for eliminating processing window artifacts in recursive hierarchical segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Inventor)

    2010-01-01

    A method, computer readable storage, and apparatus for implementing recursive segmentation of data with spatial characteristics into regions including splitting-remerging of pixels with contagious region designations and a user controlled parameter for providing a preference for merging adjacent regions to eliminate window artifacts.

  19. Surgical results of dynamic nonfusion stabilization with the Segmental Spinal Correction System for degenerative lumbar spinal diseases with instability: Minimum 2-year follow-up

    PubMed Central

    Ohta, Hideki; Matsumoto, Yoshiyuki; Morishita, Yuichirou; Sakai, Tsubasa; Huang, George; Kida, Hirotaka; Takemitsu, Yoshiharu

    2011-01-01

    Background When spinal fusion is applied to degenerative lumbar spinal disease with instability, adjacent segment disorder will be an issue in the future. However, decompression alone could cause recurrence of spinal canal stenosis because of increased instability on operated segments and lead to revision surgery. Covering the disadvantages of both procedures, we applied nonfusion stabilization with the Segmental Spinal Correction System (Ulrich Medical, Ulm, Germany) and decompression. Methods The surgical results of 52 patients (35 men and 17 women) with a minimum 2-year follow-up were analyzed: 10 patients with lumbar spinal canal stenosis, 15 with lumbar canal stenosis with disc herniation, 20 with degenerative spondylolisthesis, 6 with disc herniation, and 1 with lumbar discopathy. Results The Japanese Orthopaedic Association score was improved, from 14.4 ± 5.3 to 25.5 ± 2.8. The improvement rate was 76%. Range of motion of the operated segments was significantly decreased, from 9.6° ± 4.2° to 2.0° ± 1.8°. Only 1 patient had adjacent segment disease that required revision surgery. There was only 1 screw breakage, but the patient was asymptomatic. Conclusions Over a minimum 2-year follow-up, the results of nonfusion stabilization with the Segmental Spinal Correction System for unstable degenerative lumbar disease were good. It is necessary to follow up the cases with a focus on adjacent segment disorders in the future. PMID:25802671

  20. Structure, distribution, and evolution history of the Early Holocene erosional mud ridge system on the inner East China Sea shelf near the Yangtze River estuary

    NASA Astrophysics Data System (ADS)

    Feng, Zhibing; Liu, Baohua; Zhao, Yuexia; Li, Xishuang; Dada, Olusegun A.; Jiang, Li; Si, Shaokun

    2017-04-01

    Utilizing the collected high-resolution seismic dataset and accompanying borehole and bathymetric data, we systematically evaluated the morphology, architecture, sedimentology, and evolution of erosional mud ridges within the inner East China Sea (ECS) shelf. We identified 20 mud ridges, i.e., seismic reflection profile crossings of exposed or buried mud ridges, which are 3.0-30.1 km in width and 2.5-17.3 m in height. The mud ridges are composed predominantly of gray clayey silt, and on seismic profiles contain parallel to subparallel reflectors. They formed around 10-12 ka BP within an estuarine environment. Scouring features of some mud ridges on the eastern part of the study area can be recognized. Consideration of the relative positions of mud ridges, together with the topographical features, enables us to map four linear mud ridges (LMRs). The SE-NW oriented LMRs are > 50 km in length, 3.0-9.5 km in width and running parallel to each other. They also display asymmetric shapes, with steeper slopes to the SW. The eastern segments of some LMRs are exposed on the present seafloor whereas other segments are mainly overlain by the mid- and late Holocene strata. Since the LMRs share similarities with the modern tidal sand ridges in shape and orientation, we hypothesize that they are formed under a uniform tidal current. Seismic data highlight that the internal reflectors of sand ridges consist of dipping clinoforms and are significantly different from LMRs, a feature which is largely due to the difference in grain-size composition of sediments between the inner and mid-outer ECS shelf. The mid- to outer ECS shelf is capped by coarser-grained sediments (i.e., medium to fine-grained), which were reworked and deposited at locations near the erosional areas under a polycyclic tidal current, thus forming multiphase sand ridges. However, fine-grained sediments (i.e., silty clay and clayey silt) overlain on the inner ECS shelf with light mass were carried far away from the

  1. Thoracoscopic stapler-based “bidirectional” segmentectomy for posterior basal segment (S10) and its variants

    PubMed Central

    Murayama, Tomonori; Nakajima, Jun

    2018-01-01

    Thoracoscopic segmentectomy for the posterior basal segment (S10) and its variant (e.g., S9+10 and S10b+c combined subsegmentectomy) is one of the most challenging anatomical segmentectomies. Stapler-based segmentectomy is attractive to simplify the operation and to prevent post-operative air leakage. However, this approach makes thoracoscopic S10 segmentectomy even more tricky. The challenges are caused mostly from the following three reasons: first, similar to other basal segments, “three-dimensional” stapling is needed to fold a cuboidal segment; second, the belonging pulmonary artery is not directly facing the interlobar fissure or the hilum, making identification of target artery difficult; third, the anatomy of S10 and adjacent segments such as superior (S6) and medial basal (S7) is variable. To overcome these challenges, this article summarizes the “bidirectional approach” that allows for solid confirmation of anatomy while avoiding separation of S6 and the basal segment. To assist this approach under limited thoracoscopic view, we also show stapling techniques to fold the cuboidal segment with the aid of “standing stiches”. Attention should also be paid to the anatomy of adjacent segments particularly that of S7, which tends to be congested after stapling. The use of virtual-assisted lung mapping (VAL-MAP) is also recommended to demark resection lines because it flexibly allows for complex procedures such as combined subsegmentectomy such as S10b+c, extended segmentectomy such as S10+S9b, and non-anatomically extended segmentectomy. PMID:29785292

  2. Sparse intervertebral fence composition for 3D cervical vertebra segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yang, Jian; Song, Shuang; Cong, Weijian; Jiao, Peifeng; Song, Hong; Ai, Danni; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Statistical shape models are capable of extracting shape prior information, and are usually utilized to assist the task of segmentation of medical images. However, such models require large training datasets in the case of multi-object structures, and it also is difficult to achieve satisfactory results for complex shapes. This study proposed a novel statistical model for cervical vertebra segmentation, called sparse intervertebral fence composition (SiFC), which can reconstruct the boundary between adjacent vertebrae by modeling intervertebral fences. The complex shape of the cervical spine is replaced by a simple intervertebral fence, which considerably reduces the difficulty of cervical segmentation. The final segmentation results are obtained by using a 3D active contour deformation model without shape constraint, which substantially enhances the recognition capability of the proposed method for objects with complex shapes. The proposed segmentation framework is tested on a dataset with CT images from 20 patients. A quantitative comparison against corresponding reference vertebral segmentation yields an overall mean absolute surface distance of 0.70 mm and a dice similarity index of 95.47% for cervical vertebral segmentation. The experimental results show that the SiFC method achieves competitive cervical vertebral segmentation performances, and completely eliminates inter-process overlap.

  3. A comprehensive segmentation analysis of crude oil market based on time irreversibility

    NASA Astrophysics Data System (ADS)

    Xia, Jianan; Shang, Pengjian; Lu, Dan; Yin, Yi

    2016-05-01

    In this paper, we perform a comprehensive entropic segmentation analysis of crude oil future prices from 1983 to 2014 which used the Jensen-Shannon divergence as the statistical distance between segments, and analyze the results from original series S and series begin at 1986 (marked as S∗) to find common segments which have same boundaries. Then we apply time irreversibility analysis of each segment to divide all segments into two groups according to their asymmetry degree. Based on the temporal distribution of the common segments and high asymmetry segments, we figure out that these two types of segments appear alternately and do not overlap basically in daily group, while the common portions are also high asymmetry segments in weekly group. In addition, the temporal distribution of the common segments is fairly close to the time of crises, wars or other events, because the hit from severe events to oil price makes these common segments quite different from their adjacent segments. The common segments can be confirmed in daily group series, or weekly group series due to the large divergence between common segments and their neighbors. While the identification of high asymmetry segments is helpful to know the segments which are not affected badly by the events and can recover to steady states automatically. Finally, we rearrange the segments by merging the connected common segments or high asymmetry segments into a segment, and conjoin the connected segments which are neither common nor high asymmetric.

  4. The Taitao Granites: I-type granites formed by subduction of the Chile Ridge and its implication in growth of continental crusts

    NASA Astrophysics Data System (ADS)

    Anma, Ryo

    2016-04-01

    Late Miocene to Early Pliocene granite plutons are exposed at the tip of the Taitao peninsula, the westernmost promontory of the Chilean coast, together with a contemporaneous ophiolite with a Penrose-type stratigraphy. Namely, the Taitao granites and the Taitao ohiolite, respectively, are located at ~30 km southeast of the Chile triple junction, where a spreading center of the Chile ridge system is subducting underneath the South America plate. This unique tectonic setting provides an excellent opportunity to study the generation processes of granitic magmas at a ridge subduction environment, and the complex magmatic interactions between the subducting ridge, overlying crust and sediments, and mantle. This paper reviews previous studies on the Taitao ophiolite/granite complex and use geochemical data and U-Pb age distributions of zircons separated from igneous and sedimentary rocks from the area to discuss the mechanism that formed juvenile magma of calc-alkaline I-type granites during ridge subduction. Our model implies that the magmas of the Taitao granites formed mainly due to partial melting of hot oceanic crust adjacent to the subducting mid-oceanic ridge that has been under influence of deep crustal contamination and/or metasomatized sub-arc mantle through slab window. The partial melting took place under garnet-free-amphibolite conditions. The juvenile magmas then incorporated a different amount of subducted sediments to form the I-type granites with various compositions. The Taitao granites provide an ideal case study field that shows the processes to develop continental crusts out of oceanic crusts through ridge subduction.

  5. St Paul fracture zone intratransform ridge basalts (Equatorial Atlantic): Insight within the mantle source diversity

    NASA Astrophysics Data System (ADS)

    Hemond, C.; Brunelli, D.; Maia, M.; Prigent, S.; Sichel, S. E.

    2017-12-01

    The St Paul Transform System offsets by 630 km the Equatorial Mid Atlantic Ridge at 1° N. It consists of four Major faults separating three intra transform ridge axes. Volcanic glassy samples were collected inside two intratransform ridge (ITR) segments during the COLMEIA cruise (Maia et al ; 2016) and samples from the third ITR available from a previous cruise ST PAUL (Hékinian et al. 2000). Major, trace elements and Hf, Pb, Sr and Nd isotopes were determined on selected hand picked glass chips. Few glassy samples recovered and analysed from abyssal hill samples open a time window of about 4.5 million years in the chemistry of the northern ITR. Results show that all samples are basaltic in composition but trace elements display contrasting images for the three ITR. The northern ITR samples are all light REE and highly incompatible enriched and are E-MORB; the central ITR samples display rather flat REE pattern with a level on enrichment of the HREE higher than the other two ITR and are T-MORB. Southern ITR samples are more heterogeneous N-MORB to T-MORB with a lower level of HREE. Isotopes reveal that the ITRs sample distinct mantle sources. In various isotope plans, the northern ITR samples plot together with published results from the MAR directly north of the St Paul F.Z. Therefore they exhibit some flavor of the Sierra Leone hotspot interacting with the MAR at 1.7°N. Central and southern ITR samples have very distinct composition from the northern ITR but resemble each other. However, for identical 206Pb/204Pb ratios, central ITR has slightly but significantly higher 207Pb/204Pb and 208Pb/204Pb, also higher 143Nd/144Nd for a given 87Sr/86Sr. Southern ITR is in chemical continuity of the MAR southward. So that central ITR samples display a rather specific composition. Off axis samples corresponding to the activity of the northern ITR up to 4.6 m.y. show that the hotspot contribution was even bigger on the spreading axis than today and might be fading with

  6. Ridge Regression Signal Processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  7. Sea ice ridging in the eastern Weddell Sea

    NASA Astrophysics Data System (ADS)

    Lytle, V. I.; Ackley, S. F.

    1991-10-01

    In August 1986, sea ice ridge heights and spatial frequency in the eastern Weddell Sea were measured using a ship-based acoustical sounder. Using a minimum ridge sail height of 0.75 m, a total of 933 ridges were measured along a track length of 415 km. The ridge frequency varied from 0.4 to 10.5 ridges km-1. The mean height of the ridges was found to be about 1.1 m regardless of the ridge frequency. These results are compared to other ridging statistics from the Ross Sea and found to be similar. Comparison with Arctic data, however, indicates that the height and frequency of the ridges are considerably less in the Weddell Sea than in the Arctic. Whereas in the Arctic the mean ridge height tends to increase with the ridge frequency, we found that this was not the case in the Weddell Sea, where the mean ridge height remained constant irrespective of the ridge frequency. Estimates of the contribution of deformed ice to the total ice thickness are generally low except for a single 53-km section where the ridge frequency increased by an order of magnitude. This resulted in an increase in the equivalent mean ice thickness due to ridging from 0.04 m in the less deformed areas to 0.45 m in the highly deformed section. These values were found to be consistent with values obtained from drilled profile lines during the same cruise.

  8. [Comparative study of N, P output and eutrophication risk in runoff water in cross ridge and longitudinal ridge].

    PubMed

    Yu, Xing-Xiu; Ma, Qian; Liu, Qian-Jin; Lü, Guo-An

    2011-02-01

    Field in-situ rainfall simulation tests with two rainfall intensities (40 mm x h(-1) and 70 mm x h(-1)), which were conducted at typical sloping cropland in Yimeng mountainous area, were designed to analyze the output characteristics of dissolved inorganic nitrogen, Inorganic-N (NO3(-)-N, NH4(+) -N) and dissolved phosphorus (DP) in runoff water, as well as to compare the eutrophication risk in this water by calculating three ratios of Inorganic-N/DP, NO3(-) -N/DP, and NH4(+)-N/DP, respectively, in cross ridge and longitudinal ridge tillage methods. Results showed that, under the same rainfall intensity, the DP level in runoff water was higher in cross ridge than longitudinal ridge, while the change of different Inorganic-N level between the two tillage methods were not consistent. Cross ridge could effectively reduce runoff and the output rate of Inorganic-N and DP when compared to the longitudinal ridge tillage, which would be more outstanding with the increases of rainfall intensities. The losses of Inorganic-N and DP in runoff water were 43% and 5% less, respectively, in cross ridge than longitudinal ridge at the 40 mm x h(-1) rainfall intensity, and were 68% and 55%, respectively, at 70 mm x h(-1). The higher Inorganic-N/DP and NO3(-) -N/DP ratios suggest that runoff water from either cross ridge or longitudinal ridge tillage have a certain eutrophication risk, which present an increasing trend during the precipitation-runoff process. Compared with longitudinal ridge, cross ridge can not only hinder the increasing trend of eutrophication risk, but also can significantly lower it, and thus effectively reduce the effect of sloping cropland runoff on the eutrophication processes of receiving waters.

  9. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ziyin; Jin, Xianglong; Zhou, Jieqiong; Zhao, Dineng; Shang, Jihong; Li, Shoujun; Cao, Zhenyi; Liang, Yuyang

    2017-06-01

    Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320-200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.

  10. Detachment Fault Behavior Revealed by Micro-Seismicity at 13°N, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; Sohn, R. A.; MacLeod, C. J.; Peirce, C.; Reston, T. J.; Searle, R. C.

    2016-12-01

    Under certain tectono-magmatic conditions, crustal accretion and extension at slow-spreading mid-ocean ridges is accommodated by low-angle detachment faults. While it is now generally accepted that oceanic detachments initiate on steeply dipping faults that rotate to low-angles at shallow depths, many details of their kinematics remain unknown. Debate has continued between a "continuous" model, where a single, undulating detachment surface underlies an entire ridge segment, and a "discrete" (or discontinuous) model, where detachments are spatially restricted and ephemeral. Here we present results from a passive microearthquake study of detachment faulting at the 13°N region of the Mid-Atlantic Ridge. This study is one component of a joint US-UK seismic study to constrain the sub-surface structure and 3-dimensional geometry of oceanic detachment faults. We detected over 300,000 microearthquakes during a 6-month deployment of 25 ocean bottom seismographs. Events are concentrated in two 1-2 km wide ridge-parallel bands, located between the prominent corrugated detachment fault surface at 13°20'N and the present-day spreading axis, separated by a 1-km wide patch of reduced seismicity. These two bands are 7-8 km in length parallel to the ridge and are clearly limited in spatial extent to the north and south. Events closest to the axis are generally at depths of 6-8 km, while those nearest to the oceanic detachment fault are shallower, at 4-6 km. There is an overall trend of deepening seismicity northwards, with events occurring progressively deeper by 4 km over an along-axis length of 8 km. Events are typically very small, and range in local magnitude from ML -1 to 3. Focal mechanisms indicate two modes of deformation, with extension nearest to the axis and compression at shallower depths near to the detachment fault termination.

  11. Enhanced and asymmetric melting beneath the southern Mariana back-arc spreading ridge under the influence of the Pacific plate subduction

    NASA Astrophysics Data System (ADS)

    Matsuno, T.; Seama, N.; Shindo, H.; Nogi, Y.; Okino, K.

    2017-12-01

    Back-arc spreading ridges in the southern Mariana Trough are slow-spreading ridges but have features suggesting enhanced melting beneath the ridges and influences on seafloor spreading processes by fluid derived from the subducted Pacific slab underlying the ridges. To reveal melting and dehydration processes and dynamics in the upper mantle in the southern Mariana Trough, we conducted a marine magnetotelluric (MT) experiment along a 120 km-length transect across a ridge segment at 13°N. We obtained electromagnetic field data at 9 stations along the transect, and analyzed them for estimating MT responses, striping seafloor topographic distortion from the responses, and imaging a 2-D electrical resistivity structure by 2-D inversion of TM-mode responses. A resultant 2-D inversion model showed 1) a conductive area at 10-20 km depth beneath the ridge center, the center of which slightly offsets to the trench side, 2) a moderately conductive area expanding asymmetrically around and under the conductor of 1), 3) a resistive area thickening from the ridge center up to about 40 km on the remnant arc side, and 4) a resistive area with a constant thickness of about 150 km on the trench side. These model features suggest 1) a melt body beneath the ridge center, possibly containing slab-derived water 2) water- and melt-retained mantle area produced by hydration of the back-arc mantle wedge and asymmetric passive decompression melting in the hydrous mantle wedge, 3) cooled and residual lithospheric mantle off the ridge center, and 4) mantle wedge and subducted Pacific lithospheric mantle that are both cold and depleted. The electrical resistivity structure obtained in the southern Mariana Trough, which clearly contrasts with the structure of the central Mariana Trough at 18°N in that this lacks a conductor beneath the ridge center, provides insights on the mantle dynamics and its relation to the characteristic tectonics and many kinds of observational results in the southern

  12. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Headquarters Air Armament Center...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...″ W (USC&GS Station Tuck 3), within the segment of a circle, three nautical miles in radius, centered... adjacent to Santa Rosa Island, Headquarters Air Armament Center, Eglin Air Force Base, Fla. 334.710 Section... Santa Rosa Island, Headquarters Air Armament Center, Eglin Air Force Base, Fla. (a) The restricted area...

  13. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Headquarters Air Armament Center...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...″ W (USC&GS Station Tuck 3), within the segment of a circle, three nautical miles in radius, centered... adjacent to Santa Rosa Island, Headquarters Air Armament Center, Eglin Air Force Base, Fla. 334.710 Section... Santa Rosa Island, Headquarters Air Armament Center, Eglin Air Force Base, Fla. (a) The restricted area...

  14. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Headquarters Air Armament Center...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...″ W (USC&GS Station Tuck 3), within the segment of a circle, three nautical miles in radius, centered... adjacent to Santa Rosa Island, Headquarters Air Armament Center, Eglin Air Force Base, Fla. 334.710 Section... Santa Rosa Island, Headquarters Air Armament Center, Eglin Air Force Base, Fla. (a) The restricted area...

  15. Wrinkle ridges of Arcadia Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1993-01-01

    Wrinkle ridges of Arcadia Planitia were examined to determine their morphology, spatial distribution, and the amount of crustal shortening and strain they accommodate. Ridges trend generally northward, but their orientation and distribution are strongly controlled by the relief of the underlying hobby material. Ridges begin or end at inselbergs of older terrain and are associated with buried craters. Arcadia Planitia ridges have an average width of 3425 m and accommodate an average folding shortening of 3 m and a faulting shortening of 55 m; mean total shortening is 57 m. Three east-west transects were constructed at 20 deg 25 deg and 28 deg N to estimate regional shortening and strain. Average total shortening across the transects is about 900 m, corresponding to a regional compressive strain of 0.06 percent. The total shortening and compression across Arcadia Planitia are less than in Lungae Planum. Faults associated with the Arcadia ridges are inferred to have a westward dip compared with an eastward dip for Lungae Planum ridges. The general levels of compression and symmetric orientation of the ridges suggest a regionally organized stress system.

  16. The origin of the asymmetry in the Iceland hotspot along the Mid-Atlantic Ridge from continental breakup to present-day

    NASA Astrophysics Data System (ADS)

    Howell, Samuel M.; Ito, Garrett; Breivik, Asbjørn J.; Rai, Abhishek; Mjelde, Rolf; Hanan, Barry; Sayit, Kaan; Vogt, Peter

    2014-04-01

    The Iceland hotspot has profoundly influenced the creation of oceanic crust throughout the North Atlantic basin. Enigmatically, the geographic extent of the hotspot influence along the Mid-Atlantic Ridge has been asymmetric for most of the spreading history. This asymmetry is evident in crustal thickness along the present-day ridge system and anomalously shallow seafloor of ages ∼49-25 Ma created at the Reykjanes Ridge (RR), SSW of the hotspot center, compared to deeper seafloor created by the now-extinct Aegir Ridge (AR) the same distance NE of the hotspot center. The cause of this asymmetry is explored with 3-D numerical models that simulate a mantle plume interacting with the ridge system using realistic ridge geometries and spreading rates that evolve from continental breakup to present-day. The models predict plume-influence to be symmetric at continental breakup, then to rapidly contract along the ridges, resulting in widely influenced margins next to uninfluenced oceanic crust. After this initial stage, varying degrees of asymmetry along the mature ridge segments are predicted. Models in which the lithosphere is created by the stiffening of the mantle due to the extraction of water near the base of the melting zone predict a moderate amount of asymmetry; the plume expands NE along the AR ∼70-80% as far as it expands SSW along the RR. Without dehydration stiffening, the lithosphere corresponds to the near-surface, cool, thermal boundary layer; in these cases, the plume is predicted to be even more asymmetric, expanding only 40-50% as far along the AR as it does along the RR. Estimates of asymmetry and seismically measured crustal thicknesses are best explained by model predictions of an Iceland plume volume flux of ∼100-200 m/s, and a lithosphere controlled by a rheology in which dehydration stiffens the mantle, but to a lesser degree than simulated here. The asymmetry of influence along the present-day ridge system is predicted to be a transient

  17. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  18. Complex Tectono-Magmatic Interaction along the George V Transform Fault, South-East Indian Ridge, 140°E, and Implications for Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Briais, A.; Ruellan, E.; Ceuleneer, G.; Maia, M.

    2017-12-01

    The 300 km-offset George V Transform Fault (TF) is the westernmost of the major, right-stepping transform faults that offset the South-East Indian Ridge between 140°E and 155°E. All these TFs have multiple shear zones with intra-transform ridge segments (ITRS), mostly unmapped yet. We present the results of the analysis of geophysical and petrological data collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle). The data cover the western shear zone and part of two ITRSs. They reveal a complex interaction between tectonic processes at the plate boundary and near-axis volcanic activity along and across the transform fault. The western TF shear zone consists of two segments offset by a 50 km-long, 15 km-wide, up to 2000 m-high serpentinite massif. We infer that the massif is a push-up resulting from transpression along the transform, due to the lengthening of the western ITRS, with a mechanism similar to the processes currently uplifting the mylonitic massif along the St. Paul TF in the Equatorial Atlantic (1). The western ITRS is relatively shallow and magmatically robust, which is unexpected in a TF system. The bathymetric and backscatter maps also reveal a series of recent off-axis oblique volcanic ridges. Rocks dredged on one of these ridges consist of picrites (i.e. basalts rich in olivine phenocrysts). These observations suggest that the TF there is not magma starved like many mid-ocean ridge transforms, but is the locus of significant primitive melt supply. Such an unexpected production of high-Mg melt might be related to the presence of a mantle thermal anomaly beneath the easternmost SEIR, and/or to a western flow of mantle across the TF. *STORM cruise scientific party: A. Briais, F. Barrere, C. Boulart, D. Brunelli, G. Ceuleneer, N. Ferreira, B. Hanan, C. Hémond, S. Macleod, M. Maia, A. Maillard, S. Merkuryev, S.H. Park, S. Révillon, E. Ruellan, A. Schohn, S. Watson, and Y.S. Yang. (1) Maia et al. 2016 Nature Geo. doi:10.1038/ngeo2759

  19. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Baines, A. Graham; Cheadle, Michael J.; Dick, Henry J. B.; Hosford Scheirer, Allegra; John, Barbara E.; Kusznir, Nick J.; Matsumoto, Takeshi

    2003-12-01

    Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ˜1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10° change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.

  20. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge

    USGS Publications Warehouse

    Baines, A.G.; Cheadle, Michael J.; Dick, H.J.B.; Scheirer, A.H.; John, Barbara E.; Kusznir, N.J.; Matsumoto, T.

    2003-01-01

    Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ???1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10?? change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.

  1. The characteristics of hydrothermal plumes observed at the Zouyu-1 and Zouyu-2 hydrothermal fields in the Southern Mid-Atlantic Ridges

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Baker, E. T.; Li, H.

