A user's manual for MASH 1. 0: A Monte Carlo Adjoint Shielding Code System
Johnson, J.O.
1992-03-01
The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the dose importance'' of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.
A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System
C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler
1998-10-01
The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.
A user`s manual for MASH 1.0: A Monte Carlo Adjoint Shielding Code System
Johnson, J.O.
1992-03-01
The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the ``dose importance`` of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user`s manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
Point-Kernel Shielding Code System.
Energy Science and Technology Software Center (ESTSC)
1982-02-17
Version 00 QAD-BSA is a three-dimensional, point-kernel shielding code system based upon the CCC-48/QAD series. It is designed to calculate photon dose rates and heating rates using exponential attenuation and infinite medium buildup factors. Calculational provisions include estimates of fast neutron penetration using data computed by the moments method. Included geometry routines can describe complicated source and shield geometries. An internal library contains data for many frequently used structural and shielding materials, enabling the codemore » to solve most problems with only source strengths and problem geometry required as input. This code system adapts especially well to problems requiring multiple sources and sources with asymmetrical geometry. In addition to being edited separately, the total interaction rates from many sources may be edited at each detector point. Calculated photon interaction rates agree closely with those obtained using QAD-P5A.« less
Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Green, Lawrence; Carle, Alan; Fagan, Mike
1999-01-01
Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop
Advances in space radiation shielding codes
NASA Technical Reports Server (NTRS)
Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni
2002-01-01
Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.
Advances in space radiation shielding codes.
Wilson, John W; Tripathi, Ram K; Qualls, Garry D; Cucinotta, Francis A; Prael, Richard E; Norbury, John W; Heinbockel, John H; Tweed, John; De Angelis, Giovanni
2002-12-01
Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given. PMID:12793737
The efficiency of geophysical adjoint codes generated by automatic differentiation tools
NASA Astrophysics Data System (ADS)
Vlasenko, A. V.; Köhl, A.; Stammer, D.
2016-02-01
The accuracy of numerical models that describe complex physical or chemical processes depends on the choice of model parameters. Estimating an optimal set of parameters by optimization algorithms requires knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity computation involves differentiation of the model, which can be performed by applying algorithmic differentiation (AD) tools to the underlying numerical code. However, existing AD tools differ substantially in design, legibility and computational efficiency. In this study we show that, for geophysical data assimilation problems of varying complexity, the performance of adjoint codes generated by the existing AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 90-95 elements such as structures and pointers, which are new elements that either combine groups of variables or provide aliases to memory addresses, respectively. We show that, while operator overloading tools are the only ones suitable for modern codes written in object-oriented programming languages, their computational efficiency lags behind source transformation by orders of magnitude, rendering the application of these modern tools to practical assimilation problems prohibitive. In contrast, the application of source transformation tools appears to be the most efficient choice, allowing handling even large geophysical data assimilation problems. However, they can only be applied to numerical models written in earlier generations of programming languages. Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that urgently need to be solved to allow the
Description of transport codes for space radiation shielding.
Kim, Myung-Hee Y; Wilson, John W; Cucinotta, Francis A
2012-11-01
Exposure to ionizing radiation in the space environment is one of the hazards faced by crews in space missions. As space radiations traverse spacecraft, habitat shielding, or tissues, their energies and compositions are altered by interactions with the shielding. Modifications to the radiation fields arise from atomic interactions of charged particles with orbital electrons and nuclear interactions leading to projectile and target fragmentation, including secondary particles such as neutrons, protons, mesons, and nuclear recoils. The transport of space radiation through shielding can be simulated using Monte Carlo techniques or deterministic solutions of the Boltzmann equation. To determine shielding requirements and to resolve radiation constraints for future human missions, the shielding evaluation of a spacecraft concept is required as an early step in the design process. To do this requires (1) accurate knowledge of space environmental models to define the boundary condition for transport calculations, (2) transport codes with detailed shielding and body geometry models to determine particle transmission into areas of internal shielding and at each critical body organ, and (3) the assessment of organ dosimetric quantities and biological risks by applying the corresponding response models for space radiation against the particle spectra that have been accurately determined from the transport code. This paper reviews current transport codes and analyzes their accuracy through comparison to laboratory and spaceflight data. This paper also introduces a probabilistic risk assessment approach for the evaluation of radiation shielding. PMID:23032892
Description of Transport Codes for Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.
2011-01-01
This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.
Somasundaram, E.; Palmer, T. S.
2013-07-01
In this paper, the work that has been done to implement variance reduction techniques in a three dimensional, multi group Monte Carlo code - Tortilla, that works within the frame work of the commercial deterministic code - Attila, is presented. This project is aimed to develop an integrated Hybrid code that seamlessly takes advantage of the deterministic and Monte Carlo methods for deep shielding radiation detection problems. Tortilla takes advantage of Attila's features for generating the geometric mesh, cross section library and source definitions. Tortilla can also read importance functions (like adjoint scalar flux) generated from deterministic calculations performed in Attila and use them to employ variance reduction schemes in the Monte Carlo simulation. The variance reduction techniques that are implemented in Tortilla are based on the CADIS (Consistent Adjoint Driven Importance Sampling) method and the LIFT (Local Importance Function Transform) method. These methods make use of the results from an adjoint deterministic calculation to bias the particle transport using techniques like source biasing, survival biasing, transport biasing and weight windows. The results obtained so far and the challenges faced in implementing the variance reduction techniques are reported here. (authors)
Parallelizing the MARS15 Code with MPI for shielding applications
Mikhail A. Kostin and Nikolai V. Mokhov
2004-05-12
The MARS15 Monte Carlo code capabilities to deal with time-consuming deep penetration shielding problems and other computationally tough tasks in accelerator, detector and shielding applications, have been enhanced by a parallel processing option. It has been developed, implemented and tested on the Fermilab Accelerator Division Linux cluster and network of Sun workstations. The code uses MPI. It is scalable and demonstrates good performance. The general architecture of the code, specific uses of message passing, and effects of a scheduling on the performance and fault tolerance are described.
Application to MISR Land Products of an RPV Model Inversion Package Using Adjoint and Hessian Codes
NASA Astrophysics Data System (ADS)
Lavergne, T.; Kaminski, T.; Pinty, B.; Taberner, M.; Gobron, N.; Verstraete, M. M.; Vossbeck, M.; Widlowski, J.-L.; Giering, R.
The capability of the non-linear Rahman-Pinty-Verstraete RPV model to 1 accurately fit a large variety of Bidirectional Reflectance Factor BRF fields and 2 return parameter values of interest for land surface applications motivate the development of a computer efficient inversion package The present paper describes such a package based on the 3 and 4 parameter versions of the RPV model This software environment implements the adjoint code generated using automatic differentiation techniques of the cost function This cost function itself balances two main contributions reflecting 1 the a priori knowledge on the model parameter values and 2 BRF uncertainties together with the requirement to minimize the mismatch between the measurements and the RPV simulations The individual weights of these contributions are specified notably via covariance matrices of the uncertainties in the a priori knowledge on the model parameters and the observations This package also reports on the probability density functions of the retrieved model parameter values that thus permit the user to evaluate the a posteriori uncertainties on these retrievals This is achieved by evaluating the Hessian of the cost function at its minimum Results from a variety of tests are shown in order to document and analyze software performance against complex synthetic BRF fields simulated by radiation transfer models as well as against actual MISR-derived surface BRF products
Accelerator-based validation of shielding codes
Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack; Wilson, John W.
2002-08-12
The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required to validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.
A Radiation Shielding Code for Spacecraft and Its Validation
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Cucinotta, F. A.; Singleterry, R. C.; Wilson, J. W.; Badavi, F. F.; Badhwar, G. D.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Tripathi, R. K.
2000-01-01
The HZETRN code, which uses a deterministic approach pioneered at NASA Langley Research Center, has been developed over the past decade to evaluate the local radiation fields within sensitive materials (electronic devices and human tissue) on spacecraft in the space environment. The code describes the interactions of shield materials with the incident galactic cosmic rays, trapped protons, or energetic protons from solar particle events in free space and low Earth orbit. The content of incident radiations is modified by atomic and nuclear reactions with the spacecraft and radiation shield materials. High-energy heavy ions are fragmented into less massive reaction products, and reaction products are produced by direct knockout of shield constituents or from de-excitation products. An overview of the computational procedures and database which describe these interactions is given. Validation of the code with recent Monte Carlo benchmarks, and laboratory and flight measurement is also included.
NASA Astrophysics Data System (ADS)
Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.
2011-12-01
Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model
NASA Astrophysics Data System (ADS)
Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.
2015-12-01
We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.
Self-shielding models of MICROX-2 code
Hou, J.; Ivanov, K.; Choi, H.
2013-07-01
The MICROX-2 is a transport theory code that solves for the neutron slowing-down and thermalization equations of a two-region lattice cell. In the previous study, a new fine-group cross section library of the MICROX-2 was generated and tested against reference calculations and measurement data. In this study, existing physics models of the MICROX-2 are reviewed and updated to improve the physics calculation performance of the MICROX-2 code, including the resonance self-shielding model and spatial self-shielding factor. The updated self-shielding models have been verified through a series of benchmark calculations against the Monte Carlo code, using homogeneous and pin cell models selected for this study. The results have shown that the updates of the self-shielding factor calculation model are correct and improve the physics calculation accuracy even though the magnitude of error reduction is relatively small. Compared to the existing models, the updates reduced the prediction error of the infinite multiplication factor by approximately 0.1 % and 0.2% for the homogeneous and pin cell models, respectively, considered in this study. (authors)
Overview of HZETRN and BRNTRN Space Radiation Shielding Codes
NASA Technical Reports Server (NTRS)
Wilson, John W.; Cucinotta, F. A.; Shinn, J. L.; Simonsen, L. C.; Badavi, F. F.
1997-01-01
The NASA Radiation Health Program has supported basic research over the last decade in radiation physics to develop ionizing radiation transport codes and corresponding data bases for the protection of astronauts from galactic and solar cosmic rays on future deep space missions. The codes describe the interactions of the incident radiations with shield materials where their content is modified by the atomic and nuclear reactions through which high energy heavy ions are fragmented into less massive reaction products and reaction products are produced as radiations as direct knockout of shield constituents or produced as de-excitation products in the reactions. This defines the radiation fields to which specific devices are subjected onboard a spacecraft. Similar reactions occur in the device itself which is the initiating event for the device response. An overview of the computational procedures and data base with some applications to photonic and data processing devices will be given.
MCNP: Multigroup/adjoint capabilities
Wagner, J.C.; Redmond, E.L. II; Palmtag, S.P.; Hendricks, J.S.
1994-04-01
This report discusses various aspects related to the use and validity of the general purpose Monte Carlo code MCNP for multigroup/adjoint calculations. The increased desire to perform comparisons between Monte Carlo and deterministic codes, along with the ever-present desire to increase the efficiency of large MCNP calculations has produced a greater user demand for the multigroup/adjoint capabilities. To more fully utilize these capabilities, we review the applications of the Monte Carlo multigroup/adjoint method, describe how to generate multigroup cross sections for MCNP with the auxiliary CRSRD code, describe how to use the multigroup/adjoint capability in MCNP, and provide examples and results indicating the effectiveness and validity of the MCNP multigroup/adjoint treatment. This information should assist users in taking advantage of the MCNP multigroup/adjoint capabilities.
A Flexible Point-Kernel Shielding Code System.
Energy Science and Technology Software Center (ESTSC)
1991-01-01
Version 00 MARMER is a point-kernel shielding code which can be used to calculate the dose rate, energy absorption rate, energy flux or gamma-ray flux due to several sources at any point in a complex geometry. The geometry is described by the MARS geometry system which makes use of combinatorial geometry and an array repeating feature. Source spectra may be defined in several ways including an option to read a binary file containing nuclide concentrations,more » which has been calculated by ORIGEN-S. Therefore, MARMER makes use of a nuclide data library containing half life times, decay energies and gamma yields for over 1000 nuclides. To facilitate the use of ORIGEN-S in the VAX version, a preprocessor named PREORI is included for simple irradiation and decay problems. The spatial description of the source may be done in cartesian, cylindrical and spherical coordinates; and the source strength as a function of the distance along the coordinate axes may be done in many different ways. Several sources with different spectra may be treated simultaneously. As many calculational points as needed may be defined.« less
NASA Astrophysics Data System (ADS)
Sharma, Manish K.; Alajo, Ayodeji B.; Liu, Xin
2015-08-01
A deuterium-deuterium accelerator-type neutron generator was installed in the Nuclear Engineering Department at Missouri University of Science and Technology (Missouri S&T). This generator is shielded by different hydrogenated and non-hydrogenated materials to reduce the dose rates in the vicinity of the facility. In the work presented in this paper, both SCALE6 and MCNP5 radiation transport codes were used to conduct two independent simulations. The new shielding analysis tool of SCALE6-MAVRIC, with the automatic variance reduction technique of SCALE6, was utilized to estimate and compare the dose rates from the unbiased MCNP simulation. The ultimate goal of this study was to compare the computational effectiveness offered by employing the MAVRIC sequence in the modeling of the neutron generator facility at Missouri S&T.
Kirk, B.L. )
1990-01-01
In nuclear applications, the conversion of mainframe software to the personal computer (PC) environment has seen an accelerated pace. Credit has to be extended to the software companies that have made the scientific language FORTRAN available on PCs. Not to be neglected are the scientists who dedicate their time in the conversion of codes and are challenged by the limited PC memory and disk space. The Radiation shielding Information Center (RSIC) at Oak Ridge National Laboratory has encouraged these developments, and the shielding community has cooperated by making these new tools available via RSIC. The PC codes in the shielding and radiation transport area are divided into five categories (these categories are not mutually exclusive): (1) gamma-ray scattering; (2) neutron and gamma-ray transport (also coupled); (3) environmental dose; (4) medical applications; and (5) reactor physics. Each category is discussed.
NASA Astrophysics Data System (ADS)
Truchet, G.; Leconte, P.; Peneliau, Y.; Santamarina, A.; Malvagi, F.
2014-06-01
Pile-oscillation experiments are performed in the MINERVE reactor at the CEA Cadarache to improve nuclear data accuracy. In order to precisely calculate small reactivity variations (<10 pcm) obtained in these experiments, a reference calculation need to be achieved. This calculation may be accomplished using the continuous-energy Monte Carlo code TRIPOLI-4® by using the eigenvalue difference method. This "direct" method has shown limitations in the evaluation of very small reactivity effects because it needs to reach a very small variance associated to the reactivity in both states. To answer this problem, it has been decided to implement the exact perturbation theory in TRIPOLI-4® and, consequently, to calculate a continuous-energy adjoint flux. The Iterated Fission Probability (IFP) method was chosen because it has shown great results in some other Monte Carlo codes. The IFP method uses a forward calculation to compute the adjoint flux, and consequently, it does not rely on complex code modifications but on the physical definition of the adjoint flux as a phase-space neutron importance. In the first part of this paper, the IFP method implemented in TRIPOLI-4® is described. To illustrate the effciency of the method, several adjoint fluxes are calculated and compared with their equivalent obtained by the deterministic code APOLLO-2. The new implementation can calculate angular adjoint flux. In the second part, a procedure to carry out an exact perturbation calculation is described. A single cell benchmark has been used to test the accuracy of the method, compared with the "direct" estimation of the perturbation. Once again the method based on the IFP shows good agreement for a calculation time far more inferior to the "direct" method. The main advantage of the method is that the relative accuracy of the reactivity variation does not depend on the magnitude of the variation itself, which allows us to calculate very small reactivity perturbations with high
Multiparticle Monte Carlo Code System for Shielding and Criticality Use.
Energy Science and Technology Software Center (ESTSC)
2015-06-01
Version 00 COG is a modern, full-featured Monte Carlo radiation transport code that provides accurate answers to complex shielding, criticality, and activation problems.COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computingmore » Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://cog.llnl.gov. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. A lattice feature simplifies the specification of regular arrays of parts. Parallel processing under MPI is supported for multi-CPU systems. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, pathlength stretching, point detectors, scattered direction biasing, and forced collisions. Criticality For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems COG can solve coupled problems involving neutrons, photons, and electrons. COG 11.1 is an updated version of COG11.1 BETA 2 (RSICC C00777MNYCP02
Multiparticle Monte Carlo Code System for Shielding and Criticality Use.
2015-06-01
Version 00 COG is a modern, full-featured Monte Carlo radiation transport code that provides accurate answers to complex shielding, criticality, and activation problems.COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computing Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://cog.llnl.gov. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. A lattice feature simplifies the specification of regular arrays of parts. Parallel processing under MPI is supported for multi-CPU systems. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, pathlength stretching, point detectors, scattered direction biasing, and forced collisions. Criticality For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems COG can solve coupled problems involving neutrons, photons, and electrons. COG 11.1 is an updated version of COG11.1 BETA 2 (RSICC C00777MNYCP02). New
DOPEX-1D2C: A one-dimensional, two-constraint radiation shield optimization code
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1973-01-01
A one-dimensional, two-constraint radiation sheild weight optimization procedure and a computer program, DOPEX-1D2C, is described. The DOPEX-1D2C uses the steepest descent method to alter a set of initial (input) thicknesses of a spherical shield configuration to achieve a minimum weight while simultaneously satisfying two dose-rate constraints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. Code input instruction, a FORTRAN-4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is less than 1/2 minute on an IBM 7094.
SOC-DS computer code provides tool for design evaluation of homogeneous two-material nuclear shield
NASA Technical Reports Server (NTRS)
Disney, R. K.; Ricks, L. O.
1967-01-01
SOC-DS Code /Shield Optimization Code-Direc Search/, selects a nuclear shield material of optimum volume, weight, or cost to meet the requirments of a given radiation dose rate or energy transmission constraint. It is applicable to evaluating neutron and gamma ray shields for all nuclear reactors.
A Line Source Shielding Code for Personal Computers.
Energy Science and Technology Software Center (ESTSC)
1990-12-22
Version 00 LINEDOSE computes the gamma-ray dose from a pipe source modeled as a line. The pipe is assumed to be iron and has a concrete shield of arbitrary thickness. The calculation is made for eight source energies between 0.1 and 3.5 MeV.
Point Kernel Gamma-Ray Shielding Code With Geometric Progression Buildup Factors.
Energy Science and Technology Software Center (ESTSC)
1990-11-30
Version 00 QADMOD-GP is a PC version of the mainframe code CCC-396/QADMOD-G, a point-kernel integration code for calculating gamma ray fluxes and dose rates or heating rates at specific detector locations within a three-dimensional shielding geometry configuration due to radiation from a volume-distributed source.
HETC radiation transport code development for cosmic ray shielding applications in space.
Townsend, L W; Miller, T M; Gabriel, Tony A
2005-01-01
In order to facilitate three-dimensional analyses of space radiation shielding scenarios for future space missions, the Monte Carlo radiation transport code HETC is being extended to include transport of energetic heavy ions, such as are found in the galactic cosmic ray spectrum in space. Recently, an event generator capable of providing nuclear interaction data for use in HETC was developed and incorporated into the code. The event generator predicts the interaction product yields and production angles and energies using nuclear models and Monte Carlo techniques. Testing and validation of the extended transport code has begun. In this work, the current status of code modifications, which enable energetic heavy ions and their nuclear reaction products to be transported through thick shielding, are described. Also, initial results of code testing against available laboratory beam data for energetic heavy ions interacting in thick targets are presented. PMID:16604614
Energy Science and Technology Software Center (ESTSC)
1990-11-20
Version 00 REX2-87 is a computer code developed for the calculation of self-shielded multigroup average cross sections, and self-shielding factors for total, elastic, fission and capture processes from an ENDF/B formatted nuclear data file in which the tabulated cross sections follow linear interpolation throughout.
Introduction to Adjoint Models
NASA Technical Reports Server (NTRS)
Errico, Ronald M.
2015-01-01
In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.
Three-Dimensional Point Kernel Gamma-Ray Shielding Code.
Energy Science and Technology Software Center (ESTSC)
1981-01-29
Version 00 QAD-QC is similar in all respects to QAD-P5 (CCC-48/QAD) except that all neutron moments data and heating calculations have been eliminated, the number of regions and boundaries has been reduced, and various changes to the output formats have been changed. This code version was developed for quick and fairly inexpensive direct-beam gamma-ray dose calculations. QAD-QC calculates the direct-beam gamma-ray dose rates at points in three-dimensional space from point, volumetric, and cosine intensity functionmore » sources. The source and dose points can be described in either cartesian, cylindrical, or spherical coordinates, while the geometry description is limited to Cartesian only.« less
The SWAN/NPSOL code system for multivariable multiconstraint shield optimization
Watkins, E.F.; Greenspan, E.
1995-12-31
SWAN is a useful code for optimization of source-driven systems, i.e., systems for which the neutron and photon distribution is the solution of the inhomogeneous transport equation. Over the years, SWAN has been applied to the optimization of a variety of nuclear systems, such as minimizing the thickness of fusion reactor blankets and shields, the weight of space reactor shields, the cost for an ICF target chamber shield, and the background radiation for explosive detection systems and maximizing the beam quality for boron neutron capture therapy applications. However, SWAN`s optimization module can handle up to a single constraint and was inefficient in handling problems with many variables. The purpose of this work is to upgrade SWAN`s optimization capability.
