Sample records for adjust model parameters

  1. An approach to adjustment of relativistic mean field model parameters

    NASA Astrophysics Data System (ADS)

    Bayram, Tuncay; Akkoyun, Serkan

    2017-09-01

    The Relativistic Mean Field (RMF) model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN) method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs) of 58Ni and 208Pb have been found in agreement with the literature values.

  2. Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method.

    PubMed

    Gómez, Fátima Somovilla; Lorza, Rubén Lostado; Bobadilla, Marina Corral; García, Rubén Escribano

    2017-09-21

    The kinematic behavior of models that are based on the finite element method (FEM) for modeling the human body depends greatly on an accurate estimate of the parameters that define such models. This task is complex, and any small difference between the actual biomaterial model and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the MRS methods with desirability functions can be used to obtain the material parameters that are most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis of experimental data from selected standard tests (compression, flexion, extension, shear, lateral bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE models were generated on the basis of the mentioned standard tests. Then, 11 parameters were selected to define the proposed parameterized FE models. For each of the standard tests, regression models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD models that were created by changing the parameters of the FE models. The optimal combination of the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on the combination of stiffness and bulges that were obtained from the standard test FE simulations. The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment of FE model parameters. The second adjustment criteria considered stiffness as most important, whereas the third considered the bulges to be most important. The proposed adjustment methods were applied to a medium-sized human IVD that corresponded to the L3-L4 lumbar level with standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between the

  3. Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method

    PubMed Central

    Somovilla Gómez, Fátima

    2017-01-01

    The kinematic behavior of models that are based on the finite element method (FEM) for modeling the human body depends greatly on an accurate estimate of the parameters that define such models. This task is complex, and any small difference between the actual biomaterial model and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the MRS methods with desirability functions can be used to obtain the material parameters that are most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis of experimental data from selected standard tests (compression, flexion, extension, shear, lateral bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE models were generated on the basis of the mentioned standard tests. Then, 11 parameters were selected to define the proposed parameterized FE models. For each of the standard tests, regression models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD models that were created by changing the parameters of the FE models. The optimal combination of the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on the combination of stiffness and bulges that were obtained from the standard test FE simulations. The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment of FE model parameters. The second adjustment criteria considered stiffness as most important, whereas the third considered the bulges to be most important. The proposed adjustment methods were applied to a medium-sized human IVD that corresponded to the L3–L4 lumbar level with standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between the

  4. Adjustments of the TaD electron density reconstruction model with GNSS-TEC parameters for operational application purposes

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Marinov, Pencho; Fidanova, Stefka; Belehaki, Anna; Tsagouri, Ioanna

    2012-12-01

    Validation results on the latest version of TaD model (TaDv2) show realistic reconstruction of the electron density profiles (EDPs) with an average error of 3 TECU, similar to the error obtained from GNSS-TEC calculated paremeters. The work presented here has the aim to further improve the accuracy of the TaD topside reconstruction, adjusting the TEC parameter calculated from TaD model with the TEC parameter calculated by GNSS transmitting RINEX files provided by receivers co-located with the Digisondes. The performance of the new version is tested during a storm period demonstrating further improvements in respect to the previous version. Statistical comparison of modeled and observed TEC confirms the validity of the proposed adjustment. A significant benefit of the proposed upgrade is that it facilitates the real-time implementation of TaD. The model needs a reliable measure of the scale height at the peak height, which is supposed to be provided by Digisondes. Oftenly, the automatic scaling software fails to correctly calculate the scale height at the peak, Hm, due to interferences in the receiving signal. Consequently the model estimated topside scale height is wrongly calculated leading to unrealistic results for the modeled EDP. The proposed TEC adjustment forces the model to correctly reproduce the topside scale height, despite the inaccurate values of Hm. This adjustment is very important for the application of TaD in an operational environment.

  5. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection.

    PubMed

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-08-28

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.

  6. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection

    PubMed Central

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-01-01

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application. PMID:26343671

  7. Optimal Linking Design for Response Model Parameters

    ERIC Educational Resources Information Center

    Barrett, Michelle D.; van der Linden, Wim J.

    2017-01-01

    Linking functions adjust for differences between identifiability restrictions used in different instances of the estimation of item response model parameters. These adjustments are necessary when results from those instances are to be compared. As linking functions are derived from estimated item response model parameters, parameter estimation…

  8. Optical phantoms with adjustable subdiffusive scattering parameters

    NASA Astrophysics Data System (ADS)

    Krauter, Philipp; Nothelfer, Steffen; Bodenschatz, Nico; Simon, Emanuel; Stocker, Sabrina; Foschum, Florian; Kienle, Alwin

    2015-10-01

    A new epoxy-resin-based optical phantom system with adjustable subdiffusive scattering parameters is presented along with measurements of the intrinsic absorption, scattering, fluorescence, and refractive index of the matrix material. Both an aluminium oxide powder and a titanium dioxide dispersion were used as scattering agents and we present measurements of their scattering and reduced scattering coefficients. A method is theoretically described for a mixture of both scattering agents to obtain continuously adjustable anisotropy values g between 0.65 and 0.9 and values of the phase function parameter γ in the range of 1.4 to 2.2. Furthermore, we show absorption spectra for a set of pigments that can be added to achieve particular absorption characteristics. By additional analysis of the aging, a fully characterized phantom system is obtained with the novelty of g and γ parameter adjustment.

  9. Determination of Phobos' rotational parameters by an inertial frame bundle block adjustment

    NASA Astrophysics Data System (ADS)

    Burmeister, Steffi; Willner, Konrad; Schmidt, Valentina; Oberst, Jürgen

    2018-01-01

    A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of 1.14^circ ± 0.03^circ together with a control point network of 685 points.

  10. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    PubMed

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  12. Celestial Object Imaging Model and Parameter Optimization for an Optical Navigation Sensor Based on the Well Capacity Adjusting Scheme.

    PubMed

    Wang, Hao; Jiang, Jie; Zhang, Guangjun

    2017-04-21

    The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters.

  13. Celestial Object Imaging Model and Parameter Optimization for an Optical Navigation Sensor Based on the Well Capacity Adjusting Scheme

    PubMed Central

    Wang, Hao; Jiang, Jie; Zhang, Guangjun

    2017-01-01

    The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters. PMID:28430132

  14. Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment.

    PubMed

    Brookings, Ted; Goeritz, Marie L; Marder, Eve

    2014-11-01

    We describe a new technique to fit conductance-based neuron models to intracellular voltage traces from isolated biological neurons. The biological neurons are recorded in current-clamp with pink (1/f) noise injected to perturb the activity of the neuron. The new algorithm finds a set of parameters that allows a multicompartmental model neuron to match the recorded voltage trace. Attempting to match a recorded voltage trace directly has a well-known problem: mismatch in the timing of action potentials between biological and model neuron is inevitable and results in poor phenomenological match between the model and data. Our approach avoids this by applying a weak control adjustment to the model to promote alignment during the fitting procedure. This approach is closely related to the control theoretic concept of a Luenberger observer. We tested this approach on synthetic data and on data recorded from an anterior gastric receptor neuron from the stomatogastric ganglion of the crab Cancer borealis. To test the flexibility of this approach, the synthetic data were constructed with conductance models that were different from the ones used in the fitting model. For both synthetic and biological data, the resultant models had good spike-timing accuracy. Copyright © 2014 the American Physiological Society.

  15. Cognitive models of risky choice: parameter stability and predictive accuracy of prospect theory.

    PubMed

    Glöckner, Andreas; Pachur, Thorsten

    2012-04-01

    In the behavioral sciences, a popular approach to describe and predict behavior is cognitive modeling with adjustable parameters (i.e., which can be fitted to data). Modeling with adjustable parameters allows, among other things, measuring differences between people. At the same time, parameter estimation also bears the risk of overfitting. Are individual differences as measured by model parameters stable enough to improve the ability to predict behavior as compared to modeling without adjustable parameters? We examined this issue in cumulative prospect theory (CPT), arguably the most widely used framework to model decisions under risk. Specifically, we examined (a) the temporal stability of CPT's parameters; and (b) how well different implementations of CPT, varying in the number of adjustable parameters, predict individual choice relative to models with no adjustable parameters (such as CPT with fixed parameters, expected value theory, and various heuristics). We presented participants with risky choice problems and fitted CPT to each individual's choices in two separate sessions (which were 1 week apart). All parameters were correlated across time, in particular when using a simple implementation of CPT. CPT allowing for individual variability in parameter values predicted individual choice better than CPT with fixed parameters, expected value theory, and the heuristics. CPT's parameters thus seem to pick up stable individual differences that need to be considered when predicting risky choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. 40 CFR 89.108 - Adjustable parameters, requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this subpart. (d) For engines that use noncommercial fuels significantly different than the specified test fuel of the same type, the manufacturer may ask to use the parameter-adjustment provisions of 40... separate engine family. See 40 CFR 1039.801 for the definition of “noncommercial fuels”. [59 FR 31335, June...

  17. 40 CFR 89.108 - Adjustable parameters, requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this subpart. (d) For engines that use noncommercial fuels significantly different than the specified test fuel of the same type, the manufacturer may ask to use the parameter-adjustment provisions of 40... separate engine family. See 40 CFR 1039.801 for the definition of “noncommercial fuels”. [59 FR 31335, June...

  18. 40 CFR 89.108 - Adjustable parameters, requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this subpart. (d) For engines that use noncommercial fuels significantly different than the specified test fuel of the same type, the manufacturer may ask to use the parameter-adjustment provisions of 40... separate engine family. See 40 CFR 1039.801 for the definition of “noncommercial fuels”. [59 FR 31335, June...

  19. 40 CFR 89.108 - Adjustable parameters, requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this subpart. (d) For engines that use noncommercial fuels significantly different than the specified test fuel of the same type, the manufacturer may ask to use the parameter-adjustment provisions of 40... separate engine family. See 40 CFR 1039.801 for the definition of “noncommercial fuels”. [59 FR 31335, June...

  20. 40 CFR 89.108 - Adjustable parameters, requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this subpart. (d) For engines that use noncommercial fuels significantly different than the specified test fuel of the same type, the manufacturer may ask to use the parameter-adjustment provisions of 40... separate engine family. See 40 CFR 1039.801 for the definition of “noncommercial fuels”. [59 FR 31335, June...

  1. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry

    PubMed Central

    Meyer, Andrew J.; Patten, Carolynn

    2017-01-01

    Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part due to limited understanding of how a patient’s lower extremity muscle excitations contribute to the patient’s lower extremity joint moments. To assist in the study of these disorders, researchers have developed electromyography (EMG) driven neuromusculoskeletal models utilizing scaled generic musculoskeletal geometry. While these models can predict individual muscle contributions to lower extremity joint moments during walking, the accuracy of the predictions can be hindered by errors in the scaled geometry. This study presents a novel EMG-driven modeling method that automatically adjusts surrogate representations of the patient’s musculoskeletal geometry to improve prediction of lower extremity joint moments during walking. In addition to commonly adjusted neuromusculoskeletal model parameters, the proposed method adjusts model parameters defining muscle-tendon lengths, velocities, and moment arms. We evaluated our EMG-driven modeling method using data collected from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match inverse dynamic moments for five degrees of freedom in each leg while keeping musculoskeletal geometry close to that of an initial scaled musculoskeletal model. We found that our EMG-driven modeling method incorporating automated adjustment of musculoskeletal geometry predicted net joint moments during walking more accurately than did the same method without geometric adjustments. Geometric adjustments improved moment prediction errors by 25% on average and up to 52%, with the largest improvements occurring at the hip. Predicted adjustments to musculoskeletal geometry were comparable to errors reported in the literature between scaled generic geometric models and measurements made from imaging data. Our results demonstrate that

  2. Cognitive Models of Risky Choice: Parameter Stability and Predictive Accuracy of Prospect Theory

    ERIC Educational Resources Information Center

    Glockner, Andreas; Pachur, Thorsten

    2012-01-01

    In the behavioral sciences, a popular approach to describe and predict behavior is cognitive modeling with adjustable parameters (i.e., which can be fitted to data). Modeling with adjustable parameters allows, among other things, measuring differences between people. At the same time, parameter estimation also bears the risk of overfitting. Are…

  3. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    NASA Technical Reports Server (NTRS)

    Boone, Spencer

    2017-01-01

    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  4. Resonance Parameter Adjustment Based on Integral Experiments

    DOE PAGES

    Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; ...

    2016-06-02

    Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less

  5. Modelling decremental ramps using 2- and 3-parameter "critical power" models.

    PubMed

    Morton, R Hugh; Billat, Veronique

    2013-01-01

    The "Critical Power" (CP) model of human bioenergetics provides a valuable way to identify both limits of tolerance to exercise and mechanisms that underpin that tolerance. It applies principally to cycling-based exercise, but with suitable adjustments for analogous units it can be applied to other exercise modalities; in particular to incremental ramp exercise. It has not yet been applied to decremental ramps which put heavy early demand on the anaerobic energy supply system. This paper details cycling-based bioenergetics of decremental ramps using 2- and 3-parameter CP models. It derives equations that, for an individual of known CP model parameters, define those combinations of starting intensity and decremental gradient which will or will not lead to exhaustion before ramping to zero; and equations that predict time to exhaustion on those decremental ramps that will. These are further detailed with suitably chosen numerical and graphical illustrations. These equations can be used for parameter estimation from collected data, or to make predictions when parameters are known.

  6. Towards a covariance matrix of CAB model parameters for H(H2O)

    NASA Astrophysics Data System (ADS)

    Scotta, Juan Pablo; Noguere, Gilles; Damian, José Ignacio Marquez

    2017-09-01

    Preliminary results on the uncertainties of hydrogen into light water thermal scattering law of the CAB model are presented. It was done through a coupling between the nuclear data code CONRAD and the molecular dynamic simulations code GROMACS. The Generalized Least Square method was used to adjust the model parameters on evaluated data and generate covariance matrices between the CAB model parameters.

  7. Demand-Adjusted Shelf Availability Parameters: A Second Look.

    ERIC Educational Resources Information Center

    Schwarz, Philip

    1983-01-01

    Data gathered in application of Paul Kantor's demand-adjusted shelf availability model to medium-sized academic library indicate significant differences in shelf availability when data are analyzed by last circulation date, acquisition date, and imprint date, and when they are gathered during periods of low and high use. Ten references are cited.…

  8. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  9. Lithium-ion Open Circuit Voltage (OCV) curve modelling and its ageing adjustment

    NASA Astrophysics Data System (ADS)

    Lavigne, L.; Sabatier, J.; Francisco, J. Mbala; Guillemard, F.; Noury, A.

    2016-08-01

    This paper is a contribution to lithium-ion batteries modelling taking into account aging effects. It first analyses the impact of aging on electrode stoichiometry and then on lithium-ion cell Open Circuit Voltage (OCV) curve. Through some hypotheses and an appropriate definition of the cell state of charge, it shows that each electrode equilibrium potential, but also the whole cell equilibrium potential can be modelled by a polynomial that requires only one adjustment parameter during aging. An adjustment algorithm, based on the idea that for two fixed OCVs, the state of charge between these two equilibrium states is unique for a given aging level, is then proposed. Its efficiency is evaluated on a battery pack constituted of four cells.

  10. Kuk's Model Adjusted for Protection and Efficiency

    ERIC Educational Resources Information Center

    Su, Shu-Ching; Sedory, Stephen A.; Singh, Sarjinder

    2015-01-01

    In this article, we adjust the Kuk randomized response model for collecting information on a sensitive characteristic for increased protection and efficiency by making use of forced "yes" and forced "no" responses. We first describe Kuk's model and then the proposed adjustment to Kuk's model. Next, by means of a simulation…

  11. Parameter estimation for groundwater models under uncertain irrigation data

    USGS Publications Warehouse

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  12. Examining the Correlation between Objective Injury Parameters, Personality Traits, and Adjustment Measures among Burn Victims

    PubMed Central

    Weissman, Oren; Domniz, Noam; Petashnick, Yoel R.; Gilboa, Dalia; Raviv, Tal; Barzilai, Liran; Farber, Nimrod; Harats, Moti; Winkler, Eyal; Haik, Josef

    2015-01-01

    Background: Burn victims experience immense physical and mental hardship during their process of rehabilitation and regaining functionality. We examined different objective burn-related factors as well as psychological ones, in the form of personality traits that may affect the rehabilitation process and its outcome. Objective: To assess the influence and correlation of specific personality traits and objective injury-related parameters on the adjustment of burn victims post-injury. Methods: Sixty-two male patients admitted to our burn unit due to burn injuries were compared with 36 healthy male individuals by use of questionnaires to assess each group’s psychological adjustment parameters. Multivariate and hierarchical regression analysis was conducted to identify differences between the groups. Results: A significant negative correlation was found between the objective burn injury severity (e.g., total body surface area and burn depth) and the adjustment of burn victims (p < 0.05, p < 0.001, Table 3). Moreover, patients more severely injured tend to be more neurotic (p < 0.001), and less extroverted and agreeable (p < 0.01, Table 4). Conclusion: Extroverted burn victims tend to adjust better to their post-injury life while the neurotic patients tend to have difficulties adjusting. This finding may suggest new tools for early identification of maladjustment-prone patients and therefore provide them with better psychological support in a more dedicated manner. PMID:25874193

  13. Estimating parameters of hidden Markov models based on marked individuals: use of robust design data

    USGS Publications Warehouse

    Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun

    2012-01-01

    Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).

  14. State and Parameter Estimation for a Coupled Ocean--Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Kondrashov, D.; Sun, C.

    2006-12-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.

  15. Resolving model parameter values from carbon and nitrogen stock measurements in a wide range of tropical mature forests using nonlinear inversion and regression trees

    USGS Publications Warehouse

    Liu, S.; Anderson, P.; Zhou, G.; Kauffman, B.; Hughes, F.; Schimel, D.; Watson, Vicente; Tosi, Joseph

    2008-01-01

    Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in seven life zones in Costa Rica. Net primary productivity from the Moderate-Resolution Imaging Spectroradiometer (MODIS), C and N stocks in aboveground live biomass, litter, coarse woody debris (CWD), and in soils were used to calibrate the model. To investigate the resolution of available observations on the number of adjustable parameters, inversion was performed using nine setups of adjustable parameters. Statistics including observation sensitivity, parameter correlation coefficient, parameter sensitivity, and parameter confidence limits were used to evaluate the information content of observations, resolution of model parameters, and overall model performance. Results indicated that soil organic carbon content, soil nitrogen content, and total aboveground biomass carbon had the highest information contents, while measurements of carbon in litter and nitrogen in CWD contributed little to the parameter estimation processes. The available information could resolve the values of 2-4 parameters. Adjusting just one parameter resulted in under-fitting and unacceptable model performance, while adjusting five parameters simultaneously led to over-fitting. Results further indicated that the MODIS NPP values were compressed as compared with the spatial variability of net primary production (NPP) values inferred from inverse modeling. Using inverse modeling to infer NPP and other sensitive model parameters from C and N stock observations provides an opportunity to utilize data collected by national to regional forest inventory systems to reduce the uncertainties in the carbon cycle and generate valuable

  16. NGA-West2 Empirical Fourier Model for Active Crustal Regions to Generate Regionally Adjustable Response Spectra

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Cotton, F.; Scherbaum, F.; Kuehn, N. M.

    2016-12-01

    Adjustment of median ground motion prediction equations (GMPEs) from data-rich (host) regions to data-poor regions (target) is one of major challenges that remains with the current practice of engineering seismology and seismic hazard analysis. Fourier spectral representation of ground motion provides a solution to address the problem of adjustment that is physically transparent and consistent with the concepts of linear system theory. Also, it provides a direct interface to appreciate the physically expected behavior of seismological parameters on ground motion. In the present study, we derive an empirical Fourier model for computing regionally adjustable response spectral ordinates based on random vibration theory (RVT) from shallow crustal earthquakes in active tectonic regions, following the approach of Bora et al. (2014, 2015). , For this purpose, we use an expanded NGA-West2 database with M 3.2—7.9 earthquakes at distances ranging from 0 to 300 km. A mixed-effects regression technique is employed to further explore various components of variability. The NGA-West2 database expanded over a wide magnitude range provides a better understanding (and constraint) of source scaling of ground motion. The large global volume of the database also allows investigating regional patterns in distance-dependent attenuation (i.e., geometrical spreading and inelastic attenuation) of ground motion as well as in the source parameters (e.g., magnitude and stress drop). Furthermore, event-wise variability and its correlation with stress parameter are investigated. Finally, application of the derived Fourier model in generating adjustable response spectra will be shown.

  17. Player Modeling for Intelligent Difficulty Adjustment

    NASA Astrophysics Data System (ADS)

    Missura, Olana; Gärtner, Thomas

    In this paper we aim at automatically adjusting the difficulty of computer games by clustering players into different types and supervised prediction of the type from short traces of gameplay. An important ingredient of video games is to challenge players by providing them with tasks of appropriate and increasing difficulty. How this difficulty should be chosen and increase over time strongly depends on the ability, experience, perception and learning curve of each individual player. It is a subjective parameter that is very difficult to set. Wrong choices can easily lead to players stopping to play the game as they get bored (if underburdened) or frustrated (if overburdened). An ideal game should be able to adjust its difficulty dynamically governed by the player’s performance. Modern video games utilise a game-testing process to investigate among other factors the perceived difficulty for a multitude of players. In this paper, we investigate how machine learning techniques can be used for automatic difficulty adjustment. Our experiments confirm the potential of machine learning in this application.

  18. Suppression of threshold voltage variability in MOSFETs by adjustment of ion implantation parameters

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyun; Chang, Tae-sig; Kim, Minsuk; Woo, Sola; Kim, Sangsig

    2018-01-01

    In this study, we investigate threshold voltage (VTH) variability of metal-oxide-semiconductor field-effect transistors induced by random dopant fluctuation (RDF). Our simulation work demonstrates not only the influence of the implantation parameters such as its dose, tilt angle, energy, and rotation angle on the RDF-induced VTH variability, but also the solution to reduce the effect of this variability. By adjusting the ion implantation parameters, the 3σ (VTH) is reduced from 43.8 mV to 28.9 mV. This 34% reduction is significant, considering that our technique is very cost effective and facilitates easy fabrication, increasing availability.

  19. Modeling and simulation of M/M/c queuing pharmacy system with adjustable parameters

    NASA Astrophysics Data System (ADS)

    Rashida, A. R.; Fadzli, Mohammad; Ibrahim, Safwati; Goh, Siti Rohana

    2016-02-01

    This paper studies a discrete event simulation (DES) as a computer based modelling that imitates a real system of pharmacy unit. M/M/c queuing theo is used to model and analyse the characteristic of queuing system at the pharmacy unit of Hospital Tuanku Fauziah, Kangar in Perlis, Malaysia. The input of this model is based on statistical data collected for 20 working days in June 2014. Currently, patient waiting time of pharmacy unit is more than 15 minutes. The actual operation of the pharmacy unit is a mixed queuing server with M/M/2 queuing model where the pharmacist is referred as the server parameters. DES approach and ProModel simulation software is used to simulate the queuing model and to propose the improvement for queuing system at this pharmacy system. Waiting time for each server is analysed and found out that Counter 3 and 4 has the highest waiting time which is 16.98 and 16.73 minutes. Three scenarios; M/M/3, M/M/4 and M/M/5 are simulated and waiting time for actual queuing model and experimental queuing model are compared. The simulation results show that by adding the server (pharmacist), it will reduce patient waiting time to a reasonable improvement. Almost 50% average patient waiting time is reduced when one pharmacist is added to the counter. However, it is not necessary to fully utilize all counters because eventhough M/M/4 and M/M/5 produced more reduction in patient waiting time, but it is ineffective since Counter 5 is rarely used.

  20. On Interpreting the Model Parameters for the Three Parameter Logistic Model

    ERIC Educational Resources Information Center

    Maris, Gunter; Bechger, Timo

    2009-01-01

    This paper addresses two problems relating to the interpretability of the model parameters in the three parameter logistic model. First, it is shown that if the values of the discrimination parameters are all the same, the remaining parameters are nonidentifiable in a nontrivial way that involves not only ability and item difficulty, but also the…

  1. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    PubMed

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  2. Calibrating Physical Parameters in House Models Using Aggregate AC Power Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Stevens, Andrew J.; Lian, Jianming

    For residential houses, the air conditioning (AC) units are one of the major resources that can provide significant flexibility in energy use for the purpose of demand response. To quantify the flexibility, the characteristics of all the houses need to be accurately estimated, so that certain house models can be used to predict the dynamics of the house temperatures in order to adjust the setpoints accordingly to provide demand response while maintaining the same comfort levels. In this paper, we propose an approach using the Reverse Monte Carlo modeling method and aggregate house models to calibrate the distribution parameters ofmore » the house models for a population of residential houses. Given the aggregate AC power demand for the population, the approach can successfully estimate the distribution parameters for the sensitive physical parameters based on our previous uncertainty quantification study, such as the mean of the floor areas of the houses.« less

  3. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.

    PubMed

    De Vendittis, Emmanuele; Castellano, Immacolata; Cotugno, Roberta; Ruocco, Maria Rosaria; Raimo, Gennaro; Masullo, Mariorosario

    2008-01-07

    The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was

  4. ECCM Scheme against Interrupted Sampling Repeater Jammer Based on Parameter-Adjusted Waveform Design

    PubMed Central

    Wei, Zhenhua; Peng, Bo; Shen, Rui

    2018-01-01

    Interrupted sampling repeater jamming (ISRJ) is an effective way of deceiving coherent radar sensors, especially for linear frequency modulated (LFM) radar. In this paper, for a simplified scenario with a single jammer, we propose a dynamic electronic counter-counter measure (ECCM) scheme based on jammer parameter estimation and transmitted signal design. Firstly, the LFM waveform is transmitted to estimate the main jamming parameters by investigating the discontinuousness of the ISRJ’s time-frequency (TF) characteristics. Then, a parameter-adjusted intra-pulse frequency coded signal, whose ISRJ signal after matched filtering only forms a single false target, is designed adaptively according to the estimated parameters, i.e., sampling interval, sampling duration and repeater times. Ultimately, for typical jamming scenes with different jamming signal ratio (JSR) and duty cycle, we propose two particular ISRJ suppression approaches. Simulation results validate the effective performance of the proposed scheme for countering the ISRJ, and the trade-off relationship between the two approaches is demonstrated. PMID:29642508

  5. DaMoScope and its internet graphics for the visual control of adjusting mathematical models describing experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, V. I.; Ezhela, V. V.; Kuyanov, Yu. V., E-mail: Yu.Kuyanov@gmail.com

    The experience of using the dynamic atlas of the experimental data and mathematical models of their description in the problems of adjusting parametric models of observable values depending on kinematic variables is presented. The functional possibilities of an image of a large number of experimental data and the models describing them are shown by examples of data and models of observable values determined by the amplitudes of elastic scattering of hadrons. The Internet implementation of an interactive tool DaMoScope and its interface with the experimental data and codes of adjusted parametric models with the parameters of the best description ofmore » data are schematically shown. The DaMoScope codes are freely available.« less

  6. Glacial isostatic adjustment using GNSS permanent stations and GIA modelling tools

    NASA Astrophysics Data System (ADS)

    Kollo, Karin; Spada, Giorgio; Vermeer, Martin

    2013-04-01

    Glacial Isostatic Adjustment (GIA) affects the Earth's mantle in areas which were once ice covered and the process is still ongoing. In this contribution we focus on GIA processes in Fennoscandian and North American uplift regions. In this contribution we use horizontal and vertical uplift rates from Global Navigation Satellite System (GNSS) permanent stations. For Fennoscandia the BIFROST dataset (Lidberg, 2010) and North America the dataset from Sella, 2007 were used respectively. We perform GIA modelling with the SELEN program (Spada and Stocchi, 2007) and we vary ice model parameters in space in order to find ice model which suits best with uplift values obtained from GNSS time series analysis. In the GIA modelling, the ice models ICE-5G (Peltier, 2004) and the ice model denoted as ANU05 ((Fleming and Lambeck, 2004) and references therein) were used. As reference, the velocity field from GNSS permanent station time series was used for both target areas. Firstly the sensitivity to the harmonic degree was tested in order to reduce the computation time. In the test, nominal viscosity values and pre-defined lithosphere thicknesses models were used, varying maximum harmonic degree values. Main criteria for choosing the suitable harmonic degree was chi-square fit - if the error measure does not differ more than 10%, then one might use as well lower harmonic degree value. From this test, maximum harmonic degree of 72 was chosen to perform calculations, as the larger value did not significantly modify the results obtained, as well the computational time for observations was kept reasonable. Secondly the GIA computations were performed to find the model, which could fit with highest probability to the GNSS-based velocity field in the target areas. In order to find best fitting Earth viscosity parameters, different viscosity profiles for the Earth models were tested and their impact on horizontal and vertical velocity rates from GIA modelling was studied. For every

  7. Illumination-parameter adjustable and illumination-distribution visible LED helmet for low-level light therapy on brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Gao, Yuan; Chen, Xiao; Li, Ting

    2016-03-01

    Low-level light therapy (LLLT) has been clinically applied. Recently, more and more cases are reported with positive therapeutic effect by using transcranial light emitting diodes (LEDs) illumination. Here, we developed a LLLT helmet for treating brain injuries based on LED arrays. We designed the LED arrays in circle shape and assembled them in multilayered 3D printed helmet with water-cooling module. The LED arrays can be adjust to touch the head of subjects. A control circuit was developed to drive and control the illumination of the LLLT helmet. The software portion provides the control of on and off of each LED arrays, the setup of illumination parameters, and 3D distribution of LLLT light dose in human subject according to the illumination setups. This LLLT light dose distribution was computed by a Monte Carlo model for voxelized media and the Visible Chinese Human head dataset and displayed in 3D view at the background of head anatomical structure. The performance of the whole system was fully tested. One stroke patient was recruited in the preliminary LLLT experiment and the following neuropsychological testing showed obvious improvement in memory and executive functioning. This clinical case suggested the potential of this Illumination-parameter adjustable and illuminationdistribution visible LED helmet as a reliable, noninvasive, and effective tool in treating brain injuries.

  8. An improved state-parameter analysis of ecosystem models using data assimilation

    USGS Publications Warehouse

    Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.

    2008-01-01

    Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the

  9. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    NASA Astrophysics Data System (ADS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  10. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model

    PubMed Central

    Yang, Anxiong; Stingl, Michael; Berry, David A.; Lohscheller, Jörg; Voigt, Daniel; Eysholdt, Ulrich; Döllinger, Michael

    2011-01-01

    With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders. PMID:21877808

  11. Adjusting STEMS growth model for Wisconsin forests.

    Treesearch

    Margaret R. Holdaway

    1985-01-01

    Describes a simple procedure for adjusting growth in the STEMS regional tree growth model to compensate for subregional differences. Coefficients are reported to adjust Lake States STEMS to the forests of Northern and Central Wisconsin--an area of essentially uniform climate and similar broad physiographic features. Errors are presented for various combinations of...

  12. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    PubMed

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  13. Use of Prolonged Travel to Improve Pediatric Risk-Adjustment Models

    PubMed Central

    Lorch, Scott A; Silber, Jeffrey H; Even-Shoshan, Orit; Millman, Andrea

    2009-01-01

    Objective To determine whether travel variables could explain previously reported differences in lengths of stay (LOS), readmission, or death at children's hospitals versus other hospital types. Data Source Hospital discharge data from Pennsylvania between 1996 and 1998. Study Design A population cohort of children aged 1–17 years with one of 19 common pediatric conditions was created (N=51,855). Regression models were constructed to determine difference for LOS, readmission, or death between children's hospitals and other types of hospitals after including five types of additional illness severity variables to a traditional risk-adjustment model. Principal Findings With the traditional risk-adjustment model, children traveling longer to children's or rural hospitals had longer adjusted LOS and higher readmission rates. Inclusion of either a geocoded travel time variable or a nongeocoded travel distance variable provided the largest reduction in adjusted LOS, adjusted readmission rates, and adjusted mortality rates for children's hospitals and rural hospitals compared with other types of hospitals. Conclusions Adding a travel variable to traditional severity adjustment models may improve the assessment of an individual hospital's pediatric care by reducing systematic differences between different types of hospitals. PMID:19207591

  14. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  15. Optimizing ACS NSQIP modeling for evaluation of surgical quality and risk: patient risk adjustment, procedure mix adjustment, shrinkage adjustment, and surgical focus.

    PubMed

    Cohen, Mark E; Ko, Clifford Y; Bilimoria, Karl Y; Zhou, Lynn; Huffman, Kristopher; Wang, Xue; Liu, Yaoming; Kraemer, Kari; Meng, Xiangju; Merkow, Ryan; Chow, Warren; Matel, Brian; Richards, Karen; Hart, Amy J; Dimick, Justin B; Hall, Bruce L

    2013-08-01

    The American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) collects detailed clinical data from participating hospitals using standardized data definitions, analyzes these data, and provides participating hospitals with reports that permit risk-adjusted comparisons with a surgical quality standard. Since its inception, the ACS NSQIP has worked to refine surgical outcomes measurements and enhance statistical methods to improve the reliability and validity of this hospital profiling. From an original focus on controlling for between-hospital differences in patient risk factors with logistic regression, ACS NSQIP has added a variable to better adjust for the complexity and risk profile of surgical procedures (procedure mix adjustment) and stabilized estimates derived from small samples by using a hierarchical model with shrinkage adjustment. New models have been developed focusing on specific surgical procedures (eg, "Procedure Targeted" models), which provide opportunities to incorporate indication and other procedure-specific variables and outcomes to improve risk adjustment. In addition, comparative benchmark reports given to participating hospitals have been expanded considerably to allow more detailed evaluations of performance. Finally, procedures have been developed to estimate surgical risk for individual patients. This article describes the development of, and justification for, these new statistical methods and reporting strategies in ACS NSQIP. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  16. A Developmental Sequence Model to University Adjustment of International Undergraduate Students

    ERIC Educational Resources Information Center

    Chavoshi, Saeid; Wintre, Maxine Gallander; Dentakos, Stella; Wright, Lorna

    2017-01-01

    The current study proposes a Developmental Sequence Model to University Adjustment and uses a multifaceted measure, including academic, social and psychological adjustment, to examine factors predictive of undergraduate international student adjustment. A hierarchic regression model is carried out on the Student Adaptation to College Questionnaire…

  17. CPU time optimization and precise adjustment of the Geant4 physics parameters for a VARIAN 2100 C/D gamma radiotherapy linear accelerator simulation using GAMOS.

    PubMed

    Arce, Pedro; Lagares, Juan Ignacio

    2018-01-25

    We have verified the GAMOS/Geant4 simulation model of a 6 MV VARIAN Clinac 2100 C/D linear accelerator by the procedure of adjusting the initial beam parameters to fit the percentage depth dose and cross-profile dose experimental data at different depths in a water phantom. Thanks to the use of a wide range of field sizes, from 2  ×  2 cm 2 to 40  ×  40 cm 2 , a small phantom voxel size and high statistics, fine precision in the determination of the beam parameters has been achieved. This precision has allowed us to make a thorough study of the different physics models and parameters that Geant4 offers. The three Geant4 electromagnetic physics sets of models, i.e. Standard, Livermore and Penelope, have been compared to the experiment, testing the four different models of angular bremsstrahlung distributions as well as the three available multiple-scattering models, and optimizing the most relevant Geant4 electromagnetic physics parameters. Before the fitting, a comprehensive CPU time optimization has been done, using several of the Geant4 efficiency improvement techniques plus a few more developed in GAMOS.

  18. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    PubMed

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  19. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  20. Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters.

    PubMed

    Douglas, P; Tyrrel, S F; Kinnersley, R P; Whelan, M; Longhurst, P J; Walsh, K; Pollard, S J T; Drew, G H

    2016-12-15

    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions. Copyright © 2016. Published by Elsevier Ltd.

  1. Variational estimation of process parameters in a simplified atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Lv, Guokun; Koehl, Armin; Stammer, Detlef

    2016-04-01

    Parameterizations are used to simulate effects of unresolved sub-grid-scale processes in current state-of-the-art climate model. The values of the process parameters, which determine the model's climatology, are usually manually adjusted to reduce the difference of model mean state to the observed climatology. This process requires detailed knowledge of the model and its parameterizations. In this work, a variational method was used to estimate process parameters in the Planet Simulator (PlaSim). The adjoint code was generated using automatic differentiation of the source code. Some hydrological processes were switched off to remove the influence of zero-order discontinuities. In addition, the nonlinearity of the model limits the feasible assimilation window to about 1day, which is too short to tune the model's climatology. To extend the feasible assimilation window, nudging terms for all state variables were added to the model's equations, which essentially suppress all unstable directions. In identical twin experiments, we found that the feasible assimilation window could be extended to over 1-year and accurate parameters could be retrieved. Although the nudging terms transform to a damping of the adjoint variables and therefore tend to erases the information of the data over time, assimilating climatological information is shown to provide sufficient information on the parameters. Moreover, the mechanism of this regularization is discussed.

