MCNP: Multigroup/adjoint capabilities
Wagner, J.C.; Redmond, E.L. II; Palmtag, S.P.; Hendricks, J.S.
1994-04-01
This report discusses various aspects related to the use and validity of the general purpose Monte Carlo code MCNP for multigroup/adjoint calculations. The increased desire to perform comparisons between Monte Carlo and deterministic codes, along with the ever-present desire to increase the efficiency of large MCNP calculations has produced a greater user demand for the multigroup/adjoint capabilities. To more fully utilize these capabilities, we review the applications of the Monte Carlo multigroup/adjoint method, describe how to generate multigroup cross sections for MCNP with the auxiliary CRSRD code, describe how to use the multigroup/adjoint capability in MCNP, and provide examples and results indicating the effectiveness and validity of the MCNP multigroup/adjoint treatment. This information should assist users in taking advantage of the MCNP multigroup/adjoint capabilities.
Adjoint Function: Physical Basis of Variational & Perturbation Theory in Transport
Energy Science and Technology Software Center (ESTSC)
2009-07-27
Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Importance: The Adjoint Function: The Physical Basis of Variational and Perturbation Theory in Transport and Diffusion Problems, North-Holland Publishing Company - Amsterdam, 582 pages, 1966 Introduction: Continuous Systems and the Variational Principle 1. The Fundamental Variational Principle 2. The Importance Function 3. Adjoint Equations 4. Variational Methods 5. Perturbation and Iterative Methods 6. Non-Linear Theory
NASA Astrophysics Data System (ADS)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.
2016-09-01
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
Eulerian-Lagrangian localized adjoint methods for reactive transport in groundwater
Ewing, R.E.; Wang, Hong
1996-12-31
In this paper, we present Eulerian-Lagrangian localized adjoint methods (ELLAM) to solve convection-diffusion-reaction equations governing contaminant transport in groundwater flowing through an adsorbing porous medium. These ELLAM schemes can treat various combinations of boundary conditions and conserve mass. Numerical results are presented to demonstrate the strong potential of ELLAM schemes.
NASA Astrophysics Data System (ADS)
Marotzke, Jochem; Giering, Ralf; Zhang, Kate Q.; Stammer, Detlef; Hill, Chris; Lee, Tong
1999-12-01
We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent-Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN-) line-by-line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The "kinematic sensitivity" to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east-west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.
Development of CO2 inversion system based on the adjoint of the global coupled transport model
NASA Astrophysics Data System (ADS)
Belikov, Dmitry; Maksyutov, Shamil; Chevallier, Frederic; Kaminski, Thomas; Ganshin, Alexander; Blessing, Simon
2014-05-01
We present the development of an inverse modeling system employing an adjoint of the global coupled transport model consisting of the National Institute for Environmental Studies (NIES) Eulerian transport model (TM) and the Lagrangian plume diffusion model (LPDM) FLEXPART. NIES TM is a three-dimensional atmospheric transport model, which solves the continuity equation for a number of atmospheric tracers on a grid spanning the entire globe. Spatial discretization is based on a reduced latitude-longitude grid and a hybrid sigma-isentropic coordinate in the vertical. NIES TM uses a horizontal resolution of 2.5°×2.5°. However, to resolve synoptic-scale tracer distributions and to have the ability to optimize fluxes at resolutions of 0.5° and higher we coupled NIES TM with the Lagrangian model FLEXPART. The Lagrangian component of the forward and adjoint models uses precalculated responses of the observed concentration to the surface fluxes and 3-D concentrations field simulated with the FLEXPART model. NIES TM and FLEXPART are driven by JRA-25/JCDAS reanalysis dataset. Construction of the adjoint of the Lagrangian part is less complicated, as LPDMs calculate the sensitivity of measurements to the surrounding emissions field by tracking a large number of "particles" backwards in time. Developing of the adjoint to Eulerian part was performed with automatic differentiation tool the Transformation of Algorithms in Fortran (TAF) software (http://www.FastOpt.com). This method leads to the discrete adjoint of NIES TM. The main advantage of the discrete adjoint is that the resulting gradients of the numerical cost function are exact, even for nonlinear algorithms. The overall advantages of our method are that: 1. No code modification of Lagrangian model is required, making it applicable to combination of global NIES TM and any Lagrangian model; 2. Once run, the Lagrangian output can be applied to any chemically neutral gas; 3. High-resolution results can be obtained over
Adjoint-based deviational Monte Carlo methods for phonon transport calculations
NASA Astrophysics Data System (ADS)
Péraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G.
2015-06-01
In the field of linear transport, adjoint formulations exploit linearity to derive powerful reciprocity relations between a variety of quantities of interest. In this paper, we develop an adjoint formulation of the linearized Boltzmann transport equation for phonon transport. We use this formulation for accelerating deviational Monte Carlo simulations of complex, multiscale problems. Benefits include significant computational savings via direct variance reduction, or by enabling formulations which allow more efficient use of computational resources, such as formulations which provide high resolution in a particular phase-space dimension (e.g., spectral). We show that the proposed adjoint-based methods are particularly well suited to problems involving a wide range of length scales (e.g., nanometers to hundreds of microns) and lead to computational methods that can calculate quantities of interest with a cost that is independent of the system characteristic length scale, thus removing the traditional stiffness of kinetic descriptions. Applications to problems of current interest, such as simulation of transient thermoreflectance experiments or spectrally resolved calculation of the effective thermal conductivity of nanostructured materials, are presented and discussed in detail.
Adjoint transport calculations for sensitivity analysis of the Hiroshima air-over-ground environment
Broadhead, B.L.; Cacuci, D.G.; Pace, J.V. III
1984-01-01
A major effort within the US Dose Reassessment Program is aimed at recalculating the transport of initial nuclear radiation in an air-over-ground environment. This paper is the first report of results from adjoint calculations in the Hiroshima air-over-ground environment. The calculations use a Hiroshima/Nagasaki multi-element ground, ENDF/B-V nuclear data, one-dimensional ANISN flux weighting for neutron and gamma cross sections, a source obtained by two-dimensional hydrodynamic and three-dimensional transport calculations, and best-estimate atmospheric conditions from Japanese sources. 7 references, 2 figures.
Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport
Liscum-Powell, J.L.; Lorence, L.J. Jr.; Morel, J.E.; Prinja, A.K.
1999-07-08
Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere and, like the even- and odd- parity form, S{sub n} source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here we apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross-sections from the CEPXS code and S{sub n} discretization.
Dupree, S. A.
1980-06-01
The use of adjoint techniques to determine the interaction of externally incident collimated beams of particles with cylindrical targets is a convenient means of examining a class of problems important in radiation transport studies. The theory relevant to such applications is derived, and a simple example involving a fissioning target is discussed. Results from both discrete ordinates and Monte Carlo transport-code calculations are presented, and comparisons are made with results obtained from forward calculations. The accuracy of the discrete ordinates adjoint results depends on the order of angular quadrature used in the calculation. Reasonable accuracy by using EQN quadratures can be expected from order S/sub 16/ or higher.
Sanchez, R.
2012-07-01
Nonlinear acceleration of a continuous finite element (CFE) discretization of the transport equation requires a modification of the transport solution in order to achieve local conservation, a condition used in nonlinear acceleration to define the stopping criterion. In this work we implement a coarse-mesh finite difference acceleration for a CFE discretization of the second-order self adjoint angular flux (SAAF) form of the transport equation and use a post processing to enforce local conservation. Numerical results are given for one-group source calculations of one-dimensional slabs. We also give a formal derivation of the boundary conditions for the SAAF. (authors)
Richard Sanchez; Cristian Rabiti; Yaqi Wang
2013-11-01
Nonlinear acceleration of a continuous finite element (CFE) discretization of the transport equation requires a modification of the transport solution in order to achieve local conservation, a condition used in nonlinear acceleration to define the stopping criterion. In this work we implement a coarse-mesh finite difference acceleration for a CFE discretization of the second-order self-adjoint angular flux (SAAF) form of the transport equation and use a postprocessing to enforce local conservation. Numerical results are given for one-group source calculations of one-dimensional slabs. We also give a novel formal derivation of the boundary conditions for the SAAF.
NASA Astrophysics Data System (ADS)
Guven, B.; Olaguer, E. P.; Herndon, S. C.; Kolb, C. E.; Cuclis, A.
2012-12-01
During the "Formaldehyde and Olefins from Large Industrial Sources" (FLAIR) study in 2009, the Aerodyne Research Inc. (ARI) mobile laboratory performed real-time in situ measurements of VOCs, NOx and HCHO in Texas City, TX on May 7, 2009 from 11 am to 3 pm. This high resolution dataset collected in a predominantly industrial area provides an ideal test bed for advanced source attribution. Our goal was to identify and quantify emission sources within the largest facility in Texas City most likely responsible for measured benzene concentrations. For this purpose, fine horizontal resolution (200 m x 200 m) 4D variational (4Dvar) inverse modeling was performed by running the HARC air quality transport model in adjoint mode based on ambient concentrations measured by the mobile laboratory. The simulations were conducted with a horizontal domain size of 4 km x 4 km for a four-hour period (11 am to 3 pm). Potential emission unit locations within the facility were specified using a high spatial resolution digital model of the largest industrial complex in the area. The HARC model was used to infer benzene emission rates from all potential source locations that would account for the benzene concentrations measured by the Aerodyne mobile laboratory in the vicinity of the facility. A Positive Matrix Factorization receptor model was also applied to the concentrations of other compounds measured by the mobile lab to support the source attribution by the inverse model. Although previous studies attributed measured benzene concentrations during the same time period to a cooling tower unit at the industrial complex, this study found that some of the flare units in the facility were also associated with the elevated benzene concentrations. The emissions of some of these flare units were found to be greater than reported in emission inventories, by up to two orders of magnitude.
Transportation capabilities of the existing cask fleet
Johnson, P.E.; Joy, D.S.; Wankerl, M.W.
1991-01-01
This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 46 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the Department of Energy (DOE) consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated. 5 refs., 4 tabs.
NASA Astrophysics Data System (ADS)
Belikov, Dmitry A.; Maksyutov, Shamil; Yaremchuk, Alexey; Ganshin, Alexander; Kaminski, Thomas; Blessing, Simon; Sasakawa, Motoki; Gomez-Pelaez, Angel J.; Starchenko, Alexander
2016-02-01
We present the development of the Adjoint of the Global Eulerian-Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion Model (LPDM). The forward tangent linear and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com, with additional manual pre- and post-processing aimed at improving transparency and clarity of the code and optimizing the performance of the computing, including MPI (Message Passing Interface). The Lagrangian component did not require any code modification, as LPDMs are self-adjoint and track a significant number of particles backward in time in order to calculate the sensitivity of the observations to the neighboring emission areas. The constructed Eulerian adjoint was coupled with the Lagrangian component at a time boundary in the global domain. The simulations presented in this work were performed using the A-GELCA model in forward and adjoint modes. The forward simulation shows that the coupled model improves reproduction of the seasonal cycle and short-term variability of CO2. Mean bias and standard deviation for five of the six Siberian sites considered decrease roughly by 1 ppm when using the coupled model. The adjoint of the Eulerian model was shown, through several numerical tests, to be very accurate (within machine epsilon with mismatch around to ±6 e-14) compared to direct forward sensitivity calculations. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation. A-GELCA will be incorporated
NASA Astrophysics Data System (ADS)
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2016-03-01
This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package authored at Oak Ridge National Laboratory. Shift has been developed to scale well from laptops to small computing clusters to advanced supercomputers and includes features such as support for multiple geometry and physics engines, hybrid capabilities for variance reduction methods such as the Consistent Adjoint-Driven Importance Sampling methodology, advanced parallel decompositions, and tally methods optimized for scalability on supercomputing architectures. The scaling studies presented in this paper demonstrate good weak and strong scaling behavior for the implemented algorithms. Shift has also been validated and verified against various reactor physics benchmarks, including the Consortium for Advanced Simulation of Light Water Reactors' Virtual Environment for Reactor Analysis criticality test suite and several Westinghouse AP1000® problems presented in this paper. These benchmark results compare well to those from other contemporary Monte Carlo codes such as MCNP5 and KENO.
Heberton, C.I.; Russell, T.F.; Konikow, L.F.; Hornberger, G.Z.
2000-01-01
This report documents the U.S. Geological Survey Eulerian-Lagrangian Localized Adjoint Method (ELLAM) algorithm that solves an integral form of the solute-transport equation, incorporating an implicit-in-time difference approximation for the dispersive and sink terms. Like the algorithm in the original version of the U.S. Geological Survey MOC3D transport model, ELLAM uses a method of characteristics approach to solve the transport equation on the basis of the velocity field. The ELLAM algorithm, however, is based on an integral formulation of conservation of mass and uses appropriate numerical techniques to obtain global conservation of mass. The implicit procedure eliminates several stability criteria required for an explicit formulation. Consequently, ELLAM allows large transport time increments to be used. ELLAM can produce qualitatively good results using a small number of transport time steps. A description of the ELLAM numerical method, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. The ELLAM algorithm was evaluated for the same set of problems used to test and evaluate Version 1 and Version 2 of MOC3D. These test results indicate that ELLAM offers a viable alternative to the explicit and implicit solvers in MOC3D. Its use is desirable when mass balance is imperative or a fast, qualitative model result is needed. Although accurate solutions can be generated using ELLAM, its efficiency relative to the two previously documented solution algorithms is problem dependent.
NASA Astrophysics Data System (ADS)
Xu, X.; Wang, J.; Henze, D. K.; Qu, W.; Kopacz, M.
2012-12-01
The knowledge of aerosol emissions from both natural and anthropogenic sources are needed to study the impacts of tropospheric aerosol on atmospheric composition, climate, and human health, but large uncertainties persist in quantifying the aerosol sources with the current bottom-up methods. This study presents a new top-down approach that spatially constrains the amount of aerosol emissions from satellite (MODIS) observed reflectance with the adjoint of a chemistry transport model (GEOS-Chem). We apply this technique with a one-month case study (April 2008) over the East Asia. The bottom-up estimated sulfate-nitrate-ammonium precursors, such as sulfur dioxide (SO2), ammonia (NH3), and nitrogen oxides (NOx), all from INTEX-B 2006 inventory, emissions of black carbon (BC), organic carbon (OC) from Bond-2007 inventory, and mineral dust simulated from DEAD dust mobilization scheme, are spatially optimized from the GEOS-Chem model and its adjoint constrained by the aerosol optical depth (AOD) that are derived from MODIS reflectance with the GEOS-Chem aerosol single scattering properties. The adjoint inverse modeling for the study period yields notable decreases in anthropogenic aerosol emissions over China: 436 Gg (33.5%) for SO2, 378 Gg (34.5%) for NH3, 319 (18.8%) for NOx, 10 Gg (9.1%) for BC, and 30 Gg (15.0%) for OC. The total amount of the mineral dust emission is reduced by 56.4% from the DEAD mobilization module which simulates dust production of 19020 Gg. Sub-regional adjustments are significant and directions of changes are spatially different. The model simulation with optimized aerosol emissions shows much better agreement with independent observations from sun-spectrophotometer observed AOD from AERONET, MISR (Multi-angle Imaging SpectroRadiometer) AOD, OMI (Ozone Monitoring Instrument) NO2 and SO2 columns, and surface aerosol concentrations measured over both anthropogenic pollution and dust source regions. Assuming the used bottom-up anthropogenic
Introduction to Adjoint Models
NASA Technical Reports Server (NTRS)
Errico, Ronald M.
2015-01-01
In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.
ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA
NASA Astrophysics Data System (ADS)
Capps, S. L.; Henze, D. K.; Hakami, A.; Russell, A. G.; Nenes, A.
2011-08-01
We present the development of ANISORROPIA, the discrete adjoint of the ISORROPIA thermodynamic equilibrium model that treats the Na+-SO42--HSO4--NH4+-NO3--Cl--H2O aerosol system, and we demonstrate its sensitivity analysis capabilities. ANISORROPIA calculates sensitivities of an inorganic species in aerosol or gas phase with respect to the total concentrations of each species present with only a two-fold increase in computational time over the forward model execution. Due to the highly nonlinear and discontinuous solution surface of ISORROPIA, evaluation of the adjoint required a new, complex-variable version of the the model, which determines first-order sensitivities with machine precision and avoids cancellation errors arising from finite difference calculations. The adjoint is verified over an atmospherically relevant range of concentrations, temperature, and relative humidity. We apply ANISORROPIA to recent field campaign results from Atlanta, GA, USA, and Mexico City, Mexico, to characterize the inorganic aerosol sensitivities of these distinct urban air masses. The variability in the relationship between PM2.5 mass and precursor concentrations shown has important implications for air quality and climate. ANISORROPIA enables efficient elucidation of aerosol concentration dependence on aerosol precursor emissions in the context of atmospheric chemical transport model adjoints.
Development of an analysis capability for the National Transportation System
Anson, D.; Nelson, R.
1997-10-24
The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.
Size and transportation capabilities of the existing US cask fleet
Danese, F.L. ); Johnson, P.E.; Joy, D.S. )
1990-01-01
This study investigates the current spent nuclear fuel cask fleet capability in the United States. In addition, it assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade.
Transportation capabilities study of DOE-owned spent nuclear fuel
Clark, G.L.; Johnson, R.A.; Smith, R.W.; Abbott, D.G.; Tyacke, M.J.
1994-10-01
This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.
Prestin's anion transport and voltage-sensing capabilities are independent.
Bai, Jun-Ping; Surguchev, Alexei; Montoya, Simone; Aronson, Peter S; Santos-Sacchi, Joseph; Navaratnam, Dhasakumar
2009-04-22
The integral membrane protein prestin, a member of the SLC26 anion transporter family, is responsible for the voltage-driven electromotility of mammalian outer hair cells. It was argued that the evolution of prestin's motor function required a loss of the protein's transport capabilities. Instead, it was proposed that prestin manages only an abortive hemicycle that results in the trapped anion acting as a voltage sensor, to generate the motor's signature gating charge movement or nonlinear capacitance. We demonstrate, using classical radioactive anion ([(14)C]formate and [(14)C]oxalate) uptake studies, that in contrast to previous observations, prestin is able to transport anions. The prestin-dependent uptake of both these anions was twofold that of cells transfected with vector alone, and comparable to SLC26a6, prestin's closest phylogenetic relative. Furthermore, we identify a potential chloride-binding site in which the mutations of two residues (P328A and L326A) preserve nonlinear capacitance, yet negate anion transport. Finally, we distinguish 12 charged residues out of 22, residing within prestin's transmembrane regions, that contribute to unitary charge movement, i.e., voltage sensing. These data redefine our mechanistic concept of prestin. PMID:19383462
Validation of Heavy Ion Transport Capabilities in PHITS
NASA Astrophysics Data System (ADS)
Ronningen, Reginald M.
2007-03-01
The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.
Validation of Heavy Ion Transport Capabilities in PHITS
Ronningen, Reginald M.
2007-03-19
The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.
Realtime capable first principle based modelling of tokamak turbulent transport
NASA Astrophysics Data System (ADS)
Citrin, Jonathan; Breton, Sarah; Felici, Federico; Imbeaux, Frederic; Redondo, Juan; Aniel, Thierry; Artaud, Jean-Francois; Baiocchi, Benedetta; Bourdelle, Clarisse; Camenen, Yann; Garcia, Jeronimo
2015-11-01
Transport in the tokamak core is dominated by turbulence driven by plasma microinstabilities. When calculating turbulent fluxes, maintaining both a first-principle-based model and computational tractability is a strong constraint. We present a pathway to circumvent this constraint by emulating quasilinear gyrokinetic transport code output through a nonlinear regression using multilayer perceptron neural networks. This recovers the original code output, while accelerating the computing time by five orders of magnitude, allowing realtime applications. A proof-of-principle is presented based on the QuaLiKiz quasilinear transport model, using a training set of five input dimensions, relevant for ITG turbulence. The model is implemented in the RAPTOR real-time capable tokamak simulator, and simulates a 300s ITER discharge in 10s. Progress in generalizing the emulation to include 12 input dimensions is presented. This opens up new possibilities for interpretation of present-day experiments, scenario preparation and open-loop optimization, realtime controller design, realtime discharge supervision, and closed-loop trajectory optimization.
Monte Carlo Particle Transport Capability for Inertial Confinement Fusion Applications
Brantley, P S; Stuart, L M
2006-11-06
A time-dependent massively-parallel Monte Carlo particle transport calculational module (ParticleMC) for inertial confinement fusion (ICF) applications is described. The ParticleMC package is designed with the long-term goal of transporting neutrons, charged particles, and gamma rays created during the simulation of ICF targets and surrounding materials, although currently the package treats neutrons and gamma rays. Neutrons created during thermonuclear burn provide a source of neutrons to the ParticleMC package. Other user-defined sources of particles are also available. The module is used within the context of a hydrodynamics client code, and the particle tracking is performed on the same computational mesh as used in the broader simulation. The module uses domain-decomposition and the MPI message passing interface to achieve parallel scaling for large numbers of computational cells. The Doppler effects of bulk hydrodynamic motion and the thermal effects due to the high temperatures encountered in ICF plasmas are directly included in the simulation. Numerical results for a three-dimensional benchmark test problem are presented in 3D XYZ geometry as a verification of the basic transport capability. In the full paper, additional numerical results including a prototype ICF simulation will be presented.
Energy Science and Technology Software Center (ESTSC)
1991-05-01
Version 00 MORSE-CGA was developed to add the capability of modelling rectangular lattices for nuclear reactor cores or for multipartitioned structures. It thus enhances the capability of the MORSE code system. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. It has been designed as a tool for solving most shielding problems. Through the use of multigroup cross sections, the solution of neutron, gamma-ray, or coupled neutron-gamma-ray problems may be obtainedmore » in either the forward or adjoint mode. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. Isotropic or anisotropic scattering up to a P16 expansion of the angular distribution is allowed.« less
Adjoint methods for external beam inverse treatment planning
NASA Astrophysics Data System (ADS)
Kowalok, Michael E.
Forward and adjoint radiation transport methods may both be used to determine the dosimetric relationship between source parameters and voxel elements of a phantom. Forward methods consider one specific tuple of source parameters and calculate the response in all voxels of interest. This response is often cast as the dose delivered per unit source-weight. Adjoint transport methods, conversely, consider one particular voxel and calculate the response of that voxel in relation to all possible source parameters. In this regard, adjoint methods provide an "adjoint function" in addition to a dose value. Although the dose is for a single voxel only, the adjoint function illustrates the source parameters, (e.g. beam positions and directions) that are most important to delivering the dose to that voxel. In this regard, adjoint methods of analysis lend themselves in a natural way to optimization problems and perturbation studies. This work investigates the utility of adjoint analytic methods for treatment planning and for Monte Carlo dose calculations. Various methods for implementing this approach are discussed, along with their strengths and weaknesses. The complementary nature of adjoint and forward techniques is illustrated and exploited. Also, several features of the Monte Carlo codes MCNP and MCNPX are reviewed for treatment planning applications.
Adjoint-Based Uncertainty Quantification with MCNP
Seifried, Jeffrey E.
2011-09-01
This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence in the simulation is acquired.
TAKEOFF AND LANDING PERFORMANCE CAPABILITIES OF TRANSPORT CATEGORY AIRCRAFT
NASA Technical Reports Server (NTRS)
Foss, W. E.
1994-01-01
One of the most important considerations in the design of a commercial transport aircraft is the aircraft's performance during takeoff and landing operations. The aircraft must be designed to meet field length constraints in accordance with airworthiness standards specified in the Federal Aviation Regulations. In addition, the noise levels generated during these operations must be within acceptable limits. This computer program provides for the detailed analysis of the takeoff and landing performance capabilities of transport category aircraft. The program calculates aircraft performance in accordance with the airworthiness standards of the Federal Aviation Regulations. The aircraft and flight constraints are represented in sufficient detail to permit realistic sensitivity studies in terms of either configuration modifications or changes in operational procedures. This program provides for the detailed performance analysis of the takeoff and landing capabilities of specific aircraft designs and allows for sensitivity studies. The program is not designed to synthesize configurations or to generate aerodynamic, propulsion, or structural characteristics. This type of information must be generated externally to the program and then input as data. The program's representation of the aircraft data is extensive and includes realistic limits on engine and aircraft operational boundaries and maximum attainable lift coefficients. The takeoff and climbout flight-path is generated by a stepwise integration of the equation of motion. Special features include options for nonstandard-day operation, for balanced field length, for derated throttle to meet a given field length for off-loaded aircraft, and for throttle cutback during climbout for community noise alleviation. Advanced takeoff procedures for noise alleviation such as programmed throttle and control flaps may be investigated with the program. Approach profiles may incorporate advanced procedures such as two segment
Diagnositcs With Adjoint Modelling
NASA Astrophysics Data System (ADS)
Blessing, S.; Fraedrich, K.; Kirk, E.; Lunkeit, F.