Hekmat, Mohamad Hamed; Mirzaei, Masoud
2015-01-01
In the present research, we tried to improve the performance of the lattice Boltzmann (LB) -based adjoint approach by utilizing the mesoscopic inherent of the LB method. In this regard, two macroscopic discrete adjoint (MADA) and microscopic discrete adjoint (MIDA) approaches are used to answer the following two challenging questions. Is it possible to extend the concept of the macroscopic and microscopic variables of the flow field to the corresponding adjoint ones? Further, similar to the conservative laws in the LB method, is it possible to find the comparable conservation equations in the adjoint approach? If so, then a definite framework, similar to that used in the flow solution by the LB method, can be employed in the flow sensitivity analysis by the MIDA approach. This achievement can decrease the implementation cost and coding efforts of the MIDA method in complicated sensitivity analysis problems. First, the MADA and MIDA equations are extracted based on the LB method using the duality viewpoint. Meanwhile, using an elementary case, inverse design of a two-dimensional unsteady Poiseuille flow in a periodic channel with constant body forces, the procedure of analytical evaluation of the adjoint variables is described. The numerical results show that similar correlations between the distribution functions can be seen between the corresponding adjoint ones. Besides, the results are promising, emphasizing the flow field adjoint variables can be evaluated via the adjoint distribution functions. Finally, the adjoint conservative laws are introduced. PMID:25679735
Coupling of Monte Carlo adjoint leakages with three-dimensional discrete ordinates forward fluences
Slater, C.O.; Lillie, R.A.; Johnson, J.O.; Simpson, D.B.
1998-04-01
A computer code, DRC3, has been developed for coupling Monte Carlo adjoint leakages with three-dimensional discrete ordinates forward fluences in order to solve a special category of geometrically-complex deep penetration shielding problems. The code extends the capabilities of earlier methods that coupled Monte Carlo adjoint leakages with two-dimensional discrete ordinates forward fluences. The problems involve the calculation of fluences and responses in a perturbation to an otherwise simple two- or three-dimensional radiation field. In general, the perturbation complicates the geometry such that it cannot be modeled exactly using any of the discrete ordinates geometry options and thus a direct discrete ordinates solution is not possible. Also, the calculation of radiation transport from the source to the perturbation involves deep penetration. One approach to solving such problems is to perform the calculations in three steps: (1) a forward discrete ordinates calculation, (2) a localized adjoint Monte Carlo calculation, and (3) a coupling of forward fluences from the first calculation with adjoint leakages from the second calculation to obtain the response of interest (fluence, dose, etc.). A description of this approach is presented along with results from test problems used to verify the method. The test problems that were selected could also be solved directly by the discrete ordinates method. The good agreement between the DRC3 results and the direct-solution results verify the correctness of DRC3.
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1972-01-01
A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.
Energy Science and Technology Software Center (ESTSC)
2004-04-21
Version 04 NESTLE solves the few-group neutron diffusion equation utilizing the NEM. The NESTLE code can solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- ormore » four-energy groups can be utilized, with all energy groups being thermal groups (i.e., upscatter exits) if desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections are parameterized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed.« less
A Visualization Code System for Gamma and Neutron Shielding Calculations, Version 2.0
Energy Science and Technology Software Center (ESTSC)
2008-08-01
EASYQAD, Version 2.0, is a standalone Windows XP or Windows 7 code system which facilitates gamma and neutron shielding calculations with user friendly graphical interfaces. It is used to analyze radiation shielding problems and includes: - 8 kinds of geometry types - Various flexible source options - Common material library - Various detector types The update contents of EASYQAD Version 2.0 are below: - Addition of starting option with P-code files - Addition of multi-sourcemore » calculation function - Expansion of source geometries - Addition of warning message - Modifications of EASYQAD program errors a. Coordination application problem in source division b. Source position error c. Rotation problem of source geometry d. Program running error in using more than six gamma energy distribution e. EASYQAD display problem of the right elliptic cylinder, ellipsoid and truncated right cone geometries Through intuitive windows and their interactions inside EASYQAD, the user can specify the dimensions of 3D-shapes, their material compositions, their densities, the type of radioactive sources, the locations of the sources, the type and positions of detectors. With the ease of using these sequences, shielding problems will become simpler and more clearly understandable to the analyzer. Furthermore, the error checking system can prevent users from making mistakes by automatically debugging the user inputs and giving modal dialog windows. The included AECL implementation of QAD-CGGP-A, Version 95.2 (C00645MNYCP00), is run from the user interface.« less
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes.
Aghara, S K; Sriprisan, S I; Singleterry, R C; Sato, T
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm(2) Al shield followed by 30 g/cm(2) of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E<100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results. PMID:26177623
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes
NASA Astrophysics Data System (ADS)
Aghara, S. K.; Sriprisan, S. I.; Singleterry, R. C.; Sato, T.
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm2 Al shield followed by 30 g/cm2 of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E < 100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results.
Coupling of Sph and Finite Element Codes for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1997-01-01
Particle-based hydrodynamics models offer distinct advantages over Eulerian and Lagrangian hydrocodes in particular shock physics applications. Particle models are designed to avoid the mesh distortion and state variable diffusion problems which can hinder the effective use of Lagrangian and Eulerian codes respectively. However conventional particle-in-cell and smooth particle hydrodynamics methods employ particles which are actually moving interpolation points. A new particle-based modeling methodology, termed Hamiltonian particle hydrodynamics, was developed by Fahrenthold and Koo (1997) to provide an alternative, fully Lagrangian, energy-based approach to shock physics simulations. This alternative formulation avoids the tensile and boundary instabilities associated with standard smooth particle hydrodynamics formulations and the diffusive grid- to-particle mapping schemes characteristic of particle-in-cell methods. In the work described herein, the method of Fahrenthold and Koo has been extended, by coupling the aforementioned hydrodynamic particle model to a hexahedral finite element based description of the continuum dynamics. The resulting continuum model retains all of the features (including general contact-impact effects) of Hamiltonian particle hydrodynamics, while in addition accounting for tensile strength, plasticity, and damage effects important in the simulation of hypervelocity impact on orbital debris shielding. A three dimensional, vectorized, and autotasked implementation of the extended particle method described here has been coded for application to orbital debris shielding design. Source code for the pre-processor (PREP), analysis code (EXOS), post-processor (POST), and rezoner (ZONE), have been delivered separately, along with a User's Guide describing installation and application of the software.
Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.
1988-07-01
This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.
NASA Technical Reports Server (NTRS)
Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina
2010-01-01
Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event
Fully automatic adjoints: a robust and efficient mechanism for generating adjoint ocean models
NASA Astrophysics Data System (ADS)
Ham, D. A.; Farrell, P. E.; Funke, S. W.; Rognes, M. E.
2012-04-01
The problem of generating and maintaining adjoint models is sufficiently difficult that typically only the most advanced and well-resourced community ocean models achieve it. There are two current technologies which each suffer from their own limitations. Algorithmic differentiation, also called automatic differentiation, is employed by models such as the MITGCM [2] and the Alfred Wegener Institute model FESOM [3]. This technique is very difficult to apply to existing code, and requires a major initial investment to prepare the code for automatic adjoint generation. AD tools may also have difficulty with code employing modern software constructs such as derived data types. An alternative is to formulate the adjoint differential equation and to discretise this separately. This approach, known as the continuous adjoint and employed in ROMS [4], has the disadvantage that two different model code bases must be maintained and manually kept synchronised as the model develops. The discretisation of the continuous adjoint is not automatically consistent with that of the forward model, producing an additional source of error. The alternative presented here is to formulate the flow model in the high level language UFL (Unified Form Language) and to automatically generate the model using the software of the FEniCS project. In this approach it is the high level code specification which is differentiated, a task very similar to the formulation of the continuous adjoint [5]. However since the forward and adjoint models are generated automatically, the difficulty of maintaining them vanishes and the software engineering process is therefore robust. The scheduling and execution of the adjoint model, including the application of an appropriate checkpointing strategy is managed by libadjoint [1]. In contrast to the conventional algorithmic differentiation description of a model as a series of primitive mathematical operations, libadjoint employs a new abstraction of the simulation
Multigroup Three-Dimensional Direct Integration Method Radiation Transport Analysis Code System.
Energy Science and Technology Software Center (ESTSC)
1987-09-18
Version 00 TRISTAN solves the three-dimensional, fixed-source, Boltzmann transport equation for neutrons or gamma rays in rectangular geometry. The code can solve an adjoint problem as well as a usual transport problem. TRISTAN is a suitable tool to analyze radiation shielding problems such as streaming and deep penetration problems.
Slater, C.O.
1992-01-01
The DRC2 code, which couples MASH or MASHX adjoint leakages with DORT 2-D discrete ordinates forward directional fluences, is described. The forward fluences are allowed to vary both axially and radially over the coupling surface, as opposed to the strictly axial variation allowed by the predecessor DRC code. Input instructions are presented along with descriptions and results from several sample problems. Results from the sample problems are used to compare DRC2 with DRC, DRC2 with DORT, and DRC2 with itself for the case of x-y dependence versus no x-y dependence of the forward fluence. The test problems demonstrate that for small systems DRC and DRC2 give essentially the same results. Some significant differences are noted for larger systems. Additionally, DRC2 results with no x-y dependence of the forward directional fluences are practically the same as those calculated by DRC.
NASA Technical Reports Server (NTRS)
Mashnik, S. G.; Gudima, K. K.; Sierk, A. J.; Moskalenko, I. V.
2002-01-01
Space radiation shield applications and studies of cosmic ray propagation in the Galaxy require reliable cross sections to calculate spectra of secondary particles and yields of the isotopes produced in nuclear reactions induced both by particles and nuclei at energies from threshold to hundreds of GeV per nucleon. Since the data often exist in a very limited energy range or sometimes not at all, the only way to obtain an estimate of the production cross sections is to use theoretical models and codes. Recently, we have developed improved versions of the Cascade-Exciton Model (CEM) of nuclear reactions: the codes CEM97 and CEM2k for description of particle-nucleus reactions at energies up to about 5 GeV. In addition, we have developed a LANL version of the Quark-Gluon String Model (LAQGSM) to describe reactions induced both by particles and nuclei at energies up to hundreds of GeVhucleon. We have tested and benchmarked the CEM and LAQGSM codes against a large variety of experimental data and have compared their results with predictions by other currently available models and codes. Our benchmarks show that CEM and LAQGSM codes have predictive powers no worse than other currently used codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event-generators for space radiation shield and cosmic ray propagation applications. The CEM2k code is being incorporated into the transport code MCNPX (and several other transport codes), and we plan to incorporate LAQGSM into MCNPX in the near future. Here, we present the current status of the CEM2k and LAQGSM codes, and show results and applications to studies of cosmic ray propagation in the Galaxy.
Adjoint methods for external beam inverse treatment planning
NASA Astrophysics Data System (ADS)
Kowalok, Michael E.
Forward and adjoint radiation transport methods may both be used to determine the dosimetric relationship between source parameters and voxel elements of a phantom. Forward methods consider one specific tuple of source parameters and calculate the response in all voxels of interest. This response is often cast as the dose delivered per unit source-weight. Adjoint transport methods, conversely, consider one particular voxel and calculate the response of that voxel in relation to all possible source parameters. In this regard, adjoint methods provide an "adjoint function" in addition to a dose value. Although the dose is for a single voxel only, the adjoint function illustrates the source parameters, (e.g. beam positions and directions) that are most important to delivering the dose to that voxel. In this regard, adjoint methods of analysis lend themselves in a natural way to optimization problems and perturbation studies. This work investigates the utility of adjoint analytic methods for treatment planning and for Monte Carlo dose calculations. Various methods for implementing this approach are discussed, along with their strengths and weaknesses. The complementary nature of adjoint and forward techniques is illustrated and exploited. Also, several features of the Monte Carlo codes MCNP and MCNPX are reviewed for treatment planning applications.
NASA Astrophysics Data System (ADS)
Koontz, S. L.; Atwell, W. A.; Reddell, B.; Rojdev, K.
2010-12-01
In the this paper, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event effect (SEE) environments behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i.e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations are fully three dimensional with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. FLUKA is a fully integrated and extensively verified Monte Carlo simulation package for the interaction and transport of high-energy particles and nuclei in matter. The effects are reported of both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. SPE heavy ion spectra are not addressed. Our results, in agreement with previous studies, show that use of the Exponential form of the event spectra can seriously underestimate spacecraft SPE TID and SEE environments in some, but not all, shielding mass cases. The SPE spectra investigated are taken from four specific SPEs that produced ground-level events (GLEs) during solar cycle 23 (1997-2008). GLEs are produced by highly energetic solar particle events (ESP), i.e., those that contain significant fluences of 700 MeV to 10 GeV protons. Highly energetic SPEs are implicated in increased rates of spacecraft anomalies and spacecraft failures. High-energy protons interact with Earth’s atmosphere via nuclear reaction to produce secondary particles, some of which are neutrons that can be detected at the Earth’s surface by the global neutron monitor network. GLEs are one part of the overall SPE resulting from a particular solar flare or coronal mass ejection event on the sun. The ESP part of the particle event, detected by spacecraft
Diagnositcs With Adjoint Modelling
NASA Astrophysics Data System (ADS)
Blessing, S.; Fraedrich, K.; Kirk, E.; Lunkeit, F.
The potential usefulness of an adjoint primitive equations global atmospheric circu- lation model for climate diagnostics is demonstrated in a feasibility study. A daily NAO-type index is calculated as one-point correlation of the 300 hPa streamfunction anomaly. By application of the adjoint model we diagnose its temperature forcing on short timescales in terms of spatial temperature sensitivity patterns at different time lags, which, in a first order approximation, induce growth of the index. The dynamical relevance of these sensitivity patterns is confirmed by lag-correlating the index time series and the projection time series of the model temperature on these sensitivity patterns.
General Purpose Kernel Integration Shielding Code System-Point and Extended Gamma-Ray Sources.
Energy Science and Technology Software Center (ESTSC)
1981-06-11
PELSHIE3 calculates dose rates from gamma-emitting sources with different source geometries and shielding configurations. Eight source geometries are provided and are called by means of geometry index numbers. Gamma-emission characteristics for 134 isotopes, attenuation coefficients for 57 elements or shielding materials and Berger build-up parameters for 17 shielding materials can be obtained from a direct access data library by specifying only the appropriate library numbers. A different option allows these data to be read frommore » cards. For extended sources, constant source strengths as well as exponential and Bessel function source strength distributions are allowed in most cases.« less
Adjoint affine fusion and tadpoles
NASA Astrophysics Data System (ADS)
Urichuk, Andrew; Walton, Mark A.
2016-06-01
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.
Automated variance reduction for Monte Carlo shielding analyses with MCNP
NASA Astrophysics Data System (ADS)
Radulescu, Georgeta
Variance reduction techniques are employed in Monte Carlo analyses to increase the number of particles in the space phase of interest and thereby lower the variance of statistical estimation. Variance reduction parameters are required to perform Monte Carlo calculations. It is well known that adjoint solutions, even approximate ones, are excellent biasing functions that can significantly increase the efficiency of a Monte Carlo calculation. In this study, an automated method of generating Monte Carlo variance reduction parameters, and of implementing the source energy biasing and the weight window technique in MCNP shielding calculations has been developed. The method is based on the approach used in the SAS4 module of the SCALE code system, which derives the biasing parameters from an adjoint one-dimensional Discrete Ordinates calculation. Unlike SAS4 that determines the radial and axial dose rates of a spent fuel cask in separate calculations, the present method provides energy and spatial biasing parameters for the entire system that optimize the simulation of particle transport towards all external surfaces of a spent fuel cask. The energy and spatial biasing parameters are synthesized from the adjoint fluxes of three one-dimensional Discrete Ordinates adjoint calculations. Additionally, the present method accommodates multiple source regions, such as the photon sources in light-water reactor spent nuclear fuel assemblies, in one calculation. With this automated method, detailed and accurate dose rate maps for photons, neutrons, and secondary photons outside spent fuel casks or other containers can be efficiently determined with minimal efforts.
NASA Technical Reports Server (NTRS)
Hill, S. A.
1994-01-01
BUMPERII is a modular program package employing a numerical solution technique to calculate a spacecraft's probability of no penetration (PNP) from man-made orbital debris or meteoroid impacts. The solution equation used to calculate the PNP is based on the Poisson distribution model for similar analysis of smaller craft, but reflects the more rigorous mathematical modeling of spacecraft geometry, orientation, and impact characteristics necessary for treatment of larger structures such as space station components. The technique considers the spacecraft surface in terms of a series of flat plate elements. It divides the threat environment into a number of finite cases, then evaluates each element of each threat. The code allows for impact shielding (shadowing) of one element by another in various configurations over the spacecraft exterior, and also allows for the effects of changing spacecraft flight orientation and attitude. Four main modules comprise the overall BUMPERII package: GEOMETRY, RESPONSE, SHIELD, and CONTOUR. The GEOMETRY module accepts user-generated finite element model (FEM) representations of the spacecraft geometry and creates geometry databases for both meteoroid and debris analysis. The GEOMETRY module expects input to be in either SUPERTAB Universal File Format or PATRAN Neutral File Format. The RESPONSE module creates wall penetration response databases, one for meteoroid analysis and one for debris analysis, for up to 100 unique wall configurations. This module also creates a file containing critical diameter as a function of impact velocity and impact angle for each wall configuration. The SHIELD module calculates the PNP for the modeled structure given exposure time, operating altitude, element ID ranges, and the data from the RESPONSE and GEOMETRY databases. The results appear in a summary file. SHIELD will also determine the effective area of the components and the overall model, and it can produce a data file containing the probability
Shielding analysis of the NAC-MPC storage system
Napolitano, D.G.; Romano, N.J.; Hertel, N.E.
1997-12-01
This paper presents the shielding analyses of the NAC-MPC dry cask storage system. The NAC-MPC dry cask storage system consists of a transportable storage canister, a transfer cask, and a vertical concrete storage cask. The NAC-MPC is designed to accommodate 36 {open_quotes}Yankee Class{close_quotes} fuel assemblies with a maximum burnup of 36,000 MWd/tonne U burnup and 8 yr cooling time. The shielding analysis is performed with the SCALE 4.3 code package which includes SAS2H for source term generation and SAS4A, a modification of SAS4, for shielding evaluations. SAS4 utilizes a one-dimensional XSDRNPM adjoint calculation of the cask to generate biasing parameters for a three-dimensional MORSE-SGC Monte Carlo model of the cask geometry.
RamaRao, B.S.; Reeves, M. )
1990-10-01
Calibration of a numerical model of the regional ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant in southeastern New Mexico, has been performed by an interative parameter-fitting procedure. Parameterization has been secured by choosing to assign the transmissivity values at a limited number of selected locations, designated as pilot points. The transmissivity distribution in the model is derived by kriging the combined pool of measured and pilot-plant transmissivities. Iterating on the twin steps of sequentially adding additional pilot point(s) and kriging leads to the model of required accuracy, as judged by a weighted least-square-error objective function. At the end of calibration, it must be ensured that the correlation structure of the measured transmissivities is broadly preserved by the pilot-plant transmissivities. Adjoint-sensitivity analysis of the model has been coupled with kriging to provide objectively the optimal location of the pilot points during an iteration. The pilot-point transmissivities have been adjusted by modeler's judgement incorporating information, where available, on local geologic conditions and large-scale hydraulic interference tests, in order to minimize the objective function. 43 refs., 5 figs., 5 tabs.
NASA Astrophysics Data System (ADS)
Sato, T.; Sihver, L.; Iwase, H.; Nakashima, H.; Niita, K.
In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the GEM (Generalized Evaporation Model) for calculations of fission and evaporation processes, the SHEN model for calculation of total reaction cross sections, and the SPAR model for dE/dx calculations. The development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, improvement of the models used for calculating total reaction cross sections and dE/dx distributions, and adding routines for calculating elastic scattering of heavy ions, dose and track average LET distributions. As part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from < 1 cm to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through slabs of polyethylene, PMMA, Al, and Pb, with thicknesses ranging from 5 to 30 g/cm2 at an acceptance angle of 0°± 3°. The simulated survival fraction of the primary Fe-ions, fragment spectrum for 23 g/cm2, and dose behind the shield per incident Fe-ion on the shield has been compared with measurements.
Energy Science and Technology Software Center (ESTSC)
2001-10-01
Version 01 GUI2QAD is an aid in preparation of input for the included QAD-CGPIC program, which is based on CCC-493/QAD-CGGP and PICTURE. QAD-CGPIC is a Fortran code for fast neutron and gamma-ray shielding calculations through various shield configurations defined by combinatorial geometry specifications. Provision is available to interactively input the geometry and view the same in three dimensions with arbitrary rotations along x,y,z axis. The salient features of the present package include: a) Handles offmore » centered multiple identical sources b) Axis of cylindrical sources can be parallel to any of the axes. c) Provides plots of buildup factors (ANSI-1990) and material cross sections d) Estimates dose rate for point source-slab shield situations e) Interactive input of CG geometry with 3D view and rotation f) Fission product decay power computation and plots for source term calculations. g) Provision to read and graphical 1y display picture input file.« less
Coupling of MASH-MORSE Adjoint Leakages with Space- and Time-Dependent Plume Radiation Sources
Slater, C.O.