  2. Adjusted variable plots for Cox's proportional hazards regression model.

    PubMed

    Hall, C B; Zeger, S L; Bandeen-Roche, K J

    1996-01-01

    Adjusted variable plots are useful in linear regression for outlier detection and for qualitative evaluation of the fit of a model. In this paper, we extend adjusted variable plots to Cox's proportional hazards model for possibly censored survival data. We propose three different plots: a risk level adjusted variable (RLAV) plot in which each observation in each risk set appears, a subject level adjusted variable (SLAV) plot in which each subject is represented by one point, and an event level adjusted variable (ELAV) plot in which the entire risk set at each failure event is represented by a single point. The latter two plots are derived from the RLAV by combining multiple points. In each point, the regression coefficient and standard error from a Cox proportional hazards regression is obtained by a simple linear regression through the origin fit to the coordinates of the pictured points. The plots are illustrated with a reanalysis of a dataset of 65 patients with multiple myeloma.

  3. Particle Swarm Learning Algorithm Based on Adjustment of Parameter and its Applications Assessment of Agricultural Projects

    NASA Astrophysics Data System (ADS)

    Yang, Shanlin; Zhu, Weidong; Chen, Li

    The particle swarm, which optimizes neural networks, has overcome its disadvantage of slow convergent speed and shortcoming of local optimum. The parameter that the particle swarm optimization relates to is not much. But it has strongly sensitivity to the parameter. In this paper, we applied PSO-BP to evaluate the environmental effect of an agricultural project, and researched application and Particle Swarm learning algorithm based on adjustment of parameter. This paper, we use MATLAB language .The particle number is 5, 30, 50, 90, and the inertia weight is 0.4, 0.6, and 0.8 separately. Calculate 10 times under each same parameter, and analyze the influence under the same parameter. Result is indicated that the number of particles is in 25 ~ 30 and the inertia weight is in 0.6 ~ 0.7, and the result of optimization is satisfied.

  4. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Treesearch

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  5. Application of the simplex method to the optimal adjustment of the parameters of a ventilation network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamba, G.M.; Jacques, E.; Patigny, J.

    1995-12-31

    Literature is rather abundant on the topic of steady-state network analysis programs. Many versions exist, some of them have real extended facilities such as full graphical manipulation, fire simulation in motion, etc. These programs are certainly of great help to any ventilation planning and often assist the ventilation engineer in his operational decision making. However, what ever the efficiency of the calculation algorithms might be, their weak point still is the overall validity of the model. This numerical model, apart from maybe the questionable application of some physical laws, depends directly on the quality of the data used to identifymore » its most influencing parameters such as the passive (resistance) or active (fan) characteristic of each of the branches in the network. Considering the non-linear character of the problem and the great number of variables involved, finding the closest numerical model of a real mine ventilation network is without any doubt a very difficult problem. This problem, often referred to as the parameter adjustment problem, is in almost every practical case solved on an experimental and {open_quotes}feeling{close_quotes} basis. Only a few papers put forward a mathematical solution based on a least square approach as the best fit criterion. The aim of this paper is to examine the possibility to apply the well-known simplex method to this problem. The performance of this method and its capability to reach the global optimum which corresponds to the best fit is discussed and compared to that of other methods.« less

  6. Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming

    2010-05-01

    Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated inmore » order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.« less

  7. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Kuczera, George

    1983-10-01

    A Bayesian methodology is developed to evaluate parameter uncertainty in catchment models fitted to a hydrologic response such as runoff, the goal being to improve the chance of successful regionalization. The catchment model is posed as a nonlinear regression model with stochastic errors possibly being both autocorrelated and heteroscedastic. The end result of this methodology, which may use Box-Cox power transformations and ARMA error models, is the posterior distribution, which summarizes what is known about the catchment model parameters. This can be simplified to a multivariate normal provided a linearization in parameter space is acceptable; means of checking and improving this assumption are discussed. The posterior standard deviations give a direct measure of parameter uncertainty, and study of the posterior correlation matrix can indicate what kinds of data are required to improve the precision of poorly determined parameters. Finally, a case study involving a nine-parameter catchment model fitted to monthly runoff and soil moisture data is presented. It is shown that use of ordinary least squares when its underlying error assumptions are violated gives an erroneous description of parameter uncertainty.

  8. Utilizing Visual Effects Software for Efficient and Flexible Isostatic Adjustment Modelling

    NASA Astrophysics Data System (ADS)

    Meldgaard, A.; Nielsen, L.; Iaffaldano, G.

    2017-12-01

    The isostatic adjustment signal generated by transient ice sheet loading is an important indicator of past ice sheet extent and the rheological constitution of the interior of the Earth. Finite element modelling has proved to be a very useful tool in these studies. We present a simple numerical model for 3D visco elastic Earth deformation and a new approach to the design of such models utilizing visual effects software designed for the film and game industry. The software package Houdini offers an assortment of optimized tools and libraries which greatly facilitate the creation of efficient numerical algorithms. In particular, we make use of Houdini's procedural work flow, the SIMD programming language VEX, Houdini's sparse matrix creation and inversion libraries, an inbuilt tetrahedralizer for grid creation, and the user interface, which facilitates effortless manipulation of 3D geometry. We mitigate many of the time consuming steps associated with the authoring of efficient algorithms from scratch while still keeping the flexibility that may be lost with the use of commercial dedicated finite element programs. We test the efficiency of the algorithm by comparing simulation times with off-the-shelf solutions from the Abaqus software package. The algorithm is tailored for the study of local isostatic adjustment patterns, in close vicinity to present ice sheet margins. In particular, we wish to examine possible causes for the considerable spatial differences in the uplift magnitude which are apparent from field observations in these areas. Such features, with spatial scales of tens of kilometres, are not resolvable with current global isostatic adjustment models, and may require the inclusion of local topographic features. We use the presented algorithm to study a near field area where field observations are abundant, namely, Disko Bay in West Greenland with the intention of constraining Earth parameters and ice thickness. In addition, we assess how local

  9. Attaining insight into interactions between hydrologic model parameters and geophysical attributes for national-scale model parameter estimation

    NASA Astrophysics Data System (ADS)

    Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.

    2017-12-01

    Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.

  10. Contact angle adjustment in equation-of-state-based pseudopotential model

    NASA Astrophysics Data System (ADS)

    Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong

    2016-05-01

    The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.

  11. Contact angle adjustment in equation-of-state-based pseudopotential model.

    PubMed

    Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong

    2016-05-01

    The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.

  12. The Concept of Adjustment: A Structural Model.

    ERIC Educational Resources Information Center

    Dodds, A.; And Others

    1994-01-01

    This study analyzed scores of 469 British adult clients with recent loss of sight on the Nottingham Adjustment Scale using LISREL structural modeling techniques. Results supported a theoretical model of the self in terms of two latent factors--internal self-worth and self as agent. Implications for rehabilitation and intervention with cognitive…

  13. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    PubMed Central

    Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.

    2016-01-01

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601

  14. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be

  15. Calibration by Hydrological Response Unit of a National Hydrologic Model to Improve Spatial Representation and Distribution of Parameters

    NASA Astrophysics Data System (ADS)

    Norton, P. A., II

    2015-12-01

    The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.

  16. Risk-adjusted models for adverse obstetric outcomes and variation in risk-adjusted outcomes across hospitals.

    PubMed

    Bailit, Jennifer L; Grobman, William A; Rice, Madeline Murguia; Spong, Catherine Y; Wapner, Ronald J; Varner, Michael W; Thorp, John M; Leveno, Kenneth J; Caritis, Steve N; Shubert, Phillip J; Tita, Alan T; Saade, George; Sorokin, Yoram; Rouse, Dwight J; Blackwell, Sean C; Tolosa, Jorge E; Van Dorsten, J Peter

    2013-11-01

    Regulatory bodies and insurers evaluate hospital quality using obstetrical outcomes, however meaningful comparisons should take preexisting patient characteristics into account. Furthermore, if risk-adjusted outcomes are consistent within a hospital, fewer measures and resources would be needed to assess obstetrical quality. Our objective was to establish risk-adjusted models for 5 obstetric outcomes and assess hospital performance across these outcomes. We studied a cohort of 115,502 women and their neonates born in 25 hospitals in the United States from March 2008 through February 2011. Hospitals were ranked according to their unadjusted and risk-adjusted frequency of venous thromboembolism, postpartum hemorrhage, peripartum infection, severe perineal laceration, and a composite neonatal adverse outcome. Correlations between hospital risk-adjusted outcome frequencies were assessed. Venous thromboembolism occurred too infrequently (0.03%; 95% confidence interval [CI], 0.02-0.04%) for meaningful assessment. Other outcomes occurred frequently enough for assessment (postpartum hemorrhage, 2.29%; 95% CI, 2.20-2.38, peripartum infection, 5.06%; 95% CI, 4.93-5.19, severe perineal laceration at spontaneous vaginal delivery, 2.16%; 95% CI, 2.06-2.27, neonatal composite, 2.73%; 95% CI, 2.63-2.84). Although there was high concordance between unadjusted and adjusted hospital rankings, several individual hospitals had an adjusted rank that was substantially different (as much as 12 rank tiers) than their unadjusted rank. None of the correlations between hospital-adjusted outcome frequencies was significant. For example, the hospital with the lowest adjusted frequency of peripartum infection had the highest adjusted frequency of severe perineal laceration. Evaluations based on a single risk-adjusted outcome cannot be generalized to overall hospital obstetric performance. Copyright © 2013 Mosby, Inc. All rights reserved.

  17. Genetic Parameters of Pre-adjusted Body Weight Growth and Ultrasound Measures of Body Tissue Development in Three Seedstock Pig Breed Populations in Korea

    PubMed Central

    Choy, Yun Ho; Mahboob, Alam; Cho, Chung Il; Choi, Jae Gwan; Choi, Im Soo; Choi, Tae Jeong; Cho, Kwang Hyun; Park, Byoung Ho

    2015-01-01

    The objective of this study was to compare the effects of body weight growth adjustment methods on genetic parameters of body growth and tissue among three pig breeds. Data collected on 101,820 Landrace, 281,411 Yorkshire, and 78,068 Duroc pigs, born in Korean swine breeder farms since 2000, were analyzed. Records included body weights on test day and amplitude (A)-mode ultrasound carcass measures of backfat thickness (BF), eye muscle area (EMA), and retail cut percentage (RCP). Days to 90 kg body weight (DAYS90), through an adjustment of the age based on the body weight at the test day, were obtained. Ultrasound measures were also pre-adjusted (ABF, EMA, AEMA, ARCP) based on their test day measures. The (co)variance components were obtained with 3 multi-trait animal models using the REMLF90 software package. Model I included DAYS90 and ultrasound traits, whereas model II and III accounted DAYS90 and pre-adjusted ultrasound traits. Fixed factors were sex (sex) and contemporary groups (herd-year-month of birth) for all traits among the models. Additionally, model I and II considered a linear covariate of final weight on the ultrasound measure traits. Heritability (h2) estimates for DAYS90, BF, EMA, and RCP ranged from 0.36 to 0.42, 0.34 to 0.43, 0.20 to 0.22, and 0.39 to 0.45, respectively, among the models. The h2 estimates of DAYS90 from model II and III were also somewhat similar. The h2 for ABF, AEMA, and ARCP were 0.35 to 0.44, 0.20 to 0.25, and 0.41 to 0.46, respectively. Our heritability estimates varied mostly among the breeds. The genetic correlations (rG) were moderately negative between DAYS90 and BF (−0.29 to −0.38), and between DAYS90 and EMA (−0.16 to −0.26). BF had strong rG with RCP (−0.87 to −0.93). Moderately positive rG existed between DAYS90 and RCP (0.20 to 0.28) and between EMA and RCP (0.35 to 0.44) among the breeds. For DAYS90, model II and III, its correlations with ABF, AEMA, and ARCP were mostly low or negligible except the r

  18. Genetic Parameters of Pre-adjusted Body Weight Growth and Ultrasound Measures of Body Tissue Development in Three Seedstock Pig Breed Populations in Korea.

    PubMed

    Choy, Yun Ho; Mahboob, Alam; Cho, Chung Il; Choi, Jae Gwan; Choi, Im Soo; Choi, Tae Jeong; Cho, Kwang Hyun; Park, Byoung Ho

    2015-12-01

    The objective of this study was to compare the effects of body weight growth adjustment methods on genetic parameters of body growth and tissue among three pig breeds. Data collected on 101,820 Landrace, 281,411 Yorkshire, and 78,068 Duroc pigs, born in Korean swine breeder farms since 2000, were analyzed. Records included body weights on test day and amplitude (A)-mode ultrasound carcass measures of backfat thickness (BF), eye muscle area (EMA), and retail cut percentage (RCP). Days to 90 kg body weight (DAYS90), through an adjustment of the age based on the body weight at the test day, were obtained. Ultrasound measures were also pre-adjusted (ABF, EMA, AEMA, ARCP) based on their test day measures. The (co)variance components were obtained with 3 multi-trait animal models using the REMLF90 software package. Model I included DAYS90 and ultrasound traits, whereas model II and III accounted DAYS90 and pre-adjusted ultrasound traits. Fixed factors were sex (sex) and contemporary groups (herd-year-month of birth) for all traits among the models. Additionally, model I and II considered a linear covariate of final weight on the ultrasound measure traits. Heritability (h(2)) estimates for DAYS90, BF, EMA, and RCP ranged from 0.36 to 0.42, 0.34 to 0.43, 0.20 to 0.22, and 0.39 to 0.45, respectively, among the models. The h(2) estimates of DAYS90 from model II and III were also somewhat similar. The h(2) for ABF, AEMA, and ARCP were 0.35 to 0.44, 0.20 to 0.25, and 0.41 to 0.46, respectively. Our heritability estimates varied mostly among the breeds. The genetic correlations (rG) were moderately negative between DAYS90 and BF (-0.29 to -0.38), and between DAYS90 and EMA (-0.16 to -0.26). BF had strong rG with RCP (-0.87 to -0.93). Moderately positive rG existed between DAYS90 and RCP (0.20 to 0.28) and between EMA and RCP (0.35 to 0.44) among the breeds. For DAYS90, model II and III, its correlations with ABF, AEMA, and ARCP were mostly low or negligible except the r

  19. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2016-01-01

    Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show

  20. Modelling the impact of new patient visits on risk adjusted access at 2 clinics.

    PubMed

    Kolber, Michael A; Rueda, Germán; Sory, John B

    2018-06-01

    To evaluate the effect new outpatient clinic visits has on the availability of follow-up visits for established patients when patient visit frequency is risk adjusted. Diagnosis codes for patients from 2 Internal Medicine Clinics were extracted through billing data. The HHS-HCC risk adjusted scores for each clinic were determined based upon the average of all clinic practitioners' profiles. These scores were then used to project encounter frequencies for established patients, and for new patients entering the clinic based on risk and time of entry into the clinics. A distinct mean risk frequency distribution for physicians in each clinic could be defined providing model parameters. Within the model, follow-up visit utilization at the highest risk adjusted visit frequencies would require more follow-up slots than currently available when new patient no-show rates and annual patient loss are included. Patients seen at an intermediate or lower visit risk adjusted frequency could be accommodated when new patient no-show rates and annual patient clinic loss are considered. Value-based care is driven by control of cost while maintaining quality of care. In order to control cost, there has been a drive to increase visit frequency in primary care for those patients at increased risk. Adding new patients to primary care clinics limits the availability of follow-up slots that accrue over time for those at highest risk, thereby limiting disease and, potentially, cost control. If frequency of established care visits can be reduced by improved disease control, closing the practice to new patients, hiring health care extenders, or providing non-face to face care models then quality and cost of care may be improved. © 2018 John Wiley & Sons, Ltd.

  1. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

    PubMed

    Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

    2016-10-01

    In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

  2. Disaster Hits Home: A Model of Displaced Family Adjustment after Hurricane Katrina

    ERIC Educational Resources Information Center

    Peek, Lori; Morrissey, Bridget; Marlatt, Holly

    2011-01-01

    The authors explored individual and family adjustment processes among parents (n = 30) and children (n = 55) who were displaced to Colorado after Hurricane Katrina. Drawing on in-depth interviews with 23 families, this article offers an inductive model of displaced family adjustment. Four stages of family adjustment are presented in the model: (a)…

  3. Three methods to construct predictive models using logistic regression and likelihood ratios to facilitate adjustment for pretest probability give similar results.

    PubMed

    Chan, Siew Foong; Deeks, Jonathan J; Macaskill, Petra; Irwig, Les

    2008-01-01

    To compare three predictive models based on logistic regression to estimate adjusted likelihood ratios allowing for interdependency between diagnostic variables (tests). This study was a review of the theoretical basis, assumptions, and limitations of published models; and a statistical extension of methods and application to a case study of the diagnosis of obstructive airways disease based on history and clinical examination. Albert's method includes an offset term to estimate an adjusted likelihood ratio for combinations of tests. Spiegelhalter and Knill-Jones method uses the unadjusted likelihood ratio for each test as a predictor and computes shrinkage factors to allow for interdependence. Knottnerus' method differs from the other methods because it requires sequencing of tests, which limits its application to situations where there are few tests and substantial data. Although parameter estimates differed between the models, predicted "posttest" probabilities were generally similar. Construction of predictive models using logistic regression is preferred to the independence Bayes' approach when it is important to adjust for dependency of tests errors. Methods to estimate adjusted likelihood ratios from predictive models should be considered in preference to a standard logistic regression model to facilitate ease of interpretation and application. Albert's method provides the most straightforward approach.

  4. Adjustable Parameter-Based Distributed Fault Estimation Observer Design for Multiagent Systems With Directed Graphs.

    PubMed

    Zhang, Ke; Jiang, Bin; Shi, Peng

    2017-02-01

    In this paper, a novel adjustable parameter (AP)-based distributed fault estimation observer (DFEO) is proposed for multiagent systems (MASs) with the directed communication topology. First, a relative output estimation error is defined based on the communication topology of MASs. Then a DFEO with AP is constructed with the purpose of improving the accuracy of fault estimation. Based on H ∞ and H 2 with pole placement, multiconstrained design is given to calculate the gain of DFEO. Finally, simulation results are presented to illustrate the feasibility and effectiveness of the proposed DFEO design with AP.

  5. Seasonal Influenza Forecasting in Real Time Using the Incidence Decay With Exponential Adjustment Model.

    PubMed

    Nasserie, Tahmina; Tuite, Ashleigh R; Whitmore, Lindsay; Hatchette, Todd; Drews, Steven J; Peci, Adriana; Kwong, Jeffrey C; Friedman, Dara; Garber, Gary; Gubbay, Jonathan; Fisman, David N

    2017-01-01

    Seasonal influenza epidemics occur frequently. Rapid characterization of seasonal dynamics and forecasting of epidemic peaks and final sizes could help support real-time decision-making related to vaccination and other control measures. Real-time forecasting remains challenging. We used the previously described "incidence decay with exponential adjustment" (IDEA) model, a 2-parameter phenomenological model, to evaluate the characteristics of the 2015-2016 influenza season in 4 Canadian jurisdictions: the Provinces of Alberta, Nova Scotia and Ontario, and the City of Ottawa. Model fits were updated weekly with receipt of incident virologically confirmed case counts. Best-fit models were used to project seasonal influenza peaks and epidemic final sizes. The 2015-2016 influenza season was mild and late-peaking. Parameter estimates generated through fitting were consistent in the 2 largest jurisdictions (Ontario and Alberta) and with pooled data including Nova Scotia counts (R 0 approximately 1.4 for all fits). Lower R 0 estimates were generated in Nova Scotia and Ottawa. Final size projections that made use of complete time series were accurate to within 6% of true final sizes, but final size was using pre-peak data. Projections of epidemic peaks stabilized before the true epidemic peak, but these were persistently early (~2 weeks) relative to the true peak. A simple, 2-parameter influenza model provided reasonably accurate real-time projections of influenza seasonal dynamics in an atypically late, mild influenza season. Challenges are similar to those seen with more complex forecasting methodologies. Future work includes identification of seasonal characteristics associated with variability in model performance.

  6. An evaluation of bias in propensity score-adjusted non-linear regression models.

    PubMed

    Wan, Fei; Mitra, Nandita

    2018-03-01

    Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.

  7. Calibrating binary lumped parameter models

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Stewart, Mike

    2017-04-01

    Groundwater at its discharge point is a mixture of water from short and long flowlines, and therefore has a distribution of ages rather than a single age. Various transfer functions describe the distribution of ages within the water sample. Lumped parameter models (LPMs), which are mathematical models of water transport based on simplified aquifer geometry and flow configuration can account for such mixing of groundwater of different age, usually representing the age distribution with two parameters, the mean residence time, and the mixing parameter. Simple lumped parameter models can often match well the measured time varying age tracer concentrations, and therefore are a good representation of the groundwater mixing at these sites. Usually a few tracer data (time series and/or multi-tracer) can constrain both parameters. With the building of larger data sets of age tracer data throughout New Zealand, including tritium, SF6, CFCs, and recently Halon-1301, and time series of these tracers, we realised that for a number of wells the groundwater ages using a simple lumped parameter model were inconsistent between the different tracer methods. Contamination or degradation of individual tracers is unlikely because the different tracers show consistent trends over years and decades. This points toward a more complex mixing of groundwaters with different ages for such wells than represented by the simple lumped parameter models. Binary (or compound) mixing models are able to represent a more complex mixing, with mixing of water of two different age distributions. The problem related to these models is that they usually have 5 parameters which makes them data-hungry and therefore difficult to constrain all parameters. Two or more age tracers with different input functions, with multiple measurements over time, can provide the required information to constrain the parameters of the binary mixing model. We obtained excellent results using tritium time series encompassing

  8. Influence of Population Variation of Physiological Parameters in Computational Models of Space Physiology

    NASA Technical Reports Server (NTRS)

    Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and

  9. Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik

    A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less

  10. Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES

    DOE PAGES

    Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik; ...

    2017-10-06

    A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less

  11. Adjustment in Mothers of Children with Asperger Syndrome: An Application of the Double ABCX Model of Family Adjustment

    ERIC Educational Resources Information Center

    Pakenham, Kenneth I.; Samios, Christina; Sofronoff, Kate

    2005-01-01

    The present study examined the applicability of the double ABCX model of family adjustment in explaining maternal adjustment to caring for a child diagnosed with Asperger syndrome. Forty-seven mothers completed questionnaires at a university clinic while their children were participating in an anxiety intervention. The children were aged between…

  12. Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.

    PubMed

    Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng

    2016-12-08

    This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.

  13. Husbands' perceptions of their wives' breast cancer coping efficacy: testing congruence models of adjustment.

    PubMed

    Merluzzi, Thomas V; Martinez Sanchez, MaryAnn

    2018-01-01

    Recent reviews have reinforced the notion that having a supportive spouse can help with the process of coping with and adjusting to cancer. Congruence between spouses' perspectives has been proposed as one mechanism in that process, yet alternative models of congruence have not been examined closely. This study assessed alternative models of congruence in perceptions of coping and their mediating effects on adjustment to breast cancer. Seventy-two women in treatment for breast cancer and their husbands completed measures of marital adjustment, self-efficacy for coping, and adjustment to cancer. Karnofsky Performance Status was obtained from medical records. Wives completed a measure of self-efficacy for coping (wives' ratings of self-efficacy for coping [WSEC]) and husbands completed a measure of self-efficacy for coping (husbands' ratings of wives' self-efficacy for coping [HSEC]) based on their perceptions of their wives' coping efficacy. Interestingly, the correlation between WSEC and HSEC was only 0.207; thus, they are relatively independent perspectives. The following three models were tested to determine the nature of the relationship between WSEC and HSEC: discrepancy model (WSEC - HSEC), additive model (WSEC + HSEC), and multiplicative model (WSEC × HSEC). The discrepancy model was not related to wives' adjustment; however, the additive ( B =0.205, P <0.001) and multiplicative ( B =0.001, P <0.001) models were significantly related to wives' adjustment. Also, the additive model mediated the relationship between performance status and adjustment. Husbands' perception of their wives' coping efficacy contributed marginally to their wives' adjustment, and the combination of WSEC and HSEC mediated the relationship between functional status and wives' adjustment, thus positively impacting wives' adjustment to cancer. Future research is needed to determine the quality of the differences between HSEC and WSEC in order to develop interventions to optimize the

  14. The relationship between the C-statistic of a risk-adjustment model and the accuracy of hospital report cards: a Monte Carlo Study.

    PubMed

    Austin, Peter C; Reeves, Mathew J

    2013-03-01

    Hospital report cards, in which outcomes following the provision of medical or surgical care are compared across health care providers, are being published with increasing frequency. Essential to the production of these reports is risk-adjustment, which allows investigators to account for differences in the distribution of patient illness severity across different hospitals. Logistic regression models are frequently used for risk adjustment in hospital report cards. Many applied researchers use the c-statistic (equivalent to the area under the receiver operating characteristic curve) of the logistic regression model as a measure of the credibility and accuracy of hospital report cards. To determine the relationship between the c-statistic of a risk-adjustment model and the accuracy of hospital report cards. Monte Carlo simulations were used to examine this issue. We examined the influence of 3 factors on the accuracy of hospital report cards: the c-statistic of the logistic regression model used for risk adjustment, the number of hospitals, and the number of patients treated at each hospital. The parameters used to generate the simulated datasets came from analyses of patients hospitalized with a diagnosis of acute myocardial infarction in Ontario, Canada. The c-statistic of the risk-adjustment model had, at most, a very modest impact on the accuracy of hospital report cards, whereas the number of patients treated at each hospital had a much greater impact. The c-statistic of a risk-adjustment model should not be used to assess the accuracy of a hospital report card.

  15. The relationship between the c-statistic of a risk-adjustment model and the accuracy of hospital report cards: A Monte Carlo study

    PubMed Central

    Austin, Peter C.; Reeves, Mathew J.

    2015-01-01

    Background Hospital report cards, in which outcomes following the provision of medical or surgical care are compared across health care providers, are being published with increasing frequency. Essential to the production of these reports is risk-adjustment, which allows investigators to account for differences in the distribution of patient illness severity across different hospitals. Logistic regression models are frequently used for risk-adjustment in hospital report cards. Many applied researchers use the c-statistic (equivalent to the area under the receiver operating characteristic curve) of the logistic regression model as a measure of the credibility and accuracy of hospital report cards. Objectives To determine the relationship between the c-statistic of a risk-adjustment model and the accuracy of hospital report cards. Research Design Monte Carlo simulations were used to examine this issue. We examined the influence of three factors on the accuracy of hospital report cards: the c-statistic of the logistic regression model used for risk-adjustment, the number of hospitals, and the number of patients treated at each hospital. The parameters used to generate the simulated datasets came from analyses of patients hospitalized with a diagnosis of acute myocardial infarction in Ontario, Canada. Results The c-statistic of the risk-adjustment model had, at most, a very modest impact on the accuracy of hospital report cards, whereas the number of patients treated at each hospital had a much greater impact. Conclusions The c-statistic of a risk-adjustment model should not be used to assess the accuracy of a hospital report card. PMID:23295579

  16. ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.

    1994-01-01

    The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.

  17. Modeling pattern in collections of parameters

    USGS Publications Warehouse

    Link, W.A.

    1999-01-01

    Wildlife management is increasingly guided by analyses of large and complex datasets. The description of such datasets often requires a large number of parameters, among which certain patterns might be discernible. For example, one may consider a long-term study producing estimates of annual survival rates; of interest is the question whether these rates have declined through time. Several statistical methods exist for examining pattern in collections of parameters. Here, I argue for the superiority of 'random effects models' in which parameters are regarded as random variables, with distributions governed by 'hyperparameters' describing the patterns of interest. Unfortunately, implementation of random effects models is sometimes difficult. Ultrastructural models, in which the postulated pattern is built into the parameter structure of the original data analysis, are approximations to random effects models. However, this approximation is not completely satisfactory: failure to account for natural variation among parameters can lead to overstatement of the evidence for pattern among parameters. I describe quasi-likelihood methods that can be used to improve the approximation of random effects models by ultrastructural models.

  18. Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)

    EPA Science Inventory

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...

  19. Using risk-adjustment models to identify high-cost risks.

    PubMed

    Meenan, Richard T; Goodman, Michael J; Fishman, Paul A; Hornbrook, Mark C; O'Keeffe-Rosetti, Maureen C; Bachman, Donald J

    2003-11-01

    We examine the ability of various publicly available risk models to identify high-cost individuals and enrollee groups using multi-HMO administrative data. Five risk-adjustment models (the Global Risk-Adjustment Model [GRAM], Diagnostic Cost Groups [DCGs], Adjusted Clinical Groups [ACGs], RxRisk, and Prior-expense) were estimated on a multi-HMO administrative data set of 1.5 million individual-level observations for 1995-1996. Models produced distributions of individual-level annual expense forecasts for comparison to actual values. Prespecified "high-cost" thresholds were set within each distribution. The area under the receiver operating characteristic curve (AUC) for "high-cost" prevalences of 1% and 0.5% was calculated, as was the proportion of "high-cost" dollars correctly identified. Results are based on a separate 106,000-observation validation dataset. For "high-cost" prevalence targets of 1% and 0.5%, ACGs, DCGs, GRAM, and Prior-expense are very comparable in overall discrimination (AUCs, 0.83-0.86). Given a 0.5% prevalence target and a 0.5% prediction threshold, DCGs, GRAM, and Prior-expense captured $963,000 (approximately 3%) more "high-cost" sample dollars than other models. DCGs captured the most "high-cost" dollars among enrollees with asthma, diabetes, and depression; predictive performance among demographic groups (Medicaid members, members over 64, and children under 13) varied across models. Risk models can efficiently identify enrollees who are likely to generate future high costs and who could benefit from case management. The dollar value of improved prediction performance of the most accurate risk models should be meaningful to decision-makers and encourage their broader use for identifying high costs.

  20. Improved Horvitz-Thompson Estimation of Model Parameters from Two-phase Stratified Samples: Applications in Epidemiology

    PubMed Central

    Breslow, Norman E.; Lumley, Thomas; Ballantyne, Christie M; Chambless, Lloyd E.; Kulich, Michal

    2009-01-01

    The case-cohort study involves two-phase sampling: simple random sampling from an infinite super-population at phase one and stratified random sampling from a finite cohort at phase two. Standard analyses of case-cohort data involve solution of inverse probability weighted (IPW) estimating equations, with weights determined by the known phase two sampling fractions. The variance of parameter estimates in (semi)parametric models, including the Cox model, is the sum of two terms: (i) the model based variance of the usual estimates that would be calculated if full data were available for the entire cohort; and (ii) the design based variance from IPW estimation of the unknown cohort total of the efficient influence function (IF) contributions. This second variance component may be reduced by adjusting the sampling weights, either by calibration to known cohort totals of auxiliary variables correlated with the IF contributions or by their estimation using these same auxiliary variables. Both adjustment methods are implemented in the R survey package. We derive the limit laws of coefficients estimated using adjusted weights. The asymptotic results suggest practical methods for construction of auxiliary variables that are evaluated by simulation of case-cohort samples from the National Wilms Tumor Study and by log-linear modeling of case-cohort data from the Atherosclerosis Risk in Communities Study. Although not semiparametric efficient, estimators based on adjusted weights may come close to achieving full efficiency within the class of augmented IPW estimators. PMID:20174455

  1. The combined geodetic network adjusted on the reference ellipsoid - a comparison of three functional models for GNSS observations

    NASA Astrophysics Data System (ADS)

    Kadaj, Roman

    2016-12-01

    The adjustment problem of the so-called combined (hybrid, integrated) network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length) on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients). While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional model of the GNSS

  2. Parameter extraction and transistor models

    NASA Technical Reports Server (NTRS)

    Rykken, Charles; Meiser, Verena; Turner, Greg; Wang, QI

    1985-01-01

    Using specified mathematical models of the MOSFET device, the optimal values of the model-dependent parameters were extracted from data provided by the Jet Propulsion Laboratory (JPL). Three MOSFET models, all one-dimensional were used. One of the models took into account diffusion (as well as convection) currents. The sensitivity of the models was assessed for variations of the parameters from their optimal values. Lines of future inquiry are suggested on the basis of the behavior of the devices, of the limitations of the proposed models, and of the complexity of the required numerical investigations.

  3. Husbands’ perceptions of their wives’ breast cancer coping efficacy: testing congruence models of adjustment

    PubMed Central

    Martinez Sanchez, MaryAnn

    2018-01-01

    Introduction Recent reviews have reinforced the notion that having a supportive spouse can help with the process of coping with and adjusting to cancer. Congruence between spouses’ perspectives has been proposed as one mechanism in that process, yet alternative models of congruence have not been examined closely. This study assessed alternative models of congruence in perceptions of coping and their mediating effects on adjustment to breast cancer. Methods Seventy-two women in treatment for breast cancer and their husbands completed measures of marital adjustment, self-efficacy for coping, and adjustment to cancer. Karnofsky Performance Status was obtained from medical records. Wives completed a measure of self-efficacy for coping (wives’ ratings of self-efficacy for coping [WSEC]) and husbands completed a measure of self-efficacy for coping (husbands’ ratings of wives’ self-efficacy for coping [HSEC]) based on their perceptions of their wives’ coping efficacy. Results Interestingly, the correlation between WSEC and HSEC was only 0.207; thus, they are relatively independent perspectives. The following three models were tested to determine the nature of the relationship between WSEC and HSEC: discrepancy model (WSEC − HSEC), additive model (WSEC + HSEC), and multiplicative model (WSEC × HSEC). The discrepancy model was not related to wives’ adjustment; however, the additive (B=0.205, P<0.001) and multiplicative (B=0.001, P<0.001) models were significantly related to wives’ adjustment. Also, the additive model mediated the relationship between performance status and adjustment. Discussion Husbands’ perception of their wives’ coping efficacy contributed marginally to their wives’ adjustment, and the combination of WSEC and HSEC mediated the relationship between functional status and wives’ adjustment, thus positively impacting wives’ adjustment to cancer. Future research is needed to determine the quality of the differences between HSEC and

  4. Parameter Estimation of Partial Differential Equation Models.

    PubMed

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  5. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  6. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  7. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  8. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  9. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  10. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  11. Facial motion parameter estimation and error criteria in model-based image coding

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  12. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.

    PubMed

    Haem, Elham; Harling, Kajsa; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Karlsson, Mats O

    2017-02-01

    One important aim in population pharmacokinetics (PK) and pharmacodynamics is identification and quantification of the relationships between the parameters and covariates. Lasso has been suggested as a technique for simultaneous estimation and covariate selection. In linear regression, it has been shown that Lasso possesses no oracle properties, which means it asymptotically performs as though the true underlying model was given in advance. Adaptive Lasso (ALasso) with appropriate initial weights is claimed to possess oracle properties; however, it can lead to poor predictive performance when there is multicollinearity between covariates. This simulation study implemented a new version of ALasso, called adjusted ALasso (AALasso), to take into account the ratio of the standard error of the maximum likelihood (ML) estimator to the ML coefficient as the initial weight in ALasso to deal with multicollinearity in non-linear mixed-effect models. The performance of AALasso was compared with that of ALasso and Lasso. PK data was simulated in four set-ups from a one-compartment bolus input model. Covariates were created by sampling from a multivariate standard normal distribution with no, low (0.2), moderate (0.5) or high (0.7) correlation. The true covariates influenced only clearance at different magnitudes. AALasso, ALasso and Lasso were compared in terms of mean absolute prediction error and error of the estimated covariate coefficient. The results show that AALasso performed better in small data sets, even in those in which a high correlation existed between covariates. This makes AALasso a promising method for covariate selection in nonlinear mixed-effect models.

  13. Unified Model for Academic Competence, Social Adjustment, and Psychopathology.

    ERIC Educational Resources Information Center

    Schaefer, Earl S.; And Others

    A unified conceptual model is needed to integrate the extensive research on (1) social competence and adaptive behavior, (2) converging conceptualizations of social adjustment and psychopathology, and (3) emerging concepts and measures of academic competence. To develop such a model, a study was conducted in which teacher ratings were collected on…

  14. Nonconservative force model parameter estimation strategy for TOPEX/Poseidon precision orbit determination

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Marshall, J. A.

    1992-01-01

    The TOPEX/Poseidon spacecraft was launched on August 10, 1992 to study the Earth's oceans. To achieve maximum benefit from the altimetric data it is to collect, mission requirements dictate that TOPEX/Poseidon's orbit must be computed at an unprecedented level of accuracy. To reach our pre-launch radial orbit accuracy goals, the mismodeling of the radiative nonconservative forces of solar radiation, Earth albedo an infrared re-radiation, and spacecraft thermal imbalances cannot produce in combination more than a 6 cm rms error over a 10 day period. Similarly, the 10-day drag modeling error cannot exceed 3 cm rms. In order to satisfy these requirements, a 'box-wing' representation of the satellite has been developed in which, the satellite is modelled as the combination of flat plates arranged in the shape of a box and a connected solar array. The radiative/thermal nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. Select parameters associated with the flat plates are adjusted to obtain a better representation of the satellite acceleration history. This study analyzes the estimation of these parameters from simulated TOPEX/Poseidon laser data in the presence of both nonconservative and gravity model errors. A 'best choice' of estimated parameters is derived and the ability to meet mission requirements with the 'box-wing' model evaluated.