The potential usefulness of an adjoint primitive equations global atmospheric circu- lation model for climate diagnostics is demonstrated in a feasibility study. A daily NAO-type index is calculated as one-point correlation of the 300 hPa streamfunction anomaly. By application of the adjoint model we diagnose its temperature forcing on short timescales in terms of spatial temperature sensitivity patterns at different time lags, which, in a first order approximation, induce growth of the index. The dynamical relevance of these sensitivity patterns is confirmed by lag-correlating the index time series and the projection time series of the model temperature on these sensitivity patterns.
Coupling of Monte Carlo adjoint leakages with three-dimensional discrete ordinates forward fluences
Slater, C.O.; Lillie, R.A.; Johnson, J.O.; Simpson, D.B.
1998-04-01
A computer code, DRC3, has been developed for coupling Monte Carlo adjoint leakages with three-dimensional discrete ordinates forward fluences in order to solve a special category of geometrically-complex deep penetration shielding problems. The code extends the capabilities of earlier methods that coupled Monte Carlo adjoint leakages with two-dimensional discrete ordinates forward fluences. The problems involve the calculation of fluences and responses in a perturbation to an otherwise simple two- or three-dimensional radiation field. In general, the perturbation complicates the geometry such that it cannot be modeled exactly using any of the discrete ordinates geometry options and thus a direct discrete ordinates solution is not possible. Also, the calculation of radiation transport from the source to the perturbation involves deep penetration. One approach to solving such problems is to perform the calculations in three steps: (1) a forward discrete ordinates calculation, (2) a localized adjoint Monte Carlo calculation, and (3) a coupling of forward fluences from the first calculation with adjoint leakages from the second calculation to obtain the response of interest (fluence, dose, etc.). A description of this approach is presented along with results from test problems used to verify the method. The test problems that were selected could also be solved directly by the discrete ordinates method. The good agreement between the DRC3 results and the direct-solution results verify the correctness of DRC3.
Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Ganesh; Cornuelle, Bruce D.; Hoteit, Ibrahim
2013-07-01
Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004-2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of
ADGEN: ADjoint GENerator for computer models
Worley, B.A.; Pin, F.G.; Horwedel, J.E.; Oblow, E.M.
1989-05-01
This paper presents the development of a FORTRAN compiler and an associated supporting software library called ADGEN. ADGEN reads FORTRAN models as input and produces and enhanced version of the input model. The enhanced version reproduces the original model calculations but also has the capability to calculate derivatives of model results of interest with respect to any and all of the model data and input parameters. The method for calculating the derivatives and sensitivities is the adjoint method. Partial derivatives are calculated analytically using computer calculus and saved as elements of an adjoint matrix on direct assess storage. The total derivatives are calculated by solving an appropriate adjoint equation. ADGEN is applied to a major computer model of interest to the Low-Level Waste Community, the PRESTO-II model. PRESTO-II sample problem results reveal that ADGEN correctly calculates derivatives of response of interest with respect to 300 parameters. The execution time to create the adjoint matrix is a factor of 45 times the execution time of the reference sample problem. Once this matrix is determined, the derivatives with respect to 3000 parameters are calculated in a factor of 6.8 that of the reference model for each response of interest. For a single 3000 for determining these derivatives by parameter perturbations. The automation of the implementation of the adjoint technique for calculating derivatives and sensitivities eliminates the costly and manpower-intensive task of direct hand-implementation by reprogramming and thus makes the powerful adjoint technique more amenable for use in sensitivity analysis of existing models. 20 refs., 1 fig., 5 tabs.
Adjoint affine fusion and tadpoles
NASA Astrophysics Data System (ADS)
Urichuk, Andrew; Walton, Mark A.
2016-06-01
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.
Southern California Adjoint Source Inversions
NASA Astrophysics Data System (ADS)
Tromp, J.; Kim, Y.
2007-12-01
Southern California Centroid-Moment Tensor (CMT) solutions with 9 components (6 moment tensor elements, latitude, longitude, and depth) are sought to minimize a misfit function computed from waveform differences. The gradient of a misfit function is obtained based upon two numerical simulations for each earthquake: one forward calculation for the southern California model, and an adjoint calculation that uses time-reversed signals at the receivers. Conjugate gradient and square-root variable metric methods are used to iteratively improve the earthquake source model while reducing the misfit function. The square-root variable metric algorithm has the advantage of providing a direct approximation to the posterior covariance operator. We test the inversion procedure by perturbing each component of the CMT solution, and see how the algorithm converges. Finally, we demonstrate full inversion capabilities using data for real Southern California earthquakes.
PHISICS multi-group transport neutronic capabilities for RELAP5
Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G.
2012-07-01
PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)
Wing planform optimization via an adjoint method
NASA Astrophysics Data System (ADS)
Leoviriyakit, Kasidit
This dissertation focuses on the problem of wing planform optimization for transonic aircraft based on flow simulation using Computational Fluid Dynamics (CFD) combined with an adjoint-gradient based numerical optimization procedure. The adjoint method, traditionally used for wing section design has been extended to cover planform variations and to compute the sensitivities of the structural weight of both the wing section and planform variations. The two relevant disciplines accounted for are the aerodynamics and structural weight. A simplified structural weight model is used for the optimization. Results of a variety of long range transports indicate that significant improvement in both aerodynamics and structures can be achieved simultaneously. The proof-of-concept optimal results indicate large improvements for both drag and structural weight. The work is an "enabling step" towards a realistic automated wing designed by a computer.
Stiff DAE integrator with sensitivity analysis capabilities
Energy Science and Technology Software Center (ESTSC)
2007-11-26
IDAS is a general purpose (serial and parallel) solver for differential equation (ODE) systems with senstivity analysis capabilities. It provides both forward and adjoint sensitivity analysis options.
A new mathematical adjoint for the modified SAAF_{-SN} equations
Schunert, Sebastian; Wang, Yaqi; Martineau, Richard; DeHart, Mark D.
2015-01-01
We present a new adjoint FEM weak form, which can be directly used for evaluating the mathematical adjoint, suitable for perturbation calculations, of the self-adjoint angular flux SN equations (SAAF_{-SN}) without construction and transposition of the underlying coefficient matrix. Stabilization schemes incorporated in the described SAAF_{-SN} method make the mathematical adjoint distinct from the physical adjoint, i.e. the solution of the continuous adjoint equation with SAAF_{-SN} . This weak form is implemented into RattleSnake, the MOOSE (Multiphysics Object-Oriented Simulation Environment) based transport solver. Numerical results verify the correctness of the implementation and show its utility both for fixed source and eigenvalue problems.
NASA Astrophysics Data System (ADS)
Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen
2015-04-01
We will present our initial results of global adjoint tomography based on 3D seismic wave simulations which is one of the most challenging examples in seismology in terms of intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated in inversions. Using a spectral-element method, we incorporate full 3D wave propagation in seismic tomography by running synthetic seismograms and adjoint simulations to compute exact sensitivity kernels in realistic 3D background models. We run our global simulations on the Oak Ridge National Laboratory's Cray XK7 "Titan" system taking advantage of the GPU version of the SPECFEM3D_GLOBE package. We have started iterations with initially selected 253 earthquakes within the magnitude range of 5.5 < Mw < 7.0 and numerical simulations having resolution down to ~27 s to invert for a transversely isotropic crust and mantle model using a non-linear conjugate gradient algorithm. The measurements are currently based on frequency-dependent traveltime misfits. We use both minor- and major-arc body and surface waves by running 200 min simulations where inversions are performed with more than 2.6 million measurements. Our initial results after 12 iterations already indicate several prominent features such as enhanced slab (e.g., Hellenic, Japan, Bismarck, Sandwich), plume/hotspot (e.g., the Pacific superplume, Caroline, Yellowstone, Hawaii) images, etc. To improve the resolution and ray coverage, particularly in the lower mantle, our aim is to increase the resolution of numerical simulations first going down to ~17 s and then to ~9 s to incorporate high-frequency body waves in inversions. While keeping track of the progress and illumination of features in our models with a limited data set, we work towards to assimilate all available data in inversions from all seismic networks and earthquakes in the global CMT catalogue.
Towards Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Bozdag, E.; Zhu, H.; Peter, D. B.; Tromp, J.
2012-12-01
Seismic tomography is at a stage where we can harness entire seismograms using the opportunities offered by advances in numerical wave propagation solvers and high-performance computing. Adjoint methods provide an efficient way for incorporating full nonlinearity of wave propagation and 3D Fréchet kernels in iterative seismic inversions which have so far given promising results at continental and regional scales. Our goal is to take adjoint tomography forward to image the entire planet. Using an iterative conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. We have started with around 255 global CMT events having moment magnitudes between 5.8 and 7, and used GSN stations as well as some local networks such as USArray, European stations etc. Prior to the structure inversion, we reinvert global CMT solutions by computing Green functions in our 3D reference model to take into account effects of crustal variations on source parameters. Using the advantages of numerical simulations, our strategy is to invert crustal and mantle structure together to avoid any bias introduced into upper-mantle images due to "crustal corrections", which are commonly used in classical tomography. 3D simulations dramatically increase the usable amount of data so that, with the current earthquake-station setup, we perform each iteration with more than two million measurements. Multi-resolution smoothing based on ray density is applied to the gradient to better deal with the imperfect source-station distribution on the globe and extract more information underneath regions with dense ray coverage and vice versa. Similar to frequency domain approach, we reduce nonlinearities by starting from long periods and gradually increase the frequency content of data after successive model updates. To simplify the problem, we primarily focus on the elastic structure and therefore our measurements are based on
Real-time capable first principle based modelling of tokamak turbulent transport
NASA Astrophysics Data System (ADS)
Citrin, J.; Breton, S.; Felici, F.; Imbeaux, F.; Aniel, T.; Artaud, J. F.; Baiocchi, B.; Bourdelle, C.; Camenen, Y.; Garcia, J.
2015-09-01
A real-time capable core turbulence tokamak transport model is developed. This model is constructed from the regularized nonlinear regression of quasilinear gyrokinetic transport code output. The regression is performed with a multilayer perceptron neural network. The transport code input for the neural network training set consists of five dimensions, and is limited to adiabatic electrons. The neural network model successfully reproduces transport fluxes predicted by the original quasilinear model, while gaining five orders of magnitude in computation time. The model is implemented in a real-time capable tokamak simulator, and simulates a 300 s ITER discharge in 10 s. This proof-of-principle for regression based transport models anticipates a significant widening of input space dimensionality and physics realism for future training sets. This aims to provide unprecedented computational speed coupled with first-principle based physics for real-time control and integrated modelling applications.
Demonstration of Four Operating Capabilities to Enable a Small Aircraft Transportation System
NASA Technical Reports Server (NTRS)
Viken, Sally A.; Brooks, Frederick M.
2005-01-01
The Small Aircraft Transportation System (SATS) project has been a five-year effort fostering research and development that could lead to the transformation of our country s air transportation system. It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand keeps steadily increasing. The SATS vision is to increase mobility in our nation s transportation system by expanding access to more than 3400 small community airports that are currently under-utilized. The SATS project has focused its efforts on four key operating capabilities that have addressed new emerging technologies and procedures to pave the way for a new way of air travel. The four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. These four capabilities are key to enabling low-cost, on-demand, point-to-point transportation of goods and passengers utilizing small aircraft operating from small airports. The focus of this paper is to discuss the technical and operational feasibility of the four operating capabilities and demonstrate how they can enable a small aircraft transportation system.
Lithium transport at silicon thin film: Barrier for high-rate capability anode
NASA Astrophysics Data System (ADS)
Peng, Bo; Cheng, Fangyi; Tao, Zhanliang; Chen, Jun
2010-07-01
The major hurdle that retards the practical application of nanostructured silicon anode in rechargeable Li-ion batteries is the capacity retention during lithiation/delithiation processes, especially at high current rate (e.g., >5 C). Since fast Li transport in the electrode is the essential of high-rate capability, the rate-limiting step exists during Li transport process and needs to be determined. We here investigate Li transport properties of Si thin film anode by first-principles calculation and find that high intrinsic energy barrier (0.88 eV) of Li surface intercalation retards fast Li transport. However, this energy barrier can be efficiently reduced by surface modification, e.g., P or Al doping. The present results should shed light on designing Si anode of Li-ion batteries with high-rate capability.
New Capabilities in Mercury: A Modern, Monte Carlo Particle Transport Code
Procassini, R J; Cullen, D E; Greenman, G M; Hagmann, C A; Kramer, K J; McKinley, M S; O'Brien, M J; Taylor, J M
2007-03-08
The new physics, algorithmic and computer science capabilities of the Mercury general-purpose Monte Carlo particle transport code are discussed. The new physics and algorithmic features include in-line energy deposition and isotopic depletion, significant enhancements to the tally and source capabilities, diagnostic ray-traced particles, support for multi-region hybrid (mesh and combinatorial geometry) systems, and a probability of initiation method. Computer science enhancements include a second method of dynamically load-balancing parallel calculations, improved methods for visualizing 3-D combinatorial geometries and initial implementation of an in-line visualization capabilities.
Fission matrix capability for MCNP, Part I - Theory
Brown, F. B.; Carney, S. E.; Kiedrowski, B. C.; Martin, W. R.
2013-07-01
The theory underlying the fission matrix method is derived using a rigorous Green's function approach. The method is then used to investigate fundamental properties of the transport equation for a continuous-energy physics treatment. We provide evidence that an infinite set of discrete, real eigenvalues and eigenfunctions exist for the continuous-energy problem, and that the eigenvalue spectrum converges smoothly as the spatial mesh for the fission matrix is refined. We also derive equations for the adjoint solution. We show that if the mesh is sufficiently refined so that both forward and adjoint solutions are valid, then the adjoint fission matrix is identical to the transpose of the forward matrix. While the energy-dependent transport equation is strictly bi-orthogonal, we provide surprising results that the forward modes are very nearly self-adjoint for a variety of continuous-energy problems. A companion paper (Part II - Applications) describes the initial experience and results from implementing this fission matrix capability into the MCNP Monte Carlo code. (authors)
Achieving enhanced hole transport capability of Ge1-xSnx alloys through uniaxial compressive strain
NASA Astrophysics Data System (ADS)
Liu, Lei; Liang, Renrong; Wang, Jing; Xu, Jun
2015-11-01
The hole transport capability of Ge1-xSnx alloys under the uniaxial compressive strain is comprehensively investigated by calculations using the nonlocal empirical pseudopotential method. The results indicate that the [110] uniaxial compressive strain is favorable for the hole transport of Ge1-xSnx alloys. For the [110] uniaxial compression, the strain-parallel hole effective mass of the top most valance band is the smallest, and the corresponding valance band splitting energy is the largest compared with the [100] uniaxial and the (001) biaxial compressive strain. In addition, the large uniaxial compressive strain and the high Sn composition are both beneficial for boosting the hole mobility of strained Ge1-xSnx alloys. The enhanced hole transport capability can be achieved through the [110] uniaxial compressive strain for high-performance Ge1-xSnx pMOSFETs applications.
Definition of display/control requirements for assault transport night/adverse weather capability
NASA Technical Reports Server (NTRS)
Milelli, R. J.; Mowery, G. W.; Pontelandolfo, C.
1982-01-01
A Helicopter Night Vision System was developed to improve low-altitude night and/or adverse weather assult transport capabilities. Man-in-the-loop simulation experiments were performed to define the minimum display and control requirements for the assult transport mission and investigate forward looking infrared sensor requirements, along with alternative displays such as panel mounted displays (PMD) helmet mounted displays (HMD), and integrated control display units. Also explored were navigation requirements, pilot/copilot interaction, and overall cockpit arrangement. Pilot use of an HMD and copilot use of a PMD appear as both the preferred and most effective night navigation combination.
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.« less
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000^{®} problems. These benchmark and scaling studies show promising results.
Overview of the Small Aircraft Transportation System Project Four Enabling Operating Capabilities
NASA Technical Reports Server (NTRS)
Viken, Sally A.; Brooks, Frederick M.; Johnson, Sally C.
2005-01-01
It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand still steadily increasing. NASA, FAA, and the National Consortium for Aviation Mobility (NCAM) have partnered to aid in increasing the mobility throughout the United States through the Small Aircraft Transportation System (SATS) project. The SATS project has been a five-year effort to provide the technical and economic basis for further national investment and policy decisions to support a small aircraft transportation system. The SATS vision is to enable people and goods to have the convenience of on-demand point-to-point travel, anywhere, anytime for both personal and business travel. This vision can be obtained by expanding near all-weather access to more than 3,400 small community airports that are currently under-utilized throughout the United States. SATS has focused its efforts on four key operating capabilities that have addressed new emerging technologies, procedures, and concepts to pave the way for small aircraft to operate in nearly all weather conditions at virtually any runway in the United States. These four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. The SATS project culminated with the 2005 SATS Public Demonstration in Danville, Virginia on June 5th-7th, by showcasing the accomplishments achieved throughout the project and demonstrating that a small aircraft transportation system could be viable. The technologies, procedures, and concepts were successfully demonstrated to show that they were safe, effective, and affordable for small aircraft in near all weather conditions. The focus of this paper is to provide an overview of the technical and operational feasibility of the
Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.
2009-01-01
An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.
Adjoint-Based Methods for Estimating CO2 Sources and Sinks from Atmospheric Concentration Data
NASA Technical Reports Server (NTRS)
Andrews, Arlyn E.
2003-01-01
Work to develop adjoint-based methods for estimating CO2 sources and sinks from atmospheric concentration data was initiated in preparation for last year's summer institute on Carbon Data Assimilation (CDAS) at the National Center for Atmospheric Research in Boulder, CO. The workshop exercises used the GSFC Parameterized Chemistry and Transport Model and its adjoint. Since the workshop, a number of simulations have been run to evaluate the performance of the model adjoint. Results from these simulations will be presented, along with an outline of challenges associated with incorporating a variety of disparate data sources, from sparse, but highly precise, surface in situ observations to less accurate, global future satellite observations.
NASA Astrophysics Data System (ADS)
Boheim, Kenneth B.; Council, Ronald J.
1992-03-01
A quick-reaction emergency satellite, cellular and microwave communications package known as the National Transportable Telecommunications Capability (NTTC) is discussed. The NTTC is designed to restore 'last mile' connectivity to remote or isolated areas in the U.S. or abroad that have been devastated by hurricanes, earthquakes, or other natural or manmade disasters. The NTTC is self-contained for rapid airlift in a single C-130 military transport, or may be transported by land or sea as appropriate. The NTTC operates over a Ku-band domestic satellite back into a gateway station and into the Public Switched Network, FTS-2000, and other military networks. Built with commercial off-the-shelf components, the NTTC is designed to respond to the telecommunication needs of critical NS/EP functions and users.
NASA Astrophysics Data System (ADS)
Tyobeka, Bismark Mzubanzi
A coupled neutron transport thermal-hydraulics code system with both diffusion and transport theory capabilities is presented. At the heart of the coupled code is a powerful neutronics solver, based on a neutron transport theory approach, powered by the time-dependent extension of the well known DORT code, DORT-TD. DORT-TD uses a fully implicit time integration scheme and is coupled via a general interface to the thermal-hydraulics code THERMIX-DIREKT, an HTR-specific two dimensional core thermal-hydraulics code. Feedback is accounted for by interpolating multigroup cross sections from pre-generated libraries which are structured for user specified discrete sets of thermal-hydraulic parameters e.g. fuel and moderator temperatures. The coupled code system is applied to two HTGR designs, the PBMR 400MW and the PBMR 268MW. Steady-state and several design basis transients are modeled in an effort to discern with the adequacy of using neutron diffusion theory as against the more accurate but yet computationally expensive neutron transport theory. It turns out that there are small but significant differences in the results from using either of the two theories. It is concluded that diffusion theory can be used with a higher degree of confidence in the PBMR as long as more than two energy groups are used and that the result must be checked against lower order transport solution, especially for safety analysis purposes. The end product of this thesis is a high fidelity, state-of-the-art computer code system, with multiple capabilities to analyze all PBMR safety related transients in an accurate and efficient manner.
Self-adjointness of deformed unbounded operators
Much, Albert
2015-09-15
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.
Organic ferroelectric evaporator with substrate cooling and in situ transport capabilities
NASA Astrophysics Data System (ADS)
Foreman, K.; Labedz, C.; Shearer, M.; Adenwalla, S.
2014-04-01
We report on the design, operation, and performance of a thermal evaporation chamber capable of evaporating organic thin films. Organic thin films are employed in a diverse range of devices and can provide insight into fundamental physical phenomena. However, growing organic thin films is often challenging and requires very specific deposition parameters. The chamber presented here is capable of cooling sample substrates to temperatures below 130 K and allows for the detachment of the sample from the cooling stage and in situ transport. This permits the use of multiple deposition techniques in separate, but connected, deposition chambers without breaking vacuum and therefore provides clean, well characterized interfaces between the organic thin film and any adjoining layers. We also demonstrate a successful thin film deposition of an organic material with a demanding set of deposition parameters, showcasing the success of this design.
Kim, Tae Hwan; Wang, Zhouhang; Wendelken, J F; Li, Wenzhi; Li, An-Ping; Bryant, Tracy H
2007-01-01
We describe the development and the capabilities of a Quadraprobe system, consisting of a low temperature four-probe scanning tunneling microscope (STM) and a high resolution scanning electron microscope (SEM), coupled to a molecular-beam epitaxy sample preparation chamber. The four STM probes can be manipulated independently with sub-nanometer precision, enabling atomic resolution STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Additionally, the four scanning probes with automated motion controls allow for atom assembly to perform "bottom-up" fabrication of nanostructures. Some testing results are presented.
Effect of nanofluid on the heat transport capability in an oscillating heat pipe
NASA Astrophysics Data System (ADS)
Ma, H. B.; Wilson, C.; Borgmeyer, B.; Park, K.; Yu, Q.; Choi, S. U. S.; Tirumala, Murli
2006-04-01
By combining nanofluids with thermally excited oscillating motion in an oscillating heat pipe (OHP), we developed an ultrahigh-performance cooling device, called the nanofluid oscillating heat pipe. Experimental results show that when the OHP is charged with nanofluid, heat transport capability significantly increases. For example, at the input power of 80.0W, diamond nanofluid can reduce the temperature difference between the evaporator and the condenser from 40.9to24.3°C. This study will accelerate the development of a highly efficient cooling device for ultrahigh-heat-flux electronic systems.
Numerical Computation of Sensitivities and the Adjoint Approach
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael
1997-01-01
We discuss the numerical computation of sensitivities via the adjoint approach in optimization problems governed by differential equations. We focus on the adjoint problem in its weak form. We show how one can avoid some of the problems with the adjoint approach, such as deriving suitable boundary conditions for the adjoint equation. We discuss the convergence of numerical approximations of the costate computed via the weak form of the adjoint problem and show the significance for the discrete adjoint problem.
NASA Astrophysics Data System (ADS)
Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E.; Sweeney, C.; Turner, A. J.
2015-11-01
Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004-June 2005 ranged from 496.4 to 511.5 Tg yr-1, with wetland methane emissions ranging from 130.0 to 203.3 Tg yr-1. The Arctic methane emissions during July 2004-June 2005 were in the range of 14.6-30.4 Tg yr-1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr-1 and from 5.4 to 7.9 Tg yr-1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.
Adjoint Error Estimation for Linear Advection
Connors, J M; Banks, J W; Hittinger, J A; Woodward, C S
2011-03-30
An a posteriori error formula is described when a statistical measurement of the solution to a hyperbolic conservation law in 1D is estimated by finite volume approximations. This is accomplished using adjoint error estimation. In contrast to previously studied methods, the adjoint problem is divorced from the finite volume method used to approximate the forward solution variables. An exact error formula and computable error estimate are derived based on an abstractly defined approximation of the adjoint solution. This framework allows the error to be computed to an arbitrary accuracy given a sufficiently well resolved approximation of the adjoint solution. The accuracy of the computable error estimate provably satisfies an a priori error bound for sufficiently smooth solutions of the forward and adjoint problems. The theory does not currently account for discontinuities. Computational examples are provided that show support of the theory for smooth solutions. The application to problems with discontinuities is also investigated computationally.