2001-04-20
In the past, forward-adjoint coupling procedures in air-over-ground geometry have typically involved forward fluences arising from a point source a great distance from a target or vehicle system. Various processing codes were used to create localized forward fluence files that could be used to couple with the MASH-MORSE adjoint leakages. In recent years, radiation plumes that result from reactor accidents or similar incidents have been modeled by others, and the source space and energy distributions as a function of time have been calculated. Additionally, with the point kernel method, they were able to calculate in relatively quick fashion free-field radiation doses for targets moving within the fluence field or for stationary targets within the field, the time dependence for the latter case coming from the changes in position, shape, source strength, and spectra of the plume with time. The work described herein applies the plume source to the MASH-MORSE coupling procedure. The plume source replaces the point source for generating the forward fluences that are folded with MASH-MORSE adjoint leakages. Two types of source calculations are described. The first is a ''rigorous'' calculation using the TORT code and a spatially large air-over-ground geometry. For each time step desired, directional fluences are calculated and are saved over a predetermined region that encompasses a structure within which it is desired to calculate dose rates. Processing codes then create the surface fluences (which may include contributions from radiation sources that deposit on the roof or plateout) that will be coupled with the MASH-MORSE adjoint leakages. Unlike the point kernel calculations of the free-field dose rates, the TORT calculations in practice include the effects of ground scatter on dose rates and directional fluences, although the effects may be underestimated or overestimated because of the use of necessarily coarse mesh and quadrature in order to reduce computational
A simple code for use in shielding and radiation dosage analyses
NASA Technical Reports Server (NTRS)
Wan, C. C.
1972-01-01
A simple code for use in analyses of gamma radiation effects in laminated materials is described. Simple and good geometry is assumed so that all multiple collision and scattering events are excluded from consideration. The code is capable of handling laminates up to six layers. However, for laminates of more than six layers, the same code may be used to incorporate two additional layers at a time, making use of punch-tape outputs from previous computation on all preceding layers. Spectrum of attenuated radiation are obtained as both printed output and punch tape output as desired.
Comparison of the Monte Carlo adjoint-weighted and differential operator perturbation methods
Kiedrowski, Brian C; Brown, Forrest B
2010-01-01
Two perturbation theory methodologies are implemented for k-eigenvalue calculations in the continuous-energy Monte Carlo code, MCNP6. A comparison of the accuracy of these techniques, the differential operator and adjoint-weighted methods, is performed numerically and analytically. Typically, the adjoint-weighted method shows better performance over a larger range; however, there are exceptions.
NASA Astrophysics Data System (ADS)
Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen
2015-04-01
We will present our initial results of global adjoint tomography based on 3D seismic wave simulations which is one of the most challenging examples in seismology in terms of intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated in inversions. Using a spectral-element method, we incorporate full 3D wave propagation in seismic tomography by running synthetic seismograms and adjoint simulations to compute exact sensitivity kernels in realistic 3D background models. We run our global simulations on the Oak Ridge National Laboratory's Cray XK7 "Titan" system taking advantage of the GPU version of the SPECFEM3D_GLOBE package. We have started iterations with initially selected 253 earthquakes within the magnitude range of 5.5 < Mw < 7.0 and numerical simulations having resolution down to ~27 s to invert for a transversely isotropic crust and mantle model using a non-linear conjugate gradient algorithm. The measurements are currently based on frequency-dependent traveltime misfits. We use both minor- and major-arc body and surface waves by running 200 min simulations where inversions are performed with more than 2.6 million measurements. Our initial results after 12 iterations already indicate several prominent features such as enhanced slab (e.g., Hellenic, Japan, Bismarck, Sandwich), plume/hotspot (e.g., the Pacific superplume, Caroline, Yellowstone, Hawaii) images, etc. To improve the resolution and ray coverage, particularly in the lower mantle, our aim is to increase the resolution of numerical simulations first going down to ~17 s and then to ~9 s to incorporate high-frequency body waves in inversions. While keeping track of the progress and illumination of features in our models with a limited data set, we work towards to assimilate all available data in inversions from all seismic networks and earthquakes in the global CMT catalogue.
Reentry-Vehicle Shape Optimization Using a Cartesian Adjoint Method and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2006-01-01
A DJOINT solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (e.g., geometric parameters that control the shape). Classic aerodynamic applications of gradient-based optimization include the design of cruise configurations for transonic and supersonic flow, as well as the design of high-lift systems. are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric computer-aided design (CAD). In previous work on Cartesian adjoint solvers, Melvin et al. developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the two-dimensional Euler equations using a ghost-cell method to enforce the wall boundary conditions. In Refs. 18 and 19, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm were the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The accuracy of the gradient computation was verified using several three-dimensional test cases, which included design
Towards Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Bozdag, E.; Zhu, H.; Peter, D. B.; Tromp, J.
2012-12-01
Seismic tomography is at a stage where we can harness entire seismograms using the opportunities offered by advances in numerical wave propagation solvers and high-performance computing. Adjoint methods provide an efficient way for incorporating full nonlinearity of wave propagation and 3D Fréchet kernels in iterative seismic inversions which have so far given promising results at continental and regional scales. Our goal is to take adjoint tomography forward to image the entire planet. Using an iterative conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. We have started with around 255 global CMT events having moment magnitudes between 5.8 and 7, and used GSN stations as well as some local networks such as USArray, European stations etc. Prior to the structure inversion, we reinvert global CMT solutions by computing Green functions in our 3D reference model to take into account effects of crustal variations on source parameters. Using the advantages of numerical simulations, our strategy is to invert crustal and mantle structure together to avoid any bias introduced into upper-mantle images due to "crustal corrections", which are commonly used in classical tomography. 3D simulations dramatically increase the usable amount of data so that, with the current earthquake-station setup, we perform each iteration with more than two million measurements. Multi-resolution smoothing based on ray density is applied to the gradient to better deal with the imperfect source-station distribution on the globe and extract more information underneath regions with dense ray coverage and vice versa. Similar to frequency domain approach, we reduce nonlinearities by starting from long periods and gradually increase the frequency content of data after successive model updates. To simplify the problem, we primarily focus on the elastic structure and therefore our measurements are based on
Adjoint-based sensitivity analysis for reactor-safety applications
Parks, C.V.
1985-01-01
The application and usefulness of an adjoint-based methodology for performing sensitivity analysis on reactor safety computer codes is investigated. The adjoint-based methodology, referred to as differential sensitivity theory (DST), provides first-order derivatives of the calculated quantities of interest (responses) with respect to the input parameters. The basic theoretical development of DST is presented along with the needed general extensions for consideration of model discontinuities and a variety of useful response definitions. A simple analytic problem is used to highlight the general DST procedures. Finally, DST procedures presented in this work are applied to two highly nonlinear reactor accident analysis codes: (1) FASTGAS, a relatively small code for analysis of loss-of-decay-heat-removal accident in a gas-cooled fast reactor, and (2) an existing code called VENUS-II which is typically employed for analyzing the core disassembly phase of a hypothetical fast reactor accident. The two codes are different both in terms of complexity and in terms of the facets of DST which can be illustrated. Sensitivity results from the adjoint codes ADJGAS and VENUS-ADJ are verified with direct recalculations using perturbed input parameters. The effectiveness of the DST results for parameter ranking, prediction of response changes, and uncertainty analysis are illustrated. The conclusion drawn from this study is that DST is a viable, cost-effective methodology for accurate sensitivity analysis.
Sato, T; Sihver, L; Iwase, H; Nakashima, H; Niita, K
2005-01-01
In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the Generalized Evaporation Model (GEM) for calculations of fission and evaporation processes, a model developed at NASA Langley for calculation of total reaction cross sections, and the SPAR model for stopping power calculations. The future development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, and improvement of the models used for calculating total reaction cross sections, and addition of routines for calculating elastic scattering of heavy ions, and inclusion of radioactivity and burn up processes. As a part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from <1 to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper, we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through thin slabs of polyethylene, Al, and Pb at an acceptance angle up to 4 degrees. PMID:15934196
NASA Astrophysics Data System (ADS)
Sato, T.; Sihver, L.; Iwase, H.; Nakashima, H.; Niita, K.
In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the Generalized Evaporation Model (GEM) for calculations of fission and evaporation processes, a model developed at NASA Langley for calculation of total reaction cross sections, and the SPAR model for stopping power calculations. The future development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, and improvement of the models used for calculating total reaction cross sections, and addition of routines for calculating elastic scattering of heavy ions, and inclusion of radioactivity and burn up processes. As a part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from <1 to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper, we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through thin slabs of polyethylene, Al, and Pb at an acceptance angle up to 4°.
NASA Astrophysics Data System (ADS)
Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela
2016-02-01
The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the ORNL TORT-3.2 3D SN code. PCA-Replica, specifically conceived to test the accuracy of nuclear data and transport codes employed in LWR shielding and radiation damage calculations, reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a PWR pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and BUGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-96 (ENDF/B-VI.3) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103 m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.
Adjoint Based Data Assimilation for an Ionospheric Model
NASA Astrophysics Data System (ADS)
Rosen, I. G.; Hajj, G. A.; Hajj, G. A.; Pi, X.; Pi, X.; Wang, C.; Wilson, B. D.
2001-05-01
The success of ionospheric modeling depends primarily on accurate knowledge of the forces (drivers) which enter into the collisional plasma hydrodynamic equations for the ionosphere and control the ionization as well as other dynamical and chemical processes. These include solar EUV and UV radiation, magnetospheric electric fields, particle precipitation, dynamo electric fields, thermospheric winds, neutral densities, and temperature. The determination of these model parameters from observational data is known as data assimilation. The data assimilation problem is formulated as a problem of minimizing a nonlinear functional, J (typically least squares) under a system of constraints consisting primarily of the underlying model equations. The performance index, J, can, in principle, be minimized using standard techniques such as the Newton's steepest decent method. There are however major technical challenges in practice. Since J is highly nonlinear and each evaluation of the functional requires the integration of the ionospheric model equations, computing the gradient vector of J with respect to the unknown parameters is time consuming. This problem is solved by use of the adjoint method. The ionospheric model used in this effort is for mid- and low-latitudes and consists of solving the continuity and momentum partial differential equations in four dimensional (three spatial dimensions and time) to compute the O+ density in the ionosphere and plasmasphere. We have developed codes for solving the forward model on a fixed grid. This makes it relatively straight forward to apply the adjoint method for computing gradients when doing nonlinear least squares based data assimilation. Because of the significant cost (in computational effort and CPU time) involved in performing a forward integration of the underlying 3-D model at any reasonable grid resolution, the use of the adjoint method for computing the gradients is indispensable. The adjoint method provides an elegant
Self-adjointness of deformed unbounded operators
Much, Albert
2015-09-15
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.
Interfaces MATXS Cross-Section Libraries to Nuclear Transport Codes for Fusion Systems Analysis.
Energy Science and Technology Software Center (ESTSC)
1985-04-10
Version: 00 TRANSX-CTR is a computer code that reads nuclear data from a library in MATXS format and produces transport tables with many discrete-ordinates (Sn) and diffusion codes. Tables can be produced for neutron, photon, or coupled transport. Options include adjoint tables, mixtures, self-shielding, group collapse, homogenization, thermal upscatter, prompt or steady-state fission, transport corrections, elastic removal corrections, and flexible response-function edits. The ability to prepare coupled tables and response edits for heating, damage, gasmore » production, and delayed activity makes TRANSX-CTR especially useful for fusion reactor studies.« less
Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.
2009-01-01
An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.
A Generalized Adjoint Approach for Quantifying Reflector Assembly Discontinuity Factor Uncertainties
Yankov, Artem; Collins, Benjamin; Jessee, Matthew Anderson; Downar, Thomas
2012-01-01
Sensitivity-based uncertainty analysis of assembly discontinuity factors (ADFs) can be readily performed using adjoint methods for infinite lattice models. However, there is currently no adjoint-based methodology to obtain uncertainties for ADFs along an interface between a fuel and reflector region. To accommodate leakage effects in a reflector region, a 1D approximation is usually made in order to obtain the homogeneous interface flux required to calculate the ADF. Within this 1D framework an adjoint-based method is proposed that is capable of efficiently calculating ADF uncertainties. In the proposed method the sandwich rule is utilized to relate the covariance of the input parameters of 1D diffusion theory in the reflector region to the covariance of the interface ADFs. The input parameters covariance matrix can be readily obtained using sampling-based codes such as XSUSA or adjoint-based codes such as TSUNAMI. The sensitivity matrix is constructed using a fixed-source adjoint approach for inputs characterizing the reflector region. An analytic approach is then used to determine the sensitivity of the ADFs to fuel parameters using the neutron balance equation. A stochastic approach is used to validate the proposed adjoint-based method.
Adjoint-based sensitivity analysis for reactor safety applications
Parks, C.V.
1986-08-01
The application and usefulness of an adjoint-based methodology for performing sensitivity analysis on reactor safety computer codes is investigated. The adjoint-based methodology, referred to as differential sensitivity theory (DST), provides first-order derivatives of the calculated quantities of interest (responses) with respect to the input parameters. The basic theoretical development of DST is presented along with the needed general extensions for consideration of model discontinuities and a variety of useful response definitions. A simple analytic problem is used to highlight the general DST procedures. finally, DST procedures presented in this work are applied to two highly nonlinear reactor accident analysis codes: (1) FASTGAS, a relatively small code for analysis of a loss-of-decay-heat-removal accident in a gas-cooled fast reactor, and (2) an existing code called VENUS-II which has been employed for analyzing the core disassembly phase of a hypothetical fast reactor accident. The two codes are different both in terms of complexity and in terms of the facets of DST which can be illustrated. Sensitivity results from the adjoint codes ADJGAS and VENUS-ADJ are verified with direct recalcualtions using perturbed input parameters. The effectiveness of the DST results for parameter ranking, prediction of response changes, and uncertainty analysis are illustrated. The conclusion drawn from this study is that DST is a viable, cost-effective methodology for accurate sensitivity analysis. In addition, a useful sensitivity tool for use in the fast reactor safety area has been developed in VENUS-ADJ. Future work needs to concentrate on combining the accurate first-order derivatives/results from DST with existing methods (based solely on direct recalculations) for higher-order response surfaces.
Uematsu, Mikio; Kurosawa, Masahiko
2005-01-01
A generalised and convenient skyshine dose analysis method has been developed based on forward-adjoint folding technique. In the method, the air penetration data were prepared by performing an adjoint DOT3.5 calculation with cylindrical air-over-ground geometry having an adjoint point source (importance of unit flux to dose rate at detection point) in the centre. The accuracy of the present method was certified by comparing with DOT3.5 forward calculation. The adjoint flux data can be used as generalised radiation skyshine data for all sorts of nuclear facilities. Moreover, the present method supplies plenty of energy-angular dependent contribution flux data, which will be useful for detailed shielding design of facilities. PMID:16604693
Adjoint Formulation for an Embedded-Boundary Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Murman, Scott M.; Pulliam, Thomas H.
2004-01-01
Many problems in aerodynamic design can be characterized by smooth and convex objective functions. This motivates the use of gradient-based algorithms, particularly for problems with a large number of design variables, to efficiently determine optimal shapes and configurations that maximize aerodynamic performance. Accurate and efficient computation of the gradient, however, remains a challenging task. In optimization problems where the number of design variables dominates the number of objectives and flow- dependent constraints, the cost of gradient computations can be significantly reduced by the use of the adjoint method. The problem of aerodynamic optimization using the adjoint method has been analyzed and validated for both structured and unstructured grids. The method has been applied to design problems governed by the potential, Euler, and Navier-Stokes equations and can be subdivided into the continuous and discrete formulations. Giles and Pierce provide a detailed review of both approaches. Most implementations rely on grid-perturbation or mapping procedures during the gradient computation that explicitly couple changes in the surface shape to the volume grid. The solution of the adjoint equation is usually accomplished using the same scheme that solves the governing flow equations. Examples of such code reuse include multistage Runge-Kutta schemes coupled with multigrid, approximate-factorization, line-implicit Gauss-Seidel, and also preconditioned GMRES. The development of the adjoint method for aerodynamic optimization problems on Cartesian grids has been limited. In contrast to implementations on structured and unstructured grids, Cartesian grid methods decouple the surface discretization from the volume grid. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin e t al. developed an adjoint formulation for the TRANAIR code
NASA Technical Reports Server (NTRS)
Bannister, Tommy; Karr, Gerald R.
1987-01-01
Progress on the modeling of the flow field around a wake shield using a recently obtained code based on the Monte Carlo method is discussed. The direct simulation Monte Carlo method is a method for solving the Boltzman Equation using an approximation to the collision integral term. The collision integrand is evaluated for randomly selected values of its arguments and the summation will approach the integral for large enough samples. The collision effects may be modeled for either hard sphere or various power law potentials. The convective side of the Boltzman equation is approximated over a time step using a simple trajectory calculation of molecules as they travel through the domain of interest.
Numerical Computation of Sensitivities and the Adjoint Approach
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael
1997-01-01
We discuss the numerical computation of sensitivities via the adjoint approach in optimization problems governed by differential equations. We focus on the adjoint problem in its weak form. We show how one can avoid some of the problems with the adjoint approach, such as deriving suitable boundary conditions for the adjoint equation. We discuss the convergence of numerical approximations of the costate computed via the weak form of the adjoint problem and show the significance for the discrete adjoint problem.
Adjoint Error Estimation for Linear Advection
Connors, J M; Banks, J W; Hittinger, J A; Woodward, C S
2011-03-30
An a posteriori error formula is described when a statistical measurement of the solution to a hyperbolic conservation law in 1D is estimated by finite volume approximations. This is accomplished using adjoint error estimation. In contrast to previously studied methods, the adjoint problem is divorced from the finite volume method used to approximate the forward solution variables. An exact error formula and computable error estimate are derived based on an abstractly defined approximation of the adjoint solution. This framework allows the error to be computed to an arbitrary accuracy given a sufficiently well resolved approximation of the adjoint solution. The accuracy of the computable error estimate provably satisfies an a priori error bound for sufficiently smooth solutions of the forward and adjoint problems. The theory does not currently account for discontinuities. Computational examples are provided that show support of the theory for smooth solutions. The application to problems with discontinuities is also investigated computationally.
Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.
2003-05-15
The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed.
Roussin, R.W.
1993-03-01
From the very early days in its history Radiation Shielding Information Center (RSIC) has been involved with high energy radiation transport. The National Aeronautics and Space Administration was an early sponsor of RSIC until the completion of the Apollo Moon Exploration Program. In addition, the intranuclear cascade work of Bertini at Oak Ridge National Laboratory provided valuable resources which were made available through RSIC. Over the years, RSIC has had interactions with many of the developers of high energy radiation transport computing technology and data libraries and has been able to collect and disseminate this technology. The current status of this technology will be reviewed and prospects for new advancements will be examined.
Roussin, R.W.
1993-01-01
From the very early days in its history Radiation Shielding Information Center (RSIC) has been involved with high energy radiation transport. The National Aeronautics and Space Administration was an early sponsor of RSIC until the completion of the Apollo Moon Exploration Program. In addition, the intranuclear cascade work of Bertini at Oak Ridge National Laboratory provided valuable resources which were made available through RSIC. Over the years, RSIC has had interactions with many of the developers of high energy radiation transport computing technology and data libraries and has been able to collect and disseminate this technology. The current status of this technology will be reviewed and prospects for new advancements will be examined.
Consistent Adjoint Driven Importance Sampling using Space, Energy and Angle
Peplow, Douglas E.; Mosher, Scott W; Evans, Thomas M
2012-08-01
For challenging radiation transport problems, hybrid methods combine the accuracy of Monte Carlo methods with the global information present in deterministic methods. One of the most successful hybrid methods is CADIS Consistent Adjoint Driven Importance Sampling. This method uses a deterministic adjoint solution to construct a biased source distribution and consistent weight windows to optimize a specific tally in a Monte Carlo calculation. The method has been implemented into transport codes using just the spatial and energy information from the deterministic adjoint and has been used in many applications to compute tallies with much higher figures-of-merit than analog calculations. CADIS also outperforms user-supplied importance values, which usually take long periods of user time to develop. This work extends CADIS to develop weight windows that are a function of the position, energy, and direction of the Monte Carlo particle. Two types of consistent source biasing are presented: one method that biases the source in space and energy while preserving the original directional distribution and one method that biases the source in space, energy, and direction. Seven simple example problems are presented which compare the use of the standard space/energy CADIS with the new space/energy/angle treatments.
Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2004-01-01
Adjoint solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape optimization. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (geometric parameters that control the shape). More recently, emerging adjoint applications focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation, as well as to provide estimates of functional error bounds and corrections. The attractive feature of this approach is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement and reducing computational cost. Our focus is on the development of adjoint-based optimization techniques for a Cartesian method with embedded boundaries.12 In contrast t o implementations on structured and unstructured grids, Cartesian methods decouple the surface discretization from the volume mesh. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin et developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition is introduced to approximate the effects of the evolving surface shape that results in accurate gradient computation. Central to automated shape optimization algorithms is the issue of geometry modeling and control. The need to optimize complex, "real-life" geometry provides a strong incentive for the use of parametric-CAD systems within the optimization procedure. In previous work, we presented
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
NASA Astrophysics Data System (ADS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space-time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge-Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that its
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-15
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
Southern California Adjoint Source Inversions
NASA Astrophysics Data System (ADS)
Tromp, J.; Kim, Y.
2007-12-01
Southern California Centroid-Moment Tensor (CMT) solutions with 9 components (6 moment tensor elements, latitude, longitude, and depth) are sought to minimize a misfit function computed from waveform differences. The gradient of a misfit function is obtained based upon two numerical simulations for each earthquake: one forward calculation for the southern California model, and an adjoint calculation that uses time-reversed signals at the receivers. Conjugate gradient and square-root variable metric methods are used to iteratively improve the earthquake source model while reducing the misfit function. The square-root variable metric algorithm has the advantage of providing a direct approximation to the posterior covariance operator. We test the inversion procedure by perturbing each component of the CMT solution, and see how the algorithm converges. Finally, we demonstrate full inversion capabilities using data for real Southern California earthquakes.