  15. Delineating parameter unidentifiabilities in complex models

    NASA Astrophysics Data System (ADS)

    Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis

    2017-03-01

    Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.

  16. Estimation of key parameters in adaptive neuron model according to firing patterns based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Chunhua; Wang, Jiang; Yi, Guosheng

    2017-03-01

    Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.

  17. Mapping an operator's perception of a parameter space

    NASA Technical Reports Server (NTRS)

    Pew, R. W.; Jagacinski, R. J.

    1972-01-01

    Operators monitored the output of two versions of the crossover model having a common random input. Their task was to make discrete, real-time adjustments of the parameters k and tau of one of the models to make its output time history converge to that of the other, fixed model. A plot was obtained of the direction of parameter change as a function of position in the (tau, k) parameter space relative to the nominal value. The plot has a great deal of structure and serves as one form of representation of the operator's perception of the parameter space.

  18. Delayed heart rate recovery after exercise as a risk factor of incident type 2 diabetes mellitus after adjusting for glycometabolic parameters in men.

    PubMed

    Yu, Tae Yang; Jee, Jae Hwan; Bae, Ji Cheol; Hong, Won-Jung; Jin, Sang-Man; Kim, Jae Hyeon; Lee, Moon-Kyu

    2016-10-15

    Some studies have reported that delayed heart rate recovery (HRR) after exercise is associated with incident type 2 diabetes mellitus (T2DM). This study aimed to investigate the longitudinal association of delayed HRR following a graded exercise treadmill test (GTX) with the development of T2DM including glucose-associated parameters as an adjusting factor in healthy Korean men. Analyses including fasting plasma glucose, HOMA-IR, HOMA-β, and HbA1c as confounding factors and known confounders were performed. HRR was calculated as peak heart rate minus heart rate after a 1-min rest (HRR 1). Cox proportional hazards model was used to quantify the independent association between HRR and incident T2DM. During 9082 person-years of follow-up between 2006 and 2012, there were 180 (10.1%) incident cases of T2DM. After adjustment for age, BMI, systolic BP, diastolic BP, smoking status, peak heart rate, peak oxygen uptake, TG, LDL-C, HDL-C, fasting plasma glucose, HOMA-IR, HOMA-β, and HbA1c, the hazard ratios (HRs) [95% confidence interval (CI)] of incident T2DM comparing the second and third tertiles to the first tertile of HRR 1 were 0.867 (0.609-1.235) and 0.624 (0.426-0.915), respectively (p for trend=0.017). As a continuous variable, in the fully-adjusted model, the HR (95% CI) of incident T2DM associated with each 1 beat increase in HRR 1 was 0.980 (0.960-1.000) (p=0.048). This study demonstrated that delayed HRR after exercise predicts incident T2DM in men, even after adjusting for fasting glucose, HOMA-IR, HOMA-β, and HbA1c. However, only HRR 1 had clinical significance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Analysis of Tube Free Hydroforming using an Inverse Approach with FLD-based Adjustment of Process Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Johnson, Kenneth I.; Khaleel, Mohammad A.

    2003-04-01

    This paper employs an inverse approach (IA) formulation for the analysis of tubes under free hydroforming conditions. The IA formulation is derived from that of Guo et al. established for flat sheet hydroforming analysis using constant strain triangular membrane elements. At first, an incremental analysis of free hydroforming for a hot-dip galvanized (HG/Z140) DP600 tube is performed using the finite element Marc code. The deformed geometry obtained at the last converged increment is then used as the final configuration in the inverse analysis. This comparative study allows us to assess the predicting capability of the inverse analysis. The results willmore » be compared with the experimental values determined by Asnafi and Skogsgardh. After that, a procedure based on a forming limit diagram (FLD) is proposed to adjust the process parameters such as the axial feed and internal pressure. Finally, the adjustment process is illustrated through a re-analysis of the same tube using the inverse approach« less

  20. On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration

    USGS Publications Warehouse

    Milly, P.C.D.; Dunne, K.A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.

  1. Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Whittaker, A. C.; Cowie, P. A.; Roberts, G. P.

    2008-09-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width depends on a number of parameters, including channel slope, and is not solely a function of drainage area as is commonly assumed. The present work represents the first attempt to investigate the consequences of dynamic, gradient-sensitive channel adjustment for drainage-basin evolution. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic perturbation, using, as a template, the topography of a well-documented catchment in the footwall of an active normal fault in the Apennines (Italy) that is known to be undergoing a transient response to tectonic forcing. We show that the observed transient response can be reproduced to first order with a simple detachment-limited fluvial incision law. Transient landscape is characterized by gentler gradients and a shorter response time when dynamic channel adjustment is allowed. The differences in predicted channel geometry between the static case (width dependent solely on upstream area) and dynamic case (width dependent on both drainage area and channel slope) lead to contrasting landscape morphologies when integrated at the scale of a whole catchment, particularly in presence of strong tilting and/or pronounced slip-rate acceleration. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the relative uplift field is nonuniform.

  2. Physically Modeling Stream Channel Adjustment to Woody Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Bennett, S. J.; Alonso, C. V.

    2003-12-01

    Stream restoration designs often use vegetation to promote bank and channel stability, to facilitate point-bar development, and to encourage natural colonization of riparian species. Here we examine the adjustment of an alluvial channel to in-stream and riparian vegetation using a distorted Froude-scale flume model with a movable boundary. A decimeter-scale trapezoidal channel comprised of 0.8-mm diameter sand was systematically vegetated with emergent, rigid dowels (3-mm in diameter) in rectangular and hemispherical patterns with varying vegetation densities while conserving the shape of the zone and the geometry of the vegetal patterns. Alternate sides of the channel were vegetated at the prescribed spacing of equilibrium alternate bars, ca. 5 to 7 times the channel width. Using flow conditions just below the threshold of sediment motion, flow obstruction, deflection, and acceleration caused bed erosion, bank failure, and morphologic channel adjustments that were wholly attributable to the managed plantings. As vegetation density increased, the magnitude and rate of scaled channel adjustment increased, which included increased channel widths, bankline steepening and meandering, and thalweg meandering. As the modeled channel began to meander, the stream bed aggraded and flow depth decreased markedly, creating a continuously connected, inter-reach complex of mid-channel bars. This study demonstrates the utility of using managed vegetations in stream corridor design and meander development, and it provides the practitioner with guidance on the magnitude of channel adjustment as it relates to vegetation density, shape, and spacing.

  3. On the Hydrologic Adjustment of Climate-Model Projections: The Potential Pitfall of Potential Evapotranspiration

    USGS Publications Warehouse

    Milly, Paul C.D.; Dunne, Krista A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.

  4. Rapid performance modeling and parameter regression of geodynamic models

    NASA Astrophysics Data System (ADS)

    Brown, J.; Duplyakin, D.

    2016-12-01

    Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.

  5. A simple approach to adjust tidal forcing in fjord models

    NASA Astrophysics Data System (ADS)

    Hjelmervik, Karina; Kristensen, Nils Melsom; Staalstrøm, André; Røed, Lars Petter

    2017-07-01

    To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.

  6. Women's Work Conditions and Marital Adjustment in Two-Earner Couples: A Structural Model.

    ERIC Educational Resources Information Center

    Sears, Heather A.; Galambos, Nancy L.

    1992-01-01

    Evaluated structural model of women's work conditions, women's stress, and marital adjustment using path analysis. Findings from 86 2-earner couples with adolescents indicated support for spillover model in which women's work stress and global stress mediated link between their work conditions and their perceptions of marital adjustment.…

  7. Parameter Estimation for Thurstone Choice Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vojnovic, Milan; Yun, Seyoung

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one ormore » more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.« less

  8. Geostrophic adjustment in a shallow-water numerical model as it relates to thermospheric dynamics

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Mikkelsen, I. S.

    1986-01-01

    The theory of geostrophic adjustment and its application to the dynamics of the high latitude thermosphere have been discussed in previous papers based on a linearized treatment of the fluid dynamical equations. However, a linearized treatment is only valid for small Rossby numbers given by Ro = V/fL, where V is the wind speed, f is the local value of the Coriolis parameter, and L is a characteristic horizontal scale for the flow. For typical values in the auroral zone, the approximation is not reasonable for wind speeds greater than 25 m/s or so. A shallow-water (one layer) model was developed that includes the spherical geometry and full nonlinear dynamics in the momentum equations in order to isolate the effects of the nonlinearities on the adjustment process. A belt of accelerated winds between 60 deg and 70 deg latitude was used as the initial condition. The adjustment process was found to proceed as expected from the linear formulation, but that an asymmetry between the response for an eastward and westward flow results from the nonlineawr curvature (centrifugal) terms. In general, the amplitude of an eastward flowing wind will be less after adjustment than a westward wind. For instance, if the initial wind velocity is 300 m/s, the linearized theory predicts a final wind speed of 240 m/s, regardless of the flow direction. However, the nonlinear curvature terms modify the response and produce a final wind speed of only 200 m/s for an initial eastward wind and a final wind speed of almost 300 m/s for an initial westward flow direction. Also, less gravity wave energy is produced by the adjustment of the westward flow than by the adjustment of the eastward flow. The implications are that the response of the thermosphere should be significantly different on the dawn and dusk sides of the auroral oval. Larger flow velocities would be expected on the dusk side since the plasma will accelerate the flow in a westward direction in that sector.

  9. On the nullspace of TLS multi-station adjustment

    NASA Astrophysics Data System (ADS)

    Sterle, Oskar; Kogoj, Dušan; Stopar, Bojan; Kregar, Klemen

    2018-07-01

    In the article we present an analytic aspect of TLS multi-station least-squares adjustment with the main focus on the datum problem. The datum problem is, compared to previously published researches, theoretically analyzed and solved, where the solution is based on nullspace derivation of the mathematical model. The importance of datum problem solution is seen in a complete description of TLS multi-station adjustment solutions from a set of all minimally constrained least-squares solutions. On a basis of known nullspace, estimable parameters are described and the geometric interpretation of all minimally constrained least squares solutions is presented. At the end a simulated example is used to analyze the results of TLS multi-station minimally constrained and inner constrained least-squares adjustment solutions.

  10. The HHS-HCC Risk Adjustment Model for Individual and Small Group Markets under the Affordable Care Act

    PubMed Central

    Kautter, John; Pope, Gregory C; Ingber, Melvin; Freeman, Sara; Patterson, Lindsey; Cohen, Michael; Keenan, Patricia

    2014-01-01

    Beginning in 2014, individuals and small businesses are able to purchase private health insurance through competitive Marketplaces. The Affordable Care Act (ACA) provides for a program of risk adjustment in the individual and small group markets in 2014 as Marketplaces are implemented and new market reforms take effect. The purpose of risk adjustment is to lessen or eliminate the influence of risk selection on the premiums that plans charge. The risk adjustment methodology includes the risk adjustment model and the risk transfer formula. This article is the second of three in this issue of the Review that describe the Department of Health and Human Services (HHS) risk adjustment methodology and focuses on the risk adjustment model. In our first companion article, we discuss the key issues and choices in developing the methodology. In this article, we present the risk adjustment model, which is named the HHS-Hierarchical Condition Categories (HHS-HCC) risk adjustment model. We first summarize the HHS-HCC diagnostic classification, which is the key element of the risk adjustment model. Then the data and methods, results, and evaluation of the risk adjustment model are presented. Fifteen separate models are developed. For each age group (adult, child, and infant), a model is developed for each cost sharing level (platinum, gold, silver, and bronze metal levels, as well as catastrophic plans). Evaluation of the risk adjustment models shows good predictive accuracy, both for individuals and for groups. Lastly, this article provides examples of how the model output is used to calculate risk scores, which are an input into the risk transfer formula. Our third companion paper describes the risk transfer formula. PMID:25360387

  11. Risk adjustment models for short-term outcomes after surgical resection for oesophagogastric cancer.

    PubMed

    Fischer, C; Lingsma, H; Hardwick, R; Cromwell, D A; Steyerberg, E; Groene, O

    2016-01-01

    Outcomes for oesophagogastric cancer surgery are compared with the aim of benchmarking quality of care. Adjusting for patient characteristics is crucial to avoid biased comparisons between providers. The study objective was to develop a case-mix adjustment model for comparing 30- and 90-day mortality and anastomotic leakage rates after oesophagogastric cancer resections. The study reviewed existing models, considered expert opinion and examined audit data in order to select predictors that were consequently used to develop a case-mix adjustment model for the National Oesophago-Gastric Cancer Audit, covering England and Wales. Models were developed on patients undergoing surgical resection between April 2011 and March 2013 using logistic regression. Model calibration and discrimination was quantified using a bootstrap procedure. Most existing risk models for oesophagogastric resections were methodologically weak, outdated or based on detailed laboratory data that are not generally available. In 4882 patients with oesophagogastric cancer used for model development, 30- and 90-day mortality rates were 2·3 and 4·4 per cent respectively, and 6·2 per cent of patients developed an anastomotic leak. The internally validated models, based on predictors selected from the literature, showed moderate discrimination (area under the receiver operating characteristic (ROC) curve 0·646 for 30-day mortality, 0·664 for 90-day mortality and 0·587 for anastomotic leakage) and good calibration. Based on available data, three case-mix adjustment models for postoperative outcomes in patients undergoing curative surgery for oesophagogastric cancer were developed. These models should be used for risk adjustment when assessing hospital performance in the National Health Service, and tested in other large health systems. © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.

  12. Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver

    NASA Astrophysics Data System (ADS)

    Kang, Ling; Zhou, Liwei

    2018-02-01

    Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.

  13. 40 CFR 86.001-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification and...

  14. 40 CFR 86.001-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification and...

  15. Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters.

    PubMed

    Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan

    2015-02-01

    The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.

  16. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements

    NASA Astrophysics Data System (ADS)

    Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.

    2004-05-01

    Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter

  17. Genetic parameters for test day milk yields of first lactation Holstein cows by random regression models.

    PubMed

    de Melo, C M R; Packer, I U; Costa, C N; Machado, P F

    2007-03-01

    Covariance components for test day milk yield using 263 390 first lactation records of 32 448 Holstein cows were estimated using random regression animal models by restricted maximum likelihood. Three functions were used to adjust the lactation curve: the five-parameter logarithmic Ali and Schaeffer function (AS), the three-parameter exponential Wilmink function in its standard form (W) and in a modified form (W*), by reducing the range of covariate, and the combination of Legendre polynomial and W (LEG+W). Heterogeneous residual variance (RV) for different classes (4 and 29) of days in milk was considered in adjusting the functions. Estimates of RV were quite similar, rating from 4.15 to 5.29 kg2. Heritability estimates for AS (0.29 to 0.42), LEG+W (0.28 to 0.42) and W* (0.33 to 0.40) were similar, but heritability estimates used W (0.25 to 0.65) were highest than those estimated by the other functions, particularly at the end of lactation. Genetic correlations between milk yield on consecutive test days were close to unity, but decreased as the interval between test days increased. The AS function with homogeneous RV model had the best fit among those evaluated.

  18. Universally Sloppy Parameter Sensitivities in Systems Biology Models

    PubMed Central

    Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P

    2007-01-01

    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters. PMID:17922568

  19. Universally sloppy parameter sensitivities in systems biology models.

    PubMed

    Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P

    2007-10-01

    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.

  20. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    PubMed

    Karr, Jonathan R; Williams, Alex H; Zucker, Jeremy D; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A; Bot, Brian M; Hoff, Bruce R; Kellen, Michael R; Covert, Markus W; Stolovitzky, Gustavo A; Meyer, Pablo

    2015-05-01

    Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  1. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  2. Determination of MLC model parameters for Monaco using commercial diode arrays.

    PubMed

    Kinsella, Paul; Shields, Laura; McCavana, Patrick; McClean, Brendan; Langan, Brian

    2016-07-08

    Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the Arc

  3. Systematic parameter inference in stochastic mesoscopic modeling

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Yang, Xiu; Li, Zhen; Karniadakis, George Em

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  4. Systematic parameter inference in stochastic mesoscopic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Huan; Yang, Xiu; Li, Zhen

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the priormore » knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.« less

  5. Adjusting the Stems Regional Forest Growth Model to Improve Local Predictions

    Treesearch

    W. Brad Smith

    1983-01-01

    A simple procedure using double sampling is described for adjusting growth in the STEMS regional forest growth model to compensate for subregional variations. Predictive accuracy of the STEMS model (a distance-independent, individual tree growth model for Lake States forests) was improved by using this procedure

  6. Dynamic Parameter Identification of Subject-Specific Body Segment Parameters Using Robotics Formalism: Case Study Head Complex.

    PubMed

    Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente

    2016-05-01

    Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.

  7. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models

    PubMed Central

    Karr, Jonathan R.; Williams, Alex H.; Zucker, Jeremy D.; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A.; Bot, Brian M.; Hoff, Bruce R.; Kellen, Michael R.; Covert, Markus W.; Stolovitzky, Gustavo A.; Meyer, Pablo

    2015-01-01

    Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation. PMID:26020786

  8. Parameter redundancy in discrete state-space and integrated models.

    PubMed

    Cole, Diana J; McCrea, Rachel S

    2016-09-01

    Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite

    NASA Astrophysics Data System (ADS)

    Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo

    2017-02-01

    The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.

  10. A Generalized Simple Formulation of Convective Adjustment Timescale for Cumulus Convection Parameterizations

    EPA Science Inventory

    Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a pres...

  11. Regionalization of response routine parameters

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.; Sultan, Yisak A.

    2013-04-01

    When area distributed hydrological models are to be calibrated or updated, fewer calibration parameters is of a considerable advantage. Based on, among others, Kirchner, we have developed a simple non-threshold response model for drainage in natural catchments, to be used in the gridded hydrological model ENKI. The new response model takes only the hydrogram into account, it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. The method is based on the assumption that in catchments where precipitation, evaporation and snowmelt is neglect able, the discharge is entirely determined by the amount of stored water. It can then be characterized as a simple first-order nonlinear dynamical system, where the governing equations can be found directly from measured stream flow fluctuations. This means that the response in the catchment can be modelled by using hydrogram data where all data from periods with rain, snowmelt or evaporation is left out, and adjust these series to a two or three parameter equation. A large number of discharge series from catchments in different regions in Norway are analyzed, and parameters found for all the series. By combining the computed parameters and known catchments characteristics, we try to regionalize the parameters. Then the parameters in the response routine can easily be found also for ungauged catchments, from maps or data bases.

  12. Estimation Methods for One-Parameter Testlet Models

    ERIC Educational Resources Information Center

    Jiao, Hong; Wang, Shudong; He, Wei

    2013-01-01

    This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE)…

  13. Parameter discovery in stochastic biological models using simulated annealing and statistical model checking.

    PubMed

    Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J

    2014-01-01

    Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.

  14. Evaluation of the DAVROS (Development And Validation of Risk-adjusted Outcomes for Systems of emergency care) risk-adjustment model as a quality indicator for healthcare

    PubMed Central

    Wilson, Richard; Goodacre, Steve W; Klingbajl, Marcin; Kelly, Anne-Maree; Rainer, Tim; Coats, Tim; Holloway, Vikki; Townend, Will; Crane, Steve

    2014-01-01

    Background and objective Risk-adjusted mortality rates can be used as a quality indicator if it is assumed that the discrepancy between predicted and actual mortality can be attributed to the quality of healthcare (ie, the model has attributional validity). The Development And Validation of Risk-adjusted Outcomes for Systems of emergency care (DAVROS) model predicts 7-day mortality in emergency medical admissions. We aimed to test this assumption by evaluating the attributional validity of the DAVROS risk-adjustment model. Methods We selected cases that had the greatest discrepancy between observed mortality and predicted probability of mortality from seven hospitals involved in validation of the DAVROS risk-adjustment model. Reviewers at each hospital assessed hospital records to determine whether the discrepancy between predicted and actual mortality could be explained by the healthcare provided. Results We received 232/280 (83%) completed review forms relating to 179 unexpected deaths and 53 unexpected survivors. The healthcare system was judged to have potentially contributed to 10/179 (8%) of the unexpected deaths and 26/53 (49%) of the unexpected survivors. Failure of the model to appropriately predict risk was judged to be responsible for 135/179 (75%) of the unexpected deaths and 2/53 (4%) of the unexpected survivors. Some 10/53 (19%) of the unexpected survivors died within a few months of the 7-day period of model prediction. Conclusions We found little evidence that deaths occurring in patients with a low predicted mortality from risk-adjustment could be attributed to the quality of healthcare provided. PMID:23605036

  15. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    PubMed

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  16. Benchmarking antibiotic use in Finnish acute care hospitals using patient case-mix adjustment.

    PubMed

    Kanerva, Mari; Ollgren, Jukka; Lyytikäinen, Outi

    2011-11-01

    It is difficult to draw conclusions about the prudence of antibiotic use in different hospitals by directly comparing usage figures. We present a patient case-mix adjustment model of antibiotic use to rank hospitals while taking patient characteristics into account. Data on antibiotic use were collected during the national healthcare-associated infection (HAI) prevalence survey in 2005 in Finland in all 5 tertiary care, all 15 secondary care and 10 (25% of 40) other acute care hospitals. The use of antibiotics was measured using use-days/100 patient-days during a 7day period and the prevalence of patients receiving at least two antimicrobials during the study day. Case-mix-adjusted antibiotic use was calculated by using multivariate models and an indirect standardization method. Parameters in the model included age, sex, severity of underlying diseases, intensive care, haematology, preceding surgery, respirator, central venous and urinary catheters, community-associated infection, HAI and contact isolation due to methicillin-resistant Staphylococcus aureus. The ranking order changed one position in 12 (40%) hospitals and more than two positions in 13 (43%) hospitals when the case-mix-adjusted figures were compared with those observed. In 24 hospitals (80%), the antibiotic use density observed was lower than expected by the case-mix-adjusted use density. The patient case-mix adjustment of antibiotic use ranked the hospitals differently from the ranking according to observed use, and may be a useful tool for benchmarking hospital antibiotic use. However, the best set of easily and widely available parameters that would describe both patient material and hospital activities remains to be determined.

  17. Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics

    PubMed Central

    Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2011-01-01

    A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157

  18. Identifyability measures to select the parameters to be estimated in a solid-state fermentation distributed parameter model.

    PubMed

    da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G

    2016-07-08

    Process modeling can lead to of advantages such as helping in process control, reducing process costs and product quality improvement. This work proposes a solid-state fermentation distributed parameter model composed by seven differential equations with seventeen parameters to represent the process. Also, parameters estimation with a parameters identifyability analysis (PIA) is performed to build an accurate model with optimum parameters. Statistical tests were made to verify the model accuracy with the estimated parameters considering different assumptions. The results have shown that the model assuming substrate inhibition better represents the process. It was also shown that eight from the seventeen original model parameters were nonidentifiable and better results were obtained with the removal of these parameters from the estimation procedure. Therefore, PIA can be useful to estimation procedure, since it may reduce the number of parameters that can be evaluated. Further, PIA improved the model results, showing to be an important procedure to be taken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:905-917, 2016. © 2016 American Institute of Chemical Engineers.

  19. Real-time adjusting of rainfall estimates from commercial microwave links

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Dohnal, Michal; Bareš, Vojtěch

    2017-04-01

    Urban stormwater predictions require reliable rainfall information with space-time resolution higher than commonly provided by standard rainfall monitoring networks of national weather services. Rainfall data from commercial microwave links (CMLs) could fill this gap. CMLs are line-of-sight radio connections widely used by cellular operators which operate at millimeter bands, where radio waves are attenuated by raindrops. Attenuation data of each single CML in the cellular network can be remotely accessed in (near) real-time with virtually arbitrary sampling frequency and convert to rainfall intensity. Unfortunately, rainfall estimates from CMLs can be substantially biased. Fencl et al., (2017), therefore, proposed adjusting method which enables to correct for this bias. They used rain gauge (RG) data from existing rainfall monitoring networks, which would have otherwise insufficient spatial and temporal resolution for urban rainfall monitoring when used alone without CMLs. In this investigation, we further develop the method to improve its performance in a real-time setting. First, a shortcoming of the original algorithm which delivers unreliable results at the beginning of a rainfall event is overcome by introducing model parameter prior distributions estimated from previous parameter realizations. Second, weights reflecting variance between RGs are introduced into cost function, which is minimized when optimizing model parameters. Finally, RG data used for adjusting are preprocessed by moving average filter. The performance of improved adjusting method is evaluated on four short CMLs (path length < 2 km) located in the small urban catchment (2.3 km2) in Prague-Letnany (CZ). The adjusted CMLs are compared to reference rainfall calculated from six RGs in the catchment. The suggested improvements of the method lead on average to 10% higher Nash-Sutcliffe efficiency coefficient (median value 0.85) for CML adjustment to hourly RG data. Reliability of CML rainfall

  20. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.

    PubMed

    Bioglio, Livio; Génois, Mathieu; Vestergaard, Christian L; Poletto, Chiara; Barrat, Alain; Colizza, Vittoria

    2016-11-14

    The homogeneous mixing assumption is widely adopted in epidemic modelling for its parsimony and represents the building block of more complex approaches, including very detailed agent-based models. The latter assume homogeneous mixing within schools, workplaces and households, mostly for the lack of detailed information on human contact behaviour within these settings. The recent data availability on high-resolution face-to-face interactions makes it now possible to assess the goodness of this simplified scheme in reproducing relevant aspects of the infection dynamics. We consider empirical contact networks gathered in different contexts, as well as synthetic data obtained through realistic models of contacts in structured populations. We perform stochastic spreading simulations on these contact networks and in populations of the same size under a homogeneous mixing hypothesis. We adjust the epidemiological parameters of the latter in order to fit the prevalence curve of the contact epidemic model. We quantify the agreement by comparing epidemic peak times, peak values, and epidemic sizes. Good approximations of the peak times and peak values are obtained with the homogeneous mixing approach, with a median relative difference smaller than 20 % in all cases investigated. Accuracy in reproducing the peak time depends on the setting under study, while for the peak value it is independent of the setting. Recalibration is found to be linear in the epidemic parameters used in the contact data simulations, showing changes across empirical settings but robustness across groups and population sizes. An adequate rescaling of the epidemiological parameters can yield a good agreement between the epidemic curves obtained with a real contact network and a homogeneous mixing approach in a population of the same size. The use of such recalibrated homogeneous mixing approximations would enhance the accuracy and realism of agent-based simulations and limit the intrinsic biases of

  1. Class Enumeration and Parameter Recovery of Growth Mixture Modeling and Second-Order Growth Mixture Modeling in the Presence of Measurement Noninvariance between Latent Classes

    PubMed Central

    Kim, Eun Sook; Wang, Yan

    2017-01-01

    Population heterogeneity in growth trajectories can be detected with growth mixture modeling (GMM). It is common that researchers compute composite scores of repeated measures and use them as multiple indicators of growth factors (baseline performance and growth) assuming measurement invariance between latent classes. Considering that the assumption of measurement invariance does not always hold, we investigate the impact of measurement noninvariance on class enumeration and parameter recovery in GMM through a Monte Carlo simulation study (Study 1). In Study 2, we examine the class enumeration and parameter recovery of the second-order growth mixture modeling (SOGMM) that incorporates measurement models at the first order level. Thus, SOGMM estimates growth trajectory parameters with reliable sources of variance, that is, common factor variance of repeated measures and allows heterogeneity in measurement parameters between latent classes. The class enumeration rates are examined with information criteria such as AIC, BIC, sample-size adjusted BIC, and hierarchical BIC under various simulation conditions. The results of Study 1 showed that the parameter estimates of baseline performance and growth factor means were biased to the degree of measurement noninvariance even when the correct number of latent classes was extracted. In Study 2, the class enumeration accuracy of SOGMM depended on information criteria, class separation, and sample size. The estimates of baseline performance and growth factor mean differences between classes were generally unbiased but the size of measurement noninvariance was underestimated. Overall, SOGMM is advantageous in that it yields unbiased estimates of growth trajectory parameters and more accurate class enumeration compared to GMM by incorporating measurement models. PMID:28928691

  2. NWP model forecast skill optimization via closure parameter variations

    NASA Astrophysics Data System (ADS)

    Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.

    2012-04-01

    We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.

  3. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  4. Impact of the time scale of model sensitivity response on coupled model parameter estimation

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu

    2017-11-01

    That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.

  5. Biologically Inspired Visual Model With Preliminary Cognition and Active Attention Adjustment.

    PubMed

    Qiao, Hong; Xi, Xuanyang; Li, Yinlin; Wu, Wei; Li, Fengfu

    2015-11-01

    Recently, many computational models have been proposed to simulate visual cognition process. For example, the hierarchical Max-Pooling (HMAX) model was proposed according to the hierarchical and bottom-up structure of V1 to V4 in the ventral pathway of primate visual cortex, which could achieve position- and scale-tolerant recognition. In our previous work, we have introduced memory and association into the HMAX model to simulate visual cognition process. In this paper, we improve our theoretical framework by mimicking a more elaborate structure and function of the primate visual cortex. We will mainly focus on the new formation of memory and association in visual processing under different circumstances as well as preliminary cognition and active adjustment in the inferior temporal cortex, which are absent in the HMAX model. The main contributions of this paper are: 1) in the memory and association part, we apply deep convolutional neural networks to extract various episodic features of the objects since people use different features for object recognition. Moreover, to achieve a fast and robust recognition in the retrieval and association process, different types of features are stored in separated clusters and the feature binding of the same object is stimulated in a loop discharge manner and 2) in the preliminary cognition and active adjustment part, we introduce preliminary cognition to classify different types of objects since distinct neural circuits in a human brain are used for identification of various types of objects. Furthermore, active cognition adjustment of occlusion and orientation is implemented to the model to mimic the top-down effect in human cognition process. Finally, our model is evaluated on two face databases CAS-PEAL-R1 and AR. The results demonstrate that our model exhibits its efficiency on visual recognition process with much lower memory storage requirement and a better performance compared with the traditional purely computational

  6. Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal adjustment scale

    NASA Astrophysics Data System (ADS)

    Lee, H.; Seo, D.-J.; Liu, Y.; Koren, V.; McKee, P.; Corby, R.

    2012-01-01

    State updating of distributed rainfall-runoff models via streamflow assimilation is subject to overfitting because large dimensionality of the state space of the model may render the assimilation problem seriously under-determined. To examine the issue in the context of operational hydrology, we carry out a set of real-world experiments in which streamflow data is assimilated into gridded Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic-wave routing models of the US National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM) with the variational data assimilation technique. Study basins include four basins in Oklahoma and five basins in Texas. To assess the sensitivity of data assimilation performance to dimensionality reduction in the control vector, we used nine different spatiotemporal adjustment scales, where state variables are adjusted in a lumped, semi-distributed, or distributed fashion and biases in precipitation and potential evaporation (PE) are adjusted hourly, 6-hourly, or kept time-invariant. For each adjustment scale, three different streamflow assimilation scenarios are explored, where streamflow observations at basin interior points, at the basin outlet, or at both interior points and the outlet are assimilated. The streamflow assimilation experiments with nine different basins show that the optimum spatiotemporal adjustment scale varies from one basin to another and may be different for streamflow analysis and prediction in all of the three streamflow assimilation scenarios. The most preferred adjustment scale for seven out of nine basins is found to be the distributed, hourly scale, despite the fact that several independent validation results at this adjustment scale indicated the occurrence of overfitting. Basins with highly correlated interior and outlet flows tend to be less sensitive to the adjustment scale and could benefit more from streamflow assimilation. In comparison to outlet flow assimilation, interior flow

  7. Choosing the appropriate forecasting model for predictive parameter control.

    PubMed

    Aleti, Aldeida; Moser, Irene; Meedeniya, Indika; Grunske, Lars

    2014-01-01

    All commonly used stochastic optimisation algorithms have to be parameterised to perform effectively. Adaptive parameter control (APC) is an effective method used for this purpose. APC repeatedly adjusts parameter values during the optimisation process for optimal algorithm performance. The assignment of parameter values for a given iteration is based on previously measured performance. In recent research, time series prediction has been proposed as a method of projecting the probabilities to use for parameter value selection. In this work, we examine the suitability of a variety of prediction methods for the projection of future parameter performance based on previous data. All considered prediction methods have assumptions the time series data has to conform to for the prediction method to provide accurate projections. Looking specifically at parameters of evolutionary algorithms (EAs), we find that all standard EA parameters with the exception of population size conform largely to the assumptions made by the considered prediction methods. Evaluating the performance of these prediction methods, we find that linear regression provides the best results by a very small and statistically insignificant margin. Regardless of the prediction method, predictive parameter control outperforms state of the art parameter control methods when the performance data adheres to the assumptions made by the prediction method. When a parameter's performance data does not adhere to the assumptions made by the forecasting method, the use of prediction does not have a notable adverse impact on the algorithm's performance.

  8. A simulation of water pollution model parameter estimation

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  9. Emotional closeness to parents and grandparents: A moderated mediation model predicting adolescent adjustment.

    PubMed

    Attar-Schwartz, Shalhevet

    2015-09-01

    Warm and emotionally close relationships with parents and grandparents have been found in previous studies to be linked with better adolescent adjustment. The present study, informed by Family Systems Theory and Intergenerational Solidarity Theory, uses a moderated mediation model analyzing the contribution of the dynamics of these intergenerational relationships to adolescent adjustment. Specifically, it examines the mediating role of emotional closeness to the closest grandparent in the relationship between emotional closeness to a parent (the offspring of the closest grandparent) and adolescent adjustment difficulties. The model also examines the moderating role of emotional closeness to parents in the relationship between emotional closeness to grandparents and adjustment difficulties. The study was based on a sample of 1,405 Jewish Israeli secondary school students (ages 12-18) who completed a structured questionnaire. It was found that emotional closeness to the closest grandparent was more strongly associated with reduced adjustment difficulties among adolescents with higher levels of emotional closeness to their parents. In addition, adolescent adjustment and emotional closeness to parents was partially mediated by emotional closeness to grandparents. Examining the family conditions under which adolescents' relationships with grandparents is stronger and more beneficial for them can help elucidate variations in grandparent-grandchild ties and expand our understanding of the mechanisms that shape child outcomes. (c) 2015 APA, all rights reserved).

  10. Multi-scale modeling of diffusion-controlled reactions in polymers: renormalisation of reactivity parameters.

    PubMed

    Everaers, Ralf; Rosa, Angelo

    2012-01-07

    The quantitative description of polymeric systems requires hierarchical modeling schemes, which bridge the gap between the atomic scale, relevant to chemical or biomolecular reactions, and the macromolecular scale, where the longest relaxation modes occur. Here, we use the formalism for diffusion-controlled reactions in polymers developed by Wilemski, Fixman, and Doi to discuss the renormalisation of the reactivity parameters in polymer models with varying spatial resolution. In particular, we show that the adjustments are independent of chain length. As a consequence, it is possible to match reactions times between descriptions with different resolution for relatively short reference chains and to use the coarse-grained model to make quantitative predictions for longer chains. We illustrate our results by a detailed discussion of the classical problem of chain cyclization in the Rouse model, which offers the simplest example of a multi-scale descriptions, if we consider differently discretized Rouse models for the same physical system. Moreover, we are able to explore different combinations of compact and non-compact diffusion in the local and large-scale dynamics by varying the embedding dimension.

  11. Parameter Estimation and Model Selection in Computational Biology

    PubMed Central

    Lillacci, Gabriele; Khammash, Mustafa

    2010-01-01

    A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection. PMID:20221262

  12. Models for estimating photosynthesis parameters from in situ production profiles

    NASA Astrophysics Data System (ADS)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  13. Parameter learning for performance adaptation

    NASA Technical Reports Server (NTRS)

    Peek, Mark D.; Antsaklis, Panos J.

    1990-01-01

    A parameter learning method is introduced and used to broaden the region of operability of the adaptive control system of a flexible space antenna. The learning system guides the selection of control parameters in a process leading to optimal system performance. A grid search procedure is used to estimate an initial set of parameter values. The optimization search procedure uses a variation of the Hooke and Jeeves multidimensional search algorithm. The method is applicable to any system where performance depends on a number of adjustable parameters. A mathematical model is not necessary, as the learning system can be used whenever the performance can be measured via simulation or experiment. The results of two experiments, the transient regulation and the command following experiment, are presented.