Consistent Adjoint Driven Importance Sampling using Space, Energy and Angle
Peplow, Douglas E.; Mosher, Scott W; Evans, Thomas M
2012-08-01
For challenging radiation transport problems, hybrid methods combine the accuracy of Monte Carlo methods with the global information present in deterministic methods. One of the most successful hybrid methods is CADIS Consistent Adjoint Driven Importance Sampling. This method uses a deterministic adjoint solution to construct a biased source distribution and consistent weight windows to optimize a specific tally in a Monte Carlo calculation. The method has been implemented into transport codes using just the spatial and energy information from the deterministic adjoint and has been used in many applications to compute tallies with much higher figures-of-merit than analog calculations. CADIS also outperforms user-supplied importance values, which usually take long periods of user time to develop. This work extends CADIS to develop weight windows that are a function of the position, energy, and direction of the Monte Carlo particle. Two types of consistent source biasing are presented: one method that biases the source in space and energy while preserving the original directional distribution and one method that biases the source in space, energy, and direction. Seven simple example problems are presented which compare the use of the standard space/energy CADIS with the new space/energy/angle treatments.
Stratospheric Water Vapor and the Asian Monsoon: An Adjoint Model Investigation
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Andrews, Arlyn E.
2003-01-01
A new adjoint model of the Goddard Parameterized Chemistry and Transport Model is used to investigate the role that the Asian monsoon plays in transporting water to the stratosphere. The adjoint model provides a unique perspective compared to non-diffusive and non-mixing Lagrangian trajectory analysis. The quantity of water vapor transported from the monsoon and the pathways into the stratosphere are examined. The emphasis is on the amount of water originating from the monsoon that contributes to the tropical tape recorder signal. The cross-tropopause flux of water from the monsoon to the midlatitude lower stratosphere will also be discussed.
Survey of state and tribal emergency response capabilities for radiological transportation incidents
Vilardo, F J; Mitter, E L; Palmer, J A; Briggs, H C; Fesenmaier, J
1990-05-01
This publication is the final report of a project to survey the fifty states, the District of Columbia, Puerto Rico, and selected Indian Tribal jurisdictions to ascertain their emergency-preparedness planning and capabilities for responding to transportation incidents involving radioactive materials. The survey was conducted to provide the Nuclear Regulatory Commission and other federal agencies with information concerning the current level of emergency-response preparedness of the states and selected tribes and an assessment of the changes that have occurred since 1980. There have been no major changes in the states' emergency-response planning strategies and field tactics. The changes noted included an increased availability of dedicated emergency-response vehicles, wider availability of specialized radiation-detection instruments, and higher proportions of police and fire personnel with training in the handling of suspected radiation threats. Most Indian tribes have no capability to evaluate suspected radiation threats and have no formal relations with emergency-response personnel in adjacent states. For the nation as a whole, the incidence of suspected radiation threats declined substantially from 1980 to 1988. 58 tabs.
A Generalized Adjoint Approach for Quantifying Reflector Assembly Discontinuity Factor Uncertainties
Yankov, Artem; Collins, Benjamin; Jessee, Matthew Anderson; Downar, Thomas
2012-01-01
Sensitivity-based uncertainty analysis of assembly discontinuity factors (ADFs) can be readily performed using adjoint methods for infinite lattice models. However, there is currently no adjoint-based methodology to obtain uncertainties for ADFs along an interface between a fuel and reflector region. To accommodate leakage effects in a reflector region, a 1D approximation is usually made in order to obtain the homogeneous interface flux required to calculate the ADF. Within this 1D framework an adjoint-based method is proposed that is capable of efficiently calculating ADF uncertainties. In the proposed method the sandwich rule is utilized to relate the covariance of the input parameters of 1D diffusion theory in the reflector region to the covariance of the interface ADFs. The input parameters covariance matrix can be readily obtained using sampling-based codes such as XSUSA or adjoint-based codes such as TSUNAMI. The sensitivity matrix is constructed using a fixed-source adjoint approach for inputs characterizing the reflector region. An analytic approach is then used to determine the sensitivity of the ADFs to fuel parameters using the neutron balance equation. A stochastic approach is used to validate the proposed adjoint-based method.
Hekmat, Mohamad Hamed; Mirzaei, Masoud
2015-01-01
In the present research, we tried to improve the performance of the lattice Boltzmann (LB) -based adjoint approach by utilizing the mesoscopic inherent of the LB method. In this regard, two macroscopic discrete adjoint (MADA) and microscopic discrete adjoint (MIDA) approaches are used to answer the following two challenging questions. Is it possible to extend the concept of the macroscopic and microscopic variables of the flow field to the corresponding adjoint ones? Further, similar to the conservative laws in the LB method, is it possible to find the comparable conservation equations in the adjoint approach? If so, then a definite framework, similar to that used in the flow solution by the LB method, can be employed in the flow sensitivity analysis by the MIDA approach. This achievement can decrease the implementation cost and coding efforts of the MIDA method in complicated sensitivity analysis problems. First, the MADA and MIDA equations are extracted based on the LB method using the duality viewpoint. Meanwhile, using an elementary case, inverse design of a two-dimensional unsteady Poiseuille flow in a periodic channel with constant body forces, the procedure of analytical evaluation of the adjoint variables is described. The numerical results show that similar correlations between the distribution functions can be seen between the corresponding adjoint ones. Besides, the results are promising, emphasizing the flow field adjoint variables can be evaluated via the adjoint distribution functions. Finally, the adjoint conservative laws are introduced. PMID:25679735
New Lidar Capabilities in Space: An Overview of the Cloud-Aerosol Transport System (CATS)
NASA Astrophysics Data System (ADS)
McGill, M. J.; Yorks, J. E.; Hlavka, D. L.; Selmer, P. A.; Hart, W. D.; Palm, S. P.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard, V.
2014-12-01
The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the late 2014. CATS is an elastic backscatter lidar operating in one of three science modes with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at the 532 and 1064 nm wavelengths. The CATS science modes are described in Figure 1. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. A primary science objectives of CATS is to provide global aerosol and cloud vertical profile data in near real time to for assimilation in aerosol transport models such as the NASA GEOS-5 model. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite sensors. Another important science objective of CATS is to advance technology in support of future mission development. CATS will employ 355 nm and HSRL capabilities, as well as depolarization at multiple wavelengths. These expanded measurement capabilities will provide the science community with new and improved global data products that have yet to be retrieved from space-based lidar. In preparation for launch, simulations of the CATS lidar signal are produced using GEOS5 model data to develop and test future data products. An example of the simulated CATS attenuated
Adjoint Data Assimilative Model Study of the Gulf of Maine Coastal Circulation
NASA Astrophysics Data System (ADS)
He, R.; McGillicuddy, D. J.; Lynch, D. R.
2004-12-01
Data assimilation (DA) in the coastal ocean can be divided into category of either sequential estimation or variational adjoint. Sequential estimation techniques blend models with observations directly, using a variety of algorithms with which the relative weights of data and model are calculated. Variational adjoint techniques infer model control variables (e.g. parameters, forcing functions, boundary conditions, etc.) that minimize the misfit between observations and predictions. The advantage of the latter techniques over the former is that the resulting model solutions obey model dynamics. In this study, the Gulf of Maine coastal circulation and the material property transport are investigated with the Dartmouth variational adjoint DA modeling system, which assimilates in-situ data via inversion for the unknown sea level elevation at open boundaries. In-situ observations include ADCP currents and coastal sea levels. The adjoint DA model skill is evaluated by the inter-comparisons between modeled and observed drifter trajectories. Excellent model skill is found, demonstrating the utility and effectiveness of the adjoint DA modeling system in bridging in-situ observations with coastal ocean model simulations. Implications of the adjoint DA strategy on the emergent coastal ocean observing systems are discussed.
Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2004-01-01
an effective optimization framework that incorporates a direct-CAD interface. In this work, we enhance the capabilities of this framework with efficient gradient computations using the discrete adjoint method. We present details of the adjoint numerical implementation, which reuses the domain decomposition, multigrid, and time-marching schemes of the flow solver. Furthermore, we explain and demonstrate the use of CAD in conjunction with the Cartesian adjoint approach. The final paper will contain a number of complex geometry, industrially relevant examples with many design variables to demonstrate the effectiveness of the adjoint method on Cartesian meshes.
ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA
NASA Astrophysics Data System (ADS)
Capps, S. L.; Henze, D. K.; Hakami, A.; Russell, A. G.; Nenes, A.
2012-01-01
We present the development of ANISORROPIA, the discrete adjoint of the ISORROPIA thermodynamic equilibrium model that treats the Na+-SO42-- HSO4--NH4+ -NO3--Cl--H2O aerosol system, and we demonstrate its sensitivity analysis capabilities. ANISORROPIA calculates sensitivities of an inorganic species in aerosol or gas phase with respect to the total concentrations of each species present with less than a two-fold increase in computational time over the concentration calculations. Due to the highly nonlinear and discontinuous solution surface of ISORROPIA, evaluation of the adjoint required a new, complex-variable version of the model, which determines first-order sensitivities with machine precision and avoids cancellation errors arising from finite difference calculations. The adjoint is verified over an atmospherically relevant range of concentrations, temperature, and relative humidity. We apply ANISORROPIA to recent field campaign results from Atlanta, GA, USA, and Mexico City, Mexico, to characterize the inorganic aerosol sensitivities of these distinct urban air masses. The variability in the relationship between fine mode inorganic aerosol mass and precursor concentrations shown has important implications for air quality and climate.
Session on High Speed Civil Transport Design Capability Using MDO and High Performance Computing
NASA Technical Reports Server (NTRS)
Rehder, Joe
2000-01-01
Since the inception of CAS in 1992, NASA Langley has been conducting research into applying multidisciplinary optimization (MDO) and high performance computing toward reducing aircraft design cycle time. The focus of this research has been the development of a series of computational frameworks and associated applications that increased in capability, complexity, and performance over time. The culmination of this effort is an automated high-fidelity analysis capability for a high speed civil transport (HSCT) vehicle installed on a network of heterogeneous computers with a computational framework built using Common Object Request Broker Architecture (CORBA) and Java. The main focus of the research in the early years was the development of the Framework for Interdisciplinary Design Optimization (FIDO) and associated HSCT applications. While the FIDO effort was eventually halted, work continued on HSCT applications of ever increasing complexity. The current application, HSCT4.0, employs high fidelity CFD and FEM analysis codes. For each analysis cycle, the vehicle geometry and computational grids are updated using new values for design variables. Processes for aeroelastic trim, loads convergence, displacement transfer, stress and buckling, and performance have been developed. In all, a total of 70 processes are integrated in the analysis framework. Many of the key processes include automatic differentiation capabilities to provide sensitivity information that can be used in optimization. A software engineering process was developed to manage this large project. Defining the interactions among 70 processes turned out to be an enormous, but essential, task. A formal requirements document was prepared that defined data flow among processes and subprocesses. A design document was then developed that translated the requirements into actual software design. A validation program was defined and implemented to ensure that codes integrated into the framework produced the same
ERIC Educational Resources Information Center
McFarland, Ross A.
Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…
Zhang, Yanhua; Walker, Janelle Buttry; Minic, Zeljka; Liu, Fangchao; Goshgarian, Harry; Mao, Guangzhao
2016-01-01
Drug delivery to the central nervous system (CNS) is challenging due to the inability of many drugs to cross the blood-brain barrier (BBB). Here, we show that wheat germ agglutinin horse radish peroxidase (WGA-HRP) chemically conjugated to gold nanoparticles (AuNPs) can be transported to the spinal cord and brainstem following intramuscular injection into the diaphragm of rats. We synthesized and determined the size and chemical composition of a three-part nanoconjugate consisting of WGA-HRP, AuNPs, and drugs for the treatment of diaphragm paralysis associated with high cervical spinal cord injury (SCI). Upon injection into the diaphragm muscle of rats, we show that the nanoconjugate is capable of delivering the drug at a much lower dose than the unconjugated drug injected systemically to effectively induce respiratory recovery in rats following SCI. This study not only demonstrates a promising strategy to deliver drugs to the CNS bypassing the BBB but also contributes a potential nanotherapy for the treatment of respiratory muscle paralysis resulted from cervical SCI. PMID:27180729
Panagiotou, Thomai; Fisher, Robert J.
2011-01-01
Emerging nanotechnologies have, and will continue to have, a major impact on the pharmaceutical industry. Their influence on a drug's life cycle, inception to delivery, is rapidly expanding. As the industry moves more aggressively toward continuous manufacturing modes, utilizing Process Analytical Technology (PAT) and Process Intensification (PI) concepts, the critical role of transport phenomena becomes elucidated. The ability to transfer energy, mass, and momentum with directed purposeful outcomes is a worthwhile endeavor in establishing higher production rates more economically. Furthermore, the ability to obtain desired drug properties, such as size, habit, and morphology, through novel manufacturing strategies permits unique formulation control for optimum delivery methodologies. Bottom-up processing to obtain nano-sized crystals is an excellent example. Formulation and delivery are intimately coupled in improving bio-efficacy at reduced loading and/or better controlled release capabilities, minimizing side affects and providing improved therapeutic interventions. Innovative nanotechnology applications, such as simultaneous targeting, imaging and delivery to tumors, are now possible through use of novel chaperones. Other examples include nanoparticles attachment to T-cells, release from novel hydrogel implants, and functionalized encapsulants. Difficult tasks such as drug delivery to the brain via the blood brain barrier and/or the cerebrospinal fluid are now easier to accomplish. PMID:21603220
Zhang, Yanhua; Walker, Janelle Buttry; Minic, Zeljka; Liu, Fangchao; Goshgarian, Harry; Mao, Guangzhao
2016-01-01
Drug delivery to the central nervous system (CNS) is challenging due to the inability of many drugs to cross the blood-brain barrier (BBB). Here, we show that wheat germ agglutinin horse radish peroxidase (WGA-HRP) chemically conjugated to gold nanoparticles (AuNPs) can be transported to the spinal cord and brainstem following intramuscular injection into the diaphragm of rats. We synthesized and determined the size and chemical composition of a three-part nanoconjugate consisting of WGA-HRP, AuNPs, and drugs for the treatment of diaphragm paralysis associated with high cervical spinal cord injury (SCI). Upon injection into the diaphragm muscle of rats, we show that the nanoconjugate is capable of delivering the drug at a much lower dose than the unconjugated drug injected systemically to effectively induce respiratory recovery in rats following SCI. This study not only demonstrates a promising strategy to deliver drugs to the CNS bypassing the BBB but also contributes a potential nanotherapy for the treatment of respiratory muscle paralysis resulted from cervical SCI. PMID:27180729
Brown, T.D.; Taylor, C.E.; Bernardo, M.
2010-01-01
Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned
Double-difference adjoint seismic tomography
NASA Astrophysics Data System (ADS)
Yuan, Yanhua O.; Simons, Frederik J.; Tromp, Jeroen
2016-06-01
We introduce a `double-difference' method for the inversion for seismic wavespeed structure based on adjoint tomography. Differences between seismic observations and model predictions at individual stations may arise from factors other than structural heterogeneity, such as errors in the assumed source-time function, inaccurate timings, and systematic uncertainties. To alleviate the corresponding nonuniqueness in the inverse problem, we construct differential measurements between stations, thereby reducing the influence of the source signature and systematic errors. We minimize the discrepancy between observations and simulations in terms of the differential measurements made on station pairs. We show how to implement the double-difference concept in adjoint tomography, both theoretically and in practice. We compare the sensitivities of absolute and differential measurements. The former provide absolute information on structure along the ray paths between stations and sources, whereas the latter explain relative (and thus higher-resolution) structural variations in areas close to the stations. Whereas in conventional tomography a measurement made on a single earthquake-station pair provides very limited structural information, in double-difference tomography one earthquake can actually resolve significant details of the structure. The double-difference methodology can be incorporated into the usual adjoint tomography workflow by simply pairing up all conventional measurements; the computational cost of the necessary adjoint simulations is largely unaffected. Rather than adding to the computational burden, the inversion of double-difference measurements merely modifies the construction of the adjoint sources for data assimilation.
Adjoint-based optimization for understanding and suppressing jet noise
NASA Astrophysics Data System (ADS)
Freund, Jonathan B.
2011-08-01
Advanced simulation tools, particularly large-eddy simulation techniques, are becoming capable of making quality predictions of jet noise for realistic nozzle geometries and at engineering relevant flow conditions. Increasing computer resources will be a key factor in improving these predictions still further. Quality prediction, however, is only a necessary condition for the use of such simulations in design optimization. Predictions do not themselves lead to quieter designs. They must be interpreted or harnessed in some way that leads to design improvements. As yet, such simulations have not yielded any simplifying principals that offer general design guidance. The turbulence mechanisms leading to jet noise remain poorly described in their complexity. In this light, we have implemented and demonstrated an aeroacoustic adjoint-based optimization technique that automatically calculates gradients that point the direction in which to adjust controls in order to improve designs. This is done with only a single flow solutions and a solution of an adjoint system, which is solved at computational cost comparable to that for the flow. Optimization requires iterations, but having the gradient information provided via the adjoint accelerates convergence in a manner that is insensitive to the number of parameters to be optimized. This paper, which follows from a presentation at the 2010 IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction, reviews recent and ongoing efforts by the author and co-workers. It provides a new formulation of the basic approach and demonstrates the approach on a series of model flows, culminating with a preliminary result for a turbulent jet.
FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Torrisi, M.; Tracinà, R.
2010-11-01
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.
Application of adjoint operators to neural learning
NASA Technical Reports Server (NTRS)
Barhen, J.; Toomarian, N.; Gulati, S.
1990-01-01
A technique for the efficient analytical computation of such parameters of the neural architecture as synaptic weights and neural gain is presented as a single solution of a set of adjoint equations. The learning model discussed concentrates on the adiabatic approximation only. A problem of interest is represented by a system of N coupled equations, and then adjoint operators are introduced. A neural network is formalized as an adaptive dynamical system whose temporal evolution is governed by a set of coupled nonlinear differential equations. An approach based on the minimization of a constrained neuromorphic energylike function is applied, and the complete learning dynamics are obtained as a result of the calculations.
Nucleon-meson transport capability for accelerator-breeder target design. [CALOR
Gabriel, T.A.; Alsmiller, R.G. Jr.
1982-01-01
A state-of-the-art code system for nucleon-meson-lepton transport which has direct applicability to accelerator breeders is presented. Some pertinent data that have been obtained using this system are discussed and compared with experimental data.
NASA Technical Reports Server (NTRS)
Olds, John R.; Izon, Stephen James
2002-01-01
The Thermal Calculation Analysis Tool (TCAT), originally developed for the Space Systems Design Lab at the Georgia Institute of Technology, is a conceptual design tool capable of integrating aeroheating analysis into conceptual reusable launch vehicle design. It provides Thermal Protection System (TPS) unit thicknesses and acreage percentages based on the geometry of the vehicle and a reference trajectory to be used in calculation of the total cost and weight of the vehicle design. TCAT has proven to be reasonably accurate at calculating the TPS unit weights for in-flight trajectories; however, it does not have the capability of sizing TPS materials above cryogenic fuel tanks for ground hold operations. During ground hold operations, the vehicle is held for a brief period (generally about two hours) during which heat transfer from the TPS materials to the cryogenic fuel occurs. If too much heat is extracted from the TPS material, the surface temperature may fall below the freezing point of water, thereby freezing any condensation that may be present at the surface of the TPS. Condensation or ice on the surface of the vehicle is potentially hazardous to the mission and can also damage the TPS. It is questionable whether or not the TPS thicknesses provided by the aeroheating analysis would be sufficiently thick to insulate the surface of the TPS from the heat transfer to the fuel. Therefore, a design tool has been developed that is capable of sizing TPS materials at these cryogenic fuel tank locations to augment TCAT's TPS sizing capabilities.
NASA Technical Reports Server (NTRS)
Strode, Sarah; Rodriguez, Jose; Steenrod, Steve; Liu, Junhua; Strahan, Susan; Nielsen, Eric
2015-01-01
We describe the capabilities of the Global Modeling Initiative (GMI) chemical transport model (CTM) with a special focus on capabilities related to the Atmospheric Tomography Mission (ATom). Several science results based on GMI hindcast simulations and preliminary results from the ATom simulations are highlighted. We also discuss the relationship between GMI and GEOS-5.
Transport Capabilities of Eleven Gram-positive Bacteria: Comparative Genomic Analyses
Lorca, Graciela L.; Barabote, Ravi D.; Zlotopolski, Vladimir; Tran, Can; Winnen, Brit; Hvorup, Rikki N.; Stonestrom, Aaron J.; Nguyen, Elizabeth; Huang, Li-Wen; Kim, David S.; Saier, Milton H.
2007-01-01
The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G+C lactic acid bacteria and two high G+C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to eighteen percent of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS. These bacteria also display peptide efflux pumps that may function in intercellular signalling, and macromolecular efflux pumps, many of predictable specificities. Most of the bacteria analyzed have no pmf-coupled or transmembrane flow electron carriers. The one exception is Brevibacterium linens, which in addition to these carriers, also has transporters of several families not represented in the other ten bacteria examined. Comparisons with the genomes of organisms from other bacterial kingdoms revealed that lactic acid bacteria possess distinctive proportions of recognized transporter types (e.g., more porters specific for glycosides than reducing sugars). Some homologues of transporters identified had previously been identified only in Gram-negative bacteria or in eukaryotes
Fully automatic adjoints: a robust and efficient mechanism for generating adjoint ocean models
NASA Astrophysics Data System (ADS)
Ham, D. A.; Farrell, P. E.; Funke, S. W.; Rognes, M. E.
2012-04-01
The problem of generating and maintaining adjoint models is sufficiently difficult that typically only the most advanced and well-resourced community ocean models achieve it. There are two current technologies which each suffer from their own limitations. Algorithmic differentiation, also called automatic differentiation, is employed by models such as the MITGCM [2] and the Alfred Wegener Institute model FESOM [3]. This technique is very difficult to apply to existing code, and requires a major initial investment to prepare the code for automatic adjoint generation. AD tools may also have difficulty with code employing modern software constructs such as derived data types. An alternative is to formulate the adjoint differential equation and to discretise this separately. This approach, known as the continuous adjoint and employed in ROMS [4], has the disadvantage that two different model code bases must be maintained and manually kept synchronised as the model develops. The discretisation of the continuous adjoint is not automatically consistent with that of the forward model, producing an additional source of error. The alternative presented here is to formulate the flow model in the high level language UFL (Unified Form Language) and to automatically generate the model using the software of the FEniCS project. In this approach it is the high level code specification which is differentiated, a task very similar to the formulation of the continuous adjoint [5]. However since the forward and adjoint models are generated automatically, the difficulty of maintaining them vanishes and the software engineering process is therefore robust. The scheduling and execution of the adjoint model, including the application of an appropriate checkpointing strategy is managed by libadjoint [1]. In contrast to the conventional algorithmic differentiation description of a model as a series of primitive mathematical operations, libadjoint employs a new abstraction of the simulation
Expanded serial communication capability for the transport systems research vehicle laptop computers
NASA Technical Reports Server (NTRS)
Easley, Wesley C.
1991-01-01
A recent upgrade of the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center included installation of a number of Grid 1500 series laptop computers. Each unit is a 80386-based IBM PC clone. RS-232 data busses are needed for TSRV flight research programs, and it has been advantageous to extend the application of the Grids in this area. Use was made of the expansion features of the Grid internal bus to add a user programmable serial communication channel. Software to allow use of the Grid bus expansion has been written and placed in a Turbo C library for incorporation into applications programs in a transparent manner via function calls. Port setup; interrupt-driven, two-way data transfer; and software flow control are built into the library functions.
Towards a heavy-ion transport capability in the MARS15 Code
Mokhov, N. V.; Gudima, K. K.; Mashnik, S. G.; Rakhno, I. L.; Striganov, S.