    2016-12-01

    The Zouyu-1 (14.41°W, 13.25°S) and Zouyu-2 (14.41°W, 13.28°S) hydrothermal fields are located on the neovolcanic Zouyu ridge on axis of a symmetrical spreading ridge, which is on the eastern side of the S14 segment on the southern Mid-Atlantic ridge (the ridge segments were numbered by Chunhui Tao (2016) ). The two hydrothermal fields were found during Chinese 22nd cruise in 2011 and 21st cruise in 2009 on board R/V Dayang YiHao, respectively. We collected data recorded by light-scattering and temperature sensors (Miniature Autonomous Plume Recorder, short for MAPR), and H2S and ORP sensors (Electro-chemical sensor, short for ECS) in multiple years (2009, 2011), yielding the following results: (1) The turbidity anomalies were widely distributed in the Zouyu-1 and Zouyu-2 hydrothermal fields. And the highest turbidity anomalies were concentrated around Zouyu-2 hydrothermal field, with a maximum value of 0.094 △NTU south of Zouyu-2 vent. The horizontal scale of hydrothermal plume maximum was 2.5 km. The plume maximum is offset 500 m east of the Zouyu-2 vent location. (2) ORP anomalies were detected near Zouyu-2 in 2011. Sharp and substantial ORP ( 80 mV) and H2S (2.5 nmol/L) anomalies occurred near 14.412°W,13.28°S for 300 m along the track line 22II-L07. (3)Temperature along the track line 21IV-L04 in the Zouyu-2 field increased by as much as 0.03 ° even as the depth of MAPR was largely unchanged. With the evidence of concomitant fluctuations in turbidity, it showed the temperature increases were hydrothermally induced. Keywords: hydrothermal plume, Zouyu-1 hydrothermal field, Zouyu-2 hydrothermal field

  2. Backscattering and geophysical features of volcanic ridges offshore Santa Rosalia, Baja California Sur, Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Fabriol, Hubert; Delgado-Argote, Luis A.; Dañobeitia, Juan José; Córdoba, Diego; González, Antonio; García-Abdeslem, Juan; Bartolomé, Rafael; Martín-Atienza, Beatriz; Frias-Camacho, Víctor

    1999-11-01

    Volcanic ridges formed by series of volcanic edifices are identified in the central part of the Gulf of California, between Isla Tortuga and La Reforma Caldera-Santa Rosalía region. Isla Tortuga is part of the 40-km-long Tortuga Volcanic Ridge (TVR) that trends almost perpendicular to the spreading center of the Guaymas Basin. The Rosalía Volcanic Ridge (RVR), older than TVR, is characterized by volcanic structures oriented towards 310°, following a fracture zone extension and the peninsular slope. It is interpreted that most of the aligned submarine volcanic edifices are developed on continental crust while Isla Tortuga lies on oceanic-like crust of the Guaymas Basin. From a complete Bouguer anomaly map, it is observed that the alignments of gravity highs trending 310° and 290° support the volcanic and subvolcanic origin of the bathymetric highs. Volcanic curvilinear structures, lava flows and mounds were identified from backscattering images around Isla Tortuga and over a 400-m high (Vírgenes High), where the TVR and the RVR intersect. A refraction/wide-angle seismic profile crossing perpendicular to the Vírgenes High, together with gravity and magnetic data indicate the presence of shallow intrusive bodies presumably of basaltic or andesitic composition. It is inferred that most volcanic edifices along the ridges have similar internal structures. We suggest that the growth of different segments of the ridges have a volcano-tectonic origin. The older RVR lies along the extension of a fracture zone and it probably is associated with Pliocene NE-SW extension.

  3. Global survey of lunar wrinkle ridge formation times

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Michael, G. G.; Di, K.; Liu, J.

    2017-11-01

    Wrinkle ridges are a common feature of the lunar maria and record subsequent contraction of mare infill. Constraining the timing of wrinkle ridge formation from crater counts is challenging because they have limited areal extent and it is difficult to determine whether superposed craters post-date ridge formation or have alternatively been uplifted by the deformation. Some wrinkle ridges do allow determination to be made. This is possible where a ridge shows a sufficiently steep boundary or scarp that can be identified as deforming an intersecting crater or the crater obliterates the relief of the ridge. Such boundaries constitute only a small fraction of lunar wrinkle ridge structures yet they are sufficiently numerous to enable us to obtain statistically significant crater counts over systems of structurally related wrinkle ridges. We carried out a global mapping of mare wrinkle ridges, identifying appropriate boundaries for crater identification, and mapping superposed craters. Selected groups of ridges were analyzed using the buffered crater counting method. We found that, except for the ridges in mare Tranquilitatis, the ridge groups formed with average ages between 3.5 and 3.1 Ga ago, or 100-650 Ma after the oldest observable erupted basalts where they are located. We interpret these results to suggest that local stresses from loading by basalt fill are the principal agent responsible for the formation of lunar wrinkle ridges, as others have proposed. We find a markedly longer interval before wrinkle ridge formation in Tranquilitatis which likely indicates a different mechanism of stress accumulation at this site.

  4. SU-C-207B-03: A Geometrical Constrained Chan-Vese Based Tumor Segmentation Scheme for PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Zhou, Z; Wang, J

    Purpose: Accurate segmentation of tumor in PET is challenging when part of tumor is connected with normal organs/tissues with no difference in intensity. Conventional segmentation methods, such as thresholding or region growing, cannot generate satisfactory results in this case. We proposed a geometrical constrained Chan-Vese based scheme to segment tumor in PET for this special case by considering the similarity between two adjacent slices. Methods: The proposed scheme performs segmentation in a slice-by-slice fashion where an accurate segmentation of one slice is used as the guidance for segmentation of rest slices. For a slice that the tumor is not directlymore » connected to organs/tissues with similar intensity values, a conventional clustering-based segmentation method under user’s guidance is used to obtain an exact tumor contour. This is set as the initial contour and the Chan-Vese algorithm is applied for segmenting the tumor in the next adjacent slice by adding constraints of tumor size, position and shape information. This procedure is repeated until the last slice of PET containing tumor. The proposed geometrical constrained Chan-Vese based algorithm was implemented in Matlab and its performance was tested on several cervical cancer patients where cervix and bladder are connected with similar activity values. The positive predictive values (PPV) are calculated to characterize the segmentation accuracy of the proposed scheme. Results: Tumors were accurately segmented by the proposed method even when they are connected with bladder in the image with no difference in intensity. The average PPVs were 0.9571±0.0355 and 0.9894±0.0271 for 17 slices and 11 slices of PET from two patients, respectively. Conclusion: We have developed a new scheme to segment tumor in PET images for the special case that the tumor is quite similar to or connected to normal organs/tissues in the image. The proposed scheme can provide a reliable way for segmenting tumors.« less

  5. Ridge interaction features of the Line Islands

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Koppers, A. A. P.; Storm, L. P.

    2016-12-01

    The sections of Pacific absolute plate motion history that precede the Hawaii-Emperor and Louisville chains are based on three chains: the Line Islands-Mid-Pacific Mountains, the Hess Rise-Shatsky Rise, and the Marshall Islands-Wake Islands (Rurutu hotspot). Although it has been clear that the Line Islands do not define a simple age progression (e.g. Schlanger et al., 1984), the apparent similarity to the Emperor Seamount geographic trend has been used to extend the overall Hawaii-Emperor track further into the past. However, we show here that plate tectonic reconstructions suggest that the Mid-Pacific Mountains (MPMs) and Line Islands (LIs) were erupted near a mid-ocean ridge, and thus these structures do not reflect absolute plate motion. Moverover, the morphology and geochemistry of the volcanoes show similarities with Pukapuka Ridge (e.g. Davis et al., 2002) and the Rano Rahi seamounts, presumed to have a shallow origin. Modern 40Ar/39Ar ages show that the LIs erupted at various times along the entire volcanic chain. The oldest structures formed within 10 Ma of plate formation. Given the short distance to the ridge system, large aseismic volcanic ridges, such as Necker Ridge and Horizon Guyot may simply reflect a connection between MPMs and the ridge, similar to the Pukapuka Ridge. The Line Islands to the south (including Karin Ridge) define short subchains of elongated seamounts that are widespread, resembling the Rano Rahi seamount field. During this time, the plate moved nearly parallel to the ridge system. The change from few large ridges to many subchains may reflect a change in absolute plate motion, similar to the Rano Rahi field. Here, significant MPMs volcanism is no longer connected to the ridge along plate motion. Similar to Pukapuka vs. Rano Rahi, the difference in direction between plate motion and the closest ridge determines whether larger ridges or smaller seamount subchains are formed. The difference between the largest structures (MPMs and LIs

  6. Ground Water Atlas of the United States: Segment 11, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia

    USGS Publications Warehouse

    Trapp, Henry; Horn, Marilee A.

    1997-01-01

    direct runoff or enters streams as base flow (discharge from one or more aquifers). The distribution of average annual runoff (fig. 2) is similar to the distribution of precipitation; that is, runoff is generally greatest where precipitation is greatest. Runoff rates range from more than 50 inches per year in parts of western North Carolina to less than 12 inches in parts of North Carolina, Virginia, and West Virginia. Parts of the seven following physiographic provinces are in Segment 11: the Coastal Plain, the Piedmont, the Blue Ridge, the New England, the Valley and Ridge, the Appalachian Plateaus, and the Central Lowland. The provinces generally trend northeastward (fig. 3). The northeastern terminus of the Blue Ridge Province is in south-central Pennsylvania, and the southwestern part of the New England Province, the Reading Prong, ends in east-central Pennsylvania. The topography, lithology, and water-bearing characteristics of the rocks that underlie the Blue Ridge Province and the Reading Prong are similar. Accordingly, for purposes of this study, the hydrology of the Reading Prong is discussed with that of the Blue Ridge Province. The Coastal Plain Province is a lowland that borders the Atlantic Ocean. The Coastal Plain is as much as 140 miles wide in North Carolina but narrows northeastward to New Jersey where it terminates in Segment 11 at the south shore of Raritan Bay. Although it is generally a flat, seaward-sloping lowland, this province has areas of moderately steep local relief, and its surface locally reaches altitudes of 350 feet in the southwestern part of the North Carolina Coastal Plain. The Coastal Plain mostly is underlain by semiconsolidated to unconsolidated sediments that consist of silt, clay, and sand, with some gravel and lignite. Some consolidated beds of limestone and sandstone are present. The Coastal Plain sediments range in age from Jurassic to Holocene and dip gently toward the ocean. The boundary between the Coastal Plain and the

  7. Surface radiological investigations at White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.K.; Rodriguez, R.E.; Uziel, M.S.

    1991-09-01

    A surface radiological scoping survey of accessible areas at the White Wing Scrap Yard (Waste Area Grouping 11 (WAG 11)) was conducted intermittently from December 1989 through July 1991 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of Environmental Restoration Program personnel at ORNL. The White Wing Scrap Yard is an estimated 30-acre, predominately wooded area located on the western edge of East Fork Ridge in the McNew Hollow area on the US Department of Energy's Oak Ridge Reservation. The scrap yard was formerly used formore » aboveground storage of contaminated material (e.g., steel tanks, metal, glass, concrete, and miscellaneous industrial trash) from the Oak Ridge K-25 Site, Oak Ridge Y-12 Plant, and ORNL. The purposes of this cursory investigation were (1) to provide an updated contamination status of the site by locating and interpreting the presence, nature, and extent of surface radiological contamination and (2) to provide a basis for the formulation of interim corrective action to limit human exposures to radioactivity and minimize the potential for contaminant dispersion. 13 refs., 17 figs., 5 tabs.« less

  8. Evaluation of an improved technique for lumen path definition and lumen segmentation of atherosclerotic vessels in CT angiography.

    PubMed

    van Velsen, Evert F S; Niessen, Wiro J; de Weert, Thomas T; de Monyé, Cécile; van der Lugt, Aad; Meijering, Erik; Stokking, Rik

    2007-07-01

    Vessel image analysis is crucial when considering therapeutical options for (cardio-) vascular diseases. Our method, VAMPIRE (Vascular Analysis using Multiscale Paths Inferred from Ridges and Edges), involves two parts: a user defines a start- and endpoint upon which a lumen path is automatically defined, and which is used for initialization; the automatic segmentation of the vessel lumen on computed tomographic angiography (CTA) images. Both parts are based on the detection of vessel-like structures by analyzing intensity, edge, and ridge information. A multi-observer evaluation study was performed to compare VAMPIRE with a conventional method on the CTA data of 15 patients with carotid artery stenosis. In addition to the start- and endpoint, the two radiologists required on average 2.5 (SD: 1.9) additional points to define a lumen path when using the conventional method, and 0.1 (SD: 0.3) when using VAMPIRE. The segmentation results were quantitatively evaluated using Similarity Indices, which were slightly lower between VAMPIRE and the two radiologists (respectively 0.90 and 0.88) compared with the Similarity Index between the radiologists (0.92). The evaluation shows that the improved definition of a lumen path requires minimal user interaction, and that using this path as initialization leads to good automatic lumen segmentation results.

  9. Periodontal considerations for esthetics: edentulous ridge augmentation.

    PubMed

    Rosenberg, E S; Cutler, S A

    1993-01-01

    Edentulous ridge augmentation is a plastic surgical technique that is performed to improve patient esthetics when unsightly, deformed ridges exist. This article describes the etiology of ridge deformities and the many procedures that can be executed to achieve an esthetic, functional result. Historically, soft-tissue mucogingival techniques were described to augment collapsed ridges. Pedicle grafts, free soft-tissue grafts, and subepithelial connective tissue grafts are predictable forms of therapy. More recently, ridge augmentation techniques were developed that regenerate the lost periodontium. These include allografts, bioglasses, guided tissue regenerative procedures, and tissue expansion.

  10. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre

    NASA Astrophysics Data System (ADS)

    James, Rachael H.; Green, Darryl R. H.; Stock, Michael J.; Alker, Belinda J.; Banerjee, Neil R.; Cole, Catherine; German, Christopher R.; Huvenne, Veerle A. I.; Powell, Alexandra M.; Connelly, Douglas P.

    2014-08-01

    The East Scotia Ridge is an active back-arc spreading centre located to the west of the South Sandwich island arc in the Southern Ocean. Initial exploration of the ridge by deep-tow surveys provided the first evidence for hydrothermal activity in a back-arc setting outside of the western Pacific, and we returned in 2010 with a remotely operated vehicle to precisely locate and sample hydrothermal sites along ridge segments E2 and E9. Here we report the chemical and isotopic composition of high- and low-temperature vent fluids, and the mineralogy of associated high-temperature chimney material, for two sites at E2 (Dog’s Head and Sepia), and four sites at E9 (Black & White, Ivory Tower, Pagoda and Launch Pad). The chemistry of the fluids is highly variable between the ridge segments. Fluid temperatures were ∼350 °C at all vent sites except Black & White, which was significantly hotter (383 °C). End-member chloride concentrations in E2 fluids (532-536 mM) were close to background seawater (540 mM), whereas Cl in E9 fluids was much lower (98-220 mM) indicating that these fluids are affected by phase separation. Concentrations of the alkali elements (Na, Li, K and Cs) and the alkaline earth elements (Ca, Sr and Ba) co-vary with Cl, due to charge balance constraints. Similarly, concentrations of Mn and Zn are highest in the high Cl fluids but, by contrast, Fe/Cl ratios are higher in E9 fluids (3.8-8.1 × 10-3) than they are in E2 fluids (1.5-2.4 × 10-3) and fluids with lowest Cl have highest Cu. Although both ridge segments are magmatically inflated, there is no compelling evidence for input of magmatic gases to the vent fluids. Fluid δD values range from 0.2‰ to 1.5‰, pH values (3.02-3.42) are not especially low, and F concentrations (34.6-54.4 μM) are lower than bottom seawater (62.8 μM). The uppermost sections of conjugate chimney material from E2, and from Ivory Tower and Pagoda at E9, typically exhibit inner zones of massive chalcopyrite enclosed

  11. Rapid orthodontic treatment after the ridge-splitting technique--a combined surgical-orthodontic approach for implant site development: case report.

    PubMed

    Amato, Francesco; Mirabella, A Davide; Borlizzi, Diego

    2012-08-01

    This article presents a clinical case of bilateral partial edentulism in the posterior mandible with severe horizontal and moderate vertical bone atrophy. A new technique using rapid orthodontics after ridge splitting is presented. The split-crest technique was carried out using piezosurgical instruments in the first molar and second premolar areas to widen the bone crest and open a channel for tooth movement. Immediately after, orthodontic appliances were used to move the first premolars distally and the second molars mesially into the surgical site. The rationale was to facilitate and accelerate orthodontic movement of the teeth, which is otherwise difficult in a cortical knife-edged ridge. The bone defect was filled with the alveolar bone of the adjacent teeth that were moved into the surgically opened path. Adequate bone volume for implant placement was generated in the first premolar area. Implants were then inserted, and the patient was rehabilitated.

  12. Ridge jumps associated with plume-ridge interaction: Mantle plume-lithosphere interaction and hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2007-12-01

    Interaction of mantle plumes and young lithosphere near mid-ocean ridges can lead to changes in spreading geometry by shifts of the ridge-axis toward the plume as seen at various hotspots, notably Iceland and the Galapagos. Previous work has shown that, with a sufficient magma flux, heating of the lithosphere by magmatism can significantly weaken the plate and, in some cases, could cause ridge jumps. Upwelling hot asthenosphere can also weaken the plate through thermal and mechanical thinning of the lithosphere. Using the finite element code CITCOM, we solve the equations of continuity, momentum and energy to examine deformation in near-ridge lithosphere associated with relatively hot upwelling asthenosphere and seafloor spreading. The mantle and lithosphere obey a non-Newtonian viscous rheology with plastic failure in the cold part of the lithosphere simulated by imposing an effective yield stress. Temperatures of the lithospheric thermal boundary region are initially given a square-root of age thermal profile while a hot patch is placed at the bottom to initiate a mantle-plume like upwelling. The effect of upwelling asthenosphere on ridge jumps is evaluated by varying three parameters: the plume excess temperature, the spreading rate and the distance of the plume from the ridge axis. Preliminary results show plume related thinning and weakening of the lithosphere over a wide area (100's of km's) with the rate of thinning increasing with the excess temperature of the plume. Initially, thinning occurs as the plume approaches the lithosphere and asthenospheric material is forced out of the way. As the plume material comes into contact with the lithosphere, thinning occurs through heating and mechanical removal of the thermal boundary layer. Thinning of the lithosphere is one of the primary factors in achieving a ridge jump. Another is large tensile stresses which can facilitate the initiation of rifting at this weakened location. Model stresses induced by the

  13. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bearmore » Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.« less

  14. A method for smoothing segmented lung boundary in chest CT images

    NASA Astrophysics Data System (ADS)

    Yim, Yeny; Hong, Helen

    2007-03-01

    To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.

  15. Stratigraphic framework and distribution of lignite on Crowleys Ridge, Arkansas

    USGS Publications Warehouse

    Meissner, Charles R.

    1983-01-01

    The purpose of this report is to establish a stratigraphic framework of lignite beds and associated strata of Crowleys Ridge, Arkansas. Drill hole data provided by the Arkansas Geological Commission is used in the synthesis and interpretation. Areas containing lignite of potential resource value are also delineated. To illustrate the regional stratigraphic framework of Crowleys Ridge, a cross section was constructed from logs of selected oil and gas test wells, along or adjacent to the north-south trending ridge over a distance of about 115 miles. This section reveals that lignite-bearing Tertiary formations dip gently southward along the ridge. The Paleocene-Eocene Wilcox Group forms the bedrock in the northern part of the ridge and successively younger bedrock of the Eocene Claiborne and Jackson Groups is identified in the central and southern part of the ridge. Crowleys Ridge is mantled with alluvium and loess of Quaternary age, and sand and gravel beds of the Lafayette Formation of Pliocene (?) age that unconformably overlie the Paleocene and Eocene rocks. The thickness of lignite-bearing sedimentary deposits ranges from 830 feet in the north to 2,480 feet in the south. The Wilcox, Claiborne, and Jackson Groups of Paleocene and Eocene age are believed to be fluvial-deltaic in origin. The detailed vertical and horizontal stratigraphic characteristics and distribution of lignite beds in the sediments were determined by constructing seven cross sections from lithologic and geophysical logs of the lignite investigations on Crowleys Ridge by the Arkansas Geological Commission and private companies. Correlation and interpretation of the lignite-bearing strata reveal ten lignite beds of resource potential. These lignite beds range from a few inches to 9.5 ft in thickness and are assigned to stratigraphic intervals that are designated as zone 1 through 7. Zone 1 is near the middle of the Wilcox Group and zone 7 is near the middle of the overlying Claiborne Group. Some

  16. Beach Ridge Evidence for Regional Tilting and Drainage Reorganization in Central Florida

    NASA Astrophysics Data System (ADS)

    Adams, P. N.; Jaeger, J. M.; Woo, H. B.; Panning, M. P.

    2016-12-01

    Beach ridge sets can be constructed by a variety of processes (e.g. swash-built, eolian dune-built), but in all cases their presence represents a sediment supply rate that outpaces the rate of generation of accommodation space, resulting in progradation of the shoreline. The Merritt Island-Cape Canaveral sedimentary complex (MICCSC) consists of a series of adjacent, yet non-conformable, beach ridge sets that suggest a multi-phase constructional history. Previous U/Th, radiocarbon and OSL dating indicates that deposition of the beach ridge sets began at least 40 ka. We show that the duration of time required to accumulate this sedimentary mass, assuming longshore sediment transport (LST) alone, is within the appropriate time frame supplied by the age dates reported, but there is no clear mechanism that explains why LST would be interrupted to cause sedimentary accumulation at this particular location. An alternate explanation for the presence of the MICCSC is that the sedimentary body represents an abandoned paleodelta, whose source provided a sediment supply sufficient for coastal progradation. Although no such source is active today, the St. Johns River is a low-gradient fluvial system that currently empties to the Atlantic Ocean near Jacksonville, Florida, and has a drainage basin area of nearly 23,000 km2, which could satisfy the sediment supply rate required to build a delta the size of the MICCSC. Among several plausible drainage rearrangement mechanisms, we demonstrate that karst-driven, flexural isostatic uplift originating from carbonate dissolution within the central portion of the Florida peninsula has driven northward down-tilting of the landscape, forcing the St. Johns to seek a new coastal exit point, abandoning the MICCSC.

  17. Large-scale deformation associated with ridge subduction

    USGS Publications Warehouse

    Geist, E.L.; Fisher, M.A.; Scholl, D. W.

    1993-01-01

    Continuum models are used to investigate the large-scale deformation associated with the subduction of aseismic ridges. Formulated in the horizontal plane using thin viscous sheet theory, these models measure the horizontal transmission of stress through the arc lithosphere accompanying ridge subduction. Modelling was used to compare the Tonga arc and Louisville ridge collision with the New Hebrides arc and d'Entrecasteaux ridge collision, which have disparate arc-ridge intersection speeds but otherwise similar characteristics. Models of both systems indicate that diffuse deformation (low values of the effective stress-strain exponent n) are required to explain the observed deformation. -from Authors

  18. Models and observations of plume-ridge interaction in the South Atlantic and their implications for crustal thickness variations

    NASA Astrophysics Data System (ADS)

    Gassmöller, Rene; Steinberger, Bernhard; Dannberg, Juliane; Bredow, Eva; Torsvik, Trond

    2015-04-01

    Mantle plumes are thought to originate at thermal or thermo-chemical boundary layers, and since their origin is relatively fixed compared to plate motion they produce hotspot tracks at the position of their impingement. When plumes reach the surface close to mid-ocean ridges, they generate thicker oceanic crust due to their increased temperature and hence higher degree of melting. Observations of these thickness variations allow estimates about the buoyancy flux and excess temperature of the plume. One example is the interaction of the Tristan plume with the South Atlantic Mid-Ocean Ridge, however, conclusions about the plume properties are complicated by the fact that the Tristan plume track has both on- and off-ridge segments. In these cases, where a plume is overridden by a ridge, it is assumed that the plume flux has a lateral component towards the ridge (the plume is "captured" by the ridge). Additionally, sea floor spreading north of the Florianopolis Fracture Zone did not start until ~112 Ma - at least 15 Ma after the plume head arrival - while the Atlantic had already opened south of it. Therefore, the plume is influenced by the jump in lithosphere thickness across the Florianopolis Fracture zone. We present crustal thickness and plume tracks of a three-dimensional regional convection model of the upper mantle for the Tristan-South Atlantic ridge interaction. The model is created with the convection code ASPECT, which allows for adaptive finite-element meshes to resolve the fine-scale structures within a rising plume head in the presence of large viscosity variations. The boundary conditions of the model are prescribed from a coarser global mantle convection model and the results are compared against recently published models of crustal thickness in the South Atlantic and hotspot tracks in global moving hotspot reference frames. In particular, we investigate the influence of the overriding ridge on the plume head. Thus, our comparison between models of

  19. Models and Observations of Plume-Ridge Interaction in the South Atlantic and their Implications for Crustal Thickness Variations

    NASA Astrophysics Data System (ADS)

    Gassmoeller, R.; Dannberg, J.; Steinberger, B. M.; Bredow, E.; Torsvik, T. H.

    2015-12-01

    Mantle plumes are thought to originate at thermal or thermo-chemical boundary layers, and since their origin is relatively fixed compared to plate motion they produce hotspot tracks at the position of their impingement. When plumes reach the surface close to mid-ocean ridges, they generate thicker oceanic crust due to their increased temperature and hence higher degree of melting. Observations of these thickness variations allow estimates about the buoyancy flux and excess temperature of the plume. One example is the interaction of the Tristan plume with the South Atlantic Mid-Ocean Ridge, however, conclusions about the plume properties are complicated by the fact that the Tristan plume track has both on- and off-ridge segments. In these cases, where a plume is overridden by a ridge, it is assumed that the plume flux has a lateral component towards the ridge (the plume is "captured" by the ridge). Additionally, sea floor spreading north of the Florianopolis Fracture Zone did not start until 112 Ma -- at least 15 Ma after the plume head arrival -- while the Atlantic had already opened south of it. Therefore, the plume is influenced by the jump in lithosphere thickness across the Florianopolis Fracture zone.We present crustal thickness and plume tracks of a three-dimensional regional convection model of the upper mantle for the Tristan-South Atlantic ridge interaction. The model is created with the convection code ASPECT, which allows for adaptive finite-element meshes to resolve the fine-scale structures within a rising plume head in the presence of large viscosity variations. The boundary conditions of the model are prescribed from a coarser global mantle convection model and the results are compared against recently published models of crustal thickness in the South Atlantic and hotspot tracks in global moving hotspot reference frames. In particular, we investigate the influence of the overriding ridge on the plume head.Thus, our comparison between models of plume-ridge

  20. Re-evaluating across-axis geochemical variations at the East Pacific Rise and Juan de Fuca Ridge: on- and off-axis melt delivery

    NASA Astrophysics Data System (ADS)

    Perfit, M. R.; Walters, R. L.

    2014-12-01

    High spatial density geochemical data sets from the N-EPR and S-JdFR are used to re-evaluate the across-axis geochemical variations in major and trace elements at mid-ocean ridges (MORs). At two axial melt lens (AML) segments, north and south, at the 9-10°N EPR, N-MORB MgO varies across-axis from the most primitive above the AML to more evolved away from the axis. This trend is distinct at the northern (magmatically more robust) segment with an axial MgO range of 8-9 wt% and off-axis (>2km) range of 6.5-8 wt%. This decrease is also reflected in E-MORB MgO variation. There is more variability at the southern segment but, off-axis progression to more evolved MgO is still evident. Interestingly, the Cleft segment, JdFR, displays similar geochemical behavior to the EPR with an axial MgO range of 7-8.5 wt% and off-axis (>2km) range of 6-7.5 wt%. EPR geochemical studies over the past 30 years have described models of upper crustal accumulation ranging from eruptions limited to the axis, to temporal variation in the composition of magma in the AML, to multiple eruption sites across the ridge crest and flanks (<5km). Eruptions limited to the axis, with topographically controlled flow off-axis, cannot reproduce the observed off-axis change to more evolved N-MORB. Time-dependence could explain one instance of evolved lavas off-axis but, similar geochemical behavior is observed at two separate AML segments. Multiple instances of consistent compositional variability at multiple AML segments, and at different ridges, point to a common process of crustal accretion at MORs. In light of recent geophysical discoveries of Off-axis AMLs (OAMLs) at the EPR and JdFR, we propose that the trend of more evolved lavas for the majority of N-MORB lavas with distance from the axis is controlled by thermal distribution in the underlying crystal mush zone (CMZ). Higher magma flux beneath the axis facilitates higher temperatures and high porosity melt pathways, reducing crustal residence times

  1. Task 1, Fractal characteristics of drainage patterns observed in the Appalachian Valley and Ridge and Plateau provinces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.; Dominic, J.; Halverson, J.