  14. PACE and the Medicare+Choice risk-adjusted payment model.

    PubMed

    Temkin-Greener, H; Meiners, M R; Gruenberg, L

    2001-01-01

    This paper investigates the impact of the Medicare principal inpatient diagnostic cost group (PIP-DCG) payment model on the Program of All-Inclusive Care for the Elderly (PACE). Currently, more than 6,000 Medicare beneficiaries who are nursing home certifiable receive care from PACE, a program poised for expansion under the Balanced Budget Act of 1997. Overall, our analysis suggests that the application of the PIP-DCG model to the PACE program would reduce Medicare payments to PACE, on average, by 38%. The PIP-DCG payment model bases its risk adjustment on inpatient diagnoses and does not capture adequately the risk of caring for a population with functional impairments.

  15. Parameter Estimation for Viscoplastic Material Modeling

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.

    1997-01-01

    A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.

  16. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    NASA Astrophysics Data System (ADS)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  17. Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchheit, Thomas E.; Wilcox, Ian Zachary; Sandoval, Andrew J

    This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction andmore » portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.« less

  18. Brownian motion model with stochastic parameters for asset prices

    NASA Astrophysics Data System (ADS)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  19. Seven-parameter statistical model for BRDF in the UV band.

    PubMed

    Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua

    2012-05-21

    A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.

  20. Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Barnhoorn, Auke; Stocchi, Paolo; Gradmann, Sofie; Wu, Patrick; Drury, Martyn; Vermeersen, Bert

    2013-07-01

    Models for glacial isostatic adjustment (GIA) can provide constraints on rheology of the mantle if past ice thickness variations are assumed to be known. The Pleistocene ice loading histories that are used to obtain such constraints are based on an a priori 1-D mantle viscosity profile that assumes a single deformation mechanism for mantle rocks. Such a simplified viscosity profile makes it hard to compare the inferred mantle rheology to inferences from seismology and laboratory experiments. It is unknown what constraints GIA observations can provide on more realistic mantle rheology with an ice history that is not based on an a priori mantle viscosity profile. This paper investigates a model for GIA with a new ice history for Fennoscandia that is constrained by palaeoclimate proxies and glacial sediments. Diffusion and dislocation creep flow law data are taken from a compilation of laboratory measurements on olivine. Upper-mantle temperature data sets down to 400 km depth are derived from surface heatflow measurements, a petrochemical model for Fennoscandia and seismic velocity anomalies. Creep parameters below 400 km are taken from an earlier study and are only varying with depth. The olivine grain size and water content (a wet state, or a dry state) are used as free parameters. The solid Earth response is computed with a global spherical 3-D finite-element model for an incompressible, self-gravitating Earth. We compare predictions to sea level data and GPS uplift rates in Fennoscandia. The objective is to see if the mantle rheology and the ice model is consistent with GIA observations. We also test if the inclusion of dislocation creep gives any improvements over predictions with diffusion creep only, and whether the laterally varying temperatures result in an improved fit compared to a widely used 1-D viscosity profile (VM2). We find that sea level data can be explained with our ice model and with information on mantle rheology from laboratory experiments

  1. Inverse estimation of parameters for an estuarine eutrophication model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, J.; Kuo, A.Y.

    1996-11-01

    An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less

  2. Ascertainment-adjusted parameter estimation approach to improve robustness against misspecification of health monitoring methods

    NASA Astrophysics Data System (ADS)

    Juesas, P.; Ramasso, E.

    2016-12-01

    Condition monitoring aims at ensuring system safety which is a fundamental requirement for industrial applications and that has become an inescapable social demand. This objective is attained by instrumenting the system and developing data analytics methods such as statistical models able to turn data into relevant knowledge. One difficulty is to be able to correctly estimate the parameters of those methods based on time-series data. This paper suggests the use of the Weighted Distribution Theory together with the Expectation-Maximization algorithm to improve parameter estimation in statistical models with latent variables with an application to health monotonic under uncertainty. The improvement of estimates is made possible by incorporating uncertain and possibly noisy prior knowledge on latent variables in a sound manner. The latent variables are exploited to build a degradation model of dynamical system represented as a sequence of discrete states. Examples on Gaussian Mixture Models, Hidden Markov Models (HMM) with discrete and continuous outputs are presented on both simulated data and benchmarks using the turbofan engine datasets. A focus on the application of a discrete HMM to health monitoring under uncertainty allows to emphasize the interest of the proposed approach in presence of different operating conditions and fault modes. It is shown that the proposed model depicts high robustness in presence of noisy and uncertain prior.

  3. Adjustments to de Leva-anthropometric regression data for the changes in body proportions in elderly humans.

    PubMed

    Ho Hoang, Khai-Long; Mombaur, Katja

    2015-10-15

    Dynamic modeling of the human body is an important tool to investigate the fundamentals of the biomechanics of human movement. To model the human body in terms of a multi-body system, it is necessary to know the anthropometric parameters of the body segments. For young healthy subjects, several data sets exist that are widely used in the research community, e.g. the tables provided by de Leva. None such comprehensive anthropometric parameter sets exist for elderly people. It is, however, well known that body proportions change significantly during aging, e.g. due to degenerative effects in the spine, such that parameters for young people cannot be used for realistically simulating the dynamics of elderly people. In this study, regression equations are derived from the inertial parameters, center of mass positions, and body segment lengths provided by de Leva to be adjustable to the changes in proportion of the body parts of male and female humans due to aging. Additional adjustments are made to the reference points of the parameters for the upper body segments as they are chosen in a more practicable way in the context of creating a multi-body model in a chain structure with the pelvis representing the most proximal segment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A six-parameter Iwan model and its application

    NASA Astrophysics Data System (ADS)

    Li, Yikun; Hao, Zhiming

    2016-02-01

    Iwan model is a practical tool to describe the constitutive behaviors of joints. In this paper, a six-parameter Iwan model based on a truncated power-law distribution with two Dirac delta functions is proposed, which gives a more comprehensive description of joints than the previous Iwan models. Its analytical expressions including backbone curve, unloading curves and energy dissipation are deduced. Parameter identification procedures and the discretization method are also provided. A model application based on Segalman et al.'s experiment works with bolted joints is carried out. Simulation effects of different numbers of Jenkins elements are discussed. The results indicate that the six-parameter Iwan model can be used to accurately reproduce the experimental phenomena of joints.

  5. Application of a parameter-estimation technique to modeling the regional aquifer underlying the eastern Snake River plain, Idaho

    USGS Publications Warehouse

    Garabedian, Stephen P.

    1986-01-01

    A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from

  6. Parameter Balancing in Kinetic Models of Cell Metabolism†

    PubMed Central

    2010-01-01

    Kinetic modeling of metabolic pathways has become a major field of systems biology. It combines structural information about metabolic pathways with quantitative enzymatic rate laws. Some of the kinetic constants needed for a model could be collected from ever-growing literature and public web resources, but they are often incomplete, incompatible, or simply not available. We address this lack of information by parameter balancing, a method to complete given sets of kinetic constants. Based on Bayesian parameter estimation, it exploits the thermodynamic dependencies among different biochemical quantities to guess realistic model parameters from available kinetic data. Our algorithm accounts for varying measurement conditions in the input data (pH value and temperature). It can process kinetic constants and state-dependent quantities such as metabolite concentrations or chemical potentials, and uses prior distributions and data augmentation to keep the estimated quantities within plausible ranges. An online service and free software for parameter balancing with models provided in SBML format (Systems Biology Markup Language) is accessible at www.semanticsbml.org. We demonstrate its practical use with a small model of the phosphofructokinase reaction and discuss its possible applications and limitations. In the future, parameter balancing could become an important routine step in the kinetic modeling of large metabolic networks. PMID:21038890

  7. An automatic and effective parameter optimization method for model tuning

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.

    2015-11-01

    Physical parameterizations in general circulation models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time-consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determining the model's sensitivity to the parameters and the other choosing the optimum initial value for those sensitive parameters, are introduced before the downhill simplex method. This new method reduces the number of parameters to be tuned and accelerates the convergence of the downhill simplex method. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.

  8. Modeling and Control of the Redundant Parallel Adjustment Mechanism on a Deployable Antenna Panel

    PubMed Central

    Tian, Lili; Bao, Hong; Wang, Meng; Duan, Xuechao

    2016-01-01

    With the aim of developing multiple input and multiple output (MIMO) coupling systems with a redundant parallel adjustment mechanism on the deployable antenna panel, a structural control integrated design methodology is proposed in this paper. Firstly, the modal information from the finite element model of the structure of the antenna panel is extracted, and then the mathematical model is established with the Hamilton principle; Secondly, the discrete Linear Quadratic Regulator (LQR) controller is added to the model in order to control the actuators and adjust the shape of the panel. Finally, the engineering practicality of the modeling and control method based on finite element analysis simulation is verified. PMID:27706076

  9. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 (Goddard Earth Model, 36x36 spherical harmonic field) were employed toward application of this technique for gravity field parameters. Also, GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized here. The method employs subset solutions of the data associated with the complete solution and uses an algorithm to adjust the data weights by requiring the differences of parameters between solutions to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting as compared to the nominal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  10. Model Minority Stereotyping, Perceived Discrimination, and Adjustment Among Adolescents from Asian American Backgrounds.

    PubMed

    Kiang, Lisa; Witkow, Melissa R; Thompson, Taylor L

    2016-07-01

    The model minority image is a common and pervasive stereotype that Asian American adolescents must navigate. Using multiwave data from 159 adolescents from Asian American backgrounds (mean age at initial recruitment = 15.03, SD = .92; 60 % female; 74 % US-born), the current study targeted unexplored aspects of the model minority experience in conjunction with more traditionally measured experiences of negative discrimination. When examining normative changes, perceptions of model minority stereotyping increased over the high school years while perceptions of discrimination decreased. Both experiences were not associated with each other, suggesting independent forms of social interactions. Model minority stereotyping generally promoted academic and socioemotional adjustment, whereas discrimination hindered outcomes. Moreover, in terms of academic adjustment, the model minority stereotype appears to protect against the detrimental effect of discrimination. Implications of the complex duality of adolescents' social interactions are discussed.

  11. Automatic temperature adjustment apparatus

    DOEpatents

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  12. Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-09-10

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  13. A Parameter Subset Selection Algorithm for Mixed-Effects Models

    DOE PAGES

    Schmidt, Kathleen L.; Smith, Ralph C.

    2016-01-01

    Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less

  14. Genetic value of herd life adjusted for milk production.

    PubMed

    Allaire, F R; Gibson, J P

    1992-05-01

    Cow herd life adjusted for lactational milk production was investigated as a genetic trait in the breeding objective. Under a simple model, the relative economic weight of milk to adjusted herd life on a per genetic standard deviation basis was equal to CVY/dCVL where CVY and CVL are the genetic coefficients of variation of milk production and adjusted herd life, respectively, and d is the depreciation per year per cow divided by the total fixed costs per year per cow. The relative economic value of milk to adjusted herd life at the prices and parameters for North America was about 3.2. An increase of 100-kg milk was equivalent to 2.2 mo of adjusted herd life. Three to 7% lower economic gain is expected when only improved milk production is sought compared with a breeding objective that included both production and adjusted herd life for relative value changed +/- 20%. A favorable economic gain to cost ratio probably exists for herd life used as a genetic trait to supplement milk in the breeding objective. Cow survival records are inexpensive, and herd life evaluations from such records may not extend the generation interval when such an evaluation is used in bull sire selection.

  15. An in-depth assessment of a diagnosis-based risk adjustment model based on national health insurance claims: the application of the Johns Hopkins Adjusted Clinical Group case-mix system in Taiwan.

    PubMed

    Chang, Hsien-Yen; Weiner, Jonathan P

    2010-01-18

    Diagnosis-based risk adjustment is becoming an important issue globally as a result of its implications for payment, high-risk predictive modelling and provider performance assessment. The Taiwanese National Health Insurance (NHI) programme provides universal coverage and maintains a single national computerized claims database, which enables the application of diagnosis-based risk adjustment. However, research regarding risk adjustment is limited. This study aims to examine the performance of the Adjusted Clinical Group (ACG) case-mix system using claims-based diagnosis information from the Taiwanese NHI programme. A random sample of NHI enrollees was selected. Those continuously enrolled in 2002 were included for concurrent analyses (n = 173,234), while those in both 2002 and 2003 were included for prospective analyses (n = 164,562). Health status measures derived from 2002 diagnoses were used to explain the 2002 and 2003 health expenditure. A multivariate linear regression model was adopted after comparing the performance of seven different statistical models. Split-validation was performed in order to avoid overfitting. The performance measures were adjusted R2 and mean absolute prediction error of five types of expenditure at individual level, and predictive ratio of total expenditure at group level. The more comprehensive models performed better when used for explaining resource utilization. Adjusted R2 of total expenditure in concurrent/prospective analyses were 4.2%/4.4% in the demographic model, 15%/10% in the ACGs or ADGs (Aggregated Diagnosis Group) model, and 40%/22% in the models containing EDCs (Expanded Diagnosis Cluster). When predicting expenditure for groups based on expenditure quintiles, all models underpredicted the highest expenditure group and overpredicted the four other groups. For groups based on morbidity burden, the ACGs model had the best performance overall. Given the widespread availability of claims data and the superior explanatory

  16. Least-Squares Data Adjustment with Rank-Deficient Data Covariance Matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.G.

    2011-07-01

    A derivation of the linear least-squares adjustment formulae is required that avoids the assumption that the covariance matrix of prior parameters can be inverted. Possible proofs are of several kinds, including: (i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. In this paper, the least-squares adjustment equations are derived in both these ways, while explicitly assuming that the covariance matrix of prior parameters is singular. It will be proved that the solutions are unique and that, contrary to statements that have appeared inmore » the literature, the least-squares adjustment problem is not ill-posed. No modification is required to the adjustment formulae that have been used in the past in the case of a singular covariance matrix for the priors. In conclusion: The linear least-squares adjustment formula that has been used in the past is valid in the case of a singular covariance matrix for the covariance matrix of prior parameters. Furthermore, it provides a unique solution. Statements in the literature, to the effect that the problem is ill-posed are wrong. No regularization of the problem is required. This has been proved in the present paper by two methods, while explicitly assuming that the covariance matrix of prior parameters is singular: i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. No modification is needed to the adjustment formulae that have been used in the past. (author)« less

  17. Identification of hydrological model parameter variation using ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao

    2016-12-01

    Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.

  18. An automatic and effective parameter optimization method for model tuning

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.

    2015-05-01

    Physical parameterizations in General Circulation Models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.

  19. Linear-quadratic-Gaussian synthesis with reduced parameter sensitivity

    NASA Technical Reports Server (NTRS)

    Lin, J. Y.; Mingori, D. L.

    1992-01-01

    We present a method for improving the tolerance of a conventional LQG controller to parameter errors in the plant model. The improvement is achieved by introducing additional terms reflecting the structure of the parameter errors into the LQR cost function, and also the process and measurement noise models. Adjusting the sizes of these additional terms permits a trade-off between robustness and nominal performance. Manipulation of some of the additional terms leads to high gain controllers while other terms lead to low gain controllers. Conditions are developed under which the high-gain approach asymptotically recovers the robustness of the corresponding full-state feedback design, and the low-gain approach makes the closed-loop poles asymptotically insensitive to parameter errors.

  20. Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy.

    PubMed

    Penas, David R; González, Patricia; Egea, Jose A; Doallo, Ramón; Banga, Julio R

    2017-01-21

    The development of large-scale kinetic models is one of the current key issues in computational systems biology and bioinformatics. Here we consider the problem of parameter estimation in nonlinear dynamic models. Global optimization methods can be used to solve this type of problems but the associated computational cost is very large. Moreover, many of these methods need the tuning of a number of adjustable search parameters, requiring a number of initial exploratory runs and therefore further increasing the computation times. Here we present a novel parallel method, self-adaptive cooperative enhanced scatter search (saCeSS), to accelerate the solution of this class of problems. The method is based on the scatter search optimization metaheuristic and incorporates several key new mechanisms: (i) asynchronous cooperation between parallel processes, (ii) coarse and fine-grained parallelism, and (iii) self-tuning strategies. The performance and robustness of saCeSS is illustrated by solving a set of challenging parameter estimation problems, including medium and large-scale kinetic models of the bacterium E. coli, bakerés yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The results consistently show that saCeSS is a robust and efficient method, allowing very significant reduction of computation times with respect to several previous state of the art methods (from days to minutes, in several cases) even when only a small number of processors is used. The new parallel cooperative method presented here allows the solution of medium and large scale parameter estimation problems in reasonable computation times and with small hardware requirements. Further, the method includes self-tuning mechanisms which facilitate its use by non-experts. We believe that this new method can play a key role in the development of large-scale and even whole-cell dynamic models.

  1. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    PubMed Central

    Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin

    2014-01-01

    In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models. PMID:24811075

  2. Bundle block adjustment of airborne three-line array imagery based on rotation angles.

    PubMed

    Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin

    2014-05-07

    In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.

  3. Suggestion of a Numerical Model for the Blood Glucose Adjustment with Ingesting a Food

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Takai, Hiroshi

    In this study, we present a numerical model of the time dependence of blood glucose value after ingesting a meal. Two numerical models are proposed in this paper to explain a digestion mechanism and an adjustment mechanism of blood glucose in the body, respectively. It is considered that models are exhibited by using simple equations with a transfer function and a block diagram. Additionally, the time dependence of blood glucose was measured, when subjects ingested a sucrose or a starch. As a result, it is clear that the calculated result of models using a computer can be fitted very well to the measured result of the time dependence of blood glucose. Therefore, it is considered that the digestion model and the adjustment model are useful models in order to estimate a blood glucose value after ingesting meals.

  4. Modelling of intermittent microwave convective drying: parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  5. Projecting School Psychology Staffing Needs Using a Risk-Adjusted Model.

    ERIC Educational Resources Information Center

    Stellwagen, Kurt

    A model is proposed to project optimal school psychology service ratios based upon the percentages of at risk students enrolled within a given school population. Using the standard 1:1,000 service ratio advocated by The National Association of School Psychologists (NASP) as a starting point, ratios are then adjusted based upon the size of three…

  6. Improved Conjugate Gradient Bundle Adjustment of Dunhuang Wall Painting Images

    NASA Astrophysics Data System (ADS)

    Hu, K.; Huang, X.; You, H.

    2017-09-01

    Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA) method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.

  7. A whale better adjusts the biosonar to ordered rather than to random changes in the echo parameters.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee

    2012-09-01

    A false killer whale's (Pseudorca crassidens) sonar clicks and auditory evoked potentials (AEPs) were recorded during echolocation with simulated echoes in two series of experiments. In the first, both the echo delay and transfer factor (which is the dB-ratio of the echo sound-pressure level to emitted pulse source level) were varied randomly from trial to trial until enough data were collected (random presentation). In the second, a combination of the echo delay and transfer factor was kept constant until enough data were collected (ordered presentation). The mean click level decreased with shortening the delay and increasing the transfer factor, more at the ordered presentation rather than at the random presentation. AEPs to the self-heard emitted clicks decreased with shortening the delay and increasing the echo level equally in both series. AEPs to echoes increased with increasing the echo level, little dependent on the echo delay at random presentations but much more dependent on delay with ordered presentations. So some adjustment of the whale's biosonar was possible without prior information about the echo parameters; however, the availability of prior information about echoes provided additional whale capabilities to adjust both the transmitting and receiving parts of the biosonar.

  8. Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model

    ERIC Educational Resources Information Center

    Custer, Michael

    2015-01-01

    This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…

  9. Retrospective forecast of ETAS model with daily parameters estimate

    NASA Astrophysics Data System (ADS)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  10. Kinematic synthesis of adjustable robotic mechanisms

    NASA Astrophysics Data System (ADS)

    Chuenchom, Thatchai

    1993-01-01

    Conventional hard automation, such as a linkage-based or a cam-driven system, provides high speed capability and repeatability but not the flexibility required in many industrial applications. The conventional mechanisms, that are typically single-degree-of-freedom systems, are being increasingly replaced by multi-degree-of-freedom multi-actuators driven by logic controllers. Although this new trend in sophistication provides greatly enhanced flexibility, there are many instances where the flexibility needs are exaggerated and the associated complexity is unnecessary. Traditional mechanism-based hard automation, on the other hand, neither can fulfill multi-task requirements nor are cost-effective mainly due to lack of methods and tools to design-in flexibility. This dissertation attempts to bridge this technological gap by developing Adjustable Robotic Mechanisms (ARM's) or 'programmable mechanisms' as a middle ground between high speed hard automation and expensive serial jointed-arm robots. This research introduces the concept of adjustable robotic mechanisms towards cost-effective manufacturing automation. A generalized analytical synthesis technique has been developed to support the computational design of ARM's that lays the theoretical foundation for synthesis of adjustable mechanisms. The synthesis method developed in this dissertation, called generalized adjustable dyad and triad synthesis, advances the well-known Burmester theory in kinematics to a new level. While this method provides planar solutions, a novel patented scheme is utilized for converting prescribed three-dimensional motion specifications into sets of planar projections. This provides an analytical and a computational tool for designing adjustable mechanisms that satisfy multiple sets of three-dimensional motion specifications. Several design issues were addressed, including adjustable parameter identification, branching defect, and mechanical errors. An efficient mathematical scheme for

  11. Adjusting the Adjusted X[superscript 2]/df Ratio Statistic for Dichotomous Item Response Theory Analyses: Does the Model Fit?

    ERIC Educational Resources Information Center

    Tay, Louis; Drasgow, Fritz

    2012-01-01

    Two Monte Carlo simulation studies investigated the effectiveness of the mean adjusted X[superscript 2]/df statistic proposed by Drasgow and colleagues and, because of problems with the method, a new approach for assessing the goodness of fit of an item response theory model was developed. It has been previously recommended that mean adjusted…

  12. Lesions to the left lateral prefrontal cortex impair decision threshold adjustment for lexical selection.

    PubMed

    Anders, Royce; Riès, Stéphanie; Van Maanen, Leendert; Alario, F-Xavier

    Patients with lesions in the left prefrontal cortex (PFC) have been shown to be impaired in lexical selection, especially when interference between semantically related alternatives is increased. To more deeply investigate which computational mechanisms may be impaired following left PFC damage due to stroke, a psychometric modelling approach is employed in which we assess the cognitive parameters of the patients from an evidence accumulation (sequential information sampling) modelling of their response data. We also compare the results to healthy speakers. Analysis of the cognitive parameters indicates an impairment of the PFC patients to appropriately adjust their decision threshold, in order to handle the increased item difficulty that is introduced by semantic interference. Also, the modelling contributes to other topics in psycholinguistic theory, in which specific effects are observed on the cognitive parameters according to item familiarization, and the opposing effects of priming (lower threshold) and semantic interference (lower drift) which are found to depend on repetition. These results are developed for the blocked-cyclic picture naming paradigm, in which pictures are presented within semantically homogeneous (HOM) or heterogeneous (HET) blocks, and are repeated several times per block. Overall, the results are in agreement with a role of the left PFC in adjusting the decision threshold for lexical selection in language production.

  13. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models

    PubMed Central

    2011-01-01

    In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison. PMID:21989173

  14. Computationally inexpensive identification of noninformative model parameters by sequential screening

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis

    2015-08-01

    Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

  15. Computationally inexpensive identification of noninformative model parameters by sequential screening

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Cuntz, Matthias; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis

    2016-04-01

    Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

  16. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  17. Lumped-parameters equivalent circuit for condenser microphones modeling.

    PubMed

    Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar

    2017-10-01

    This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

  18. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development

    PubMed Central

    2014-01-01

    Background Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. Results The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input–output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard

  19. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates basedmore » on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  20. Analysis of Modeling Parameters on Threaded Screws.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, Miquela S.; Brake, Matthew Robert; Vangoethem, Douglas

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. Themore » results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.« less

  1. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    ERIC Educational Resources Information Center

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  2. Light-adjustable lens.

    PubMed Central

    Schwartz, Daniel M

    2003-01-01

    PURPOSE: First, to determine whether a silicone light-adjustable intraocular lens (IOL) can be fabricated and adjusted precisely with a light delivery device (LDD). Second, to determine the biocompatibility of an adjustable IOL and whether the lens can be adjusted precisely in vivo. METHODS: After fabrication of a light-adjustable silicone formulation, IOLs were made and tested in vitro for cytotoxicity, leaching, precision of adjustment, optical quality after adjustment, and mechanical properties. Light-adjustable IOLs were then tested in vivo for biocompatibility and precision of adjustment in a rabbit model. In collaboration with Zeiss-Meditec, a digital LDD was developed and tested to correct for higher-order aberrations in light-adjustable IOLs. RESULTS: The results establish that a biocompatible silicone IOL can be fabricated and adjusted using safe levels of light. There was no evidence of cytotoxicity or leaching. Testing of mechanical properties revealed no significant differences from commercial controls. Implantation of light-adjustable lenses in rabbits demonstrated- excellent biocompatibility after 6 months, comparable to a commercially available IOL. In vivo spherical (hyperopic and myopic) adjustment in rabbits was achieved using an analog light delivery system. The digital light delivery system was tested and achieved correction of higher-order aberrations. CONCLUSION: A silicone light-adjustable IOL and LDD have been developed to enable postoperative, noninvasive adjustment of lens power. The ability to correct higher-order aberrations in these materials has broad potential applicability for optimization of vision in patients undergoing cataract and refractive surgery. PMID:14971588

  3. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  4. RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS

    PubMed Central

    Purcell, Braden A.; Palmeri, Thomas J.

    2016-01-01

    Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584

  5. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    PubMed

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  6. Testing an Attachment Model of Latina/o College Students' Psychological Adjustment

    ERIC Educational Resources Information Center

    Garriott, Patton O.; Love, Keisha M.; Tyler, Kenneth M.; Thomas, Deneia M.; Roan-Belle, Clarissa R.; Brown, Carrie L.

    2010-01-01

    The present study examined the influence of attachment relationships on the psychological adjustment of Latina/o university students (N = 80) attending predominantly White institutions of higher education. A path analysis conducted to test a hypothesized model of parent and peer attachment, self-esteem, and psychological distress indicated that…

  7. Towards an Integrated Conceptual Model of International Student Adjustment and Adaptation

    ERIC Educational Resources Information Center

    Schartner, Alina; Young, Tony Johnstone

    2016-01-01

    Despite a burgeoning body of empirical research on "the international student experience", the area remains under-theorized. The literature to date lacks a guiding conceptual model that captures the adjustment and adaptation trajectories of this unique, growing, and important sojourner group. In this paper, we therefore put forward a…

  8. Stress and Personal Resource as Predictors of the Adjustment of Parents to Autistic Children: A Multivariate Model

    ERIC Educational Resources Information Center

    Siman-Tov, Ayelet; Kaniel, Shlomo

    2011-01-01

    The research validates a multivariate model that predicts parental adjustment to coping successfully with an autistic child. The model comprises four elements: parental stress, parental resources, parental adjustment and the child's autism symptoms. 176 parents of children aged between 6 to 16 diagnosed with PDD answered several questionnaires…

  9. SPOTting Model Parameters Using a Ready-Made Python Package

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2017-04-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  10. SPOTting Model Parameters Using a Ready-Made Python Package.

    PubMed

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  11. SPOTting Model Parameters Using a Ready-Made Python Package

    PubMed Central

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function. PMID:26680783

  12. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  13. Parameters of Six Selected Galactic Potential Models

    NASA Astrophysics Data System (ADS)

    Bajkova, Anisa; Bobylev, Vadim

    2017-11-01

    This paper is devoted to the refinement of the parameters of the six three-component (bulge, disk, halo) axisymmetric Galactic gravitational potential models on the basis of modern data on circular velocities of Galactic objects located at distances up to 200 kpc from the Galactic center. In all models the bulge and disk are described by the Miyamoto-Nagai expressions. To describe the halo, the models of Allen-Santillán (I), Wilkinson-Evans (II), Navarro- Frenk-White (III), Binney (IV), Plummer (V), and Hernquist (VI) are used. The sought-for parameters of potential models are determined by fitting the model rotation curves to the measured velocities, taking into account restrictions on the local dynamical matter density p⊙ - 0.1M⊙ pc-3 and the vertical force |Kz=1.1|/2πG = 77M⊙ pc-2. A comparative analysis of the refined potential models is made and for each of the models the estimates of a number of the Galactic characteristics are presented.

  14. Seasonal and spatial variation in broadleaf forest model parameters

    NASA Astrophysics Data System (ADS)

    Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.

    2009-04-01

    Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and

  15. SIM_ADJUST -- A computer code that adjusts simulated equivalents for observations or predictions

    USGS Publications Warehouse

    Poeter, Eileen P.; Hill, Mary C.

    2008-01-01

    This report documents the SIM_ADJUST computer code. SIM_ADJUST surmounts an obstacle that is sometimes encountered when using universal model analysis computer codes such as UCODE_2005 (Poeter and others, 2005), PEST (Doherty, 2004), and OSTRICH (Matott, 2005; Fredrick and others (2007). These codes often read simulated equivalents from a list in a file produced by a process model such as MODFLOW that represents a system of interest. At times values needed by the universal code are missing or assigned default values because the process model could not produce a useful solution. SIM_ADJUST can be used to (1) read a file that lists expected observation or prediction names and possible alternatives for the simulated values; (2) read a file produced by a process model that contains space or tab delimited columns, including a column of simulated values and a column of related observation or prediction names; (3) identify observations or predictions that have been omitted or assigned a default value by the process model; and (4) produce an adjusted file that contains a column of simulated values and a column of associated observation or prediction names. The user may provide alternatives that are constant values or that are alternative simulated values. The user may also provide a sequence of alternatives. For example, the heads from a series of cells may be specified to ensure that a meaningful value is available to compare with an observation located in a cell that may become dry. SIM_ADJUST is constructed using modules from the JUPITER API, and is intended for use on any computer operating system. SIM_ADJUST consists of algorithms programmed in Fortran90, which efficiently performs numerical calculations.

  16. Temporal variation and scaling of parameters for a monthly hydrologic model

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang

    2018-03-01

    The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.

  17. The Effect of Nondeterministic Parameters on Shock-Associated Noise Prediction Modeling

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Khavaran, Abbas

    2010-01-01

    Engineering applications for aircraft noise prediction contain models for physical phenomenon that enable solutions to be computed quickly. These models contain parameters that have an uncertainty not accounted for in the solution. To include uncertainty in the solution, nondeterministic computational methods are applied. Using prediction models for supersonic jet broadband shock-associated noise, fixed model parameters are replaced by probability distributions to illustrate one of these methods. The results show the impact of using nondeterministic parameters both on estimating the model output uncertainty and on the model spectral level prediction. In addition, a global sensitivity analysis is used to determine the influence of the model parameters on the output, and to identify the parameters with the least influence on model output.

  18. Covariate-adjusted Spearman's rank correlation with probability-scale residuals.

    PubMed

    Liu, Qi; Li, Chun; Wanga, Valentine; Shepherd, Bryan E

    2018-06-01

    It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance-discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed-minus-expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank-based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey. © 2017, The International Biometric Society.

  19. Parameter uncertainty analysis of a biokinetic model of caesium

    DOE PAGES

    Li, W. B.; Klein, W.; Blanchardon, Eric; ...

    2014-04-17

    Parameter uncertainties for the biokinetic model of caesium (Cs) developed by Leggett et al. were inventoried and evaluated. The methods of parameter uncertainty analysis were used to assess the uncertainties of model predictions with the assumptions of model parameter uncertainties and distributions. Furthermore, the importance of individual model parameters was assessed by means of sensitivity analysis. The calculated uncertainties of model predictions were compared with human data of Cs measured in blood and in the whole body. It was found that propagating the derived uncertainties in model parameter values reproduced the range of bioassay data observed in human subjects atmore » different times after intake. The maximum ranges, expressed as uncertainty factors (UFs) (defined as a square root of ratio between 97.5th and 2.5th percentiles) of blood clearance, whole-body retention and urinary excretion of Cs predicted at earlier time after intake were, respectively: 1.5, 1.0 and 2.5 at the first day; 1.8, 1.1 and 2.4 at Day 10 and 1.8, 2.0 and 1.8 at Day 100; for the late times (1000 d) after intake, the UFs were increased to 43, 24 and 31, respectively. The model parameters of transfer rates between kidneys and blood, muscle and blood and the rate of transfer from kidneys to urinary bladder content are most influential to the blood clearance and to the whole-body retention of Cs. For the urinary excretion, the parameters of transfer rates from urinary bladder content to urine and from kidneys to urinary bladder content impact mostly. The implication and effect on the estimated equivalent and effective doses of the larger uncertainty of 43 in whole-body retention in the later time, say, after Day 500 will be explored in a successive work in the framework of EURADOS.« less

  20. Constant-parameter capture-recapture models

    USGS Publications Warehouse

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  1. An iteratively reweighted least-squares approach to adaptive robust adjustment of parameters in linear regression models with autoregressive and t-distributed deviations

    NASA Astrophysics Data System (ADS)

    Kargoll, Boris; Omidalizarandi, Mohammad; Loth, Ina; Paffenholz, Jens-André; Alkhatib, Hamza

    2018-03-01

    In this paper, we investigate a linear regression time series model of possibly outlier-afflicted observations and autocorrelated random deviations. This colored noise is represented by a covariance-stationary autoregressive (AR) process, in which the independent error components follow a scaled (Student's) t-distribution. This error model allows for the stochastic modeling of multiple outliers and for an adaptive robust maximum likelihood (ML) estimation of the unknown regression and AR coefficients, the scale parameter, and the degree of freedom of the t-distribution. This approach is meant to be an extension of known estimators, which tend to focus only on the regression model, or on the AR error model, or on normally distributed errors. For the purpose of ML estimation, we derive an expectation conditional maximization either algorithm, which leads to an easy-to-implement version of iteratively reweighted least squares. The estimation performance of the algorithm is evaluated via Monte Carlo simulations for a Fourier as well as a spline model in connection with AR colored noise models of different orders and with three different sampling distributions generating the white noise components. We apply the algorithm to a vibration dataset recorded by a high-accuracy, single-axis accelerometer, focusing on the evaluation of the estimated AR colored noise model.

  2. Internal working models and adjustment of physically abused children: the mediating role of self-regulatory abilities.

    PubMed

    Hawkins, Amy L; Haskett, Mary E

    2014-01-01

    Abused children's internal working models (IWM) of relationships are known to relate to their socioemotional adjustment, but mechanisms through which negative representations increase vulnerability to maladjustment have not been explored. We sought to expand the understanding of individual differences in IWM of abused children and investigate the mediating role of self-regulation in links between IWM and adjustment. Cluster analysis was used to subgroup 74 physically abused children based on their IWM. Internal working models were identified by children's representations, as measured by a narrative story stem task. Self-regulation was assessed by teacher report and a behavioral task, and adjustment was measured by teacher report. Cluster analyses indicated two subgroups of abused children with distinct patterns of IWMs. Cluster membership predicted internalizing and externalizing problems. Associations between cluster membership and adjustment were mediated by children's regulation, as measured by teacher reports of many aspects of regulation. There was no support for mediation when regulation was measured by a behavioral task that tapped more narrow facets of regulation. Abused children exhibit clinically relevant individual differences in their IWMs; these models are linked to adjustment in the school setting, possibly through children's self-regulation. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.

  3. Relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro: Application of a stratified model

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2012-08-01

    The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  4. Material parameter computation for multi-layered vocal fold models.

    PubMed

    Schmidt, Bastian; Stingl, Michael; Leugering, Günter; Berry, David A; Döllinger, Michael

    2011-04-01

    Today, the prevention and treatment of voice disorders is an ever-increasing health concern. Since many occupations rely on verbal communication, vocal health is necessary just to maintain one's livelihood. Commonly applied models to study vocal fold vibrations and air flow distributions are self sustained physical models of the larynx composed of artificial silicone vocal folds. Choosing appropriate mechanical parameters for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In the present work, a combination of experimental and numerical approaches to compute material parameters for synthetic vocal fold models is presented. The material parameters are derived from deformation behaviors of excised human larynges. The resulting deformations are used as reference displacements for a tracking functional to be optimized. Material optimization was applied to three-dimensional vocal fold models based on isotropic and transverse-isotropic material laws, considering both a layered model with homogeneous material properties on each layer and an inhomogeneous model. The best results exhibited a transversal-isotropic inhomogeneous (i.e., not producible) model. For the homogeneous model (three layers), the transversal-isotropic material parameters were also computed for each layer yielding deformations similar to the measured human vocal fold deformations.

  5. Parameter Estimation of Spacecraft Fuel Slosh Model

    NASA Technical Reports Server (NTRS)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  6. Global Sensitivity Analysis and Parameter Calibration for an Ecosystem Carbon Model

    NASA Astrophysics Data System (ADS)

    Safta, C.; Ricciuto, D. M.; Sargsyan, K.; Najm, H. N.; Debusschere, B.; Thornton, P. E.