Energy Science and Technology Software Center (ESTSC)
2007-10-31
Version: 02 RSICC received MICROX‑2 through the NEADB (identifier is NEA‑1562/02.) This is an improved version of the original MICROX-2 two-region spectrum code, which was developed at General Atomic, to prepare broad group neutron cross sections for use in diffusion-and/or transport theory codes from an input library of fine group and pointwise cross sections. The MICROX-2 code can explicitly account for the overlap and interference effects between resonances in both the resonance and thermal neutronmore » energy ranges and allows the simulta?neous treatment of leakage and resonance self-shielding in doubly heterogeneous lattice cells. MICROR runs as a module of NJOY 89.62; the NJOY calling module is included in the package. This release has been changed in that the MODER module from NJOY 94.0, too, has been included as subprogramm of NJOY 89.62, so as to make the code system completely selfconsistent, i.e. without requiring the use of some NJOY version to convert pendf and gendf from coded to binary. Using data from pointwise and groupwise NJOY tapes, the stand-alone MICROR reformatting program produces files containing basic nuclear data to be used by MICROX-2. MICROR edits PENDF and GENDF data files from NJOY to create FDTAP?E, GGTA?PE and GARTA?PE input files for MICROX-2. NJOY is not included in this package. Some data libraries are included for example cases; these data were generated from data in 193 groups as well as from point-wise cross sections from NJOY (Edition 89.62).« less
Adjoint-Based Sensitivity Maps for the Nearshore
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Ngodock, Hans
2013-04-01
The wave model SWAN (Booij et al., 1999) solves the spectral action balance equation to produce nearshore wave forecasts and climatologies. It is widely used by the coastal modeling community and is part of a variety of coupled ocean-wave-atmosphere model systems. A variational data assimilation system (Orzech et al., 2013) has recently been developed for SWAN and is presently being transitioned to operational use by the U.S. Naval Oceanographic Office. This system is built around a numerical adjoint to the fully nonlinear, nonstationary SWAN code. When provided with measured or artificial "observed" spectral wave data at a location of interest on a given nearshore bathymetry, the adjoint can compute the degree to which spectral energy levels at other locations are correlated with - or "sensitive" to - variations in the observed spectrum. Adjoint output may be used to construct a sensitivity map for the entire domain, tracking correlations of spectral energy throughout the grid. When access is denied to the actual locations of interest, sensitivity maps can be used to determine optimal alternate locations for data collection by identifying regions of greatest sensitivity in the mapped domain. The present study investigates the properties of adjoint-generated sensitivity maps for nearshore wave spectra. The adjoint and forward SWAN models are first used in an idealized test case at Duck, NC, USA, to demonstrate the system's effectiveness at optimizing forecasts of shallow water wave spectra for an inaccessible surf-zone location. Then a series of simulations is conducted for a variety of different initializing conditions, to examine the effects of seasonal changes in wave climate, errors in bathymetry, and variations in size and shape of the inaccessible region of interest. Model skill is quantified using two methods: (1) a more traditional correlation of observed and modeled spectral statistics such as significant wave height, and (2) a recently developed RMS
1DB, a one-dimensional diffusion code for nuclear reactor analysis
Little, W.W. Jr. )
1991-09-01
1DB is a multipurpose, one-dimensional (plane, cylinder, sphere) diffusion theory code for use in reactor analysis. The code is designed to do the following: To compute k{sub eff} and perform criticality searches on time absorption, reactor composition, reactor dimensions, and buckling by means of either a flux or an adjoint model; to compute collapsed microscopic and macroscopic cross sections averaged over the spectrum in any specified zone; to compute resonance-shielded cross sections using data in the shielding factor format; and to compute isotopic burnup using decay chains specified by the user. All programming is in FORTRAN. Because variable dimensioning is employed, no simple restrictions on problem complexity can be stated. The number of spatial mesh points, energy groups, upscattering terms, etc. is limited only by the available memory. The source file contains about 3000 cards. 4 refs.
NASA Astrophysics Data System (ADS)
Aygun, Bünyamin; Korkut, Turgay; Karabulut, Abdulhalik
2016-05-01
Despite the possibility of depletion of fossil fuels increasing energy needs the use of radiation tends to increase. Recently the security-focused debate about planned nuclear power plants still continues. The objective of this thesis is to prevent the radiation spread from nuclear reactors into the environment. In order to do this, we produced higher performanced of new shielding materials which are high radiation holders in reactors operation. Some additives used in new shielding materials; some of iron (Fe), rhenium (Re), nickel (Ni), chromium (Cr), boron (B), copper (Cu), tungsten (W), tantalum (Ta), boron carbide (B4C). The results of this experiments indicated that these materials are good shields against gamma and neutrons. The powder metallurgy technique was used to produce new shielding materials. CERN - FLUKA Geant4 Monte Carlo simulation code and WinXCom were used for determination of the percentages of high temperature resistant and high-level fast neutron and gamma shielding materials participated components. Super alloys was produced and then the experimental fast neutron dose equivalent measurements and gamma radiation absorpsion of the new shielding materials were carried out. The produced products to be used safely reactors not only in nuclear medicine, in the treatment room, for the storage of nuclear waste, nuclear research laboratories, against cosmic radiation in space vehicles and has the qualities.
Double-difference adjoint seismic tomography
NASA Astrophysics Data System (ADS)
Yuan, Yanhua O.; Simons, Frederik J.; Tromp, Jeroen
2016-06-01
We introduce a `double-difference' method for the inversion for seismic wavespeed structure based on adjoint tomography. Differences between seismic observations and model predictions at individual stations may arise from factors other than structural heterogeneity, such as errors in the assumed source-time function, inaccurate timings, and systematic uncertainties. To alleviate the corresponding nonuniqueness in the inverse problem, we construct differential measurements between stations, thereby reducing the influence of the source signature and systematic errors. We minimize the discrepancy between observations and simulations in terms of the differential measurements made on station pairs. We show how to implement the double-difference concept in adjoint tomography, both theoretically and in practice. We compare the sensitivities of absolute and differential measurements. The former provide absolute information on structure along the ray paths between stations and sources, whereas the latter explain relative (and thus higher-resolution) structural variations in areas close to the stations. Whereas in conventional tomography a measurement made on a single earthquake-station pair provides very limited structural information, in double-difference tomography one earthquake can actually resolve significant details of the structure. The double-difference methodology can be incorporated into the usual adjoint tomography workflow by simply pairing up all conventional measurements; the computational cost of the necessary adjoint simulations is largely unaffected. Rather than adding to the computational burden, the inversion of double-difference measurements merely modifies the construction of the adjoint sources for data assimilation.
Adjoint optimization of natural convection problems: differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.
2016-06-01
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here
Energy Science and Technology Software Center (ESTSC)
1991-08-01
Version: 00 The original MORSE code was a multipurpose neutron and gamma-ray transport Monte Carlo code. It was designed as a tool for solving most shielding problems. Through the use of multigroup cross sections, the solution of neutron, gamma-ray, or coupled neutron-gamma-ray problems could be obtained in either the forward or adjoint mode. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry could be used with an albedo option available atmore » any material surface. Isotropic or anisotropic scattering up to a P16 expansion of the angular distribution was allowed. MORSE-CG incorporated the Mathematical Applications, Inc. (MAGI) combinatorial geometry routines. MORSE-B modifies the Monte Carlo neutron and photon transport computer code MORSE-CG by adding routines which allow various flexible options.« less
Energy Science and Technology Software Center (ESTSC)
1991-05-01
Version 00 MORSE-CGA was developed to add the capability of modelling rectangular lattices for nuclear reactor cores or for multipartitioned structures. It thus enhances the capability of the MORSE code system. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. It has been designed as a tool for solving most shielding problems. Through the use of multigroup cross sections, the solution of neutron, gamma-ray, or coupled neutron-gamma-ray problems may be obtainedmore » in either the forward or adjoint mode. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. Isotropic or anisotropic scattering up to a P16 expansion of the angular distribution is allowed.« less
Shielding analysis of a small compact space nuclear reactor
NASA Astrophysics Data System (ADS)
Woodrow, Lee L., Jr.
1987-08-01
The SP-100 reactor, currently in its developmental stage, has a layered tungsten-lithium hydride shield. Studies indicate that this shield configuration is the lightest weight shield. This configuration and three other shielding concepts were analyzed to determine the lightest shield and to determine the shield configuration with the smallest volume. The other concepts were a boron carbide-beryllium layered shield, and a lithium hydride-beryllium shield. FEMP2D and FEMP1D codes were used in this analysis. These codes were developed at Sandia National Laboatory (SNL), using the input from another code, RFCC, which produced enery dependent dose conversion factors, and determined the shields' ability to attenuate the neutron and gamma radiation to permissible dose limits. The results of this analysis show that the lithium hydribe-tungsten layered shield was indeed the lightest weight shield. Volume, not weight, may be the driving factor in determining the shield configuration.
ADGEN: ADjoint GENerator for computer models
Worley, B.A.; Pin, F.G.; Horwedel, J.E.; Oblow, E.M.
1989-05-01
This paper presents the development of a FORTRAN compiler and an associated supporting software library called ADGEN. ADGEN reads FORTRAN models as input and produces and enhanced version of the input model. The enhanced version reproduces the original model calculations but also has the capability to calculate derivatives of model results of interest with respect to any and all of the model data and input parameters. The method for calculating the derivatives and sensitivities is the adjoint method. Partial derivatives are calculated analytically using computer calculus and saved as elements of an adjoint matrix on direct assess storage. The total derivatives are calculated by solving an appropriate adjoint equation. ADGEN is applied to a major computer model of interest to the Low-Level Waste Community, the PRESTO-II model. PRESTO-II sample problem results reveal that ADGEN correctly calculates derivatives of response of interest with respect to 300 parameters. The execution time to create the adjoint matrix is a factor of 45 times the execution time of the reference sample problem. Once this matrix is determined, the derivatives with respect to 3000 parameters are calculated in a factor of 6.8 that of the reference model for each response of interest. For a single 3000 for determining these derivatives by parameter perturbations. The automation of the implementation of the adjoint technique for calculating derivatives and sensitivities eliminates the costly and manpower-intensive task of direct hand-implementation by reprogramming and thus makes the powerful adjoint technique more amenable for use in sensitivity analysis of existing models. 20 refs., 1 fig., 5 tabs.
FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Torrisi, M.; Tracinà, R.
2010-11-01
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.
Adjoint-Based Uncertainty Quantification with MCNP
Seifried, Jeffrey E.
2011-09-01
This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence in the simulation is acquired.
Application of adjoint operators to neural learning
NASA Technical Reports Server (NTRS)
Barhen, J.; Toomarian, N.; Gulati, S.
1990-01-01
A technique for the efficient analytical computation of such parameters of the neural architecture as synaptic weights and neural gain is presented as a single solution of a set of adjoint equations. The learning model discussed concentrates on the adiabatic approximation only. A problem of interest is represented by a system of N coupled equations, and then adjoint operators are introduced. A neural network is formalized as an adaptive dynamical system whose temporal evolution is governed by a set of coupled nonlinear differential equations. An approach based on the minimization of a constrained neuromorphic energylike function is applied, and the complete learning dynamics are obtained as a result of the calculations.
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Yang, Wei-Yu; Todling, Ricardo; Navon, I. Michael
1997-01-01
A detailed description of the development of the tangent linear model (TLM) and its adjoint model of the Relaxed Arakawa-Schubert moisture parameterization package used in the NASA GEOS-1 C-Grid GCM (Version 5.2) is presented. The notational conventions used in the TLM and its adjoint codes are described in detail.
Shielding considerations for satellite microelectronics
Fan, W.C.; Drumm, C.R.; Roeske, S.B.; Scrivner, G.J.
1996-12-01
Shielding for space microelectronics needs to provide an acceptable dose rate with minimum shield mass. The analysis presented here shows that the best approach is, in general, to use a graded-Z shield, with a high-Z layer sandwiched between two low-Z materials. A graded-Z shield is shown to reduce the electron dose rate by more than sixty percent over a single-material shield of the same areal density. For protons, the optimal shield would consist of a single, low-Z material layer. However, it is shown that a graded-Z shield is nearly as effective as a single-material shield, as long as a low-Z layer is located adjacent to the microelectronics. A specific shield design depends upon the details of the radiation environment, system model, design margins/levels, compatibility of shield materials, etc. Therefore, the authors present here general principles for designing effective shields and describe how the computer codes are used for this application.
Lunar Surface Reactor Shielding Study
NASA Technical Reports Server (NTRS)
King, Shawn; Lipinksi, Ronald; McAlpine, William
2006-01-01
Nuclear reactor system could provide power to support a long term human exploration to the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor (GCR) system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency (Wright, 2003). The goals of the shielding studies were to provide optimal material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX code, a Monte Carlo transport code.
Oyer, A.T.
1986-07-01
To initially examine the effectiveness of a shield surrounding a reentry vehicle, we used the hypervelocity hydrodynamic impact code, LASOIL. We completed a four-by-four matrix of 16 two-dimensional numerical impact simulations of 1-g tungsten cylinders striking circular plates. The variable parameters were the projectile impact velocity (10, 20, 40, and 80 km/s) and the plate thickness (1, 2, 4, and 8 mm). In each case, the projectile was destroyed in the impact. The shield was penetrated but retained negliible momentum from the impact. The resultant debris cloud was low-density debris and vapor.
Analysis of Correlated Coupling of Monte Carlo Forward and Adjoint Histories
Ueki, Taro; Hoogenboom, J.E.; Kloosterman, J. L.
2001-02-15
In Monte Carlo correlated coupling, forward and adjoint particle histories are initiated in exactly opposite directions at an arbitrarily placed surface between a physical source and a physical detector. It is shown that this coupling calculation can become more efficient than standard forward calculations. In many cases, the basic form of correlated coupling is less efficient than standard forward calculations. This inherent inefficiency can be overcome by applying a black absorber perturbation to either the forward or the adjoint problem and by processing the product of batch averages as one statistical entity. The usage of the black absorber is based on the invariance of the response flow integral with a material perturbation in either the physical detector side volume in the forward problem or the physical source side volume in the adjoint problem. The batch-average product processing makes use of a quadratic increase of the nonzero coupled-score probability. All the developments have been done in such a way that improved efficiency schemes available in widely distributed Monte Carlo codes can be applied to both the forward and adjoint simulations. Also, the physical meaning of the black absorber perturbation is interpreted based on surface crossing and is numerically validated. In addition, the immediate reflection at the intermediate surface with a controlled direction change is investigated within the invariance framework. This approach can be advantageous for a void streaming problem.
Snyder, Keith W.
2002-01-01
A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.
Wing planform optimization via an adjoint method
NASA Astrophysics Data System (ADS)
Leoviriyakit, Kasidit
This dissertation focuses on the problem of wing planform optimization for transonic aircraft based on flow simulation using Computational Fluid Dynamics (CFD) combined with an adjoint-gradient based numerical optimization procedure. The adjoint method, traditionally used for wing section design has been extended to cover planform variations and to compute the sensitivities of the structural weight of both the wing section and planform variations. The two relevant disciplines accounted for are the aerodynamics and structural weight. A simplified structural weight model is used for the optimization. Results of a variety of long range transports indicate that significant improvement in both aerodynamics and structures can be achieved simultaneously. The proof-of-concept optimal results indicate large improvements for both drag and structural weight. The work is an "enabling step" towards a realistic automated wing designed by a computer.
NASA Astrophysics Data System (ADS)
Belikov, Dmitry A.; Maksyutov, Shamil; Yaremchuk, Alexey; Ganshin, Alexander; Kaminski, Thomas; Blessing, Simon; Sasakawa, Motoki; Gomez-Pelaez, Angel J.; Starchenko, Alexander
2016-02-01
We present the development of the Adjoint of the Global Eulerian-Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion Model (LPDM). The forward tangent linear and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com, with additional manual pre- and post-processing aimed at improving transparency and clarity of the code and optimizing the performance of the computing, including MPI (Message Passing Interface). The Lagrangian component did not require any code modification, as LPDMs are self-adjoint and track a significant number of particles backward in time in order to calculate the sensitivity of the observations to the neighboring emission areas. The constructed Eulerian adjoint was coupled with the Lagrangian component at a time boundary in the global domain. The simulations presented in this work were performed using the A-GELCA model in forward and adjoint modes. The forward simulation shows that the coupled model improves reproduction of the seasonal cycle and short-term variability of CO2. Mean bias and standard deviation for five of the six Siberian sites considered decrease roughly by 1 ppm when using the coupled model. The adjoint of the Eulerian model was shown, through several numerical tests, to be very accurate (within machine epsilon with mismatch around to ±6 e-14) compared to direct forward sensitivity calculations. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation. A-GELCA will be incorporated
Dual of QCD with one adjoint fermion
Mojaza, Matin; Nardecchia, Marco; Pica, Claudio; Sannino, Francesco
2011-03-15
We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling, and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the anomalous dimension of the Dirac fermion mass operator to be less than one in the conformal window.
Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.
1959-02-17
Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.
Dupree, S. A.
1980-06-01
The use of adjoint techniques to determine the interaction of externally incident collimated beams of particles with cylindrical targets is a convenient means of examining a class of problems important in radiation transport studies. The theory relevant to such applications is derived, and a simple example involving a fissioning target is discussed. Results from both discrete ordinates and Monte Carlo transport-code calculations are presented, and comparisons are made with results obtained from forward calculations. The accuracy of the discrete ordinates adjoint results depends on the order of angular quadrature used in the calculation. Reasonable accuracy by using EQN quadratures can be expected from order S/sub 16/ or higher.
NASA Astrophysics Data System (ADS)
Marotzke, Jochem; Giering, Ralf; Zhang, Kate Q.; Stammer, Detlef; Hill, Chris; Lee, Tong
1999-12-01
We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent-Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN-) line-by-line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The "kinematic sensitivity" to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east-west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
Development of CO2 inversion system based on the adjoint of the global coupled transport model
NASA Astrophysics Data System (ADS)
Belikov, Dmitry; Maksyutov, Shamil; Chevallier, Frederic; Kaminski, Thomas; Ganshin, Alexander; Blessing, Simon
2014-05-01
We present the development of an inverse modeling system employing an adjoint of the global coupled transport model consisting of the National Institute for Environmental Studies (NIES) Eulerian transport model (TM) and the Lagrangian plume diffusion model (LPDM) FLEXPART. NIES TM is a three-dimensional atmospheric transport model, which solves the continuity equation for a number of atmospheric tracers on a grid spanning the entire globe. Spatial discretization is based on a reduced latitude-longitude grid and a hybrid sigma-isentropic coordinate in the vertical. NIES TM uses a horizontal resolution of 2.5°×2.5°. However, to resolve synoptic-scale tracer distributions and to have the ability to optimize fluxes at resolutions of 0.5° and higher we coupled NIES TM with the Lagrangian model FLEXPART. The Lagrangian component of the forward and adjoint models uses precalculated responses of the observed concentration to the surface fluxes and 3-D concentrations field simulated with the FLEXPART model. NIES TM and FLEXPART are driven by JRA-25/JCDAS reanalysis dataset. Construction of the adjoint of the Lagrangian part is less complicated, as LPDMs calculate the sensitivity of measurements to the surrounding emissions field by tracking a large number of "particles" backwards in time. Developing of the adjoint to Eulerian part was performed with automatic differentiation tool the Transformation of Algorithms in Fortran (TAF) software (http://www.FastOpt.com). This method leads to the discrete adjoint of NIES TM. The main advantage of the discrete adjoint is that the resulting gradients of the numerical cost function are exact, even for nonlinear algorithms. The overall advantages of our method are that: 1. No code modification of Lagrangian model is required, making it applicable to combination of global NIES TM and any Lagrangian model; 2. Once run, the Lagrangian output can be applied to any chemically neutral gas; 3. High-resolution results can be obtained over
Optimizing spectral wave estimates with adjoint-based sensitivity maps
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos
2014-04-01
A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.
Generalized uncertainty principle and self-adjoint operators
Balasubramanian, Venkat; Das, Saurya; Vagenas, Elias C.
2015-09-15
In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different domains. In particular, we utilize the theorem by von-Neumann for symmetric operators in order to determine whether the momentum and Hamiltonian operators are self-adjoint or not, or they have self-adjoint extensions over the given domain. In addition, a simple example of the Hamiltonian operator describing a particle in a box is given. The solutions of the boundary conditions that describe the self-adjoint extensions of the specific Hamiltonian operator are obtained.
NASA Astrophysics Data System (ADS)
Heimbach, Patick; Menemenlis, Dimitris; Losch, Martin; Campin, Jean-Michel; Hill, Chris
The adjoint of an ocean general circulation model is at the heart of the ocean state estimation system of the Estimating the Circulation and Climate of the Ocean (ECCO) project. As part of an ongoing effort to extend ECCO to a coupled ocean/sea-ice estimation system, a dynamic and thermodynamic sea-ice model has been developed for the Massachusetts Institute of Technology general circulation model (MITgcm). One key requirement is the ability to generate, by means of automatic differentiation (AD), tangent linear (TLM) and adjoint (ADM) model code for the coupled MITgcm ocean/sea-ice system. This second part of a two-part paper describes aspects of the adjoint model. The adjoint ocean and sea-ice model is used to calculate transient sensitivities of solid (ice and snow) freshwater export through Lancaster Sound in the Canadian Arctic Archipelago (CAA). The adjoint state provides a complementary view of the dynamics. In particular, the transient, multi-year sensitivity patterns reflect dominant pathways and propagation timescales through the CAA as resolved by the model, thus shedding light on causal relationships, in the model, across the Archipelago. The computational cost of inferring such causal relationships from forward model diagnostics alone would be prohibitive. The role of the exact model trajectory around which the adjoint is calculated (and therefore of the exactness of the adjoint) is exposed through calculations using free-slip vs no-slip lateral boundary conditions. Effective ice thickness, sea surface temperature, and precipitation sensitivities, are discussed in detail as examples of the coupled sea-ice/ocean and atmospheric forcing control space. To test the reliability of the adjoint, finite-difference perturbation experiments were performed for each of these elements and the cost perturbations were compared to those "predicted" by the adjoint. Overall, remarkable qualitative and quantitative agreement is found. In particular, the adjoint correctly
The ORNL-SNAP shielding program
NASA Technical Reports Server (NTRS)
Mynatt, F. R.; Clifford, C. E.; Muckenthaler, F. J.; Gritzner, M. L.