    1996-04-10

    Drainage patterns observed in the Appalachian Valley and Ridge and Plateau provinces exhibit distinctly different patterns. The patterns appear to be controlled by varying influences of local structural and lithologic variability. Drainage patterns in the Valley and Ridge study area can be classified as a combination of dendritic and trellis arrangements. The patterns vary over short distances in both the strike and dip directions. In the Granny Creek area of the Appalachian Plateau drainage patterns are predominantly dendritic. The possibility that these drainage patterns have fractal characteristics was evaluated by box-counting. Results obtained from box counting do not yield amore » well defined fractal regime in either areas. In the Valley and Ridge a space-filling, or random regime (D=2) is observed for boxes with side-lengths of 300 meters and greater. Below 300 meters, large changes in D occur between consecutively smaller box sizes. From side lengths of 300 to 150m, 150 to 75m, and 75 to 38m, D is measured at 1.77, 1.39, and 1.08 respectively. For box sizes less than 38m the fractal dimension is 1 or less. While the l0g-log response of the box counting data is nonlinear and does not define a fractal regime, the curves offer the possibility of characterizing non-fractal patterns. The rate at which D drops outside the random regime correlates to drainage density. D in areas with a smaller density of drainage segments fell toward saturation (D=1) more abruptly. The break-away point from the random regime and the transition to the saturated regime may provide useful information about the relative lengths of stream segments.« less

  2. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes.

  3. Multi-segment earthquakes and tsunami potential of the Aleutian megathrust

    USGS Publications Warehouse

    Shennan, I.; Bruhn, R.; Plafker, G.

    2009-01-01

    Large to great earthquakes and related tsunamis generated on the Aleutian megathrust produce major hazards for both the area of rupture and heavily populated coastlines around much of the Pacific Ocean. Here we use paleoseismic records preserved in coastal sediments to investigate whether segment boundaries control the largest ruptures or whether in some seismic cycles segments combine to produce earthquakes greater than any observed since instrumented records began. Virtually the entire megathrust has ruptured since AD1900, with four different segments generating earthquakes >M8.0. The largest was the M9.2 great Alaska earthquake of March 1964 that ruptured ???800 km of the eastern segment of the megathrust. The tsunami generated caused fatalities in Alaska and along the coast as far south as California. East of the 1964 zone of deformation, the Yakutat microplate experienced two >M8.0 earthquakes, separated by a week, in September 1899. For the first time, we present evidence that earthquakes ???900 and ???1500 years ago simultaneously ruptured adjacent segments of the Aleutian megathrust and the Yakutat microplate, with a combined area ???15% greater than 1964, giving an earthquake of greater magnitude and increased tsunamigenic potential. ?? 2008 Elsevier Ltd. All rights reserved.

  4. Compositional variation of lavas from a young volcanic field on the Southern Mid-Atlantic Ridge, 8°48'S

    NASA Astrophysics Data System (ADS)

    Haase, K.; Brandl, P. A.; Melchert, B.; Hauff, F.; Garbe-Schoenberg, C.; Paulick, H.; Kokfelt, T. F.; Devey, C. W.

    2012-12-01

    Volcanic eruptions along the mid-oceanic ridge system are the most abundant signs of volcanic activity on Earth but little is known about the timescales and nature of these processes. The main parameter determining eruption frequency as well as magma composition appears to be the spreading rate of the mid-oceanic ridge. However, few observations on the scale of single lava flows exist from the slow-spreading Mid-Atlantic Ridge so far. Here we present geological observations and geochemical data for the youngest volcanic features of the so-called A2 segment (Bruguier et al., 2003, Hoernle et al., 2011) of the slow-spreading (33 mm/yr) southern Mid-Atlantic Ridge at 8°48'S. This segment has a thickened crust of about 9 km indicating increased melt production in the mantle. Side-scan sonar mapping revealed a young volcanic field with high reflectivity that was probably erupted from two volcanic fissures each of about 3 km length. Small-scale sampling of the young lava field at 8°48'S by ROV and wax corer and geochemical analyses of the volcanic glasses reveal three different compositional lava units along this about 11 km long portion of the ridge. Based on the incompatible element compositions of volcanic glasses (e.g. K/Ti, Ce/Yb) we can distinguish two lava units forming the northern and the larger southern part of the lava field covering areas of about 5 and 9 square kilometres, respectively. Basalts surrounding the lava field and from an apparently old pillow mound within the young flows are more depleted in incompatible elements than glasses from the young volcanic field. Radium disequilibria suggest that most lavas from this volcanic field have ages of 3000 to 5000 yrs whereas the older lavas surrounding the lava field are older than 8000 yrs. Faults and a thin sediment cover on many lavas support the ages and indicate that this part of the Mid-Atlantic Ridge is in a tectonic rather than in a magmatic stage. Lavas from the northern and southern ends of the

  5. Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity?

    PubMed Central

    Priede, Imants G.; Bergstad, Odd Aksel; Miller, Peter I.; Vecchione, Michael; Gebruk, Andrey; Falkenhaug, Tone; Billett, David S. M.; Craig, Jessica; Dale, Andrew C.; Shields, Mark A.; Tilstone, Gavin H.; Sutton, Tracey T.; Gooday, Andrew J.; Inall, Mark E.; Jones, Daniel O. B.; Martinez-Vicente, Victor; Menezes, Gui M.; Niedzielski, Tomasz; Sigurðsson, Þorsteinn; Rothe, Nina; Rogacheva, Antonina; Alt, Claudia H. S.; Brand, Timothy; Abell, Richard; Brierley, Andrew S.; Cousins, Nicola J.; Crockard, Deborah; Hoelzel, A. Rus; Høines, Åge; Letessier, Tom B.; Read, Jane F.; Shimmield, Tracy; Cox, Martin J.; Galbraith, John K.; Gordon, John D. M.; Horton, Tammy; Neat, Francis; Lorance, Pascal

    2013-01-01

    In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007–2010. The MAR, 3,704,404 km2 in area, accounts for 44.7% lower bathyal habitat (800–3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime. PMID:23658696

  6. Volcanoclastics of the Walvis Ridge

    NASA Astrophysics Data System (ADS)

    Eroshenko, D. V.; Kharin, G. S.

    2018-03-01

    The paper generalizes the distribution of volcanoclastic material in the Cenozoic sedimentary cover of the Walvis Ridge, made on the basis of the DSDP (Deep Sea Drilling Projects) and ODP (Ocean Drilling Program). The cycles of volcanoclastic accumulation have been distinguished. It has been proved that the distribution of the material in the Paleogene primary reflects the dynamics of volcanism of the ridge itself. The sources of volcanoclastics have been determined. The possibility of the existence of Early Eocene submarine volcanoes in the central part of the ridge has been shown. The dynamics of volcanism of the ridge has been compared with the variability of major climatic markers in sediments, indicating the unity of volcanic processes in the region and processes that led to an increase in the index of 13C content in sediments and CO2 content in the atmosphere.

  7. Influence of margin segmentation and anomalous volcanism upon the break-up of the Hatton Bank rifted margin, west of the UK

    NASA Astrophysics Data System (ADS)

    Elliott, G. M.; Parson, L. M.

    2007-12-01

    The Hatton Bank margin, flanking the Iceland Basin is a widely cited example of a volcanic rifted margin. Prior to this study insights into the break-up history of the margin have been limited to profiles in the north and south, yet whilst valuable, the along margin tectono-magmatic variability has not been revealed. Over 5660 line km of high quality reflection seismic profiles with supplementary multibeam bathymetry were collected to support the UK's claim to Hatton region under the United Nations Convention on Law of the Sea (UNCLOS). Integration of this new data with existing profiles, allowed the margin to be divided into three segments, each of which are flanked by oceanic crust with a smooth upper surface and internal dipping reflectors. The southernmost segment is characterised by a series of inner and outer seaward dipping reflector (SDR) packages, which are separated by an outer high feature. The outer SDR are truncated by Endymion Spur, a chain of steep sided, late stage volcanic cones linked with necks. The central sector has no inner SDR package and is characterised by the presence of a highly intruded continental block, the Hatton Bank Block (HBB). The northern sector is adjacent to Lousy Bank, with a wider region of SDR recognised than to the south and a high amount of volcanic cones imaged. The variations in the distribution of the SDR's along the margin, the presence of the HBB and Endymion Spur all suggest that the break-up process was not uniform alongstrike. The division of the margin into three sectors reveals that structural segmentation played an important role in producing the variations along the margin. Break- up initiated in the south and progressed north producing the SDR packages witnessed, when the HBB was encountered the focus of break-up moved seaward of the block. The northern sector was closer to the Iceland Hotspot and hence a greater amount of volcanism is encountered. The smooth oceanic basement also indicates a high thermal flux

  8. Reconciling geodetic and geological estimates of recent plate motion across the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Calais, E.; Merkouriev, S.

    2017-01-01

    We use recently published, high-resolution reconstructions of the Southwest Indian Ridge to test whether a previously described systematic difference between Global Positioning System (GPS) and 3.16-Myr-average estimates of seafloor spreading rates between Antarctica and Africa is evidence for a recent slowdown in Southwest Indian Ridge seafloor spreading rates. Along the Nubia-Antarctic segment of the ridge, seafloor opening rates that are estimated with the new, high-resolution reconstructions and corrected for outward displacement agree well with geodetic rate estimates and reduce previously reported, highly significant non-closure of the Nubia-Antarctic-Sur plate circuit. The observations are inconsistent with a slowdown in spreading rates and instead indicate that Nubia-Antarctic plate motion has been steady since at least 5.2 Ma. Lwandle-Antarctic seafloor spreading rates that are estimated from the new high-resolution reconstructions differ insignificantly from a GPS estimate, thereby implying steady Lwandle-Antarctic plate motion since 5.2 Ma. Between the Somalia and Antarctic plates, the new Southwest Indian Ridge reconstructions eliminate roughly half of the systematic difference between the GPS and MORVEL spreading rate estimates.We interpret the available observations as evidence that Somalia-Antarctic spreading rates have been steady since at least 5.2 Ma and postulate that the remaining difference is attributable to random and/or systematic errors in the plate kinematic estimates and the combined effects of insufficient geodetic sampling of undeforming areas of the Somalia plate, glacial isostatic adjustment in Antarctica and transient deformation triggered by the 1998 Mw = 8.2 Antarctic earthquake, the 2004 Mw = 9.3 Sumatra earthquake, or possibly other large historic earthquakes.

  9. Leech segmental repeats develop normally in the absence of signals from either anterior or posterior segments

    NASA Technical Reports Server (NTRS)

    Seaver, E. C.; Shankland, M.

    2000-01-01

    We have investigated whether the development of segmental repeats is autonomous in the embryo of the leech Helobdella robusta. The segmental tissues of the germinal band arise from progeny of five stem cells called teloblasts. Asymmetric divisions of the teloblasts form chains of segment founder cells (called primary blast cells) that divide in a stereotypical manner to produce differentiated descendants. Using two distinct techniques, we have looked for potential interactions between neighboring blast cell clones along the anterior-posterior axis. In one technique, we prevented the birth of primary blast cells by injection of DNase I into the teloblast, thereby depriving the last blast cell produced before the ablation of its normal posterior neighbors. We also ablated single blast cells with a laser microbeam, which allowed us to assess potential signals acting on either more anterior or more posterior primary blast cell clones. Our results suggest that interactions along the anterior-posterior axis between neighboring primary blast cell clones are not required for development of normal segmental organization within the blast cell clone. We also examined the possibility that blast cells receive redundant signals from both anterior and posterior neighboring clones and that either is sufficient for normal development. Using double blast cell laser ablations to isolate a primary blast cell clone by removal of both its anterior and its posterior neighbor, we found that the isolated clone still develops normally. These results reveal that the fundamental segmental repeat in the leech embryo, the primary blast cell clone, can develop normally in the apparent absence of signals from adjacent repeats along the anterior-posterior axis.

  10. Overview of the Ridge 2000 Integrated Studies Sites

    NASA Astrophysics Data System (ADS)

    Fisher, C.

    2005-12-01

    The Ridge 2000 program is in its fourth year and fieldwork at each of the Integrated Studies Sites (ISS) is in full swing. Multidisciplinary monitoring continues at the EPR ISS with seismic, temperature, and current data being continuously recorded. Long-term fluid sampling programs aimed at furthering our understanding of temporal variations in the chemistry of high-temperature hydrothermal vents are continuing. In situ fluid chemistry monitors have been deployed for weeks, and longer deployments are planned as the technology matures. Nested within these monitoring studies are experiments addressing larval dispersal and changes in microbial and macrobiological communities. In early 2006, geodetic monitoring will begin, with an array of pressure gauges as well as a detailed compliance study. By early 2007, a 3-D multichannel seismic survey will have provided unprecedented details of the crustal structure at 9°50'N. Together these studies provide a strong framework for an interdisciplinary understanding of the links between the forces that produce a mid-ocean ridge spreading center and their manifestation on the seafloor. Fieldwork on the Endeavour segment of the Juan de Fuca ridge in 2005 also included a balance of monitoring, experimental, and sampling programs across a wide range of disciplines. Four interdisciplinary field programs were conducted to maintain and expand ongoing Ridge 2000 and proto-NEPTUNE experiments. These research programs continued development and testing in situ chemical and microbial sensors, conducted co-registered sampling of fluids, fauna, and chimney material, and recovered moorings that measured heat and chemical fluxes at the segment scale. High-resolution mapping was also completed at this site, which has been chosen for one of the two initial NEPTUNE Canada nodes to prepare the way for the collaborative, cabled observatory projects. The mapping cruise included 5 secondary school teachers as part of the REVEL outreach and education

  11. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    PubMed

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Base-flow characteristics of streams in the Valley and Ridge, Blue Ridge, and Piedmont physiographic provinces of Virginia

    USGS Publications Warehouse

    Nelms, D.L.; Harlow, G.E.; Hayes, Donald C.

    1995-01-01

    Growth within the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces of Virginia has focussed concern about allocation of surface-water flow and increased demands on the ground-water resources. The purpose of this report is to (1) describe the base-flow characteristics of streams, (2) identify regional differences in these flow characteristics, and (3) describe, if possible, the potential surface-water and ground-water yields of basins on the basis of the base-flow character- istics. Base-flow characteristics are presented for streams in the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces of Virginia. The provinces are separated into five regions: (1) Valley and Ridge, (2) Blue Ridge, (3) Piedmont/Blue Ridge transition, (4) Piedmont northern, and (5) Piedmont southern. Different flow statistics, which represent streamflows predominantly comprised of base flow, were determined for 217 continuous-record streamflow-gaging stations from historical mean daily discharge and for 192 partial-record streamflow-gaging stations by means of correlation of discharge measurements. Variability of base flow is represented by a duration ratio developed during this investigation. Effective recharge rates were also calculated. Median values for the different flow statistics range from 0.05 cubic foot per second per square mile for the 90-percent discharge on the streamflow-duration curve to 0.61 cubic foot per second per square mile for mean base flow. An excellent estimator of mean base flow for the Piedmont/Blue Ridge transition region and Piedmont southern region is the 50-percent discharge on the streamflow-duration curve, but tends to under- estimate mean base flow for the remaining regions. The base-flow variability index ranges from 0.07 to 2.27, with a median value of 0.55. Effective recharge rates range from 0.07 to 33.07 inches per year, with a median value of 8.32 inches per year. Differences in the base-flow characteristics exist between

  13. Shortest-path constraints for 3D multiobject semiautomatic segmentation via clustering and Graph Cut.

    PubMed

    Kéchichian, Razmig; Valette, Sébastien; Desvignes, Michel; Prost, Rémy

    2013-11-01

    We derive shortest-path constraints from graph models of structure adjacency relations and introduce them in a joint centroidal Voronoi image clustering and Graph Cut multiobject semiautomatic segmentation framework. The vicinity prior model thus defined is a piecewise-constant model incurring multiple levels of penalization capturing the spatial configuration of structures in multiobject segmentation. Qualitative and quantitative analyses and comparison with a Potts prior-based approach and our previous contribution on synthetic, simulated, and real medical images show that the vicinity prior allows for the correct segmentation of distinct structures having identical intensity profiles and improves the precision of segmentation boundary placement while being fairly robust to clustering resolution. The clustering approach we take to simplify images prior to segmentation strikes a good balance between boundary adaptivity and cluster compactness criteria furthermore allowing to control the trade-off. Compared with a direct application of segmentation on voxels, the clustering step improves the overall runtime and memory footprint of the segmentation process up to an order of magnitude without compromising the quality of the result.

  14. Emergence and petrology of the Mendocino Ridge

    NASA Astrophysics Data System (ADS)

    Fisk, Martin R.; Duncan, Robert A.; Fox, Christopher G.; Witter, Jeffrey B.

    1993-11-01

    The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.

  15. Dark and Bright Ridges on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high-resolution image of Jupiter's moon Europa, taken by NASA's Galileo spacecraft camera, shows dark, relatively smooth region at the lower right hand corner of the image which may be a place where warm ice has welled up from below. The region is approximately 30 square kilometers in area. An isolated bright hill stands within it. The image also shows two prominent ridges which have different characteristics; youngest ridge runs from left to top right and is about 5 kilometers in width (about 3.1 miles). The ridge has two bright, raised rims and a central valley. The rims of the ridge are rough in texture. The inner and outer walls show bright and dark debris streaming downslope, some of it forming broad fans. This ridge overlies and therefore must be younger than a second ridge running from top to bottom on the left side of the image. This dark 2 km wide ridge is relatively flat, and has smaller-scale ridges and troughs along its length.

    North is to the top of the picture, and the sun illuminates the surface from the upper left. This image, centered at approximately 14 degrees south latitude and 194 degrees west longitude, covers an area approximately 15 kilometers by 20 kilometers (9 miles by 12 miles). The resolution is 26 meters (85 feet) per picture element. This image was taken on December 16, 1997 at a range of 1300 kilometers (800 miles) by Galileo's solid state imaging system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  16. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the mainmore » Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.« less

  17. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use andmore » serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.« less

  18. Reproducibility of myelin content-based human habenula segmentation at 3 Tesla.

    PubMed

    Kim, Joo-Won; Naidich, Thomas P; Joseph, Joshmi; Nair, Divya; Glasser, Matthew F; O'halloran, Rafael; Doucet, Gaelle E; Lee, Won Hee; Krinsky, Hannah; Paulino, Alejandro; Glahn, David C; Anticevic, Alan; Frangou, Sophia; Xu, Junqian

    2018-03-26

    In vivo morphological study of the human habenula, a pair of small epithalamic nuclei adjacent to the dorsomedial thalamus, has recently gained significant interest for its role in reward and aversion processing. However, segmenting the habenula from in vivo magnetic resonance imaging (MRI) is challenging due to the habenula's small size and low anatomical contrast. Although manual and semi-automated habenula segmentation methods have been reported, the test-retest reproducibility of the segmented habenula volume and the consistency of the boundaries of habenula segmentation have not been investigated. In this study, we evaluated the intra- and inter-site reproducibility of in vivo human habenula segmentation from 3T MRI (0.7-0.8 mm isotropic resolution) using our previously proposed semi-automated myelin contrast-based method and its fully-automated version, as well as a previously published manual geometry-based method. The habenula segmentation using our semi-automated method showed consistent boundary definition (high Dice coefficient, low mean distance, and moderate Hausdorff distance) and reproducible volume measurement (low coefficient of variation). Furthermore, the habenula boundary in our semi-automated segmentation from 3T MRI agreed well with that in the manual segmentation from 7T MRI (0.5 mm isotropic resolution) of the same subjects. Overall, our proposed semi-automated habenula segmentation showed reliable and reproducible habenula localization, while its fully-automated version offers an efficient way for large sample analysis. © 2018 Wiley Periodicals, Inc.

  19. Crustal magnetization and accretion at the Southwest Indian Ridge near the Atlantis II fracture zone, 0-25 Ma

    USGS Publications Warehouse

    Hosford, A.; Tivey, M.; Matsumoto, T.; Dick, H.; Schouten, Hans; Kinoshita, H.

    2003-01-01

    We analyze geophysical data that extend from 0 to 25-Myr-old seafloor on both flanks of the Southwest Indian Ridge (SWIR). Lineated marine magnetic anomalies are consistent and identifiable within the study area, even over seafloor lacking a basaltic upper crust. The full spreading rate of 14 km/Myr has remained nearly constant since at least 20 Ma, but crustal accretion has been highly asymmetric, with half rates of 8.5 and 5.5 km/Myr on the Antarctic and African flanks, respectively. This asymmetry may be unique to a ???400 km wide corridor between large-offset fracture zones of the SWIR. In contrast to the Mid-Atlantic Ridge, crustal magnetization amplitudes correlate directly with seafloor topography along the present-day rift valleys. This pattern appears to be primarily a function of along-axis variations in crustal thickness, rather than magnetic mineralogy. Off-axis, magnetization amplitudes at paleo-segment ends are more positive than at paleo-segment midpoints, suggesting the presence of an induced component of magnetization within the lower crust or serpentinized upper mantle. Alteration of the magnetic source layer at paleo-segment midpoints reduces magnetization amplitudes by 70-80% within 20 Myr of accretion. Magnetic and Ocean Drilling Program (ODP) Hole 735B data suggest that the lower crust cooled quickly enough to lock in a primary thermoremanent magnetization that is in phase with that of the overlying upper crust. Thus magnetic polarity boundaries within the intrusive lower crust may be steeper than envisioned in prior models of ocean crustal magnetization. As the crust ages, the lower crust becomes increasingly important in preserving marine magnetic stripes.

  20. Discovery and Distribution of Black Smokers on the Western Galapagos Spreading Center: Implications for Spatial and Temporal Controls on High Temperature Venting at Ridge/Hotspot Intersections

    NASA Astrophysics Data System (ADS)

    Haymon, R. M.; Anderson, P. G.; Baker, E. T.; Resing, J. A.; White, S. M.; MacDonald, K. C.

    2006-12-01

    Though nearly one-fifth of the mid-ocean ridge (MOR) lies on or near hotspots, it has been debated whether hotspots increase or decrease MOR hydrothermal flux, or affect vent biota. Despite hotspot enhancement of melt supply, high-temperature vent plumes are enigmatically sparse along two previously-surveyed ridge- hotspot intersections [Reykjanes Ridge (RR), Southeast Indian Ridge (SEIR)]. This has been attributed to crustal thickening by excess volcanism. During the 2005-06 GalAPAGoS expedition, we conducted nested sonar, plume, and camera surveys along a 540 km-long portion of the Galapagos Spreading Center (GSC) where the ridge intersects the Galapagos hotspot at lon. 94.5 -89.5 deg. W. Although MOR hydrothermal springs were first found along the eastern GSC crest in 1977 near lon. 86 deg. W, the GalAPAGoS smokers are the first active high-temperature vents to be found anywhere along the Cocos-Nazca plate boundary. Active and/or recently-inactive smokers were located beneath plumes at 5 sites on the seafloor between lon. 91 deg. W and 94.5 deg. W (see Anderson et al., this session) during near-bottom, real-time fiber-optic Medea camera surveys. Smokers occur along eruptive seafloor fissures atop axial volcanic ridges near the middles of ridge segments, mainly in areas underlain by relatively shallow, continuous axial magma chamber (AMC) seismic reflectors. These findings (1) support magmatic, rather than tectonic, control of GSC smoker distribution; (2) demonstrate that thick crust at MOR-hotspot intersections does not prevent high-temperature hydrothermal vents from forming; and, (3) appear to be inconsistent with models suggesting that enhanced hydrothermal cooling causes abrupt deepening of the AMC and transition from non-rifted to rifted GSC morphology near lon. 92.7 deg. W. The widely-spaced smoker sites located on different GSC segments exhibit remarkably similar characteristics and seafloor settings. Most sites are mature or extinct, and are on lava

  1. Does Graft Particle Type and Size Affect Ridge Dimensional Changes After Alveolar Ridge Split Procedure?

    PubMed

    Kheur, Mohit G; Kheur, Supriya; Lakha, Tabrez; Jambhekar, Shantanu; Le, Bach; Jain, Vinay

    2018-04-01

    The absence of an adequate volume of bone at implant sites requires augmentation procedures before the placement of implants. The aim of the present study was to assess the ridge width gain with the use of allografts and biphasic β-tricalcium phosphate with hydroxyapatite (alloplast) in ridge split procedures, when each were used in small (0.25 to 1 mm) and large (1 to 2 mm) particle sizes. A randomized controlled trial of 23 subjects with severe atrophy of the mandible in the horizontal dimension was conducted in a private institute. The patients underwent placement of 49 dental implants after a staged ridge split procedure. The patients were randomly allocated to alloplast and allograft groups (predictor variable). In each group, the patients were randomly assigned to either small graft particle or large graft particle size (predictor variable). The gain in ridge width (outcome variable) was assessed before implant placement. A 2-way analysis of variance test and the Student unpaired t test were used for evaluation of the ridge width gain between the allograft and alloplast groups (predictor variable). Differences were considered significant if P values were < .05. The sample included 23 patients (14 men and 9 women). The patients were randomly allocated to the alloplast (n = 11) or allograft (n = 12) group before the ridge split procedure. In each group, they were assigned to a small graft particle or large graft particle size (alloplast group, small particle in 5 and large particle size in 6 patients; allograft group, small particle in 6 and large particle size in 6). A statistically significant difference was observed between the 2 graft types. The average ridge width gain was significantly greater in the alloplast group (large, 4.40 ± 0.24 mm; small, 3.52 ± 0.59 mm) than in the allograft group (large, 3.82 ± 0.19 mm; small, 2.57 ± 0.16 mm). For both graft types (alloplast and allograft), the large particle size graft resulted in a

  2. Identification of hyper-extended crust east of Davie Ridge in the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Franke, Dieter

    2015-04-01

    Davie Ridge is a ~1200 km wide, N-S trending bathymetrical high in the Mozambique Channel. Today, it is widely accepted that Davie Ridge is located along a fossil transform fault that was active during the Middle Jurassic and Early Cretaceous (~165-120 Ma). This transform fault results from the breakup of Gondwana, when Madagascar (together with India and Antarctica) drifted from its northerly position in the Gondwana Supercontinent (adjacent to the coasts of Tanzania, Somalia and Kenya) to its present position (e.g. Coffin and Rabinowitz, 1987; Rabinowitz et al., 1983; Segoufin and Patriat, 1980). The southward motion of Madagascar relative to Africa is constrained by the interpretation of magnetic anomalies in the Western Somali Basin, located north of Madagascar (e.g. Rabinowitz et al., 1983). According to Bird (2001), sheared margins share typical characteristics and a common evolution: 1. The transition from continental to oceanic crust is relatively abrupt (~ 50-80 km). 2. Along the continental side of the margin, complex rift basins form that display a wide range of faults. 3. Prominent marginal ridges form along the sheared margin that probably originate from the propagation of the oceanic spreading center along the plate boundary (Bird, 2001). In February and March 2014, a dense geophysical dataset (multichannel seismic, magnetics, gravimetry and bathymetry) with a total of 4300 profile km along the sheared margin was acquired with the R/V Sonne by the Federal Institute for Geosciences and Natural Resources (BGR). A special objective of the project, amongst others, is the characterization and interpretation of the continent-ocean transition seaward of Davie Ridge in the Mozambique Channel. Seismic profiles located east of Davie Ridge in the Western Somali Basin reveal a wide sequence of half-grabens bounded by listric normal faults. We tentatively suggest that this crust is of continental origin and results from rifting between Africa and Madagascar during

  3. Compressive strain in Lunae Planum-shortening across wrinkle ridges

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1991-01-01

    Wrinkle ridges have long been considered to be structural or structurally controlled features. Most, but not all, recent studies have converged on a model in which wrinkle ridges are structural features formed under compressive stress; the deformation being accommodated by faulting and folding. Given that wrinkle ridges are compressive tectonic features, an analysis of the associated shortening and strain provides important quantitative information about local and regional deformation. Lunae Planum is dominated by north-south trending ridges extending from Kasei Valles in the north to Valles Marineris in the south. To quantify the morphometric character, a photoclinometric study was undertaken for ridges on Lunae Planum using the Davis and Soderblom. More than 25 ridges were examined between long. 57 and 80 deg, lat. 5 to 25 deg N. For each ridge, several profiles were obtained along its length. Ridge width, total relief, and elevation offset were measured for each ridge. Analyses are given.