    2013-12-01

    We present uncertainty quantification results for a process-based ecosystem carbon model. The model employs 18 parameters and is driven by meteorological data corresponding to years 1992-2006 at the Harvard Forest site. Daily Net Ecosystem Exchange (NEE) observations were available to calibrate the model parameters and test the performance of the model. Posterior distributions show good predictive capabilities for the calibrated model. A global sensitivity analysis was first performed to determine the important model parameters based on their contribution to the variance of NEE. We then proceed to calibrate the model parameters in a Bayesian framework. The daily discrepancies between measured and predicted NEE values were modeled as independent and identically distributed Gaussians with prescribed daily variance according to the recorded instrument error. All model parameters were assumed to have uninformative priors with bounds set according to expert opinion. The global sensitivity results show that the rate of leaf fall (LEAFALL) is responsible for approximately 25% of the total variance in the average NEE for 1992-2005. A set of 4 other parameters, Nitrogen use efficiency (NUE), base rate for maintenance respiration (BR_MR), growth respiration fraction (RG_FRAC), and allocation to plant stem pool (ASTEM) contribute between 5% and 12% to the variance in average NEE, while the rest of the parameters have smaller contributions. The posterior distributions, sampled with a Markov Chain Monte Carlo algorithm, exhibit significant correlations between model parameters. However LEAFALL, the most important parameter for the average NEE, is not informed by the observational data, while less important parameters show significant updates between their prior and posterior densities. The Fisher information matrix values, indicating which parameters are most informed by the experimental observations, are examined to augment the comparison between the calibration and global

  7. Estimating parameter values of a socio-hydrological flood model

    NASA Astrophysics Data System (ADS)

    Holkje Barendrecht, Marlies; Viglione, Alberto; Kreibich, Heidi; Vorogushyn, Sergiy; Merz, Bruno; Blöschl, Günter

    2018-06-01

    Socio-hydrological modelling studies that have been published so far show that dynamic coupled human-flood models are a promising tool to represent the phenomena and the feedbacks in human-flood systems. So far these models are mostly generic and have not been developed and calibrated to represent specific case studies. We believe that applying and calibrating these type of models to real world case studies can help us to further develop our understanding about the phenomena that occur in these systems. In this paper we propose a method to estimate the parameter values of a socio-hydrological model and we test it by applying it to an artificial case study. We postulate a model that describes the feedbacks between floods, awareness and preparedness. After simulating hypothetical time series with a given combination of parameters, we sample few data points for our variables and try to estimate the parameters given these data points using Bayesian Inference. The results show that, if we are able to collect data for our case study, we would, in theory, be able to estimate the parameter values for our socio-hydrological flood model.

  8. Translating landfill methane generation parameters among first-order decay models.

    PubMed

    Krause, Max J; Chickering, Giles W; Townsend, Timothy G

    2016-11-01

    Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase

  9. Evaluation of the Stress Adjustment and Adaptation Model among Families Reporting Economic Pressure

    ERIC Educational Resources Information Center

    Vandsburger, Etty; Biggerstaff, Marilyn A.

    2004-01-01

    This research evaluates the Stress Adjustment and Adaptation Model (double ABCX model) examining the effects resiliency resources on family functioning when families experience economic pressure. Families (N = 128) with incomes at or below the poverty line from a rural area of a southern state completed measures of perceived economic pressure,…

  10. Bayesian effect estimation accounting for adjustment uncertainty.

    PubMed

    Wang, Chi; Parmigiani, Giovanni; Dominici, Francesca

    2012-09-01

    Model-based estimation of the effect of an exposure on an outcome is generally sensitive to the choice of which confounding factors are included in the model. We propose a new approach, which we call Bayesian adjustment for confounding (BAC), to estimate the effect of an exposure of interest on the outcome, while accounting for the uncertainty in the choice of confounders. Our approach is based on specifying two models: (1) the outcome as a function of the exposure and the potential confounders (the outcome model); and (2) the exposure as a function of the potential confounders (the exposure model). We consider Bayesian variable selection on both models and link the two by introducing a dependence parameter, ω, denoting the prior odds of including a predictor in the outcome model, given that the same predictor is in the exposure model. In the absence of dependence (ω= 1), BAC reduces to traditional Bayesian model averaging (BMA). In simulation studies, we show that BAC, with ω > 1, estimates the exposure effect with smaller bias than traditional BMA, and improved coverage. We, then, compare BAC, a recent approach of Crainiceanu, Dominici, and Parmigiani (2008, Biometrika 95, 635-651), and traditional BMA in a time series data set of hospital admissions, air pollution levels, and weather variables in Nassau, NY for the period 1999-2005. Using each approach, we estimate the short-term effects of on emergency admissions for cardiovascular diseases, accounting for confounding. This application illustrates the potentially significant pitfalls of misusing variable selection methods in the context of adjustment uncertainty. © 2012, The International Biometric Society.

  11. Testing a Social Ecological Model for Relations between Political Violence and Child Adjustment in Northern Ireland

    PubMed Central

    Cummings, E. Mark; Merrilees, Christine E.; Schermerhorn, Alice C.; Goeke-Morey, Marcie C.; Shirlow, Peter; Cairns, Ed

    2013-01-01

    Relations between political violence and child adjustment are matters of international concern. Past research demonstrates the significance of community, family and child psychological processes in child adjustment, supporting study of inter-relations between multiple social ecological factors and child adjustment in contexts of political violence. Testing a social ecological model, 300 mothers and their children (M= 12.28 years, SD = 1.77) from Catholic and Protestant working class neighborhoods in Belfast, Northern Ireland completed measures of community discord, family relations, and children’s regulatory processes (i.e., emotional security) and outcomes. Historical political violence in neighborhoods based on objective records (i.e., politically motivated deaths) were related to family members’ reports of current sectarian and non-sectarian antisocial behavior. Interparental conflict and parental monitoring and children’s emotional security about both the community and family contributed to explanatory pathways for relations between sectarian antisocial behavior in communities and children’s adjustment problems. The discussion evaluates support for social ecological models for relations between political violence and child adjustment and its implications for understanding relations in other parts of the world. PMID:20423550

  12. Testing a social ecological model for relations between political violence and child adjustment in Northern Ireland.

    PubMed

    Cummings, E Mark; Merrilees, Christine E; Schermerhorn, Alice C; Goeke-Morey, Marcie C; Shirlow, Peter; Cairns, Ed

    2010-05-01

    Relations between political violence and child adjustment are matters of international concern. Past research demonstrates the significance of community, family, and child psychological processes in child adjustment, supporting study of interrelations between multiple social ecological factors and child adjustment in contexts of political violence. Testing a social ecological model, 300 mothers and their children (M = 12.28 years, SD = 1.77) from Catholic and Protestant working class neighborhoods in Belfast, Northern Ireland, completed measures of community discord, family relations, and children's regulatory processes (i.e., emotional security) and outcomes. Historical political violence in neighborhoods based on objective records (i.e., politically motivated deaths) were related to family members' reports of current sectarian antisocial behavior and nonsectarian antisocial behavior. Interparental conflict and parental monitoring and children's emotional security about both the community and family contributed to explanatory pathways for relations between sectarian antisocial behavior in communities and children's adjustment problems. The discussion evaluates support for social ecological models for relations between political violence and child adjustment and its implications for understanding relations in other parts of the world.

  13. Use of Multi-class Empirical Orthogonal Function for Identification of Hydrogeological Parameters and Spatiotemporal Pattern of Multiple Recharges in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.; Yeh, W. W. G.; Hsieh, I. H.

    2017-12-01

    This study develops an innovative calibration method for regional groundwater modeling by using multi-class empirical orthogonal functions (EOFs). The developed method is an iterative approach. Prior to carrying out the iterative procedures, the groundwater storage hydrographs associated with the observation wells are calculated. The combined multi-class EOF amplitudes and EOF expansion coefficients of the storage hydrographs are then used to compute the initial gauss of the temporal and spatial pattern of multiple recharges. The initial guess of the hydrogeological parameters are also assigned according to in-situ pumping experiment. The recharges include net rainfall recharge and boundary recharge, and the hydrogeological parameters are riverbed leakage conductivity, horizontal hydraulic conductivity, vertical hydraulic conductivity, storage coefficient, and specific yield. The first step of the iterative algorithm is to conduct the numerical model (i.e. MODFLOW) by the initial guess / adjusted values of the recharges and parameters. Second, in order to determine the best EOF combination of the error storage hydrographs for determining the correction vectors, the objective function is devised as minimizing the root mean square error (RMSE) of the simulated storage hydrographs. The error storage hydrograph are the differences between the storage hydrographs computed from observed and simulated groundwater level fluctuations. Third, adjust the values of recharges and parameters and repeat the iterative procedures until the stopping criterion is reached. The established methodology was applied to the groundwater system of Ming-Chu Basin, Taiwan. The study period is from January 1st to December 2ed in 2012. Results showed that the optimal EOF combination for the multiple recharges and hydrogeological parameters can decrease the RMSE of the simulated storage hydrographs dramatically within three calibration iterations. It represents that the iterative approach that

  14. An Efficient Bundle Adjustment Model Based on Parallax Parametrization for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, R.; Sun, Y. Y.; Lei, Y.

    2017-12-01

    With the rapid development of Unmanned Aircraft Systems (UAS), more and more research fields have been successfully equipped with this mature technology, among which is environmental monitoring. One difficult task is how to acquire accurate position of ground object in order to reconstruct the scene more accurate. To handle this problem, we combine bundle adjustment method from Photogrammetry with parallax parametrization from Computer Vision to create a new method call APCP (aerial polar-coordinate photogrammetry). One impressive advantage of this method compared with traditional method is that the 3-dimensional point in space is represented using three angles (elevation angle, azimuth angle and parallax angle) rather than the XYZ value. As the basis for APCP, bundle adjustment could be used to optimize the UAS sensors' pose accurately, reconstruct the 3D models of environment, thus serving as the criterion of accurate position for monitoring. To verity the effectiveness of the proposed method, we test on several UAV dataset obtained by non-metric digital cameras with large attitude angles, and we find that our methods could achieve 1 or 2 times better efficiency with no loss of accuracy than traditional ones. For the classical nonlinear optimization of bundle adjustment model based on the rectangular coordinate, it suffers the problem of being seriously dependent on the initial values, making it unable to converge fast or converge to a stable state. On the contrary, APCP method could deal with quite complex condition of UAS when conducting monitoring as it represent the points in space with angles, including the condition that the sequential images focusing on one object have zero parallax angle. In brief, this paper presents the parameterization of 3D feature points based on APCP, and derives a full bundle adjustment model and the corresponding nonlinear optimization problems based on this method. In addition, we analyze the influence of convergence and

  15. Bayesian parameter estimation for nonlinear modelling of biological pathways.

    PubMed

    Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang

    2011-01-01

    The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed

  16. Calibration of discrete element model parameters: soybeans

    NASA Astrophysics Data System (ADS)

    Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal

    2018-05-01

    Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.

  17. A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation

    NASA Astrophysics Data System (ADS)

    Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue

    2018-06-01

    Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.

  18. Kalman filter estimation of human pilot-model parameters

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.

    1975-01-01

    The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.

  19. Monitoring risk-adjusted outcomes in congenital heart surgery: does the appropriateness of a risk model change with time?

    PubMed

    Tsang, Victor T; Brown, Katherine L; Synnergren, Mats Johanssen; Kang, Nicholas; de Leval, Marc R; Gallivan, Steve; Utley, Martin

    2009-02-01

    Risk adjustment of outcomes in pediatric congenital heart surgery is challenging due to the great diversity in diagnoses and procedures. We have previously shown that variable life-adjusted display (VLAD) charts provide an effective graphic display of risk-adjusted outcomes in this specialty. A question arises as to whether the risk model used remains appropriate over time. We used a recently developed graphic technique to evaluate the performance of an existing risk model among those patients at a single center during 2000 to 2003 originally used in model development. We then compared the distribution of predicted risk among these patients with that among patients in 2004 to 2006. Finally, we constructed a VLAD chart of risk-adjusted outcomes for the latter period. Among 1083 patients between April 2000 and March 2003, the risk model performed well at predicted risks above 3%, underestimated mortality at 2% to 3% predicted risk, and overestimated mortality below 2% predicted risk. There was little difference in the distribution of predicted risk among these patients and among 903 patients between June 2004 and October 2006. Outcomes for the more recent period were appreciably better than those expected according to the risk model. This finding cannot be explained by any apparent bias in the risk model combined with changes in case-mix. Risk models can, and hopefully do, become out of date. There is scope for complacency in the risk-adjusted audit if the risk model used is not regularly recalibrated to reflect changing standards and expectations.

  20. Parameter optimization for surface flux transport models

    NASA Astrophysics Data System (ADS)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  1. Observation model and parameter partials for the JPL geodetic (GPS) modeling software 'GPSOMC'

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1990-01-01

    The physical models employed in GPSOMC, the modeling module of the GIPSY software system developed at JPL for analysis of geodetic Global Positioning Satellite (GPS) measurements are described. Details of the various contributions to range and phase observables are given, as well as the partial derivatives of the observed quantities with respect to model parameters. A glossary of parameters is provided to enable persons doing data analysis to identify quantities with their counterparts in the computer programs. The present version is the second revision of the original document which it supersedes. The modeling is expanded to provide the option of using Cartesian station coordinates; parameters for the time rates of change of universal time and polar motion are also introduced.

  2. Global parameter estimation for thermodynamic models of transcriptional regulation.

    PubMed

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    NASA Astrophysics Data System (ADS)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  4. Health economic modeling of the potential cost saving effects of Neurally Adjusted Ventilator Assist.

    PubMed

    Hjelmgren, Jonas; Bruce Wirta, Sara; Huetson, Pernilla; Myrén, Karl-Johan; Göthberg, Sylvia

    2016-02-01

    Asynchrony between patient and ventilator breaths is associated with increased duration of mechanical ventilation (MV). Neurally Adjusted Ventilatory Assist (NAVA) controls MV through an esophageal reading of diaphragm electrical activity via a nasogastric tube mounted with electrode rings. NAVA has been shown to decrease asynchrony in comparison to pressure support ventilation (PSV). The objective of this study was to conduct a health economic evaluation of NAVA compared with PSV. We developed a model based on an indirect link between improved synchrony with NAVA versus PSV and fewer days spent on MV in synchronous patients. Unit costs for MV were obtained from the Swedish intensive care unit register, and used in the model along with NAVA-specific costs. The importance of each parameter (proportion of asynchronous patients, costs, and average MV duration) for the overall results was evaluated through sensitivity analyses. Base case results showed that 21% of patients ventilated with NAVA were asynchronous versus 52% of patients receiving PSV. This equals an absolute difference of 31% and an average of 1.7 days less on MV and a total cost saving of US$7886 (including NAVA catheter costs). A breakeven analysis suggested that NAVA was cost effective compared with PSV given an absolute difference in the proportion of asynchronous patients greater than 2.5% (49.5% versus 52% asynchronous patients with NAVA and PSV, respectively). The base case results were stable to changes in parameters, such as difference in asynchrony, duration of ventilation and daily intensive care unit costs. This study showed economically favorable results for NAVA versus PSV. Our results show that only a minor decrease in the proportion of asynchronous patients with NAVA is needed for investments to pay off and generate savings. Future studies need to confirm this result by directly relating improved synchrony to the number of days on MV. © The Author(s), 2015.

  5. Approximated adjusted fractional Bayes factors: A general method for testing informative hypotheses.

    PubMed

    Gu, Xin; Mulder, Joris; Hoijtink, Herbert

    2018-05-01

    Informative hypotheses are increasingly being used in psychological sciences because they adequately capture researchers' theories and expectations. In the Bayesian framework, the evaluation of informative hypotheses often makes use of default Bayes factors such as the fractional Bayes factor. This paper approximates and adjusts the fractional Bayes factor such that it can be used to evaluate informative hypotheses in general statistical models. In the fractional Bayes factor a fraction parameter must be specified which controls the amount of information in the data used for specifying an implicit prior. The remaining fraction is used for testing the informative hypotheses. We discuss different choices of this parameter and present a scheme for setting it. Furthermore, a software package is described which computes the approximated adjusted fractional Bayes factor. Using this software package, psychological researchers can evaluate informative hypotheses by means of Bayes factors in an easy manner. Two empirical examples are used to illustrate the procedure. © 2017 The British Psychological Society.

  6. A Unified Model of Geostrophic Adjustment and Frontogenesis

    NASA Astrophysics Data System (ADS)

    Taylor, John; Shakespeare, Callum

    2013-11-01

    Fronts, or regions with strong horizontal density gradients, are ubiquitous and dynamically important features of the ocean and atmosphere. In the ocean, fronts are associated with enhanced air-sea fluxes, turbulence, and biological productivity, while atmospheric fronts are associated with some of the most extreme weather events. Here, we describe a new mathematical framework for describing the formation of fronts, or frontogenesis. This framework unifies two classical problems in geophysical fluid dynamics, geostrophic adjustment and strain-driven frontogenesis, and provides a number of important extensions beyond previous efforts. The model solutions closely match numerical simulations during the early stages of frontogenesis, and provide a means to describe the development of turbulence at mature fronts.

  7. Observation model and parameter partials for the JPL VLBI parameter estimation software MASTERFIT-1987

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Fanselow, J. L.

    1987-01-01

    This report is a revision of the document of the same title (1986), dated August 1, which it supersedes. Model changes during 1986 and 1987 included corrections for antenna feed rotation, refraction in modelling antenna axis offsets, and an option to employ improved values of the semiannual and annual nutation amplitudes. Partial derivatives of the observables with respect to an additional parameter (surface temperature) are now available. New versions of two figures representing the geometric delay are incorporated. The expressions for the partial derivatives with respect to the nutation parameters have been corrected to include contributions from the dependence of UTI on nutation. The authors hope to publish revisions of this document in the future, as modeling improvements warrant.

  8. Observation model and parameter partials for the JPL VLBI parameter estimation software MASTERFIT-1987

    NASA Astrophysics Data System (ADS)

    Sovers, O. J.; Fanselow, J. L.

    1987-12-01

    This report is a revision of the document of the same title (1986), dated August 1, which it supersedes. Model changes during 1986 and 1987 included corrections for antenna feed rotation, refraction in modelling antenna axis offsets, and an option to employ improved values of the semiannual and annual nutation amplitudes. Partial derivatives of the observables with respect to an additional parameter (surface temperature) are now available. New versions of two figures representing the geometric delay are incorporated. The expressions for the partial derivatives with respect to the nutation parameters have been corrected to include contributions from the dependence of UTI on nutation. The authors hope to publish revisions of this document in the future, as modeling improvements warrant.

  9. Error propagation of partial least squares for parameters optimization in NIR modeling.

    PubMed

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-05

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.

  10. Error propagation of partial least squares for parameters optimization in NIR modeling

    NASA Astrophysics Data System (ADS)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-01

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.

  11. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    NASA Astrophysics Data System (ADS)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization

  12. Two Models of Caregiver Strain and Bereavement Adjustment: A Comparison of Husband and Daughter Caregivers of Breast Cancer Hospice Patients

    ERIC Educational Resources Information Center

    Bernard, Lori L.; Guarnaccia, Charles A.

    2003-01-01

    Purpose: Caregiver bereavement adjustment literature suggests opposite models of impact of role strain on bereavement adjustment after care-recipient death--a Complicated Grief Model and a Relief Model. This study tests these competing models for husband and adult-daughter caregivers of breast cancer hospice patients. Design and Methods: This…

  13. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  14. Price adjustment for traditional Chinese medicine procedures: Based on a standardized value parity model.

    PubMed

    Wang, Haiyin; Jin, Chunlin; Jiang, Qingwu

    2017-11-20

    Traditional Chinese medicine (TCM) is an important part of China's medical system. Due to the prolonged low price of TCM procedures and the lack of an effective mechanism for dynamic price adjustment, the development of TCM has markedly lagged behind Western medicine. The World Health Organization (WHO) has emphasized the need to enhance the development of alternative and traditional medicine when creating national health care systems. The establishment of scientific and appropriate mechanisms to adjust the price of medical procedures in TCM is crucial to promoting the development of TCM. This study has examined incorporating value indicators and data on basic manpower expended, time spent, technical difficulty, and the degree of risk in the latest standards for the price of medical procedures in China, and this study also offers a price adjustment model with the relative price ratio as a key index. This study examined 144 TCM procedures and found that prices of TCM procedures were mainly based on the value of medical care provided; on average, medical care provided accounted for 89% of the price. Current price levels were generally low and the current price accounted for 56% of the standardized value of a procedure, on average. Current price levels accounted for a markedly lower standardized value of acupuncture, moxibustion, special treatment with TCM, and comprehensive TCM procedures. This study selected a total of 79 procedures and adjusted them by priority. The relationship between the price of TCM procedures and the suggested price was significantly optimized (p < 0.01). This study suggests that adjustment of the price of medical procedures based on a standardized value parity model is a scientific and suitable method of price adjustment that can serve as a reference for other provinces and municipalities in China and other countries and regions that mainly have fee-for-service (FFS) medical care.

  15. Health-based risk adjustment: improving the pharmacy-based cost group model by adding diagnostic cost groups.

    PubMed

    Prinsze, Femmeke J; van Vliet, René C J A

    Since 1991, risk-adjusted premium subsidies have existed in the Dutch social health insurance sector, which covered about two-thirds of the population until 2006. In 2002, pharmacy-based cost groups (PCGs) were included in the demographic risk adjustment model, which improved the goodness-of-fit, as measured by the R2, to 11.5%. The model's R2 reached 22.8% in 2004, when inpatient diagnostic information was added in the form of diagnostic cost groups (DCGs). PCGs and DCGs appear to be complementary in their ability to predict future costs. PCGs particularly improve the R2 for outpatient expenses, whereas DCGs improve the R2 for inpatient expenses. In 2006, this system of risk-adjusted premium subsidies was extended to cover the entire population.

  16. On the multiple imputation variance estimator for control-based and delta-adjusted pattern mixture models.

    PubMed

    Tang, Yongqiang

    2017-12-01

    Control-based pattern mixture models (PMM) and delta-adjusted PMMs are commonly used as sensitivity analyses in clinical trials with non-ignorable dropout. These PMMs assume that the statistical behavior of outcomes varies by pattern in the experimental arm in the imputation procedure, but the imputed data are typically analyzed by a standard method such as the primary analysis model. In the multiple imputation (MI) inference, Rubin's variance estimator is generally biased when the imputation and analysis models are uncongenial. One objective of the article is to quantify the bias of Rubin's variance estimator in the control-based and delta-adjusted PMMs for longitudinal continuous outcomes. These PMMs assume the same observed data distribution as the mixed effects model for repeated measures (MMRM). We derive analytic expressions for the MI treatment effect estimator and the associated Rubin's variance in these PMMs and MMRM as functions of the maximum likelihood estimator from the MMRM analysis and the observed proportion of subjects in each dropout pattern when the number of imputations is infinite. The asymptotic bias is generally small or negligible in the delta-adjusted PMM, but can be sizable in the control-based PMM. This indicates that the inference based on Rubin's rule is approximately valid in the delta-adjusted PMM. A simple variance estimator is proposed to ensure asymptotically valid MI inferences in these PMMs, and compared with the bootstrap variance. The proposed method is illustrated by the analysis of an antidepressant trial, and its performance is further evaluated via a simulation study. © 2017, The International Biometric Society.

  17. Nonlinear relative-proportion-based route adjustment process for day-to-day traffic dynamics: modeling, equilibrium and stability analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang; Li, Geng

    2016-11-01

    Travelers' route adjustment behaviors in a congested road traffic network are acknowledged as a dynamic game process between them. Existing Proportional-Switch Adjustment Process (PSAP) models have been extensively investigated to characterize travelers' route choice behaviors; PSAP has concise structure and intuitive behavior rule. Unfortunately most of which have some limitations, i.e., the flow over adjustment problem for the discrete PSAP model, the absolute cost differences route adjustment problem, etc. This paper proposes a relative-Proportion-based Route Adjustment Process (rePRAP) maintains the advantages of PSAP and overcomes these limitations. The rePRAP describes the situation that travelers on higher cost route switch to those with lower cost at the rate that is unilaterally depended on the relative cost differences between higher cost route and its alternatives. It is verified to be consistent with the principle of the rational behavior adjustment process. The equivalence among user equilibrium, stationary path flow pattern and stationary link flow pattern is established, which can be applied to judge whether a given network traffic flow has reached UE or not by detecting the stationary or non-stationary state of link flow pattern. The stability theorem is proved by the Lyapunov function approach. A simple example is tested to demonstrate the effectiveness of the rePRAP model.

  18. On Interpreting the Parameters for Any Item Response Model

    ERIC Educational Resources Information Center

    Thissen, David

    2009-01-01

    Maris and Bechger's article is an exercise in technical virtuosity and provides much to be learned by students of psychometrics. In this commentary, the author begins with making two observations. The first is that the title, "On Interpreting the Model Parameters for the Three Parameter Logistic Model," belies the generality of parts of Maris and…

  19. Adjustment of regional regression models of urban-runoff quality using data for Chattanooga, Knoxville, and Nashville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.; Patel, Anant R.

    1996-01-01

    Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.

  20. Combining the LKB NTCP model with radiosensitivity parameters to characterize toxicity of radionuclides based on a multiclonogen kidney model: a theoretical assessment.

    PubMed

    Lin, Hui; Jing, Jia; Xu, Liangfeng; Wu, Dongsheng; Xu, Yuanying

    2012-06-01

    The Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model is often used to estimate the damage level to normal tissue. However, it does not manifestly involve the influence of radiosensitivity parameters. This work replaces the generalized mean equivalent uniform dose (gEUD) with the equivalent uniform dose (EUD) in the LKB model to investigate the effect of a variety of radiobiological parameters on the NTCP to characterize the toxicity of five types of radionuclides. The dose for 50 % complication probability (D (50)) is replaced by the corresponding EUD for 50 % complication probability (EUD(50)). The properties of a variety of radiobiological characteristics, such as biologically effective dose (BED), NTCP, and EUD, for five types of radioisotope ((131)I, (186)Re, (188)Re, (90)Y, and (67)Cu) are investigated by various radiosensitivity parameters such as intrinsic radiosensitivity α, alpha-beta ratio α/β, cell repair half-time, cell mean clonogen doubling time, etc. The high-energy beta emitters ((90)Y and (188)Re) have high initial dose rate and mean absorbed dose per injected activity in kidney, and their kidney toxicity should be of greater concern if they are excreted through kidneys. The radiobiological effect of (188)Re changes most sharply with the radiobiological parameters due to its high-energy electrons and very short physical half-life. The dose for a probability of 50% injury within 5y (D (50/5)) 28 Gy for whole-kidney irradiation should be adjusted according to different radionuclides and different radiosensitivity of individuals. The D (50/5) of individuals with low α/β or low α, or low biological clearance half-time, will be less than 28 Gy. The 50 % complication probability dose for (67)Cu and (188)Re could be 25 Gy and 22 Gy. The same mean absorbed dose generally corresponds to different degrees of damage for tissues of different radiosensitivity and different radionuclides. The influence of various

  1. Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Ardani, S.; Kaihatu, J. M.

    2012-12-01

    Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques

  2. Modelling tourists arrival using time varying parameter

    NASA Astrophysics Data System (ADS)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  3. SPOTting model parameters using a ready-made Python package

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for

  4. Models of traumatic experiences and children's psychological adjustment: the roles of perceived parenting and the children's own resources and activity.

    PubMed

    Punamäki, R L; Qouta, S; el Sarraj, E

    1997-08-01

    The relations between traumatic events, perceived parenting styles, children's resources, political activity, and psychological adjustment were examined among 108 Palestinian boys and girls of 11-12 years of age. The results showed that exposure to traumatic events increased psychological adjustment problems directly and via 2 mediating paths. First, the more traumatic events children had experienced, the more negative parenting they experienced. And, the poorer they perceived parenting, the more they suffered from high neuroticism and low self-esteem. Second, the more traumatic events children had experienced, the more political activity they showed, and the more active they were, the more they suffered from psychological adjustment problems. Good perceived parenting protected children's psychological adjustment by making them less vulnerable in two ways. First, traumatic events decreased their intellectual, creative, and cognitive resources, and a lack of resources predicted many psychological adjustment problems in a model excluding perceived parenting. Second, political activity increased psychological adjustment problems in the same model, but not in the model including good parenting.

  5. Modeling Fluvial Incision and Transient Landscape Evolution: Influence of Dynamic Channel Adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Cowie, P. A.; Whittaker, A. C.; Roberts, G. P.

    2007-12-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width (W) depends on a number of parameters, including channel slope, and is not only a function of drainage area (A) as is commonly assumed. The present work represents the first attempt to investigate the consequences, for landscape evolution, of using a static expression of channel width (W ~ A0.5) versus a relationship that allows channels to dynamically adjust to changes in slope. We consider different models for the evolution of the channel geometry, including constant width-to-depth ratio (after Finnegan et al., Geology, v. 33, no. 3, 2005), and width-to-depth ratio varying as a function of slope (after Whittaker et al., Geology, v. 35, no. 2, 2007). We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic disturbance. The topography of a catchment in the footwall of an active normal fault in the Apennines (Italy) is used as a template for the study. We show that, for this catchment, the transient response can be fairly well reproduced using a simple detachment-limited fluvial incision law. We also show that, depending on the relationship used to express channel width, initial steady-state topographies differ, as do transient channel width, slope, and the response time of the fluvial system. These differences lead to contrasting landscape morphologies when integrated at the scale of a whole catchment. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the uplift field is non-uniform.

  6. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  7. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE PAGES

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; ...

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore » true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  8. Nonlinear, discrete flood event models, 1. Bayesian estimation of parameters

    NASA Astrophysics Data System (ADS)

    Bates, Bryson C.; Townley, Lloyd R.

    1988-05-01

    In this paper (Part 1), a Bayesian procedure for parameter estimation is applied to discrete flood event models. The essence of the procedure is the minimisation of a sum of squares function for models in which the computed peak discharge is nonlinear in terms of the parameters. This objective function is dependent on the observed and computed peak discharges for several storms on the catchment, information on the structure of observation error, and prior information on parameter values. The posterior covariance matrix gives a measure of the precision of the estimated parameters. The procedure is demonstrated using rainfall and runoff data from seven Australian catchments. It is concluded that the procedure is a powerful alternative to conventional parameter estimation techniques in situations where a number of floods are available for parameter estimation. Parts 2 and 3 will discuss the application of statistical nonlinearity measures and prediction uncertainty analysis to calibrated flood models. Bates (this volume) and Bates and Townley (this volume).

  9. Misspecification in Latent Change Score Models: Consequences for Parameter Estimation, Model Evaluation, and Predicting Change.

    PubMed

    Clark, D Angus; Nuttall, Amy K; Bowles, Ryan P

    2018-01-01

    Latent change score models (LCS) are conceptually powerful tools for analyzing longitudinal data (McArdle & Hamagami, 2001). However, applications of these models typically include constraints on key parameters over time. Although practically useful, strict invariance over time in these parameters is unlikely in real data. This study investigates the robustness of LCS when invariance over time is incorrectly imposed on key change-related parameters. Monte Carlo simulation methods were used to explore the impact of misspecification on parameter estimation, predicted trajectories of change, and model fit in the dual change score model, the foundational LCS. When constraints were incorrectly applied, several parameters, most notably the slope (i.e., constant change) factor mean and autoproportion coefficient, were severely and consistently biased, as were regression paths to the slope factor when external predictors of change were included. Standard fit indices indicated that the misspecified models fit well, partly because mean level trajectories over time were accurately captured. Loosening constraint improved the accuracy of parameter estimates, but estimates were more unstable, and models frequently failed to converge. Results suggest that potentially common sources of misspecification in LCS can produce distorted impressions of developmental processes, and that identifying and rectifying the situation is a challenge.

  10. A Four-Part Model of Autonomy during Emerging Adulthood: Associations with Adjustment

    ERIC Educational Resources Information Center

    Lamborn, Susie D.; Groh, Kelly

    2009-01-01

    We found support for a four-part model of autonomy that links connectedness, separation, detachment, and agency to adjustment during emerging adulthood. Based on self-report surveys of 285 American college students, expected associations among the autonomy variables were found. In addition, agency, as measured by self-reliance, predicted lower…

  11. Inverse modeling with RZWQM2 to predict water quality

    USDA-ARS?s Scientific Manuscript database

    Agricultural systems models such as RZWQM2 are complex and have numerous parameters that are unknown and difficult to estimate. Inverse modeling provides an objective statistical basis for calibration that involves simultaneous adjustment of model parameters and yields parameter confidence intervals...

  12. On the effect of model parameters on forecast objects

    NASA Astrophysics Data System (ADS)

    Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott

    2018-04-01

    Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

  13. Evaluation of Rapid Adjustments to Radiative Forcing for Five Climate Forcing Agents in the Precipitation Driver Response Model Intercomparison Project (PDRMIP)

    NASA Astrophysics Data System (ADS)

    Smith, C. J.; Forster, P.; Richardson, T.; Myhre, G.

    2016-12-01

    Effective radiative forcing (ERF), rather than "traditional" radiative forcing (RF), has become an increasingly popular metric in recent years, as it more closely links the difference in the earth's top-of-atmosphere (TOA) energy budget to equilibrium near-surface temperature rise. One method to diagnose ERF is to take the difference of TOA radiative fluxes from two climate model runs (a perturbation and a control) with prescribed sea-surface temperatures and sea-ice coverage. ERF can be thought of as the sum of a direct forcing, which is the pure radiative effect of a forcing agent, plus rapid adjustments, which are changes in climate state triggered by the forcing agent that themselves affect the TOA energy budget and are unrelated to surface temperature changes.In addition to the classic experiment of doubling of CO2 (2xCO2), we analyse rapid adjustments to a tripling of methane (3xCH4), a quintupling of sulphate aerosol (5xSul), a ten times increase in black carbon (10xBC) and a 2% increase in the solar constant (2%Sol). We use CMIP-style climate model diagnostics from six participating models of the Precipitation Driver Response Model Intercomparison Project (PDRMIP).Assuming approximately linear contributions to the TOA flux differences, the rapid adjustments from changes in atmospheric temperature, surface temperature, surface albedo and water vapour can be cleanly and simply separated from the direct forcing by radiative kernels. The rapid adjustments are in turn decomposed into stratospheric and tropospheric components. We introduce kernels based on the HadGEM2 climate model and find similar results to those based on other models. Cloud adjustments are evaluated as a residual of the TOA radiative fluxes between all-sky and clear-sky runs once direct forcing and rapid adjustments have been subtracted. The cloud adjustments are also calculated online within the HadGEM2 model using the ISCCP simulator. For aerosol forcing experiments, rapid adjustments vary

  14. Stochastic and Perturbed Parameter Representations of Model Uncertainty in Convection Parameterization

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Moroz, I.; Palmer, T.

    2015-12-01

    It is now acknowledged that representing model uncertainty in atmospheric simulators is essential for the production of reliable probabilistic ensemble forecasts, and a number of different techniques have been proposed for this purpose. Stochastic convection parameterization schemes use random numbers to represent the difference between a deterministic parameterization scheme and the true atmosphere, accounting for the unresolved sub grid-scale variability associated with convective clouds. An alternative approach varies the values of poorly constrained physical parameters in the model to represent the uncertainty in these parameters. This study presents new perturbed parameter schemes for use in the European Centre for Medium Range Weather Forecasts (ECMWF) convection scheme. Two types of scheme are developed and implemented. Both schemes represent the joint uncertainty in four of the parameters in the convection parametrisation scheme, which was estimated using the Ensemble Prediction and Parameter Estimation System (EPPES). The first scheme developed is a fixed perturbed parameter scheme, where the values of uncertain parameters are changed between ensemble members, but held constant over the duration of the forecast. The second is a stochastically varying perturbed parameter scheme. The performance of these schemes was compared to the ECMWF operational stochastic scheme, Stochastically Perturbed Parametrisation Tendencies (SPPT), and to a model which does not represent uncertainty in convection. The skill of probabilistic forecasts made using the different models was evaluated. While the perturbed parameter schemes improve on the stochastic parametrisation in some regards, the SPPT scheme outperforms the perturbed parameter approaches when considering forecast variables that are particularly sensitive to convection. Overall, SPPT schemes are the most skilful representations of model uncertainty due to convection parametrisation. Reference: H. M. Christensen, I

  15. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    PubMed

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  16. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

    PubMed Central

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-01-01

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. PMID:28934163

  17. Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness.

    PubMed

    Müller, Roy; Andrada, Emanuel

    2018-01-01

    It is known that humans intentionally choose skipping in special situations, e.g. when descending stairs or when moving in environments with lower gravity than on Earth. Although those situations involve uneven locomotion, the dynamics of human skipping on uneven ground have not yet been addressed. To find the reasons that may motivate this gait, we combined experimental data on humans with numerical simulations on a bipedal spring-loaded inverted pendulum model (BSLIP). To drive the model, the following parameters were estimated from nine subjects skipping across a single drop in ground level: leg lengths at touchdown, leg stiffness of both legs, aperture angle between legs, trailing leg angle at touchdown (leg landing first after flight phase), and trailing leg retraction speed. We found that leg adjustments in humans occur mostly in the trailing leg (low to moderate leg retraction during swing phase, reduced trailing leg stiffness, and flatter trailing leg angle at lowered touchdown). When transferring these leg adjustments to the BSLIP model, the capacity of the model to cope with sudden-drop perturbations increased.