2004-04-01
In order to meet the challenges of new accelerator and space projects and further improve modelling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data. The MARS Monte Carlo code is widely used in numerous accelerator, detector, shielding and cosmic ray applications. The needs of the Relativistic Heavy-Ion Collider, Large Hadron Collider, Rare Isotope Accelerator and NASA projects have recently induced adding heavy-ion interaction and transport physics to the MARS15 code. The key modules of the new implementation are described below along with their comparisons to experimental data.
New X-ray Computed Tomography Capability for Pore-Scale Flow and Transport Experimentation at EMSL
NASA Astrophysics Data System (ADS)
Hess, N. J.; White, T. A.; Varga, T.; Zhang, C.; Oostrom, M.; Wietsma, T. W.
2010-12-01
A new x-ray computed tomography capability for flow and transport research of geologic cores at the pore scale is now available to users at the U.S. Department of Energy’s EMSL, a national scientific laboratory located at Pacific Northwest National Laboratory. The new capability consists of a NIKON Metris 225-320 LC with three interchangeable static and rotating targets generating variable 225-320 kV x-ray energies and spot sizes between 3 and 10 microns. This system was specifically designed to image the pore structure and connectivity of large diameter cores of loosely consolidated sediments typical of the vadose zone. The high energies of the system will permit CT imaging of cores up to 15 cm in diameter with a spatial resolution between 12 and 75 microns dependent on the diameter of the core. Examples of time-lapse imaging will be presented as well dual energy capability for differentiating air versus fluid filled pores. Additional in situ tomography capabilities will be demonstrated, and the EMSL user access via peer-review proposal process will be discussed
Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van
2007-04-15
This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point
Dual of QCD with one adjoint fermion
Mojaza, Matin; Nardecchia, Marco; Pica, Claudio; Sannino, Francesco
2011-03-15
We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling, and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the anomalous dimension of the Dirac fermion mass operator to be less than one in the conformal window.
Multidimensional electron-photon transport with standard discrete ordinates codes
Drumm, C.R.
1995-12-31
A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electronphoton transport problems.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
The Cloud-Aerosol Transport System (CATS): A New Earth Science Capability for ISS (Invited)
NASA Astrophysics Data System (ADS)
McGill, M. J.; Yorks, J. E.; Scott, S.; Kupchock, A.; Selmer, P.
2013-12-01
The Cloud-Aerosol Transport System (CATS) is a lidar remote sensing instrument developed for deployment to the International Space Station (ISS). The CATS lidar will provide range-resolved profile measurements of atmospheric aerosol and cloud distributions and properties. The CATS instrument uses a high repetition rate laser operating at three wavelengths (1064, 532, and 355 nm) to derive properties of cloud/aerosol layers including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The CATS mission was designed to capitalize on the Space Station's unique orbit and facilities to continue existing Earth Science data records, to provide observational data for use in forecast models, and to demonstrate new technologies for use in future missions. The CATS payload will be installed on the Japanese Experiment Module - Exposed Facility (JEM-EF). The payload is designed to operate on-orbit for at least six months, and up to three years. The payload is completed and currently scheduled for a mid-2014 launch. The ISS and, in particular, the JEM-EF, is an exciting new platform for spaceborne Earth observations. The ability to leverage existing aircraft instrument designs coupled with the lower cost possible for ISS external attached payloads permits rapid and cost effective development of spaceborne sensors. The CATS payload is based on existing instrumentation built and operated on the high-altitude NASA ER-2 aircraft. The payload is housed in a 1.5 m x 1 m x 0.8 m volume that attaches to the JEM-EF. The allowed volume limits the maximum size for the collecting telescope to 60 cm diameter. Figure 1 shows a schematic layout of the CATS payload, with the primary instrument components identified. Figure 2 is a photo of the completed payload. CATS payload cut-away view. Completed CATS payload assembly.
NASA Astrophysics Data System (ADS)
Cey, E.; Motz, E.; Chu, A.; Ryan, C.
2009-05-01
By design, septic systems release pathogenic microbes, nutrients and other chemical contaminants into the subsurface and have the potential to adversely impact groundwater quality. Newer at-grade septic system designs discharge wastewater effluent on the soil surface, however, relatively little research has been conducted on transport processes and treatment efficacy for these systems. The objective of this study was to investigate physical, biological, and chemical processes beneath two at-grade wastewater treatment systems. Secondary treated effluent from the Fish Creek wastewater treatment plant in Calgary is being applied to soil through the two at-grade systems in volumes equivalent to a three-bedroom household. A dye tracer was also introduced with the effluent to aid in the evaluation of subsurface flow patterns and the identification of soil sampling locations. An extensive vadose zone monitoring system, consisting of suction lysimeters, tensiometers, time domain reflectometry probes, thermistors, and soil vapour probes, was installed to track the effluent through the soil profile. Fecal coliform, total coliform, and E. Coli, as well as other physical and chemical parameters, are being monitored in-situ. Soil samples for microbial and chemical analysis have also been obtained by excavating portions of the infiltration area beneath the two systems. Chemical and dye tracers showed relatively rapid migration of effluent to depths of up to 1.5 m below surface. Preliminary pathogen results indicate an approximately four log reduction in E. Coli concentrations at 10 cm depth and six log reduction at 60 cm depth. Continued monitoring of these pilot systems will provide valuable data on subsurface pathogen migration and the suitability of at-grade systems for treating wastewater and reducing the risk of groundwater contamination.
Generalized uncertainty principle and self-adjoint operators
Balasubramanian, Venkat; Das, Saurya; Vagenas, Elias C.
2015-09-15
In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different domains. In particular, we utilize the theorem by von-Neumann for symmetric operators in order to determine whether the momentum and Hamiltonian operators are self-adjoint or not, or they have self-adjoint extensions over the given domain. In addition, a simple example of the Hamiltonian operator describing a particle in a box is given. The solutions of the boundary conditions that describe the self-adjoint extensions of the specific Hamiltonian operator are obtained.
Coupled electron-photon radiation transport
Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.
2000-01-17
Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport.
Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay
2014-01-01
A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients. PMID:24253450
Adjoint sensitivity analysis of an ultrawideband antenna
Stephanson, M B; White, D A
2011-07-28
The frequency domain finite element method using H(curl)-conforming finite elements is a robust technique for full-wave analysis of antennas. As computers become more powerful, it is becoming feasible to not only predict antenna performance, but also to compute sensitivity of antenna performance with respect to multiple parameters. This sensitivity information can then be used for optimization of the design or specification of manufacturing tolerances. In this paper we review the Adjoint Method for sensitivity calculation, and apply it to the problem of optimizing a Ultrawideband antenna.
Foster, K.T.; Freis, R.P. ); Nasstrom, J.S. )
1990-04-01
The US Department of Energy's Atmospheric Release Advisory Capability (ARAC) supports various government agencies by modeling the transport and diffusion of radiological material released into the atmosphere. ARAC provides this support principally in the form of computer-generated isopleths of radionuclide concentrations. In order to supply these concentration estimates in a timely manner, a suite of operational computer models is maintained by the ARAC staff. One primary tools used by ARAC is the ADPIC transport and diffusion computer model. This three-dimensional, particle-in-cell code simulates the release of a pollutant into the atmosphere, by injecting marker particles into a gridded, mass-consistent modeled wind field. The particles are then moved through the gridded domain by applying the appropriate advection, diffusion, and gravitational fall velocities. A cloud rise module has been incorporated into ARAC's ADPIC dispersion model to allow better simulation of particle distribution early after an explosive release of source material. The module is based on the conservation equations of mass, momentum, and energy, which are solved for the cloud radius, height, temperature, and velocity as a function of time. 6 refs., 5 figs., 2 tabs.
Improved Adjoint-Operator Learning For A Neural Network
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1995-01-01
Improved method of adjoint-operator learning reduces amount of computation and associated computational memory needed to make electronic neural network learn temporally varying pattern (e.g., to recognize moving object in image) in real time. Method extension of method described in "Adjoint-Operator Learning for a Neural Network" (NPO-18352).
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
The compressible adjoint equations in geodynamics: equations and numerical assessment
NASA Astrophysics Data System (ADS)
Ghelichkhan, Siavash; Bunge, Hans-Peter
2016-04-01
The adjoint method is a powerful means to obtain gradient information in a mantle convection model relative to past flow structure. While the adjoint equations in geodynamics have been derived for the conservation equations of mantle flow in their incompressible form, the applicability of this approximation to Earth is limited, because density increases by almost a factor of two from the surface to the Core Mantle Boundary. Here we introduce the compressible adjoint equations for the conservation equations in the anelastic-liquid approximation. Our derivation applies an operator formulation in Hilbert spaces, to connect to recent work in seismology (Fichtner et al (2006)) and geodynamics (Horbach et al (2014)), where the approach was used to derive the adjoint equations for the wave equation and incompressible mantle flow. We present numerical tests of the newly derived equations based on twin experiments, focusing on three simulations. A first, termed Compressible, assumes the compressible forward and adjoint equations, and represents the consistent means of including compressibility effects. A second, termed Mixed, applies the compressible forward equation, but ignores compressibility effects in the adjoint equations, where the incompressible equations are used instead. A third simulation, termed Incompressible, neglects compressibility effects entirely in the forward and adjoint equations relative to the reference twin. The compressible and mixed formulations successfully restore earlier mantle flow structure, while the incompressible formulation yields noticeable artifacts. Our results suggest the use of a compressible formulation, when applying the adjoint method to seismically derived mantle heterogeneity structure.
NASA Technical Reports Server (NTRS)
Andrews, A.
2002-01-01
A detailed mechanistic understanding of the sources and sinks of CO2 will be required to reliably predict future COS levels and climate. A commonly used technique for deriving information about CO2 exchange with surface reservoirs is to solve an "inverse problem," where CO2 observations are used with an atmospheric transport model to find the optimal distribution of sources and sinks. Synthesis inversion methods are powerful tools for addressing this question, but the results are disturbingly sensitive to the details of the calculation. Studies done using different atmospheric transport models and combinations of surface station data have produced substantially different distributions of surface fluxes. Adjoint methods are now being developed that will more effectively incorporate diverse datasets in estimates of surface fluxes of CO2. In an adjoint framework, it will be possible to combine CO2 concentration data from long-term surface monitoring stations with data from intensive field campaigns and with proposed future satellite observations. A major advantage of the adjoint approach is that meteorological and surface data, as well as data for other atmospheric constituents and pollutants can be efficiently included in addition to observations of CO2 mixing ratios. This presentation will provide an overview of potentially useful datasets for carbon cycle research in general with an emphasis on planning for the North American Carbon Project. Areas of overlap with ongoing and proposed work on air quality/air pollution issues will be highlighted.
Source attribution of particulate matter pollution over North China with the adjoint method
NASA Astrophysics Data System (ADS)
Zhang, Lin; Liu, Licheng; Zhao, Yuanhong; Gong, Sunling; Zhang, Xiaoye; Henze, Daven K.; Capps, Shannon L.; Fu, Tzung-May; Zhang, Qiang; Wang, Yuxuan
2015-08-01
We quantify the source contributions to surface PM2.5 (fine particulate matter) pollution over North China from January 2013 to 2015 using the GEOS-Chem chemical transport model and its adjoint with improved model horizontal resolution (1/4° × 5/16°) and aqueous-phase chemistry for sulfate production. The adjoint method attributes the PM2.5 pollution to emissions from different source sectors and chemical species at the model resolution. Wintertime surface PM2.5 over Beijing is contributed by emissions of organic carbon (27% of the total source contribution), anthropogenic fine dust (27%), and SO2 (14%), which are mainly from residential and industrial sources, followed by NH3 (13%) primarily from agricultural activities. About half of the Beijing pollution originates from sources outside of the city municipality. Adjoint analyses for other cities in North China all show significant regional pollution transport, supporting a joint regional control policy for effectively mitigating the PM2.5 air pollution.
Diffusion Acceleration Schemes for Self-Adjoint Angular Flux Formulation with a Void Treatment
Yaqi Wang; Hongbin Zhang; Richard C. Martineau
2014-02-01
A Galerkin weak form for the monoenergetic neutron transport equation with a continuous finite element method and discrete ordinate method is developed based on self-adjoint angular flux formulation. This weak form is modified for treating void regions. A consistent diffusion scheme is developed with projection. Correction terms of the diffusion scheme are derived to reproduce the transport scalar flux. A source iteration that decouples the solution of all directions with both linear and nonlinear diffusion accelerations is developed and demonstrated. One-dimensional Fourier analysis is conducted to demonstrate the stability of the linear and nonlinear diffusion accelerations. Numerical results of these schemes are presented.
Aerodynamic design optimization by using a continuous adjoint method
NASA Astrophysics Data System (ADS)
Luo, JiaQi; Xiong, JunTao; Liu, Feng
2014-07-01
This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows. General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived. With the adjoint method, the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function, regardless of the number of design parameters. An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method. Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil, wing, and wing-body configuration, and the aerodynamic performance improvement of turbine and compressor blade rows. The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.
Advances in Sensitivity Analysis Capabilities with SCALE 6.0 and 6.1
Rearden, Bradley T; Petrie Jr, Lester M; Williams, Mark L
2010-01-01
The sensitivity and uncertainty analysis sequences of SCALE compute the sensitivity of k{sub eff} to each constituent multigroup cross section using perturbation theory based on forward and adjoint transport computations with several available codes. Versions 6.0 and 6.1 of SCALE, released in 2009 and 2010, respectively, include important additions to the TSUNAMI-3D sequence, which computes forward and adjoint solutions in multigroup with the KENO Monte Carlo codes. Previously, sensitivity calculations were performed with the simple and efficient geometry capabilities of KENO V.a, but now calculations can also be performed with the generalized geometry code KENO-VI. TSUNAMI-3D requires spatial refinement of the angular flux moment solutions for the forward and adjoint calculations. These refinements are most efficiently achieved with the use of a mesh accumulator. For SCALE 6.0, a more flexible mesh accumulator capability has been added to the KENO codes, enabling varying granularity of the spatial refinement to optimize the calculation for different regions of the system model. The new mesh capabilities allow the efficient calculation of larger models than were previously possible. Additional improvements in the TSUNAMI calculations were realized in the computation of implicit effects of resonance self-shielding on the final sensitivity coefficients. Multigroup resonance self-shielded cross sections are accurately computed with SCALE's robust deterministic continuous-energy treatment for the resolved and thermal energy range and with Bondarenko shielding factors elsewhere, including the unresolved resonance range. However, the sensitivities of the self-shielded cross sections to the parameters input to the calculation are quantified using only full-range Bondarenko factors.
NASA Astrophysics Data System (ADS)
Shi, Lei; Wang, Z. J.
2015-08-01
Adjoint-based mesh adaptive methods are capable of distributing computational resources to areas which are important for predicting an engineering output. In this paper, we develop an adjoint-based h-adaptation approach based on the high-order correction procedure via reconstruction formulation (CPR) to minimize the output or functional error. A dual-consistent CPR formulation of hyperbolic conservation laws is developed and its dual consistency is analyzed. Super-convergent functional and error estimate for the output with the CPR method are obtained. Factors affecting the dual consistency, such as the solution point distribution, correction functions, boundary conditions and the discretization approach for the non-linear flux divergence term, are studied. The presented method is then used to perform simulations for the 2D Euler and Navier-Stokes equations with mesh adaptation driven by the adjoint-based error estimate. Several numerical examples demonstrate the ability of the presented method to dramatically reduce the computational cost comparing with uniform grid refinement.
NASA Astrophysics Data System (ADS)
An, Xing Qin; Xian Zhai, Shi; Jin, Min; Gong, Sunling; Wang, Yu
2016-06-01
The aerosol adjoint module of the atmospheric chemical modeling system GRAPES-CUACE (Global-Regional Assimilation and Prediction System coupled with the CMA Unified Atmospheric Chemistry Environment) is constructed based on the adjoint theory. This includes the development and validation of the tangent linear and the adjoint models of the three parts involved in the GRAPES-CUACE aerosol module: CAM (Canadian Aerosol Module), interface programs that connect GRAPES and CUACE, and the aerosol transport processes that are embedded in GRAPES. Meanwhile, strict mathematical validation schemes for the tangent linear and the adjoint models are implemented for all input variables. After each part of the module and the assembled tangent linear and adjoint models is verified, the adjoint model of the GRAPES-CUACE aerosol is developed and used in a black carbon (BC) receptor-source sensitivity analysis to track influential haze source areas in north China. The sensitivity of the average BC concentration over Beijing at the highest concentration time point (referred to as the Objective Function) is calculated with respect to the BC amount emitted over the Beijing-Tianjin-Hebei region. Four types of regions are selected based on the administrative division or the sensitivity coefficient distribution. The adjoint sensitivity results are then used to quantify the effect of reducing the emission sources at different time intervals over different regions. It is indicated that the more influential regions (with relatively larger sensitivity coefficients) do not necessarily correspond to the administrative regions. Instead, the influence per unit area of the sensitivity selected regions is greater. Therefore, controlling the most influential regions during critical time intervals based on the results of the adjoint sensitivity analysis is much more efficient than controlling administrative regions during an experimental time period.
Adjoint active surfaces for localization and imaging.
Cook, Daniel A; Mueller, Martin Fritz; Fedele, Francesco; Yezzi, Anthony J
2015-01-01
This paper addresses the problem of localizing and segmenting regions embedded within a surrounding medium by characterizing their boundaries, as opposed to imaging the entirety of the volume. Active surfaces are used to directly reconstruct the shape of the region of interest. We describe the procedure for finding the optimal surface, which is computed iteratively via gradient descent that exploits the sensitivity of an error minimization functional to changes of the active surface. In doing so, we introduce the adjoint model to compute the sensitivity, and in this respect, the method shares common ground with several other disciplines, such as optimal control. Finally, we illustrate the proposed active surface technique in the framework of wave propagation governed by the scalar Helmholtz equation. Potential applications include electromagnetics, acoustics, geophysics, nondestructive testing, and medical imaging. PMID:25438311
Adjoint tomography of the southern California crust.
Tape, Carl; Liu, Qinya; Maggi, Alessia; Tromp, Jeroen
2009-08-21
Using an inversion strategy based on adjoint methods, we developed a three-dimensional seismological model of the southern California crust. The resulting model involved 16 tomographic iterations, which required 6800 wavefield simulations and a total of 0.8 million central processing unit hours. The new crustal model reveals strong heterogeneity, including local changes of +/-30% with respect to the initial three-dimensional model provided by the Southern California Earthquake Center. The model illuminates shallow features such as sedimentary basins and compositional contrasts across faults. It also reveals crustal features at depth that aid in the tectonic reconstruction of southern California, such as subduction-captured oceanic crustal fragments. The new model enables more realistic and accurate assessments of seismic hazard. PMID:19696349
Adjoints and Low-rank Covariance Representation
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.
2000-01-01
Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.
GPU-accelerated adjoint algorithmic differentiation
NASA Astrophysics Data System (ADS)
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the "tape". Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
GPU-Accelerated Adjoint Algorithmic Differentiation
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2015-01-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the “tape”. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography
Self-adjointness and conservation laws of difference equations
NASA Astrophysics Data System (ADS)
Peng, Linyu
2015-06-01
A general theorem on conservation laws for arbitrary difference equations is proved. The theorem is based on an introduction of an adjoint system related with a given difference system, and it does not require the existence of a difference Lagrangian. It is proved that the system, combined by the original system and its adjoint system, is governed by a variational principle, which inherits all symmetries of the original system. Noether's theorem can then be applied. With some special techniques, e.g. self-adjointness properties, this allows us to obtain conservation laws for difference equations, which are not necessary governed by Lagrangian formalisms.
Adjoint-based uncertainty quantification and sensitivity analysis for reactor depletion calculations
NASA Astrophysics Data System (ADS)
Stripling, Hayes Franklin
Depletion calculations for nuclear reactors model the dynamic coupling between the material composition and neutron flux and help predict reactor performance and safety characteristics. In order to be trusted as reliable predictive tools and inputs to licensing and operational decisions, the simulations must include an accurate and holistic quantification of errors and uncertainties in its outputs. Uncertainty quantification is a formidable challenge in large, realistic reactor models because of the large number of unknowns and myriad sources of uncertainty and error. We present a framework for performing efficient uncertainty quantification in depletion problems using an adjoint approach, with emphasis on high-fidelity calculations using advanced massively parallel computing architectures. This approach calls for a solution to two systems of equations: (a) the forward, engineering system that models the reactor, and (b) the adjoint system, which is mathematically related to but different from the forward system. We use the solutions of these systems to produce sensitivity and error estimates at a cost that does not grow rapidly with the number of uncertain inputs. We present the framework in a general fashion and apply it to both the source-driven and k-eigenvalue forms of the depletion equations. We describe the implementation and verification of solvers for the forward and ad- joint equations in the PDT code, and we test the algorithms on realistic reactor analysis problems. We demonstrate a new approach for reducing the memory and I/O demands on the host machine, which can be overwhelming for typical adjoint algorithms. Our conclusion is that adjoint depletion calculations using full transport solutions are not only computationally tractable, they are the most attractive option for performing uncertainty quantification on high-fidelity reactor analysis problems.
Sensitivity of Lumped Constraints Using the Adjoint Method
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.; Wu, K. Chauncey; Walsh, Joanne L.
1999-01-01
Adjoint sensitivity calculation of stress, buckling and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. Adjoint stress and displacement sensitivities are available in the literature. Expressions for local buckling sensitivity of isotropic plate elements are derived in this study. Computational efficiency of the adjoint method is sensitive to the number of constraints and, therefore, the method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser (KS) function is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a simple HSCT wing model, and a large HSCT model. These sensitivity derivatives are then used in optimization.
Surface wave sensitivity: mode summation versus adjoint SEM
NASA Astrophysics Data System (ADS)
Zhou, Ying; Liu, Qinya; Tromp, Jeroen
2011-12-01
We compare finite-frequency phase and amplitude sensitivity kernels calculated based on frequency-domain surface wave mode summation and a time-domain adjoint method. The adjoint calculations involve a forward wavefield generated by an earthquake and an adjoint wavefield generated at a seismic receiver. We determine adjoint sources corresponding to frequency-dependent phase and amplitude measurements made using a multitaper technique, which may be applied to any single-taper measurement, including box car windowing. We calculate phase and amplitude sensitivity kernels using an adjoint method based on wave propagation simulations using a spectral element method (SEM). Sensitivity kernels calculated using the adjoint SEM are in good agreement with kernels calculated based on mode summation. In general, the adjoint SEM is more computationally expensive than mode summation in global studies. The advantage of the adjoint SEM lies in the calculation of sensitivity kernels in 3-D earth models. We compare surface wave sensitivity kernels computed in 1-D and 3-D reference earth models and show that (1) lateral wave speed heterogeneities may affect the geometry and amplitude of surface wave sensitivity; (2) sensitivity kernels of long-period surface waves calculated in 1-D model PREM and 3-D models S20RTS+CRUST2.0 and FFSW1+CRUST2.0 do not show significant differences, indicating that the use of a 1-D reference model is adequate in global inversions of long-period surface waves (periods of 50 s and longer); and (3) the differences become significant for short-period Love waves when mode coupling is sensitive to large differences in reference crustal structure. Finally, we show that sensitivity kernels in anelastic earth models may be calculated in purely elastic earth models provided physical dispersion is properly accounted for.
Universal Racah matrices and adjoint knot polynomials: Arborescent knots
NASA Astrophysics Data System (ADS)
Mironov, A.; Morozov, A.
2016-04-01
By now it is well established that the quantum dimensions of descendants of the adjoint representation can be described in a universal form, independent of a particular family of simple Lie algebras. The Rosso-Jones formula then implies a universal description of the adjoint knot polynomials for torus knots, which in particular unifies the HOMFLY (SUN) and Kauffman (SON) polynomials. For E8 the adjoint representation is also fundamental. We suggest to extend the universality from the dimensions to the Racah matrices and this immediately produces a unified description of the adjoint knot polynomials for all arborescent (double-fat) knots, including twist, 2-bridge and pretzel. Technically we develop together the universality and the "eigenvalue conjecture", which expresses the Racah and mixing matrices through the eigenvalues of the quantum R-matrix, and for dealing with the adjoint polynomials one has to extend it to the previously unknown 6 × 6 case. The adjoint polynomials do not distinguish between mutants and therefore are not very efficient in knot theory, however, universal polynomials in higher representations can probably be better in this respect.