  4. Upgrade of the HET segment control system, utilizing state-of-the-art, decentralized and embedded system controllers

    NASA Astrophysics Data System (ADS)

    Häuser, Marco; Richter, Josef; Kriel, Herman; Turbyfill, Amanda; Buetow, Brent; Ward, Michael

    2016-07-01

    Together with the ongoing major instrument upgrade of the Hobby-Eberly Telescope (HET) we present the planned upgrade of the HET Segment Control System (SCS) to SCS2. Because HET's primary mirror is segmented into 91 individual 1-meter hexagonal mirrors, the SCS is essential to maintain the mirror alignment throughout an entire night of observations. SCS2 will complete tip, tilt and piston corrections of each mirror segment at a significantly higher rate than the original SCS. The new motion control hardware will further increase the system's reliability. The initial optical measurements of this array are performed by the Mirror Alignment Recovery System (MARS) and the HET Extra Focal Instrument (HEFI). Once the segments are optically aligned, the inductive edge sensors give sub-micron precise feedback of each segment's positions relative to its adjacent segments. These sensors are part of the Segment Alignment Maintenance System (SAMS) and are responsible for providing information about positional changes due to external influences, such as steep temperature changes and mechanical stress, and for making compensatory calculations while tracking the telescope on sky. SCS2 will use the optical alignment systems and SAMS inputs to command corrections of every segment in a closed loop. The correction period will be roughly 30 seconds, mostly due to the measurement and averaging process of the SAMS algorithm. The segment actuators will be controlled by the custom developed HET Segment MOtion COntroller (SMOCO). It is a direct descendant of University Observatory Munich's embedded, CAN-based system and instrument control tool-kit. To preserve the existing HET hardware layout, each SMOCO will control two adjacent mirror segments. Unlike the original SCS motor controllers, SMOCO is able to drive all six axes of its two segments at the same time. SCS2 will continue to allow for sub-arcsecond precision in tip and tilt as well as sub-micro meter precision in piston. These

  5. Hippocampus segmentation using locally weighted prior based level set

    NASA Astrophysics Data System (ADS)

    Achuthan, Anusha; Rajeswari, Mandava

    2015-12-01

    Segmentation of hippocampus in the brain is one of a major challenge in medical image segmentation due to its' imaging characteristics, with almost similar intensity between another adjacent gray matter structure, such as amygdala. The intensity similarity has causes the hippocampus to have weak or fuzzy boundaries. With this main challenge being demonstrated by hippocampus, a segmentation method that relies on image information alone may not produce accurate segmentation results. Therefore, it is needed an assimilation of prior information such as shape and spatial information into existing segmentation method to produce the expected segmentation. Previous studies has widely integrated prior information into segmentation methods. However, the prior information has been utilized through a global manner integration, and this does not reflect the real scenario during clinical delineation. Therefore, in this paper, a locally integrated prior information into a level set model is presented. This work utilizes a mean shape model to provide automatic initialization for level set evolution, and has been integrated as prior information into the level set model. The local integration of edge based information and prior information has been implemented through an edge weighting map that decides at voxel level which information need to be observed during a level set evolution. The edge weighting map shows which corresponding voxels having sufficient edge information. Experiments shows that the proposed integration of prior information locally into a conventional edge-based level set model, known as geodesic active contour has shown improvement of 9% in averaged Dice coefficient.

  6. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  7. 36 CFR 7.34 - Blue Ridge Parkway.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Blue Ridge Parkway. 7.34... REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.34 Blue Ridge Parkway. (a) Snowmobiles. After consideration... waters of the Blue Ridge Parkway is prohibited except on the waters of Price Lake. (2) Vessels using...

  8. 36 CFR 7.34 - Blue Ridge Parkway.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Blue Ridge Parkway. 7.34... REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.34 Blue Ridge Parkway. (a) Snowmobiles. After consideration... waters of the Blue Ridge Parkway is prohibited except on the waters of Price Lake. (2) Vessels using...

  9. 36 CFR 7.34 - Blue Ridge Parkway.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Blue Ridge Parkway. 7.34... REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.34 Blue Ridge Parkway. (a) Snowmobiles. After consideration... waters of the Blue Ridge Parkway is prohibited except on the waters of Price Lake. (2) Vessels using...

  10. Magma Dynamics at Mid-Ocean Ridges by Noble Gas Kinetic Fractionation: Assessment of Magmatic Ascent Rates and Mantle Composition

    NASA Astrophysics Data System (ADS)

    Paonita, A.; Martelli, M.

    2007-12-01

    Topical scientific literature on magma degassing at mid-ocean ridges more and more focuses on exsolution processes occurring under conditions that are far from thermodynamic equilibrium between bubbles and silicate melt. Indeed, the dynamics of magma ascent and decompression can be faster than that of CO2 diffusion into bubbles, in which case the diffusivity ratios among volatiles are the main control of the composition of the exsolving gas phase. We have developed a model of bubble growth in silicate melts that calculates the extent of both CO2 supersaturation and kinetic fractionation among noble gases in vesicles in relation to the decompressive rate of basaltic melts. The model predicts that, due to comparable Ar and CO2 diffusivity, magma degassing at low pressure fractionates both He/Ar and He/CO2 ratios by a similar extent, while the slower CO2 diffusion at high pressure causes early kinetic effects on Ar/CO2 ratio and dramatically changes the degassing paths. By using this tool, we have reviewed the global He-Ar-CO2 dataset of fluid inclusions in mid-ocean-ridge glasses. We display that non-equilibrium fractionations among He, Ar and CO2, driven by their different diffusivities in silicate melts, are common in most of the natural conditions of magma decompression and their signature strongly depends on pressure of degassing. The different geochemical signatures among suites of data coming from different ridge segments mainly depend on the depth of the magma chamber where the melt was stored. Moreover, variations inside a single suite emerge due to the interplay between variable ascent speed of magma and cooling rate of the emplaced lava. As a result, two data groups coming from the Pito Seamount suite (Easter Microplate East ridge), showing different degree of CO2 supersaturation and He/Ar fractionation, provide ascent rates which differ by ten folds or even more. The large variations in both the He/CO2 and Ar/CO2 ratios at almost constant He/Ar, displayed

  11. Morphology of the transition from an axial high to a rift valley at the Southeast Indian Ridge and the relation to variations in mantle temperature

    NASA Astrophysics Data System (ADS)

    Shah, Anjana K.; SempéRé, Jean-Christophe

    1998-03-01

    The Southeast Indian Ridge exhibits a transition in axial morphology from an East Pacific Rise-like axial high near 100°E to a Mid-Atlantic Ridge-like rift valley near 116°E but spreads at a nearly constant rate of 74-76 mm/yr. Assuming that the source of this transition lies in variations in mantle temperature, we use shipboard gravity-derived crustal thickness and ridge flank depth to estimate the variations in temperature associated with the changes in morphological style. Within the transitional region, SeaBeam 2000 bathymetry shows scattered instances of highs, valleys, and split volcanic ridges at the axis. A comparison of axial morphology to abyssal hill shapes and symmetry properties suggests that this unorganized distribution is due to the ridge axis episodically alternating between an axial valley and a volcanic ridge. Axial morphology can then be divided into three classes, with distinct geographic borders: axial highs and rifted highs are observed west of a transform fault at 102°45'E; rift valleys are observed east of a transform fault at 114°E; and an intermediate-style morphology which alternates between a volcanic ridge and a shallow axial valley is observed between the two. One segment, between 107° and 108°30'E, forms an exception to the geographical boundaries. Gravity-derived crustal thickness and flank depth generally vary monotonically over the region, with the exception of the segment between 107°E and 108°30'E. The long-wavelength variations in these properties correlate with the above morphological classification. Gravity-derived crustal thickness varies on average ˜2 km between the axial high and rift valley regions. The application of previous models relating crustal thickness and mantle temperature places the corresponding temperature variation at 25°C-50°C, depending on the model used. The average depth of ridge flanks varies by ˜550 m over the study area. For a variation of 25°-50°C, thermal models of the mantle predict

  12. Geological mapping of the Rainbow Massif, Mid-Atlantic Ridge, 36°14'N

    NASA Astrophysics Data System (ADS)

    Ildefonse, B.; Fouquet, Y.; Hoisé, E.; Dyment, J.; Gente, P.; Thibaud, R.; Bissessur, D.; Yatheesh, V.; Momardream 2008 Scientific Party*, T.

    2008-12-01

    The Rainbow hydrothermal field at 36°14'N on the Mid-Atlantic Ridge is one of the few known sites hosted in ultramafic basement. The Rainbow Massif is located along the non-transform offset between the AMAR and South AMAR second-order ridge segments, and presents the characteristic dome morphology of oceanic core complexes, although no corrugated surface has been observed so far. One of the objectives of Cruises MOMAR DREAM (July 2007, R/V Pourquoi Pas ?; Aug-Sept 2008, R/V Atalante) was to study the petrological and structural context of the hydrothermal system at the scale of the Rainbow Massif. Our geological sampling complements previous ones achieved during Cruises FLORES (1997) and IRIS (2001), and consisted in dredge hauls, and submersible dives by manned submersible Nautile and ROV Victor. The tectonics of the Rainbow Massif is dominated by a N-S trending fault pattern on the western flank of the massif, and a series of SW-NW ridges on its northeastern side. The active hydrothermal site is located in the area were these two systems crosscut. The most abundant recovered rock type is peridotite (harzburgite and dunite) that presents a variety of serpentinization styles and intensity, and a variety of deformation styles (commonly undeformed, sometimes displaying ductile or brittle foliations). Serpentinites are frequently oxidized. Some peridotite samples have melt impregnation textures. Massive chromitite was recovered in one dredge haul. Variously evolved gabbroic rocks were collected as discrete samples or as centimeter to decimeter-thick dikes in peridotites. Basalts and fresh basaltic glass were also sampled in talus and sediments on the southwestern and northeastern flanks of the massif. Our sampling is consistent with the lithological variability encountered in oceanic core complexes along the Mid-Atlantic Ridge and Southwest Indian Ridge. The stockwork of the hydrothermal system has been sampled on the western side of the present-day hydrothermal

  13. Segmentation of touching handwritten Japanese characters using the graph theory method

    NASA Astrophysics Data System (ADS)

    Suwa, Misako

    2000-12-01

    Projection analysis methods have been widely used to segment Japanese character strings. However, if adjacent characters have overhanging strokes or a touching point doesn't correspond to the histogram minimum, the methods are prone to result in errors. In contrast, non-projection analysis methods being proposed for use on numerals or alphabet characters cannot be simply applied for Japanese characters because of the differences in the structure of the characters. Based on the oversegmenting strategy, a new pre-segmentation method is presented in this paper: touching patterns are represented as graphs and touching strokes are regarded as the elements of proper edge cutsets. By using the graph theoretical technique, the cutset martrix is calculated. Then, by applying pruning rules, potential touching strokes are determined and the patterns are over segmented. Moreover, this algorithm was confirmed to be valid for touching patterns with overhanging strokes and doubly connected patterns in simulations.

  14. Kinematics and segmentation of the South Shetland Islands-Bransfield basin system, northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Taylor, Frederick W.; Bevis, Michael G.; Dalziel, Ian W. D.; Smalley, Robert; Frohlich, Cliff; Kendrick, Eric; Foster, James; Phillips, David; Gudipati, Krishnavikas

    2008-04-01

    New GPS measurements demonstrate tectonic segmentation of the South Shetland Islands platform, regarded as a microplate separating the Antarctic Peninsula from the oceanic portion of the Antarctic plate. King George, Greenwich, and Livingston islands on the central and largest segment are separating from the Antarctic Peninsula at 7-9 mm/a, moving NNW, roughly perpendicular to the continental margin. Smith and Low islands on the small southwestern segment are moving in the same direction, but at 2.2-3.0 mm/a. The Elephant Island subgroup in the northeast moves at ˜7 mm/a relative to the Peninsula, like the central group, but toward the WNW. This implies that it is presently coupled to the Scotia plate on the northern side of the South Scotia Ridge transform boundary; thus the uplift of these northeasternmost islands may be caused by Scotia-Antarctic plate convergence rather than by subduction of thickened oceanic crust.

  15. Finescale parameterizations of energy dissipation in a region of strong internal tides and sheared flow, the Lucky-Strike segment of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Pasquet, Simon; Bouruet-Aubertot, Pascale; Reverdin, Gilles; Turnherr, Andreas; Laurent, Lou St.

    2016-06-01

    The relevance of finescale parameterizations of dissipation rate of turbulent kinetic energy is addressed using finescale and microstructure measurements collected in the Lucky Strike segment of the Mid-Atlantic Ridge (MAR). There, high amplitude internal tides and a strongly sheared mean flow sustain a high level of dissipation rate and turbulent mixing. Two sets of parameterizations are considered: the first ones (Gregg, 1989; Kunze et al., 2006) were derived to estimate dissipation rate of turbulent kinetic energy induced by internal wave breaking, while the second one aimed to estimate dissipation induced by shear instability of a strongly sheared mean flow and is a function of the Richardson number (Kunze et al., 1990; Polzin, 1996). The latter parameterization has low skill in reproducing the observed dissipation rate when shear unstable events are resolved presumably because there is no scale separation between the duration of unstable events and the inverse growth rate of unstable billows. Instead GM based parameterizations were found to be relevant although slight biases were observed. Part of these biases result from the small value of the upper vertical wavenumber integration limit in the computation of shear variance in Kunze et al. (2006) parameterization that does not take into account internal wave signal of high vertical wavenumbers. We showed that significant improvement is obtained when the upper integration limit is set using a signal to noise ratio criterion and that the spatial structure of dissipation rates is reproduced with this parameterization.

  16. Ridges on Europa

    NASA Image and Video Library

    1997-12-18

    This view of Jupiter's moon Europa shows a portion of the surface that has been highly disrupted by fractures and ridges. This picture covers an area about 238 kilometers (150 miles) wide by 225 kilometers (140 miles), or about the distance between Los Angeles and San Diego. Symmetric ridges in the dark bands suggest that the surface crust was separated and filled with darker material, somewhat analogous to spreading centers in the ocean basins of Earth. Although some impact craters are visible, their general absence indicates a youthful surface. The youngest ridges, such as the two features that cross the center of the picture, have central fractures, aligned knobs, and irregular dark patches. These and other features could indicate cryovolcanism, or processes related to eruption of ice and gases. This picture, centered at 16 degrees south latitude, 196 degrees west longitude, was taken at a distance of 40,973 kilometers (25,290 mi) on November 6, 1996 by the Galileo spacecraft solid state imaging television camera onboard the Galileo spacecraft during its third orbit around Jupiter. http://photojournal.jpl.nasa.gov/catalog/PIA00518

  17. Size cues and the adjacency principle.

    DOT National Transportation Integrated Search

    1963-11-01

    The purpose of the present study was to apply the adjacency principle to the perception of relative depth from size cues. In agreement with the adjacency principle, it was found that the size cue between adjacent objects was more effective than the s...

  18. A Review on Forearc Ophiolite Obduction, Adakite-Like Generation, and Slab Window Development at the Chile Triple Junction Area: Uniformitarian Framework for Spreading-Ridge Subduction

    NASA Astrophysics Data System (ADS)

    Bourgois, Jacques; Lagabrielle, Yves; Martin, Hervé; Dyment, Jérôme; Frutos, Jose; Cisternas, Maria Eugenia

    2016-10-01

    This paper aggregates the main basic data acquired along the Chile Triple Junction (CTJ) area (45°-48°S), where an active spreading center is presently subducting beneath the Andean continental margin. Updated sea-floor kinematics associated with a comprehensive review of geologic, geochemical, and geophysical data provide new constraints on the geodynamics of this puzzling area. We discuss: (1) the emplacement mode for the Pleistocene Taitao Ridge and the Pliocene Taitao Peninsula ophiolite bodies. (2) The occurrence of these ophiolitic complexes in association with five adakite-like plutonic and volcanic centers of similar ages at the same restricted locations. (3) The inferences from the co-occurrence of these sub-coeval rocks originating from the same subducting oceanic lithosphere evolving through drastically different temperature-pressure ( P- T) path: low-grade greenschist facies overprint and amphibolite-eclogite transition, respectively. (4) The evidences that document ridge-jump events and associated microplate individualization during subduction of the SCR1 and SCR-1 segments: the Chonos and Cabo Elena microplates, respectively. The ridge-jump process associated with the occurrence of several closely spaced transform faults entering subduction is controlling slab fragmentation, ophiolite emplacement, and adakite-like production and location in the CTJ area. Kinematic inconsistencies in the development of the Patagonia slab window document an 11- km westward jump for the SCR-1 spreading segment at ~6.5-to-6.8 Ma. The SCR-1 spreading center is relocated beneath the North Patagonia Icefield (NPI). We argue that the deep-seated difference in the dynamically sustained origin of the high reliefs of the North and South Patagonia Icefield (NPI and SPI) is asthenospheric convection and slab melting, respectively. The Chile Triple Junction area provides the basic constraints to define the basic signatures for spreading-ridge subduction beneath an Andean

  19. Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter

    NASA Astrophysics Data System (ADS)

    Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun

    2018-03-01

    The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.

  20. Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing

    NASA Astrophysics Data System (ADS)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2010-03-01

    We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.

  1. A mathematical analysis to address the 6 degree-of-freedom segmental power imbalance.

    PubMed

    Ebrahimi, Anahid; Collins, John D; Kepple, Thomas M; Takahashi, Kota Z; Higginson, Jill S; Stanhope, Steven J

    2018-01-03

    Segmental power is used in human movement analyses to indicate the source and net rate of energy transfer between the rigid bodies of biomechanical models. Segmental power calculations are performed using segment endpoint dynamics (kinetic method). A theoretically equivalent method is to measure the rate of change in a segment's mechanical energy state (kinematic method). However, these two methods have not produced experimentally equivalent results for segments proximal to the foot, with the difference in methods deemed the "power imbalance." In a 6 degree-of-freedom model, segments move independently, resulting in relative segment endpoint displacement and non-equivalent segment endpoint velocities at a joint. In the kinetic method, a segment's distal end translational velocity may be defined either at the anatomical end of the segment or at the location of the joint center (defined here as the proximal end of the adjacent distal segment). Our mathematical derivations revealed the power imbalance between the kinetic method using the anatomical definition and the kinematic method can be explained by power due to relative segment endpoint displacement. In this study, we tested this analytical prediction through experimental gait data from nine healthy subjects walking at a typical speed. The average absolute segmental power imbalance was reduced from 0.023 to 0.046 W/kg using the anatomical definition to ≤0.001 W/kg using the joint center definition in the kinetic method (95.56-98.39% reduction). Power due to relative segment endpoint displacement in segmental power analyses is substantial and should be considered in analyzing energetic flow into and between segments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Geochronologic evidence for a possible MIS-11 emergent barrier/beach-ridge in southeastern Georgia, USA

    USGS Publications Warehouse

    Markewich, H.W.; Pavich, M.J.; Schultz, A.P.; Mahan, S.A.; Aleman-Gonzalez, W. B.; Bierman, P.R.

    2013-01-01

    Predominantly clastic, off-lapping, transgressive, near-shore marine sediment packages that are morphologically expressed as subparallel NE-trending barriers, beach ridges, and associated back-barrier areas, characterize the near-surface stratigraphic section between the Savannah and the Ogeechee Rivers in Effingham County, southeastern Georgia. Each barrier/back-barrier (shoreline) complex is lower than and cut into a higher/older complex. Each barrier or shoreline complex overlies Miocene strata. No direct age data are available for these deposits. Previous researchers have disagreed on their age and provenance. Using luminescence and meteoric beryllium-10 (10Be) inventory analyses, we estimated a minimum age for the largest, westernmost, morphologically identifiable, and topographically-highest, barrier/beach-ridge (the Wicomico shoreline barrier) and constrained the age of a suite of younger barrier/beach-ridges that lie adjacent and seaward of the Wicomico shoreline barrier. At the study site, the near-shore marine/estuarine deposits underlying the Wicomico shoreline barrier are overlain by eolian sand and an intervening zone-of-mixing. Optically stimulated luminescence (OSL) data indicate ages of ≤43 ka for the eolian sand and 116 ka for the zone-of-mixing. Meteoric 10Be and pedostratigraphic data indicate minimum residence times of 33.4 ka for the eolian sand, 80.6 ka for the zone-of-mixing, and 247 ka for the paleosol. The combined OSL and 10Be age data indicate that, at this locality, the barrier/beach ridge has a minimum age of about 360 ka. This age for the Wicomico shoreline-barrier deposit is the first for any Pleistocene near-shore marine/estuarine deposit in southeast Georgia that is conclusively older than 80 ka. The 360-ka minimum age is in agreement with other geochronologic data for near-coastline deposits in Georgia and South Carolina. The geomorphic position of this barrier/beach-ridge is similar to deposits in South Carolina considered to be

  3. Comparison of Arterial Repair through the Suture, Suture with Fibrin or Cyanoacrylate Adhesive in Ex-Vivo Porcine Aortic Segment

    PubMed Central

    de Carvalho, Marcus Vinicius H.; Marchi, Evaldo; Lourenço, Edmir Américo

    2017-01-01

    Introduction Tissue adhesives can be used as adjacent to sutures to drop or avoid bleeding in cardiovascular operations. Objective To verify the efficiency of fibrin and cyanoacrylate adhesive to seal arterial sutures and if the adhesives penetrate through suture line to the inner of arteries. Methods 20 abdominal aorta segments of pigs were divided into two groups according to the adhesive which would be used as adjacent to the suture. In every arterial segment an arteriotomy was done, followed by a conventional artery closure. Afterwards a colloidal fluid was injected inside the arterial segment with a simultaneous intravascular pressure monitoring up to a fluid leakage through the suture. This procedure was repeated after application of one of the adhesives on the suture in order to check if the bursting pressure increases. The inner aorta segments also were analyzed in order to check if there was intraluminal adhesive penetration. Results In Suture 1 group, the mean arterial pressure sustained by the arterial suture reached 86±5.35 mmHg and after the fibrin adhesive application reached 104±11.96 (P<0.002). In the Suture 2 group, the mean arterial pressure sustained by the suture reached 83±2.67 mmHg and after the cyanoacrylate adhesive application reached 152±14.58 mmHg (P<0.002). Intraluminal adhesive penetration has not been noticed. Conclusion There was a significant rise in the bursting pressure when tissue adhesives were used as adjacent to arterial suture, and this rise was higher if the cyanoacrylate adhesive was used. In addition, the adhesives do not penetrate through the suture line into the arteries. PMID:29267611

  4. How Fast Do Europa's Ridges Grow?

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Turtle, E. P.; Freed, A. M.

    2017-11-01

    We demonstrate with our incremental wedging model of ridge formation that ridges must grow in 5000 years or less to prevent their material flowing down an underlying warm ice channel. This conclusion holds for other models as well.

  5. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    PubMed

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  6. Mantle plume capture, anchoring and outflow during ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Richards, M. A.; Geist, D.

    2015-12-01

    Geochemical and geophysical studies have shown that >40% of the world's mantle plumes are currently interacting with the global ridge system and such interactions may continue for up to 180 Myr[1]. At sites of plume-ridge interaction up to 1400 km of the spreading centre is influenced by dispersed plume material but there are few constraints on how and where the ridge-ward transfer of deep-sourced material occurs, and also how it is sustained over long time intervals. Galápagos is an archetypal example of an off-axis plume and sheds important light on these mechanisms. The Galápagos plume stem is located ~200 km south of the spreading axis and its head influences 1000 km of the ridge. Nevertheless, the site of enriched basalts, greatest crustal thickness and elevated topography on the ridge, together with active volcanism in the archipelago, correlate with a narrow zone (~150 km) of low-velocity, high-temperature mantle that connects the plume stem and ridge at depths of ~100 km[2]. The enriched ridge basalts contain a greater amount of partially-dehydrated, recycled oceanic crust than basalts elsewhere on the spreading axis, or indeed basalts erupted in the region between the plume stem and ridge. The presence of these relatively volatile-rich ridge basalts requires flow of plume material below the peridotite solidus (i.e.>80 km). We propose a 2-stage model for the development and sustainment of a confined zone of deep ridge-ward plume flow. This involves initial on-axis capture and establishment of a sub-ridge channel of plume flow. Subsequent anchoring of the plume stem to a contact point on the ridge during axis migration results in confined ridge-ward flow of plume material via a deep network of melt channels embedded in the normal spreading and advection of the plume head[2]. Importantly, sub-ridge flow is maintained. The physical parameters and styles of mantle flow we have defined for Galápagos are less-well known at other sites of plume-ridge

  7. Granular fingering as a mechanism for ridge formation in debris avalanche deposits: Laboratory experiments and implications for Tutupaca volcano, Peru

    NASA Astrophysics Data System (ADS)

    Valderrama, P.; Roche, O.; Samaniego, P.; van Wyk des Vries, B.; Araujo, G.

    2018-01-01

    The origin of subparallel, regularly-spaced longitudinal ridges often observed at the surface of volcanic and other rock avalanche deposits remains unclear. We addressed this issue through analogue laboratory experiments on flows of bi-disperse granular mixtures, because this type of flow is known to exhibit granular fingering that causes elongated structures resembling the ridges observed in nature. We considered four different mixtures of fine (300-400 μm) glass beads and coarse (600-710 μm to 900-1000 μm) angular crushed fruit stones, with particle size ratios of 1.9-2.7 and mass fractions of the coarse component of 5-50 wt%. The coarse particles segregated at the flow surface and accumulated at the front where flow instabilities with a well-defined wavelength grew. These formed granular fingers made of coarse-rich static margins delimiting fines-rich central channels. Coalescence of adjacent finger margins created regular spaced longitudinal ridges, which became topographic highs as finger channels drained at final emplacement stages. Three distinct deposit morphologies were observed: 1) Joined fingers with ridges were formed at low (≤ 1.9) size ratio and moderate (10-20 wt%) coarse fraction whereas 2) separate fingers or 3) poorly developed fingers, forming series of frontal lobes, were created at larger size ratios and/or higher coarse contents. Similar ridges and lobes are observed at the debris avalanche deposits of Tutupaca volcano, Peru, suggesting that the processes operating in the experiments can also occur in nature. This implies that volcanic (and non-volcanic) debris avalanches can behave as granular flows, which has important implications for interpretation of deposits and for modeling. Such behaviour may be acquired as the collapsing material disaggregates and forms a granular mixture composed by a right grain size distribution in which particle segregation can occur. Limited fragmentation and block sliding, or grain size distributions

  8. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.