1972-01-01
The effort in the ORNL-SNAP shielding program is directed toward the development and verification of computer codes using numerical solutions to the transport equation for the design of optimized radiation shields for SNAP power systems. A brief discussion is given for the major areas of the SNAP shielding program, which are cross-section development, transport code development, and integral experiments. Detailed results are presented for the integral experiments utilizing the TSF-SNAP reactor. Calculated results are compared with experiments for neutron and gamma-ray spectra from the bare reactor and as transmitted through slab shields.
Adjoint sensitivity analysis of an ultrawideband antenna
Stephanson, M B; White, D A
2011-07-28
The frequency domain finite element method using H(curl)-conforming finite elements is a robust technique for full-wave analysis of antennas. As computers become more powerful, it is becoming feasible to not only predict antenna performance, but also to compute sensitivity of antenna performance with respect to multiple parameters. This sensitivity information can then be used for optimization of the design or specification of manufacturing tolerances. In this paper we review the Adjoint Method for sensitivity calculation, and apply it to the problem of optimizing a Ultrawideband antenna.
Ripley, Edward B.
2009-11-24
A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.
Improved Adjoint-Operator Learning For A Neural Network
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1995-01-01
Improved method of adjoint-operator learning reduces amount of computation and associated computational memory needed to make electronic neural network learn temporally varying pattern (e.g., to recognize moving object in image) in real time. Method extension of method described in "Adjoint-Operator Learning for a Neural Network" (NPO-18352).
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
The compressible adjoint equations in geodynamics: equations and numerical assessment
NASA Astrophysics Data System (ADS)
Ghelichkhan, Siavash; Bunge, Hans-Peter
2016-04-01
The adjoint method is a powerful means to obtain gradient information in a mantle convection model relative to past flow structure. While the adjoint equations in geodynamics have been derived for the conservation equations of mantle flow in their incompressible form, the applicability of this approximation to Earth is limited, because density increases by almost a factor of two from the surface to the Core Mantle Boundary. Here we introduce the compressible adjoint equations for the conservation equations in the anelastic-liquid approximation. Our derivation applies an operator formulation in Hilbert spaces, to connect to recent work in seismology (Fichtner et al (2006)) and geodynamics (Horbach et al (2014)), where the approach was used to derive the adjoint equations for the wave equation and incompressible mantle flow. We present numerical tests of the newly derived equations based on twin experiments, focusing on three simulations. A first, termed Compressible, assumes the compressible forward and adjoint equations, and represents the consistent means of including compressibility effects. A second, termed Mixed, applies the compressible forward equation, but ignores compressibility effects in the adjoint equations, where the incompressible equations are used instead. A third simulation, termed Incompressible, neglects compressibility effects entirely in the forward and adjoint equations relative to the reference twin. The compressible and mixed formulations successfully restore earlier mantle flow structure, while the incompressible formulation yields noticeable artifacts. Our results suggest the use of a compressible formulation, when applying the adjoint method to seismically derived mantle heterogeneity structure.
Whipple bumper shield simulations
Hertel, E.S.; Chhabildas, L.C. ); Hill, S.A. . George C. Marshall Space Flight Center)
1991-01-01
The Whipple bumper is a space shield designed to protect a space station from the most hazardous orbital space debris environment. A series of numerical simulations has been performed using the multi-dimensional hydrodynamics code CTH to estimate the effectiveness of the thin Whipple bumper design. These simulations are performed for impact velocities of {approximately}10 km/s which are now accessible by experiments using the Sandia hypervelocity launcher facility. For a {approximately}10 km/s impact by a 0.7 gm aluminum flier plate, the experimental results indicate that the debris cloud resulting upon impact of the bumper shield by the flier plate, completely penetrates the sub-structure. The CTH simulations also predict complete penetration by the subsequent debris cloud. 5 refs., 4 figs., 2 tabs.
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.; Beckwith, I. E. (Inventor)
1982-01-01
An improved test section for a supersonic or hypersonic wind tunnel is disclosed wherein the model tested is shielded from the noise normally radiated by the turbulent tunnel wall boundary layer. A vacuum plenum surrounds spaced rod elements making up the test chamber to extract some of the boundary layer as formed along the rod elements during a test to thereby delay the tendency of the rod boundary layers to become turbulent. Novel rod construction involves bending each rod slightly prior to machining the bent area to provide a flat segment on each rod for connection with the flat entrance fairing. Rods and fairing are secured to provide a test chamber incline on the order of 1 deg outward from the noise shield centerline to produce up to 65% reduction of the root mean square (rms) pressure over previously employed wind tunnel test sections at equivalent Reynolds numbers.
SSC environmental radiation shielding
Jackson, J.D.
1987-07-01
The environmental radiation shielding requirements of the SSC have been evaluated using currently available computational tools that incorporate the well known processes of energy loss and degradation of high energy particles into Monte Carlo computer codes. These tools permit determination of isodose contours in the matter surrounding a source point and therefore the specification of minimum thicknesses or extents of shielding in order to assure annual dose equivalents less than some specified design amount. For the general public the annual dose equivalent specified in the design is 10 millirem, small compared to the dose from naturally occurring radiation. The types of radiation fall into two classes for the purposes of shielding determinations-hadrons and muons. The sources of radiation at the SSC of concern for the surrounding environment are the interaction regions, the specially designed beam dumps into which the beams are dumped from time to time, and beam clean-up regions where stops remove the beam halo in order to reduce experimental backgrounds. A final, unlikely source of radiation considered is the accidental loss of the full beam at some point around the ring. Conservative choices of a luminosity of 10{sup 34} cm{sup {minus}2}s{sup {minus}1} and a beam current three times design have been made in calculating the required shielding and boundaries of the facility. In addition to determination of minimum distances for the annual dose equivalents, the question of possible radioactivity produced in nearby wells or in municipal water supplies is addressed. The designed shielding distances and beam dumps are such that the induced radioactivity in ground water is safely smaller than the levels permitted by EPA and international agencies.
Lunar Surface Reactor Shielding Study
Kang, Shawn; McAlpine, William; Lipinski, Ronald
2006-01-20
A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.
Radiation shielding for neutron guides
NASA Astrophysics Data System (ADS)
Ersez, T.; Braoudakis, G.; Osborn, J. C.
2006-11-01
Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.
Adjoint-based uncertainty quantification and sensitivity analysis for reactor depletion calculations
NASA Astrophysics Data System (ADS)
Stripling, Hayes Franklin
Depletion calculations for nuclear reactors model the dynamic coupling between the material composition and neutron flux and help predict reactor performance and safety characteristics. In order to be trusted as reliable predictive tools and inputs to licensing and operational decisions, the simulations must include an accurate and holistic quantification of errors and uncertainties in its outputs. Uncertainty quantification is a formidable challenge in large, realistic reactor models because of the large number of unknowns and myriad sources of uncertainty and error. We present a framework for performing efficient uncertainty quantification in depletion problems using an adjoint approach, with emphasis on high-fidelity calculations using advanced massively parallel computing architectures. This approach calls for a solution to two systems of equations: (a) the forward, engineering system that models the reactor, and (b) the adjoint system, which is mathematically related to but different from the forward system. We use the solutions of these systems to produce sensitivity and error estimates at a cost that does not grow rapidly with the number of uncertain inputs. We present the framework in a general fashion and apply it to both the source-driven and k-eigenvalue forms of the depletion equations. We describe the implementation and verification of solvers for the forward and ad- joint equations in the PDT code, and we test the algorithms on realistic reactor analysis problems. We demonstrate a new approach for reducing the memory and I/O demands on the host machine, which can be overwhelming for typical adjoint algorithms. Our conclusion is that adjoint depletion calculations using full transport solutions are not only computationally tractable, they are the most attractive option for performing uncertainty quantification on high-fidelity reactor analysis problems.
Seismic wave-speed structure beneath the metropolitan area of Japan based on adjoint tomography
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Obayashi, M.; Tono, Y.; Tsuboi, S.
2015-12-01
We have obtained a three-dimensional (3D) model of seismic wave-speed structure beneath the metropolitan area of Japan. We applied the spectral-element method (e.g. Komatitsch and Tromp 1999) and adjoint method (Liu and Tromp 2006) to the broadband seismograms in order to infer the 3D model. We used the travel-time tomography result (Matsubara and Obara 2011) as an initial 3D model and used broadband waveforms recorded at the NIED F-net stations. We selected 147 earthquakes with magnitude of larger than 4.5 from the F-net earthquake catalog and used their bandpass filtered seismograms between 5 and 20 second with a high S/N ratio. The 3D model used for the forward and adjoint simulations is represented as a region of approximately 500 by 450 km in horizontal and 120 km in depth. Minimum period of theoretical waveforms was 4.35 second. For the adjoint inversion, we picked up the windows of the body waves from the observed and theoretical seismograms. We used SPECFEM3D_Cartesian code (e.g. Peter et al. 2011) for the forward and adjoint simulations, and their simulations were implemented by K-computer in RIKEN. Each iteration required about 0.1 million CPU hours at least. The model parameters of Vp and Vs were updated by using the steepest descent method. We obtained the fourth iterative model (M04), which reproduced observed waveforms better than the initial model. The shear wave-speed of M04 was significantly smaller than the initial model at any depth. The model of compressional wave-speed was not improved by inversion because of small alpha kernel values. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We thank to the NIED for providing seismological data.
Towards Adjoint Finite Source Inversion: Application to the 2011 M9 Tohoku Earthquake
NASA Astrophysics Data System (ADS)
Somala, S.; Galvez, P.; Inbal, A.; Ampuero, J. P.; Lapusta, N.
2011-12-01
The recent 2011 M9 Tohoku, Japan, earthquake was recorded by thousands of sensors at near-fault distance, including broad band, strong motion and continuous GPS sensors. This event provides a unique opportunity to image the earthquake rupture process with high resolution. In order to enable the exploitation of the immense dataset available, orders of magnitude larger than in previous earthquakes, we are developing a scalable source inversion procedure based on time-reversal adjoint inversion. We adopt the linear least squares formulation of the source inversion problem, whose basic unknown is the spatio-temporal distribution of slip rate. We formulate an iterative conjugate gradient procedure to minimize the L2 norm of ground velocity residuals between data and synthetics. Each iteration involves one time-reversal (adjoint) and one forward simulation. Exploiting the time-reversal symmetry and the reciprocity principle of elastodynamics, the adjoint is computed by a wave propagation simulation in which time-reversed seismogram residuals are imposed as point forces at the stations simulated. The resulting fault tractions on a locked fault are the adjoint fields, related to the gradient of the misfit function with respect to the model. The simulations are performed with a recent extension of the SPECFEM3D spectral element code to dynamic and kinematic finite sources on unstructured meshes (Galvez et al, session S24 of this meeting). The non-planar geometry of the megathrust fault is accounted for in the spectral element mesh (generated with CUBIT). The subsurface structure is incorporated, on a coarse scale, using regional 3D velocity models, e.g. from the Japan Seismic Hazard Information Station (J-SHIS) website. We will report on the results of our initial efforts, focused on exploiting the continuous 1 Hz GPS signals recorded in Japan to understand the low frequency aspects of the rupture process of the 2011 Tohoku earthquake.
NASA Technical Reports Server (NTRS)
Fieno, D.
1972-01-01
Perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position, the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for a obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. A comparison was made of the fractional change in the dose per unit change in shield layer thickness as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.
NASA Technical Reports Server (NTRS)
Fieno, D.
1972-01-01
The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.
Aerodynamic design optimization by using a continuous adjoint method
NASA Astrophysics Data System (ADS)
Luo, JiaQi; Xiong, JunTao; Liu, Feng
2014-07-01
This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows. General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived. With the adjoint method, the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function, regardless of the number of design parameters. An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method. Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil, wing, and wing-body configuration, and the aerodynamic performance improvement of turbine and compressor blade rows. The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.
Adjoint active surfaces for localization and imaging.
Cook, Daniel A; Mueller, Martin Fritz; Fedele, Francesco; Yezzi, Anthony J
2015-01-01
This paper addresses the problem of localizing and segmenting regions embedded within a surrounding medium by characterizing their boundaries, as opposed to imaging the entirety of the volume. Active surfaces are used to directly reconstruct the shape of the region of interest. We describe the procedure for finding the optimal surface, which is computed iteratively via gradient descent that exploits the sensitivity of an error minimization functional to changes of the active surface. In doing so, we introduce the adjoint model to compute the sensitivity, and in this respect, the method shares common ground with several other disciplines, such as optimal control. Finally, we illustrate the proposed active surface technique in the framework of wave propagation governed by the scalar Helmholtz equation. Potential applications include electromagnetics, acoustics, geophysics, nondestructive testing, and medical imaging. PMID:25438311
Adjoint tomography of the southern California crust.
Tape, Carl; Liu, Qinya; Maggi, Alessia; Tromp, Jeroen
2009-08-21
Using an inversion strategy based on adjoint methods, we developed a three-dimensional seismological model of the southern California crust. The resulting model involved 16 tomographic iterations, which required 6800 wavefield simulations and a total of 0.8 million central processing unit hours. The new crustal model reveals strong heterogeneity, including local changes of +/-30% with respect to the initial three-dimensional model provided by the Southern California Earthquake Center. The model illuminates shallow features such as sedimentary basins and compositional contrasts across faults. It also reveals crustal features at depth that aid in the tectonic reconstruction of southern California, such as subduction-captured oceanic crustal fragments. The new model enables more realistic and accurate assessments of seismic hazard. PMID:19696349
Adjoints and Low-rank Covariance Representation
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.
2000-01-01
Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.
GPU-accelerated adjoint algorithmic differentiation
NASA Astrophysics Data System (ADS)
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the "tape". Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
GPU-Accelerated Adjoint Algorithmic Differentiation
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2015-01-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the “tape”. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography
Self-adjointness and conservation laws of difference equations
NASA Astrophysics Data System (ADS)
Peng, Linyu
2015-06-01
A general theorem on conservation laws for arbitrary difference equations is proved. The theorem is based on an introduction of an adjoint system related with a given difference system, and it does not require the existence of a difference Lagrangian. It is proved that the system, combined by the original system and its adjoint system, is governed by a variational principle, which inherits all symmetries of the original system. Noether's theorem can then be applied. With some special techniques, e.g. self-adjointness properties, this allows us to obtain conservation laws for difference equations, which are not necessary governed by Lagrangian formalisms.
High-Speed Three-Dimensional Nodal Diffusion Code System.
Energy Science and Technology Software Center (ESTSC)
2001-03-21
Version 00 MOSRA-Light is a three-dimensional diffusion calculation code for X-Y-Z geometry. It can be used in: validation of discontinuity factor for adjoint problem; benchmark on discontinuity factor (forward & adjoint cal.); DVP BWR Benchmark (2D,2G calculation); and void reactivity effect benchmark; etc. A utility code called More-MOSRA provides many useful functions with the file produced by MOSRA-Light.
Sensitivity of Lumped Constraints Using the Adjoint Method
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.; Wu, K. Chauncey; Walsh, Joanne L.
1999-01-01
Adjoint sensitivity calculation of stress, buckling and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. Adjoint stress and displacement sensitivities are available in the literature. Expressions for local buckling sensitivity of isotropic plate elements are derived in this study. Computational efficiency of the adjoint method is sensitive to the number of constraints and, therefore, the method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser (KS) function is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a simple HSCT wing model, and a large HSCT model. These sensitivity derivatives are then used in optimization.
Surface wave sensitivity: mode summation versus adjoint SEM
NASA Astrophysics Data System (ADS)
Zhou, Ying; Liu, Qinya; Tromp, Jeroen
2011-12-01
We compare finite-frequency phase and amplitude sensitivity kernels calculated based on frequency-domain surface wave mode summation and a time-domain adjoint method. The adjoint calculations involve a forward wavefield generated by an earthquake and an adjoint wavefield generated at a seismic receiver. We determine adjoint sources corresponding to frequency-dependent phase and amplitude measurements made using a multitaper technique, which may be applied to any single-taper measurement, including box car windowing. We calculate phase and amplitude sensitivity kernels using an adjoint method based on wave propagation simulations using a spectral element method (SEM). Sensitivity kernels calculated using the adjoint SEM are in good agreement with kernels calculated based on mode summation. In general, the adjoint SEM is more computationally expensive than mode summation in global studies. The advantage of the adjoint SEM lies in the calculation of sensitivity kernels in 3-D earth models. We compare surface wave sensitivity kernels computed in 1-D and 3-D reference earth models and show that (1) lateral wave speed heterogeneities may affect the geometry and amplitude of surface wave sensitivity; (2) sensitivity kernels of long-period surface waves calculated in 1-D model PREM and 3-D models S20RTS+CRUST2.0 and FFSW1+CRUST2.0 do not show significant differences, indicating that the use of a 1-D reference model is adequate in global inversions of long-period surface waves (periods of 50 s and longer); and (3) the differences become significant for short-period Love waves when mode coupling is sensitive to large differences in reference crustal structure. Finally, we show that sensitivity kernels in anelastic earth models may be calculated in purely elastic earth models provided physical dispersion is properly accounted for.
Adjoint Function: Physical Basis of Variational & Perturbation Theory in Transport
Energy Science and Technology Software Center (ESTSC)
2009-07-27
Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Importance: The Adjoint Function: The Physical Basis of Variational and Perturbation Theory in Transport and Diffusion Problems, North-Holland Publishing Company - Amsterdam, 582 pages, 1966 Introduction: Continuous Systems and the Variational Principle 1. The Fundamental Variational Principle 2. The Importance Function 3. Adjoint Equations 4. Variational Methods 5. Perturbation and Iterative Methods 6. Non-Linear Theory
Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis,Michael J.
2006-01-01
. Thereafter, we focus on a shape optimization problem for an Apollo-like reentry capsule. The optimization seeks to enhance the lift-to-drag ratio of the capsule by modifyjing the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design. This abstract presents only a brief outline of the numerical method and results; full details will be given in the final paper.
Universal Racah matrices and adjoint knot polynomials: Arborescent knots
NASA Astrophysics Data System (ADS)
Mironov, A.; Morozov, A.
2016-04-01
By now it is well established that the quantum dimensions of descendants of the adjoint representation can be described in a universal form, independent of a particular family of simple Lie algebras. The Rosso-Jones formula then implies a universal description of the adjoint knot polynomials for torus knots, which in particular unifies the HOMFLY (SUN) and Kauffman (SON) polynomials. For E8 the adjoint representation is also fundamental. We suggest to extend the universality from the dimensions to the Racah matrices and this immediately produces a unified description of the adjoint knot polynomials for all arborescent (double-fat) knots, including twist, 2-bridge and pretzel. Technically we develop together the universality and the "eigenvalue conjecture", which expresses the Racah and mixing matrices through the eigenvalues of the quantum R-matrix, and for dealing with the adjoint polynomials one has to extend it to the previously unknown 6 × 6 case. The adjoint polynomials do not distinguish between mutants and therefore are not very efficient in knot theory, however, universal polynomials in higher representations can probably be better in this respect.
Unsteady adjoint of a gas turbine inlet guide vane
NASA Astrophysics Data System (ADS)
Talnikar, Chaitanya; Wang, Qiqi
2015-11-01
Unsteady fluid flow simulations like large eddy simulation have been shown to be crucial in accurately predicting heat transfer in turbomachinery applications like transonic flow over an inlet guide vane. To compute sensitivities of aerothermal objectives for a vane with respect to design parameters an unsteady adjoint is required. In this talk we present unsteady adjoint solutions for a vane from VKI using pressure loss and heat transfer over the vane surface as the objectives. The boundary layer on the suction side near the trailing edge of the vane is turbulent and this poses a challenge for an adjoint solver. The chaotic dynamics cause the adjoint solution to diverge exponentially to infinity from that region when simulated backwards in time. The prospect of adding artificial viscosity to the adjoint equations to dampen the adjoint fields is investigated. Results for the vane from simulations performed on the Titan supercomputer will be shown and the effect of the additional viscosity on the accuracy of the sensitivities will be discussed.
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
McDonald, Douglas B.; Buchholz, Carol E.
1994-01-01
A shield for restricting molten corium from flowing into a water sump disposed in a floor of a containment vessel includes upper and lower walls which extend vertically upwardly and downwardly from the floor for laterally bounding the sump. The upper wall includes a plurality of laterally spaced apart flow channels extending horizontally therethrough, with each channel having a bottom disposed coextensively with the floor for channeling water therefrom into the sump. Each channel has a height and a length predeterminedly selected for allowing heat from the molten corium to dissipate through the upper and lower walls as it flows therethrough for solidifying the molten corium therein to prevent accumulation thereof in the sump.
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2013-01-01
Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.
Baryogenesis via leptogenesis in adjoint SU(5)
Blanchet, Steve; Fileviez Perez, Pavel E-mail: fileviez@physics.wisc.edu
2008-08-15
The possibility of explaining the baryon asymmetry in the Universe through the leptogenesis mechanism in the context of adjoint SU(5) is investigated. In this model neutrino masses are generated through the type I and type III seesaw mechanisms, and the field responsible for the type III seesaw, called {rho}{sub 3}, generates the B-L asymmetry needed to satisfy the observed value of the baryon asymmetry in the Universe. We find that the CP asymmetry originates only from the vertex correction, since the self-energy contribution is not present. When neutrino masses have a normal hierarchy, successful leptogenesis is possible for 10{sup 11} GeV{approx}
LPT. Shield test facility (TAN645 and 646). Calibration lab shield ...