Unsteady adjoint of a gas turbine inlet guide vane
NASA Astrophysics Data System (ADS)
Talnikar, Chaitanya; Wang, Qiqi
2015-11-01
Unsteady fluid flow simulations like large eddy simulation have been shown to be crucial in accurately predicting heat transfer in turbomachinery applications like transonic flow over an inlet guide vane. To compute sensitivities of aerothermal objectives for a vane with respect to design parameters an unsteady adjoint is required. In this talk we present unsteady adjoint solutions for a vane from VKI using pressure loss and heat transfer over the vane surface as the objectives. The boundary layer on the suction side near the trailing edge of the vane is turbulent and this poses a challenge for an adjoint solver. The chaotic dynamics cause the adjoint solution to diverge exponentially to infinity from that region when simulated backwards in time. The prospect of adding artificial viscosity to the adjoint equations to dampen the adjoint fields is investigated. Results for the vane from simulations performed on the Titan supercomputer will be shown and the effect of the additional viscosity on the accuracy of the sensitivities will be discussed.
NASA Astrophysics Data System (ADS)
Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Palm, S. P.; Hart, W. D.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard-Marchant, V.
2013-12-01
Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. NASA's A-Train satellites provide an unprecedented opportunity to address these uncertainties. In particular, the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite provides vertical profiles of cloud and aerosol properties. The CALIOP lidar onboard CALIPSO has reached its seventh year of operation, well past its expected lifetime. The ATLID lidar on EarthCARE is not expected to launch until 2016 or later. If the CALIOP lidar fails before a new mission is operational, there will be a gap in global lidar measurements. The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the summer of 2014. CATS is an elastic backscatter lidar with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at all three wavelengths. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. The primary science objectives of CATS include: continuing the CALIPSO aerosol and cloud vertical profile data record, providing near real time data to support operational applications such as air quality modeling, and advancing technology in support of future mission development using the HSRL channel. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite
Baryogenesis via leptogenesis in adjoint SU(5)
Blanchet, Steve; Fileviez Perez, Pavel E-mail: fileviez@physics.wisc.edu
2008-08-15
The possibility of explaining the baryon asymmetry in the Universe through the leptogenesis mechanism in the context of adjoint SU(5) is investigated. In this model neutrino masses are generated through the type I and type III seesaw mechanisms, and the field responsible for the type III seesaw, called {rho}{sub 3}, generates the B-L asymmetry needed to satisfy the observed value of the baryon asymmetry in the Universe. We find that the CP asymmetry originates only from the vertex correction, since the self-energy contribution is not present. When neutrino masses have a normal hierarchy, successful leptogenesis is possible for 10{sup 11} GeV{approx}
A user's manual for MASH 1. 0: A Monte Carlo Adjoint Shielding Code System
Johnson, J.O.
1992-03-01
The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the dose importance'' of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.
Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV
Adjoint tomography of the Middle East
NASA Astrophysics Data System (ADS)
Peter, D. B.; Savage, B.; Rodgers, A. J.; Tromp, J.
2010-12-01
Improvements in nuclear explosion monitoring require refined seismic models of the target region. In our study, we focus on the Middle East, spanning a region from Turkey to the west and West India to the east. This area represents a complex geologic and tectonic setting with sparse seismic data coverage. This has lead to diverging interpretations of crustal and underlying upper-mantle structure by different research groups, complicating seismic monitoring of the Middle East at regional distances. We evaluated an initial 3D seismic model of this region by computing full waveforms for several regional earthquakes by a spectral-element method. We measure traveltime and multitaper phase shifts between observed broadband data and synthetic seismograms for distinct seismic phases within selected time windows using a recently developed automated measurement algorithm. Based on the remaining misfits, we setup an iterative inversion procedure for a fully numerical 3D seismic tomography approach. In order to improve the initial 3D seismic model, the sensitivity to seismic structure of the traveltime and multitaper phase measurements for all available seismic network recordings is computed. As this represents a computationally very intensive task, we take advantage of a fully numerical adjoint approach by using the efficient software package SPECFEM3D_GLOBE on a dedicated cluster. We show examples of such sensitivity kernels for different seismic events and use them in a steepest descent approach to update the 3D seismic model, starting at longer periods between 60 s and up to 200 s and moving towards shorter periods of 11 s. We highlight various improvements in the initial seismic structure during the iterations in order to better fit regional seismic waveforms in the Middle East.
Adjoint tomography of the Middle East
NASA Astrophysics Data System (ADS)
Peter, D. B.; Savage, B.; Rodgers, A.; Morency, C.; Tromp, J.
2011-12-01
Improvements in nuclear explosion monitoring require refined seismic models of the target region. In our study, we focus on the Middle East, spanning a region from Turkey to the west and West India to the east. This area represents a complex geologic and tectonic setting with sparse seismic data coverage. This has lead to diverging interpretations of crustal and underlying upper-mantle structure by different research groups, complicating seismic monitoring of the Middle East at regional distances. We evaluated an initial 3D seismic model of this region by computing full waveforms for several regional earthquakes based on a spectral-element method. We measure traveltime and multitaper phase differences between observed broadband data and synthetic seismograms for distinct seismic phases within selected time windows using a recently developed automated measurement algorithm. Based on the remaining misfits, we setup an iterative inversion procedure for a fully numerical 3D seismic tomography approach. In order to improve the initial 3D seismic model, sensitivity to seismic structures of traveltime and multitaper phase measurements for all available seismic network recordings is computed. As this represents a computationally very intensive task, we take advantage of a fully numerical adjoint approach by using the efficient software package SPECFEM3D_GLOBE on a dedicated cluster. We show examples of such sensitivity kernels for different seismic events. All these `event kernels' are then summed, smoothed and further used in a preconditioned conjugate-gradient approach. Thus we iteratively update the 3D seismic model, starting at longer periods between 60~s and up to 150~s and moving towards shorter periods of 11~s. We highlight various improvements in the initial seismic structure during the iterations in order to better fit regional seismic waveforms in the Middle East.
Receptivity in parallel flows: An adjoint approach
NASA Technical Reports Server (NTRS)
Hill, D. Christopher
1993-01-01
Linear receptivity studies in parallel flows are aimed at understanding how external forcing couples to the natural unstable motions which a flow can support. The vibrating ribbon problem models the original Schubauer and Skramstad boundary layer experiment and represents the classic boundary layer receptivity problem. The process by which disturbances are initiated in convectively-unstable jets and shear layers has also received attention. Gaster was the first to handle the boundary layer analysis with the recognition that spatial modes, rather than temporal modes, were relevant when studying convectively-unstable flows that are driven by a time-harmonic source. The amplitude of the least stable spatial mode, far downstream of the source, is related to the source strength by a coupling coefficient. The determination of this coefficient is at the heart of this type of linear receptivity study. The first objective of the present study was to determine whether the various wave number derivative factors, appearing in the coupling coefficients for linear receptivity problems, could be reexpressed in a simpler form involving adjoint eigensolutions. Secondly, it was hoped that the general nature of this simplification could be shown; indeed, a rather elegant characterization of the receptivity properties of spatial instabilities does emerge. The analysis is quite distinct from the usual Fourier-inversion procedures, although a detailed knowledge of the spectrum of the Orr-Sommerfeld equation is still required. Since the cylinder wake analysis proved very useful in addressing control considerations, the final objective was to provide a foundation upon which boundary layer control theory may be developed.
Adjoint simulation of stream depletion due to aquifer pumping.
Neupauer, Roseanna M; Griebling, Scott A
2012-01-01
If an aquifer is hydraulically connected to an adjacent stream, a pumping well operating in the aquifer will draw some water from aquifer storage and some water from the stream, causing stream depletion. Several analytical, semi-analytical, and numerical approaches have been developed to estimate stream depletion due to pumping. These approaches are effective if the well location is known. If a new well is to be installed, it may be desirable to install the well at a location where stream depletion is minimal. If several possible locations are considered for the location of a new well, stream depletion would have to be estimated for all possible well locations, which can be computationally inefficient. The adjoint approach for estimating stream depletion is a more efficient alternative because with one simulation of the adjoint model, stream depletion can be estimated for pumping at a well at any location. We derive the adjoint equations for a coupled system with a confined aquifer, an overlying unconfined aquifer, and a river that is hydraulically connected to the unconfined aquifer. We assume that the stage in the river is known, and is independent of the stream depletion, consistent with the assumptions of the MODFLOW river package. We describe how the adjoint equations can be solved using MODFLOW. In an illustrative example, we show that for this scenario, the adjoint approach is as accurate as standard forward numerical simulation methods, and requires substantially less computational effort. PMID:22182421
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Mesh-free adjoint methods for nonlinear filters
NASA Astrophysics Data System (ADS)
Daum, Fred
2005-09-01
We apply a new industrial strength numerical approximation, called the "mesh-free adjoint method", to solve the nonlinear filtering problem. This algorithm exploits the smoothness of the problem, unlike particle filters, and hence we expect that mesh-free adjoints are superior to particle filters for many practical applications. The nonlinear filter problem is equivalent to solving the Fokker-Planck equation in real time. The key idea is to use a good adaptive non-uniform quantization of state space to approximate the solution of the Fokker-Planck equation. In particular, the adjoint method computes the location of the nodes in state space to minimize errors in the final answer. This use of an adjoint is analogous to optimal control algorithms, but it is more interesting. The adjoint method is also analogous to importance sampling in particle filters, but it is better for four reasons: (1) it exploits the smoothness of the problem; (2) it explicitly minimizes the errors in the relevant functional; (3) it explicitly models the dynamics in state space; and (4) it can be used to compute a corrected value for the desired functional using the residuals. We will attempt to make this paper accessible to normal engineers who do not have PDEs for breakfast.
Adjoint sensitivity analysis of plasmonic structures using the FDTD method.
Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H
2014-05-15
We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach. PMID:24978258
A Posteriori Analysis for Hydrodynamic Simulations Using Adjoint Methodologies
Woodward, C S; Estep, D; Sandelin, J; Wang, H
2009-02-26
This report contains results of analysis done during an FY08 feasibility study investigating the use of adjoint methodologies for a posteriori error estimation for hydrodynamics simulations. We developed an approach to adjoint analysis for these systems through use of modified equations and viscosity solutions. Targeting first the 1D Burgers equation, we include a verification of the adjoint operator for the modified equation for the Lax-Friedrichs scheme, then derivations of an a posteriori error analysis for a finite difference scheme and a discontinuous Galerkin scheme applied to this problem. We include some numerical results showing the use of the error estimate. Lastly, we develop a computable a posteriori error estimate for the MAC scheme applied to stationary Navier-Stokes.
Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology
NASA Technical Reports Server (NTRS)
Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.
2012-01-01
This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.
Learning a trajectory using adjoint functions and teacher forcing
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad B.; Barhen, Jacob
1992-01-01
A new methodology for faster supervised temporal learning in nonlinear neural networks is presented which builds upon the concept of adjoint operators to allow fast computation of the gradients of an error functional with respect to all parameters of the neural architecture, and exploits the concept of teacher forcing to incorporate information on the desired output into the activation dynamics. The importance of the initial or final time conditions for the adjoint equations is discussed. A new algorithm is presented in which the adjoint equations are solved simultaneously (i.e., forward in time) with the activation dynamics of the neural network. We also indicate how teacher forcing can be modulated in time as learning proceeds. The results obtained show that the learning time is reduced by one to two orders of magnitude with respect to previously published results, while trajectory tracking is significantly improved. The proposed methodology makes hardware implementation of temporal learning attractive for real-time applications.
Source attribution of PM2.5 pollution over North China using the adjoint method
NASA Astrophysics Data System (ADS)
Zhang, L.; Liu, L.; Zhao, Y.; Gong, S.; Henze, D. K.
2014-12-01
Conventional methods for source attribution of air pollution are based on measurement statistics (such as Positive Matrix Factorization) or sensitivity simulations with a chemical transport model (CTM). These methods generally ignore the nonlinear chemistry associated with the pollution formation or require unaffordable computational time. Here we use the adjoint of GEOS-Chem CTM at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 pollution over North China in winter 2013. We improved the model sulfate simulation by implementing the aqueous-phase oxidation of S(IV) by nitrogen dioxide. The adjoint results provide detailed source information at the model underlying grid resolution including source types and sectors. We show that PM2.5 pollution over Beijing and Baoding (Hebei) in winter was largely contributed by the large-scale residential and industrial burnings, and ammonia (NH3) emissions from agriculture activities. Nearly half of pollution was transported from outside of the city domains, and accumulated over 2-3 days. We also show under the current emission conditions, the PM2.5 concentrations over North China are more sensitive to NH3 emissions than NOx and SO2 emissions.
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David
1997-01-01
An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat
NASA Technical Reports Server (NTRS)
Andrews, Arlyn; Kawa, Randy; Zhu, Zhengxin; Burris, John; Abshire, Jim
2004-01-01
A detailed mechanistic understanding of the sources and sinks of CO2 will be required to reliably predict future CO2 levels and climate. A commonly used technique for deriving information about CO2 exchange with surface reservoirs is to solve an 'inverse problem', where CO2 observations are used with an atmospheric transport model to find the optimal distribution of sources and sinks. Synthesis inversion methods are powerful tools for addressing this question, but the results are disturbingly sensitive to the details of the calculation. Studies done using different atmospheric transport models and combinations of surface station data have produced substantially different distributions of surface fluxes. Adjoint methods are now being developed that will more effectively incorporate diverse datasets in estimates of surface fluxes of CO2. In an adjoint framework, it will be possible to combine CO2 concentration data from longterm surface and aircraft monitoring stations with data from intensive field campaigns and with proposed future satellite observations. We have recently developed an adjoint for the GSFC 3-D Parameterized Chemistry and Transport Model (PCTM). Here, we will present results from a PCTM Adjoint study comparing the sampling footprints of tall tower, aircraft and potential future lidar observations of CO2. The vertical resolution and extent of the profiles and the observation frequency will be considered for several sites in North America.
Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji
2013-09-25
A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.
O'Brien, M J; Procassini, R J; Joy, K I
2009-03-09
Validation of the problem definition and analysis of the results (tallies) produced during a Monte Carlo particle transport calculation can be a complicated, time-intensive processes. The time required for a person to create an accurate, validated combinatorial geometry (CG) or mesh-based representation of a complex problem, free of common errors such as gaps and overlapping cells, can range from days to weeks. The ability to interrogate the internal structure of a complex, three-dimensional (3-D) geometry, prior to running the transport calculation, can improve the user's confidence in the validity of the problem definition. With regard to the analysis of results, the process of extracting tally data from printed tables within a file is laborious and not an intuitive approach to understanding the results. The ability to display tally information overlaid on top of the problem geometry can decrease the time required for analysis and increase the user's understanding of the results. To this end, our team has integrated VisIt, a parallel, production-quality visualization and data analysis tool into Mercury, a massively-parallel Monte Carlo particle transport code. VisIt provides an API for real time visualization of a simulation as it is running. The user may select which plots to display from the VisIt GUI, or by sending VisIt a Python script from Mercury. The frequency at which plots are updated can be set and the user can visualize the simulation results as it is running.
Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis,Michael J.
2006-01-01
Cartesian-mesh methods are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods with an eficient computation of design sensitivities. We address this issue using the adjoint method, where the computational cost of the design sensitivities, or objective function gradients, is esseutially indepeudent of the number of design variables. In previous work, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable approximation of the objective finction gradient. Motivated by the success of mesh-perturbation schemes commonly used in body-fitted unstructured formulations, we propose an approach based on a local linearization of a mesh-perturbation scheme similar to the spring analogy. This approach circumvents most of the difficulties that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides a consistent approximation tot he exact gradient of the discretized abjective function. A detailed gradient accurace study is presented to verify our approach
NASA Astrophysics Data System (ADS)
Hagedoorn, J. M.; Martinec, Z.
2012-12-01
Recent models of the Earth's geomagnetic field at the core-mantle boundary (CMB) are based on satellite measurements and/or observatory data, which are mostly harmonically downward continued to the CMB. One aim of the upcoming satellite mission Swarm is to determine the three-dimensional distribution of electric conductivity of the Earth's mantle. On this background, we developed an adjoint sensitivity downward continuation approach that is capable to consider three-dimensional electric conductivity distributions. Martinec (Geophys. J. Int., 136, 1999) developed a time-domain spectral-finite element approach for the forward modelling of vector electromagnetic induction data as measured on ground-based magnetic observatory or by satellites. We design a new method to compute the sensitivity of the magnetic induction data to a magnetic field prescribed at the core-mantle boundary, which we term the adjoint sensitivity method. The forward and adjoint initial boundary-value problems, both solved in the time domain, are identical, except for the specification of prescribed boundary conditions. The respective boundary-value data are the measured X magnetic component for the forward method and the difference between the measured and predicted Z magnetic component for the adjoint method. The squares of the differences in Z magnetic component summed up over the time of observation and all spatial positions of observations determine the misfit. Then the sensitivities of observed data, i.e. the partial derivatives of the misfit with respect to the parameters characterizing the magnetic field at the core-mantle boundary, are obtained by the surface integral over the core-mantle boundary of the product of the adjoint solution multiplied by the time-dependent functions describing the time variability of magnetic field at the core-mantle boundary, and integrated over the time of observation. The time variability of boundary data is represented in terms of locally supported B
Assimilating Remote Ammonia Observations with a Refined Aerosol Thermodynamics Adjoint"
Ammonia emissions parameters in North America can be refined in order to improve the evaluation of modeled concentrations against observations. Here, we seek to do so by developing and applying the GEOS-Chem adjoint nested over North America to conductassimilation of observations...
Adjoint operator approach to shape design for internal incompressible flows
NASA Technical Reports Server (NTRS)
Cabuk, H.; Sung, C.-H.; Modi, V.
1991-01-01
The problem of determining the profile of a channel or duct that provides the maximum static pressure rise is solved. Incompressible, laminar flow governed by the steady state Navier-Stokes equations is assumed. Recent advances in computational resources and algorithms have made it possible to solve the direct problem of determining such a flow through a body of known geometry. It is possible to obtain a set of adjoint equations, the solution to which permits the calculation of the direction and relative magnitude of change in the diffuser profile that leads to a higher pressure rise. The solution to the adjoint problem can be shown to represent an artificially constructed flow. This interpretation provides a means to construct numerical solutions to the adjoint equations that do not compromise the fully viscous nature of the problem. The algorithmic and computational aspects of solving the adjoint equations are addressed. The form of these set of equations is similar but not identical to the Navier-Stokes equations. In particular some issues related to boundary conditions and stability are discussed.
Adjoint-Operator Learning For A Neural Network
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, Nikzad
1993-01-01
Electronic neural networks made to synthesize initially unknown mathematical models of time-dependent phenomena or to learn temporally evolving patterns by use of algorithms based on adjoint operators. Algorithms less complicated, involve less computation and solve learning equations forward in time possibly simultaneously with equations of evolution of neural network, thereby both increasing computational efficiency and making real-time applications possible.
Reconstruction of ocean circulation from sparse data using the adjoint method: LGM and the present
NASA Astrophysics Data System (ADS)
Kurahashi-Nakamura, T.; Losch, M. J.; Paul, A.; Mulitza, S.; Schulz, M.
2010-12-01
Understanding the behavior of the Earth's climate system under different conditions in the past is the basis for more robust projections of future climate. It is thought that the ocean circulation plays a very important role in the climate system, because it can greatly affect climate by dynamic-thermodynamic (as a medium of heat transport) and biogeochemical processes (by affecting the global carbon cycle). In this context, studying the period of the Last Glacial Maximum (LGM) is particularly promising, as it represents a climate state that is very different from today. Furthermore the LGM, compared to other paleoperiods, is characterized by a relatively good paleo-data coverage. Unfortunately, the ocean circulation during the LGM is still uncertain, with a range of climate models estimating both a stronger and a weaker formation rate of North Atlantic Deep Water (NADW) as compared to the present rate. Here, we present a project aiming at reducing this uncertainty by combining proxy data with a numerical ocean model using variational techniques. Our approach, the so-called adjoint method, employs a quadratic cost function of model-data differences weighted by their prior error estimates. We seek an optimal state estimate at the global minimum of the cost function by varying the independent control variables such as initial conditions (e.g. temperature), boundary conditions (e.g. surface winds, heat flux), or internal parameters (e.g. vertical diffusivity). The adjoint or dual model computes the gradient of the cost function with respect to these control variables and thus provides the information required by gradient descent algorithms. The gradients themselves provide valuable information about the sensitivity of the system to perturbations in the control variables. We use the Massachusetts Institute of Technology ocean general circulation model (MITgcm) with a cubed-sphere grid system that avoids converging grid lines and pole singularities. This model code is
Adjoint Based Data Assimilation for an Ionospheric Model
NASA Astrophysics Data System (ADS)
Rosen, I. G.; Hajj, G. A.; Hajj, G. A.; Pi, X.; Pi, X.; Wang, C.; Wilson, B. D.
2001-05-01
The success of ionospheric modeling depends primarily on accurate knowledge of the forces (drivers) which enter into the collisional plasma hydrodynamic equations for the ionosphere and control the ionization as well as other dynamical and chemical processes. These include solar EUV and UV radiation, magnetospheric electric fields, particle precipitation, dynamo electric fields, thermospheric winds, neutral densities, and temperature. The determination of these model parameters from observational data is known as data assimilation. The data assimilation problem is formulated as a problem of minimizing a nonlinear functional, J (typically least squares) under a system of constraints consisting primarily of the underlying model equations. The performance index, J, can, in principle, be minimized using standard techniques such as the Newton's steepest decent method. There are however major technical challenges in practice. Since J is highly nonlinear and each evaluation of the functional requires the integration of the ionospheric model equations, computing the gradient vector of J with respect to the unknown parameters is time consuming. This problem is solved by use of the adjoint method. The ionospheric model used in this effort is for mid- and low-latitudes and consists of solving the continuity and momentum partial differential equations in four dimensional (three spatial dimensions and time) to compute the O+ density in the ionosphere and plasmasphere. We have developed codes for solving the forward model on a fixed grid. This makes it relatively straight forward to apply the adjoint method for computing gradients when doing nonlinear least squares based data assimilation. Because of the significant cost (in computational effort and CPU time) involved in performing a forward integration of the underlying 3-D model at any reasonable grid resolution, the use of the adjoint method for computing the gradients is indispensable. The adjoint method provides an elegant
Rutkowska, Iwona A; Marszalek, Magdalena; Orlowska, Justyna; Ozimek, Weronika; Zakeeruddin, Shaik M; Kulesza, Pawel J; Grätzel, Michael
2015-08-10
The ability of Pt nanostructures to induce the splitting of the II bond in iodine (triiodide) molecules is explored here to enhance electron transfer in the iodine/iodide redox couple. Following the dispersal of Pt nanoparticles at 2 % (weight) level, charge transport was accelerated in triiodide/iodide-containing 1,3-dialkylimidazolium room-temperature ionic liquid. If both Pt nanoparticles and multi-walled carbon nanotubes were introduced into the ionic-liquid-based system, a solid-type (nonfluid) electrolyte was obtained. By using solid-state voltammetric (both sandwich-type and microelectrode-based) methodology, the apparent diffusion coefficients for charge transport increased to approximately 1×10(-6) cm(2) s(-1) upon the incorporation of the carbon-nanotube-supported iodine-modified Pt nanostructures. A dye-sensitized solar cell comprising TiO2 covered with a heteroleptic Ru(II) -type sensitizer (dye) and the semisolid triiodide/iodide ionic liquid electrolyte admixed with carbon-nanotube-supported Pt nanostructures yielded somewhat higher power conversion efficiencies (up to 7.9 % under standard reporting conditions) than those of the analogous Pt-free system. PMID:26119519
Streile, G.P.; Simmons, C.S.
1986-09-01
Theoretical and computer modeling capability for assessing the subsurface movement and fate of organic contaminants in groundwater was examined. Hence, this study is particularly concerned with energy-related, organic compounds that could enter a subsurface environment and move as components of a liquid phase separate from groundwater. The migration of organic chemicals that exist in an aqueous dissolved state is certainly a part of this more general scenario. However, modeling of the transport of chemicals in aqueous solution has already been the subject of several reviews. Hence, this study emphasizes the multiphase scenario. This study was initiated to focus on the important physicochemical processes that control the behavior of organic substances in groundwater systems, to evaluate the theory describing these processes, and to search for and evaluate computer codes that implement models that correctly conceptualize the problem situation. This study is not a code inventory, and no effort was made to identify every available code capable of representing a particular process.