  18. Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Dai, Xiao-Xia; Feng, Yuan

    2015-12-01

    When modeling a stealth aircraft with low RCS (Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian-Markov Chain Monte Carlo (Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models. Project supported by the National Natural Science Foundation of China (Grant No. 61101173), the National Basic Research Program of China (Grant No. 613206), the National High Technology Research and Development Program of China (Grant No. 2012AA01A308), the State Scholarship Fund by the China Scholarship Council (CSC), and the Oversea Academic Training Funds, and University of Electronic Science and Technology of China (UESTC).

  19. A new model to estimate insulin resistance via clinical parameters in adults with type 1 diabetes.

    PubMed

    Zheng, Xueying; Huang, Bin; Luo, Sihui; Yang, Daizhi; Bao, Wei; Li, Jin; Yao, Bin; Weng, Jianping; Yan, Jinhua

    2017-05-01

    Insulin resistance (IR) is a risk factor to assess the development of micro- and macro-vascular complications in type 1 diabetes (T1D). However, diabetes management in adults with T1D is limited by the difficulty of lacking simple and reliable methods to estimate insulin resistance. The aim of this study was to develop a new model to estimate IR via clinical parameters in adults with T1D. A total of 36 adults with adulthood onset T1D (n = 20) or childhood onset T1D (n = 16) were recruited by quota sampling. After an overnight insulin infusion to stabilize the blood glucose at 5.6 to 7.8 mmol/L, they underwent a 180-minute euglycemic-hyperinsulinemic clamp. Glucose disposal rate (GDR, mg kg -1  min -1 ) was calculated by data collected from the last 30 minutes during the test. Demographic factors (age, sex, and diabetes duration) and metabolic parameters (blood pressure, glycated hemoglobin A 1c [HbA 1c ], waist to hip ratio [WHR], and lipids) were collected to evaluate insulin resistance. Then, age at diabetes onset and clinical parameters were used to develop a model to estimate lnGDR by stepwise linear regression. From the stepwise process, a best model to estimate insulin resistance was generated, including HbA 1c , diastolic blood pressure, and WHR. Age at diabetes onset did not enter any of the models. We proposed the following new model to estimate IR as in GDR for adults with T1D: lnGDR = 4.964 - 0.121 × HbA 1c (%) - 0.012 × diastolic blood pressure (mmHg) - 1.409 × WHR, (adjusted R 2  = 0.616, P < .01). Insulin resistance in adults living with T1D can be estimated using routinely collected clinical parameters. This simple model provides a potential tool for estimating IR in large-scale epidemiological studies of adults with T1D regardless of age at onset. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less

  1. Estimation of Graded Response Model Parameters Using MULTILOG.

    ERIC Educational Resources Information Center

    Baker, Frank B.

    1997-01-01

    Describes an idiosyncracy of the MULTILOG (D. Thissen, 1991) parameter estimation process discovered during a simulation study involving the graded response model. A misordering reflected in boundary function location parameter estimates resulted in a large negative contribution to the true score followed by a large positive contribution. These…

  2. Modeling Chinese ionospheric layer parameters based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Yu, You; Wan, Weixing; Xiong, Bo; Ren, Zhipeng; Zhao, Biqiang; Zhang, Yun; Ning, Baiqi; Liu, Libo

    2015-05-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation coefficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  3. Modeling Chinese ionospheric layer parameters based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Yu, You; Wan, Weixing

    2016-04-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation co- efficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  4. On the problem of modeling for parameter identification in distributed structures

    NASA Technical Reports Server (NTRS)

    Norris, Mark A.; Meirovitch, Leonard

    1988-01-01

    Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.

  5. Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data

    NASA Astrophysics Data System (ADS)

    White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.

    2017-12-01

    As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.

  6. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGES

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  7. Bayesian methods for characterizing unknown parameters of material models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  8. A spatial model of bird abundance as adjusted for detection probability

    USGS Publications Warehouse

    Gorresen, P.M.; Mcmillan, G.P.; Camp, R.J.; Pratt, T.K.

    2009-01-01

    Modeling the spatial distribution of animals can be complicated by spatial and temporal effects (i.e. spatial autocorrelation and trends in abundance over time) and other factors such as imperfect detection probabilities and observation-related nuisance variables. Recent advances in modeling have demonstrated various approaches that handle most of these factors but which require a degree of sampling effort (e.g. replication) not available to many field studies. We present a two-step approach that addresses these challenges to spatially model species abundance. Habitat, spatial and temporal variables were handled with a Bayesian approach which facilitated modeling hierarchically structured data. Predicted abundance was subsequently adjusted to account for imperfect detection and the area effectively sampled for each species. We provide examples of our modeling approach for two endemic Hawaiian nectarivorous honeycreepers: 'i'iwi Vestiaria coccinea and 'apapane Himatione sanguinea. ?? 2009 Ecography.

  9. Four-parameter model for polarization-resolved rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  10. Evolving Non-Dominated Parameter Sets for Computational Models from Multiple Experiments

    NASA Astrophysics Data System (ADS)

    Lane, Peter C. R.; Gobet, Fernand

    2013-03-01

    Creating robust, reproducible and optimal computational models is a key challenge for theorists in many sciences. Psychology and cognitive science face particular challenges as large amounts of data are collected and many models are not amenable to analytical techniques for calculating parameter sets. Particular problems are to locate the full range of acceptable model parameters for a given dataset, and to confirm the consistency of model parameters across different datasets. Resolving these problems will provide a better understanding of the behaviour of computational models, and so support the development of general and robust models. In this article, we address these problems using evolutionary algorithms to develop parameters for computational models against multiple sets of experimental data; in particular, we propose the `speciated non-dominated sorting genetic algorithm' for evolving models in several theories. We discuss the problem of developing a model of categorisation using twenty-nine sets of data and models drawn from four different theories. We find that the evolutionary algorithms generate high quality models, adapted to provide a good fit to all available data.

  11. A Logical Difficulty of the Parameter Setting Model.

    ERIC Educational Resources Information Center

    Sasaki, Yoshinori

    1990-01-01

    Seeks to prove that the parameter setting model (PSM) of Chomsky's Universal Grammar theory contains an internal contradiction when it is seriously taken to model the internal state of language learners. (six references) (JL)

  12. Improving Wind Predictions in the Marine Atmospheric Boundary Layer Through Parameter Estimation in a Single Column Model

    DOE PAGES

    Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; ...

    2016-08-03

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z 0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z 0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z 0 in DART. Using DART to estimate z 0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z 0 ensembles by 4%–22%. Finally, however, parameter estimation of z 0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less

  13. Improving the realism of hydrologic model through multivariate parameter estimation

    NASA Astrophysics Data System (ADS)

    Rakovec, Oldrich; Kumar, Rohini; Attinger, Sabine; Samaniego, Luis

    2017-04-01

    Increased availability and quality of near real-time observations should improve understanding of predictive skills of hydrological models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE satellite-based total water storage (TWS) anomaly is used to complement the discharge data with an aim to improve the fidelity of mesoscale hydrologic model (mHM) through multivariate parameter estimation. The study is conducted in 83 European basins covering a wide range of hydro-climatic regimes. The model parameterization complemented with the TWS anomalies leads to statistically significant improvements in (1) discharge simulations during low-flow period, and (2) evapotranspiration estimates which are evaluated against independent (FLUXNET) data. Overall, there is no significant deterioration in model performance for the discharge simulations when complemented by information from the TWS anomalies. However, considerable changes in the partitioning of precipitation into runoff components are noticed by in-/exclusion of TWS during the parameter estimation. A cross-validation test carried out to assess the transferability and robustness of the calibrated parameters to other locations further confirms the benefit of complementary TWS data. In particular, the evapotranspiration estimates show more robust performance when TWS data are incorporated during the parameter estimation, in comparison with the benchmark model constrained against discharge only. This study highlights the value for incorporating multiple data sources during parameter estimation to improve the overall realism of hydrologic model and its applications over large domains. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res., 52, http://dx.doi.org/10

  14. Parameter interdependence and uncertainty induced by lumping in a hydrologic model

    NASA Astrophysics Data System (ADS)

    Gallagher, Mark R.; Doherty, John

    2007-05-01

    Throughout the world, watershed modeling is undertaken using lumped parameter hydrologic models that represent real-world processes in a manner that is at once abstract, but nevertheless relies on algorithms that reflect real-world processes and parameters that reflect real-world hydraulic properties. In most cases, values are assigned to the parameters of such models through calibration against flows at watershed outlets. One criterion by which the utility of the model and the success of the calibration process are judged is that realistic values are assigned to parameters through this process. This study employs regularization theory to examine the relationship between lumped parameters and corresponding real-world hydraulic properties. It demonstrates that any kind of parameter lumping or averaging can induce a substantial amount of "structural noise," which devices such as Box-Cox transformation of flows and autoregressive moving average (ARMA) modeling of residuals are unlikely to render homoscedastic and uncorrelated. Furthermore, values estimated for lumped parameters are unlikely to represent average values of the hydraulic properties after which they are named and are often contaminated to a greater or lesser degree by the values of hydraulic properties which they do not purport to represent at all. As a result, the question of how rigidly they should be bounded during the parameter estimation process is still an open one.

  15. Bayesian Estimation in the One-Parameter Latent Trait Model.

    DTIC Science & Technology

    1980-03-01

    Journal of Mathematical and Statistical Psychology , 1973, 26, 31-44. (a) Andersen, E. B. A goodness of fit test for the Rasch model. Psychometrika, 1973, 28...technique for estimating latent trait mental test parameters. Educational and Psychological Measurement, 1976, 36, 705-715. Lindley, D. V. The...Lord, F. M. An analysis of verbal Scholastic Aptitude Test using Birnbaum’s three-parameter logistic model. Educational and Psychological

  16. A comparative evaluation of risk-adjustment models for benchmarking amputation-free survival after lower extremity bypass.

    PubMed

    Simons, Jessica P; Goodney, Philip P; Flahive, Julie; Hoel, Andrew W; Hallett, John W; Kraiss, Larry W; Schanzer, Andres

    2016-04-01

    Providing patients and payers with publicly reported risk-adjusted quality metrics for the purpose of benchmarking physicians and institutions has become a national priority. Several prediction models have been developed to estimate outcomes after lower extremity revascularization for critical limb ischemia, but the optimal model to use in contemporary practice has not been defined. We sought to identify the highest-performing risk-adjustment model for amputation-free survival (AFS) at 1 year after lower extremity bypass (LEB). We used the national Society for Vascular Surgery Vascular Quality Initiative (VQI) database (2003-2012) to assess the performance of three previously validated risk-adjustment models for AFS. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL), Finland National Vascular (FINNVASC) registry, and the modified Project of Ex-vivo vein graft Engineering via Transfection III (PREVENT III [mPIII]) risk scores were applied to the VQI cohort. A novel model for 1-year AFS was also derived using the VQI data set and externally validated using the PIII data set. The relative discrimination (Harrell c-index) and calibration (Hosmer-May goodness-of-fit test) of each model were compared. Among 7754 patients in the VQI who underwent LEB for critical limb ischemia, the AFS was 74% at 1 year. Each of the previously published models for AFS demonstrated similar discriminative performance: c-indices for BASIL, FINNVASC, mPIII were 0.66, 0.60, and 0.64, respectively. The novel VQI-derived model had improved discriminative ability with a c-index of 0.71 and appropriate generalizability on external validation with a c-index of 0.68. The model was well calibrated in both the VQI and PIII data sets (goodness of fit P = not significant). Currently available prediction models for AFS after LEB perform modestly when applied to national contemporary VQI data. Moreover, the performance of each model was inferior to that of the novel VQI-derived model

  17. Estimation of parameters of dose volume models and their confidence limits

    NASA Astrophysics Data System (ADS)

    van Luijk, P.; Delvigne, T. C.; Schilstra, C.; Schippers, J. M.

    2003-07-01

    Predictions of the normal-tissue complication probability (NTCP) for the ranking of treatment plans are based on fits of dose-volume models to clinical and/or experimental data. In the literature several different fit methods are used. In this work frequently used methods and techniques to fit NTCP models to dose response data for establishing dose-volume effects, are discussed. The techniques are tested for their usability with dose-volume data and NTCP models. Different methods to estimate the confidence intervals of the model parameters are part of this study. From a critical-volume (CV) model with biologically realistic parameters a primary dataset was generated, serving as the reference for this study and describable by the NTCP model. The CV model was fitted to this dataset. From the resulting parameters and the CV model, 1000 secondary datasets were generated by Monte Carlo simulation. All secondary datasets were fitted to obtain 1000 parameter sets of the CV model. Thus the 'real' spread in fit results due to statistical spreading in the data is obtained and has been compared with estimates of the confidence intervals obtained by different methods applied to the primary dataset. The confidence limits of the parameters of one dataset were estimated using the methods, employing the covariance matrix, the jackknife method and directly from the likelihood landscape. These results were compared with the spread of the parameters, obtained from the secondary parameter sets. For the estimation of confidence intervals on NTCP predictions, three methods were tested. Firstly, propagation of errors using the covariance matrix was used. Secondly, the meaning of the width of a bundle of curves that resulted from parameters that were within the one standard deviation region in the likelihood space was investigated. Thirdly, many parameter sets and their likelihood were used to create a likelihood-weighted probability distribution of the NTCP. It is concluded that for the

  18. Using bioimpedance spectroscopy parameters as real-time feedback during tDCS.

    PubMed

    Nejadgholi, Isar; Caytak, Herschel; Bolic, Miodrag

    2016-08-01

    An exploratory analysis is carried out to investigate the feasibility of using BioImpedance Spectroscopy (BIS) parameters, measured on scalp, as real-time feedback during Transcranial Direct Current Stimulation (tDCS). TDCS is shown to be a potential treatment for neurological disorders. However, this technique is not considered as a reliable clinical treatment, due to the lack of a measurable indicator of treatment efficacy. Although the voltage that is applied on the head is very simple to measure during a tDCS session, changes of voltage are difficult to interpret in terms of variables that affect clinical outcome. BIS parameters are considered as potential feedback parameters, because: 1) they are shown to be associated with the DC voltage applied on the head, 2) they are interpretable in terms of conductive and capacitive properties of head tissues, 3) physical interpretation of BIS measurements makes them prone to be adjusted by clinically controllable variables, 4) BIS parameters are measurable in a cost-effective and safe way and do not interfere with DC stimulation. This research indicates that a quadratic regression model can predict the DC voltage between anode and cathode based on parameters extracted from BIS measurements. These parameters are extracted by fitting the measured BIS spectra to an equivalent electrical circuit model. The effect of clinical tDCS variables on BIS parameters needs to be investigated in future works. This work suggests that BIS is a potential method to be used for monitoring a tDCS session in order to adjust, tailor, or personalize tDCS treatment protocols.

  19. Time-varying parameter models for catchments with land use change: the importance of model structure

    NASA Astrophysics Data System (ADS)

    Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid

    2018-05-01

    Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.

  20. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  1. A New Climate Adjustment Tool: An update to EPA’s Storm Water Management Model

    EPA Science Inventory

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations.

  2. Failure analysis of parameter-induced simulation crashes in climate models

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.

    2013-01-01

    Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We apply support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicts model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures are determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations are the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  3. A design methodology for nonlinear systems containing parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Young, G. E.; Auslander, D. M.

    1983-01-01

    In the present design methodology for nonlinear systems containing parameter uncertainty, a generalized sensitivity analysis is incorporated which employs parameter space sampling and statistical inference. For the case of a system with j adjustable and k nonadjustable parameters, this methodology (which includes an adaptive random search strategy) is used to determine the combination of j adjustable parameter values which maximize the probability of those performance indices which simultaneously satisfy design criteria in spite of the uncertainty due to k nonadjustable parameters.

  4. Amundsen Sea simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Menemenlis, D.; Schodlok, M.; Heimbach, P.; Nguyen, A. T.; Rignot, E. J.

    2016-12-01

    Ice shelves and glaciers of the West Antarctic Ice Sheet are thinning and melting rapidly in the Amundsen Sea (AS). This is thought to be caused by warm Circumpolar Deep Water (CDW) that intrudes via submarine glacial troughs located at the continental shelf break. Recent studies, however, point out that the depth of thermocline, or thickness of Winter Water (WW, potential temperature below -1 °C located above CDW) is critical in determining the melt rate, especially for the Pine Island Glacier (PIG). For example, the basal melt rate of PIG, which decreased by 50% during summer 2012, has been attributed to thickening of WW. Despite the possible importance of WW thickness on ice shelf melting, previous modeling studies in this region have focused primarily on CDW intrusion and have evaluated numerical simulations based on bottom or deep CDW properties. As a result, none of these models have shown a good representation of WW for the AS. In this study, we adjust a small number of model parameters in a regional Amundsen and Bellingshausen Seas configuration of the Massachusetts Institute of Technology general circulation model (MITgcm) to better fit the available observations during the 2007-2010 period. We choose this time period because summer observations during these years show small interannual variability in the eastern AS. As a result of adjustments, our model shows significantly better match with observations than previous modeling studies, especially for WW. Since density of sea water depends largely on salinity at low temperature, this is crucial for assessing the impact of WW on PIG melt rate. In addition, we conduct several sensitivity studies, showing the impact of surface heat loss on the thickness and properties of WW. We also discuss some preliminary results pertaining to further optimization using the adjoint method. Our work is a first step toward improved representation of ice-shelf ocean interactions in the ECCO (Estimating the Circulation and

  5. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  6. Quantum Chemically Estimated Abraham Solute Parameters Using Multiple Solvent-Water Partition Coefficients and Molecular Polarizability.

    PubMed

    Liang, Yuzhen; Xiong, Ruichang; Sandler, Stanley I; Di Toro, Dominic M

    2017-09-05

    Polyparameter Linear Free Energy Relationships (pp-LFERs), also called Linear Solvation Energy Relationships (LSERs), are used to predict many environmentally significant properties of chemicals. A method is presented for computing the necessary chemical parameters, the Abraham parameters (AP), used by many pp-LFERs. It employs quantum chemical calculations and uses only the chemical's molecular structure. The method computes the Abraham E parameter using density functional theory computed molecular polarizability and the Clausius-Mossotti equation relating the index refraction to the molecular polarizability, estimates the Abraham V as the COSMO calculated molecular volume, and computes the remaining AP S, A, and B jointly with a multiple linear regression using sixty-five solvent-water partition coefficients computed using the quantum mechanical COSMO-SAC solvation model. These solute parameters, referred to as Quantum Chemically estimated Abraham Parameters (QCAP), are further adjusted by fitting to experimentally based APs using QCAP parameters as the independent variables so that they are compatible with existing Abraham pp-LFERs. QCAP and adjusted QCAP for 1827 neutral chemicals are included. For 24 solvent-water systems including octanol-water, predicted log solvent-water partition coefficients using adjusted QCAP have the smallest root-mean-square errors (RMSEs, 0.314-0.602) compared to predictions made using APs estimated using the molecular fragment based method ABSOLV (0.45-0.716). For munition and munition-like compounds, adjusted QCAP has much lower RMSE (0.860) than does ABSOLV (4.45) which essentially fails for these compounds.

  7. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  8. Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.

    2002-05-01

    This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.

  9. Automatic Determination of the Conic Coronal Mass Ejection Model Parameters

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Oates, T.; Taktakishvili, A.

    2009-01-01

    Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis

  10. Dynamics in the Parameter Space of a Neuron Model

    NASA Astrophysics Data System (ADS)

    Paulo, C. Rech

    2012-06-01

    Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.

  11. The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Kim, Kyung Yong; Lee, Won-Chan

    2017-01-01

    This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…

  12. Models and parameters for environmental radiological assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C W

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  13. Positive Adjustment Among American Repatriated Prisoners of the Vietnam War: Modeling the Long-Term Effects of Captivity.

    PubMed

    King, Daniel W; King, Lynda A; Park, Crystal L; Lee, Lewina O; Kaiser, Anica Pless; Spiro, Avron; Moore, Jeffrey L; Kaloupek, Danny G; Keane, Terence M

    2015-11-01

    A longitudinal lifespan model of factors contributing to later-life positive adjustment was tested on 567 American repatriated prisoners from the Vietnam War. This model encompassed demographics at time of capture and attributes assessed after return to the U.S. (reports of torture and mental distress) and approximately 3 decades later (later-life stressors, perceived social support, positive appraisal of military experiences, and positive adjustment). Age and education at time of capture and physical torture were associated with repatriation mental distress, which directly predicted poorer adjustment 30 years later. Physical torture also had a salutary effect, enhancing later-life positive appraisals of military experiences. Later-life events were directly and indirectly (through concerns about retirement) associated with positive adjustment. Results suggest that the personal resources of older age and more education and early-life adverse experiences can have cascading effects over the lifespan to impact well-being in both positive and negative ways.

  14. Positive Adjustment Among American Repatriated Prisoners of the Vietnam War: Modeling the Long-Term Effects of Captivity

    PubMed Central

    King, Daniel W.; King, Lynda A.; Park, Crystal L.; Lee, Lewina O.; Kaiser, Anica Pless; Spiro, Avron; Moore, Jeffrey L.; Kaloupek, Danny G.; Keane, Terence M.

    2015-01-01

    A longitudinal lifespan model of factors contributing to later-life positive adjustment was tested on 567 American repatriated prisoners from the Vietnam War. This model encompassed demographics at time of capture and attributes assessed after return to the U.S. (reports of torture and mental distress) and approximately 3 decades later (later-life stressors, perceived social support, positive appraisal of military experiences, and positive adjustment). Age and education at time of capture and physical torture were associated with repatriation mental distress, which directly predicted poorer adjustment 30 years later. Physical torture also had a salutary effect, enhancing later-life positive appraisals of military experiences. Later-life events were directly and indirectly (through concerns about retirement) associated with positive adjustment. Results suggest that the personal resources of older age and more education and early-life adverse experiences can have cascading effects over the lifespan to impact well-being in both positive and negative ways. PMID:26693100

  15. Uncertainty in dual permeability model parameters for structured soils.

    PubMed

    Arora, B; Mohanty, B P; McGuire, J T

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.

  16. Uncertainty in dual permeability model parameters for structured soils

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.

  17. Distributed activation energy model parameters of some Turkish coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunes, M.; Gunes, S.K.

    2008-07-01

    A multi-reaction model based on distributed activation energy has been applied to some Turkish coals. The kinetic parameters of distributed activation energy model were calculated via computer program developed for this purpose. It was observed that the values of mean of activation energy distribution vary between 218 and 248 kJ/mol, and the values of standard deviation of activation energy distribution vary between 32 and 70 kJ/mol. The correlations between kinetic parameters of the distributed activation energy model and certain properties of coal have been investigated.

  18. Distribution-centric 3-parameter thermodynamic models of partition gas chromatography.

    PubMed

    Blumberg, Leonid M

    2017-03-31

    If both parameters (the entropy, ΔS, and the enthalpy, ΔH) of the classic van't Hoff model of dependence of distribution coefficients (K) of analytes on temperature (T) are treated as the temperature-independent constants then the accuracy of the model is known to be insufficient for the needed accuracy of retention time prediction. A more accurate 3-parameter Clarke-Glew model offers a way to treat ΔS and ΔH as functions, ΔS(T) and ΔH(T), of T. A known T-centric construction of these functions is based on relating them to the reference values (ΔS ref and ΔH ref ) corresponding to a predetermined reference temperature (T ref ). Choosing a single T ref for all analytes in a complex sample or in a large database might lead to practically irrelevant values of ΔS ref and ΔH ref for those analytes that have too small or too large retention factors at T ref . Breaking all analytes in several subsets each with its own T ref leads to discontinuities in the analyte parameters. These problems are avoided in the K-centric modeling where ΔS(T) and ΔS(T) and other analyte parameters are described in relation to their values corresponding to a predetermined reference distribution coefficient (K Ref ) - the same for all analytes. In this report, the mathematics of the K-centric modeling are described and the properties of several types of K-centric parameters are discussed. It has been shown that the earlier introduced characteristic parameters of the analyte-column interaction (the characteristic temperature, T char , and the characteristic thermal constant, θ char ) are a special chromatographically convenient case of the K-centric parameters. Transformations of T-centric parameters into K-centric ones and vice-versa as well as the transformations of one set of K-centric parameters into another set and vice-versa are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

    PubMed Central

    Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.

    2017-01-01

    Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892

  20. Statistics, Adjusted Statistics, and Maladjusted Statistics.

    PubMed

    Kaufman, Jay S

    2017-05-01

    Statistical adjustment is a ubiquitous practice in all quantitative fields that is meant to correct for improprieties or limitations in observed data, to remove the influence of nuisance variables or to turn observed correlations into causal inferences. These adjustments proceed by reporting not what was observed in the real world, but instead modeling what would have been observed in an imaginary world in which specific nuisances and improprieties are absent. These techniques are powerful and useful inferential tools, but their application can be hazardous or deleterious if consumers of the adjusted results mistake the imaginary world of models for the real world of data. Adjustments require decisions about which factors are of primary interest and which are imagined away, and yet many adjusted results are presented without any explanation or justification for these decisions. Adjustments can be harmful if poorly motivated, and are frequently misinterpreted in the media's reporting of scientific studies. Adjustment procedures have become so routinized that many scientists and readers lose the habit of relating the reported findings back to the real world in which we live.

  1. Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process

    NASA Astrophysics Data System (ADS)

    Nakanishi, W.; Fuse, T.; Ishikawa, T.

    2015-05-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.

  2. Method for preparing membranes with adjustable separation performance

    DOEpatents

    Peterson, E.S.; Orme, C.J.; Stone, M.L.

    1995-01-31

    Methods for adjustable separation of solutes and solvents involve the combination of the use of a maximally swollen membrane and subsequent vacuum depressurization exerted on the permeate side of that membrane. By adjusting the extent of depressurization it is possible to separate solvent from solutes and solutes from each other. Improved control of separation parameters as well as improved flux rates characterize the present invention. 2 figs.

  3. Method for preparing membranes with adjustable separation performance

    DOEpatents

    Peterson, Eric S.; Orme, Christopher J.; Stone, Mark L.

    1995-01-01

    Methods for adjustable separation of solutes and solvents involve the combination of the use of a maximally swollen membrane and subsequent vacuum depressurization exerted on the permeate side of that membrane. By adjusting the extent of depressurization it is possible to separate solvent from solutes and solutes from each other. Improved control of separation parameters as well as improved flux rates characterize the present invention.

  4. A Generalized Simple Formulation of Convective Adjustment ...

    EPA Pesticide Factsheets

    Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a prescribed value or ad hoc representation of τ is used in most global and regional climate/weather models making it a tunable parameter and yet still resulting in uncertainties in convective precipitation simulations. In this work, a generalized simple formulation of τ for use in any convection parameterization for shallow and deep clouds is developed to reduce convective precipitation biases at different grid spacing. Unlike existing other methods, our new formulation can be used with field campaign measurements to estimate τ as demonstrated by using data from two different special field campaigns. Then, we implemented our formulation into a regional model (WRF) for testing and evaluation. Results indicate that our simple τ formulation can give realistic temporal and spatial variations of τ across continental U.S. as well as grid-scale and subgrid scale precipitation. We also found that as the grid spacing decreases (e.g., from 36 to 4-km grid spacing), grid-scale precipitation dominants over subgrid-scale precipitation. The generalized τ formulation works for various types of atmospheric conditions (e.g., continental clouds due to heating and large-scale forcing over la

  5. Observation model and parameter partials for the JPL geodetic GPS modeling software GPSOMC

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Border, J. S.

    1988-01-01

    The physical models employed in GPSOMC and the modeling module of the GIPSY software system developed at JPL for analysis of geodetic Global Positioning Satellite (GPS) measurements are described. Details of the various contributions to range and phase observables are given, as well as the partial derivatives of the observed quantities with respect to model parameters. A glossary of parameters is provided to enable persons doing data analysis to identify quantities in the current report with their counterparts in the computer programs. There are no basic model revisions, with the exceptions of an improved ocean loading model and some new options for handling clock parametrization. Such misprints as were discovered were corrected. Further revisions include modeling improvements and assurances that the model description is in accord with the current software.

  6. Model parameter learning using Kullback-Leibler divergence

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan

    2018-02-01

    In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.

  7. Good Models Gone Bad: Quantifying and Predicting Parameter-Induced Climate Model Simulation Failures

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Brandon, S.; Covey, C. C.; Domyancic, D.; Ivanova, D. P.

    2012-12-01

    Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Statistical analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation failures of the Parallel Ocean Program (POP2). About 8.5% of our POP2 runs failed for numerical reasons at certain combinations of parameter values. We apply support vector machine (SVM) classification from the fields of pattern recognition and machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. The SVM classifiers readily predict POP2 failures in an independent validation ensemble, and are subsequently used to determine the causes of the failures via a global sensitivity analysis. Four parameters related to ocean mixing and viscosity are identified as the major sources of POP2 failures. Our method can be used to improve the robustness of complex scientific models to parameter perturbations and to better steer UQ ensembles. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-569112).

  8. Iterative integral parameter identification of a respiratory mechanics model.

    PubMed

    Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey

    2012-07-18

    Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  9. A comparison between a new model and current models for estimating trunk segment inertial parameters.

    PubMed

    Wicke, Jason; Dumas, Genevieve A; Costigan, Patrick A

    2009-01-05

    Modeling of the body segments to estimate segment inertial parameters is required in the kinetic analysis of human motion. A new geometric model for the trunk has been developed that uses various cross-sectional shapes to estimate segment volume and adopts a non-uniform density function that is gender-specific. The goal of this study was to test the accuracy of the new model for estimating the trunk's inertial parameters by comparing it to the more current models used in biomechanical research. Trunk inertial parameters estimated from dual X-ray absorptiometry (DXA) were used as the standard. Twenty-five female and 24 male college-aged participants were recruited for the study. Comparisons of the new model to the accepted models were accomplished by determining the error between the models' trunk inertial estimates and that from DXA. Results showed that the new model was more accurate across all inertial estimates than the other models. The new model had errors within 6.0% for both genders, whereas the other models had higher average errors ranging from 10% to over 50% and were much more inconsistent between the genders. In addition, there was little consistency in the level of accuracy for the other models when estimating the different inertial parameters. These results suggest that the new model provides more accurate and consistent trunk inertial estimates than the other models for both female and male college-aged individuals. However, similar studies need to be performed using other populations, such as elderly or individuals from a distinct morphology (e.g. obese). In addition, the effect of using different models on the outcome of kinetic parameters, such as joint moments and forces needs to be assessed.

  10. Modeling Quality-Adjusted Life Expectancy Loss Resulting from Tobacco Use in the United States

    ERIC Educational Resources Information Center

    Kaplan, Robert M.; Anderson, John P.; Kaplan, Cameron M.

    2007-01-01

    Purpose: To describe the development of a model for estimating the effects of tobacco use upon Quality Adjusted Life Years (QALYs) and to estimate the impact of tobacco use on health outcomes for the United States (US) population using the model. Method: We obtained estimates of tobacco consumption from 6 years of the National Health Interview…

  11. Development and Validation of Perioperative Risk-Adjustment Models for Hip Fracture Repair, Total Hip Arthroplasty, and Total Knee Arthroplasty.

    PubMed

    Schilling, Peter L; Bozic, Kevin J

    2016-01-06

    Comparing outcomes across providers requires risk-adjustment models that account for differences in case mix. The burden of data collection from the clinical record can make risk-adjusted outcomes difficult to measure. The purpose of this study was to develop risk-adjustment models for hip fracture repair (HFR), total hip arthroplasty (THA), and total knee arthroplasty (TKA) that weigh adequacy of risk adjustment against data-collection burden. We used data from the American College of Surgeons National Surgical Quality Improvement Program to create derivation cohorts for HFR (n = 7000), THA (n = 17,336), and TKA (n = 28,661). We developed logistic regression models for each procedure using age, sex, American Society of Anesthesiologists (ASA) physical status classification, comorbidities, laboratory values, and vital signs-based comorbidities as covariates, and validated the models with use of data from 2012. The derivation models' C-statistics for mortality were 80%, 81%, 75%, and 92% and for adverse events were 68%, 68%, 60%, and 70% for HFR, THA, TKA, and combined procedure cohorts. Age, sex, and ASA classification accounted for a large share of the explained variation in mortality (50%, 58%, 70%, and 67%) and adverse events (43%, 45%, 46%, and 68%). For THA and TKA, these three variables were nearly as predictive as models utilizing all covariates. HFR model discrimination improved with the addition of comorbidities and laboratory values; among the important covariates were functional status, low albumin, high creatinine, disseminated cancer, dyspnea, and body mass index. Model performance was similar in validation cohorts. Risk-adjustment models using data from health records demonstrated good discrimination and calibration for HFR, THA, and TKA. It is possible to provide adequate risk adjustment using only the most predictive variables commonly available within the clinical record. This finding helps to inform the trade-off between model performance and data

  12. Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology

    PubMed Central

    Murakami, Yohei

    2014-01-01

    Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor. PMID:25089832

  13. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  14. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  15. Failure analysis of parameter-induced simulation crashes in climate models

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.

    2013-08-01

    Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  16. Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations

    NASA Astrophysics Data System (ADS)

    Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.

    2017-09-01

    This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  17. Atlantic Ocean CARINA data: overview and salinity adjustments

    NASA Astrophysics Data System (ADS)

    Tanhua, T.; Steinfeldt, R.; Key, R. M.; Brown, P.; Gruber, N.; Wanninkhof, R.; Perez, F.; Körtzinger, A.; Velo, A.; Schuster, U.; van Heuven, S.; Bullister, J. L.; Stendardo, I.; Hoppema, M.; Olsen, A.; Kozyr, A.; Pierrot, D.; Schirnick, C.; Wallace, D. W. R.

    2009-08-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. Arctic, Atlantic and Southern Ocean. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report details of the secondary QC for salinity for this data set. Procedures of quality control - including crossover analysis between stations and inversion analysis of all crossover data - are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal accuracy of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004), and is now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  18. An improved swarm optimization for parameter estimation and biological model selection.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This

  19. An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection

    PubMed Central

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This

  20. The Pennsylvania Trauma Outcomes Study Risk-Adjusted Mortality Model: Results of a Statewide Benchmarking Program

    PubMed Central

    WIEBE, DOUGLAS J.; HOLENA, DANIEL N.; DELGADO, M. KIT; McWILLIAMS, NATHAN; ALTENBURG, JULIET; CARR, BRENDAN G.

    2018-01-01

    Trauma centers need objective feedback on performance to inform quality improvement efforts. The Trauma Quality Improvement Program recently published recommended methodology for case mix adjustment and benchmarking performance. We tested the feasibility of applying this methodology to develop risk-adjusted mortality models for a statewide trauma system. We performed a retrospective cohort study of patients ≥16 years old at Pennsylvania trauma centers from 2011 to 2013 (n = 100,278). Our main outcome measure was observed-to-expected mortality ratios (overall and within blunt, penetrating, multisystem, isolated head, and geriatric subgroups). Patient demographic variables, physiology, mechanism of injury, transfer status, injury severity, and pre-existing conditions were included as predictor variables. The statistical model had excellent discrimination (area under the curve = 0.94). Funnel plots of observed-to-expected identified five centers with lower than expected mortality and two centers with higher than expected mortality. No centers were outliers for management of penetrating trauma, but five centers had lower and three had higher than expected mortality for blunt trauma. It is feasible to use Trauma Quality Improvement Program methodology to develop risk-adjusted models for statewide trauma systems. Even with smaller numbers of trauma centers that are available in national datasets, it is possible to identify high and low outliers in performance. PMID:28541852

  1. The Pennsylvania Trauma Outcomes Study Risk-Adjusted Mortality Model: Results of a Statewide Benchmarking Program.

    PubMed

    Wiebe, Douglas J; Holena, Daniel N; Delgado, M Kit; McWilliams, Nathan; Altenburg, Juliet; Carr, Brendan G

    2017-05-01

    Trauma centers need objective feedback on performance to inform quality improvement efforts. The Trauma Quality Improvement Program recently published recommended methodology for case mix adjustment and benchmarking performance. We tested the feasibility of applying this methodology to develop risk-adjusted mortality models for a statewide trauma system. We performed a retrospective cohort study of patients ≥16 years old at Pennsylvania trauma centers from 2011 to 2013 (n = 100,278). Our main outcome measure was observed-to-expected mortality ratios (overall and within blunt, penetrating, multisystem, isolated head, and geriatric subgroups). Patient demographic variables, physiology, mechanism of injury, transfer status, injury severity, and pre-existing conditions were included as predictor variables. The statistical model had excellent discrimination (area under the curve = 0.94). Funnel plots of observed-to-expected identified five centers with lower than expected mortality and two centers with higher than expected mortality. No centers were outliers for management of penetrating trauma, but five centers had lower and three had higher than expected mortality for blunt trauma. It is feasible to use Trauma Quality Improvement Program methodology to develop risk-adjusted models for statewide trauma systems. Even with smaller numbers of trauma centers that are available in national datasets, it is possible to identify high and low outliers in performance.