    2002-07-01

    Flat subduction near Peru occurs only where the thickened crust of the Nazca Ridge subducts. Furthermore, the South-America continent shows a westward absolute plate motion. Both the overriding motion of South-America and the subduction of the Nazca Ridge have been proposed to explain the flat slab segment below South Peru. We have conducted a series of numerical model experiments to investigate the relative importance of both mechanisms. Results suggest that the average upper mantle viscosity should be about 3.5 × 1020 Pa s or less and basaltic crust should be able to survive 600 to 800°C ambient temperature before transforming into eclogite to explain the slab geometry below Peru. The effect of the overriding plate is estimated to be as large or twice as large as that of the plateau subduction.

  9. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, John William; Hannington, Mark D.; Tivey, Margaret K.; Hansteen, Thor; Williamson, Nicole M.-B.; Stewart, Margaret; Fietzke, Jan; Butterfield, David; Frische, Matthias; Allen, Leigh; Cousens, Brian; Langer, Julia

    2016-01-01

    Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during

  10. Local Prediction Models on Mid-Atlantic Ridge MORB by Principal Component Regression

    NASA Astrophysics Data System (ADS)

    Ling, X.; Snow, J. E.; Chin, W.

    2017-12-01

    The isotopic compositions of the daughter isotopes of long-lived radioactive systems (Sr, Nd, Hf and Pb ) can be used to map the scale and history of mantle heterogeneities beneath mid-ocean ridges. Our goal is to relate the multidimensional structure in the existing isotopic dataset with an underlying physical reality of mantle sources. The numerical technique of Principal Component Analysis is useful to reduce the linear dependence of the data to a minimum set of orthogonal eigenvectors encapsulating the information contained (cf Agranier et al 2005). The dataset used for this study covers almost all the MORBs along mid-Atlantic Ridge (MAR), from 54oS to 77oN and 8.8oW to -46.7oW, including replicating the dataset of Agranier et al., 2005 published plus 53 basalt samples dredged and analyzed since then (data from PetDB). The principal components PC1 and PC2 account for 61.56% and 29.21%, respectively, of the total isotope ratios variability. The samples with similar compositions to HIMU and EM and DM are identified to better understand the PCs. PC1 and PC2 are accountable for HIMU and EM whereas PC2 has limited control over the DM source. PC3 is more strongly controlled by the depleted mantle source than PC2. What this means is that all three principal components have a high degree of significance relevant to the established mantle sources. We also tested the relationship between mantle heterogeneity and sample locality. K-means clustering algorithm is a type of unsupervised learning to find groups in the data based on feature similarity. The PC factor scores of each sample are clustered into three groups. Cluster one and three are alternating on the north and south MAR. Cluster two exhibits on 45.18oN to 0.79oN and -27.9oW to -30.40oW alternating with cluster one. The ridge has been preliminarily divided into 16 sections considering both the clusters and ridge segments. The principal component regression models the section based on 6 isotope ratios and PCs. The

  11. Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm

    NASA Astrophysics Data System (ADS)

    Anokhin, Vladimir; Kholmianskii, Mikhail

    2014-05-01

    Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm Vladimir M. Anokhin, Mikhail A. Kholmianskii Configuration of the seismofocal zones (SFZ), visible in a real position of the focuses of earthquakes, has a significant step component (jagged) expressed by the presence of several sub-horizontal "seismoplanes", which concentrates focuses of earthquakes (depths 10, 35 km and other). Orientation of seismolines inside of SFZ tends to 4 main directions: 0-5 dgr, 120-145 dgr, 40-55 dgr, 85-90 dgr. These facts suggest significantly block, a terraced structure of the body of Benioff zone. The borders of blocks have orientation according directions regmatic net of the Earth. In accordance with this, SFZ can be presented as the most active segments of the border of the crossing: «continent-ocean», having the following properties: - block (terraced) structure; - in some sites - dive under the continental crust (in present time); - prevailing compression (in present time), perhaps, as the period of the oscillatory cycle; Infinite "subduction" in SFZ is unlikely. One of the areas where there is proof of concept of far "spreading" is the southernmost tip of the mid-oceanic Gakkel ridge in the Laptev sea (Arctic ocean). Here active "spreading" ridge normal approaches to the boundary of the continental crust - the shelf of the Laptev sea. On the shelf there are a number of subparallel NW grabens. NE fault zone Charlie, controlling the continental slope is established stepped fault without shift component. This means that the amount of extending of the offshore grabens does not significantly differ from the scale of spreading in the Gakkel ridge. However, the total spreads grabens (50-100 km) 6-10 times less than the width of the oceanic crust (600 km) in the surrounding area. Conclusion: the oceanic crust in the Laptev sea was formed mainly not due to "spreading". It is very likely that here was sinking and the processing of continental crust in the ocean

  12. Seismic Velocity Variation and Evolution of the Upper Oceanic Crust across the Mid-Atlantic Ridge at 1.3°S

    NASA Astrophysics Data System (ADS)

    Jian, H.; Singh, S. C.

    2017-12-01

    The oceanic crust that covers >70% of the solid earth is formed at mid-ocean ridges, but get modified as it ages. Understanding the evolution of oceanic crust requires investigations of crustal structures that extend from zero-age on the ridge axis to old crust. In this study, we analyze a part of a 2000-km-long seismic transect that crosses the Mid-Atlantic Ridge segment at 1.3°S, south of the Chain transform fault. The seismic data were acquired using a 12-km-long multi-sensor streamer and dense air-gun shots. Using a combination of downward continuation and seismic tomography methods, we have derived a high-resolution upper crustal velocity structure down to 2-2.5 km depth below the seafloor, from the ridge axis to 3.5 Ma on both sides of the ridge axis. The results demonstrate that velocities increase at all depths in the upper crust as the crust ages, suggesting that hydrothermal precipitations seal the upper crustal pore spaces. This effect is most significant in layer 2A, causing a velocity increase of 0.5-1 km/s after 1-1.5 Ma, beyond which the velocity increase is very small. Furthermore, the results exhibit a significant decrease in both the frequency and amplitude of the low-velocity anomalies associated with faults beyond 1-1.5 Ma, when faults become inactive, suggesting a linkage between the sealing of fault space and the extinction of hydrothermal activity. Besides, the off-axis velocities are systematically higher on the eastern side of the ridge axis compared to on the western side, suggesting that a higher hydrothermal activity should exist on the outside-corner ridge flank than on the inside-corner flank. While the tomography results shown here cover 0-3.5 Ma crust, the ongoing research will further extend the study area to older crust and also incorporating pre-stack migration and full waveform inversion methods to improve the seismic structure.

  13. Stress history and geotechnical properties of sediment from the Cape Fear Diapir, Blake Ridge Diapir, and Blake Ridge

    USGS Publications Warehouse

    Winters, W.J.

    2000-01-01

    Geotechnical properties of sediment from Ocean Drilling Program Leg 164 are presented as: (1) normalized shipboard strength ratios from the Cape Fear Diapir, the Blake Ridge Diapir, and the Blake Ridge; and (2) Atterberg limit, vane shear strength, pocket-penetrometer strength, and constant-rate-of-strain consolidation results from Hole 995A, located on the Blake Ridge. This study was conducted to understand the stress history in a region characterized by high sedimentation rates and the presence of gas hydrates. Collectively, the results indicate that sediment from the Blake Ridge exhibits significant underconsolidated behavior, except near the seafloor. At least 10 m of additional overburden was removed by erosion or mass wasting at Hole 993A on the Cape Fear Diapir, compared to nearby sites.

  14. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  15. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  16. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  17. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  18. Wrinkle Ridges and Young Fresh Crater

    NASA Image and Video Library

    2002-06-04

    This NASA Mars Odyssey image is of the ridged plains of Lunae Planum in the northern hemisphere of Mars. Wrinkle ridges, a very common landform on Mars, Mercury, Venus, and the Moon, are found mostly along the eastern side of the image.

  19. Segmented Subduction Across the Juan De Fuca Plate: Challenges in Imaging with an Amphibious Array

    NASA Astrophysics Data System (ADS)

    Hawley, W. B.; Allen, R. M.

    2014-12-01

    The Cascadia Initiative (CI) is an amphibious array spanning the Juan de Fuca plate from formation at the ridge to the destruction of the slab in the mantle beneath western North America. This ambitions project has occupied over 300 onshore and offshore sites, providing an unprecedented opportunity to understand the dynamics of oceanic plates. The CI project is now in its fourth and final year of deployment. Here we present constraints on the structure of the Juan de Fuca plate and its interaction with western North America. We identify segmentation along the Cascadia subduction zone that can be traced back onto the Juan de Fuca plate prior to subduction. These results give insight into the life cycle of oceanic plates, from their creation at a mid-ocean ridge to their subduction and subsequent recycling into the mantle.

  20. Maxillary Interdental Osteotomies Have Low Morbidity for Alveolar Crestal Bone and Adjacent Teeth: A Cone Beam Computed Tomography-Based Study.

    PubMed

    Rodrigues, Daniel B; Campos, Paulo S F; Wolford, Larry M; Ignácio, Jaqueline; Gonçalves, João R

    2018-02-19

    Maxillary segmentation involving interdental osteotomies can have an adverse effect on the interdental crestal bone and adjacent teeth. The purpose of the present study was to evaluate the effect of interdental osteotomies on surrounding osseous and dental structures, including adjacent teeth, using cone beam computed tomography (CBCT), in patients who underwent segmental maxillary osteotomies. The present retrospective cohort study evaluated interdental osteotomy (IDO) sites between the lateral incisors and canines in patients treated with 3-piece Le Fort I osteotomies. CBCT scans were assessed using Kodac Dental Imaging software at specific intervals: T0 (before surgery), T1 (immediately after surgery), and T2 (a minimum of 11 months after surgery). The statistical analysis using a linear regression model was adjusted to compare the variables at the different intervals. Injury to the dental structures was assessed by radiological evidence of dental damage, the requirement for endodontic treatment, or tooth loss. We evaluated 94 IDO sites in 47 patients in the present study. The mean inter-radicular distance at T0 was 2.5 mm. A statistically significant increase was seen in the inter-radicular distance (between T1 and T0) of 0.72 mm, with a reduction of the alveolar bone crest height (between T2 and T0) of 0.19 mm (P < .001) for the group that underwent IDO. A weak correlation was found for this increase in the inter-radicular distance, with changes in the alveolar crest bone height. The potential complications associated with interdental osteotomies such as iatrogenic damage to the tooth structure, the need for endodontic treatment, and tooth loss were not encountered in any patients. We found very low morbidity for the interdental alveolar crest and the integrity of teeth adjacent to interdental osteotomies for patients who underwent maxillary segmentation between the lateral incisors and canines. Copyright © 2018 American Association of Oral and

  1. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bearmore » Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.« less

  2. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin, and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.

    1998-01-01

    Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the

  3. Thermal structure of oceanic transform faults

    USGS Publications Warehouse

    Behn, M.D.; Boettcher, M.S.; Hirth, G.

    2007-01-01

    We use three-dimensional finite element simulations to investigate the temperature structure beneath oceanic transform faults. We show that using a rheology that incorporates brittle weakening of the lithosphere generates a region of enhanced mantle upwelling and elevated temperatures along the transform; the warmest temperatures and thinnest lithosphere are predicted to be near the center of the transform. Previous studies predicted that the mantle beneath oceanic transform faults is anomalously cold relative to adjacent intraplate regions, with the thickest lithosphere located at the center of the transform. These earlier studies used simplified rheologic laws to simulate the behavior of the lithosphere and underlying asthenosphere. We show that the warmer thermal structure predicted by our calculations is directly attributed to the inclusion of a more realistic brittle rheology. This temperature structure is consistent with a wide range of observations from ridge-transform environments, including the depth of seismicity, geochemical anomalies along adjacent ridge segments, and the tendency for long transforms to break into small intratransform spreading centers during changes in plate motion. ?? 2007 Geological Society of America.

  4. Europa Ridges, Hills and Domes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This moderate-resolution view of the surface of one of Jupiter's moons, Europa, shows the complex icy crust that has been extensively modified by fracturing and the formation of ridges. The ridge systems superficially resemble highway networks with overpasses, interchanges and junctions. From the relative position of the overlaps, it is possible to determine the age sequence for the ridge sets. For example, while the 8-kilometer-wide (5-mile) ridge set in the lower left corner is younger than most of the terrain seen in this picture, a narrow band cuts across the set toward the bottom of the picture, indicating that the band formed later. In turn, this band is cut by the narrow 2- kilometer-wide (1.2-mile) double ridge running from the lower right to upper left corner of the picture. Also visible are numerous clusters of hills and low domes as large as 9 kilometers (5.5 miles) across, many with associated dark patches of non-ice material. The ridges, hills and domes are considered to be ice-rich material derived from the subsurface. These are some of the youngest features seen on the surface of Europa and could represent geologically young eruptions.

    This area covers about 140 kilometers by 130 kilometers (87 miles by 81 miles) and is centered at 12.3 degrees north latitude, 268 degrees west longitude. Illumination is from the east (right side of picture). The resolution is about 180 meters (200 yards) per pixel, meaning that the smallest feature visible is about a city block in size. The picture was taken by the Solid State Imaging system on board the Galileo spacecraft on February 20, 1997, from a distance of 17,700 kilometers (11,000 miles) during its sixth orbit around Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov.

  5. The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae)

    NASA Astrophysics Data System (ADS)

    Riehl, Torben; Lins, Lidia; Brandt, Angelika

    2018-02-01

    The largest habitat on Earth, the abyssal oceans below 3500 m depth, is commonly assumed to represent a continuous environment due to homogeneity of environmental factors and the lack of physical barriers. Yet, the presence of bathymetric features, such as Mid-Ocean Ridges, and hadal trenches provide a discontinuation. During the Vema-TRANSIT expedition in 2014/2015 to the tropical North Atlantic, a transatlantic transect was studied following the full extent of the Vema Fracture Zone in an east-west direction and including the Puerto Rico Trench (PRT). The aim of this study was to test whether large bathymetric features represent barriers to dispersal and may lead to differentiation and eventually speciation. In this study, these potential barriers included the Mid-Atlantic Ridge (MAR) and the transition ( 3000 m) from the hadal PRT to the adjacent abyss. Genetic differentiation and differences in community structure (species composition) from east and west of the MAR, as well as abyssal and hadal depth zones were tested for using the poor dispersers Macrostylidae (Crustacea, Isopoda) as a model Distribution patterns showed that certain macrostylid species have ranges extending more than 2000 km, in some cases across oceanic ridges and trench-abyss transitions. Contrastingly, there was a clear signal for geographic population structure coinciding with the east-west division of the Atlantic by the MAR as well as with the abyss-hadal zonation. These results support the hypotheses that depth gradients as well as oceanic ridges reduce dispersal even though barriers may not be absolute. Additionally, positive correlation between genetic- and geographic distances showed that the vast size of the deep sea itself is a factor responsible for creating diversity.

  6. A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.

    2018-02-01

    Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.

  7. Uplift, Emergence, and Subsidence of the Gorda Escarpment Basement Ridge Offshore Cape Mendocino, CA

    NASA Astrophysics Data System (ADS)

    Hoover, Susan M.; Tréhu, Anne M.

    2017-12-01

    The Gorda Escarpment is a topographic step that characterizes the south side of the Mendocino Transform Fault east of 126oW and forms the northern edge of the Vizcaino Block. Seismic reflection data suggest that the basement beneath the northern edge of the Vizcaino is composed of east-west trending slivers of oceanic crust that form a 15 km wide band of buried ridges we call the Gorda Escarpment Basement Ridge (GEBR) to distinguish it from the northwest-trending basement structure that characterizes most of the Vizcaino Block. The history of uplift and subsidence of the GEBR is reconstructed by combining the seismic reflection profiles with age and lithological constraints from ODP Site 1022, gravity cores, and grab samples from the northern face of the Escarpment recovered using a remotely operated vehicle. Uplift of the GEBR began prior to 6 Ma, and it was above sea level 3.7-2.5 Ma. GEBR uplift and emergence coincided with sediment deposition on the southern flank of the GEBR that we interpret as indicative of strong upwelling and turbulence in the lee of a shallow ridge and island chain. A bright reflection, interpreted to be a sill, is observed south of the shallowest part of the GEBR. We speculate that this sill may reflect a larger, hidden intrusion at depth and that thermal expansion of the crust combined with tectonic forces to drive enhanced uplift of this segment of the plate boundary. The GEBR has been subsiding since 2.7 Ma, and its shallowest point is now 1,400 m below sea level.

  8. Ridge and Talus in Lycus Sulci

    NASA Image and Video Library

    2015-08-12

    This image from NASA Mars Reconnaissance Orbiter spacecraft nicely captures several influential geologic processes that have shaped the landscape of Lycus Sulci. Our observation covers an area of about 7.5 by 5.4 kilometers in Lycus Sulci, located just to the northwest of Olympus Mons in the Tharsis region of Mars. "Sulci" is a Latin term meaning "furrow" or "groove." In this case, Lycus Sulci is a region comprised of a series of depressions and ridges. Like most of the Tharsis region, Lycus Sulci exhibits thick deposits of light-toned Martian dust; the slopes on ridges in this region feature abundant streaks. These streaks are long, thin dark-toned features. They appear when the superficial light-tone fine-grained materials (i.e., Martian dust) suddenly move down slope and expose the darker underlying volcanic surfaces. Repeat imaging shows that dust streaks are consistently dark when they are initially formed and become lighter over time. This is due to the steady deposition of dust from the atmosphere. Slope streaks are also visible along the slopes of ridges and shallow depressions. Two ridges here exhibit partially exposed bedrock. These outcrops are interpreted to still have abundant coatings and dust, obscuring the underlying bedrock. This interpretation is based on the lack of bluish color for volcanic bedrock from the infrared-red-blue swath of our camera, and consistent with the homogenous tannish color we see throughout the same swath. It's possible that the ridges here and throughout the Lycus Sulci region formed via volcanic and tectonic processes, which have been further sculpted by wind erosion and other mass wasting processes. For example, talus slopes, which appear as fine-grained fans or conical-shaped deposits, originate from the steepest portions of the ridges. These form when the rocks or deposits on the steepest slopes of a ridge fail under the influence of Martian gravity and their own mass, causing an avalanche of these materials, which then

  9. Geology along the Blue Ridge Parkway in Virginia

    USGS Publications Warehouse

    Carter, Mark W.; Southworth, C. Scott; Tollo, Richard P.; Merschat, Arthur J.; Wagner, Sara; Lazor, Ava; Aleinikoff, John N.

    2017-01-01

    Detailed geologic mapping and new SHRIMP (sensitive high-resolution ion microprobe) U-Pb zircon, Ar/Ar, Lu-Hf, 14C, luminescence (optically stimulated), thermochronology (fission-track), and palynology reveal the complex Mesoproterozoic to Quaternary geology along the ~350 km length of the Blue Ridge Parkway in Virginia. Traversing the boundary of the central and southern Appalachians, rocks along the parkway showcase the transition from the para-autochthonous Blue Ridge anticlinorium of northern and central Virginia to the allochthonous eastern Blue Ridge in southern Virginia. From mile post (MP) 0 near Waynesboro, Virginia, to ~MP 124 at Roanoke, the parkway crosses the unconformable to faulted boundary between Mesoproterozoic basement in the core of the Blue Ridge anticlinorium and Neoproterozoic to Cambrian metasedimentary and metavolcanic cover rocks on the western limb of the structure. Mesoproterozoic basement rocks comprise two groups based on SHRIMP U-Pb zircon geochronology: Group I rocks (1.2-1.14 Ga) are strongly foliated orthogneisses, and Group II rocks (1.08-1.00 Ga) are granitoids that mostly lack obvious Mesoproterozoic deformational features.Neoproterozoic to Cambrian cover rocks on the west limb of the anticlinorium include the Swift Run and Catoctin Formations, and constituent formations of the Chilhowee Group. These rocks unconformably overlie basement, or abut basement along steep reverse faults. Rocks of the Chilhowee Group are juxtaposed against Cambrian rocks of the Valley and Ridge province along southeast- and northwest-dipping, high-angle reverse faults. South of the James River (MP 64), Chilhowee Group and basement rocks occupy the hanging wall of the nearly flat-lying Blue Ridge thrust fault and associated splays.South of the Red Valley high-strain zone (MP 144.5), the parkway crosses into the wholly allochthonous eastern Blue Ridge, comprising metasedimentary and meta-igneous rocks assigned to the Wills Ridge, Ashe, and Alligator

  10. The Atlantis Bank Gabbro Massif, SW Indian Ridge: the Largest Know Exposure of the Lower Crust in the Oceans

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.

    2017-12-01

    Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and

  11. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  12. Lithospheric Flexural Modeling of Iapetus' Equatorial Ridge

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Ip, W.-H.; Teng, L. S.

    2012-04-01

    Iapetus, which is one of Saturn's ball-shaped satellites, has some unique features in the Solar System. This satellite has a mean radius of 735 km, and there is an approximately 20-kilometer-high mountain lying precisely on its equator. The mountain is known as an "equatorial ridge" since it makes Iapetus appear walnut shaped. The origin of the equatorial ridge is attributed to several hypotheses, including different endogenesis and exogenesis processes. In this work, we attempted to construct a flexural model of the equatorial ridge using elastic lithosphere theory. The equatorial ridge is treated as a linear load which exerts uniform force on Iapetus' hard shell (i.e. elastic lithosphere of Iapetus). To calculate the deflection of surface, we use the Digital Terrain Model (DTM) data of Iapetus' leading side published by Giese et al. (2008). Giese et al. also pointed out that the elastic lithospheric thickness of Iapetus must exceed 100 km to support the ridge without deflecting. However, we found possible evidence in the DTM data that implied deflection. There are two sites of surface depression on the northern side of the equatorial ridge. The few-kilometer deflection implies a thinner lithosphere than previous suggested. Assume that the thickness of elastic lithosphere is only 5% below of the radius of Iapetus, so the flat-Earth and one-plate condition could adapt to the flexure model of Iapetus. Based on analysis of the distance between a bulge and the ridge, the calculated lithospheric thickness is 6-10 km. The new result seems controversial, but the modeled surface profile is highly consistent with numerical ridge DTM profile extracted from Giese et al. (2008). Thinner lithosphere also supports the contraction model proposed by Sandwell and Schubert (2010) since the bucking harmonic degree increases. In the other hand, the transformation layer between hard shell and plastic inner core may need constraint on thermal history or crystal form of ice. In

  13. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  14. Geologic setting of massive sulfide deposits and hydrothermal vents along the southern Juan de Fuca Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normark, W.R.; Morton, J.L.; Delaney, J.R.

    1982-01-01

    This report incorporates data from two cruises of the USGS vessel SP LEE: (1) L12-80-WF from 29 October to 13 November 1980, and (2) L11-81-WF from 4 to 15 September 1981. The 1980 cruise occurred long after the optimum weather window for this region. The natural results was that no photographic or sample stations could be attempted during nearly continuous gale- and storm-force winds, which twice forced the vessel to depart the work area for safety. A detailed bathymetric survey of a 35-km segment of the ridge axial zone was completed nonetheless, and the bathymetric map compiled from this surveymore » was used as the base for our second cruise in 1981. The second visit to the area was blessed with fair weather, and most of the cruise effort was devoted to photography and sampling, including dredging and hydrocasts in the axial valley segment, which is the central part of the area surveyed in 1980.« less

  15. Geologic and geochemical study of tin-bearing rhyolites in the Broken Ridge area, southern Wah Wah Mountains, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duttweiler, K.A.; Griffitts, W.R.

    This study was undertaken to document the geologic, petrologic, and geochemical relationships of the tin-bearing rhyolitic lava flows and domes of the 12-m.y.-old Steamboat Mountain Formation of Thompson and Perry in the area of Broken Ridge. Early phases of volcanic activity produced a crystal-rich, topaz-bearing rhyolite flow followed by eruption of a crystal-poor rhyolite from many local centers. These geochemical characteristics are typical of other topaz-bearing rhyolites in the western United States and suggest that such rhyolites formed as highly differentiated magmas. The 23-m.y.-old Bible Spring fault zone was reactivated after emplacement of the rhyolite flows that resulted in amore » series of high-angle normal faults. Multiple hydrothermal events resulted in widespread alteration along the faults and concentration of Be, F, Sn, Nb, Mo, Cu, Zn, W, and Ba. Alteration types include silicification, argillization, and alunitization. Crystalline cassiterite and wood tin are widespread and locally abundant in heavy-mineral-concentrate samples from the Broken Ridge area. The only visible cassiterite in the rocks occurs with specular hematite in veins within the silicified topaz-bearing rhyolite, immediately adjacent to a vent breccia. Trace element anomalies of Sn, Mo, Nb, and Be in rock samples well-define the vein area. The combined geologic, geochemical, and structural data suggest that an intrusive may be at depth directly beneath Broken Ridge.« less

  16. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F -- Baseline human health risk assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bearmore » Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants.« less

  17. Ridge Orientations of the Ridge-Forming Unit, Sinus Meridiani, Mars-A Fluvial Explanation

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. Justin; Herridge, A.

    2013-01-01

    Imagery and MOLA data were used in an analysis of the ridge-forming rock unit (RFU) exposed in Sinus Meridiani (SM). This unit shows parallels at different scales with fluvial sedimentary bodies. We propose the terrestrial megafan as the prime analog for the RFU, and likely for other members of the layered units. Megafans are partial cones of fluvial sediment, with radii up to hundreds of km. Although recent reviews of hypotheses for the RFU units exclude fluvial hypotheses [1], inverted ridges in the deserts of Oman have been suggested as putative analogs for some ridges [2], apparently without appreciating The wider context in which these ridges have formed is a series of megafans [3], a relatively unappreciated geomorphic feature. It has been argued that these units conform to the megafan model at the regional, subregional and local scales [4]. At the regional scale suites of terrestrial megafans are known to cover large areas at the foot of uplands on all continents - a close parallel with the setting of the Meridiani sediments at the foot of the southern uplands of Mars, with its incised fluvial systems leading down the regional NW slope [2, 3] towards the sedimentary units. At the subregional scale the layering and internal discontinuities of the Meridiani rocks are consistent, inter alia, with stacked fluvial units [4]. Although poorly recognized as such, the prime geomorphic environment in which stream channel networks cover large areas, without intervening hillslopes, is the megafan [see e.g. 4]. Single megafans can reach 200,000 km2 [5]. Megafans thus supply an analog for areas where channel-like ridges (as a palimpsest of a prior landscape) cover the intercrater plains of Meridiani [6]. At the local, or river-reach scale, the numerous sinuous features of the RFU are suggestive of fluvial channels. Cross-cutting relationships, a common feature of channels on terrestrial megafans, are ubiquitous. Desert megafans show cemented paleo-channels as inverted

  18. New data of the Gakkel Ridge seismicity

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina; Basakina, Irina; Kremenetskaya, Elena

    2016-04-01

    250 earthquakes were recorded in the Gakkel Ridge during the period 2012-2014 by Arkhangelsk seismic network. The magnitude Ml of these earthquakes is 1.5 - 5.7, 70% of them have Ml up to 3.0. Seismic events are arranged along to a narrow center line of the Mid-Arctic Ridge, most of the earthquakes are confined to the southern board of the Ridge. Presumably it's connected with the reflection of spreading processes. The high seismic activity zones, which we associate with the volcano-tectonic processes, have been identified. Have been recorded 13 events per day in the Western Volcanic Zone. The largest number of events (75%) is confined to the Sparsely Magmatic Zone. About 30% of all recorded earthquakes with magnitudes above 2.9 have a T-phase. We divided the Gakkel Ridge's earthquakes into two groups by using spectral-time analysis. The first group: maximum energy of the earthquake is observed from 1.5 to 10 Hz, values of magnitudes Ml 2.50-5.29. Earthquakes are distributed along the Gakkel Ridge. The second group: maximum energy of the earthquake is observed from 1.5 to 20 Hz, clearly expressed a high-frequency component, values of magnitudes Ml 2.3-3.4. Earthquakes 2 groups focused only in the Sparsely Magmatic Zone. The new seismic data shows an unique information about geodynamic processes of the Gakkel Ridge.