Paulot, Fabien; Jacob, Daniel J; Henze, Daven K
2013-04-01
Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture. PMID:23458244
NASA Astrophysics Data System (ADS)
Capps, S. L.; Pinder, R. W.; Loughlin, D. H.; Bash, J. O.; Turner, M. D.; Henze, D. K.; Percell, P.; Zhao, S.; Russell, M. G.; Hakami, A.
2014-12-01
Tropospheric ozone (O3) affects the productivity of ecosystems in addition to degrading human health. Concentrations of this pollutant are significantly influenced by precursor gas emissions, many of which emanate from energy production and use processes. Energy system optimization models could inform policy decisions that are intended to reduce these harmful effects if the contribution of precursor gas emissions to human health and ecosystem degradation could be elucidated. Nevertheless, determining the degree to which precursor gas emissions harm ecosystems and human health is challenging because of the photochemical production of ozone and the distinct mechanisms by which ozone causes harm to different crops, tree species, and humans. Here, the adjoint of a regional chemical transport model is employed to efficiently calculate the relative influences of ozone precursor gas emissions on ecosystem and human health degradation, which informs an energy system optimization. Specifically, for the summer of 2007 the Community Multiscale Air Quality (CMAQ) model adjoint is used to calculate the location- and sector-specific influences of precursor gas emissions on potential productivity losses for the major crops and sensitive tree species as well as human mortality attributable to chronic ozone exposure in the continental U.S. The atmospheric concentrations are evaluated with 12-km horizontal resolution with crop production and timber biomass data gridded similarly. These location-specific factors inform the energy production and use technologies selected in the MARKet ALlocation (MARKAL) model.
Cahalan, J. E.; Ama, T.; Palmiotti, G.; Taiwo, T. A.; Yang, W. S.
2000-03-09
The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects.
Bastien, Lucas A J; McDonald, Brian C; Brown, Nancy J; Harley, Robert A
2015-06-16
The adjoint of the Community Multiscale Air Quality (CMAQ) model at 1 km horizontal resolution is used to map emissions that contribute to ambient concentrations of benzene and diesel black carbon (BC) in the San Francisco Bay area. Model responses of interest include population-weighted average concentrations for three highly polluted receptor areas and the entire air basin. We consider both summer (July) and winter (December) conditions. We introduce a novel approach to evaluate adjoint sensitivity calculations that complements existing methods. Adjoint sensitivities to emissions are found to be accurate to within a few percent, except at some locations associated with large sensitivities to emissions. Sensitivity of model responses to emissions is larger in winter, reflecting weaker atmospheric transport and mixing. The contribution of sources located within each receptor area to the same receptor's air pollution burden increases from 38-74% in summer to 56-85% in winter. The contribution of local sources is higher for diesel BC (62-85%) than for benzene (38-71%), reflecting the difference in these pollutants' atmospheric lifetimes. Morning (6-9am) and afternoon (4-7 pm) commuting-related emissions dominate region-wide benzene levels in winter (14 and 25% of the total response, respectively). In contrast, afternoon rush hour emissions do not contribute significantly in summer. Similar morning and afternoon peaks in sensitivity to emissions are observed for the BC response; these peaks are shifted toward midday because most diesel truck traffic occurs during off-peak hours. PMID:26001097
NASA Astrophysics Data System (ADS)
Holdaway, D.; Coy, L.
2015-12-01
In September 2002 a major sudden stratospheric warming (SSW) occurred in the southern hemisphere. Although numerous SSWs have been observed in the northern hemisphere, this remains the only recorded major SSW in the southern hemisphere. Much debate has focused on this unique event and the causes, even resulting in a special issue of the Journal of Atmospheric Science. In this work we use the adjoint of NASA's Goddard Earth Observing System version 5 (GEOS-5) to investigate sensitivity to initial conditions during the onset of the 2002 SSW. The adjoint model provides a framework for propagating gradients with respect to the model state backwards in time. As such it is used to reveal aspects of the model initial conditions that have the biggest impact on the temperature in the stratosphere during the warming. The adjoint model reveals a large sensitivity over the southern Atlantic ocean and in the troposphere. This reinforces previous studies that attributed the SSW to a blocking ridge in this region. By converting sensitivity to perturbations it is shown that relatively small localized tropospheric perturbations to winds and temperature can be transported to the stratosphere and have a large impact on the SSW.
Estimates of black carbon emissions in the western United States using the GEOS-Chem adjoint model
NASA Astrophysics Data System (ADS)
Mao, Y. H.; Li, Q. B.; Henze, D. K.; Jiang, Z.; Jones, D. B. A.; Kopacz, M.; He, C.; Qi, L.; Gao, M.; Hao, W.-M.; Liou, K.-N.
2015-07-01
We estimate black carbon (BC) emissions in the western United States for July-September 2006 by inverting surface BC concentrations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network using a global chemical transport model (GEOS-Chem) and its adjoint. Our best estimate of the BC emissions is 49.9 Gg at 2° × 2.5° (a factor of 2.1 increase) and 47.3 Gg at 0.5° × 0.667° (1.9 times increase). Model results now capture the observed major fire episodes with substantial bias reductions ( 35 % at 2° × 2.5° and 15 % at 0.5° × 0.667°). The emissions are 20-50 % larger than those from our earlier analytical inversions (Mao et al., 2014). The discrepancy is especially drastic in the partitioning of anthropogenic versus biomass burning emissions. The August biomass burning BC emissions are 4.6-6.5 Gg and anthropogenic BC emissions 8.6-12.8 Gg, varying with the model resolution, error specifications, and subsets of observations used. On average both anthropogenic and biomass burning emissions in the adjoint inversions increase 2-fold relative to the respective {a priori} emissions, in distinct contrast to the halving of the anthropogenic and tripling of the biomass burning emissions in the analytical inversions. We attribute these discrepancies to the inability of the adjoint inversion system, with limited spatiotemporal coverage of the IMPROVE observations, to effectively distinguish collocated anthropogenic and biomass burning emissions on model grid scales. This calls for concurrent measurements of other tracers of biomass burning and fossil fuel combustion (e.g., carbon monoxide and carbon isotopes). We find that the adjoint inversion system as is has sufficient information content to constrain the total emissions of BC on the model grid scales.
Adjoint Formulation for an Embedded-Boundary Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Murman, Scott M.; Pulliam, Thomas H.
2004-01-01
Many problems in aerodynamic design can be characterized by smooth and convex objective functions. This motivates the use of gradient-based algorithms, particularly for problems with a large number of design variables, to efficiently determine optimal shapes and configurations that maximize aerodynamic performance. Accurate and efficient computation of the gradient, however, remains a challenging task. In optimization problems where the number of design variables dominates the number of objectives and flow- dependent constraints, the cost of gradient computations can be significantly reduced by the use of the adjoint method. The problem of aerodynamic optimization using the adjoint method has been analyzed and validated for both structured and unstructured grids. The method has been applied to design problems governed by the potential, Euler, and Navier-Stokes equations and can be subdivided into the continuous and discrete formulations. Giles and Pierce provide a detailed review of both approaches. Most implementations rely on grid-perturbation or mapping procedures during the gradient computation that explicitly couple changes in the surface shape to the volume grid. The solution of the adjoint equation is usually accomplished using the same scheme that solves the governing flow equations. Examples of such code reuse include multistage Runge-Kutta schemes coupled with multigrid, approximate-factorization, line-implicit Gauss-Seidel, and also preconditioned GMRES. The development of the adjoint method for aerodynamic optimization problems on Cartesian grids has been limited. In contrast to implementations on structured and unstructured grids, Cartesian grid methods decouple the surface discretization from the volume grid. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin e t al. developed an adjoint formulation for the TRANAIR code
Accurate adjoint design sensitivities for nano metal optics.
Hansen, Paul; Hesselink, Lambertus
2015-09-01
We present a method for obtaining accurate numerical design sensitivities for metal-optical nanostructures. Adjoint design sensitivity analysis, long used in fluid mechanics and mechanical engineering for both optimization and structural analysis, is beginning to be used for nano-optics design, but it fails for sharp-cornered metal structures because the numerical error in electromagnetic simulations of metal structures is highest at sharp corners. These locations feature strong field enhancement and contribute strongly to design sensitivities. By using high-accuracy FEM calculations and rounding sharp features to a finite radius of curvature we obtain highly-accurate design sensitivities for 3D metal devices. To provide a bridge to the existing literature on adjoint methods in other fields, we derive the sensitivity equations for Maxwell's equations in the PDE framework widely used in fluid mechanics. PMID:26368483
Examination of Observation Impacts derived from OSEs and Adjoint Models
NASA Technical Reports Server (NTRS)
Gelaro, Ronald
2008-01-01
With the adjoint of a data assimilation system, the impact of any or all assimilated observations on measures of forecast skill can be estimated accurately and efficiently. The approach allows aggregation of results in terms of individual data types, channels or locations, all computed simultaneously. In this study, adjoint-based estimates of observation impact are compared with results from standard observing system experiments (OSEs) in the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) GEOS-5 system. The two approaches are shown to provide unique, but complimentary, information. Used together, they reveal both redundancies and dependencies between observing system impacts as observations are added or removed. Understanding these dependencies poses a major challenge for optimizing the use of the current observational network and defining requirements for future observing systems.
Three-Dimensional Turbulent RANS Adjoint-Based Error Correction
NASA Technical Reports Server (NTRS)
Park, Michael A.
2003-01-01
Engineering problems commonly require functional outputs of computational fluid dynamics (CFD) simulations with specified accuracy. These simulations are performed with limited computational resources. Computable error estimates offer the possibility of quantifying accuracy on a given mesh and predicting a fine grid functional on a coarser mesh. Such an estimate can be computed by solving the flow equations and the associated adjoint problem for the functional of interest. An adjoint-based error correction procedure is demonstrated for transonic inviscid and subsonic laminar and turbulent flow. A mesh adaptation procedure is formulated to target uncertainty in the corrected functional and terminate when error remaining in the calculation is less than a user-specified error tolerance. This adaptation scheme is shown to yield anisotropic meshes with corrected functionals that are more accurate for a given number of grid points then isotropic adapted and uniformly refined grids.
On improving storm surge forecasting using an adjoint optimal technique
NASA Astrophysics Data System (ADS)
Li, Yineng; Peng, Shiqiu; Yan, Jing; Xie, Lian
2013-12-01
A three-dimensional ocean model and its adjoint model are used to simultaneously optimize the initial conditions (IC) and the wind stress drag coefficient (Cd) for improving storm surge forecasting. To demonstrate the effect of this proposed method, a number of identical twin experiments (ITEs) with a prescription of different error sources and two real data assimilation experiments are performed. Results from both the idealized and real data assimilation experiments show that adjusting IC and Cd simultaneously can achieve much more improvements in storm surge forecasting than adjusting IC or Cd only. A diagnosis on the dynamical balance indicates that adjusting IC only may introduce unrealistic oscillations out of the assimilation window, which can be suppressed by the adjustment of the wind stress when simultaneously adjusting IC and Cd. Therefore, it is recommended to simultaneously adjust IC and Cd to improve storm surge forecasting using an adjoint technique.
Seismic Window Selection and Misfit Measurements for Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Lei, W.; Bozdag, E.; Lefebvre, M.; Podhorszki, N.; Smith, J. A.; Tromp, J.
2013-12-01
Global Adjoint Tomography requires fast parallel processing of large datasets. After obtaing the preprocessed observed and synthetic seismograms, we use the open source software packages FLEXWIN (Maggi et al. 2007) to select time windows and MEASURE_ADJ to make measurements. These measurements define adjoint sources for data assimilation. Previous versions of these tools work on a pair of SAC files---observed and synthetic seismic data for the same component and station, and loop over all seismic records associated with one earthquake. Given the large number of stations and earthquakes, the frequent read and write operations create severe I/O bottlenecks on modern computing platforms. We present new versions of these tools utilizing a new seismic data format, namely the Adaptive Seismic Data Format(ASDF). This new format shows superior scalability for applications on high-performance computers and accommodates various types of data, including earthquake, industry and seismic interferometry datasets. ASDF also provides user-friendly APIs, which can be easily integrated into the adjoint tomography workflow and combined with other data processing tools. In addition to solving the I/O bottleneck, we are making several improvements to these tools. For example, FLEXWIN is tuned to select windows for different types of earthquakes. To capture their distinct features, we categorize earthquakes by their depths and frequency bands. Moreover, instead of only picking phases between the first P arrival and the surface-wave arrivals, our aim is to select and assimilate many other later prominent phases in adjoint tomography. For example, in the body-wave band (17 s - 60 s), we include SKS, sSKS and their multiple, while in the surface-wave band (60 s - 120 s) we incorporate major-arc surface waves.
Adjoint calculations for multiple scattering of Compton and Rayleigh effects
NASA Astrophysics Data System (ADS)
Fernández, J. E.; Sumini, M.
1992-08-01
As is well known, the experimental determination of the Compton profile requires a particular geometry with a scattering angle close to π. That situation involves a narrow multiple-scattering spectrum that overlaps the Compton peak, making it difficult to analyze the different contributions to the profile. We show how the solution of the adjoint problem can help in devising more useful experimental configurations, giving, through its classical "importance" meaning, a formally clear picture of the whole problem.
Forward and adjoint sensitivity computation of chaotic dynamical systems
Wang, Qiqi
2013-02-15
This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged “statistical” quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.
A comparison of adjoint and data-centric verification techniques.
Wildey, Timothy Michael; Cyr, Eric Christopher; Shadid, John Nicolas; Pawlowski, Roger Patrick; Smith, Thomas Michael
2013-03-01
This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant of a data-centric verification technique. We provide a brief overview of each technique and then we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical results for steady-state Navier Stokes and SARANS approximations. 3
Monopole condensation in two-flavor adjoint QCD
Cossu, Guido; D'Elia, Massimo; Di Giacomo, Adriano; Lacagnina, Giuseppe; Pica, Claudio
2008-04-01
In QCD with adjoint fermions, the deconfining transition takes place at a lower temperature than the chiral transition. We study the two transitions by use of the Polyakov loop, the monopole order parameter, and the chiral condensate. The deconfining transition is first order, the chiral is a crossover. The order parameters for confinement are not affected by the chiral transition. We conclude that the degrees of freedom relevant to confinement are different from those describing chiral symmetry.
NASA Astrophysics Data System (ADS)
Kopacz, Monika; Jacob, Daniel J.; Henze, Daven K.; Heald, Colette L.; Streets, David G.; Zhang, Qiang
2008-04-01
We apply the adjoint of an atmospheric chemical transport model (GEOS-Chem CTM) to constrain Asian sources of carbon monoxide (CO) with 2° × 2.5° spatial resolution using Measurement of Pollution in the Troposphere (MOPITT) satellite observations of CO columns in February-April 2001. Results are compared to the more common analytical method for solving the same Bayesian inverse problem and applied to the same data set. The analytical method is more exact but because of computational limitations it can only constrain emissions over coarse regions. We find that the correction factors to the a priori CO emission inventory from the adjoint inversion are consistent with those of the analytical inversion when averaged over the large regions of the latter. Unlike the analytical solution, the adjoint correction factors are not subject to compensating errors between adjacent regions (error anticorrelation). The adjoint solution also reveals fine-scale variability that the analytical inversion cannot resolve. For example, India shows both large emissions underestimates in the densely populated Ganges Valley and large overestimates in the eastern part of the country where springtime emissions are dominated by biomass burning. Correction factors to Chinese emissions are largest in central and eastern China, consistent with a recent bottom-up inventory though there are disagreements in the fine structure. Correction factors for biomass burning are consistent with a recent bottom-up inventory based on MODIS satellite fire data.
Spectral monodromy of non-self-adjoint operators
NASA Astrophysics Data System (ADS)
Phan, Quang Sang
2014-01-01
In the present paper, we build a combinatorial invariant, called the "spectral monodromy" from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc ["Quantum monodromy in integrable systems," Commun. Math. Phys. 203(2), 465-479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat ["On global action-angle coordinates," Commun. Pure Appl. Math. 33(6), 687-706 (1980)].
Adjoint-based sensitivity analysis for reactor-safety applications
Parks, C.V.
1985-01-01
The application and usefulness of an adjoint-based methodology for performing sensitivity analysis on reactor safety computer codes is investigated. The adjoint-based methodology, referred to as differential sensitivity theory (DST), provides first-order derivatives of the calculated quantities of interest (responses) with respect to the input parameters. The basic theoretical development of DST is presented along with the needed general extensions for consideration of model discontinuities and a variety of useful response definitions. A simple analytic problem is used to highlight the general DST procedures. Finally, DST procedures presented in this work are applied to two highly nonlinear reactor accident analysis codes: (1) FASTGAS, a relatively small code for analysis of loss-of-decay-heat-removal accident in a gas-cooled fast reactor, and (2) an existing code called VENUS-II which is typically employed for analyzing the core disassembly phase of a hypothetical fast reactor accident. The two codes are different both in terms of complexity and in terms of the facets of DST which can be illustrated. Sensitivity results from the adjoint codes ADJGAS and VENUS-ADJ are verified with direct recalculations using perturbed input parameters. The effectiveness of the DST results for parameter ranking, prediction of response changes, and uncertainty analysis are illustrated. The conclusion drawn from this study is that DST is a viable, cost-effective methodology for accurate sensitivity analysis.
Self-adjoint time operators and invariant subspaces
NASA Astrophysics Data System (ADS)
Gómez, Fernando
2008-02-01
The question of existence of self-adjoint time operators for unitary evolutions in classical and quantum mechanics is revisited on the basis of Halmos-Helson theory of invariant subspaces, Sz.-Nagy-Foiaş dilation theory and Misra-Prigogine-Courbage theory of irreversibility. It is shown that the existence of self-adjoint time operators is equivalent to the intertwining property of the evolution plus the existence of simply invariant subspaces or rigid operator-valued functions for its Sz.-Nagy-Foiaş functional model. Similar equivalent conditions are given in terms of intrinsic randomness in the context of statistical mechanics. The rest of the contents are mainly a unifying review of the subject scattered throughout an unconnected literature. A well-known extensive set of equivalent conditions is derived from the above results; such conditions are written in terms of Schrrdinger couples, the Weyl commutation relation, incoming and outgoing subspaces, innovation processes, Lax-Phillips scattering, translation and spectral representations, and spectral properties. Also the natural procedure dealing with symmetric time operators in standard quantum mechanics involving their self-adjoint extensions is illustrated by considering the quantum Aharonov-Bohm time-of-arrival operator.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
Spectral monodromy of non-self-adjoint operators
Phan, Quang Sang
2014-01-15
In the present paper, we build a combinatorial invariant, called the “spectral monodromy” from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc [“Quantum monodromy in integrable systems,” Commun. Math. Phys. 203(2), 465–479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat [“On global action-angle coordinates,” Commun. Pure Appl. Math. 33(6), 687–706 (1980)].
A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System
C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler
1998-10-01
The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.
Nonlinear self-adjointness and conservation laws of Klein-Gordon-Fock equation with central symmetry
NASA Astrophysics Data System (ADS)
Abdulwahhab, Muhammad Alim
2015-05-01
The concept of nonlinear self-adjointness, introduced by Ibragimov, has significantly extends approaches to constructing conservation laws associated with symmetries since it incorporates the strict self-adjointness, the quasi self-adjointness as well as the usual linear self-adjointness. Using this concept, the nonlinear self-adjointness condition for the Klein-Gordon-Fock equation was established and subsequently used to construct simplified but infinitely many nontrivial and independent conserved vectors. The Noether's theorem was further applied to the Klein-Gordon-Fock equation to explore more distinct first integrals, result shows that conservation laws constructed through this approach are exactly the same as those obtained under strict self-adjointness of Ibragimov's method.
Adjoint-Based Sensitivity Maps for the Nearshore
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Ngodock, Hans
2013-04-01
The wave model SWAN (Booij et al., 1999) solves the spectral action balance equation to produce nearshore wave forecasts and climatologies. It is widely used by the coastal modeling community and is part of a variety of coupled ocean-wave-atmosphere model systems. A variational data assimilation system (Orzech et al., 2013) has recently been developed for SWAN and is presently being transitioned to operational use by the U.S. Naval Oceanographic Office. This system is built around a numerical adjoint to the fully nonlinear, nonstationary SWAN code. When provided with measured or artificial "observed" spectral wave data at a location of interest on a given nearshore bathymetry, the adjoint can compute the degree to which spectral energy levels at other locations are correlated with - or "sensitive" to - variations in the observed spectrum. Adjoint output may be used to construct a sensitivity map for the entire domain, tracking correlations of spectral energy throughout the grid. When access is denied to the actual locations of interest, sensitivity maps can be used to determine optimal alternate locations for data collection by identifying regions of greatest sensitivity in the mapped domain. The present study investigates the properties of adjoint-generated sensitivity maps for nearshore wave spectra. The adjoint and forward SWAN models are first used in an idealized test case at Duck, NC, USA, to demonstrate the system's effectiveness at optimizing forecasts of shallow water wave spectra for an inaccessible surf-zone location. Then a series of simulations is conducted for a variety of different initializing conditions, to examine the effects of seasonal changes in wave climate, errors in bathymetry, and variations in size and shape of the inaccessible region of interest. Model skill is quantified using two methods: (1) a more traditional correlation of observed and modeled spectral statistics such as significant wave height, and (2) a recently developed RMS
Using Adjoint Methods to Improve 3-D Velocity Models of Southern California
NASA Astrophysics Data System (ADS)
Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.
2006-12-01
We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical
Towards Multi-resolution Adjoint Tomography of the European Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Basini, P.; Nissen-Meyer, T.; Boschi, L.; Schenk, O.; Verbeke, J.; Hanasoge, S.; Giardini, D.
2010-12-01
Thanks to continuously improved instrument coverage, and the growth of high-performance computational infrastructure, it is now possible to enhance the resolution at which seismologists image the Earth's interior. While most algorithms in global seismic tomography today are grounded on the ray-theory approximation, however, resolution and model complexity can effectively be enhanced only through the application of more advanced techniques accounting for the many complexities of the partial derivatives relating seismic data and Earth structure. These include full-wave forward modelling methods and adjoint algorithms, which together set a framework for iterative, nonlinear inversion upon complex 3D structures. We take advantage of these methodological improvements using a newly developed, flexible spectral-element method (SPECFEM3D) with embedded adjoint capabilities to devise new tomographic models of the European crust and upper mantle. We chose a two-scale strategy, in which we use global surface wave data to first constrain the large-scale structures, and simultaneously invert for high-resolution, regional structures based on measurements of ambient noise in central and southern Europe. By its very nature, and as a result of the dense station coverage over the continent, the ambient-noise method affords us a particularly uniform seismic coverage. To define surface-wave sensitivity kernels, we construct a flexible, global mesh of the upper mantle only (i.e., a spherical shell) honoring all global discontinuities, and include 3D starting models down to periods of 30 seconds. The noise data are cross-correlated to obtain station-to-station Green's functions. We will present examples of sensitivity kernels computed for these noise-based Green's functions and discuss the data-specific validity of the underlying assumptions to extract Green's functions. The local setup, which is constructed using the same software as in the global case, needs to honor internal and
The efficiency of geophysical adjoint codes generated by automatic differentiation tools
NASA Astrophysics Data System (ADS)
Vlasenko, A. V.; Köhl, A.; Stammer, D.
2016-02-01
The accuracy of numerical models that describe complex physical or chemical processes depends on the choice of model parameters. Estimating an optimal set of parameters by optimization algorithms requires knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity computation involves differentiation of the model, which can be performed by applying algorithmic differentiation (AD) tools to the underlying numerical code. However, existing AD tools differ substantially in design, legibility and computational efficiency. In this study we show that, for geophysical data assimilation problems of varying complexity, the performance of adjoint codes generated by the existing AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 90-95 elements such as structures and pointers, which are new elements that either combine groups of variables or provide aliases to memory addresses, respectively. We show that, while operator overloading tools are the only ones suitable for modern codes written in object-oriented programming languages, their computational efficiency lags behind source transformation by orders of magnitude, rendering the application of these modern tools to practical assimilation problems prohibitive. In contrast, the application of source transformation tools appears to be the most efficient choice, allowing handling even large geophysical data assimilation problems. However, they can only be applied to numerical models written in earlier generations of programming languages. Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that urgently need to be solved to allow the
A user`s manual for MASH 1.0: A Monte Carlo Adjoint Shielding Code System
Johnson, J.O.