LPT. Shield test facility (TAN-645 and -646). Calibration lab shield door. Ralph M. Parsons 1229-17 ANP/GE-6-645-MS-1. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645-40-693-107369 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Kerns, J.A.; Stone, R.R.; Fabyan, J.
1985-02-12
A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.
Kerns, J.A.; Stone, R.R.; Fabyan, J.
1987-10-06
A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.
Kerns, John A.; Stone, Roger R.; Fabyan, Joseph
1987-01-01
A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.
NASA Technical Reports Server (NTRS)
Fieno, D.
1972-01-01
Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.
Adjoint-based airfoil shape optimization in transonic flow
NASA Astrophysics Data System (ADS)
Gramanzini, Joe-Ray
The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.
Reconstruction of ocean circulation from sparse data using the adjoint method: LGM and the present
NASA Astrophysics Data System (ADS)
Kurahashi-Nakamura, T.; Losch, M. J.; Paul, A.; Mulitza, S.; Schulz, M.
2010-12-01
Understanding the behavior of the Earth's climate system under different conditions in the past is the basis for more robust projections of future climate. It is thought that the ocean circulation plays a very important role in the climate system, because it can greatly affect climate by dynamic-thermodynamic (as a medium of heat transport) and biogeochemical processes (by affecting the global carbon cycle). In this context, studying the period of the Last Glacial Maximum (LGM) is particularly promising, as it represents a climate state that is very different from today. Furthermore the LGM, compared to other paleoperiods, is characterized by a relatively good paleo-data coverage. Unfortunately, the ocean circulation during the LGM is still uncertain, with a range of climate models estimating both a stronger and a weaker formation rate of North Atlantic Deep Water (NADW) as compared to the present rate. Here, we present a project aiming at reducing this uncertainty by combining proxy data with a numerical ocean model using variational techniques. Our approach, the so-called adjoint method, employs a quadratic cost function of model-data differences weighted by their prior error estimates. We seek an optimal state estimate at the global minimum of the cost function by varying the independent control variables such as initial conditions (e.g. temperature), boundary conditions (e.g. surface winds, heat flux), or internal parameters (e.g. vertical diffusivity). The adjoint or dual model computes the gradient of the cost function with respect to these control variables and thus provides the information required by gradient descent algorithms. The gradients themselves provide valuable information about the sensitivity of the system to perturbations in the control variables. We use the Massachusetts Institute of Technology ocean general circulation model (MITgcm) with a cubed-sphere grid system that avoids converging grid lines and pole singularities. This model code is
Adjoint tomography of the Middle East
NASA Astrophysics Data System (ADS)
Peter, D. B.; Savage, B.; Rodgers, A. J.; Tromp, J.
2010-12-01
Improvements in nuclear explosion monitoring require refined seismic models of the target region. In our study, we focus on the Middle East, spanning a region from Turkey to the west and West India to the east. This area represents a complex geologic and tectonic setting with sparse seismic data coverage. This has lead to diverging interpretations of crustal and underlying upper-mantle structure by different research groups, complicating seismic monitoring of the Middle East at regional distances. We evaluated an initial 3D seismic model of this region by computing full waveforms for several regional earthquakes by a spectral-element method. We measure traveltime and multitaper phase shifts between observed broadband data and synthetic seismograms for distinct seismic phases within selected time windows using a recently developed automated measurement algorithm. Based on the remaining misfits, we setup an iterative inversion procedure for a fully numerical 3D seismic tomography approach. In order to improve the initial 3D seismic model, the sensitivity to seismic structure of the traveltime and multitaper phase measurements for all available seismic network recordings is computed. As this represents a computationally very intensive task, we take advantage of a fully numerical adjoint approach by using the efficient software package SPECFEM3D_GLOBE on a dedicated cluster. We show examples of such sensitivity kernels for different seismic events and use them in a steepest descent approach to update the 3D seismic model, starting at longer periods between 60 s and up to 200 s and moving towards shorter periods of 11 s. We highlight various improvements in the initial seismic structure during the iterations in order to better fit regional seismic waveforms in the Middle East.
Adjoint tomography of the Middle East
NASA Astrophysics Data System (ADS)
Peter, D. B.; Savage, B.; Rodgers, A.; Morency, C.; Tromp, J.
2011-12-01
Improvements in nuclear explosion monitoring require refined seismic models of the target region. In our study, we focus on the Middle East, spanning a region from Turkey to the west and West India to the east. This area represents a complex geologic and tectonic setting with sparse seismic data coverage. This has lead to diverging interpretations of crustal and underlying upper-mantle structure by different research groups, complicating seismic monitoring of the Middle East at regional distances. We evaluated an initial 3D seismic model of this region by computing full waveforms for several regional earthquakes based on a spectral-element method. We measure traveltime and multitaper phase differences between observed broadband data and synthetic seismograms for distinct seismic phases within selected time windows using a recently developed automated measurement algorithm. Based on the remaining misfits, we setup an iterative inversion procedure for a fully numerical 3D seismic tomography approach. In order to improve the initial 3D seismic model, sensitivity to seismic structures of traveltime and multitaper phase measurements for all available seismic network recordings is computed. As this represents a computationally very intensive task, we take advantage of a fully numerical adjoint approach by using the efficient software package SPECFEM3D_GLOBE on a dedicated cluster. We show examples of such sensitivity kernels for different seismic events. All these `event kernels' are then summed, smoothed and further used in a preconditioned conjugate-gradient approach. Thus we iteratively update the 3D seismic model, starting at longer periods between 60~s and up to 150~s and moving towards shorter periods of 11~s. We highlight various improvements in the initial seismic structure during the iterations in order to better fit regional seismic waveforms in the Middle East.
Receptivity in parallel flows: An adjoint approach
NASA Technical Reports Server (NTRS)
Hill, D. Christopher
1993-01-01
Linear receptivity studies in parallel flows are aimed at understanding how external forcing couples to the natural unstable motions which a flow can support. The vibrating ribbon problem models the original Schubauer and Skramstad boundary layer experiment and represents the classic boundary layer receptivity problem. The process by which disturbances are initiated in convectively-unstable jets and shear layers has also received attention. Gaster was the first to handle the boundary layer analysis with the recognition that spatial modes, rather than temporal modes, were relevant when studying convectively-unstable flows that are driven by a time-harmonic source. The amplitude of the least stable spatial mode, far downstream of the source, is related to the source strength by a coupling coefficient. The determination of this coefficient is at the heart of this type of linear receptivity study. The first objective of the present study was to determine whether the various wave number derivative factors, appearing in the coupling coefficients for linear receptivity problems, could be reexpressed in a simpler form involving adjoint eigensolutions. Secondly, it was hoped that the general nature of this simplification could be shown; indeed, a rather elegant characterization of the receptivity properties of spatial instabilities does emerge. The analysis is quite distinct from the usual Fourier-inversion procedures, although a detailed knowledge of the spectrum of the Orr-Sommerfeld equation is still required. Since the cylinder wake analysis proved very useful in addressing control considerations, the final objective was to provide a foundation upon which boundary layer control theory may be developed.
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2011-01-01
As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). By increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate concept MLI blankets for MMOD shields. In conjunction, these MLI blankets and the subsequent MMOD shields were also evaluated for their radiation shielding effectiveness towards protecting crew. These concepts were evaluated against the ISS MLI blankets and the ISS MMOD shield, which acted as the baseline. These radiation shielding assessments were performed using the high charge and energy transport software (HZETRN). This software is based on a one-dimensional formula of the Boltzmann transport equation with a straight-ahead approximation. Each configuration was evaluated against the following environments to provide a diverse view of radiation shielding effectiveness in most space environments within the heliosphere: August 1972 solar particle event, October 1989 solar particle event, 1982 galactic cosmic ray environment (during solar maximum), 1987 galactic cosmic ray environment (during solar minimum), and a low earth orbit environment in 1970 that corresponded to an altitude of 400 km and inclination of 51.6 . Both the absorbed dose and the dose equivalent were analyzed, but the focus of the discussion was on the dose equivalent since the data is most concerned with radiation shielding of the crew. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for
Adjoint simulation of stream depletion due to aquifer pumping.
Neupauer, Roseanna M; Griebling, Scott A
2012-01-01
If an aquifer is hydraulically connected to an adjacent stream, a pumping well operating in the aquifer will draw some water from aquifer storage and some water from the stream, causing stream depletion. Several analytical, semi-analytical, and numerical approaches have been developed to estimate stream depletion due to pumping. These approaches are effective if the well location is known. If a new well is to be installed, it may be desirable to install the well at a location where stream depletion is minimal. If several possible locations are considered for the location of a new well, stream depletion would have to be estimated for all possible well locations, which can be computationally inefficient. The adjoint approach for estimating stream depletion is a more efficient alternative because with one simulation of the adjoint model, stream depletion can be estimated for pumping at a well at any location. We derive the adjoint equations for a coupled system with a confined aquifer, an overlying unconfined aquifer, and a river that is hydraulically connected to the unconfined aquifer. We assume that the stage in the river is known, and is independent of the stream depletion, consistent with the assumptions of the MODFLOW river package. We describe how the adjoint equations can be solved using MODFLOW. In an illustrative example, we show that for this scenario, the adjoint approach is as accurate as standard forward numerical simulation methods, and requires substantially less computational effort. PMID:22182421
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Mesh-free adjoint methods for nonlinear filters
NASA Astrophysics Data System (ADS)
Daum, Fred
2005-09-01
We apply a new industrial strength numerical approximation, called the "mesh-free adjoint method", to solve the nonlinear filtering problem. This algorithm exploits the smoothness of the problem, unlike particle filters, and hence we expect that mesh-free adjoints are superior to particle filters for many practical applications. The nonlinear filter problem is equivalent to solving the Fokker-Planck equation in real time. The key idea is to use a good adaptive non-uniform quantization of state space to approximate the solution of the Fokker-Planck equation. In particular, the adjoint method computes the location of the nodes in state space to minimize errors in the final answer. This use of an adjoint is analogous to optimal control algorithms, but it is more interesting. The adjoint method is also analogous to importance sampling in particle filters, but it is better for four reasons: (1) it exploits the smoothness of the problem; (2) it explicitly minimizes the errors in the relevant functional; (3) it explicitly models the dynamics in state space; and (4) it can be used to compute a corrected value for the desired functional using the residuals. We will attempt to make this paper accessible to normal engineers who do not have PDEs for breakfast.
Space reactor shielding fabrication
NASA Technical Reports Server (NTRS)
Welch, F. H.
1972-01-01
The fabrication of space reactor neutron shielding by a melting and casting process utilizing lithium hydride is described. The first neutron shield fabricated is a large pancake shape 86 inches in diameter, containing about 1700 pounds of lithium hydride. This shield, fabricated by the unique melting and casting process, is the largest lithium hydride shield ever built.
Imaging the slab beneath central Chile using the Spectral Elements Method and adjoint techniques
NASA Astrophysics Data System (ADS)
Mercerat, E. D.; Nolet, G.; Marot, M.; Deshayes, P.; Monfret, T.
2010-12-01
This work focuses on imaging the subducting slab beneath Central Chile using novel inversion techniques based on the adjoint method and accurate wave propagation simulations using the Spectral Elements Method. The study area comprises the flat slab portion of the Nazca plate between 29 S and 34 S subducting beneath South America. We will use a database of regional seismicity consisting of both crustal and deep slab earthquakes with magnitude 3 < Mw < 6 recorded by different temporary and permanent seismological networks. Our main goal is to determine both the kinematics and the geometry of the subducting slab in order to help the geodynamical interpretation of such particular active margin. The Spectral Elements Method (SPECFEM3D code) is used to generate the synthetic seismograms and it will be applied for the iterative minimization based on adjoint techniques. The numerical mesh is 600 km x 600 km in horizontal coordinates and 220 km depth. As a first step, we are faced to well-known issues concerning mesh generation (resolution, quality, absorbing boundary conditions). In particular, we must evaluate the influence of free surface topography, as well as the MOHO and other geological interfaces in the synthetic seismograms. The initial velocity model from a previous travel-time tomography study, is linearly interpolated to the Gauss-Lobatto-Legendre grid. The comparison between the first forward simulations (up to 4 seconds minimum period) validate the initial velocity model of the study area, although many features not reproduced by the initial model have already been identified. Next step will concentrate in the comparison between finite-frequency kernels calculated by travel-time methods with ones based on adjoint methods, in order to highlight advantages and disadvantages in terms of resolution, accuracy, but also computational cost.
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2013-01-01
As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.
Adjoint sensitivity analysis of plasmonic structures using the FDTD method.
Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H
2014-05-15
We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach. PMID:24978258
A Posteriori Analysis for Hydrodynamic Simulations Using Adjoint Methodologies
Woodward, C S; Estep, D; Sandelin, J; Wang, H
2009-02-26
This report contains results of analysis done during an FY08 feasibility study investigating the use of adjoint methodologies for a posteriori error estimation for hydrodynamics simulations. We developed an approach to adjoint analysis for these systems through use of modified equations and viscosity solutions. Targeting first the 1D Burgers equation, we include a verification of the adjoint operator for the modified equation for the Lax-Friedrichs scheme, then derivations of an a posteriori error analysis for a finite difference scheme and a discontinuous Galerkin scheme applied to this problem. We include some numerical results showing the use of the error estimate. Lastly, we develop a computable a posteriori error estimate for the MAC scheme applied to stationary Navier-Stokes.
Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology
NASA Technical Reports Server (NTRS)
Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.
2012-01-01
This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.
Learning a trajectory using adjoint functions and teacher forcing
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad B.; Barhen, Jacob
1992-01-01
A new methodology for faster supervised temporal learning in nonlinear neural networks is presented which builds upon the concept of adjoint operators to allow fast computation of the gradients of an error functional with respect to all parameters of the neural architecture, and exploits the concept of teacher forcing to incorporate information on the desired output into the activation dynamics. The importance of the initial or final time conditions for the adjoint equations is discussed. A new algorithm is presented in which the adjoint equations are solved simultaneously (i.e., forward in time) with the activation dynamics of the neural network. We also indicate how teacher forcing can be modulated in time as learning proceeds. The results obtained show that the learning time is reduced by one to two orders of magnitude with respect to previously published results, while trajectory tracking is significantly improved. The proposed methodology makes hardware implementation of temporal learning attractive for real-time applications.
Differential sensitivity theory applied to the MESA code
NASA Astrophysics Data System (ADS)
Henninger, R. J.; Maudlin, P. J.; Harstad, E. N.
1994-07-01
A technique called Differential Sensitivity Theory (DST) is applied to the system of equations solved by the MESA continuum mechanics code. DST uses adjoint technique to determine exact sensitivity derivatives, i.e., if R is a calculation result of interest (response R ) and αi is a calculational input (parameter αi), then αR/αi is defined as the sensitivity. The advantage of using DST is that for an n-parameter problem all n sensitivities can be obtained by integrating the solutions from only two calculations, a MESA calculation and its corresponding adjoint calculation using an Adjoint Continuum Mechanics (ACM) code. This work presents the derivation and solution of the appropriate set of adjoint equations for the purpose of computing sensitivities for high-rate two-dimensional, multi-component, high-deformation problems. As an example, results for a flyer plate impact problem are given.
Shielding measurements for 230-Mev protons
Siebers, J.V.; DeLuca, P.M. Jr.; Pearson, D.W. . Dept. of Medical Physics); Coutrakon, G. . Medical Center)
1993-09-01
Energetic neutrons, produced as protons interact with matter, dominate the radiation shielding environment for proton accelerators. Because of the scarcity of data describing the shielding required to protect personnel from these neutrons, absorbed dose and dose-equivalent values are measured as a function of depth in a thick concrete shield at neutron emission angles of 0, 22, 45, and 90 deg for 230-MeV protons incident upon stopping-length aluminum, iron, and lead targets. Neutron attenuation lengths vary sharply with angle but are independent of the target material. Comparing results with prior shielding calculations, the High-Energy Transport Code overestimates neutron production and attenuation lengths in the forward direction. Analytical methods compare favorably in the forward direction but overestimate the production and attenuation lengths at large angles. The results presented are useful for determining the shielding requirements for proton radiotherapy facilities and as a benchmark for future calculations.
A perturbation technique for shield weight minimization
Watkins, E.F.; Greenspan, E. )
1993-01-01
The radiation shield optimization code SWAN (Ref. 1) was originally developed for minimizing the thickness of a shield that will meet a given dose (or another) constraint or for extremizing a performance parameter of interest (e.g., maximizing energy multiplication or minimizing dose) while maintaining the shield volume constraint. The SWAN optimization process proved to be highly effective (e.g., see Refs. 2, 3, and 4). The purpose of this work is to investigate the applicability of the SWAN methodology to problems in which the weight rather than the volume is the relevant shield characteristic. Such problems are encountered in shield design for space nuclear power systems. The investigation is carried out using SWAN with the coupled neutron-photon cross-section library FLUNG (Ref. 5).
Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV
Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport
Liscum-Powell, J.L.; Lorence, L.J. Jr.; Morel, J.E.; Prinja, A.K.
1999-07-08
Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere and, like the even- and odd- parity form, S{sub n} source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here we apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross-sections from the CEPXS code and S{sub n} discretization.
Ocean acoustic tomography from different receiver geometries using the adjoint method.
Zhao, Xiaofeng; Wang, Dongxiao
2015-12-01
In this paper, an ocean acoustic tomography inversion using the adjoint method in a shallow water environment is presented. The propagation model used is an implicit Crank-Nicolson finite difference parabolic equation solver with a non-local boundary condition. Unlike previous matched-field processing works using the complex pressure fields as the observations, here, the observed signals are the transmission losses. Based on the code tests of the tangent linear model, the adjoint model, and the gradient, the optimization problem is solved by a gradient-based minimization algorithm. The inversions are performed in numerical simulations for two geometries: one in which hydrophones are sparsely distributed in the horizontal direction, and another in which the hydrophones are distributed vertically. The spacing in both cases is well beyond the half-wavelength threshold at which beamforming could be used. To deal with the ill-posedness of the inverse problem, a linear differential regularization operator of the sound-speed profile is used to smooth the inversion results. The L-curve criterion is adopted to select the regularization parameter, and the optimal value can be easily determined at the elbow of the logarithms of the residual norm of the measured-predicted fields and the norm of the penalty function. PMID:26723329
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.
2003-01-01
This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.
ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA
NASA Astrophysics Data System (ADS)
Capps, S. L.; Henze, D. K.; Hakami, A.; Russell, A. G.; Nenes, A.
2011-08-01
We present the development of ANISORROPIA, the discrete adjoint of the ISORROPIA thermodynamic equilibrium model that treats the Na+-SO42--HSO4--NH4+-NO3--Cl--H2O aerosol system, and we demonstrate its sensitivity analysis capabilities. ANISORROPIA calculates sensitivities of an inorganic species in aerosol or gas phase with respect to the total concentrations of each species present with only a two-fold increase in computational time over the forward model execution. Due to the highly nonlinear and discontinuous solution surface of ISORROPIA, evaluation of the adjoint required a new, complex-variable version of the the model, which determines first-order sensitivities with machine precision and avoids cancellation errors arising from finite difference calculations. The adjoint is verified over an atmospherically relevant range of concentrations, temperature, and relative humidity. We apply ANISORROPIA to recent field campaign results from Atlanta, GA, USA, and Mexico City, Mexico, to characterize the inorganic aerosol sensitivities of these distinct urban air masses. The variability in the relationship between PM2.5 mass and precursor concentrations shown has important implications for air quality and climate. ANISORROPIA enables efficient elucidation of aerosol concentration dependence on aerosol precursor emissions in the context of atmospheric chemical transport model adjoints.
Assimilating Remote Ammonia Observations with a Refined Aerosol Thermodynamics Adjoint"
Ammonia emissions parameters in North America can be refined in order to improve the evaluation of modeled concentrations against observations. Here, we seek to do so by developing and applying the GEOS-Chem adjoint nested over North America to conductassimilation of observations...
Adjoint operator approach to shape design for internal incompressible flows
NASA Technical Reports Server (NTRS)
Cabuk, H.; Sung, C.-H.; Modi, V.
1991-01-01
The problem of determining the profile of a channel or duct that provides the maximum static pressure rise is solved. Incompressible, laminar flow governed by the steady state Navier-Stokes equations is assumed. Recent advances in computational resources and algorithms have made it possible to solve the direct problem of determining such a flow through a body of known geometry. It is possible to obtain a set of adjoint equations, the solution to which permits the calculation of the direction and relative magnitude of change in the diffuser profile that leads to a higher pressure rise. The solution to the adjoint problem can be shown to represent an artificially constructed flow. This interpretation provides a means to construct numerical solutions to the adjoint equations that do not compromise the fully viscous nature of the problem. The algorithmic and computational aspects of solving the adjoint equations are addressed. The form of these set of equations is similar but not identical to the Navier-Stokes equations. In particular some issues related to boundary conditions and stability are discussed.
Adjoint-Operator Learning For A Neural Network
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, Nikzad
1993-01-01
Electronic neural networks made to synthesize initially unknown mathematical models of time-dependent phenomena or to learn temporally evolving patterns by use of algorithms based on adjoint operators. Algorithms less complicated, involve less computation and solve learning equations forward in time possibly simultaneously with equations of evolution of neural network, thereby both increasing computational efficiency and making real-time applications possible.
Testing the bioelectric shield.