  19. High-Resolution Image of Europa's Ridged Plains

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This spectacular image taken by NASA's Galileo spacecraft camera shows a region of ridged plains on Jupiter's moon Europa. The plains are comprised of many parallel and cross-cutting ridges, commonly in pairs. The majority of the region is of very bright, but darker material is seen primarily in valleys between ridges. Some of the most prominent ridges have dark deposits along their margins and in their central valleys. Some of this dark material probably moved down the flanks of the ridges and has piled up along their bases. The most prominent ridges are about a kilometer in width (less than a mile). In the top right hand corner of the image the end of a dark wide ridge (about 2 kilometers or 1.2 miles across) is visible. Several deep fractures cut through this ridge and continue into the plains. The brightness of the region suggests that frost covers much of Europa's surface. This image looks different from those obtained earlier in Galileo's mission, because this image was taken with the Sun higher in Europa's sky.

    This image was taken on December 16, 1997 at a range of 1,300 kilometers (800 miles) by Galileo's solid state imaging system. North is to the top of the picture, and the Sun illuminates the surface from the upper left. This image, centered at approximately 14 degrees south latitude and 194 degrees west longitude, covers an area approximately 20 kilometers (12 miles) on each side. The resolution is 26 meters (85 feet) per picture element.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  20. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oakmore » Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.« less

  1. Near-inertial motions over a mid-Ocean Ridge; Effects of topography and hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Thomson, Richard E.; Roth, Sharon E.; Dymond, Jack

    1990-05-01

    We investigate the spatial structure of near-inertial motions in the vicinity of the Endeavour segment of Juan de Fuca Ridge (approximately 48°N, 129°W) in the northeast Pacific Ocean. On the basis of time series current and water property data collected from September 1984 to September 1987, near-inertial motions are ubiquitous features of the 2200-m water column, with root-mean-square (rms) current speeds comparable to those of the dominant M2 tidal currents. Within the lower 1000 m of the water column where most of the observations were obtained, near-inertial oscillations have rms current speeds of O(1 cm/s) and vertical isotherm displacements of O(10 m). The fluctuations are confined to the frequency band 0.966-1.079 f(f is the local Coriolis parameter) and have characteristic event durations of 1 week. Although the spectra of subsurface motions are dominated by the "blue-shifted" superinertial band, significant spectral peaks are found also in the subinertial and inertial frequency bands. Marked alteration of the near-inertial current amplitudes occurs over two well-defined depth zones within the study region. Within the 200-m zone immediately above the 2100-m ridge crest, current amplitudes are amplified by a factor of 1.2-1.7 because of bottom reflection and/or scattering of the downward propagating energy. Evidence that the amplification may be linked to bottom reflection rather than to scattering is provided by flattening and cross-slope rotation of the near-inertial current ellipses with increased proximity to the top of the ridge. Reflection would occur at grazing angles of less than 1° and would be associated with surface-generated waves originating at distances of over 100 km from the observational site. In contrast to the enhanced amplitudes immediately above the top of the ridge, near-inertial currents within the 1600- to 1800-m depth range undergo pronounced attenuation and frequency alteration. Amplitude attenuation is especially pronounced for

  2. Charge Collection Efficiency in a segmented semiconductor detector interstrip region

    NASA Astrophysics Data System (ADS)

    Alarcon-Diez, V.; Vickridge, I.; Jakšić, M.; Grilj, V.; Schmidt, B.; Lange, H.

    2017-09-01

    Charged particle semiconductor detectors have been used in Ion Beam Analysis (IBA) for over four decades without great changes in either design or fabrication. However one area where improvement is desirable would be to increase the detector solid angle so as to improve spectrum statistics for a given incident beam fluence. This would allow the use of very low fluences opening the way, for example, to increase the time resolution in real-time RBS or for analysis of materials that are highly sensitive to beam damage. In order to achieve this goal without incurring the costs of degraded resolution due to kinematic broadening or large detector capacitance, a single-chip segmented detector (SEGDET) was designed and built within the SPIRIT EU infrastructure project. In this work we present the Charge Collection Efficiency (CCE) in the vicinity between two adjacent segments focusing on the interstrip zone. Microbeam Ion Beam Induced Charge (IBIC) measurements with different ion masses and energies were used to perform X-Y mapping of (CCE), as a function of detector operating conditions (bias voltage changes, detector housing possibilities and guard ring configuration). We show the (CCE) in the edge region of the active area and have also mapped the charge from the interstrip region, shared between adjacent segments. The results indicate that the electrical extent of the interstrip region is very close to the physical extent of the interstrip and guard ring structure with interstrip impacts contributing very little to the complete spectrum. The interstrip contributions to the spectra that do occur, can be substantially reduced by an offline anti-coincidence criterion applied to list mode data, which should also be easy to implement directly in the data acquisition software.

  3. Popping Rocks from the Mid-Atlantic Ridge at 13.77° N

    NASA Astrophysics Data System (ADS)

    Kurz, M. D.; Mittelstaedt, E. L.; Wanless, V. D.; Soule, S. A.; Fornari, D. J.; Jones, M.; Curtice, J.; Péron, S.; Klein, F.; Schwartz, D. M.; Kaminski, K.; Escartin, J.

    2016-12-01

    Popping rocks are extremely gas-rich mid ocean ridge basalts that have been found at only a few locations, mainly on the slow spreading Mid-Atlantic Ridge (MAR). In an effort to understand the origin and distribution of popping rocks, we used R/V Atlantis (cruise AT33-03), HOV Alvin and AUV Sentry to study the MAR axis near 14° N. We recovered twelve popping rock samples with Alvin, which is the first time popping rocks have been recovered in situ. They were found on lightly sediment-covered pillows close to the original R/V Akademik Boris Petrov dredge location, reported by Bougault et al. (1988). The popping rock sites are located on the east side of the rift valley near 13.77° N, at depths ranging from 3600 to 3800 meters, on a tectonically active section of the ridge roughly 8 km southwest of an oceanic core complex. Based on lithological variations, spatial distribution, and bathymetry across a region approximately 2 km^2, we infer that the new popping rock samples are derived from more than one lava flow, but this will require confirmation from geochemical data. Preliminary measurements show that the popping rocks all have high vesicularity (> 10 %), coupled with extremely high total CO2 and helium concentrations (up to 5.1 cc/gram and 67 micro-cc/gram, respectively); the average 3He/4He is 8.17 ± .1 times atmosphere (Ra). Preliminary measurements from nearby samples, including the magmatic segment near 14.08° N, reveal lower gas concentrations (e.g., < 20 micro-cc helium/gram)and slightly lower and more variable 3He/4He. The goal of this project is to relate the geological context to the volatile abundances and geochemistry; the analytical program is underway and a status report will be given at the meeting. (See also abstract by M.R. Jones et al.). One preliminary conclusion is that popping rocks are found in limited exposures of the ridge axis, possibly related to interactions between the neovolcanic zone and the oceanic core complex, but this is based

  4. Optimal Multiple Surface Segmentation With Shape and Context Priors

    PubMed Central

    Bai, Junjie; Garvin, Mona K.; Sonka, Milan; Buatti, John M.; Wu, Xiaodong

    2014-01-01

    Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors. PMID:23193309

  5. Rhelogical constraints on ridge formation on Icy Satellites

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Manga, M.

    2010-12-01

    The processes responsible for forming ridges on Europa remain poorly understood. We use a continuum damage mechanics approach to model ridge formation. The main objectives of this contribution are to constrain (1) choice of rheological parameters and (2) maximum ridge size and rate of formation. The key rheological parameters to constrain appear in the evolution equation for a damage variable (D): ˙ {D} = B <<σ >>r}(1-D){-k-α D (p)/(μ ) and in the equation relating damage accumulation to volumetric changes, Jρ 0 = δ (1-D). Similar damage evolution laws have been applied to terrestrial glaciers and to the analysis of rock mechanics experiments. However, it is reasonable to expect that, like viscosity, the rheological constants B, α , and δ depend strongly on temperature, composition, and ice grain size. In order to determine whether the damage model is appropriate for Europa’s ridges, we must find values of the unknown damage parameters that reproduce ridge topography. We perform a suite of numerical experiments to identify the region of parameter space conducive to ridge production and show the sensitivity to changes in each unknown parameter.

  6. Interactive and scale invariant segmentation of the rectum/sigmoid via user-defined templates

    NASA Astrophysics Data System (ADS)

    Lüddemann, Tobias; Egger, Jan

    2016-03-01

    Among all types of cancer, gynecological malignancies belong to the 4th most frequent type of cancer among women. Besides chemotherapy and external beam radiation, brachytherapy is the standard procedure for the treatment of these malignancies. In the progress of treatment planning, localization of the tumor as the target volume and adjacent organs of risks by segmentation is crucial to accomplish an optimal radiation distribution to the tumor while simultaneously preserving healthy tissue. Segmentation is performed manually and represents a time-consuming task in clinical daily routine. This study focuses on the segmentation of the rectum/sigmoid colon as an Organ-At-Risk in gynecological brachytherapy. The proposed segmentation method uses an interactive, graph-based segmentation scheme with a user-defined template. The scheme creates a directed two dimensional graph, followed by the minimal cost closed set computation on the graph, resulting in an outlining of the rectum. The graphs outline is dynamically adapted to the last calculated cut. Evaluation was performed by comparing manual segmentations of the rectum/sigmoid colon to results achieved with the proposed method. The comparison of the algorithmic to manual results yielded to a Dice Similarity Coefficient value of 83.85+/-4.08%, in comparison to 83.97+/-8.08% for the comparison of two manual segmentations of the same physician. Utilizing the proposed methodology resulted in a median time of 128 seconds per dataset, compared to 300 seconds needed for pure manual segmentation.

  7. 2D/3D fetal cardiac dataset segmentation using a deformable model.

    PubMed

    Dindoyal, Irving; Lambrou, Tryphon; Deng, Jing; Todd-Pokropek, Andrew

    2011-07-01

    To segment the fetal heart in order to facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. The authors outline a level set deformable model to automatically delineate the small fetal cardiac chambers. The level set is penalized from growing into an adjacent cardiac compartment using a novel collision detection term. The region based model allows simultaneous segmentation of all four cardiac chambers from a user defined seed point placed in each chamber. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 2 mm which is less than 10% of the length of a typical fetal heart. The ejection fractions were determined from the 3D datasets. We validate the algorithm using a physical phantom and obtain volumes that are comparable to those from physically determined means. The algorithm segments volumes with an error of within 13% as determined using a physical phantom. Our original work in fetal cardiac segmentation compares automatic and manual tracings to a physical phantom and also measures inter observer variation.

  8. Holocene behavior of the Brigham City segment: implications for forecasting the next large-magnitude earthquake on the Wasatch fault zone, Utah

    USGS Publications Warehouse

    Personius, Stephen F.; DuRoss, Christopher B.; Crone, Anthony J.

    2012-01-01

    The Brigham City segment (BCS), the northernmost Holocene‐active segment of the Wasatch fault zone (WFZ), is considered a likely location for the next big earthquake in northern Utah. We refine the timing of the last four surface‐rupturing (~Mw 7) earthquakes at several sites near Brigham City (BE1, 2430±250; BE2, 3490±180; BE3, 4510±530; and BE4, 5610±650 cal yr B.P.) and calculate mean recurrence intervals (1060–1500  yr) that are greatly exceeded by the elapsed time (~2500  yr) since the most recent surface‐rupturing earthquake (MRE). An additional rupture observed at the Pearsons Canyon site (PC1, 1240±50 cal yr B.P.) near the southern segment boundary is probably spillover rupture from a large earthquake on the adjacent Weber segment. Our seismic moment calculations show that the PC1 rupture reduced accumulated moment on the BCS about 22%, a value that may have been enough to postpone the next large earthquake. However, our calculations suggest that the segment currently has accumulated more than twice the moment accumulated in the three previous earthquake cycles, so we suspect that additional interactions with the adjacent Weber segment contributed to the long elapse time since the MRE on the BCS. Our moment calculations indicate that the next earthquake is not only overdue, but could be larger than the previous four earthquakes. Displacement data show higher rates of latest Quaternary slip (~1.3  mm/yr) along the southern two‐thirds of the segment. The northern third likely has experienced fewer or smaller ruptures, which suggests to us that most earthquakes initiate at the southern segment boundary.

  9. Dynamical Instability Produces Transform Faults at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2010-08-01

    Transform faults at mid-ocean ridges—one of the most striking, yet enigmatic features of terrestrial plate tectonics—are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.

  10. Hyperspectral image segmentation using a cooperative nonparametric approach

    NASA Astrophysics Data System (ADS)

    Taher, Akar; Chehdi, Kacem; Cariou, Claude

    2013-10-01

    In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.

  11. The morphology of the ridge belts on Venus

    NASA Astrophysics Data System (ADS)

    Kriuchkov, V. P.

    1990-06-01

    The length and spacing of linear features were measured for ridge and groove belts, for the outer mountain zones of the Lakshmi planum, and for the outer ridge zones of coronal structures. The distributions of these parameters show small but significant differences in most of the cases. The ridges are assumed to result from deformations. Deformed-layer thickness were estimated for various types of linear subdivisions.

  12. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: interaction with the Crozet hotspot?

    NASA Astrophysics Data System (ADS)

    Sauter, Daniel; Cannat, Mathilde; Meyzen, Christine; Bezos, Antoine; Patriat, Philippe; Humler, Eric; Debayle, Eric

    2009-11-01

    Regional axial depths, mantle Bouguer anomaly values, geochemical proxies for the extent of partial melting and tomographic models along the Southwest Indian Ridge (SWIR) all concur in indicating the presence of thicker crust and hotter mantle between the Indomed and Gallieni transform faults (TFs; 46°E and 52°20'E) relative to the neighbouring ridge sections. Accreted seafloor between these TFs over the past ~10 Myr is also locally much shallower (>1000 m) and corresponds to thicker crust (>1.7 km) than previously accreted seafloor along the same ridge region. Two large outward facing topographic gradients mark the outer edges of two anomalously shallow off-axis domains on the African and Antarctic plates. Their vertical relief (>2000 m locally) and their geometry, parallel to the present-day axis along a >210-km-long ridge section, suggest an extremely sudden and large event dated between ~8 (magnetic anomaly C4n) and ~11 Ma (magnetic anomaly C5n). Asymmetric spreading and small ridge jumps occur at the onset of the formation of the anomalously shallow off-axis domains, leading to a re-organization of the ridge segmentation. We interpret these anomalously shallow off-axis domains as the relicts of a volcanic plateau due to a sudden increase of the magma supply. This event of enhanced magmatism started in the central part of the ridge section and then propagated along axis to the east and probably also to the west. However, it did not cross the Gallieni and Indomed TFs suggesting that large offsets can curtail or even block along-axis melt flow. We propose that this melting anomaly may be ascribed to a regionally higher mantle temperature provided by mantle outpouring from the Crozet hotspot towards the SWIR.

  13. A deep structural ridge beneath central India

    NASA Astrophysics Data System (ADS)

    Agrawal, P. K.; Thakur, N. K.; Negi, J. G.

    A joint-inversion of magnetic satellite (MAGSAT) and free air gravity data has been conducted to quantitatively investigate the cause for Bouguer gravity anomaly over Central Indian plateaus and possible fold consequences beside Himalayan zone in the Indian sub-continent due to collision between Indian and Eurasian plates. The appropriate inversion with 40 km crustal depth model has delineated after discriminating high density and magnetisation models, for the first time, about 1500 km long hidden ridge structure trending NW-SE. The structure is parallel to Himalayan fold axis and the Indian Ocean ridge in the Arabian Sea. A quantitative relief model across a representative anomaly profile confirms the ridge structure with its highest point nearly 6 km higher than the surrounding crustal level in peninsular India. The ridge structure finds visible support from the astro-geoidal contours.

  14. 27 CFR 9.158 - Mendocino Ridge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mendocino Ridge. 9.158 Section 9.158 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.158 Mendocino Ridge. (a) Name. The name of the...

  15. 27 CFR 9.158 - Mendocino Ridge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Mendocino Ridge. 9.158 Section 9.158 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.158 Mendocino Ridge. (a) Name. The name of the...

  16. 27 CFR 9.158 - Mendocino Ridge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mendocino Ridge. 9.158 Section 9.158 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.158 Mendocino Ridge. (a) Name. The name of the...

  17. 27 CFR 9.158 - Mendocino Ridge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Mendocino Ridge. 9.158 Section 9.158 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.158 Mendocino Ridge. (a) Name. The name of the...

  18. 27 CFR 9.158 - Mendocino Ridge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Mendocino Ridge. 9.158 Section 9.158 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.158 Mendocino Ridge. (a) Name. The name of the...

  19. Student Health Services at Orchard Ridge.

    ERIC Educational Resources Information Center

    Nichols, Don D.

    This paper provides a synoptic review of student health services at the community college level while giving a more detailed description of the nature of health services at Orchard Ridge, a campus of Oakland Community College. The present College Health Service program provides for a part-time (24 hrs./wk.) nurse at Orchard Ridge. A variety of…

  20. Landscape genetics of raccoons (Procyon lotor) associated with ridges and valleys of Pennsylvania: implications for oral rabies vaccination programs.

    PubMed

    Root, J Jeffrey; Puskas, Robert B; Fischer, Justin W; Swope, Craig B; Neubaum, Melissa A; Reeder, Serena A; Piaggio, Antoinette J

    2009-12-01

    Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.

  1. Image segmentation by hierarchial agglomeration of polygons using ecological statistics

    DOEpatents

    Prasad, Lakshman; Swaminarayan, Sriram

    2013-04-23

    A method for rapid hierarchical image segmentation based on perceptually driven contour completion and scene statistics is disclosed. The method begins with an initial fine-scale segmentation of an image, such as obtained by perceptual completion of partial contours into polygonal regions using region-contour correspondences established by Delaunay triangulation of edge pixels as implemented in VISTA. The resulting polygons are analyzed with respect to their size and color/intensity distributions and the structural properties of their boundaries. Statistical estimates of granularity of size, similarity of color, texture, and saliency of intervening boundaries are computed and formulated into logical (Boolean) predicates. The combined satisfiability of these Boolean predicates by a pair of adjacent polygons at a given segmentation level qualifies them for merging into a larger polygon representing a coarser, larger-scale feature of the pixel image and collectively obtains the next level of polygonal segments in a hierarchy of fine-to-coarse segmentations. The iterative application of this process precipitates textured regions as polygons with highly convolved boundaries and helps distinguish them from objects which typically have more regular boundaries. The method yields a multiscale decomposition of an image into constituent features that enjoy a hierarchical relationship with features at finer and coarser scales. This provides a traversable graph structure from which feature content and context in terms of other features can be derived, aiding in automated image understanding tasks. The method disclosed is highly efficient and can be used to decompose and analyze large images.

  2. Early to Middle Ordovician back-arc basin in the southern Appalachian Blue Ridge: characteristics, extent, and tectonic significance

    USGS Publications Warehouse

    Tull, James; Holm-Denoma, Christopher S.; Barineau, Clinton I.

    2014-01-01

    Fault-dismembered segments of a distinctive, extensive, highly allochthonous, and tectonically significant Ordovician (ca. 480–460 Ma) basin, which contains suites of bimodal metavolcanic rocks, associated base metal deposits, and thick immature deep-water (turbiditic) metasediments, occur in parts of the southern Appalachian Talladega belt, eastern Blue Ridge, and Inner Piedmont of Alabama, Georgia, and North and South Carolina. The basin's predominantly metasedimentary strata display geochemical and isotopic evidence of a mixed provenance, including an adjacent active volcanic arc and a provenance of mica (clay)-rich sedimentary and felsic plutonic rocks consistent with Laurentian (Grenvillian) upper-crustal continental rocks and their passive-margin cover sequences. Geochemical characteristics of the subordinate intercalated bimodal metavolcanic rocks indicate formation in a suprasubduction environment, most likely a back-arc basin, whereas characteristics of metasedimentary units suggest deposition above Neoproterozoic rift and outer-margin lower Paleozoic slope and rise sediments within a marginal basin along Ordovician Laurentia's Iapetus margin. This tectonic setting indicates that southernmost Appalachian Ordovician orogenesis (Taconic orogeny) began as an extensional accretionary orogen along the outer margin of Laurentia, rather than in an exotic (non-Laurentian) arc collisional setting. B-type subduction polarity requires that the associated arc-trench system formed southeast of the palinspastic position of the back-arc basin. This scenario can explain several unique features of the southern Appalachian Taconic orogen, including: the palinspastic geographic ordering of key tectonic elements (i.e., back-arc, arc, etc.), and a lack of (1) an obducted arc sensu stricto on the Laurentian margin, (2) widespread Ordovician regional metamorphism, and (3) Taconic klippen to supply detritus to the Taconic foreland basin.

  3. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    NASA Technical Reports Server (NTRS)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing

  4. A novel microbial habitat in the mid-ocean ridge subseafloor

    PubMed Central

    Summit, Melanie; Baross, John A.

    2001-01-01

    The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter. PMID:11226209

  5. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation

    PubMed Central

    2013-01-01

    The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  6. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    PubMed

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-08-09

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.

  7. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain.

    PubMed

    Addison, Megan; Xu, Qiling; Cayuso, Jordi; Wilkinson, David G

    2018-06-04

    The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Fracture and Stress Evolution on Europa: New Insights Into Fracture Interpretation and Ice Thickness Estimates Using Fracture Mechanics Analyses

    NASA Technical Reports Server (NTRS)

    Kattenhorn, Simon

    2004-01-01

    The work completed during the funding period has provided many important insights into fracturing behavior in Europa's ice shell. It has been determined that fracturing through time is likely to have been controlled by the effects of nonsynchronous rotation stresses and that as much as 720 deg of said rotation may have occurred during the visible geologic history. It has been determined that there are at least two distinct styles of strike-slip faulting and that their mutual evolutionary styles are likely to have been different, with one involving a significant dilational component during shear motion. It has been determined that secondary fracturing in perturbed stress fields adjacent to older structures such as faults is a prevalent process on Europa. It has been determined that cycloidal ridges are likely to experience shear stresses along the existing segment portions as they propagate, which affects propagation direction and ultimately induces tailcracking at the segment tip than then initiates a new cycle of cycloid segment growth. Finally, it has been established that mechanical methods (e.g., flexure analysis) can be used to determine the elastic thickness of the ice shell, which, although probably only several km thick, is likely to be spatially variable, being thinner under bands but thicker under ridged plains terrain.

  9. Ridge-crossing mantle plumes and gaps in tracks

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2002-12-01

    Hot spot tracks approach, cross, and leave ridge axes. The complications of this process make it difficult to determine the track followed by a plume and the evolution of its vigor. When a plume is sufficiently near the ridge axis, buoyant plume material flows along the base of the lithosphere toward the axis, forming an on-axis hot spot. The track of the on-axis hot spot is a symmetric V on both plates and an unreliable indication of the path followed by the plume. Aseismic ridges form more or less along flowlines from a plume to a ridge axis when channels form at the base of the lithosphere. A dynamic effect is that off-axis hot spots appear to shut off at the time that an on-axis hot spot becomes active along an axis-approaching track. This produces a gap in the obvious track and a jump of the hot spot to the ridge axis. The gap results from the effects of ponded plume material on intraplate (membrane) stress. Membrane tension lets dikes ascend efficiently to produce obvious tracks of edifices. An off-axis hot spot shuts down when the plume is sufficiently near the ridge axis that plume material flows there, putting the nearby lithosphere above the plume into compression, preventing dikes. In addition, the off-axis thickness of plume material, which produces membrane tension, decreases as the slope of the base of the lithosphere increases beneath young lithosphere. Slow spreading rates favor gaps produced in this way. Gaps are observed near both fast and slow ridges.

  10. Determinants of alveolar ridge preservation differ by anatomic location

    PubMed Central

    Leblebicioglu, Binnaz; Salas, Mabel; Ort, Yirae; Johnson, Ashley; Yildiz, Vedat O.; Kim, Do-Gyoon; Agarwal, Sudha; Tatakis, Dimitris N.

    2016-01-01

    Aim To investigate and compare outcomes following alveolar ridge preservation (ARP) in posterior maxilla and mandible. Methods Twenty-four patients (54 ± 3 years) with single posterior tooth extraction were included. ARP was performed with freeze-dried bone allograft and collagen membrane. Clinical parameters were recorded at extraction and re-entry. Harvested bone cores were analysed by microcomputed tomography (micro-CT), histomorphometry and immunohistochemistry. Results In both jaws, ARP prevented ridge height loss, but ridge width was significantly reduced by approximately 2.5 mm. Healing time, initial clinical attachment loss and amount of keratinized tissue at extraction site were identified as determinants of ridge height outcome. Buccal plate thickness and tooth root length were identified as determinants of ridge width outcome. In addition, initial ridge width was positively correlated with ridge width loss. Micro-CT revealed greater mineralization per unit volume in new bone compared with existing bone in mandible (p < 0.001). Distributions of residual graft, new cellular bone and immature tissue were similar in both jaws. Conclusion Within the limitations of this study, the results indicate that in different anatomic locations different factors may determine ARP outcomes. Further studies are needed to better understand determinants of ARP outcomes. PMID:23432761

  11. Structure and Dynamics of the Southeast Indian Ridge, 129°E to 140°E, and Off-axis Volcanism: Preliminary Results of the STORM Cruise

    NASA Astrophysics Data System (ADS)

    Briais, Anne; Barrère, Fabienne; Boulart, Cédric; Ceuleneer, Georges; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès; Merkuryev, Sergey; Park, Sung-Hyun; Révillon, Sidonie; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok

    2016-04-01

    We present observations of the South-East Indian Ridge (SEIR) collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante early 2015. The SEIR between Australia and Antarctica displays large variations of axial morphology despite an almost constant intermediate spreading rate. The Australia-Antarctic Discordance (AAD) between 120°E and 128°E is a section of the mid-ocean ridge where the magma budget is abnormally low, and which marks the boundary between Indian and Pacific mantle domains with distinct geochemical isotopic compositions. The STORM project focuses on the area east of the discordance from 128 to 140°E, where gravity highs observed on satellite-derived maps of the flanks of the SEIR reveal numerous volcanic seamounts. A major objective of the STORM cruise was to test the hypothesis of a mantle flow from the Pacific to the Indian domains. We collected multibeam bathymetry and magnetic data between 136 and 138°E to map off-axis volcanic ridges up to 10 Ma-old crust. We mapped the SEIR axis between 129 and 140°E, and the northern part of the George V transform fault. We collected rock samples on seamounts and in the transform fault, basaltic glass samples along the ridge axis, and near-bottom samples and in-situ measurements in the water column. Our observations reveal that the off-axis seamounts form near the SEIR axis, are not associated to off-axis deformation of the ocean floor, and are often located near the traces of ridge axis discontinuities. We also observe a general shallowing of the ridge axis from the AAD to the George V TF and the presence of robust axial segments near the transform fault. Our new data allow us to describe the complex evolution of the transform fault system. They also permit to locate new hydrothermal systems along the ridge axis.