1992-03-01
The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the ``dose importance`` of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user`s manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.
Adjoint-based sensitivity analysis for reactor safety applications
Parks, C.V.
1986-08-01
The application and usefulness of an adjoint-based methodology for performing sensitivity analysis on reactor safety computer codes is investigated. The adjoint-based methodology, referred to as differential sensitivity theory (DST), provides first-order derivatives of the calculated quantities of interest (responses) with respect to the input parameters. The basic theoretical development of DST is presented along with the needed general extensions for consideration of model discontinuities and a variety of useful response definitions. A simple analytic problem is used to highlight the general DST procedures. finally, DST procedures presented in this work are applied to two highly nonlinear reactor accident analysis codes: (1) FASTGAS, a relatively small code for analysis of a loss-of-decay-heat-removal accident in a gas-cooled fast reactor, and (2) an existing code called VENUS-II which has been employed for analyzing the core disassembly phase of a hypothetical fast reactor accident. The two codes are different both in terms of complexity and in terms of the facets of DST which can be illustrated. Sensitivity results from the adjoint codes ADJGAS and VENUS-ADJ are verified with direct recalcualtions using perturbed input parameters. The effectiveness of the DST results for parameter ranking, prediction of response changes, and uncertainty analysis are illustrated. The conclusion drawn from this study is that DST is a viable, cost-effective methodology for accurate sensitivity analysis. In addition, a useful sensitivity tool for use in the fast reactor safety area has been developed in VENUS-ADJ. Future work needs to concentrate on combining the accurate first-order derivatives/results from DST with existing methods (based solely on direct recalculations) for higher-order response surfaces.
Adjoint optimization of natural convection problems: differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.
2016-06-01
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here
Advances in Global Adjoint Tomography -- Massive Data Assimilation
NASA Astrophysics Data System (ADS)
Ruan, Y.; Lei, W.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Krischer, L.; Tromp, J.
2015-12-01
Azimuthal anisotropy and anelasticity are key to understanding a myriad of processes in Earth's interior. Resolving these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models and an iterative inversion strategy. In the wake of successes in regional studies(e.g., Chen et al., 2007; Tape et al., 2009, 2010; Fichtner et al., 2009, 2010; Chen et al.,2010; Zhu et al., 2012, 2013; Chen et al., 2015), we are employing adjoint tomography based on a spectral-element method (Komatitsch & Tromp 1999, 2002) on a global scale using the supercomputer ''Titan'' at Oak Ridge National Laboratory. After 15 iterations, we have obtained a high-resolution transversely isotropic Earth model (M15) using traveltime data from 253 earthquakes. To obtain higher resolution images of the emerging new features and to prepare the inversion for azimuthal anisotropy and anelasticity, we expanded the original dataset with approximately 4,220 additional global earthquakes (Mw5.5-7.0) --occurring between 1995 and 2014-- and downloaded 300-minute-long time series for all available data archived at the IRIS Data Management Center, ORFEUS, and F-net. Ocean Bottom Seismograph data from the last decade are also included to maximize data coverage. In order to handle the huge dataset and solve the I/O bottleneck in global adjoint tomography, we implemented a python-based parallel data processing workflow based on the newly developed Adaptable Seismic Data Format (ASDF). With the help of the data selection tool MUSTANG developed by IRIS, we cleaned our dataset and assembled event-based ASDF files for parallel processing. We have started Centroid Moment Tensors (CMT) inversions for all 4,220 earthquakes with the latest model M15, and selected high-quality data for measurement. We will statistically investigate each channel using synthetic seismograms calculated in M15 for updated CMTs and identify problematic channels. In addition to data screening, we also modified
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local
A self-adjoint decomposition of the radial momentum operator
NASA Astrophysics Data System (ADS)
Liu, Q. H.; Xiao, S. F.
2015-12-01
With acceptance of the Dirac's observation that the canonical quantization entails using Cartesian coordinates, we examine the operator erPr rather than Pr itself and demonstrate that there is a decomposition of erPr into a difference of two self-adjoint but noncommutative operators, in which one is the total momentum and another is the transverse one. This study renders the operator Pr indirectly measurable and physically meaningful, offering an explanation of why the mean value of Pr over a quantum mechanical state makes sense and supporting Dirac's claim that Pr "is real and is the true momentum conjugate to r".
Examining Tropical Cyclone - Kelvin Wave Interactions using Adjoint Diagnostics
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Doyle, J. D.; Hong, X.
2015-12-01
Adjoint-based tools can provide valuable insight into the mechanisms that influence the evolution and predictability of atmospheric phenomena, as they allow for the efficient and rigorous computation of forecast sensitivity to changes in the initial state. We apply adjoint-based tools from the non-hydrostatic Coupled Atmosphere/Ocean Mesoscale Prediction System (COAMPS) to explore the initial-state sensitivity and interactions between a tropical cyclone and atmospheric equatorial waves associated with the Madden Julian Oscillation (MJO) in the Indian Ocean during the DYNAMO field campaign. The development of Tropical Cyclone 5 (TC05) coincided with the passage of an equatorial Kelvin wave and westerly wind burst associated with an MJO that developed in the Indian Ocean in late November 2011, but it was unclear if and how one affected the other. COAMPS 24-h and 36-h adjoint sensitivities are analyzed for both TC05 and the equatorial waves to understand how the evolution of each system is sensitive to the other. The sensitivity of equatorial westerlies in the western Indian Ocean on 23 November shares characteristics with the classic Gill (1980) Rossby and Kelvin wave response to symmetric heating about the equator, including symmetric cyclonic circulations to the north and south of the westerlies, and enhanced heating in the area of convergence between the equatorial westerlies and easterlies. In addition, there is sensitivity in the Bay of Bengal associated with the cyclonic circulation that eventually develops into TC05. At the same time, the developing TC05 system shows strongest sensitivity to local wind and heating perturbations, but sensitivity to the equatorial westerlies is also clear. On 24 November, when the Kelvin wave is immediately south of the developing tropical cyclone, both phenomena are sensitive to each other. On 25 November TC05 no longer shows sensitivity to the Kelvin wave, while the Kelvin Wave still exhibits some weak sensitivity to TC05. In
Comparison of the Monte Carlo adjoint-weighted and differential operator perturbation methods
Kiedrowski, Brian C; Brown, Forrest B
2010-01-01
Two perturbation theory methodologies are implemented for k-eigenvalue calculations in the continuous-energy Monte Carlo code, MCNP6. A comparison of the accuracy of these techniques, the differential operator and adjoint-weighted methods, is performed numerically and analytically. Typically, the adjoint-weighted method shows better performance over a larger range; however, there are exceptions.
Zhai, Shumei; Yang, Lei; Cui, Qiuzhi Cindy; Sun, Ying; Dou, Q. Ping; Yan, Bing
2009-01-01
We have previously reported that when mixed with copper, 8-hydroxyquinoline (8-OHQ) and its analog clioquinol (CQ) inhibited the proteasomal activity and proliferation in cultured human cancer cells. CQ treatment of high copper-containing human tumor xenografts also caused cancer suppression, associated with proteasome inhibition in vivo. However, the nature of copper dependence of these events has not been elucidated experimentally. In the current study, by using chemical probe molecules that mimic structures of 8-OHQ and CQ, but have no copper binding capability, we dissected the complex cellular processes elicited by 8-OHQ-Cu or CQ-Cu mixture and revealed that copper-binding to 8-OHQ or CQ is required for transportation of copper complex into human breast cancer cells and the consequent proteasome-inhibitory, growth-suppressive and apoptosis-inducing activities. In contrast, the non-copper-binding analogs of 8-OHQ or CQ blocked the very first step – copper binding in this chain of events mediated by 8-OHQ-Cu or CQ-Cu. PMID:19809836
Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K.
2010-01-01
Theoretically, direct vitrification of cell suspensions with relatively low concentrations (~1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 106–7 K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 × 105 W/m2·K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 × 106 W/m2·K, which is approximately 103 times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 106–7 K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA. PMID:18430413
Kim, Min-Geun; Jang, Hong-Lae; Cho, Seonho
2013-05-01
An efficient adjoint design sensitivity analysis method is developed for reduced atomic systems. A reduced atomic system and the adjoint system are constructed in a locally confined region, utilizing generalized Langevin equation (GLE) for periodic lattice structures. Due to the translational symmetry of lattice structures, the size of time history kernel function that accounts for the boundary effects of the reduced atomic systems could be reduced to a single atom’s degrees of freedom. For the problems of highly nonlinear design variables, the finite difference method is impractical for its inefficiency and inaccuracy. However, the adjoint method is very efficient regardless of the number of design variables since one additional time integration is required for the adjoint GLE. Through numerical examples, the derived adjoint sensitivity turns out to be accurate and efficient through the comparison with finite difference sensitivity.
Probability density adjoint for sensitivity analysis of the Mean of Chaos
Blonigan, Patrick J. Wang, Qiqi
2014-08-01
Sensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. This paper presents a new method for sensitivity analysis of ergodic chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.
Limitations of Adjoint-Based Optimization for Separated Flows
NASA Astrophysics Data System (ADS)
Otero, J. Javier; Sharma, Ati; Sandberg, Richard
2015-11-01
Cabin noise is generated by the transmission of turbulent pressure fluctuations through a vibrating panel and can lead to fatigue. In the present study, we model this problem by using DNS to simulate the flow separating off a backward facing step and interacting with a plate downstream of the step. An adjoint formulation of the full compressible Navier-Stokes equations with varying viscosity is used to calculate the optimal control required to minimize the fluid-structure-acoustic interaction with the plate. To achieve noise reduction, a cost function in wavenumber space is chosen to minimize the excitation of the lower structural modes of the structure. To ensure the validity of time-averaged cost functions, it is essential that the time horizon is long enough to be a representative sample of the statistical behaviour of the flow field. The results from the current study show how this scenario is not always feasible for separated flows, because the chaotic behaviour of turbulence surpasses the ability of adjoint-based methods to compute time-dependent sensitivities of the flow.
Overview of Experimental Capabilities - Supersonics
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2007-01-01
This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.
Theory of contributon transport
Painter, J.W.; Gerstl, S.A.W.; Pomraning, G.C.
1980-10-01
A general discussion of the physics of contributon transport is presented. To facilitate this discussion, a Boltzmann-like transport equation for contributons is obtained, and special contributon cross sections are defined. However, the main goal of this study is to identify contributon transport equations and investigate possible deterministic solution techniques. Four approaches to the deterministic solution of the contributon transport problem are investigated. These approaches are an attempt to exploit certain attractive properties of the contributon flux, psi = phi phi/sup +/, where phi and phi/sup +/ are the solutions to the forward and adjoint Boltzmann transport equations.
Mass anomalous dimension in SU(2) with two adjoint fermions
Bursa, Francis; Del Debbio, Luigi; Keegan, Liam; Pica, Claudio; Pickup, Thomas
2010-01-01
We study SU(2) lattice gauge theory with two flavors of Dirac fermions in the adjoint representation. We measure the running of the coupling in the Schroedinger functional scheme and find it is consistent with existing results. We discuss how systematic errors affect the evidence for an infrared fixed point (IRFP). We present the first measurement of the running of the mass in the Schroedinger functional scheme. The anomalous dimension of the chiral condensate, which is relevant for phenomenological applications, can be easily extracted from the running of the mass, under the assumption that the theory has an IRFP. At the current level of accuracy, we can estimate 0.05<{gamma}<0.56 at the IRFP.
Infrared regime of SU(2) with one adjoint Dirac flavor
NASA Astrophysics Data System (ADS)
Athenodorou, Andreas; Bennett, Ed; Bergner, Georg; Lucini, Biagio
2015-06-01
SU(2) gauge theory with one Dirac flavor in the adjoint representation is investigated on a lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results found are not consistent with conventional confining behavior, pointing instead tentatively towards a theory lying within or very near the onset of the conformal window, with the anomalous dimension of the fermionic condensate in the range 0.9 ≲γ*≲0.95 . The implications of our work for building a viable theory of strongly interacting dynamics beyond the standard model are discussed.
Optimizing spectral wave estimates with adjoint-based sensitivity maps
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos
2014-04-01
A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.
NASA Technical Reports Server (NTRS)
Arian, Eyal; Salas, Manuel D.
1997-01-01
We derive the adjoint equations for problems in aerodynamic optimization which are improperly considered as "inadmissible." For example, a cost functional which depends on the density, rather than on the pressure, is considered "inadmissible" for an optimization problem governed by the Euler equations. We show that for such problems additional terms should be included in the Lagrangian functional when deriving the adjoint equations. These terms are obtained from the restriction of the interior PDE to the control surface. Demonstrations of the explicit derivation of the adjoint equations for "inadmissible" cost functionals are given for the potential, Euler, and Navier-Stokes equations.
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hornby, Gregory; Ishihara, Abe
2013-01-01
This paper describes two methods of trajectory optimization to obtain an optimal trajectory of minimum-fuel- to-climb for an aircraft. The first method is based on the adjoint method, and the second method is based on a direct trajectory optimization method using a Chebyshev polynomial approximation and cubic spine approximation. The approximate optimal trajectory will be compared with the adjoint-based optimal trajectory which is considered as the true optimal solution of the trajectory optimization problem. The adjoint-based optimization problem leads to a singular optimal control solution which results in a bang-singular-bang optimal control.
Time domain adjoint sensitivity analysis of electromagnetic problems with nonlinear media.
Bakr, Mohamed H; Ahmed, Osman S; El Sherif, Mohamed H; Nomura, Tsuyoshi
2014-05-01
In this paper, we propose a theory for wideband adjoint sensitivity analysis of problems with nonlinear media. We show that the sensitivities of the desired response with respect to all shape and material parameters are obtained through one extra adjoint simulation. Unlike linear problems, the system matrices of this adjoint simulation are time varying. Their values are determined during the original simulation. The proposed theory exploits the time-domain transmission line modeling (TLM) and provides an efficient AVM approach for sensitivity analysis of general time domain objective functions. The theory has been illustrated through a number of examples. PMID:24921783
On basic conditions to generate multi-adjoint concept lattices via Galois connections
NASA Astrophysics Data System (ADS)
Díaz-Moreno, J. C.; Medina, J.; Ojeda-Aciego, M.
2014-02-01
This paper introduces sufficient and necessary conditions with respect to the fuzzy operators considered in a multi-adjoint frame under which the standard combinations of multi-adjoint sufficiency, possibility, and necessity operators form (antitone or isotone) Galois connections. The underlying idea is to study the minimal algebraic requirements so that the concept-forming operators (defined using the same syntactical form than the extension and intension operators of multi-adjoint concept lattices) form a Galois connection. As a consequence, given a relational database, we have much more possibilities to construct concept lattices associated with it, so that we can choose the specific version which better suits the situation.
Application to MISR Land Products of an RPV Model Inversion Package Using Adjoint and Hessian Codes
NASA Astrophysics Data System (ADS)
Lavergne, T.; Kaminski, T.; Pinty, B.; Taberner, M.; Gobron, N.; Verstraete, M. M.; Vossbeck, M.; Widlowski, J.-L.; Giering, R.
The capability of the non-linear Rahman-Pinty-Verstraete RPV model to 1 accurately fit a large variety of Bidirectional Reflectance Factor BRF fields and 2 return parameter values of interest for land surface applications motivate the development of a computer efficient inversion package The present paper describes such a package based on the 3 and 4 parameter versions of the RPV model This software environment implements the adjoint code generated using automatic differentiation techniques of the cost function This cost function itself balances two main contributions reflecting 1 the a priori knowledge on the model parameter values and 2 BRF uncertainties together with the requirement to minimize the mismatch between the measurements and the RPV simulations The individual weights of these contributions are specified notably via covariance matrices of the uncertainties in the a priori knowledge on the model parameters and the observations This package also reports on the probability density functions of the retrieved model parameter values that thus permit the user to evaluate the a posteriori uncertainties on these retrievals This is achieved by evaluating the Hessian of the cost function at its minimum Results from a variety of tests are shown in order to document and analyze software performance against complex synthetic BRF fields simulated by radiation transfer models as well as against actual MISR-derived surface BRF products
NASA Astrophysics Data System (ADS)
Ito, Shin-Ichi; Nagao, Hiromichi; Yamanaka, Akinori; Tsukada, Yuhki; Koyama, Toshiyuki; Inoue, Junya
Phase field (PF) method, which phenomenologically describes dynamics of microstructure evolutions during solidification and phase transformation, has progressed in the fields of hydromechanics and materials engineering. How to determine, based on observation data, an initial state and model parameters involved in a PF model is one of important issues since previous estimation methods require too much computational cost. We propose data assimilation (DA), which enables us to estimate the parameters and states by integrating the PF model and observation data on the basis of the Bayesian statistics. The adjoint method implemented on DA not only finds an optimum solution by maximizing a posterior distribution but also evaluates the uncertainty in the estimations by utilizing the second order information of the posterior distribution. We carried out an estimation test using synthetic data generated by the two-dimensional Kobayashi's PF model. The proposed method is confirmed to reproduce the true initial state and model parameters we assume in advance, and simultaneously estimate their uncertainties due to quality and quantity of the data. This result indicates that the proposed method is capable of suggesting the experimental design to achieve the required accuracy.
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
Application of Adjoint Methodology in Various Aspects of Sonic Boom Design
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram K.
2014-01-01
One of the advances in computational design has been the development of adjoint methods allowing efficient calculation of sensitivities in gradient-based shape optimization. This paper discusses two new applications of adjoint methodology that have been developed to aid in sonic boom mitigation exercises. In the first, equivalent area targets are generated using adjoint sensitivities of selected boom metrics. These targets may then be used to drive the vehicle shape during optimization. The second application is the computation of adjoint sensitivities of boom metrics on the ground with respect to parameters such as flight conditions, propagation sampling rate, and selected inputs to the propagation algorithms. These sensitivities enable the designer to make more informed selections of flight conditions at which the chosen cost functionals are less sensitive.
MS S4.03.002 - Adjoint-Based Design for Configuration Shaping
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2009-01-01
This slide presentation discusses a method of inverse design for low sonic boom using adjoint-based gradient computations. It outlines a method for shaping a configuration in order to match a prescribed near-field signature.
NASA Astrophysics Data System (ADS)
Hermand, Jean-Pierre; Berrada, Mohamed; Meyer, Matthias; Asch, Mark
2005-09-01
Recently, an analytic adjoint-based method of optimal nonlocal boundary control has been proposed for inversion of a waveguide acoustic field using the wide-angle parabolic equation [Meyer and Hermand, J. Acoust. Soc. Am. 117, 2937-2948 (2005)]. In this paper a numerical extension of this approach is presented that allows the direct inversion for the geoacoustic parameters which are embedded in a spectral integral representation of the nonlocal boundary condition. The adjoint model is generated numerically and the inversion is carried out jointly across multiple frequencies. The paper further discusses the application of the numerical adjoint PE method for ocean acoustic tomography. To show the effectiveness of the implemented numerical adjoint, preliminary inversion results of water sound-speed profile and bottom acoustic properties will be shown for the YELLOW SHARK '94 experimental conditions.
NASA Astrophysics Data System (ADS)
Yaremchuk, Max; Martin, Paul; Koch, Andrey; Beattie, Christopher
2016-01-01
Performance of the adjoint and adjoint-free 4-dimensional variational (4dVar) data assimilation techniques is compared in application to the hydrographic surveys and velocity observations collected in the Adriatic Sea in 2006. Assimilating the data into the Navy Coastal Ocean Model (NCOM) has shown that both methods deliver similar reduction of the cost function and demonstrate comparable forecast skill at approximately the same computational expense. The obtained optimal states were, however, significantly different in terms of distance from the background state: application of the adjoint method resulted in a 30-40% larger departure, mostly due to the excessive level of ageostrophic motions in the southern basin of the Sea that was not covered by observations.
Comparison of Ensemble and Adjoint Approaches to Variational Optimization of Observational Arrays
NASA Astrophysics Data System (ADS)
Nechaev, D.; Panteleev, G.; Yaremchuk, M.
2015-12-01
Comprehensive monitoring of the circulation in the Chukchi Sea and Bering Strait is one of the key prerequisites of the successful long-term forecast of the Arctic Ocean state. Since the number of continuously maintained observational platforms is restricted by logistical and political constraints, the configuration of such an observing system should be guided by an objective strategy that optimizes the observing system coverage, design, and the expenses of monitoring. The presented study addresses optimization of system consisting of a limited number of observational platforms with respect to reduction of the uncertainties in monitoring the volume/freshwater/heat transports through a set of key sections in the Chukchi Sea and Bering Strait. Variational algorithms for optimization of observational arrays are verified in the test bed of the set of 4Dvar optimized summer-fall circulations in the Pacific sector of the Arctic Ocean. The results of an optimization approach based on low-dimensional ensemble of model solutions is compared against a more conventional algorithm involving application of the tangent linear and adjoint models. Special attention is paid to the computational efficiency and portability of the optimization procedure.
NASA Astrophysics Data System (ADS)
Yumimoto, Keiya; Uno, Itsushi
We developed a four-dimensional variational (4DVAR) data assimilation system for a regional chemical transport model (CTM). In this study, we applied it to inverse modeling of CO emissions in the eastern Asia during April 2001 and demonstrated the feasibility of our assimilation system. Three ground-based observations were used for data assimilation. Assimilated results showed better agreement with observations; they reduced the RMS difference by 16-27%. Observations obtained on board the R/V Ronald H. Brown were used for independent validation of the assimilated results. The CO emissions over industrialized east central China between Shanghai and Beijing were increased markedly by the assimilation. The results show that the annual anthropogenic (fossil and biofuel combustion) CO emissions over China are 147 Tg. Sensitivity analyses using the adjoint model indicate that the high CO concentration measured on 17 April at Rishiri, Japan (which the assimilation was unable to reproduce) originated in Russia or had traveled from outside the Asian region (e.g. Europe).
The Θ-KMS adjoint and time reversed quantum Markov semigroups
NASA Astrophysics Data System (ADS)
Bolaños-Servin, Jorge R.; Quezada, Roberto
2015-08-01
We introduce the notion of Θ-KMS adjoint of a quantum Markov semigroup, which is identified with the time reversed semigroup. The break of Θ-KMS symmetry, or Θ-standard quantum detailed balance in the sense of Fagnola-Umanità,11 is measured by means of the von Neumann relative entropy of states associated with the semigroup and its Θ-KMS adjoint.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
NASA Technical Reports Server (NTRS)
Zakrasjek, June
2005-01-01
Modern operational concepts require significant bandwidths and multipoint communication capabilities. Provide voice, video and data communications among vehicles moving along the surface, vehicles in suborbital transport or reconnaissance, surface elements, and home planet facilities.
Global adjoint tomography: Perspectives, initial results and future directions
NASA Astrophysics Data System (ADS)
Bozdag, Ebru; Zhu, Hejun; Peter, Daniel; Tromp, Jeroen
2013-04-01
Adjoint methods provide an efficient way for incorporating the full nonlinearity of wave propagation and 3D Fréchet kernels in iterative seismic inversions. Our goal is to take adjoint tomography forward to image the entire planet using the opportunities offered by advances in numerical wave propagation solvers and high-performance computing. Using an iterative pre-conditioned conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. Our strategy is to invert crustal and mantle structure together to avoid any bias introduced into upper-mantle images due to "crustal corrections", which are commonly used in classical tomography. We have started with 255 global CMT events (5.8 ≤ Mw ≤ 7) and used GSN stations as well as some local networks such as USArray, European stations, etc. We have demonstrated the feasibility of global scale inversions by performing two iterations based on numerical simulations accurate down to ~27 s. To simplify the problem, we primarily focus on elastic structure, and therefore our measurements are based on multitaper traveltime differences between observed and synthetic seismograms. We compute 3D sensitivity kernels for the selected events combining long-period surface waves (initially T > 60 s), where it is easier to handle nonlinearities due to the crust, with shorter-period body waves (initially T > 27 s), which are more sensitive to deeper parts of the mantle. 3D simulations dramatically increase the usable amount of data so that, with the current earthquake-station setup, we perform each iteration with more than two million measurements. Our initial results are promising to improve images from the upper mantle all the way down to the core-mantle boundary. Recent improvements in our 3D solvers (e.g., a GPU version) and access to high-performance computational centers (e.g., ORNL's Cray XK7 "Titan" system) now enable us to perform iterations
Plumes, Hotspot & Slabs Imaged by Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Bozdag, E.; Lefebvre, M. P.; Lei, W.; Peter, D. B.; Smith, J. A.; Komatitsch, D.; Tromp, J.