  2. Quality-of-life-adjusted hazard of death: a formulation of the quality-adjusted life-years model of use in benefit-risk assessment.

    PubMed

    Garcia-Hernandez, Alberto

    2014-03-01

    Although the quality-adjusted life-years (QALY) model is standard in health technology assessment, quantitative methods are less frequent but increasingly used for benefit-risk assessment (BRA) at earlier stages of drug development. A frequent challenge when implementing metrics for BRA is to weigh the importance of effects on a chronic condition against the risk of severe events during the trial. The lifetime component of the QALY model has a counterpart in the BRA context, namely, the risk of dying during the study. A new concept is presented, the hazard of death function that a subject is willing to accept instead of the baseline hazard to improve his or her chronic health status, which we have called the quality-of-life-adjusted hazard of death. It has been proven that if assumptions of the linear QALY model hold, the excess mortality rate tolerated by a subject for a chronic health improvement is inversely proportional to the mean residual life. This result leads to a new representation of the linear QALY model in terms of hazard rate functions and allows utilities obtained by using standard methods involving trade-offs of life duration to be translated into thresholds of tolerated mortality risk during a short period of time, thereby avoiding direct trade-offs using small probabilities of events during the study, which is known to lead to bias and variability. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  3. Parameter recovery, bias and standard errors in the linear ballistic accumulator model.

    PubMed

    Visser, Ingmar; Poessé, Rens

    2017-05-01

    The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model. © 2017 The British Psychological Society.

  4. Physiological Parameters Database for PBPK Modeling (External Review Draft)

    EPA Science Inventory

    EPA released for public comment a physiological parameters database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence. It also contains similar data for an...

  5. Inverse Modeling of Hydrologic Parameters Using Surface Flux and Runoff Observations in the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hou, Zhangshuan; Huang, Maoyi

    2013-12-10

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less

  6. [Applying temporally-adjusted land use regression models to estimate ambient air pollution exposure during pregnancy].

    PubMed

    Zhang, Y J; Xue, F X; Bai, Z P

    2017-03-06

    The impact of maternal air pollution exposure on offspring health has received much attention. Precise and feasible exposure estimation is particularly important for clarifying exposure-response relationships and reducing heterogeneity among studies. Temporally-adjusted land use regression (LUR) models are exposure assessment methods developed in recent years that have the advantage of having high spatial-temporal resolution. Studies on the health effects of outdoor air pollution exposure during pregnancy have been increasingly carried out using this model. In China, research applying LUR models was done mostly at the model construction stage, and findings from related epidemiological studies were rarely reported. In this paper, the sources of heterogeneity and research progress of meta-analysis research on the associations between air pollution and adverse pregnancy outcomes were analyzed. The methods of the characteristics of temporally-adjusted LUR models were introduced. The current epidemiological studies on adverse pregnancy outcomes that applied this model were systematically summarized. Recommendations for the development and application of LUR models in China are presented. This will encourage the implementation of more valid exposure predictions during pregnancy in large-scale epidemiological studies on the health effects of air pollution in China.

  7. Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow

    NASA Astrophysics Data System (ADS)

    Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen

    2016-08-01

    Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.

  8. Macroscopic singlet oxygen model incorporating photobleaching as an input parameter

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.

    2015-03-01

    A macroscopic singlet oxygen model for photodynamic therapy (PDT) has been used extensively to calculate the reacted singlet oxygen concentration for various photosensitizers. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]r,sh) can be found for various drugs and drug-light intervals using a fitting algorithm. The input parameters for this model include the fluence, photosensitizer concentration, optical properties, and necrosis radius. An additional input variable of photobleaching was implemented in this study to optimize the results. Photobleaching was measured by using the pre-PDT and post-PDT sensitizer concentrations. Using the RIF model of murine fibrosarcoma, mice were treated with a linear source with fluence rates from 12 - 150 mW/cm and total fluences from 24 - 135 J/cm. The two main drugs investigated were benzoporphyrin derivative monoacid ring A (BPD) and 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). Previously published photophysical parameters were fine-tuned and verified using photobleaching as the additional fitting parameter. Furthermore, photobleaching can be used as an indicator of the robustness of the model for the particular mouse experiment by comparing the experimental and model-calculated photobleaching ratio.

  9. Using a 4D-Variational Method to Optimize Model Parameters in an Intermediate Coupled Model of ENSO

    NASA Astrophysics Data System (ADS)

    Gao, C.; Zhang, R. H.

    2017-12-01

    Large biases exist in real-time ENSO prediction, which is attributed to uncertainties in initial conditions and model parameters. Previously, a four dimentional variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation, written as Te=αTe×FTe (SL). The introduced parameter, αTe, represents the strength of the thermocline effect on sea surface temperature (SST; referred as the thermocline effect). A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having initial condition optimized only and having initial condition plus this additional model parameter optimized both are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameter and initial condition together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.

  10. Investigation into discretization methods of the six-parameter Iwan model

    NASA Astrophysics Data System (ADS)

    Li, Yikun; Hao, Zhiming; Feng, Jiaquan; Zhang, Dingguo

    2017-02-01

    Iwan model is widely applied for the purpose of describing nonlinear mechanisms of jointed structures. In this paper, parameter identification procedures of the six-parameter Iwan model based on joint experiments with different preload techniques are performed. Four kinds of discretization methods deduced from stiffness equation of the six-parameter Iwan model are provided, which can be used to discretize the integral-form Iwan model into a sum of finite Jenkins elements. In finite element simulation, the influences of discretization methods and numbers of Jenkins elements on computing accuracy are discussed. Simulation results indicate that a higher accuracy can be obtained with larger numbers of Jenkins elements. It is also shown that compared with other three kinds of discretization methods, the geometric series discretization based on stiffness provides the highest computing accuracy.

  11. Impact of the calibration period on the conceptual rainfall-runoff model parameter estimates

    NASA Astrophysics Data System (ADS)

    Todorovic, Andrijana; Plavsic, Jasna

    2015-04-01

    A conceptual rainfall-runoff model is defined by its structure and parameters, which are commonly inferred through model calibration. Parameter estimates depend on objective function(s), optimisation method, and calibration period. Model calibration over different periods may result in dissimilar parameter estimates, while model efficiency decreases outside calibration period. Problem of model (parameter) transferability, which conditions reliability of hydrologic simulations, has been investigated for decades. In this paper, dependence of the parameter estimates and model performance on calibration period is analysed. The main question that is addressed is: are there any changes in optimised parameters and model efficiency that can be linked to the changes in hydrologic or meteorological variables (flow, precipitation and temperature)? Conceptual, semi-distributed HBV-light model is calibrated over five-year periods shifted by a year (sliding time windows). Length of the calibration periods is selected to enable identification of all parameters. One water year of model warm-up precedes every simulation, which starts with the beginning of a water year. The model is calibrated using the built-in GAP optimisation algorithm. The objective function used for calibration is composed of Nash-Sutcliffe coefficient for flows and logarithms of flows, and volumetric error, all of which participate in the composite objective function with approximately equal weights. Same prior parameter ranges are used in all simulations. The model is calibrated against flows observed at the Slovac stream gauge on the Kolubara River in Serbia (records from 1954 to 2013). There are no trends in precipitation nor in flows, however, there is a statistically significant increasing trend in temperatures at this catchment. Parameter variability across the calibration periods is quantified in terms of standard deviations of normalised parameters, enabling detection of the most variable parameters

  12. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design--part I. Model development.

    PubMed

    He, L; Huang, G H; Lu, H W

    2010-04-15

    Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.

  13. Assessment of parameter regionalization methods for modeling flash floods in China

    NASA Astrophysics Data System (ADS)

    Ragettli, Silvan; Zhou, Jian; Wang, Haijing

    2017-04-01

    Rainstorm flash floods are a common and serious phenomenon during the summer months in many hilly and mountainous regions of China. For this study, we develop a modeling strategy for simulating flood events in small river basins of four Chinese provinces (Shanxi, Henan, Beijing, Fujian). The presented research is part of preliminary investigations for the development of a national operational model for predicting and forecasting hydrological extremes in basins of size 10 - 2000 km2, whereas most of these basins are ungauged or poorly gauged. The project is supported by the China Institute of Water Resources and Hydropower Research within the framework of the national initiative for flood prediction and early warning system for mountainous regions in China (research project SHZH-IWHR-73). We use the USGS Precipitation-Runoff Modeling System (PRMS) as implemented in the Java modeling framework Object Modeling System (OMS). PRMS can operate at both daily and storm timescales, switching between the two using a precipitation threshold. This functionality allows the model to perform continuous simulations over several years and to switch to the storm mode to simulate storm response in greater detail. The model was set up for fifteen watersheds for which hourly precipitation and runoff data were available. First, automatic calibration based on the Shuffled Complex Evolution method was applied to different hydrological response unit (HRU) configurations. The Nash-Sutcliffe efficiency (NSE) was used as assessment criteria, whereas only runoff data from storm events were considered. HRU configurations reflect the drainage-basin characteristics and depend on assumptions regarding drainage density and minimum HRU size. We then assessed the sensitivity of optimal parameters to different HRU configurations. Finally, the transferability to other watersheds of optimal model parameters that were not sensitive to HRU configurations was evaluated. Model calibration for the 15

  14. A comparison of administrative and physiologic predictive models in determining risk adjusted mortality rates in critically ill patients.

    PubMed

    Enfield, Kyle B; Schafer, Katherine; Zlupko, Mike; Herasevich, Vitaly; Novicoff, Wendy M; Gajic, Ognjen; Hoke, Tracey R; Truwit, Jonathon D

    2012-01-01

    Hospitals are increasingly compared based on clinical outcomes adjusted for severity of illness. Multiple methods exist to adjust for differences between patients. The challenge for consumers of this information, both the public and healthcare providers, is interpreting differences in risk adjustment models particularly when models differ in their use of administrative and physiologic data. We set to examine how administrative and physiologic models compare to each when applied to critically ill patients. We prospectively abstracted variables for a physiologic and administrative model of mortality from two intensive care units in the United States. Predicted mortality was compared through the Pearsons Product coefficient and Bland-Altman analysis. A subgroup of patients admitted directly from the emergency department was analyzed to remove potential confounding changes in condition prior to ICU admission. We included 556 patients from two academic medical centers in this analysis. The administrative model and physiologic models predicted mortalities for the combined cohort were 15.3% (95% CI 13.7%, 16.8%) and 24.6% (95% CI 22.7%, 26.5%) (t-test p-value<0.001). The r(2) for these models was 0.297. The Bland-Atlman plot suggests that at low predicted mortality there was good agreement; however, as mortality increased the models diverged. Similar results were found when analyzing a subgroup of patients admitted directly from the emergency department. When comparing the two hospitals, there was a statistical difference when using the administrative model but not the physiologic model. Unexplained mortality, defined as those patients who died who had a predicted mortality less than 10%, was a rare event by either model. In conclusion, while it has been shown that administrative models provide estimates of mortality that are similar to physiologic models in non-critically ill patients with pneumonia, our results suggest this finding can not be applied globally to

  15. Functional form and risk adjustment of hospital costs: Bayesian analysis of a Box-Cox random coefficients model.

    PubMed

    Hollenbeak, Christopher S

    2005-10-15

    While risk-adjusted outcomes are often used to compare the performance of hospitals and physicians, the most appropriate functional form for the risk adjustment process is not always obvious for continuous outcomes such as costs. Semi-log models are used most often to correct skewness in cost data, but there has been limited research to determine whether the log transformation is sufficient or whether another transformation is more appropriate. This study explores the most appropriate functional form for risk-adjusting the cost of coronary artery bypass graft (CABG) surgery. Data included patients undergoing CABG surgery at four hospitals in the midwest and were fit to a Box-Cox model with random coefficients (BCRC) using Markov chain Monte Carlo methods. Marginal likelihoods and Bayes factors were computed to perform model comparison of alternative model specifications. Rankings of hospital performance were created from the simulation output and the rankings produced by Bayesian estimates were compared to rankings produced by standard models fit using classical methods. Results suggest that, for these data, the most appropriate functional form is not logarithmic, but corresponds to a Box-Cox transformation of -1. Furthermore, Bayes factors overwhelmingly rejected the natural log transformation. However, the hospital ranking induced by the BCRC model was not different from the ranking produced by maximum likelihood estimates of either the linear or semi-log model. Copyright (c) 2005 John Wiley & Sons, Ltd.

  16. Mass balance model parameter transferability on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  17. A Threshold Model of Social Support, Adjustment, and Distress after Breast Cancer Treatment

    ERIC Educational Resources Information Center

    Mallinckrodt, Brent; Armer, Jane M.; Heppner, P. Paul

    2012-01-01

    This study examined a threshold model that proposes that social support exhibits a curvilinear association with adjustment and distress, such that support in excess of a critical threshold level has decreasing incremental benefits. Women diagnosed with a first occurrence of breast cancer (N = 154) completed survey measures of perceived support…

  18. Modeling and Bayesian parameter estimation for shape memory alloy bending actuators

    NASA Astrophysics Data System (ADS)

    Crews, John H.; Smith, Ralph C.

    2012-04-01

    In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.

  19. Retrieval of cloud cover parameters from multispectral satellite images

    NASA Technical Reports Server (NTRS)

    Arking, A.; Childs, J. D.

    1985-01-01

    A technique is described for extracting cloud cover parameters from multispectral satellite radiometric measurements. Utilizing three channels from the AVHRR (Advanced Very High Resolution Radiometer) on NOAA polar orbiting satellites, it is shown that one can retrieve four parameters for each pixel: cloud fraction within the FOV, optical thickness, cloud-top temperature and a microphysical model parameter. The last parameter is an index representing the properties of the cloud particle and is determined primarily by the radiance at 3.7 microns. The other three parameters are extracted from the visible and 11 micron infrared radiances, utilizing the information contained in the two-dimensional scatter plot of the measured radiances. The solution is essentially one in which the distributions of optical thickness and cloud-top temperature are maximally clustered for each region, with cloud fraction for each pixel adjusted to achieve maximal clustering.

  20. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models

    USGS Publications Warehouse

    Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.

    2011-01-01

    We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

  1. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  2. Zero adjusted models with applications to analysing helminths count data.

    PubMed

    Chipeta, Michael G; Ngwira, Bagrey M; Simoonga, Christopher; Kazembe, Lawrence N

    2014-11-27

    It is common in public health and epidemiology that the outcome of interest is counts of events occurrence. Analysing these data using classical linear models is mostly inappropriate, even after transformation of outcome variables due to overdispersion. Zero-adjusted mixture count models such as zero-inflated and hurdle count models are applied to count data when over-dispersion and excess zeros exist. Main objective of the current paper is to apply such models to analyse risk factors associated with human helminths (S. haematobium) particularly in a case where there's a high proportion of zero counts. The data were collected during a community-based randomised control trial assessing the impact of mass drug administration (MDA) with praziquantel in Malawi, and a school-based cross sectional epidemiology survey in Zambia. Count data models including traditional (Poisson and negative binomial) models, zero modified models (zero inflated Poisson and zero inflated negative binomial) and hurdle models (Poisson logit hurdle and negative binomial logit hurdle) were fitted and compared. Using Akaike information criteria (AIC), the negative binomial logit hurdle (NBLH) and zero inflated negative binomial (ZINB) showed best performance in both datasets. With regards to zero count capturing, these models performed better than other models. This paper showed that zero modified NBLH and ZINB models are more appropriate methods for the analysis of data with excess zeros. The choice between the hurdle and zero-inflated models should be based on the aim and endpoints of the study.

  3. Estimating winter wheat phenological parameters: Implications for crop modeling

    USDA-ARS?s Scientific Manuscript database

    Crop parameters, such as the timing of developmental events, are critical for accurate simulation results in crop simulation models, yet uncertainty often exists in determining the parameters. Factors contributing to the uncertainty include: a) sources of variation within a plant (i.e., within diffe...

  4. Soil-adjusted sorption isotherms for arsenic(V) and vanadium(V)

    NASA Astrophysics Data System (ADS)

    Rückamp, Daniel; Utermann, Jens; Florian Stange, Claus

    2017-04-01

    The sorption characteristic of a soil is usually determined by fitting a sorption isotherm model to laboratory data. However, such sorption isotherms are only valid for the studied soil and cannot be transferred to other soils. For this reason, a soil-adjusted sorption isotherm can be calculated by using the data of several soils. Such soil-adjusted sorption isotherms exist for cationic heavy metals, but are lacking for heavy metal oxyanions. Hence, the aim of this study is to establish soil-adjusted sorption isotherms for the oxyanions arsenate (arsenic(V)) and vanadate (vanadium(V)). For the laboratory experiment, 119 soils (samples from top- and subsoils) typical for Germany were chosen. The batch experiments were conducted with six concentrations of arsenic(V) and vanadium(V), respectively. By using the laboratory data, sorption isotherms for each soil were derived. Then, the soil-adjusted sorption isotherms were calculated by non-linear regression of the sorption isotherms with additional soil parameters. The results indicated a correlation between the sorption strength and oxalate-extractable iron, organic carbon, clay, and electrical conductivity for both, arsenic and vanadium. However, organic carbon had a negative regression coefficient. As total organic carbon was correlated with dissolved organic carbon; we attribute this observation to an effect of higher amounts of dissolved organic substances. We conclude that these soil-adjusted sorption isotherms can be used to assess the potential of soils to adsorb arsenic(V) and vanadium(V) without performing time-consuming sorption experiments.

  5. Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.

    PubMed

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2015-11-01

    The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.

  6. The effects of coping on adjustment: Re-examining the goodness of fit model of coping effectiveness.

    PubMed

    Masel, C N; Terry, D J; Gribble, M

    1996-01-01

    Abstract The primary aim of the present study was to examine the extent to which the effects of coping on adjustment are moderated by levels of event controllability. Specifically, the research tested two revisions to the goodness of fit model of coping effectiveness. First, it was hypothesized that the effects of problem management coping (but not problem appraisal coping) would be moderated by levels of event controllability. Second, it was hypothesized that the effects of emotion-focused coping would be moderated by event controllability, but only in the acute phase of a stressful encounter. To test these predictions, a longitudinal study was undertaken (185 undergraduate students participated in all three stages of the research). Measures of initial adjustment (low depression and coping efficacy) were obtained at Time 1. Four weeks later (Time 2), coping responses to a current or a recent stressor were assessed. Based on subjects' descriptions of the event, objective and subjective measures of event controllability were also obtained. Measures of concurrent and subsequent adjustment were obtained at Times 2 and 3 (two weeks later), respectively. There was only weak support for the goodness of fit model of coping effectiveness. The beneficial effects of a high proportion of problem management coping (relative to total coping efforts) on Time 3 perceptions of coping efficacy were more evident in high control than in low control situations. Other results of the research revealed that, irrespective of the controllability of the event, problem appraisal coping strategies and emotion-focused strategies (escapism and self-denigration) were associated with high and low levels of concurrent adjustment, respectively. The effects of these coping responses on subsequent adjustment were mediated through concurrent levels of adjustment.

  7. A simplified method for determining reactive rate parameters for reaction ignition and growth in explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.J.

    1996-07-01

    A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.

  8. Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Wang, Likun; Qin, Lei

    2018-06-01

    A theoretical model was developed to investigate the performance of 1-3 piezoelectric composites with a sandwich polymer. Effective parameters, such as the electromechanical coupling factor, longitudinal velocity, and characteristic acoustic impedance of the piezocomposite, were predicted using the developed model. The influences of volume fractions and components of the polymer phase on the effective parameters of the piezoelectric composite were studied. The theoretical model was verified experimentally. The proposed model can reproduce the effective parameters of 1-3 piezoelectric composites with a sandwich polymer in the thickness mode. The measured electromechanical coupling factor was improved by more than 9.8% over the PZT/resin 1-3 piezoelectric composite.

  9. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  10. Adjustment modes in the trajectory of progressive multiple sclerosis: a qualitative study and conceptual model.

    PubMed

    Bogosian, Angeliki; Morgan, Myfanwy; Bishop, Felicity L; Day, Fern; Moss-Morris, Rona

    2017-03-01

    We examined cognitive and behavioural challenges and adaptations for people with progressive multiple sclerosis (MS) and developed a preliminary conceptual model of changes in adjustment over time. Using theoretical sampling, 34 semi-structured interviews were conducted with people with MS. Participants were between 41 and 77 years of age. Thirteen were diagnosed with primary progressive MS and 21 with secondary progressive MS. Data were analysed using a grounded theory approach. Participants described initially bracketing the illness off and carrying on their usual activities but this became problematic as the condition progressed and they employed different adjustment modes to cope with increased disabilities. Some scaled back their activities to live a more comfortable life, others identified new activities or adapted old ones, whereas at times, people disengaged from the adjustment process altogether and resigned to their condition. Relationships with partners, emotional reactions, environment and perception of the environment influenced adjustment, while people were often flexible and shifted among modes. Adjusting to a progressive condition is a fluid process. Future interventions can be tailored to address modifiable factors at different stages of the condition and may involve addressing emotional reactions concealing/revealing the condition and perceptions of the environment.

  11. Understanding heart rate alarm adjustment in the intensive care units through an analytical approach.

    PubMed

    Fidler, Richard L; Pelter, Michele M; Drew, Barbara J; Palacios, Jorge Arroyo; Bai, Yong; Stannard, Daphne; Aldrich, J Matt; Hu, Xiao

    2017-01-01

    Heart rate (HR) alarms are prevalent in ICU, and these parameters are configurable. Not much is known about nursing behavior associated with tailoring HR alarm parameters to individual patients to reduce clinical alarm fatigue. To understand the relationship between heart rate (HR) alarms and adjustments to reduce unnecessary heart rate alarms. Retrospective, quantitative analysis of an adjudicated database using analytical approaches to understand behaviors surrounding parameter HR alarm adjustments. Patients were sampled from five adult ICUs (77 beds) over one month at a quaternary care university medical center. A total of 337 of 461 ICU patients had HR alarms with 53.7% male, mean age 60.3 years, and 39% non-Caucasian. Default HR alarm parameters were 50 and 130 beats per minute (bpm). The occurrence of each alarm, vital signs, and physiologic waveforms was stored in a relational database (SQL server). There were 23,624 HR alarms for analysis, with 65.4% exceeding the upper heart rate limit. Only 51% of patients with HR alarms had parameters adjusted, with a median upper limit change of +5 bpm and -1 bpm lower limit. The median time to first HR parameter adjustment was 17.9 hours, without reduction in alarms occurrence (p = 0.57). HR alarms are prevalent in ICU, and half of HR alarm settings remain at default. There is a long delay between HR alarms and parameters changes, with insufficient changes to decrease HR alarms. Increasing frequency of HR alarms shortens the time to first adjustment. Best practice guidelines for HR alarm limits are needed to reduce alarm fatigue and improve monitoring precision.

  12. Understanding heart rate alarm adjustment in the intensive care units through an analytical approach

    PubMed Central

    Pelter, Michele M.; Drew, Barbara J.; Palacios, Jorge Arroyo; Bai, Yong; Stannard, Daphne; Aldrich, J. Matt; Hu, Xiao

    2017-01-01

    Background Heart rate (HR) alarms are prevalent in ICU, and these parameters are configurable. Not much is known about nursing behavior associated with tailoring HR alarm parameters to individual patients to reduce clinical alarm fatigue. Objectives To understand the relationship between heart rate (HR) alarms and adjustments to reduce unnecessary heart rate alarms. Methods Retrospective, quantitative analysis of an adjudicated database using analytical approaches to understand behaviors surrounding parameter HR alarm adjustments. Patients were sampled from five adult ICUs (77 beds) over one month at a quaternary care university medical center. A total of 337 of 461 ICU patients had HR alarms with 53.7% male, mean age 60.3 years, and 39% non-Caucasian. Default HR alarm parameters were 50 and 130 beats per minute (bpm). The occurrence of each alarm, vital signs, and physiologic waveforms was stored in a relational database (SQL server). Results There were 23,624 HR alarms for analysis, with 65.4% exceeding the upper heart rate limit. Only 51% of patients with HR alarms had parameters adjusted, with a median upper limit change of +5 bpm and -1 bpm lower limit. The median time to first HR parameter adjustment was 17.9 hours, without reduction in alarms occurrence (p = 0.57). Conclusions HR alarms are prevalent in ICU, and half of HR alarm settings remain at default. There is a long delay between HR alarms and parameters changes, with insufficient changes to decrease HR alarms. Increasing frequency of HR alarms shortens the time to first adjustment. Best practice guidelines for HR alarm limits are needed to reduce alarm fatigue and improve monitoring precision. PMID:29176776

  13. Determination of Littlest Higgs Model Parameters at the ILC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conley, John A.; Hewett, JoAnne; Le, My Phuong

    2005-07-27

    We examine the effects of the extended gauge sector of the Littlest Higgs model in high energy e{sup +}e{sup -} collisions. We find that the search reach in e{sup +}e{sup -} {yields} f{bar f} at a {radical}s = 500 GeV International Linear Collider covers essentially the entire parameter region where the Littlest Higgs model is relevant to the gauge hierarchy problem. In addition, we show that this channel provides an accurate determination of the fundamental model parameters, to the precision of a few percent, provided that the LHC measures the mass of the heavy neutral gauge .eld. Additionally, we showmore » that the couplings of the extra gauge bosons to the light Higgs can be observed from the process e{sup +}e{sup -} {yields} Zh for a significant region of the parameter space. This allows for confirmation of the structure of the cancellation of the Higgs mass quadratic divergence and would verify the little Higgs mechanism.« less

  14. Radar altimeter waveform modeled parameter recovery. [SEASAT-1 data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Satellite-borne radar altimeters include waveform sampling gates providing point samples of the transmitted radar pulse after its scattering from the ocean's surface. Averages of the waveform sampler data can be fitted by varying parameters in a model mean return waveform. The theoretical waveform model used is described as well as a general iterative nonlinear least squares procedures used to obtain estimates of parameters characterizing the modeled waveform for SEASAT-1 data. The six waveform parameters recovered by the fitting procedure are: (1) amplitude; (2) time origin, or track point; (3) ocean surface rms roughness; (4) noise baseline; (5) ocean surface skewness; and (6) altitude or off-nadir angle. Additional practical processing considerations are addressed and FORTRAN source listing for subroutines used in the waveform fitting are included. While the description is for the Seasat-1 altimeter waveform data analysis, the work can easily be generalized and extended to other radar altimeter systems.

  15. Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Reed, Erik; Cavanagh, Peter

    2011-01-01

    Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.

  16. Using multilevel modeling to assess case-mix adjusters in consumer experience surveys in health care.

    PubMed

    Damman, Olga C; Stubbe, Janine H; Hendriks, Michelle; Arah, Onyebuchi A; Spreeuwenberg, Peter; Delnoij, Diana M J; Groenewegen, Peter P

    2009-04-01

    Ratings on the quality of healthcare from the consumer's perspective need to be adjusted for consumer characteristics to ensure fair and accurate comparisons between healthcare providers or health plans. Although multilevel analysis is already considered an appropriate method for analyzing healthcare performance data, it has rarely been used to assess case-mix adjustment of such data. The purpose of this article is to investigate whether multilevel regression analysis is a useful tool to detect case-mix adjusters in consumer assessment of healthcare. We used data on 11,539 consumers from 27 Dutch health plans, which were collected using the Dutch Consumer Quality Index health plan instrument. We conducted multilevel regression analyses of consumers' responses nested within health plans to assess the effects of consumer characteristics on consumer experience. We compared our findings to the results of another methodology: the impact factor approach, which combines the predictive effect of each case-mix variable with its heterogeneity across health plans. Both multilevel regression and impact factor analyses showed that age and education were the most important case-mix adjusters for consumer experience and ratings of health plans. With the exception of age, case-mix adjustment had little impact on the ranking of health plans. On both theoretical and practical grounds, multilevel modeling is useful for adequate case-mix adjustment and analysis of performance ratings.

  17. Relevance of the c-statistic when evaluating risk-adjustment models in surgery.

    PubMed

    Merkow, Ryan P; Hall, Bruce L; Cohen, Mark E; Dimick, Justin B; Wang, Edward; Chow, Warren B; Ko, Clifford Y; Bilimoria, Karl Y

    2012-05-01

    The measurement of hospital quality based on outcomes requires risk adjustment. The c-statistic is a popular tool used to judge model performance, but can be limited, particularly when evaluating specific operations in focused populations. Our objectives were to examine the interpretation and relevance of the c-statistic when used in models with increasingly similar case mix and to consider an alternative perspective on model calibration based on a graphical depiction of model fit. From the American College of Surgeons National Surgical Quality Improvement Program (2008-2009), patients were identified who underwent a general surgery procedure, and procedure groups were increasingly restricted: colorectal-all, colorectal-elective cases only, and colorectal-elective cancer cases only. Mortality and serious morbidity outcomes were evaluated using logistic regression-based risk adjustment, and model c-statistics and calibration curves were used to compare model performance. During the study period, 323,427 general, 47,605 colorectal-all, 39,860 colorectal-elective, and 21,680 colorectal cancer patients were studied. Mortality ranged from 1.0% in general surgery to 4.1% in the colorectal-all group, and serious morbidity ranged from 3.9% in general surgery to 12.4% in the colorectal-all procedural group. As case mix was restricted, c-statistics progressively declined from the general to the colorectal cancer surgery cohorts for both mortality and serious morbidity (mortality: 0.949 to 0.866; serious morbidity: 0.861 to 0.668). Calibration was evaluated graphically by examining predicted vs observed number of events over risk deciles. For both mortality and serious morbidity, there was no qualitative difference in calibration identified between the procedure groups. In the present study, we demonstrate how the c-statistic can become less informative and, in certain circumstances, can lead to incorrect model-based conclusions, as case mix is restricted and patients become

  18. Peer Victimization and Rejection: Investigation of an Integrative Model of Effects on Emotional, Behavioral, and Academic Adjustment in Early Adolescence

    ERIC Educational Resources Information Center

    Lopez, Cristy; DuBois, David L.

    2005-01-01

    This study investigated an integrative model of the effects of peer victimization (PV) and peer rejection (PR) on youth adjustment using data from 508 middle-school students. In the proposed model, PV and PR each contribute independently to problems in emotional, behavioral, and academic adjustment. The adverse consequences of PV and PR are each…

  19. Automated parameter tuning applied to sea ice in a global climate model

    NASA Astrophysics Data System (ADS)

    Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.

    2018-01-01

    This study investigates the hypothesis that a significant portion of spread in climate model projections of sea ice is due to poorly-constrained model parameters. New automated methods for optimization are applied to historical sea ice in a global coupled climate model (HadCM3) in order to calculate the combination of parameters required to reduce the difference between simulation and observations to within the range of model noise. The optimized parameters result in a simulated sea-ice time series which is more consistent with Arctic observations throughout the satellite record (1980-present), particularly in the September minimum, than the standard configuration of HadCM3. Divergence from observed Antarctic trends and mean regional sea ice distribution reflects broader structural uncertainty in the climate model. We also find that the optimized parameters do not cause adverse effects on the model climatology. This simple approach provides evidence for the contribution of parameter uncertainty to spread in sea ice extent trends and could be customized to investigate uncertainties in other climate variables.

  20. Dynamic Factor Analysis Models with Time-Varying Parameters

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian

    2011-01-01

    Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…

  1. Estimation of group means when adjusting for covariates in generalized linear models.

    PubMed

    Qu, Yongming; Luo, Junxiang

    2015-01-01

    Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Smooth individual level covariates adjustment in disease mapping.

    PubMed

    Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise

    2018-05-01

    Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2015-01-01

    A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.

  4. Unsteady hovering wake parameters identified from dynamic model tests, part 1

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Crews, S. T.

    1977-01-01

    The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.

  5. A General Approach for Specifying Informative Prior Distributions for PBPK Model Parameters

    EPA Science Inventory

    Characterization of uncertainty in model predictions is receiving more interest as more models are being used in applications that are critical to human health. For models in which parameters reflect biological characteristics, it is often possible to provide estimates of paramet...

  6. Sensitivity analysis of pulse pileup model parameter in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Shunhavanich, Picha; Pelc, Norbert J.

    2017-03-01

    Photon counting detectors (PCDs) may provide several benefits over energy-integrating detectors (EIDs), including spectral information for tissue characterization and the elimination of electronic noise. PCDs, however, suffer from pulse pileup, which distorts the detected spectrum and degrades the accuracy of material decomposition. Several analytical models have been proposed to address this problem. The performance of these models are dependent on the assumptions used, including the estimated pulse shape whose parameter values could differ from the actual physical ones. As the incident flux increases and the corrections become more significant the needed parameter value accuracy may be more crucial. In this work, the sensitivity of model parameter accuracies is analyzed for the pileup model of Taguchi et al. The spectra distorted by pileup at different count rates are simulated using either the model or Monte Carlo simulations, and the basis material thicknesses are estimated by minimizing the negative log-likelihood with Poisson or multivariate Gaussian distributions. From simulation results, we find that the accuracy of the deadtime, the height of pulse negative tail, and the timing to the end of the pulse are more important than most other parameters, and they matter more with increasing count rate. This result can help facilitate further work on parameter calibrations.

  7. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters

    PubMed Central

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830

  8. Sensitivity of land surface modeling to parameters: An uncertainty quantification method applied to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.

    2015-12-01

    Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes

  9. Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations.

    PubMed

    Bürger, Vincent; Briesen, Heiko

    2016-10-05

    For colloidal particles interacting in suspensions, clusters, or gels, contact models should attempt to include all physical phenomena experimentally observed. One critical point when formulating a contact model is to ensure that the interaction parameters can be easily obtained from experiments. Experimental determinations of contact parameters for particles either are based on bulk measurements for simulations on the macroscopic scale or require elaborate setups for obtaining tangential parameters such as using atomic force microscopy. However, on the colloidal scale, a simple method is required to obtain all interaction parameters simultaneously. This work demonstrates that quasi-static compression of a fractal-like particle network provides all the necessary information to obtain particle interaction parameters using a simple spring-based contact model. These springs provide resistances against all degrees of freedom associated with two-particle interactions, and include critical forces or moments where such springs break, indicating a bond-breakage event. A position-based cost function is introduced to show the identifiability of the two-particle contact parameters, and a discrete, nonlinear, and non-gradient-based global optimization method (simplex with simulated annealing, SIMPSA) is used to minimize the cost function calculated from deviations of particle positions. Results show that, in principle, all necessary contact parameters for an arbitrary particle network can be identified, although numerical efficiency as well as experimental noise must be addressed when applying this method. Such an approach lays the groundwork for identifying particle-contact parameters from a position-based particle analysis for a colloidal system using just one experiment. Spring constants also directly influence the time step of the discrete-element method, and a detailed knowledge of all necessary interaction parameters will help to improve the efficiency of colloidal

  10. The Mediating Role of Psychological Adjustment between Peer Victimization and Social Adjustment in Adolescence

    PubMed Central

    Romera, Eva M.; Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario

    2016-01-01

    There is extensive scientific evidence of the serious psychological and social effects that peer victimization may have on students, among them internalizing problems such as anxiety or negative self-esteem, difficulties related to low self-efficacy and lower levels of social adjustment. Although a direct relationship has been observed between victimization and these effects, it has not yet been analyzed whether there is a relationship of interdependence between all these measures of psychosocial adjustment. The aim of this study was to examine the relationship between victimization and difficulties related to social adjustment among high school students. To do so, various explanatory models were tested to determine whether psychological adjustment (negative self-esteem, social anxiety and social self-efficacy) could play a mediating role in this relationship, as suggested by other studies on academic adjustment. The sample comprised 2060 Spanish high school students (47.9% girls; mean age = 14.34). The instruments used were the scale of victimization from European Bullying Intervention Project Questionnaire, the negative scale from Rosenberg Self-Esteem Scale, Social Anxiety Scale for Adolescents and a general item about social self-efficacy, all of them self-reports. Structural equation modeling was used to analyze the data. The results confirmed the partial mediating role of negative self-esteem, social anxiety and social self-efficacy between peer victimization and social adjustment and highlight the importance of empowering victimized students to improve their self-esteem and self-efficacy and prevent social anxiety. Such problems lead to the avoidance of social interactions and social reinforcement, thus making it difficult for these students to achieve adequate social adjustment. PMID:27891108

  11. The Mediating Role of Psychological Adjustment between Peer Victimization and Social Adjustment in Adolescence.

    PubMed

    Romera, Eva M; Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario

    2016-01-01

    There is extensive scientific evidence of the serious psychological and social effects that peer victimization may have on students, among them internalizing problems such as anxiety or negative self-esteem, difficulties related to low self-efficacy and lower levels of social adjustment. Although a direct relationship has been observed between victimization and these effects, it has not yet been analyzed whether there is a relationship of interdependence between all these measures of psychosocial adjustment. The aim of this study was to examine the relationship between victimization and difficulties related to social adjustment among high school students. To do so, various explanatory models were tested to determine whether psychological adjustment (negative self-esteem, social anxiety and social self-efficacy) could play a mediating role in this relationship, as suggested by other studies on academic adjustment. The sample comprised 2060 Spanish high school students (47.9% girls; mean age = 14.34). The instruments used were the scale of victimization from European Bullying Intervention Project Questionnaire , the negative scale from Rosenberg Self-Esteem Scale, Social Anxiety Scale for Adolescents and a general item about social self-efficacy, all of them self-reports. Structural equation modeling was used to analyze the data. The results confirmed the partial mediating role of negative self-esteem, social anxiety and social self-efficacy between peer victimization and social adjustment and highlight the importance of empowering victimized students to improve their self-esteem and self-efficacy and prevent social anxiety. Such problems lead to the avoidance of social interactions and social reinforcement, thus making it difficult for these students to achieve adequate social adjustment.