  12. Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative

    Science.gov Websites

    Fuels in Its Fleet Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative

  13. Segmentation of remotely sensed data using parallel region growing

    NASA Technical Reports Server (NTRS)

    Tilton, J. C.; Cox, S. C.

    1983-01-01

    The improved spatial resolution of the new earth resources satellites will increase the need for effective utilization of spatial information in machine processing of remotely sensed data. One promising technique is scene segmentation by region growing. Region growing can use spatial information in two ways: only spatially adjacent regions merge together, and merging criteria can be based on region-wide spatial features. A simple region growing approach is described in which the similarity criterion is based on region mean and variance (a simple spatial feature). An effective way to implement region growing for remote sensing is as an iterative parallel process on a large parallel processor. A straightforward parallel pixel-based implementation of the algorithm is explored and its efficiency is compared with sequential pixel-based, sequential region-based, and parallel region-based implementations. Experimental results from on aircraft scanner data set are presented, as is a discussioon of proposed improvements to the segmentation algorithm.

  14. Sublatitudinal Isotope Heterogeneity of The Atlantic and Adjacent Continents: A Relation To The Litospheric Plates and Superplums

    NASA Astrophysics Data System (ADS)

    Mironov, Yu. V.; Ryakhovsky, V. M.; Pustovoy, A. A.; Lapidus, I. V.

    Four Sr-Nd-Pb isotope sublatitudinal provinces are chosen in the Atlantic and on ad- jacent continents. They include mid-ocean ridges, oceanic rises and islands, as well as Late Mesozoic - Cenozoic continental rifts and traps. A modified Zindler-Hart "man- tle tetrahedron" (1986) have been used for rock systematics. Its major classification element alongside with known end-members (DM, HIMU, EM1, EM2) is any in- tratetrahedron component F ("focal") (Mironov et al., 2000; Rundquist et al., 2000; Ryakhovsky, 2000). It represents average characteristic of all known intratetrahedron components (FOZO, C, PREMA etc.), updated by methods of multidimensional statis- tics. Northern province includes Mid-Atlantic Ridge from a southern part of Reykjanes ridge up to 24S, numerous islands and rises, located at the same latitudes, Cameroon Line, African and European rifts, Aden and Red sea spreading centres, and also Co- mores in Indian ocean. The main composition dispersion of volcanics from withinplate oceanic and continental structures is determined by mixture of F and HIMU (rarely with admixture EM2). MORB within this area are characterized by stable admixture HIMU. Similar composition have the rocks in Bouvet-Antarctic province, within the limits of which the rises Spiss and Shona, the most southern part of Mid-Atlantic ridge, island Bouvet, an adjacent part of Southwest-Indian Ridge, and also traps and rifts on northern coast of Antarctic Continent are located. The Southern province lies in outlines of known Southern hemisphere DUPAL-anomaly (Hart, 1984). The with- inplate oceanic rocks (Gough, Tristan-da-Kunha, Walvis ridge, Rio Grande Plateau, Discovery) correspond to a mixture F + EM1 (sometimes F + EM1 + EM2) and are similar with traps of Southern America and Africa. Further to east this province is traced on islands and mid-ocean ridges in Indian ocean. MORB of Southern Atlantic and Indian ocean are enriched EM1. The Arctic province includes spreading ridges of

  15. Near-vent chemical processes in a hydrothermal plume: Insights from an integrated study of the Endeavour segment

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.; Attar, A.; Mihaly, S. F.; Jeffries, M.; Pope, M.

    2017-04-01

    The Endeavour segment of the Juan de Fuca mid-ocean ridge is one of the best studied ridge segments and has recently been instrumented as part of Ocean Networks Canada's NEPTUNE cabled observatory. Here we investigate the interaction between high-temperature vent fluids and the overlying water column. A new tow-yo survey found that the average temperature anomaly in the neutrally buoyant plume was ˜0.043°C. The water column temperature and light attenuation anomalies correlate linearly in some areas of the plume but in other areas there is a low light attenuation anomaly relative to the temperature anomaly. This temperature excess is interpreted to reflect heat input through (particle-poor) diffuse flow. If this is correct, about half of the heat flux along the Endeavour segment comes from diffuse flow. Sediment trap and push core data show that the mass accumulation rate of the hydrothermal component of the sediments decreases rapidly with distance from the major vent fields. Large changes in the composition of the hydrothermal component of the sediments also occur with distance from the vent fields. The composition of the sediments indicates (i) sulfides precipitate early and accumulate most rapidly close to the vents with a preferential order of element removal from the plume of Cd > Ag > Cu > Co ˜ Fe; (ii) barite is deposited somewhat further from the vents. Strontium and Pb appear to be strongly incorporated in barite and/or other sulfate minerals; (iii) at most a few percent of the mass of these "insoluble" elements that is vented gets deposited within 1.5 km of the vents.

  16. Curiosity at Gale Crater's Hematite Ridge: High Mn and P Near the Ridge Show Chemical Evidence for Generation by an Oxidation Front

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Meslin, P. Y.; Lanza, N.; Frydenvang, J.; Mangold, N.; Johnson, J. R.; Fraeman, A. A.; Horgan, B.; Bedford, C.; Blaney, D. L.; Bridges, J.; Cousin, A.; Ehlmann, B. L.; Forni, O.; Gasda, P. J.; Gasnault, O.; Gellert, R.; Johnstone, S.; Lamm, S. N.; Lasue, J.; Le Mouelic, S.; Maurice, S.; Newsom, H. E.; Ollila, A.; Payre, V.; Rapin, W.; Salvatore, M. R.; Schwenzer, S. P.; Thomas, N. H.; Vasavada, A. R.

    2017-12-01

    After traversing >17 km, the Curiosity rover has reached Vera Rubin Ridge (VRR), formerly known as the Hematite Ridge. Situated 200 m above the base of Gale crater on the slope of Mt. Sharp, VRR was one of the original objectives of the mission. VRR stretches 6.5 km NE-SW with a vertical height of 30 m (to -4200 m), it is the largest surface feature encountered by Curiosity to date. Orbital observation by CRISM of relatively strong hematite signal along the ridge gave it its original name. Some hematite spectral signatures along the ridge have been observed by Curiosity from long distance by Mastcam and ChemCam passive spectra. Curiosity started observing local enrichments of hematite in Murray lacustrine sediments near Bagnold Dunes, which may or may not be related to the hematite observed on the ridge top. The presence of hematite-like spectral signatures became variable as the rover approached below the ridge. Chemistry and ridge imaging: Magnesium, Mn, and P have shown strong increases in dark surface features in some regions below the ridge. Manganese oxide abundances have risen to >10 wt. % in some dark nodules and laminae. Iron, Mg, and P appear correlated in high-P observations, with the highest values associated with vein-related inclusions. Another class of dark features shows high Fe without high Mn or P. ChemCam high-resolution imaging from within 100 m of the base of the ridge shows regions of both finely laminated parallel strata and low-angle cross stratification along with vertical fractures surrounded by alteration halos; these are comparable to Murray stratigraphy. Given that the exposed surface of the Murray formation is the result of significant erosional deflation, the ridge must be more erosionally resistant than the surrounding material. The observation of high-oxidation-potential element enrichments below VRR argues for an oxidation front in which the local sediments were enriched in oxidized iron (hematite) and manganese. In this

  17. Asymmetric sea-floor spreading caused by ridge-plume interactions

    NASA Astrophysics Data System (ADS)

    Müller, R. Dietmar; Roest, Walter R.; Royer, Jean-Yves

    1998-12-01

    Crustal accretion at mid-ocean ridges is generally modelled as a symmetric process. Regional analyses, however, often show either small-scale asymmetries, which vary rapidly between individual spreading corridors, or large-scale asymmetries represented by consistent excess accretion on one of the two separating plates over geological time spans. In neither case is the origin of the asymmetry well understood. Here we present a comprehensive analysis of the asymmetry of crustal accretion over the past 83Myr based on a set of self-consistent digital isochrons and models of absolute plate motion,. We find that deficits in crustal accretion occur mainly on ridge flanks overlying one or several hotspots. We therefore propose that asymmetric accretion is caused by ridge propagation towards mantle plumes or minor ridge jumps sustained by asthenospheric flow, between ridges and plumes. Quantifying the asymmetry of crustal accretion provides a complementary approach to that based on geochemical and other geophysical data, in helping to unravel how mantle plumes and mid-ocean ridges are linked through mantle convection processes.

  18. 15. The second story in the north segment of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. The second story in the north segment of the building was originally constructed as a restaurant. The north wall of the dining room retains the original wood wainscot and double-hung windows. At some undetermined time, a building was constructed on the adjacent property; blocking the windows in the dining room. Several chimneys with stove-pipe connections occur in the room. The members seen on the floor are part of a system recently installed to support the failing roof. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  19. DISTINCTIVE FINE-SCALE MORPHOLOGY OF HYDRATE RIDGE

    NASA Astrophysics Data System (ADS)

    Conlin, D.; Paull, C. K.; Caress, D. W.; Thomas, H.; Ussler, W.; Lundsten, E.; Thompson, D.

    2009-12-01

    High-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) collected using an autonomous underwater vehicle (AUV) reveals in unprecedented detail the fine-scale morphology of the ridge crests on Hydrate Ridge, offshore Oregon. An inertial navigation system combined with a doppler velocity sonar allowed the AUV to fly pre-programmed grids with 150 m line spacing at 3 knots while maintaining an altitude of 50 m above the bottom. The data were collected on two 17.5-hour-long dives, one covering a 4.3 x 1.9 km area on the southern crest of Hydrate Ridge (769 to 930 m water depths) and the other covering a 5.2 x 2 km area on the northern crest of Hydrate Ridge (584 to 985 m water depths). These surveys cover the seafloor associated with gas hydrate research boreholes at ODP Sites 891 and 1245 to 1250). The southern crest of Hydrate Ridge is an area being considered for a cable-connected seafloor observatory. The surface of southern Hydrate Ridge is generally smooth except for two approximately circular patches with maximum diameters of 350 m and 500 m associated with a distinctive hummocky topography. The geometric relationships indicate that the edges of these patches are surrounded with small apparently erosional scarps and thus the strata exposed within the patches are stratigraphically lower than the surrounding smooth seafloor. The fine scale-topography within these patches is characterized by a highly irregular surface formed by small, sometimes circular ~0.5 m deep pits, local highs and lows separated by ~0.5 high ledges that could be formed by irregularly eroded bedding surfaces. Similar shapes also occur at larger scales. For example, a previously described feature called the “pinnacle” is a ~15 m topographic high in the center of one of these hummocky patches. The surface of northern Hydrate Ridge has similar patches of hummocky topography. However, the patches are more numerous, associated with greater relief

  20. Topography and tectonics of mid-oceanic ridge axes

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.; Rosendahl, B. R.

    1979-01-01

    Numerical fluid dynamic models of mid-oceanic ridge axes were constructed using distributions of material properties constrained by seismic studies and thermal calculations. The calculations indicate that spreading is passive except for forces caused by density differences due to thermal expansion and partial melt. Except for geometric differences due to temperature distribution, one set of mechanical properties can adequately explain central rifts of slow ridges and central peaks of fast ridges. Viscous head loss in the upwelling material dominates at low spreading rates where material ascends through a narrow conduit. Thermal expansion and partial melting dominate at high spreading rates where a wide low viscosity crustal magma chamber is present. The preferred rheology is 10 to the 20th poise for the upwelling lithosphere; less than 5 x 10 to the 17th for the crustal magma chamber and axial intrusion zone at fast ridges, and a yield stress of 200 bars for the lithosphere. The calculation correctly predicts the existence of central peaks at 'hot-spot' ridges, where seismic evidence indicates a large magma chamber.

  1. Macrofaunal communites at newly discovered hydrothermal fields in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Miyazaki, J.; Takai, K.; Nakamura, K.; Watanabe, H.; Noguchi, T.; Matsuzaki, T.; Watsuji, T.; Nemoto, S.; Kawagucci, S.; Shibuya, T.; Okamura, K.; Mochizuki, M.; Orihashi, Y.; Marie, D.; Koonjul, M.; Singh, M.; Beedessee, G.; Bhikajee, M.; Tamaki, K.

    2010-12-01

    In YK09-13 Leg1 cruise targeted on the segment 15 and 16 in Central Indian Ridge (CIR), we have successfully discovered two hydrothermal fields, DODO field and Solitaire field. We expected that there were unique macrofaunal communities in these hydrothermal fields, because there was in Kairei field on the segment 1 in CIR. Particularly, a gastropod, “scaly-foot”, which has sclerites covered with iron-sulfide has only discovered in Kairei field. Therefore, it was interesting whether this unique scaly-foot only exists in Kairei fields or widely expands in CIR. In DODO fields, there were 10 to 15 active chimneys. However, very few hydrothermal vent-endemic faunas were observed. We observed only crabs and shrimps but we did not found shells. As opposed to in the Dodo field, biomass and composition of macrofaunal communities were highly prosperous in the Solitaire field, being equal to Kairei field. Although we have an only one dive to explore the Solitaire field, many predominant taxa were sampled and observed, for example, Alviniconcha, mussels, vanacles and so on. However, the most outstanding feature was the presence of a new morphotype of ‘scaly-foot’ gastropod. Discovery of this new-morphytpe ‘scary-foot” disproved our knowledge. In this conference, I will present these observations. Especially characterization of two types of scaly-foot (Kairei-type and Solitaire-type) will be focused.

  2. 1. GENERAL VIEW OF ENTRANCE TO BLUE RIDGE TUNNEL (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF ENTRANCE TO BLUE RIDGE TUNNEL (LEFT) FROM SOUTHEAST. ORIGINAL BLUE RIDGE R.R. (CROZET) TUNNEL IS VISIBLE AT RIGHT. - Chesapeake & Ohio Railroad, Blue Ridge Tunnel, Highway 250 at Rockfish Gap, Afton, Nelson County, VA

  3. Generalized expectation-maximization segmentation of brain MR images

    NASA Astrophysics Data System (ADS)

    Devalkeneer, Arnaud A.; Robe, Pierre A.; Verly, Jacques G.; Phillips, Christophe L. M.

    2006-03-01

    Manual segmentation of medical images is unpractical because it is time consuming, not reproducible, and prone to human error. It is also very difficult to take into account the 3D nature of the images. Thus, semi- or fully-automatic methods are of great interest. Current segmentation algorithms based on an Expectation- Maximization (EM) procedure present some limitations. The algorithm by Ashburner et al., 2005, does not allow multichannel inputs, e.g. two MR images of different contrast, and does not use spatial constraints between adjacent voxels, e.g. Markov random field (MRF) constraints. The solution of Van Leemput et al., 1999, employs a simplified model (mixture coefficients are not estimated and only one Gaussian is used by tissue class, with three for the image background). We have thus implemented an algorithm that combines the features of these two approaches: multichannel inputs, intensity bias correction, multi-Gaussian histogram model, and Markov random field (MRF) constraints. Our proposed method classifies tissues in three iterative main stages by way of a Generalized-EM (GEM) algorithm: (1) estimation of the Gaussian parameters modeling the histogram of the images, (2) correction of image intensity non-uniformity, and (3) modification of prior classification knowledge by MRF techniques. The goal of the GEM algorithm is to maximize the log-likelihood across the classes and voxels. Our segmentation algorithm was validated on synthetic data (with the Dice metric criterion) and real data (by a neurosurgeon) and compared to the original algorithms by Ashburner et al. and Van Leemput et al. Our combined approach leads to more robust and accurate segmentation.

  4. MACHINING TEST SPECIMENS FROM HARVESTED ZION RPV SEGMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, Randy K; Rosseel, Thomas M; Sokolov, Mikhail A

    2015-01-01

    The decommissioning of the Zion Nuclear Generating Station (NGS) in Zion, Illinois, presents a special and timely opportunity for developing a better understanding of materials degradation and other issues associated with extending the lifetime of existing nuclear power plants (NPPs) beyond 60 years of service. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC, a subsidiary of Energy Solutions, an international nuclear services company, the selective procurement of materials,more » structures, components, and other items of interest from the decommissioned reactors. In this paper, we will discuss the acquisition of segments of the Zion Unit 2 Reactor Pressure Vessel (RPV), cutting these segments into blocks from the beltline and upper vertical welds and plate material and machining those blocks into mechanical (Charpy, compact tension, and tensile) test specimens and coupons for microstructural (TEM, SEM, APT, SANS and nano indention) characterization. Access to service-irradiated RPV welds and plate sections will allow through wall attenuation studies to be performed, which will be used to assess current radiation damage models [1].« less

  5. Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic

    PubMed Central

    Bhumbra, Gardave S.

    2018-01-01

    Spinal motoneurones (Mns) constitute the final output for the execution of motor tasks. In addition to innervating muscles, Mns project excitatory collateral connections to Renshaw cells (RCs) and other Mns, but the latter have received little attention. We show that Mns receive strong synaptic input from other Mns throughout development and into maturity, with fast-type Mns systematically receiving greater recurrent excitation than slow-type Mns. Optical recordings show that activation of Mns in one spinal segment can propagate to adjacent segments even in the presence of intact recurrent inhibition. While it is known that transmission at the neuromuscular junction is purely cholinergic and RCs are excited through both acetylcholine and glutamate receptors, here we show that neurotransmission between Mns is purely glutamatergic, indicating that synaptic transmission systems are differentiated at different postsynaptic targets of Mns. PMID:29538375

  6. Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Chanan, Gary; Roberts, Jennifer

    2010-01-01

    The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.

  7. Unsupervised segmentation of MRI knees using image partition forests

    NASA Astrophysics Data System (ADS)

    Marčan, Marija; Voiculescu, Irina

    2016-03-01

    Nowadays many people are affected by arthritis, a condition of the joints with limited prevention measures, but with various options of treatment the most radical of which is surgical. In order for surgery to be successful, it can make use of careful analysis of patient-based models generated from medical images, usually by manual segmentation. In this work we show how to automate the segmentation of a crucial and complex joint -- the knee. To achieve this goal we rely on our novel way of representing a 3D voxel volume as a hierarchical structure of partitions which we have named Image Partition Forest (IPF). The IPF contains several partition layers of increasing coarseness, with partitions nested across layers in the form of adjacency graphs. On the basis of a set of properties (size, mean intensity, coordinates) of each node in the IPF we classify nodes into different features. Values indicating whether or not any particular node belongs to the femur or tibia are assigned through node filtering and node-based region growing. So far we have evaluated our method on 15 MRI knee images. Our unsupervised segmentation compared against a hand-segmented gold standard has achieved an average Dice similarity coefficient of 0.95 for femur and 0.93 for tibia, and an average symmetric surface distance of 0.98 mm for femur and 0.73 mm for tibia. The paper also discusses ways to introduce stricter morphological and spatial conditioning in the bone labelling process.

  8. Fuzzy and process modelling of contour ridge water dynamics

    NASA Astrophysics Data System (ADS)

    Mhizha, Alexander; Ndiritu, John

    2018-05-01

    Contour ridges are an in-situ rainwater harvesting technology developed initially for soil erosion control but are currently also widely promoted for rainwater harvesting. The effectiveness of contour ridges depends on geophysical, hydro-climatic and socio economic factors that are highly varied in time and space. Furthermore, field-scale data on these factors are often unavailable. This together with the complexity of hydrological processes at field scale limits the application of classical distributed process modelling to highly-instrumented experimental fields. This paper presents a framework that combines fuzzy logic and process-based approach for modelling contour ridges for rainwater harvesting where detailed field data are not available. Water balance for a representative contour-ridged field incorporating the water flow processes across the boundaries is integrated with fuzzy logic to incorporate the uncertainties in estimating runoff. The model is tested using data collected during the 2009/2010 and 2010/2011 rainfall seasons from two contour-ridged fields in Zhulube located in the semi-arid parts of Zimbabwe. The model is found to replicate soil moisture in the root zone reasonably well (NSE = 0.55 to 0.66 and PBIAS = -1.3 to 6.1 %). The results show that combining fuzzy logic and process based approaches can adequately model soil moisture in a contour ridged-field and could help to assess the water dynamics in contour ridged fields.

  9. Multiple expressions of plume-ridge interaction in the Galápagos: Volcanic lineaments and ridge jumps

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Soule, S.; Harpp, K.; Fornari, D.; McKee, C.; Tivey, M.; Geist, D.; Kurz, M. D.; Sinton, C.; Mello, C.

    2012-05-01

    Anomalous volcanism and tectonics between near-ridge mantle plumes and mid-ocean ridges provide important insights into the mechanics of plume-lithosphere interaction. We present new observations and analysis of multibeam, side scan sonar, sub-bottom chirp, and total magnetic field data collected during the R/V Melville FLAMINGO cruise (MV1007; May-June, 2010) to the Northern Galápagos Volcanic Province (NGVP), the region between the Galápagos Archipelago and the Galápagos Spreading Center (GSC) on the Nazca Plate, and to the region east of the Galápagos Transform Fault (GTF) on the Cocos Plate. The NGVP exhibits pervasive off-axis volcanism related to the nearby Galápagos hot spot, which has dominated the tectonic evolution of the region. Observations indicate that ˜94% of the excess volcanism in our survey area occurs on the Nazca Plate in three volcanic lineaments. Identified faults in the NGVP are consistent with normal ridge spreading except for those within a ˜60 km wide swath of transform-oblique faults centered on the GTF. These transform-oblique faults are sub-parallel to the elongation direction of larger lineament volcanoes, suggesting that lineament formation is influenced by the lithospheric stress field. We evaluate current models for lineament formation using existing and new observations as well as numerical models of mantle upwelling and melting. The data support a model where the lithospheric stress field controls the location of volcanism along the lineaments while several processes likely supply melt to these eruptions. Synthetic magnetic models and an inversion for crustal magnetization are used to determine the tectonic history of the study area. Results are consistent with creation of the GTF by two southward ridge jumps, part of a series of jumps that have maintained a plume-ridge separation distance of 145 km to 215 km since ˜5 Ma.

  10. An active co-phasing imaging testbed with segmented mirrors

    NASA Astrophysics Data System (ADS)

    Zhao, Weirui; Cao, Genrui

    2011-06-01

    An active co-phasing imaging testbed with high accurate optical adjustment and control in nanometer scale was set up to validate the algorithms of piston and tip-tilt error sensing and real-time adjusting. Modularization design was adopted. The primary mirror was spherical and divided into three sub-mirrors. One of them was fixed and worked as reference segment, the others were adjustable respectively related to the fixed segment in three freedoms (piston, tip and tilt) by using sensitive micro-displacement actuators in the range of 15mm with a resolution of 3nm. The method of twodimension dispersed fringe analysis was used to sense the piston error between the adjacent segments in the range of 200μm with a repeatability of 2nm. And the tip-tilt error was gained with the method of centroid sensing. Co-phasing image could be realized by correcting the errors measured above with the sensitive micro-displacement actuators driven by a computer. The process of co-phasing error sensing and correcting could be monitored in real time by a scrutiny module set in this testbed. A FISBA interferometer was introduced to evaluate the co-phasing performance, and finally a total residual surface error of about 50nm rms was achieved.

  11. Neogene collision and deformation of convergent margins along the backbone of the Americas

    USGS Publications Warehouse

    von Huene, Roland E.; Ranero, C.R.

    2009-01-01

    Along Pacific convergent margins of the Americas, high-standing relief on the subducting oceanic plate "collides" with continental slopes and subducts. Features common to many collisions are uplift of the continental margin, accelerated seafloor erosion, accelerated basal subduction erosion, a flat slab, and a lack of active volcanism. Each collision along America's margins has exceptions to a single explanation. Subduction of an ???600 km segment of the Yakutat terrane is associated with >5000-m-high coastal mountains. The terrane may currently be adding its unsubducted mass to the continent by a seaward jump of the deformation front and could be a model for docking of terranes in the past. Cocos Ridge subduction is associated with >3000-m-high mountains, but its shallow subduction zone is not followed by a flat slab. The entry point of the Nazca and Juan Fernandez Ridges into the subduction zone has migrated southward along the South American margin and the adjacent coast without unusually high mountains. The Nazca Ridge and Juan Fernandez Ridges are not actively spreading but the Chile Rise collision is a triple junction. These collisions form barriers to trench sediment transport and separate accreting from eroding segments of the frontal prism. They also occur at the separation of a flat slab from a steeply dipping one. At a smaller scale, the subduction of seamounts and lesser ridges causes temporary surface uplift as long as they remain attached to the subducting plate. Off Costa Rica, these features remain attached beneath the continental shelf. They illustrate, at a small scale, the processes of collision. ?? 2009 The Geological Society of America. All rights reserved.

  12. Modeling an exogenic origin for the equatorial ridge on Iapetus

    NASA Astrophysics Data System (ADS)

    Stickle, Angela M.; Roberts, James H.

    2018-06-01

    Iapetus has a ridge along the equator that extends continuously for more than 110° in longitude. Parts of the ridge rise as much as 20 km above the surrounding terrains. Most models for the formation of this enigmatic ridge are endogenic, generally requiring the formation of a fast-spinning Iapetus with an oblate shape due to the rotation speed. Many of these require specific scenarios and have constraining parameters in order to generate a ridge comparable to what is seen today. An exogenic formation mechanism has also been proposed, that the ridge represents the remains of an early ring system around Iapetus that collapsed onto the surface. Thus far, none of the models have conclusively identified the origin of the ridge. In this study, an exogenic origin for the ridge is assumed, which is derived from a collapsing disk of debris around Iapetus, without invoking any specific model for the generation of the debris disk. Here, we evaluate whether it is possible to generate a ridge of the size and shape as observed by simulating the impact of the collapsing debris using the CTH hydrocode. Pi-scaling calculations suggest that extremely oblique impact angles (1°-10°) are needed to add to ridge topography. These extreme impact angles severely reduce the cratering efficiency compared to a vertical impact, adding material rather than eroding it during crater formation. Furthermore, material is likely to be excavated at low angles, enhancing downrange accumulation. Multiple impacts from debris pieces will heighten this effect. Because infalling debris is predicted to impact at extremely low angles, both of these effects might have contributed to ridge formation on Iapetus. The extreme grazing angles of the impacts modeled here decouple much of the projectile energy from the target, and impact heating of the surface is not significant. These models suggest that a collapsing disk of debris should have been able to build topography to create a ridge around Iapetus.

  13. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  14. Along-axis variability in crustal accretion at the Mid-Atlantic Ridge: Results from the OCEAN study

    USGS Publications Warehouse

    Henstock, T.J.; White, Robert S.; McBride, J.H.