Blackmore, Susan J; Rose, Nicholas
2002-01-01
A pendant was claimed to provide numerous health benefits, including reduced stress, increased strength, and protection from electromagnetic radiation from computers and mobile phones. Three experiments tested the effectiveness of this pendant's effect as a bioelectric shield. In the first experiment, 12 subjects who work with computers wore shields (6 real, 6 sham) for several weeks and were regularly tested for hand strength and mood changes. Both types of shield increased calmness, but the real shields did not have any greater effect. In 2 further studies (in each N=40) hand strength was measured at baseline, with mobile phone, and with mobile phone and bioelectric or sham shield. The shields did not differ in their effects. Both studies showed a significant correlation between the change in strength with and without the shield and subjects'scores on a questionnaire concerning their belief in and use of alternative therapies. The shields appear to produce a measurable placebo effect but are otherwise ineffective. PMID:12233804
Fermi, E.; Zinn, W.H.
1957-09-24
The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.
Modeling of spacecraft proton shielding by the discrete ordinates method
Drumm, C.R. )
1992-01-01
Radiation in space can be damaging to personnel and electronics in space missions. Solar flare and trapped protons are a significant component of the near-earth radiation environment. It is important to assess the effectiveness of materials (typically aluminum) for shielding protons for manned and unmanned space flights. The discrete ordinates method is a convenient and efficient method for modeling proton transport. With the adjoint capability, a set of proton environments for many different orbit trajectories can be modeled extremely efficiently. Modeling a slab geometry and a spherical shell geometry shield should provide bounds on the dose that a component inside of a satellite would be expected to receive. Neutron and other secondary particle production are neglected in this model.
Adjoint-Based Methodology for Time-Dependent Optimal Control (AMTOC)
NASA Technical Reports Server (NTRS)
Yamaleev, Nail; Diskin, boris; Nishikawa, Hiroaki
2012-01-01
During the five years of this project, the AMTOC team developed an adjoint-based methodology for design and optimization of complex time-dependent flows, implemented AMTOC in a testbed environment, directly assisted in implementation of this methodology in the state-of-the-art NASA's unstructured CFD code FUN3D, and successfully demonstrated applications of this methodology to large-scale optimization of several supersonic and other aerodynamic systems, such as fighter jet, subsonic aircraft, rotorcraft, high-lift, wind-turbine, and flapping-wing configurations. In the course of this project, the AMTOC team has published 13 refereed journal articles, 21 refereed conference papers, and 2 NIA reports. The AMTOC team presented the results of this research at 36 international and national conferences, meeting and seminars, including International Conference on CFD, and numerous AIAA conferences and meetings. Selected publications that include the major results of the AMTOC project are enclosed in this report.
NASA Astrophysics Data System (ADS)
Chen, M.; Masy, J.; Niu, F.; Levander, A.
2014-12-01
We present a high-resolution 3D crustal model of Eastern Venezuela from a full waveform inversion adjoint tomography technique, based on the spectral-element method. Empirical Green's functions (EGFs) of Rayleigh waves from ambient noise interferometry serve as the observed waveforms. Rayleigh wave signals in the period range of 10 - 50 s were extracted by cross-correlations of 48 stations from both Venezuelan national seismic network and the BOLIVAR project array. The synthetic Green's functions (SGFs) are calculated with an initial regional 3D shear wave model determined from ballistic Rayleigh wave tomography from earthquake records with periods longer than 20 s. The frequency-dependent traveltime time misfits between the SGFs and EGFs are minimized iteratively using adjoint tomography = to refine 3D crustal structure [Chen et al. 2014]. The final 3D model shows lateral shear wave velocity variations that are well correlated with the geological terranes within the continental interior. In particular, the final model reveals low velocities distributed along the axis of the Espino Graben, indicating that the graben has a substantially different crustal structure than the rest of the Eastern Venezuela Basin. We also observe high shear velocities in the lower crust beneath some of the subterranes of the Proterozoic-Archean Guayana Shield.
Rotating shielded crane system
Commander, John C.
1988-01-01
A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.
NASA Technical Reports Server (NTRS)
Power, J. L. (Inventor)
1976-01-01
An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.
Applications guide to the MORSE Monte Carlo code
Cramer, S.N.
1985-08-01
A practical guide for the implementation of the MORESE-CG Monte Carlo radiation transport computer code system is presented. The various versions of the MORSE code are compared and contrasted, and the many references dealing explicitly with the MORSE-CG code are reviewed. The treatment of angular scattering is discussed, and procedures for obtaining increased differentiality of results in terms of reaction types and nuclides from a multigroup Monte Carlo code are explained in terms of cross-section and geometry data manipulation. Examples of standard cross-section data input and output are shown. Many other features of the code system are also reviewed, including (1) the concept of primary and secondary particles, (2) fission neutron generation, (3) albedo data capability, (4) DOMINO coupling, (5) history file use for post-processing of results, (6) adjoint mode operation, (7) variance reduction, and (8) input/output. In addition, examples of the combinatorial geometry are given, and the new array of arrays geometry feature (MARS) and its three-dimensional plotting code (JUNEBUG) are presented. Realistic examples of user routines for source, estimation, path-length stretching, and cross-section data manipulation are given. A deatiled explanation of the coupling between the random walk and estimation procedure is given in terms of both code parameters and physical analogies. The operation of the code in the adjoint mode is covered extensively. The basic concepts of adjoint theory and dimensionality are discussed and examples of adjoint source and estimator user routines are given for all common situations. Adjoint source normalization is explained, a few sample problems are given, and the concept of obtaining forward differential results from adjoint calculations is covered. Finally, the documentation of the standard MORSE-CG sample problem package is reviewed and on-going and future work is discussed.
Methods and Procedures for Shielding Analyses for the SNS
Gallmeier, Franz X.; Iverson, Erik B.; Remec, Igor; Lu, Wei; Popova, Irina
2014-01-01
In order to provide radiologically safe Spallation Neutron Source operation, shielding analyses are performed according to Oak Ridge National Laboratory internal regulations and to comply with the Code of Federal Regulations. An overview of on-going shielding work for the accelerator facility and neutrons beam lines, methods, used for the analyses, and associated procedures and regulations is presented. Methods used to perform shielding analyses are described as well.
NASA Astrophysics Data System (ADS)
Fernández-López, Sheila; Carrera, Jesús; Ledo, Juanjo; Queralt, Pilar; Luquot, Linda; Martínez, Laura; Bellmunt, Fabián
2016-04-01
Seawater intrusion in aquifers is a complex phenomenon that can be characterized with the help of electric resistivity tomography (ERT) because of the low resistivity of seawater, which underlies the freshwater floating on top. The problem is complex because of the need for joint inversion of electrical and hydraulic (density dependent flow) data. Here we present an adjoint-state algorithm to treat electrical data. This method is a common technique to obtain derivatives of an objective function, depending on potentials with respect to model parameters. The main advantages of it are its simplicity in stationary problems and the reduction of computational cost respect others methodologies. The relationship between the concentration of chlorides and the resistivity values of the field is well known. Also, these resistivities are related to the values of potentials measured using ERT. Taking this into account, it will be possible to define the different resistivities zones from the field data of potential distribution using the basis of inverse problem. In this case, the studied zone is situated in Argentona (Baix Maresme, Catalonia), where the values of chlorides obtained in some wells of the zone are too high. The adjoint-state method will be used to invert the measured data using a new finite element code in C ++ language developed in an open-source framework called Kratos. Finally, the information obtained numerically with our code will be checked with the information obtained with other codes.
Resonance self-shielding methodology in MPACT
Liu, Y.; Collins, B.; Kochunas, B.; Martin, W.; Kim, K. S.; Williams, M.
2013-07-01
The resonance self-shielding methods of the neutron transport code Michigan Parallel Characteristics based Transport (MPACT) are described in this paper. Two resonance-integral table based methods are utilized to resolve the resonance self-shielding effect. The subgroup method is a mature approach used in MPACT as the basic functionality for the resonance calculation. Another new iterative method, named the embedded self-shielding method is also implemented in MPACT. Comparisons of the two methods as well as their numerical verifications are presented. The results show that MPACT is capable of modeling the resonance self-shielding in a variety of PWR benchmarking cases, including difficult fuel lattice cases with poison, control rods or mixed gadolinia fuel rods. (authors)
NASA Astrophysics Data System (ADS)
Holdaway, D. R.; Errico, R.
2011-12-01
Inherent in the minimization process in the 4D-Var data assimilation system is the need for the model's adjoint. It is straightforward to obtain the exact adjoint by linearizing the code in a line by line sense; however it only provides an accurate overall representation of the physical processes if the model behaviour is linear. Moist processes in the atmosphere, and thus the models that represent them, are intrinsically highly non-linear and can contain discrete switches. The adjoint that is required in the data assimilation system needs to provide an accurate representation of the physical behaviour for perturbation sizes of the order of the analysis error, so an exact adjoint of the moist physics model is likely to be inaccurate. Instead a non-exact adjoint model, which is accurate for large enough perturbations, must be developed. The constraint on the development is that the simplified adjoint be consistent with the actual trajectory of the model. Previous attempts to include the moist physics in the 4D-Var have emphasized the need for redevelopment of the actual moist scheme to a simpler version. These schemes are designed to be linear in the limit of realistic perturbation size but also capture the essence of the physical behaviour, making the adjoint version of the scheme suitable for use in the 4D-Var. A downside to this approach is that it can result in an over simplification of the physics and represent a larger departure from the true model trajectory than necessary. The adjoint is just the transpose of the tangent linear model, which is the differential of the model operator. This differential of the operator can be constructed from Jacobian matrices. Examining the structures of the Jacobians as perturbations of varying size are added to the state vector can help determine whether the adjoint model - be it of actual or simplified physics - will be suitable for use in the assimilation algorithm. If Jacobian structures change considerably when the
Accurate adjoint design sensitivities for nano metal optics.
Hansen, Paul; Hesselink, Lambertus
2015-09-01
We present a method for obtaining accurate numerical design sensitivities for metal-optical nanostructures. Adjoint design sensitivity analysis, long used in fluid mechanics and mechanical engineering for both optimization and structural analysis, is beginning to be used for nano-optics design, but it fails for sharp-cornered metal structures because the numerical error in electromagnetic simulations of metal structures is highest at sharp corners. These locations feature strong field enhancement and contribute strongly to design sensitivities. By using high-accuracy FEM calculations and rounding sharp features to a finite radius of curvature we obtain highly-accurate design sensitivities for 3D metal devices. To provide a bridge to the existing literature on adjoint methods in other fields, we derive the sensitivity equations for Maxwell's equations in the PDE framework widely used in fluid mechanics. PMID:26368483
Examination of Observation Impacts derived from OSEs and Adjoint Models
NASA Technical Reports Server (NTRS)
Gelaro, Ronald
2008-01-01
With the adjoint of a data assimilation system, the impact of any or all assimilated observations on measures of forecast skill can be estimated accurately and efficiently. The approach allows aggregation of results in terms of individual data types, channels or locations, all computed simultaneously. In this study, adjoint-based estimates of observation impact are compared with results from standard observing system experiments (OSEs) in the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) GEOS-5 system. The two approaches are shown to provide unique, but complimentary, information. Used together, they reveal both redundancies and dependencies between observing system impacts as observations are added or removed. Understanding these dependencies poses a major challenge for optimizing the use of the current observational network and defining requirements for future observing systems.
Three-Dimensional Turbulent RANS Adjoint-Based Error Correction
NASA Technical Reports Server (NTRS)
Park, Michael A.
2003-01-01
Engineering problems commonly require functional outputs of computational fluid dynamics (CFD) simulations with specified accuracy. These simulations are performed with limited computational resources. Computable error estimates offer the possibility of quantifying accuracy on a given mesh and predicting a fine grid functional on a coarser mesh. Such an estimate can be computed by solving the flow equations and the associated adjoint problem for the functional of interest. An adjoint-based error correction procedure is demonstrated for transonic inviscid and subsonic laminar and turbulent flow. A mesh adaptation procedure is formulated to target uncertainty in the corrected functional and terminate when error remaining in the calculation is less than a user-specified error tolerance. This adaptation scheme is shown to yield anisotropic meshes with corrected functionals that are more accurate for a given number of grid points then isotropic adapted and uniformly refined grids.
On improving storm surge forecasting using an adjoint optimal technique
NASA Astrophysics Data System (ADS)
Li, Yineng; Peng, Shiqiu; Yan, Jing; Xie, Lian
2013-12-01
A three-dimensional ocean model and its adjoint model are used to simultaneously optimize the initial conditions (IC) and the wind stress drag coefficient (Cd) for improving storm surge forecasting. To demonstrate the effect of this proposed method, a number of identical twin experiments (ITEs) with a prescription of different error sources and two real data assimilation experiments are performed. Results from both the idealized and real data assimilation experiments show that adjusting IC and Cd simultaneously can achieve much more improvements in storm surge forecasting than adjusting IC or Cd only. A diagnosis on the dynamical balance indicates that adjusting IC only may introduce unrealistic oscillations out of the assimilation window, which can be suppressed by the adjustment of the wind stress when simultaneously adjusting IC and Cd. Therefore, it is recommended to simultaneously adjust IC and Cd to improve storm surge forecasting using an adjoint technique.
IET. Periscope shielding and installation details. Shows range of scanning ...
IET. Periscope shielding and installation details. Shows range of scanning head, removable concrete cap, concrete shielding. Ralph M. Parsons 902-4-ANP-620-A 324. Date: February 1954. Approved by INEEL Classification Office for public release. INEEL Index code no. 035-0620-00-693-106909 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Seismic Window Selection and Misfit Measurements for Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Lei, W.; Bozdag, E.; Lefebvre, M.; Podhorszki, N.; Smith, J. A.; Tromp, J.
2013-12-01
Global Adjoint Tomography requires fast parallel processing of large datasets. After obtaing the preprocessed observed and synthetic seismograms, we use the open source software packages FLEXWIN (Maggi et al. 2007) to select time windows and MEASURE_ADJ to make measurements. These measurements define adjoint sources for data assimilation. Previous versions of these tools work on a pair of SAC files---observed and synthetic seismic data for the same component and station, and loop over all seismic records associated with one earthquake. Given the large number of stations and earthquakes, the frequent read and write operations create severe I/O bottlenecks on modern computing platforms. We present new versions of these tools utilizing a new seismic data format, namely the Adaptive Seismic Data Format(ASDF). This new format shows superior scalability for applications on high-performance computers and accommodates various types of data, including earthquake, industry and seismic interferometry datasets. ASDF also provides user-friendly APIs, which can be easily integrated into the adjoint tomography workflow and combined with other data processing tools. In addition to solving the I/O bottleneck, we are making several improvements to these tools. For example, FLEXWIN is tuned to select windows for different types of earthquakes. To capture their distinct features, we categorize earthquakes by their depths and frequency bands. Moreover, instead of only picking phases between the first P arrival and the surface-wave arrivals, our aim is to select and assimilate many other later prominent phases in adjoint tomography. For example, in the body-wave band (17 s - 60 s), we include SKS, sSKS and their multiple, while in the surface-wave band (60 s - 120 s) we incorporate major-arc surface waves.
Adjoint calculations for multiple scattering of Compton and Rayleigh effects
NASA Astrophysics Data System (ADS)
Fernández, J. E.; Sumini, M.
1992-08-01
As is well known, the experimental determination of the Compton profile requires a particular geometry with a scattering angle close to π. That situation involves a narrow multiple-scattering spectrum that overlaps the Compton peak, making it difficult to analyze the different contributions to the profile. We show how the solution of the adjoint problem can help in devising more useful experimental configurations, giving, through its classical "importance" meaning, a formally clear picture of the whole problem.
Forward and adjoint sensitivity computation of chaotic dynamical systems
Wang, Qiqi
2013-02-15
This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged “statistical” quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.
A comparison of adjoint and data-centric verification techniques.
Wildey, Timothy Michael; Cyr, Eric Christopher; Shadid, John Nicolas; Pawlowski, Roger Patrick; Smith, Thomas Michael
2013-03-01
This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant of a data-centric verification technique. We provide a brief overview of each technique and then we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical results for steady-state Navier Stokes and SARANS approximations. 3
Monopole condensation in two-flavor adjoint QCD
Cossu, Guido; D'Elia, Massimo; Di Giacomo, Adriano; Lacagnina, Giuseppe; Pica, Claudio
2008-04-01
In QCD with adjoint fermions, the deconfining transition takes place at a lower temperature than the chiral transition. We study the two transitions by use of the Polyakov loop, the monopole order parameter, and the chiral condensate. The deconfining transition is first order, the chiral is a crossover. The order parameters for confinement are not affected by the chiral transition. We conclude that the degrees of freedom relevant to confinement are different from those describing chiral symmetry.
Spectral monodromy of non-self-adjoint operators
NASA Astrophysics Data System (ADS)
Phan, Quang Sang
2014-01-01
In the present paper, we build a combinatorial invariant, called the "spectral monodromy" from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc ["Quantum monodromy in integrable systems," Commun. Math. Phys. 203(2), 465-479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat ["On global action-angle coordinates," Commun. Pure Appl. Math. 33(6), 687-706 (1980)].
ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA
NASA Astrophysics Data System (ADS)
Capps, S. L.; Henze, D. K.; Hakami, A.; Russell, A. G.; Nenes, A.
2012-01-01
We present the development of ANISORROPIA, the discrete adjoint of the ISORROPIA thermodynamic equilibrium model that treats the Na+-SO42-- HSO4--NH4+ -NO3--Cl--H2O aerosol system, and we demonstrate its sensitivity analysis capabilities. ANISORROPIA calculates sensitivities of an inorganic species in aerosol or gas phase with respect to the total concentrations of each species present with less than a two-fold increase in computational time over the concentration calculations. Due to the highly nonlinear and discontinuous solution surface of ISORROPIA, evaluation of the adjoint required a new, complex-variable version of the model, which determines first-order sensitivities with machine precision and avoids cancellation errors arising from finite difference calculations. The adjoint is verified over an atmospherically relevant range of concentrations, temperature, and relative humidity. We apply ANISORROPIA to recent field campaign results from Atlanta, GA, USA, and Mexico City, Mexico, to characterize the inorganic aerosol sensitivities of these distinct urban air masses. The variability in the relationship between fine mode inorganic aerosol mass and precursor concentrations shown has important implications for air quality and climate.
Self-adjoint time operators and invariant subspaces
NASA Astrophysics Data System (ADS)
Gómez, Fernando
2008-02-01
The question of existence of self-adjoint time operators for unitary evolutions in classical and quantum mechanics is revisited on the basis of Halmos-Helson theory of invariant subspaces, Sz.-Nagy-Foiaş dilation theory and Misra-Prigogine-Courbage theory of irreversibility. It is shown that the existence of self-adjoint time operators is equivalent to the intertwining property of the evolution plus the existence of simply invariant subspaces or rigid operator-valued functions for its Sz.-Nagy-Foiaş functional model. Similar equivalent conditions are given in terms of intrinsic randomness in the context of statistical mechanics. The rest of the contents are mainly a unifying review of the subject scattered throughout an unconnected literature. A well-known extensive set of equivalent conditions is derived from the above results; such conditions are written in terms of Schrrdinger couples, the Weyl commutation relation, incoming and outgoing subspaces, innovation processes, Lax-Phillips scattering, translation and spectral representations, and spectral properties. Also the natural procedure dealing with symmetric time operators in standard quantum mechanics involving their self-adjoint extensions is illustrated by considering the quantum Aharonov-Bohm time-of-arrival operator.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
Spectral monodromy of non-self-adjoint operators
Phan, Quang Sang
2014-01-15
In the present paper, we build a combinatorial invariant, called the “spectral monodromy” from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc [“Quantum monodromy in integrable systems,” Commun. Math. Phys. 203(2), 465–479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat [“On global action-angle coordinates,” Commun. Pure Appl. Math. 33(6), 687–706 (1980)].
NASA Astrophysics Data System (ADS)
Tsuboi, S.; Miyoshi, T.; Obayashi, M.; Tono, Y.; Ando, K.
2014-12-01
Recent progress in large scale computing by using waveform modeling technique and high performance computing facility has demonstrated possibilities to perform full-waveform inversion of three dimensional (3D) seismological structure inside the Earth. We apply the adjoint method (Liu and Tromp, 2006) to obtain 3D structure beneath Japanese Islands. First we implemented Spectral-Element Method to K-computer in Kobe, Japan. We have optimized SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002) by using OpenMP so that the code fits hybrid architecture of K-computer. Now we could use 82,134 nodes of K-computer (657,072 cores) to compute synthetic waveform with about 1 sec accuracy for realistic 3D Earth model and its performance was 1.2 PFLOPS. We use this optimized SPECFEM3D_GLOBE code and take one chunk around Japanese Islands from global mesh and compute synthetic seismograms with accuracy of about 10 second. We use GAP-P2 mantle tomography model (Obayashi et al., 2009) as an initial 3D model and use as many broadband seismic stations available in this region as possible to perform inversion. We then use the time windows for body waves and surface waves to compute adjoint sources and calculate adjoint kernels for seismic structure. We have performed several iteration and obtained improved 3D structure beneath Japanese Islands. The result demonstrates that waveform misfits between observed and theoretical seismograms improves as the iteration proceeds. We now prepare to use much shorter period in our synthetic waveform computation and try to obtain seismic structure for basin scale model, such as Kanto basin, where there are dense seismic network and high seismic activity. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We used F-net seismograms of the National Research Institute for Earth Science and Disaster Prevention.
Cable shield connecting device
Silva, Frank A.
1979-01-01
A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.