2015-12-01
We present the "first generation" global adjoint tomography model based on 3D wave simulations, which is the result of 15 conjugate-gradient iterations with confined transverse isotropy to the upper mantle. Our starting model is the 3D mantle and crustal models S362ANI (Kustowski et al. 2008) and Crust2.0 (Bassin et al. 2000), respectively. We take into account the full nonlinearity of wave propagation in numerical simulations including attenuation (both in forward and adjoint simulations), topography/bathymetry, etc., using the GPU version of the SPECFEM3D_GLOBE package. We invert for crust and mantle together without crustal corrections to avoid any bias in mantle structure. We started with an initial selection of 253 global CMT events within the magnitude range 5.8 ≤ Mw ≤ 7.0 with numerical simulations having resolution down to 27 s combining 30-s body and 60-s surface waves. After the 12th iteration we increased the resolution to 17 s, including higher-frequency body waves as well as going down to 45 s in surface-wave measurements. We run 180-min seismograms and assimilate all minor- and major-arc body and surface waves. Our 15th iteration model update shows a tantalisingly enhanced image of the Tahiti plume as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone, Erebus, etc. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the initial model. Point-spread function tests (Fichtner & Trampert 2011) suggest that we are close to the resolution of continental-scale studies in our global inversions and able to confidently map features, for instance, at the scale of the Yellowstone hotspot. This is a clear consequence of our multi-scale smoothing strategy, in which we define our smoothing operator as a function of the approximate Hessian kernel and smooth our gradients less wherever we have good ray coverage
Big Data Challenges in Global Seismic 'Adjoint Tomography' (Invited)
NASA Astrophysics Data System (ADS)
Tromp, J.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Smith, J.
2013-12-01
The challenge of imaging Earth's interior on a global scale is closely linked to the challenge of handling large data sets. The related iterative workflow involves five distinct phases, namely, 1) data gathering and culling, 2) synthetic seismogram calculations, 3) pre-processing (time-series analysis and time-window selection), 4) data assimilation and adjoint calculations, 5) post-processing (pre-conditioning, regularization, model update). In order to implement this workflow on modern high-performance computing systems, a new seismic data format is being developed. The Adaptable Seismic Data Format (ASDF) is designed to replace currently used data formats with a more flexible format that allows for fast parallel I/O. The metadata is divided into abstract categories, such as "source" and "receiver", along with provenance information for complete reproducibility. The structure of ASDF is designed keeping in mind three distinct applications: earthquake seismology, seismic interferometry, and exploration seismology. Existing time-series analysis tool kits, such as SAC and ObsPy, can be easily interfaced with ASDF so that seismologists can use robust, previously developed software packages. ASDF accommodates an automated, efficient workflow for global adjoint tomography. Manually managing the large number of simulations associated with the workflow can rapidly become a burden, especially with increasing numbers of earthquakes and stations. Therefore, it is of importance to investigate the possibility of automating the entire workflow. Scientific Workflow Management Software (SWfMS) allows users to execute workflows almost routinely. SWfMS provides additional advantages. In particular, it is possible to group independent simulations in a single job to fit the available computational resources. They also give a basic level of fault resilience as the workflow can be resumed at the correct state preceding a failure. Some of the best candidates for our particular workflow
Healy, R.W.; Russell, T.F.
1993-01-01
Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods for solute transport problems that are dominated by advection. FVELLAM systematically conserves mass globally with all types of boundary conditions. Integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking of characteristic lines intersecting inflow boundaries. FVELLAM extends previous results by obtaining mass conservation locally on Lagrangian space-time elements. -from Authors
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
NASA Astrophysics Data System (ADS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space-time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge-Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that its
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-15
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
Adjoint sensitivity analysis of hydrodynamic stability in cyclonic flows
NASA Astrophysics Data System (ADS)
Guzman Inigo, Juan; Juniper, Matthew
2015-11-01
Cyclonic separators are used in a variety of industries to efficiently separate mixtures of fluid and solid phases by means of centrifugal forces and gravity. In certain circumstances, the vortex core of cyclonic flows is known to precess due to the instability of the flow, which leads to performance reductions. We aim to characterize the unsteadiness using linear stability analysis of the Reynolds Averaged Navier-Stokes (RANS) equations in a global framework. The system of equations, including the turbulence model, is linearised to obtain an eigenvalue problem. Unstable modes corresponding to the dynamics of the large structures of the turbulent flow are extracted. The analysis shows that the most unstable mode is a helical motion which develops around the axis of the flow. This result is in good agreement with LES and experimental analysis, suggesting the validity of the approach. Finally, an adjoint-based sensitivity analysis is performed to determine the regions of the flow that, when altered, have most influence on the frequency and growth-rate of the unstable eigenvalues.
Periodic differential equations with self-adjoint monodromy operator
NASA Astrophysics Data System (ADS)
Yudovich, V. I.
2001-04-01
A linear differential equation \\dot u=A(t)u with p-periodic (generally speaking, unbounded) operator coefficient in a Euclidean or a Hilbert space \\mathbb H is considered. It is proved under natural constraints that the monodromy operator U_p is self-adjoint and strictly positive if A^*(-t)=A(t) for all t\\in\\mathbb R.It is shown that Hamiltonian systems in the class under consideration are usually unstable and, if they are stable, then the operator U_p reduces to the identity and all solutions are p-periodic.For higher frequencies averaged equations are derived. Remarkably, high-frequency modulation may double the number of critical values.General results are applied to rotational flows with cylindrical components of the velocity a_r=a_z=0, a_\\theta=\\lambda c(t)r^\\beta, \\beta<-1, c(t) is an even p-periodic function, and also to several problems of free gravitational convection of fluids in periodic fields.
Determining scaling laws from geodynamic simulations using adjoint gradients.
NASA Astrophysics Data System (ADS)
Reuber, Georg; Kaus, Boris; Popov, Anton
2016-04-01
Whereas significant progress has been made in modelling of lithospheric and crustal scale processes in recent years, it often remains a challenge to understand which of the many model parameters is of key importance for a particular simulation. Determining this is usually done by manually changing the model input parameters and performing new simulations. For a few cases, such as for crustal-scale folding instabilities (with viscous rheologies, e.g. [1]) or for Rayleigh-Taylor instabilities, one can use existing scaling laws to obtain such insights. Yet, for a more general case, it is not straightforward to do this (apart from running many simulations). Here, we test a different approach which computes gradients of the model parameters using adjoint based methods, which has the advantage that we can test the influence of an independent number of parameters on the system by computing and analysing the covariance matrix and the gradient of the parameter space. This method might give us the chance to get insights on which parameters affect for example subduction processes and how strong the system depends on their influence. [1] Fernandez, N., & Kaus, B. J. (2014). Fold interaction and wavelength selection in 3D models of multilayer detachment folding. Tectonophysics, 632, 199-217.
Multigrid methods for bifurcation problems: The self adjoint case
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1987-01-01
This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.
Conformal versus confining scenario in SU(2) with adjoint fermions
Del Debbio, L.; Pica, C.; Lucini, B.; Patella, A.; Rago, A.
2009-10-01
The masses of the lowest-lying states in the meson and in the gluonic sector of an SU(2) gauge theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed value of the lattice coupling {beta}=4/g{sub 0}{sup 2}=2.25 for values of the bare fermion mass m{sub 0} that span a range between the quenched regime and the massless limit, and for various lattice volumes. Even for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons. Moreover, the string tension between two static fundamental sources strongly depends on the mass of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before the chiral limit is reached. The implications of these findings for the phase of the theory in the massless limit are discussed and a strategy for discriminating between the (near-)conformal and the confining scenario is outlined.
Space applications of the MITS electron-photon Monte Carlo transport code system
Kensek, R.P.; Lorence, L.J.; Halbleib, J.A.; Morel, J.E.
1996-07-01
The MITS multigroup/continuous-energy electron-photon Monte Carlo transport code system has matured to the point that it is capable of addressing more realistic three-dimensional adjoint applications. It is first employed to efficiently predict point doses as a function of source energy for simple three-dimensional experimental geometries exposed to simulated uniform isotropic planar sources of monoenergetic electrons up to 4.0 MeV. Results are in very good agreement with experimental data. It is then used to efficiently simulate dose to a detector in a subsystem of a GPS satellite due to its natural electron environment, employing a relatively complex model of the satellite. The capability for survivability analysis of space systems is demonstrated, and results are obtained with and without variance reduction.
Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis
Wilson, Paul; Evans, Thomas; Tautges, Tim
2012-12-24
This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well
Adjoint-based airfoil shape optimization in transonic flow
NASA Astrophysics Data System (ADS)
Gramanzini, Joe-Ray
The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.
Martien, Philip T; Harley, Robert A; Cacuci, Dan G
2006-04-15
Photochemical air pollution forms when emissions of nitrogen oxides (NO(x)) and volatile organic compounds (VOC) react in the atmosphere in the presence of sunlight. The goal of applying three-dimensional photochemical air quality models is usually to conduct sensitivity analysis: for example, to predict changes in an ozone response due to changes in NO(x) and VOC emissions or other model data. Forward sensitivity analysis methods are best suited to investigating sensitivities of many model responses to changes in a few inputs or parameters. Here we develop a continuous adjoint model and demonstrate an adjoint sensitivity analysis procedure that is well-suited to the complementary case of determining sensitivity of a small number of model responses to many parameters. Sensitivities generated using the adjoint method agree with those generated using other methods. Compared to the forward method, the adjoint method had large disk storage requirements but was more efficient in terms of computer processor time for receptor-based investigations focused on a single response at a specified site and time. The adjoint method also generates sensitivity apportionment fields, which reveal when and where model data are important to the target response. PMID:16683606
Generalized adjoint consistent treatment of wall boundary conditions for compressible flows
NASA Astrophysics Data System (ADS)
Hartmann, Ralf; Leicht, Tobias
2015-11-01
In this article, we revisit the adjoint consistency analysis of Discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations with application to the Reynolds-averaged Navier-Stokes and k- ω turbulence equations. Here, particular emphasis is laid on the discretization of wall boundary conditions. While previously only one specific combination of discretizations of wall boundary conditions and of aerodynamic force coefficients has been shown to give an adjoint consistent discretization, in this article we generalize this analysis and provide a discretization of the force coefficients for any consistent discretization of wall boundary conditions. Furthermore, we demonstrate that a related evaluation of the cp- and cf-distributions is required. The freedom gained in choosing the discretization of boundary conditions without loosing adjoint consistency is used to devise a new adjoint consistent discretization including numerical fluxes on the wall boundary which is more robust than the adjoint consistent discretization known up to now. While this work is presented in the framework of Discontinuous Galerkin discretizations, the insight gained is also applicable to (and thus valuable for) other discretization schemes. In particular, the discretization of integral quantities, like the drag, lift and moment coefficients, as well as the discretization of local quantities at the wall like surface pressure and skin friction should follow as closely as possible the discretization of the flow equations and boundary conditions at the wall boundary.
Self-adjoint Operators as Functions I. Lattices, Galois Connections, and the Spectral Order
NASA Astrophysics Data System (ADS)
Döring, Andreas; Dewitt, Barry
2014-06-01
Observables of a quantum system, described by self-adjoint operators in a von Neumann algebra or affiliated with it in the unbounded case, form a conditionally complete lattice when equipped with the spectral order. Using this order-theoretic structure, we develop a new perspective on quantum observables. In this first paper (of two), we show that self-adjoint operators affiliated with a von Neumann algebra can equivalently be described as certain real-valued functions on the projection lattice of the algebra, which we call q-observable functions. Bounded self-adjoint operators correspond to q-observable functions with compact image on non-zero projections. These functions, originally defined in a similar form by de Groote (Observables II: quantum observables, 2005), are most naturally seen as adjoints (in the categorical sense) of spectral families. We show how they relate to the daseinisation mapping from the topos approach to quantum theory (Döring and Isham , New Structures for Physics, Springer, Heidelberg, 2011). Moreover, the q-observable functions form a conditionally complete lattice which is shown to be order-isomorphic to the lattice of self-adjoint operators with respect to the spectral order. In a subsequent paper (Döring and Dewitt, 2012, preprint), we will give an interpretation of q-observable functions in terms of quantum probability theory, and using results from the topos approach to quantum theory, we will provide a joint sample space for all quantum observables.
Assessing the Impact of Observations on Numerical Weather Forecasts Using the Adjoint Method
NASA Technical Reports Server (NTRS)
Gelaro, Ronald
2012-01-01
The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. This talk provides a general overview of the adjoint method, including the theoretical basis and practical implementation of the technique. Results are presented from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. When performed in conjunction with standard observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies may be important for optimizing the use of the current observational network and defining requirements for future observing systems
NASA Astrophysics Data System (ADS)
Wang, Brian; Goldstein, Moshe; Xu, X. George; Sahoo, Narayan
2005-03-01
Recently, the theoretical framework of the adjoint Monte Carlo (AMC) method has been developed using a simplified patient geometry. In this study, we extended our previous work by applying the AMC framework to a 3D anatomical model called VIP-Man constructed from the Visible Human images. First, the adjoint fluxes for the prostate (PTV) and rectum and bladder (organs at risk (OARs)) were calculated on a spherical surface of 1 m radius, centred at the centre of gravity of PTV. An importance ratio, defined as the PTV dose divided by the weighted OAR doses, was calculated for each of the available beamlets to select the beam angles. Finally, the detailed doses in PTV and OAR were calculated using a forward Monte Carlo simulation to include the electron transport. The dose information was then used to generate dose volume histograms (DVHs). The Pinnacle treatment planning system was also used to generate DVHs for the 3D plans with beam angles obtained from the AMC (3D-AMC) and a standard six-field conformal radiation therapy plan (3D-CRT). Results show that the DVHs for prostate from 3D-AMC and the standard 3D-CRT are very similar, showing that both methods can deliver prescribed dose to the PTV. A substantial improvement in the DVHs for bladder and rectum was found for the 3D-AMC method in comparison to those obtained from 3D-CRT. However, the 3D-AMC plan is less conformal than the 3D-CRT plan because only bladder, rectum and PTV are considered for calculating the importance ratios. Nevertheless, this study clearly demonstrated the feasibility of the AMC in selecting the beam directions as a part of a treatment planning based on the anatomical information in a 3D and realistic patient anatomy.
ERIC Educational Resources Information Center
Crank, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…
NASA Technical Reports Server (NTRS)
Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony
1996-01-01
This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.
NASA Technical Reports Server (NTRS)
Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony
1996-01-01
This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.
Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Park, Michael A.
2006-01-01
An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.
Instantons and the 5D U(1) gauge theory with extra adjoint
NASA Astrophysics Data System (ADS)
Poghossian, Rubik; Samsonyan, Marine
2009-07-01
In this paper, we compute the partition function of 5D supersymmetric U(1) gauge theory with extra adjoint matter in general Ω background. It is well known that such partition functions encode very rich topological information. We show in particular that unlike the case with no extra matter, the partition function with extra adjoint at some special values of the parameters directly reproduces the generating function for the Poincare polynomial of the moduli space of instantons. We compare our results with those recently obtained by Iqbal et al (Refined topological vertex, cylindric partitions and the U(1) adjoint theory, arXiv:0803.2260), who used the so-called refined topological vertex method.
Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Park, Michael A.
2005-01-01
An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.
Tracking influential haze source areas in North China using an adjoint model, GRAPES-CUACE
NASA Astrophysics Data System (ADS)
An, X. Q.; Zhai, S. X.; Jin, M.; Gong, S. L.; Wang, Y.
2015-08-01
Based upon the adjoint theory, the adjoint of the aerosol module in the atmospheric chemical modeling system GRAPES-CUACE (Global/Regional Assimilation and PrEdiction System coupled with the CMA Unified Atmospheric Chemistry Environment) was developed and tested for its correctness. Through statistic comparison, BC (black carbon aerosol) concentrations simulated by GRAPES-CUACE were generally consistent with observations from Nanjiao (one urban observation station) and Shangdianzi (one rural observation station) stations. To track the most influential emission-sources regions and the most influential time intervals for the high BC concentration during the simulation period, the adjoint model was adopted to simulate the sensitivity of average BC concentration over Beijing at the highest concentration time point (referred to as the Objective Function) with respect to BC emission amount over Beijing-Tianjin-Hebei region. Four types of regions were selected based on administrative division and sensitivity coefficient distribution. The adjoint model was used to quantify the effects of emission-sources reduction in different time intervals over different regions by one independent simulation. Effects of different emission reduction strategies based on adjoint sensitivity information show that the more influential regions (regions with relatively larger sensitivity coefficients) do not necessarily correspond to the administrative regions, and the influence effectiveness of sensitivity-oriented regions was greater than the administrative divisions. The influence of emissions on the objective function decreases sharply approximately for the pollutants emitted 17-18 h ago in this episode. Therefore, controlling critical emission regions during critical time intervals on the basis of adjoint sensitivity analysis is much more efficient than controlling administrative specified regions during an experiential time period.
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2009-01-01
.We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
NASA Astrophysics Data System (ADS)
Pankratov, Oleg; Kuvshinov, Alexey
2015-03-01
3-D electromagnetic (EM) studies of the Earth have advanced significantly over the past decade. Despite a certain success of the 3-D EM inversions of real data sets, the quantitative assessment of the recovered models is still a challenging problem. It is known that one can gain valuable information about model uncertainties from the analysis of Hessian matrix. However, even with modern computational capabilities the calculation of the Hessian matrix based on numerical differentiation is extremely time consuming. Much more efficient way to compute the Hessian matrix is provided by an `adjoint sources' methodology. The computation of Hessian matrix (and Hessian-vector products) using adjoint formulation is now well-established approach, especially in seismic inverse modelling. As for EM inverse modelling we did not find in the literature a description of the approach, which would allow EM researchers to apply this methodology in a straightforward manner to their scenario of interest. In the paper, we present formalism for the efficient calculation of the Hessian matrix using adjoint sources approach. We also show how this technique can be implemented to calculate multiple Hessian-vector products very efficiently. The formalism is general in the sense that it allows to work with responses that arise in EM problem set-ups either with natural- or controlled-source excitations. The formalism allows for various types of parametrization of the 3-D conductivity distribution. Using this methodology one can readily obtain appropriate formulae for the specific sounding methods. To illustrate the concept we provide such formulae for two EM techniques: magnetotellurics and controlled-source sounding with vertical magnetic dipole as a source.
NEMOTAM: tangent and adjoint models for the ocean modelling platform NEMO
NASA Astrophysics Data System (ADS)
Vidard, A.; Bouttier, P.-A.; Vigilant, F.
2014-10-01
The tangent linear and adjoint model (TAM) are efficient tools to analyse and to control dynamical systems such as NEMO. They can be involved in a large range of applications such as sensitivity analysis, parameter estimation or the computation of characteristics vectors. TAM is also required by the 4-D-VAR algorithm which is one of the major method in Data Assimilation. This paper describes the development and the validation of the Tangent linear and Adjoint Model for the NEMO ocean modelling platform (NEMOTAM). The diagnostic tools that are available alongside NEMOTAM are detailed and discussed and several applications are also presented.
Global Adjoint Tomography: Combining Big Data with HPC Simulations
NASA Astrophysics Data System (ADS)
Bozdag, E.; Lefebvre, M. P.; Lei, W.; Peter, D. B.; Smith, J. A.; Komatitsch, D.; Tromp, J.
2014-12-01
The steady increase in data quality and the number of global seismographic stations have substantially grown the amount of data available for construction of Earth models. Meanwhile, developments in the theory of wave propagation, numerical methods and HPC systems have enabled unprecedented simulations of seismic wave propagation in realistic 3D Earth models which lead the extraction of more information from data, ultimately culminating in the use of entire three-component seismograms.Our aim is to take adjoint tomography further to image the entire planet which is one of the extreme cases in seismology due to its intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated in inversions. We have started low resolution (T > 27 s, soon will be > 17 s) global inversions with 253 earthquakes for a transversely isotropic crust and mantle model on Oak Ridge National Laboratory's Cray XK7 "Titan" system. Recent improvements in our 3D solvers, such as the GPU version of the SPECFEM3D_GLOBE package, will allow us perform higher-resolution (T > 9 s) and longer-duration (~180 m) simulations to take the advantage of high-frequency body waves and major-arc surface waves to improve imbalanced ray coverage as a result of uneven distribution of sources and receivers on the globe. Our initial results after 10 iterations already indicate several prominent features reported in high-resolution continental studies, such as major slabs (Hellenic, Japan, Bismarck, Sandwich, etc.) and enhancement in plume structures (the Pacific superplume, the Hawaii hot spot, etc.). Our ultimate goal is to assimilate seismic data from more than 6,000 earthquakes within the magnitude range 5.5 ≤ Mw ≤ 7.0. To take full advantage of this data set on ORNL's computational resources, we need a solid framework for managing big data sets during pre-processing (e.g., data requests and quality checks), gradient calculations, and post-processing (e
Adaptive mesh refinement and adjoint methods in geophysics simulations
NASA Astrophysics Data System (ADS)
Burstedde, Carsten
2013-04-01
required by human intervention and analysis. Specifying an objective functional that quantifies the misfit between the simulation outcome and known constraints and then minimizing it through numerical optimization can serve as an automated technique for parameter identification. As suggested by the similarity in formulation, the numerical algorithm is closely related to the one used for goal-oriented error estimation. One common point is that the so-called adjoint equation needs to be solved numerically. We will outline the derivation and implementation of these methods and discuss some of their pros and cons, supported by numerical results.
Ondis, L.A., II; Tyburski, L.J.; Moskowitz, B.S.
2000-03-01
The RCP01 Monte Carlo program is used to analyze many geometries of interest in nuclear design and analysis of light water moderated reactors such as the core in its pressure vessel with complex piping arrangement, fuel storage arrays, shipping and container arrangements, and neutron detector configurations. Written in FORTRAN and in use on a variety of computers, it is capable of estimating steady state neutron or photon reaction rates and neutron multiplication factors. The energy range covered in neutron calculations is that relevant to the fission process and subsequent slowing-down and thermalization, i.e., 20 MeV to 0 eV. The same energy range is covered for photon calculations.
Daily European CO2 fluxes inferred by inversion of atmospheric transport
NASA Astrophysics Data System (ADS)
Bousquet, P.; Peylin, P.; Rayner, P.; Carouge, C.; Rivier, L.; Ciais, P.; Heinrich, P.; Hourdin, F.
2002-12-01
Continuous measurements of atmospheric CO2 over continental areas offer the potential to better understand the carbon fluxes between the terrestrial biosphere and the atmosphere. Up to now, most atmospheric inversions have provided monthly fluxes averaged over large sub continental regions. Refining space and time resolution of European fluxes calculated by inversion of atmospheric transport requires i) continuous CO2 measurements over Europe, ii) a high resolution transport model that can reproduce the variability of CO2 over continents and provide continuous response functions at model resolution, and iii) an updated inverse procedure that can use the increased associated information. We use here continuous CO2 measurements obtained through AEROCARB EU project (part of CARBOEUROPE cluster) for year 1998 at 10 continental stations to retrieve daily fluxes over Europe at model resolution with LMDZ transport model. LMDZ model is a global transport model with zoom and back-transport capabilities. A zoom was defined over Europe, with 0.4° maximum resolution. Back transport is based on self-adjoint property of atmospheric transport that makes it possible to get model daily response functions at model resolution and at low computing cost. In this talk, we present the new features of the inverse procedure and we detail the LMDZ back transport. First results obtained for daily European fluxes of the two last months of 1998 are presented and analysed. The question of retrieving fossil emissions from continuous measurements is also developed.
Transport Code for Regular Triangular Geometry
Energy Science and Technology Software Center (ESTSC)
1993-06-09
DIAMANT2 solves the two-dimensional static multigroup neutron transport equation in planar regular triangular geometry. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective or input specified boundary flux conditions are solved. Anisotropy is allowed for the scattering source. Volume and surface sources are allowed for inhomogeneous problems.
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-06-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.