    1996-01-01

    The OCEAN experiment is an integrated geophysical study of a region of the Cape Verde abyssal plain that formed at 140 Ma. Deep seismic reflection and ocean bottom hydrophone (OBH) refraction data were acquired along lines parallel and perpendicular to the paleoridge axis trend identified from a detailed magnetic anomaly survey. The igneous basement is overlain by about 1.3 km of sediment which enables improved imaging of intracrustal structure beyond that possible near the Mid-Atlantic Ridge axis. We describe the results of a 150-km long profile oriented parallel to magnetic anomalies M15 and M16, along which deep seismic reflection data collected by the British Institutions Reflection Profiling Syndicate are complemented by refraction data constrained by four OBHs. The line spans an entire spreading segment between two fracture zones; the northern of which has an offset of 40 km and the other (central) has an offset of only 10 km. Away from the fracture zones, the mean igneous crustal thickness is 7.2 km; near both fracture zones, thinning of up to 4 km is observed, giving a mean igneous crustal thickness over the whole segment of approximately 6.5 km. Differences are seen between the two fracture zones in their seismic velocity structure, in the associated basement topography, and in the presence of a strong reflection extending into the mantle beneath the northern fracture zone. The boundary between oceanic layers 2 and 3 correlates with variably coherent normal incidence reflections and a change in the character of the reflectivity. A number of planar reflections up to 10 km in length are present within the middle and lower crust, dipping outward from beneath low-amplitude basement highs at ??? 15??; these appear to be present only within layer 3. The Moho has several expressions in the reflection data, including isolated reflection events, a local increase in reflected amplitudes, and a downward decrease in coherent reflections. At the center of the segment

  15. High-resolution mapping of two large-scale transpressional fault zones in the California Continental Borderland: Santa Cruz-Catalina Ridge and Ferrelo faults

    NASA Astrophysics Data System (ADS)

    Legg, Mark R.; Kohler, Monica D.; Shintaku, Natsumi; Weeraratne, Dayanthie S.

    2015-05-01

    New mapping of two active transpressional fault zones in the California Continental Borderland, the Santa Cruz-Catalina Ridge fault and the Ferrelo fault, was carried out to characterize their geometries, using over 4500 line-km of new multibeam bathymetry data collected in 2010 combined with existing data. Faults identified from seafloor morphology were verified in the subsurface using existing seismic reflection data including single-channel and multichannel seismic profiles compiled over the past three decades. The two fault systems are parallel and are capable of large lateral offsets and reverse slip during earthquakes. The geometry of the fault systems shows evidence of multiple segments that could experience throughgoing rupture over distances exceeding 100 km. Published earthquake hypocenters from regional seismicity studies further define the lateral and depth extent of the historic fault ruptures. Historical and recent focal mechanisms obtained from first-motion and moment tensor studies confirm regional strain partitioning dominated by right slip on major throughgoing faults with reverse-oblique mechanisms on adjacent structures. Transpression on west and northwest trending structures persists as far as 270 km south of the Transverse Ranges; extension persists in the southern Borderland. A logjam model describes the tectonic evolution of crustal blocks bounded by strike-slip and reverse faults which are restrained from northwest displacement by the Transverse Ranges and the southern San Andreas fault big bend. Because of their potential for dip-slip rupture, the faults may also be capable of generating local tsunamis that would impact Southern California coastlines, including populated regions in the Channel Islands.

  16. Oak Ridge reservation land-use plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implementmore » the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.« less

  17. Automatic segmentation of the facial nerve and chorda tympani using image registration and statistical priors

    NASA Astrophysics Data System (ADS)

    Noble, Jack H.; Warren, Frank M.; Labadie, Robert F.; Dawant, Benoit M.

    2008-03-01

    In cochlear implant surgery, an electrode array is permanently implanted in the cochlea to stimulate the auditory nerve and allow deaf people to hear. A minimally invasive surgical technique has recently been proposed--percutaneous cochlear access--in which a single hole is drilled from the skull surface to the cochlea. For the method to be feasible, a safe and effective drilling trajectory must be determined using a pre-operative CT. Segmentation of the structures of the ear would improve trajectory planning safety and efficiency and enable the possibility of automated planning. Two important structures of the ear, the facial nerve and chorda tympani, present difficulties in intensity based segmentation due to their diameter (as small as 1.0 and 0.4 mm) and adjacent inter-patient variable structures of similar intensity in CT imagery. A multipart, model-based segmentation algorithm is presented in this paper that accomplishes automatic segmentation of the facial nerve and chorda tympani. Segmentation results are presented for 14 test ears and are compared to manually segmented surfaces. The results show that mean error in structure wall localization is 0.2 and 0.3 mm for the facial nerve and chorda, proving the method we propose is robust and accurate.

  18. Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Charvis, Philippe; Collot, Jean-Yves

    2006-12-01

    Wide-angle and multichannel seismic data collected on the Malpelo Ridge provide an image of the deep structure of the ridge and new insights on its emplacement and tectonic history. The crustal structure of the Malpelo Ridge shows a 14 km thick asymmetric crustal root with a smooth transition to the oceanic basin southeastward, whereas the transition is abrupt beneath its northwestern flank. Crustal thickening is mainly related to the thickening of the lower crust, which exhibits velocities from 6.5 to 7.4 km/s. The deep structure is consistent with emplacement at an active spreading axis under a hotspot like the present-day Galapagos Hotspot on the Cocos-Nazca Spreading Centre. Our results favour the hypothesis that the Malpelo Ridge was formerly a continuation of the Cocos Ridge, emplaced simultaneously with the Carnegie Ridge at the Cocos-Nazca Spreading Centre, from which it was separated and subsequently drifted southward relative to the Cocos Ridge due to differential motion along the dextral strike-slip Panama Fracture Zone. The steep faulted northern flank of the Malpelo Ridge and the counterpart steep and faulted southern flank of Regina Ridge are possibly related to a rifting phase that resulted in the Coiba Microplate’s separation from the Nazca Plate along the Sandra Rift.

  19. Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Report.

    PubMed

    Connors, Christopher A; Liacouras, Peter C; Grant, Gerald T

    2016-01-01

    This is a case report of a custom titanium ridge augmentation matrix (CTRAM). Using cone beam computed tomography (CBCT), a custom titanium space-maintaining device was developed. Alveolar ridges were virtually augmented, a matrix was virtually designed, and the CTRAM was additively manufactured with titanium (Ti6Al4V). Two cases are presented that resulted in sufficient increased horizontal bone volume with successful dental implant placement. The CTRAM design allows for preoperative planning for increasing alveolar ridge dimensions to support dental implants, reduces surgical time, and prevents the need for a second surgical site to gain sufficient alveolar ridge bone volume for dental implant therapy.

  20. Normalization Ridge Regression in Practice I: Comparisons Between Ordinary Least Squares, Ridge Regression and Normalization Ridge Regression.

    ERIC Educational Resources Information Center

    Bulcock, J. W.

    The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…

  1. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  2. Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning.

    PubMed

    Kupriyanova, Natalia S; Netchvolodov, Kirill K; Sadova, Anastasia A; Cherepanova, Marina D; Ryskov, Alexei P

    2015-11-10

    Ribosomal DNA (rDNA) in the human genome is represented by tandem repeats of 43 kb nucleotide sequences that form nucleoli organizers (NORs) on each of five pairs of acrocentric chromosomes. RDNA-similar segments of different lengths are also present on (NOR)(-) chromosomes. Many of these segments contain nucleotide substitutions, supplementary microsatellite clusters, and extended deletions. Recently, it was shown that, in addition to ribosome biogenesis, nucleoli exhibit additional functions, such as cell-cycle regulation and response to stresses. In particular, several stress-inducible loci located in the ribosomal intergenic spacer (rIGS) produce stimuli-specific noncoding nucleolus RNAs. By mapping the 5'/3' ends of the rIGS segments scattered throughout (NOR)(-) chromosomes, we discovered that the bonds in the rIGS that were most often susceptible to disruption in the rIGS were adjacent to, or overlapped with stimuli-specific inducible loci. This suggests the interconnection of the two phenomena - nucleoli functioning and the scattering of rDNA-like sequences on (NOR)(-) chromosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Essential roles for lines in mediating leg and antennal proximodistal patterning and generating a stable Notch signaling interface at segment borders.

    PubMed

    Greenberg, Lina; Hatini, Victor

    2009-06-01

    The Drosophila leg imaginal disc provides a paradigm with which to understand the fundamental developmental mechanisms that generate an intricate appendage structure. Leg formation depends on the subdivision of the leg proximodistal (PD) axis into broad domains by the leg gap genes. The leg gap genes act combinatorially to initiate the expression of the Notch ligands Delta (Dl) and Serrate (Ser) in a segmental pattern. Dl and Ser induce the expression of a set of transcriptional regulators along the segment border, which mediate leg segment growth and joint morphogenesis. Here we show that Lines accumulates in nuclei in the presumptive tarsus and the inter-joints of proximal leg segments and governs the formation of these structures by destabilizing the nuclear protein Bowl. Across the presumptive tarsus, lines modulates the opposing expression landscapes of the leg gap gene dachshund (dac) and the tarsal PD genes, bric-a-brac 2 (bab), apterous (ap) and BarH1 (Bar). In this manner, lines inhibits proximal tarsal fates and promotes medial and distal tarsal fates. Across proximal leg segments, lines antagonizes bowl to promote Dl expression by relief-of-repression. In turn, Dl signals asymmetrically to stabilize Bowl in adjacent distal cells. Bowl, then, acts cell-autonomously, together with one or more redundant factors, to repress Dl expression. Together, lines and bowl act as a binary switch to generate a stable Notch signaling interface between Dl-expressing cells and adjacent distal cell. lines plays analogous roles in developing antennae, which are serially homologous to legs, suggesting evolutionarily conserved roles for lines in ventral appendage formation.

  4. 76 FR 35909 - Temporary Concession Contract for Blue Ridge Parkway

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Concession Contract for Blue Ridge Parkway AGENCY: National Park Service, Interior. ACTION: Notice of proposed award of temporary concession contracts for Blue Ridge Parkway, NC/VA. SUMMARY: Pursuant to 36 CFR... concession contracts for the conduct of certain visitor services within the Blue Ridge Parkway, North...

  5. Microbial Life in Ridge Flank Crustal Fluids at Baby Bare Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Johnson, H. P.; Butterfield, D. A.; Baross, J. A.

    2005-12-01

    To determine the microbial community diversity within old oceanic crust, a novel sampling strategy was used to collect crustal fluids at Baby Bare Seamount, a 3.5 Ma old outcrop located in the northeast Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Stainless steel probes were driven directly into the igneous ocean crust to obtain samples of ridge flank crustal fluids. Genetic signatures and enrichment cultures of microorganisms demonstrate that these crustal fluids host a microbial community composed of species indigenous to the subseafloor, including anaerobic thermophiles, and species from other deep-sea habitats, such as seawater and sediments. Evidence using molecular techniques indicates the presence of a relatively small but active microbial population, dominated by bacteria. The microbial community diversity found in the crustal fluids may indicate habitat variability in old oceanic crust, with inputs of nutrients from seawater, sediment pore-water fluids and possibly hydrothermal sources. This report further supports the presence of an indigenous microbial community in ridge flank crustal fluids and advances our understanding of the potential physiological and phylogenetic diversity of this community.

  6. Volcanic Structure of the Gakkel Ridge at 85°E

    NASA Astrophysics Data System (ADS)

    Willis, C.; Humphris, S.; Soule, S. A.; Reves-Sohn, R.; Shank, T.; Singh, H.

    2007-12-01

    We present an initial volcanologic interpretation of a magmatically-robust segment of the ultra-slow spreading (3- 7 mm/yr) Gakkel Ridge at 85°E in the eastern Arctic Basin based on surveys conducted during the July 2007 Arctic GAkkel Vents Expedition (AGAVE). A previous expedition (2001 AMORE) and seismic stations in the area found evidence for active hydrothermal circulation and seismicity that suggested volcanic activity may be ongoing at 85°E. We examine multi-beam bathymetric data, digital imagery, and rock and sediment samples in order to determine the nature of volcanic accretion that is occurring in this environment including the distribution of flow types and their relationship to features of the axial valley. Raw multi-beam bathymetric data was logged by the Kongsberg EM 120 1°x1° multi-beam echo sounder aboard the icbreaker IB Oden. Digital imagery was recorded on five video and still cameras mounted on the CAMPER fiber-optic wireline vehicle, which was towed 1-3m above the seafloor. Digital imagery was recorded on thirteen CAMPER drift-dives over interesting bathymetry including: a volcanic ridge in the axial valley named Duque's Hill, and Oden and Loke volcanoes that are part of the newly discovered Asgard volcanic chain. Talus, lava flows, and volcaniclastics were sampled with the clamshell grabber and slurp suction sampler on CAMPER. A variety of lava morphologies are identified in the imagery including large basalt pillows with buds and other surface ornamentation, lava tubes, lobates, sheet flows, and a thick cover of volcaniclastic sediment over extensive areas suggestive of explosive volcanic activity.

  7. Wrinkle Ridges and Pit Craters

    NASA Image and Video Library

    2016-10-19

    Tectonic stresses highly modified this area of Ganges Catena, north of Valles Marineris. The long, skinny ridges (called "wrinkle ridges") are evidence of compressional stresses in Mars' crust that created a crack (fault) where one side was pushed on top of the other side, also known as a thrust fault. As shown by cross-cutting relationships, however, extensional stresses have more recently pulled the crust of Mars apart in this region. (HiRISE imaged this area in 2-by-2 binning mode, so a pixel represents a 50 x 50 square centimeter.) http://photojournal.jpl.nasa.gov/catalog/PIA21112

  8. An automated method for accurate vessel segmentation.

    PubMed

    Yang, Xin; Liu, Chaoyue; Le Minh, Hung; Wang, Zhiwei; Chien, Aichi; Cheng, Kwang-Ting Tim

    2017-05-07

    Vessel segmentation is a critical task for various medical applications, such as diagnosis assistance of diabetic retinopathy, quantification of cerebral aneurysm's growth, and guiding surgery in neurosurgical procedures. Despite technology advances in image segmentation, existing methods still suffer from low accuracy for vessel segmentation in the two challenging while common scenarios in clinical usage: (1) regions with a low signal-to-noise-ratio (SNR), and (2) at vessel boundaries disturbed by adjacent non-vessel pixels. In this paper, we present an automated system which can achieve highly accurate vessel segmentation for both 2D and 3D images even under these challenging scenarios. Three key contributions achieved by our system are: (1) a progressive contrast enhancement method to adaptively enhance contrast of challenging pixels that were otherwise indistinguishable, (2) a boundary refinement method to effectively improve segmentation accuracy at vessel borders based on Canny edge detection, and (3) a content-aware region-of-interests (ROI) adjustment method to automatically determine the locations and sizes of ROIs which contain ambiguous pixels and demand further verification. Extensive evaluation of our method is conducted on both 2D and 3D datasets. On a public 2D retinal dataset (named DRIVE (Staal 2004 IEEE Trans. Med. Imaging 23 501-9)) and our 2D clinical cerebral dataset, our approach achieves superior performance to the state-of-the-art methods including a vesselness based method (Frangi 1998 Int. Conf. on Medical Image Computing and Computer-Assisted Intervention) and an optimally oriented flux (OOF) based method (Law and Chung 2008 European Conf. on Computer Vision). An evaluation on 11 clinical 3D CTA cerebral datasets shows that our method can achieve 94% average accuracy with respect to the manual segmentation reference, which is 23% to 33% better than the five baseline methods (Yushkevich 2006 Neuroimage 31 1116-28; Law and Chung 2008

  9. Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors

    NASA Astrophysics Data System (ADS)

    Gloger, Oliver; Tönnies, Klaus; Bülow, Robin; Völzke, Henry

    2017-07-01

    To develop the first fully automated 3D spleen segmentation framework derived from T1-weighted magnetic resonance (MR) imaging data and to verify its performance for spleen delineation and volumetry. This approach considers the issue of low contrast between spleen and adjacent tissue in non-contrast-enhanced MR images. Native T1-weighted MR volume data was performed on a 1.5 T MR system in an epidemiological study. We analyzed random subsamples of MR examinations without pathologies to develop and verify the spleen segmentation framework. The framework is modularized to include different kinds of prior knowledge into the segmentation pipeline. Classification by support vector machines differentiates between five different shape types in computed foreground probability maps and recognizes characteristic spleen regions in axial slices of MR volume data. A spleen-shape space generated by training produces subject-specific prior shape knowledge that is then incorporated into a final 3D level set segmentation method. Individually adapted shape-driven forces as well as image-driven forces resulting from refined foreground probability maps steer the level set successfully to the segment the spleen. The framework achieves promising segmentation results with mean Dice coefficients of nearly 0.91 and low volumetric mean errors of 6.3%. The presented spleen segmentation approach can delineate spleen tissue in native MR volume data. Several kinds of prior shape knowledge including subject-specific 3D prior shape knowledge can be used to guide segmentation processes achieving promising results.

  10. A graph-based watershed merging using fuzzy C-means and simulated annealing for image segmentation

    NASA Astrophysics Data System (ADS)

    Vadiveloo, Mogana; Abdullah, Rosni; Rajeswari, Mandava

    2015-12-01

    In this paper, we have addressed the issue of over-segmented regions produced in watershed by merging the regions using global feature. The global feature information is obtained from clustering the image in its feature space using Fuzzy C-Means (FCM) clustering. The over-segmented regions produced by performing watershed on the gradient of the image are then mapped to this global information in the feature space. Further to this, the global feature information is optimized using Simulated Annealing (SA). The optimal global feature information is used to derive the similarity criterion to merge the over-segmented watershed regions which are represented by the region adjacency graph (RAG). The proposed method has been tested on digital brain phantom simulated dataset to segment white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) soft tissues regions. The experiments showed that the proposed method performs statistically better, with average of 95.242% regions are merged, than the immersion watershed and average accuracy improvement of 8.850% in comparison with RAG-based immersion watershed merging using global and local features.

  11. Mantle Convection beneath the Aegir Ridge, a Shadow in the Iceland Hotspot

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Ito, G.; Breivik, A. J.; Hanan, B. B.; Mjelde, R.; Sayit, K.; Vogt, P. R.

    2012-12-01

    The Iceland Hotspot has produced extensive volcanism spanning much of the ocean basin between Greenland and Norway, forming one of the world's largest igneous provinces. However, an apparent igneous "shadow" in hotspot activity is located at the fossil Aegir Ridge, which formed anomalously thin crust, despite this ridge being near the Iceland hotspot when it was active. The Aegir Ridge accommodated seafloor spreading northeast of present-day Iceland from the time of continental breakup at ~55 Ma until ~25 Ma, at which point spreading shifted west to the Kolbeinsey Ridge. To address the cause of the anomalously thin crust produced by the Aegir Ridge, we use three-dimensional numerical models to simulate the interaction between a mantle plume beneath the Iceland hotspot, rifting continental lithosphere, and the time-evolving North Atlantic ridge system. Two end-member hypotheses were investigated: (1) Material emanating from the Iceland mantle plume was blocked from reaching the Aegir Ridge by the thick lithosphere of the Jan Mayen Microcontinent as the Kolbeinsey Ridge began rifting it from Greenland at ~30 Ma, just east of the plume center; (2) Plume material was not blocked and did reach the Aegir Ridge, but had already experienced partial melting closer to the hotspot. This material was then unable to produce melt volumes at the Aegir Ridge comparable to those of pristine mantle. To test these hypotheses, we vary the volume flux and viscosity of the plume, and identify which conditions do and do not lead to the Aegir Ridge forming anomalously thin crust. Results show that the combination of plume material being drawn into the lithospheric channels beneath the Reykjanes Ridge and Kolbeinsey Ridge after their respective openings, and the impedance of plume flow by the Jan Mayen Microcontinent (hypothesis 1), can deprive the Aegir Ridge of plume influence. This leads to low crustal thicknesses that are comparable to those observed. We have yet to produce a model

  12. Cedar Ridge Camp: Using the Local Environment

    ERIC Educational Resources Information Center

    Burke, Grayson

    2007-01-01

    In 2007 Cedar Ridge Camp opened for its first season as a traditional co-ed summer camp and year-round outdoor education and recreation centre. The mission would centre on creating a program that would encourage personal development and growth through a shared outdoor experience. Cedar Ridge's main goals were to promote the formation of close…

  13. Hydrothermal activities around Dragon Horn Area (49.7°E) on ultra-slow spreading Southwest Indian Ridge (SWIR)

    NASA Astrophysics Data System (ADS)

    Tao, C.; Liang, J.; Zhang, H.; Li, H.; Egorov, I. V.; Liao, S.

    2016-12-01

    The Dragon Horn Area (49.7°E), is located at the west end of the EW trending Segment 28 of Southwest Indian Ridge between Indomed and Gallieni FZ. The segment is characterized by highly asymmetric topography. The northern flank is deeper and develops typical parallel linear fault escarpments. Meanwhile, the southern flank, where the Dragon Horn lies, is shallower and bears corrugations. The indicative corrugated surface which extends some 5×5 km was interpreted to be of Dragon Flag OCC origin (Zhao et al., 2013). Neo-volcanic ridge extends along the middle of the rifted valley and is bounded by two non-transform offsets to the east and west. Our investigations revealed 6 hydrothermal fields/anomalies in this area, including 2 confirmed sulfide fields, 1 carbonate field, and 3 inferred hydrothermal anomalies based on methane and turbidity data from 2016 AUV survey. Longqi-1(Dragon Flag) vent system lies to the northwest edge of Dragon Flag OCC. It is one of the largest hydrothermal venting systems along Mid-Ocean Ridges, with maximum temperature at vent site DFF6 of 'M zone' up to 379.3 °C (Tao et al, 2016). Massive sulfides (49.73 °E, 37.78 °S) were sampled 10 km east to Longqi-1, representing independent hydrothermal activities controlled by respective local structures. According to geological mapping and interpretation, both sulfide fields are located on the hanging wall of the Dragon Flag OCC detachment. Combined with the inferred hydrothermal anomaly to the east of the massive sulfide site, we suppose that they are controlled by different fault phases during the detachment of oceanic core complex. Moreover, consolidated carbonate sediments were widely observed and sampled on the corrugated surface and its west side, they are proposed to be precipitated during the serpentinization of ultramafic rocks, representing low-temperature hydrothermal process. These hydrothermal activities, distributed within 20km, may be controlled by the same Dragon Flag OCC

  14. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with thesemore » waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry.« less

  15. A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series

    NASA Astrophysics Data System (ADS)

    Selvi, Eşref; Selver, M. Alper; Güzeliş, Cüneyt; Dicle, Oǧuz

    2014-03-01

    Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks.

  16. Multi-object segmentation framework using deformable models for medical imaging analysis.

    PubMed

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed

  17. Coupled ridge waveguide distributed feedback quantum cascade laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang

    2015-04-06

    A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less

  18. Wrinkle ridges, stress domains, and kinematics of venusian plains

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1993-01-01

    Wrinkle ridges are nearly ubiquitous landforms on the plains of Venus. By analogy with similar structures on other planets, venusian wrinkle ridges are inferred to trend normal to the direction of maximum principal compression in the crust, an inference that is verified by geometrical relationships with positive and negative relief features on Venus. Because plains are the dominant terrain on Venus, wrinkle ridges provide an excellent opportunity to determine the orientations of shallow crustal principal stress trajectories over most of the planet. In most places there are two or more sets of wrinkle ridges, and commonly one of these persists over a large area, defining a regional stress domain. Intersection relationships indicate that these domains differ in age.

  19. Europan double ridge morphometry as a test of formation models

    NASA Astrophysics Data System (ADS)

    Dameron, Ashley C.; Burr, Devon M.

    2018-05-01

    Double ridges on the Jovian satellite Europa consist of two parallel ridges with a central trough. Although these features are nearly ubiquitous on Europa, their formation mechanism(s) is (are) not yet well-understood. Previous hypotheses for their formation can be divided into two groups based on 1) the expected interior slope angles and 2) the magnitude of interior/exterior slope symmetry. The published hypotheses in the first ("fracture") group entail brittle deformation of the crust, either by diapirism, shear heating, or buckling due to compression. Because these mechanisms imply uplift of near-vertical fractures, their predicted interior slopes are steeper than the angle of repose (AOR) with shallower exterior slopes. The second ("flow") group includes cryosedimentary and cryovolcanic processes - explosive or effusive cryovolcanism and tidal squeezing -, which are predicted to form ridge slopes at or below the AOR. Explosive cryovolcanism would form self-symmetric ridges, whereas effusive cryolavas and cryo-sediments deposited during tidal squeezing would likely not exhibit slope symmetry. To distinguish between these two groups of hypothesized formation mechanisms, we derived measurements of interior slope angle and interior/exterior slope symmetry at multiple locations on Europa through analysis of data from the Galileo Solid State Imaging (SSI) camera. Two types of data were used: i) elevation data from five stereo-pair digital elevation models (DEMs) covering four ridges (580 individual measurements), and ii) ridge shadow length measurements taken on individual images over 40 ridges (200 individual measurements). Our results shows that slopes measured on our DEMs, located in the Cilix and Banded Plains regions, typically fall below the AOR, and slope symmetry is dominant. Two different shadow measurement techniques implemented to calculate interior slopes yielded slope angles that also fall below the AOR. The shallow interior slopes derived from both

  20. The trace and Pb isotope chemistry of the Jan Mayen Fracture Zone and the extinct Aegir Ridge

    NASA Astrophysics Data System (ADS)

    Sayit, K.; Hanan, B. B.; Ito, G.; Howell, S. M.; Vogt, P. R.; Breivik, A. J.; Mjelde, R.; Pedersen, R.

    2012-12-01

    The extinct Aegir Ridge (AR) was active during the early opening of the N-Atlantic, 54 to 25 Ma, when spreading jumped to the Kolbeinsey Ridge. Crustal thickness produced by the AR is low (3.5 to 6 km), and the magmatically starved Norway Basin appears as a hole in the surrounding excess volcanism of the Iceland hotspot. Two possible alternatives are; either the lithospheric structure of the Jan Mayen micro-continent (JMMC) blocked the plume flow to the AR, and/or Iceland plume material reaching the ridge experienced a previous melt extraction, leading to relatively low melt production. We report the trace element and Pb isotope systematics of the mafic rocks dredged from the AR ~64-69° N and adjacent Jan Mayen FZ. On the basis of the immobile trace element chemistry, several groups are identified, with a large range of Zr/Nb (2.7-60.7). A very-depleted group ([Ce/Yb]N = 0.3) was found in the Jan Mayen FZ, while the most enriched, OIB-like group ([Ce/Yb]N = 12.4) was recovered from the ridge flank scarps. A notable feature of the Aegir samples is variable Th enrichment relative Nb (Th/Nb = 0.07-0.49), similar to subduction zone signatures. In terms of Pb isotopes, the samples show significant variations that correlate with trace element chemistry (206Pb/204Pb: 207Pb/204Pb: 208Pb/204Pb = 16.63-18.81:15.16-15.55:36.67-38.62). The Pb systematics of the Aegir rocks are compatible with a three-component mixing model with mixing trends between the C-like Iceland plume component and a mixture that is composed of EM-1-type material and depleted MORB asthenosphere. The presence of the C-like isotope compositions in the Aegir samples from the Jan Mayen FZ and ridge flank scarps suggests that Iceland plume material has been tapped. However, the very-depleted trace element signatures indicate that the plume component was previously melt depleted. Apparently, the JMMC impeaded flow of enriched plume material to the AR. The Aegir rocks Pb isotope signature may represent