A new mathematical adjoint for the modified SAAF_{-SN} equations
Schunert, Sebastian; Wang, Yaqi; Martineau, Richard; DeHart, Mark D.
2015-01-01
We present a new adjoint FEM weak form, which can be directly used for evaluating the mathematical adjoint, suitable for perturbation calculations, of the self-adjoint angular flux SN equations (SAAF_{-SN}) without construction and transposition of the underlying coefficient matrix. Stabilization schemes incorporated in the described SAAF_{-SN} method make the mathematical adjoint distinct from the physical adjoint, i.e. the solution of the continuous adjoint equation with SAAF_{-SN} . This weak form is implemented into RattleSnake, the MOOSE (Multiphysics Object-Oriented Simulation Environment) based transport solver. Numerical results verify the correctness of the implementation and show its utility both for fixed source and eigenvalue problems.
Nonlinear self-adjointness and conservation laws of Klein-Gordon-Fock equation with central symmetry
NASA Astrophysics Data System (ADS)
Abdulwahhab, Muhammad Alim
2015-05-01
The concept of nonlinear self-adjointness, introduced by Ibragimov, has significantly extends approaches to constructing conservation laws associated with symmetries since it incorporates the strict self-adjointness, the quasi self-adjointness as well as the usual linear self-adjointness. Using this concept, the nonlinear self-adjointness condition for the Klein-Gordon-Fock equation was established and subsequently used to construct simplified but infinitely many nontrivial and independent conserved vectors. The Noether's theorem was further applied to the Klein-Gordon-Fock equation to explore more distinct first integrals, result shows that conservation laws constructed through this approach are exactly the same as those obtained under strict self-adjointness of Ibragimov's method.
Wigner, E.P.; Young, G.J.
1958-09-23
ABS>A radiation shield that is suitable for the protection of personnel from both gamma rays and nentrons is described. The shield is comprised of a hollow wall and an aggregate consisting of iron and water in approximately equal amounts by volume substantially filling the wall. A means is provided to circulate the water through the wall to cool the shield when in use.
Full waveform seismic tomography of the Vrancea region using the adjoint method
NASA Astrophysics Data System (ADS)
Baron, J.; Danecek, P.; Morelli, A.; Tondi, R.
2013-12-01
constrained by the quantity of usable seismic data as well as a poor signal-to-noise ratio, which imposes to carry out the analysis in a frequency band of relatively high frequencies. The adjoint tomographic inversion is implemented with the SPECFEM3D solver (a community code applying the spectral element method) to generate synthetic data and traveltime misfit kernels in a fine computational mesh that satisfies the data frequency band requirements. The computation is run on a BlueGene/Q massively parallel computer available at the CINECA supercomputing centre. We show what information can be retrieved about the tomographic model applying the full-waveform inversion and adjoint methods even applied to a modest-quality, mostly high-frequency content, regional dataset.
Accelerating forward and adjoint simulations of seismic wave propagation on large GPU-clusters
NASA Astrophysics Data System (ADS)
Peter, D. B.; Rietmann, M.; Charles, J.; Messmer, P.; Komatitsch, D.; Schenk, O.; Tromp, J.
2012-12-01
In seismic tomography, waveform inversions require accurate simulations of seismic wave propagation in complex media.The current versions of our spectral-element method (SEM) packages, the local-scale code SPECFEM3D and the global-scale code SPECFEM3D_GLOBE, are widely used open-source community codes which simulate seismic wave propagation for local-, regional- and global-scale applications. These numerical simulations compute highly accurate seismic wavefields, accounting for fully 3D Earth models. However, code performance often governs whether seismic inversions become feasible or remain elusive. We report here on extending these high-order finite-element packages to further exploit graphic processing units (GPUs) and perform numerical simulations of seismic wave propagation on large GPU clusters. These enhanced packages can be readily run either on multi-core CPUs only or together with many-core GPU acceleration devices. One of the challenges in parallelizing finite element codes is the potential for race conditions during the assembly phase. We therefore investigated different methods such as mesh coloring or atomic updates on the GPU. In order to achieve strong scaling, we needed to ensure good overlap of data motion at all levels, including internode and host-accelerator transfers. These new MPI/CUDA solvers exhibit excellent scalability and achieve speedup on a node-to-node basis over the carefully tuned equivalent multi-core MPI solver. We present case studies run on a Cray XK6 GPU architecture up to 896 nodes to demonstrate the performance of both the forward and adjoint functionality of the code packages. Running simulations on such dedicated GPU clusters further reduces computation times and pushes seismic inversions into a new, higher frequency realm.
NASA Technical Reports Server (NTRS)
Schwinghamer, R. J.
1975-01-01
The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab I, about 63 seconds after lift-off, proved to be the harbinger of a prodigious effort to quickly develop a workable substitute for the carefully tailored passive portion of the thermal-control system. The paper describes the intensive ten-day around-the-clock effort in which numerous potential thermal-shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal-shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material 'memory' properties.
RADIATION SHIELDING COMPOSITION
Dunegan, H.L.
1963-01-29
A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)
Shielding analysis of a small compact space nuclear reactor. Final report
Woodrow, L.L.
1987-08-01
The SP-100 reactor concept, currently in its developmental stage, has layered tungsten - lithium hydride shield. Studies indicate that this shield configuration is the lightest weight shield. This configuration and three other shielding concepts were analyzed to determine the lightest shield and to determine the shield configuration with the smallest volume. The other three concepts were a boron carbide - beryllium layered shield, and a lithium hydride - beryllium shield. FEMP2D and FEMP1D codes were used in this analysis. These codes were developed at Sandia National Laboratory (SNL), using the input from another code, RFCC, which produced energy-dependent dose conversion factors, and determined the shield's ability to attenuate the neutron and gamma radiation to permissible dose limits. The results of this analysis show that the lithium hydride - tungsten layered shield was indeed the lightest weight shield. However, a boron carbide - tungsten shield was calculably volume constrained. Therefore volume, not weight, may be the driving factor in determining the shield configuration.
Shielding Analyses for VISION Beam Line at SNS
Popova, Irina; Gallmeier, Franz X
2014-01-01
Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.
High-resolution array imaging using teleseismic converted waves based on adjoint methods
NASA Astrophysics Data System (ADS)
Liu, Q.; Chen, C.
2011-12-01
Seismic coda waves and converted phases have been used extensively to image detailed subsurface structures underneath seismic arrays, based on methods such as receiver functions, Kirchhoff migration and generalized Radon transform (GRT). Utilizing the same coda and converted waves, we propose to image both discontinuity interfaces and 3D velocity anomalies by combining full numerical simulations of wave propagation with adjoint methods recently adopted in global and regional tomography inversions. The `sensitivities' of these coda/converted waves to density, P and S velocities are calculated based on the interaction of the forward wave field that produces the main P phase, and the adjoint wave field generated by injecting the coda/converted phases at array stations as virtual sources, similar to the computation of isochrons in previous techniques. The density kernels generally highlight discontinuity interfaces and sharp velocity contrasts, while P and S velocity kernels provide hints to the update of volumetric velocity structures. The application of numerical solvers also allows the incorporation of 3D regional tomography models as background velocity models, providing better focusing of velocity anomalies. We show the feasibility of this technique on a synthetic case built based on the imaging geometry for Slave craton in the northwestern Canadian Shield by the POLARIS broadband seismic network. The main challenge of this technique lies in reproducing the forward wave field generated by tele-seismic sources in a limited simulation domain encompassing only local heterogeneous structures underneath array receivers. For simple homogeneous and layer-over-half-space background models, this can be solved by setting the incoming plane waves as initial conditions based on analytical formulae. For more sophisticated background models, a hybrid spectral-element solver is implemented by defining a fictitious boundary encompassing all local heterogeneities within the
Borst, L.B.
1961-07-11
A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.
Ohlinger, R.D.; Humphrey, H.W.
1985-08-26
A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.
Adjoint-based optimization for understanding and suppressing jet noise
NASA Astrophysics Data System (ADS)
Freund, Jonathan B.
2011-08-01
Advanced simulation tools, particularly large-eddy simulation techniques, are becoming capable of making quality predictions of jet noise for realistic nozzle geometries and at engineering relevant flow conditions. Increasing computer resources will be a key factor in improving these predictions still further. Quality prediction, however, is only a necessary condition for the use of such simulations in design optimization. Predictions do not themselves lead to quieter designs. They must be interpreted or harnessed in some way that leads to design improvements. As yet, such simulations have not yielded any simplifying principals that offer general design guidance. The turbulence mechanisms leading to jet noise remain poorly described in their complexity. In this light, we have implemented and demonstrated an aeroacoustic adjoint-based optimization technique that automatically calculates gradients that point the direction in which to adjust controls in order to improve designs. This is done with only a single flow solutions and a solution of an adjoint system, which is solved at computational cost comparable to that for the flow. Optimization requires iterations, but having the gradient information provided via the adjoint accelerates convergence in a manner that is insensitive to the number of parameters to be optimized. This paper, which follows from a presentation at the 2010 IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction, reviews recent and ongoing efforts by the author and co-workers. It provides a new formulation of the basic approach and demonstrates the approach on a series of model flows, culminating with a preliminary result for a turbulent jet.
Advances in Global Adjoint Tomography -- Massive Data Assimilation
NASA Astrophysics Data System (ADS)
Ruan, Y.; Lei, W.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Krischer, L.; Tromp, J.
2015-12-01
Azimuthal anisotropy and anelasticity are key to understanding a myriad of processes in Earth's interior. Resolving these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models and an iterative inversion strategy. In the wake of successes in regional studies(e.g., Chen et al., 2007; Tape et al., 2009, 2010; Fichtner et al., 2009, 2010; Chen et al.,2010; Zhu et al., 2012, 2013; Chen et al., 2015), we are employing adjoint tomography based on a spectral-element method (Komatitsch & Tromp 1999, 2002) on a global scale using the supercomputer ''Titan'' at Oak Ridge National Laboratory. After 15 iterations, we have obtained a high-resolution transversely isotropic Earth model (M15) using traveltime data from 253 earthquakes. To obtain higher resolution images of the emerging new features and to prepare the inversion for azimuthal anisotropy and anelasticity, we expanded the original dataset with approximately 4,220 additional global earthquakes (Mw5.5-7.0) --occurring between 1995 and 2014-- and downloaded 300-minute-long time series for all available data archived at the IRIS Data Management Center, ORFEUS, and F-net. Ocean Bottom Seismograph data from the last decade are also included to maximize data coverage. In order to handle the huge dataset and solve the I/O bottleneck in global adjoint tomography, we implemented a python-based parallel data processing workflow based on the newly developed Adaptable Seismic Data Format (ASDF). With the help of the data selection tool MUSTANG developed by IRIS, we cleaned our dataset and assembled event-based ASDF files for parallel processing. We have started Centroid Moment Tensors (CMT) inversions for all 4,220 earthquakes with the latest model M15, and selected high-quality data for measurement. We will statistically investigate each channel using synthetic seismograms calculated in M15 for updated CMTs and identify problematic channels. In addition to data screening, we also modified
A self-adjoint decomposition of the radial momentum operator
NASA Astrophysics Data System (ADS)
Liu, Q. H.; Xiao, S. F.
2015-12-01
With acceptance of the Dirac's observation that the canonical quantization entails using Cartesian coordinates, we examine the operator erPr rather than Pr itself and demonstrate that there is a decomposition of erPr into a difference of two self-adjoint but noncommutative operators, in which one is the total momentum and another is the transverse one. This study renders the operator Pr indirectly measurable and physically meaningful, offering an explanation of why the mean value of Pr over a quantum mechanical state makes sense and supporting Dirac's claim that Pr "is real and is the true momentum conjugate to r".
Examining Tropical Cyclone - Kelvin Wave Interactions using Adjoint Diagnostics
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Doyle, J. D.; Hong, X.
2015-12-01
Adjoint-based tools can provide valuable insight into the mechanisms that influence the evolution and predictability of atmospheric phenomena, as they allow for the efficient and rigorous computation of forecast sensitivity to changes in the initial state. We apply adjoint-based tools from the non-hydrostatic Coupled Atmosphere/Ocean Mesoscale Prediction System (COAMPS) to explore the initial-state sensitivity and interactions between a tropical cyclone and atmospheric equatorial waves associated with the Madden Julian Oscillation (MJO) in the Indian Ocean during the DYNAMO field campaign. The development of Tropical Cyclone 5 (TC05) coincided with the passage of an equatorial Kelvin wave and westerly wind burst associated with an MJO that developed in the Indian Ocean in late November 2011, but it was unclear if and how one affected the other. COAMPS 24-h and 36-h adjoint sensitivities are analyzed for both TC05 and the equatorial waves to understand how the evolution of each system is sensitive to the other. The sensitivity of equatorial westerlies in the western Indian Ocean on 23 November shares characteristics with the classic Gill (1980) Rossby and Kelvin wave response to symmetric heating about the equator, including symmetric cyclonic circulations to the north and south of the westerlies, and enhanced heating in the area of convergence between the equatorial westerlies and easterlies. In addition, there is sensitivity in the Bay of Bengal associated with the cyclonic circulation that eventually develops into TC05. At the same time, the developing TC05 system shows strongest sensitivity to local wind and heating perturbations, but sensitivity to the equatorial westerlies is also clear. On 24 November, when the Kelvin wave is immediately south of the developing tropical cyclone, both phenomena are sensitive to each other. On 25 November TC05 no longer shows sensitivity to the Kelvin wave, while the Kelvin Wave still exhibits some weak sensitivity to TC05. In
Adjoint-based optimal control for black-box simulators enabled by model calibration
NASA Astrophysics Data System (ADS)
Chen, Han; Wang, Qiqi; Klie, Hector
2013-11-01
Many simulations are performed using legacy code that are difficult to modify, or commercial software without available source code. Such ``black-box'' simulator often solves a partial differential equation involving some unknown parameters, functions or discretization methods. Optimal control for black-box simulators can be performed using gradient-free methods, but these methods can be computationally expensive when the controls are high dimensional. We aim at developing a more efficient optimization methodology for black-box simulations by first inferring and calibrating a ``twin model'' of the black-box simulator. The twin model is an open-box model that mirrors the behavior of the black-box simulation using data assimilation techniques. We then apply adjoint-based optimal control to the calibrated twin model. This method is applied to a 1D Buckley-Leverett equation solver, and a black-box multi-phase porous media flow solver PSIM. Special thanks to the support from the subsurface technology group of ConocoPhillips.
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
Garrison, W.M.; McClinton, L.T.; Burton, M.
1959-03-10
A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.
Kim, Min-Geun; Jang, Hong-Lae; Cho, Seonho
2013-05-01
An efficient adjoint design sensitivity analysis method is developed for reduced atomic systems. A reduced atomic system and the adjoint system are constructed in a locally confined region, utilizing generalized Langevin equation (GLE) for periodic lattice structures. Due to the translational symmetry of lattice structures, the size of time history kernel function that accounts for the boundary effects of the reduced atomic systems could be reduced to a single atom’s degrees of freedom. For the problems of highly nonlinear design variables, the finite difference method is impractical for its inefficiency and inaccuracy. However, the adjoint method is very efficient regardless of the number of design variables since one additional time integration is required for the adjoint GLE. Through numerical examples, the derived adjoint sensitivity turns out to be accurate and efficient through the comparison with finite difference sensitivity.
Probability density adjoint for sensitivity analysis of the Mean of Chaos
Blonigan, Patrick J. Wang, Qiqi
2014-08-01
Sensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. This paper presents a new method for sensitivity analysis of ergodic chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.
Application of the MASH v1.0 Code System to radiological warfare radiation threats
Johnson, J.O.; Santoro, R.T.; Smith, M.S.
1994-03-01
Nuclear hardening capabilities of US and foreign ground force systems is a primary concern of the Department of Defense (DoD) and US Army. The Monte Carlo Adjoint Shielding Code System -- MASH v1.0 was developed at Oak Ridge National Laboratory (ORNL) to analyze these capabilities, i.e. the shielding effectiveness, for prompt radiation from a nuclear weapon detonation. Rapidly changing world events and the proliferation of nuclear weapons related technology have increased the kinds of nuclear threats to include intentionally dispersed radiation sources and fallout from tactical nuclear weapons used in the modern AirLand battlefield scenario. Consequently, a DoD area of increasing interest focuses on determining the shielding effectiveness of foreign and US armored vehicles to radiological warfare and fallout radiation threats. To demonstrate the applicability of MASH for analyzing dispersed radiation source problems, calculations have been completed for two distributed sources; a dispersed radiation environment simulated by a uniformly distributed {sup 60}Co source, and a {sup 235}U fission weapon fallout source. Fluence and dose assessments were performed for the free-field, the inside of a steel-walled two-meter box, in a phantom standing in the free-field, and in a phantom standing in the two-meter box. The results indicate substantial radiation protection factors for the {sup 60}Co dispersed radiation source and the fallout source compared to the prompt radiation protection factors. The dose protection factors ranged from 40 to 95 for the two-meter box and from 55 to 123 for the mid-gut position of the phantom standing in the box. The results further indicate that a {sup 60}Co source might be a good first order approximation for a tactical fission weapon fallout protection factor analysis.
Limitations of Adjoint-Based Optimization for Separated Flows
NASA Astrophysics Data System (ADS)
Otero, J. Javier; Sharma, Ati; Sandberg, Richard
2015-11-01
Cabin noise is generated by the transmission of turbulent pressure fluctuations through a vibrating panel and can lead to fatigue. In the present study, we model this problem by using DNS to simulate the flow separating off a backward facing step and interacting with a plate downstream of the step. An adjoint formulation of the full compressible Navier-Stokes equations with varying viscosity is used to calculate the optimal control required to minimize the fluid-structure-acoustic interaction with the plate. To achieve noise reduction, a cost function in wavenumber space is chosen to minimize the excitation of the lower structural modes of the structure. To ensure the validity of time-averaged cost functions, it is essential that the time horizon is long enough to be a representative sample of the statistical behaviour of the flow field. The results from the current study show how this scenario is not always feasible for separated flows, because the chaotic behaviour of turbulence surpasses the ability of adjoint-based methods to compute time-dependent sensitivities of the flow.
Kerry Lee, NASA Orion radiation system manager, explains how radiation shielding is used to block harmful particles coming into the spacecraft without producing secondary particles that can cause e...
ALS synchrotron radiation shielding
Donahue, R.J.
1995-10-01
This note discusses the assumptions and results of synchrotron radiation shielding estimates for ALS bend magnet and wiggler beamlines. Estimates of gas bremsstrahlung production are not included and are dealt with elsewhere.
SNS shielding analyses overview
Popova, Irina; Gallmeier, Franz; Iverson, Erik B; Lu, Wei; Remec, Igor
2015-01-01
This paper gives an overview on on-going shielding analyses for Spallation Neutron Source. Presently, the most of the shielding work is concentrated on the beam lines and instrument enclosures to prepare for commissioning, save operation and adequate radiation background in the future. There is on-going work for the accelerator facility. This includes radiation-protection analyses for radiation monitors placement, designing shielding for additional facilities to test accelerator structures, redesigning some parts of the facility, and designing test facilities to the main accelerator structure for component testing. Neutronics analyses are required as well to support spent structure management, including waste characterisation analyses, choice of proper transport/storage package and shielding enhancement for the package if required.
Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James
2009-01-06
An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.
Shielded cells transfer automation
Fisher, J J
1984-01-01
Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.
NASA Technical Reports Server (NTRS)
Christiansen, Eric
2006-01-01
This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.
Standardized Radiation Shield Design Methods: 2005 HZETRN
NASA Technical Reports Server (NTRS)
Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.
2006-01-01
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
NASA Astrophysics Data System (ADS)
Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri
2015-04-01
Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Building A New Kind of Graded-Z Shield for Swift's Burst Alert Telescope
NASA Technical Reports Server (NTRS)
Robinson, David W.
2002-01-01
The Burst Alert Telescope (BAT) on Swift has a graded-Z Shield that closes out the volume between the coded aperture mask and the Cadmium-Zinc-Telluride (CZT) detector array. The purpose of the 37 kilogram shield is to attenuate gamma rays that have not penetrated the coded aperture mask of the BAT instrument and are therefore a major source of noise on the detector array. Unlike previous shields made from plates and panels, this shield consists of multiple layers of thin metal foils (lead, tantalum, tin, and copper) that are stitched together much like standard multi-layer insulation blankets. The shield sections are fastened around BAT, forming a curtain around the instrument aperture. Strength tests were performed to validate and improve the design, and the shield will be vibration tested along with BAT in late 2002. Practical aspects such as the layup design, methods of manufacture, and testing of this new kind of graded-Z Shield are presented.
Energy spectra and LET spectra of protons behind shielding
NASA Astrophysics Data System (ADS)
Katz, Sari; Barak, Joseph
2014-08-01
With the advent of devices sensitive to SEU due to direct ionization by protons, it became important to know the flux and energies of protons behind aluminum shielding or within satellites. We present new analytically derived expressions for the energy distribution of incident protons, after passing the shielding, and of secondary protons emitted within the shielding. The results are compared with those of the MULASSIS code. In some cases, like a satellite in a GCR orbit, the contribution of the secondary protons to SEU might be the dominant one. Proton energy-distributions behind shielding are proportional, at low energy values, to inverse proton-LET in aluminum. Their calculated LET-spectra in silicon can be used for evaluating SEU-rate in space. The analytic expressions presented here can be useful in calculating the influence of shielding on other incident ions and secondary ions.
Monte Carlo simulations for optimization of neutron shielding concrete
NASA Astrophysics Data System (ADS)
Piotrowski, Tomasz; Tefelski, Dariusz; Polański, Aleksander; Skubalski, Janusz
2012-06-01
Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.