  12. Density perturbation in the models reconstructed from jerk parameter

    NASA Astrophysics Data System (ADS)

    Sinha, Srijita; Banerjee, Narayan

    2018-06-01

    The present work deals with the late time evolution of the linear density contrast in the dark energy models reconstructed from the jerk parameter. It is found that the non-interacting models are favoured compared to the models where an interaction is allowed in the dark sector.

  13. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-06-01

    Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input

  14. A parameter free model for HgMn stars

    NASA Astrophysics Data System (ADS)

    Michaud, G.

    Consideration is given to hydrodynamic and radiative acceleration calculations that may be performed within the context of a parameter-free model of HgMn stars. The model accounts for the formation of HgMn stars at temperatures too high to support an outer hydrogen convection zone by the settling of helium through a He II convection zone which eventually disappears, leaving a diffusive atmosphere with envelope heavy element abundances. Calculations of meridional circulation and the He II diffusion velocity are presented which demonstrate that the He II convection zone can disappear for equatorial rotation velocities less than or equal to 90 km/sec. Detailed radiative acceleration calculations performed for various elements are then reviewed which have reproduced the maximum anomalies observed for He, B, Si, Ca, Sr and Mn abundances in HgMn stars. The parameter-free model is noted to fail, however, in the case of Be.

  15. Observation model and parameter partials for the JPL VLBI parameter estimation software MODEST, 19 94

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Jacobs, C. S.

    1994-01-01

    This report is a revision of the document Observation Model and Parameter Partials for the JPL VLBI Parameter Estimation Software 'MODEST'---1991, dated August 1, 1991. It supersedes that document and its four previous versions (1983, 1985, 1986, and 1987). A number of aspects of the very long baseline interferometry (VLBI) model were improved from 1991 to 1994. Treatment of tidal effects is extended to model the effects of ocean tides on universal time and polar motion (UTPM), including a default model for nearly diurnal and semidiurnal ocean tidal UTPM variations, and partial derivatives for all (solid and ocean) tidal UTPM amplitudes. The time-honored 'K(sub 1) correction' for solid earth tides has been extended to include analogous frequency-dependent response of five tidal components. Partials of ocean loading amplitudes are now supplied. The Zhu-Mathews-Oceans-Anisotropy (ZMOA) 1990-2 and Kinoshita-Souchay models of nutation are now two of the modeling choices to replace the increasingly inadequate 1980 International Astronomical Union (IAU) nutation series. A rudimentary model of antenna thermal expansion is provided. Two more troposphere mapping functions have been added to the repertoire. Finally, corrections among VLBI observations via the model of Treuhaft and lanyi improve modeling of the dynamic troposphere. A number of minor misprints in Rev. 4 have been corrected.

  16. PyDREAM: high-dimensional parameter inference for biological models in python.

    PubMed

    Shockley, Erin M; Vrugt, Jasper A; Lopez, Carlos F; Valencia, Alfonso

    2018-02-15

    Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. c.lopez@vanderbilt.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  17. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Artan, Guleid A.; Tokar, S.A.; Gautam, D.K.; Bajracharya, S.R.; Shrestha, M.S.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32 000 km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC_RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC_RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC_RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction.

  18. Evaluation of trauma care using TRISS method: the role of adjusted misclassification rate and adjusted w-statistic.

    PubMed

    Llullaku, Sadik S; Hyseni, Nexhmi Sh; Bytyçi, Cen I; Rexhepi, Sylejman K

    2009-01-15

    Major trauma is a leading cause of death worldwide. Evaluation of trauma care using Trauma Injury and Injury Severity Score (TRISS) method is focused in trauma outcome (deaths and survivors). For testing TRISS method TRISS misclassification rate is used. Calculating w-statistic, as a difference between observed and TRISS expected survivors, we compare our trauma care results with the TRISS standard. The aim of this study is to analyze interaction between misclassification rate and w-statistic and to adjust these parameters to be closer to the truth. Analysis of components of TRISS misclassification rate and w-statistic and actual trauma outcome. The component of false negative (FN) (by TRISS method unexpected deaths) has two parts: preventable (Pd) and non-preventable (nonPd) trauma deaths. Pd represents inappropriate trauma care of an institution; otherwise nonpreventable trauma deaths represents errors in TRISS method. Removing patients with preventable trauma deaths we get an Adjusted misclassification rate: (FP + FN - Pd)/N or (b+c-Pd)/N. Substracting nonPd from FN value in w-statistic formula we get an Adjusted w-statistic: [FP-(FN - nonPd)]/N, respectively (FP-Pd)/N, or (b-Pd)/N). Because adjusted formulas clean method from inappropriate trauma care, and clean trauma care from the methods error, TRISS adjusted misclassification rate and adjusted w-statistic gives more realistic results and may be used in researches of trauma outcome.

  19. An algorithm for automatic parameter adjustment for brain extraction in BrainSuite

    NASA Astrophysics Data System (ADS)

    Rajagopal, Gautham; Joshi, Anand A.; Leahy, Richard M.

    2017-02-01

    Brain Extraction (classification of brain and non-brain tissue) of MRI brain images is a crucial pre-processing step necessary for imaging-based anatomical studies of the human brain. Several automated methods and software tools are available for performing this task, but differences in MR image parameters (pulse sequence, resolution) and instrumentand subject-dependent noise and artefacts affect the performance of these automated methods. We describe and evaluate a method that automatically adapts the default parameters of the Brain Surface Extraction (BSE) algorithm to optimize a cost function chosen to reflect accurate brain extraction. BSE uses a combination of anisotropic filtering, Marr-Hildreth edge detection, and binary morphology for brain extraction. Our algorithm automatically adapts four parameters associated with these steps to maximize the brain surface area to volume ratio. We evaluate the method on a total of 109 brain volumes with ground truth brain masks generated by an expert user. A quantitative evaluation of the performance of the proposed algorithm showed an improvement in the mean (s.d.) Dice coefficient from 0.8969 (0.0376) for default parameters to 0.9509 (0.0504) for the optimized case. These results indicate that automatic parameter optimization can result in significant improvements in definition of the brain mask.

  20. First-order kinetic gas generation model parameters for wet landfills.

    PubMed

    Faour, Ayman A; Reinhart, Debra R; You, Huaxin

    2007-01-01

    Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.

  1. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Yang, F

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber andmore » EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.« less

  2. Filling Gaps in the Acculturation Gap-Distress Model: Heritage Cultural Maintenance and Adjustment in Mexican-American Families.

    PubMed

    Telzer, Eva H; Yuen, Cynthia; Gonzales, Nancy; Fuligni, Andrew J

    2016-07-01

    The acculturation gap-distress model purports that immigrant children acculturate faster than do their parents, resulting in an acculturation gap that leads to family and youth maladjustment. However, empirical support for the acculturation gap-distress model has been inconclusive. In the current study, 428 Mexican-American adolescents (50.2 % female) and their primary caregivers independently completed questionnaires assessing their levels of American and Mexican cultural orientation, family functioning, and youth adjustment. Contrary to the acculturation gap-distress model, acculturation gaps were not associated with poorer family or youth functioning. Rather, adolescents with higher levels of Mexican cultural orientations showed positive outcomes, regardless of their parents' orientations to either American or Mexican cultures. Findings suggest that youths' heritage cultural maintenance may be most important for their adjustment.

  3. Development of bovine serum albumin-water partition coefficients predictive models for ionogenic organic chemicals based on chemical form adjusted descriptors.

    PubMed

    Ding, Feng; Yang, Xianhai; Chen, Guosong; Liu, Jining; Shi, Lili; Chen, Jingwen

    2017-10-01

    The partition coefficients between bovine serum albumin (BSA) and water (K BSA/w ) for ionogenic organic chemicals (IOCs) were different greatly from those of neutral organic chemicals (NOCs). For NOCs, several excellent models were developed to predict their logK BSA/w . However, it was found that the conventional descriptors are inappropriate for modeling logK BSA/w of IOCs. Thus, alternative approaches are urgently needed to develop predictive models for K BSA/w of IOCs. In this study, molecular descriptors that can be used to characterize the ionization effects (e.g. chemical form adjusted descriptors) were calculated and used to develop predictive models for logK BSA/w of IOCs. The models developed had high goodness-of-fit, robustness, and predictive ability. The predictor variables selected to construct the models included the chemical form adjusted averages of the negative potentials on the molecular surface (V s-adj - ), the chemical form adjusted molecular dipole moment (dipolemoment adj ), the logarithm of the n-octanol/water distribution coefficient (logD). As these molecular descriptors can be calculated from their molecular structures directly, the developed model can be easily used to fill the logK BSA/w data gap for other IOCs within the applicability domain. Furthermore, the chemical form adjusted descriptors calculated in this study also could be used to construct predictive models on other endpoints of IOCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Diagnosing ΛHDE model with statefinder hierarchy and fractional growth parameter

    NASA Astrophysics Data System (ADS)

    Zhou, LanJun; Wang, Shuang

    2016-07-01

    Recently, a new dark energy model called ΛHDE was proposed. In this model, dark energy consists of two parts: cosmological constant Λ and holographic dark energy (HDE). Two key parameters of this model are the fractional density of cosmological constant ΩΛ0, and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ΩΛ0 and c on the ΛHDE model. In this paper, we apply various DE diagnostic tools to diagnose ΛHDE models with different values of ΩΛ0 and c; these tools include statefinder hierarchy {S 3 (1) , S 4 (1) }, fractional growth parameter ɛ, and composite null diagnostic (CND), which is a combination of {S 3 (1) , S 4 (1) } and ɛ. We find that: (1) adopting different values of ΩΛ0 only has quantitative impacts on the evolution of the ΛHDE model, while adopting different c has qualitative impacts; (2) compared with S 3 (1) , S 4 (1) can give larger differences among the cosmic evolutions of the ΛHDE model associated with different ΩΛ0 or different c; (3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the ΛHDE model.

  5. An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules

    NASA Astrophysics Data System (ADS)

    Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart

    2016-04-01

    Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.

  6. A Primer on the 2- and 3-Parameter Item Response Theory Models.

    ERIC Educational Resources Information Center

    Thornton, Artist

    Item response theory (IRT) is a useful and effective tool for item response measurement if used in the proper context. This paper discusses the sets of assumptions under which responses can be modeled while exploring the framework of the IRT models relative to response testing. The one parameter model, or one parameter logistic model, is perhaps…

  7. Optimal experimental design for parameter estimation of a cell signaling model.

    PubMed

    Bandara, Samuel; Schlöder, Johannes P; Eils, Roland; Bock, Hans Georg; Meyer, Tobias

    2009-11-01

    Differential equation models that describe the dynamic changes of biochemical signaling states are important tools to understand cellular behavior. An essential task in building such representations is to infer the affinities, rate constants, and other parameters of a model from actual measurement data. However, intuitive measurement protocols often fail to generate data that restrict the range of possible parameter values. Here we utilized a numerical method to iteratively design optimal live-cell fluorescence microscopy experiments in order to reveal pharmacological and kinetic parameters of a phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) second messenger signaling process that is deregulated in many tumors. The experimental approach included the activation of endogenous phosphoinositide 3-kinase (PI3K) by chemically induced recruitment of a regulatory peptide, reversible inhibition of PI3K using a kinase inhibitor, and monitoring of the PI3K-mediated production of PIP(3) lipids using the pleckstrin homology (PH) domain of Akt. We found that an intuitively planned and established experimental protocol did not yield data from which relevant parameters could be inferred. Starting from a set of poorly defined model parameters derived from the intuitively planned experiment, we calculated concentration-time profiles for both the inducing and the inhibitory compound that would minimize the predicted uncertainty of parameter estimates. Two cycles of optimization and experimentation were sufficient to narrowly confine the model parameters, with the mean variance of estimates dropping more than sixty-fold. Thus, optimal experimental design proved to be a powerful strategy to minimize the number of experiments needed to infer biological parameters from a cell signaling assay.

  8. Parameter Estimates in Differential Equation Models for Population Growth

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  9. Bayes linear covariance matrix adjustment

    NASA Astrophysics Data System (ADS)

    Wilkinson, Darren J.

    1995-12-01

    In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be amenable to a similar approach. Diagnostics for matrix adjustments are also discussed.

  10. Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.

    PubMed

    Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf

    2010-05-25

    Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.

  11. A Note on the Item Information Function of the Four-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Magis, David

    2013-01-01

    This article focuses on four-parameter logistic (4PL) model as an extension of the usual three-parameter logistic (3PL) model with an upper asymptote possibly different from 1. For a given item with fixed item parameters, Lord derived the value of the latent ability level that maximizes the item information function under the 3PL model. The…

  12. Integrating microbial diversity in soil carbon dynamic models parameters

    NASA Astrophysics Data System (ADS)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  13. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    PubMed

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model

    NASA Astrophysics Data System (ADS)

    Yun, Jongyeon; Choi, Kyu-Cheol; Yi, Jonghyuk; Kim, Jaehun; Odstrcil, Dusan

    2016-12-01

    Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.

  15. Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi

    1998-04-01

    The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.

  16. Adjusting Satellite Rainfall Error in Mountainous Areas for Flood Modeling Applications

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anagnostou, E. N.; Astitha, M.; Vergara, H. J.; Gourley, J. J.; Hong, Y.

    2014-12-01

    This study aims to investigate the use of high-resolution Numerical Weather Prediction (NWP) for evaluating biases of satellite rainfall estimates of flood-inducing storms in mountainous areas and associated improvements in flood modeling. Satellite-retrieved precipitation has been considered as a feasible data source for global-scale flood modeling, given that satellite has the spatial coverage advantage over in situ (rain gauges and radar) observations particularly over mountainous areas. However, orographically induced heavy precipitation events tend to be underestimated and spatially smoothed by satellite products, which error propagates non-linearly in flood simulations.We apply a recently developed retrieval error and resolution effect correction method (Zhang et al. 2013*) on the NOAA Climate Prediction Center morphing technique (CMORPH) product based on NWP analysis (or forecasting in the case of real-time satellite products). The NWP rainfall is derived from the Weather Research and Forecasting Model (WRF) set up with high spatial resolution (1-2 km) and explicit treatment of precipitation microphysics.In this study we will show results on NWP-adjusted CMORPH rain rates based on tropical cyclones and a convective precipitation event measured during NASA's IPHEX experiment in the South Appalachian region. We will use hydrologic simulations over different basins in the region to evaluate propagation of bias correction in flood simulations. We show that the adjustment reduced the underestimation of high rain rates thus moderating the strong rainfall magnitude dependence of CMORPH rainfall bias, which results in significant improvement in flood peak simulations. Further study over Blue Nile Basin (western Ethiopia) will be investigated and included in the presentation. *Zhang, X. et al. 2013: Using NWP Simulations in Satellite Rainfall Estimation of Heavy Precipitation Events over Mountainous Areas. J. Hydrometeor, 14, 1844-1858.

  17. Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model

    NASA Astrophysics Data System (ADS)

    Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten

    2007-06-01

    Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.

  18. Idealized Experiments for Optimizing Model Parameters Using a 4D-Variational Method in an Intermediate Coupled Model of ENSO

    NASA Astrophysics Data System (ADS)

    Gao, Chuan; Zhang, Rong-Hua; Wu, Xinrong; Sun, Jichang

    2018-04-01

    Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer ( T e), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, α Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.

  19. Nondimensional parameter for conformal grinding: combining machine and process parameters

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Paul D.; Takahashi, Toshio; Gracewski, Sheryl M.; Ruckman, Jeffrey L.

    1999-11-01

    Conformal grinding of optical materials with CNC (Computer Numerical Control) machining equipment can be used to achieve precise control over complex part configurations. However complications can arise due to the need to fabricate complex geometrical shapes at reasonable production rates. For example high machine stiffness is essential, but the need to grind 'inside' small or highly concave surfaces may require use of tooling with less than ideal stiffness characteristics. If grinding generates loads sufficient for significant tool deflection, the programmed removal depth will not be achieved. Moreover since grinding load is a function of the volumetric removal rate the amount of load deflection can vary with location on the part, potentially producing complex figure errors. In addition to machine/tool stiffness and removal rate, load generation is a function of the process parameters. For example by reducing the feed rate of the tool into the part, both the load and resultant deflection/removal error can be decreased. However this must be balanced against the need for part through put. In this paper a simple model which permits combination of machine stiffness and process parameters into a single non-dimensional parameter is adapted for a conformal grinding geometry. Errors in removal can be minimized by maintaining this parameter above a critical value. Moreover, since the value of this parameter depends on the local part geometry, it can be used to optimize process settings during grinding. For example it may be used to guide adjustment of the feed rate as a function of location on the part to eliminate figure errors while minimizing the total grinding time required.

  20. Dynamics of a neuron model in different two-dimensional parameter-spaces

    NASA Astrophysics Data System (ADS)

    Rech, Paulo C.

    2011-03-01

    We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.

  1. Influence parameters of impact grinding mills

    NASA Technical Reports Server (NTRS)

    Hoeffl, K.; Husemann, K.; Goldacker, H.

    1984-01-01

    Significant parameters for impact grinding mills were investigated. Final particle size was used to evaluate grinding results. Adjustment of the parameters toward increased charge load results in improved efficiency; however, it was not possible to define a single, unified set to optimum grinding conditions.

  2. On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Xu, Shi-Xu; Cheng, Wei; Qian, Li-Jun

    2017-08-01

    It is useful to develop an effective biodynamic model of seated human occupants to help understand the human vibration exposure to transportation vehicle vibrations and to help design and improve the anti-vibration devices and/or test dummies. This study proposed and demonstrated a methodology for systematically identifying the best configuration or structure of a 4-degree-of-freedom (4DOF) human vibration model and for its parameter identification. First, an equivalent simplification expression for the models was made. Second, all of the possible 23 structural configurations of the models were identified. Third, each of them was calibrated using the frequency response functions recommended in a biodynamic standard. An improved version of non-dominated sorting genetic algorithm (NSGA-II) based on Pareto optimization principle was used to determine the model parameters. Finally, a model evaluation criterion proposed in this study was used to assess the models and to identify the best one, which was based on both the goodness of curve fits and comprehensive goodness of the fits. The identified top configurations were better than those reported in the literature. This methodology may also be extended and used to develop the models with other DOFs.

  3. Kriging modeling and SPSA adjusting PID with KPWF compensator control of IPMC gripper for mm-sized objects

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Hao, Lina; Yang, Hui; Gao, Jinhai

    2017-12-01

    Ionic polymer metal composite (IPMC) as a new smart material has been widely concerned in the micromanipulation field. In this paper, a novel two-finger gripper which contains an IPMC actuator and an ultrasensitive force sensor is proposed and fabricated. The IPMC as one finger of the gripper for mm-sized objects can achieve gripping and releasing motion, and the other finger works not only as a support finger but also as a force sensor. Because of the feedback signal of the force sensor, this integrated actuating and sensing gripper can complete gripping miniature objects in millimeter scale. The Kriging model is used to describe nonlinear characteristics of the IPMC for the first time, and then the control scheme called simultaneous perturbation stochastic approximation adjusting a proportion integration differentiation parameter controller with a Kriging predictor wavelet filter compensator is applied to track the gripping force of the gripper. The high precision force tracking in the foam ball manipulation process is obtained on a semi-physical experimental platform, which demonstrates that this gripper for mm-sized objects can work well in manipulation applications.

  4. Application of physical parameter identification to finite-element models

    NASA Technical Reports Server (NTRS)

    Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.

    1987-01-01

    The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.

  5. [Parameters modification and evaluation of two evapotranspiration models based on Penman-Monteith model for summer maize].

    PubMed

    Wang, Juan; Wang, Jian Lin; Liu, Jia Bin; Jiang, Wen; Zhao, Chang Xing

    2017-06-18

    The dynamic variations of evapotranspiration (ET) and weather data during summer maize growing season in 2013-2015 were monitored with eddy covariance system, and the applicability of two operational models (FAO-PM model and KP-PM model) based on the Penman-Monteith model were analyzed. Firstly, the key parameters in the two models were calibrated with the measured data in 2013 and 2014; secondly, the daily ET in 2015 calculated by the FAO-PM model and KP-PM model was compared to the observed ET, respectively. Finally, the coefficients in the KP-PM model were further revised with the coefficients calculated according to the different growth stages, and the performance of the revised KP-PM model was also evaluated. These statistical parameters indicated that the calculated daily ET for 2015 by the FAO-PM model was closer to the observed ET than that by the KP-PM model. The daily ET calculated from the revised KP-PM model for daily ET was more accurate than that from the FAO-PM model. It was also found that the key parameters in the two models were correlated with weather conditions, so the calibration was necessary before using the models to predict the ET. The above results could provide some guidelines on predicting ET with the two models.

  6. Item Parameter Estimation for the MIRT Model: Bias and Precision of Confirmatory Factor Analysis-Based Models

    ERIC Educational Resources Information Center

    Finch, Holmes

    2010-01-01

    The accuracy of item parameter estimates in the multidimensional item response theory (MIRT) model context is one that has not been researched in great detail. This study examines the ability of two confirmatory factor analysis models specifically for dichotomous data to properly estimate item parameters using common formulae for converting factor…

  7. Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks

    PubMed Central

    2010-01-01

    Background Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. Results In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. Conclusions The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates. PMID:20500862

  8. Improved Estimates of Thermodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  9. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input

  10. Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters.

    PubMed

    Rácz, A; Bajusz, D; Héberger, K

    2015-01-01

    Recent implementations of QSAR modelling software provide the user with numerous models and a wealth of information. In this work, we provide some guidance on how one should interpret the results of QSAR modelling, compare and assess the resulting models, and select the best and most consistent ones. Two QSAR datasets are applied as case studies for the comparison of model performance parameters and model selection methods. We demonstrate the capabilities of sum of ranking differences (SRD) in model selection and ranking, and identify the best performance indicators and models. While the exchange of the original training and (external) test sets does not affect the ranking of performance parameters, it provides improved models in certain cases (despite the lower number of molecules in the training set). Performance parameters for external validation are substantially separated from the other merits in SRD analyses, highlighting their value in data fusion.

  11. Uncertainty quantification for optical model parameters

    DOE PAGES

    Lovell, A. E.; Nunes, F. M.; Sarich, J.; ...

    2017-02-21

    Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical potential can result in different cross sections, but these differences have not been systematically studied and quantified. The purpose of our work is to investigate the uncertainties in nuclear reactions that result from fitting a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels. We use statistical methods to determine a best fitmore » and create corresponding 95% confidence bands. A simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters. Here, we study a number of reactions involving neutron and deuteron projectiles with energies in the range of 5–25 MeV/u, on targets with mass A=12–208. We investigate the correlations between the parameters in the fit. The case of deuterons on 12C is discussed in detail: the elastic-scattering fit and the prediction of 12C(d,p) 13C transfer angular distributions, using both uncorrelated and correlated χ 2 minimization functions. The general features for all cases are compiled in a systematic manner to identify trends. This work shows that, in many cases, the correlated χ 2 functions (in comparison to the uncorrelated χ 2 functions) provide a more natural parameterization of the process. These correlated functions do, however, produce broader confidence bands. Further optimization may require improvement in the models themselves and/or more information included in the fit.« less

  12. Parameter Set Cloning Based on Catchment Similarity for Large-scale Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Kaheil, Y.; McCollum, J.

    2016-12-01

    Parameter calibration is a crucial step to ensure the accuracy of hydrological models. However, streamflow gauges are not available everywhere for calibrating a large-scale hydrologic model globally. Thus, assigning parameters appropriately for regions where the calibration cannot be performed directly has been a challenge for large-scale hydrologic modeling. Here we propose a method to estimate the model parameters in ungauged regions based on the values obtained through calibration in areas where gauge observations are available. This parameter set cloning is performed according to a catchment similarity index, a weighted sum index based on four catchment characteristic attributes. These attributes are IPCC Climate Zone, Soil Texture, Land Cover, and Topographic Index. The catchments with calibrated parameter values are donors, while the uncalibrated catchments are candidates. Catchment characteristic analyses are first conducted for both donors and candidates. For each attribute, we compute a characteristic distance between donors and candidates. Next, for each candidate, weights are assigned to the four attributes such that higher weights are given to properties that are more directly linked to the hydrologic dominant processes. This will ensure that the parameter set cloning emphasizes the dominant hydrologic process in the region where the candidate is located. The catchment similarity index for each donor - candidate couple is then created as the sum of the weighted distance of the four properties. Finally, parameters are assigned to each candidate from the donor that is "most similar" (i.e. with the shortest weighted distance sum). For validation, we applied the proposed method to catchments where gauge observations are available, and compared simulated streamflows using the parameters cloned by other catchments to the results obtained by calibrating the hydrologic model directly using gauge data. The comparison shows good agreement between the two models

  13. Using the Modification Index and Standardized Expected Parameter Change for Model Modification

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.

    2012-01-01

    Model modification is oftentimes conducted after discovering a badly fitting structural equation model. During the modification process, the modification index (MI) and the standardized expected parameter change (SEPC) are 2 statistics that may be used to aid in the selection of parameters to add to a model to improve the fit. The purpose of this…

  14. LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Bishi, Binaya K.; Pacif, S. K. J.; Sahoo, P. K.; Singh, G. P.

    A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the ΛCDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.

  15. Atlantic Ocean CARINA data: overview and salinity adjustments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanhua, T.; Steinfeldt, R.; Key, Robert

    2010-01-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the threemore » data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30 S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control including crossover analysis between stations and inversion analysis of all crossover data are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally was well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon

  16. Atlantic Ocean CARINA data: overview and salinity adjustments

    NASA Astrophysics Data System (ADS)

    Tanhua, T.; Steinfeldt, R.; Key, R. M.; Brown, P.; Gruber, N.; Wanninkhof, R.; Perez, F.; Körtzinger, A.; Velo, A.; Schuster, U.; van Heuven, S.; Bullister, J. L.; Stendardo, I.; Hoppema, M.; Olsen, A.; Kozyr, A.; Pierrot, D.; Schirnick, C.; Wallace, D. W. R.

    2010-02-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the three data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control - including crossover analysis between stations and inversion analysis of all crossover data - are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon

  17. Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation

    NASA Astrophysics Data System (ADS)

    Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei

    2018-04-01

    Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.

  18. Lumped Parameter Model (LPM) for Light-Duty Vehicles

    EPA Pesticide Factsheets

    EPA’s Lumped Parameter Model (LPM) is a free, desktop computer application that estimates the effectiveness (CO2 Reduction) of various technology combinations or “packages,” in a manner that accounts for synergies between technologies.

  19. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, Francis J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least-squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 Goddard Earth Model-T1 (GEM-T1) were employed toward application of this technique for gravity field parameters. Also GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized. The method employs subset solutions of the data associated with the complete solution to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  20. External Validation of a Case-Mix Adjustment Model for the Standardized Reporting of 30-Day Stroke Mortality Rates in China

    PubMed Central

    Yu, Ping; Pan, Yuesong; Wang, Yongjun; Wang, Xianwei; Liu, Liping; Ji, Ruijun; Meng, Xia; Jing, Jing; Tong, Xu; Guo, Li; Wang, Yilong

    2016-01-01

    Background and Purpose A case-mix adjustment model has been developed and externally validated, demonstrating promise. However, the model has not been thoroughly tested among populations in China. In our study, we evaluated the performance of the model in Chinese patients with acute stroke. Methods The case-mix adjustment model A includes items on age, presence of atrial fibrillation on admission, National Institutes of Health Stroke Severity Scale (NIHSS) score on admission, and stroke type. Model B is similar to Model A but includes only the consciousness component of the NIHSS score. Both model A and B were evaluated to predict 30-day mortality rates in 13,948 patients with acute stroke from the China National Stroke Registry. The discrimination of the models was quantified by c-statistic. Calibration was assessed using Pearson’s correlation coefficient. Results The c-statistic of model A in our external validation cohort was 0.80 (95% confidence interval, 0.79–0.82), and the c-statistic of model B was 0.82 (95% confidence interval, 0.81–0.84). Excellent calibration was reported in the two models with Pearson’s correlation coefficient (0.892 for model A, p<0.001; 0.927 for model B, p = 0.008). Conclusions The case-mix adjustment model could be used to effectively predict 30-day mortality rates in Chinese patients with acute stroke. PMID:27846282

  1. External Validation of a Case-Mix Adjustment Model for the Standardized Reporting of 30-Day Stroke Mortality Rates in China.

    PubMed

    Yu, Ping; Pan, Yuesong; Wang, Yongjun; Wang, Xianwei; Liu, Liping; Ji, Ruijun; Meng, Xia; Jing, Jing; Tong, Xu; Guo, Li; Wang, Yilong

    2016-01-01

    A case-mix adjustment model has been developed and externally validated, demonstrating promise. However, the model has not been thoroughly tested among populations in China. In our study, we evaluated the performance of the model in Chinese patients with acute stroke. The case-mix adjustment model A includes items on age, presence of atrial fibrillation on admission, National Institutes of Health Stroke Severity Scale (NIHSS) score on admission, and stroke type. Model B is similar to Model A but includes only the consciousness component of the NIHSS score. Both model A and B were evaluated to predict 30-day mortality rates in 13,948 patients with acute stroke from the China National Stroke Registry. The discrimination of the models was quantified by c-statistic. Calibration was assessed using Pearson's correlation coefficient. The c-statistic of model A in our external validation cohort was 0.80 (95% confidence interval, 0.79-0.82), and the c-statistic of model B was 0.82 (95% confidence interval, 0.81-0.84). Excellent calibration was reported in the two models with Pearson's correlation coefficient (0.892 for model A, p<0.001; 0.927 for model B, p = 0.008). The case-mix adjustment model could be used to effectively predict 30-day mortality rates in Chinese patients with acute stroke.

  2. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    NASA Astrophysics Data System (ADS)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations

  3. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.

    PubMed

    White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K

    2016-12-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.

  4. Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2005-01-01

    A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…

  5. Electro-optical parameters of bond polarizability model for aluminosilicates.

    PubMed

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  6. Enhancing Global Land Surface Hydrology Estimates from the NASA MERRA Reanalysis Using Precipitation Observations and Model Parameter Adjustments

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally

    2011-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.

  7. Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system

    USGS Publications Warehouse

    Ely, D. Matthew

    2006-01-01

    Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow

  8. Comprehensive Study of Z-Cut Highly Integrated LiNbO3 Optical Modulator with Adjustable Chirp Parameters

    NASA Astrophysics Data System (ADS)

    Palodiya, Vikram; Raghuwanshi, Sanjeev Kumar

    2017-12-01

    In this paper, the domain inversion is used in a simple fashion to improve the performance of a Z-cut highly integrated LiNbO3 optical modulator (LNOM). The Z-cut modulator having ≤ 3 V switching voltage and bandwidth of 15 GHz for an external modulator in which traveling-wave electrode length L_{m} imposed the modulating voltage, the product of V_π and L_{m} is fixed for a given electro-optic material (EOM). An investigation to achieve a low V_π by both magnitude of the electro-optic coefficient (EOC) for a wide variety of EOMs has been reported. The Sellmeier equation (SE) for the extraordinary index of congruent LiNbO3 is derived. The predictions related to phase matching are accurate between room temperature and 250 °C and wavelength ranging from 0.4 to 5 μm. The SE predicts more accurate refractive indices (RI) at long wavelengths. The different overlaps between the waveguides for the Z-cut structure are shown to yield a chirp parameter that can able to adjust 0-0.7. Theoretical results are perfectly verified by simulated results.

  9. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    NASA Astrophysics Data System (ADS)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model

  10. Applications of the solvation parameter model in reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F; Lenca, Nicole

    2017-02-24

    The solvation parameter model is widely used to provide insight into the retention mechanism in reversed-phase liquid chromatography, for column characterization, and in the development of surrogate chromatographic models for biopartitioning processes. The properties of the separation system are described by five system constants representing all possible intermolecular interactions for neutral molecules. The general model can be extended to include ions and enantiomers by adding new descriptors to encode the specific properties of these compounds. System maps provide a comprehensive overview of the separation system as a function of mobile phase composition and/or temperature for method development. The solvation parameter model has been applied to gradient elution separations but here theory and practice suggest a cautious approach since the interpretation of system and compound properties derived from its use are approximate. A growing application of the solvation parameter model in reversed-phase liquid chromatography is the screening of surrogate chromatographic systems for estimating biopartitioning properties. Throughout the discussion of the above topics success as well as known and likely deficiencies of the solvation parameter model are described with an emphasis on the role of the heterogeneous properties of the interphase region on the interpretation and understanding of the general retention mechanism in reversed-phase liquid chromatography for porous chemically bonded sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Case study: Optimizing fault model input parameters using bio-inspired algorithms

    NASA Astrophysics Data System (ADS)

    Plucar, Jan; Grunt, Onřej; Zelinka, Ivan

    2017-07-01

    We present a case study that demonstrates a bio-inspired approach in the process of finding optimal parameters for GSM fault model. This model is constructed using Petri Nets approach it represents dynamic model of GSM network environment in the suburban areas of Ostrava city (Czech Republic). We have been faced with a task of finding optimal parameters for an application that requires high amount of data transfers between the application itself and secure servers located in datacenter. In order to find the optimal set of parameters we employ bio-inspired algorithms such as Differential Evolution (DE) or Self Organizing Migrating Algorithm (SOMA). In this paper we present use of these algorithms, compare results and judge their performance in fault probability mitigation.

  12. Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies

    ERIC Educational Resources Information Center

    Smith, Carrie E.; Cribbie, Robert A.

    2013-01-01

    When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…

  13. Parameter Uncertainty Analysis Using Monte Carlo Simulations for a Regional-Scale Groundwater Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pohlmann, K.

    2016-12-01

    Regional-scale grid-based groundwater models for flow and transport often contain multiple types of parameters that can intensify the challenge of parameter uncertainty analysis. We propose a Monte Carlo approach to systematically quantify the influence of various types of model parameters on groundwater flux and contaminant travel times. The Monte Carlo simulations were conducted based on the steady-state conversion of the original transient model, which was then combined with the PEST sensitivity analysis tool SENSAN and particle tracking software MODPATH. Results identified hydrogeologic units whose hydraulic conductivity can significantly affect groundwater flux, and thirteen out of 173 model parameters that can cause large variation in travel times for contaminant particles originating from given source zones.

  14. Crop parameters for modeling sugarcane under rainfed conditions in Mexico

    USDA-ARS?s Scientific Manuscript database

    Crop models with well-tested parameters can improve sugarcane productivity for food and biofuel generation. This study aimed to (i) calibrate the light extinction coefficient (k) and other crop parameters for the sugarcane cultivar CP 72-2086, an early-maturing cultivar grown in Mexico and many oth...

  15. Quantifying model-structure- and parameter-driven uncertainties in spring wheat phenology prediction with Bayesian analysis

    DOE PAGES

    Alderman, Phillip D.; Stanfill, Bryan

    2016-10-06

    Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less

  16. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation

    PubMed Central

    Hall, Sheldon K.; Ooi, Ean H.; Payne, Stephen J.

    2015-01-01

    Abstract Purpose: A sensitivity analysis has been performed on a mathematical model of radiofrequency ablation (RFA) in the liver. The purpose of this is to identify the most important parameters in the model, defined as those that produce the largest changes in the prediction. This is important in understanding the role of uncertainty and when comparing the model predictions to experimental data. Materials and methods: The Morris method was chosen to perform the sensitivity analysis because it is ideal for models with many parameters or that take a significant length of time to obtain solutions. A comprehensive literature review was performed to obtain ranges over which the model parameters are expected to vary, crucial input information. Results: The most important parameters in predicting the ablation zone size in our model of RFA are those representing the blood perfusion, electrical conductivity and the cell death model. The size of the 50 °C isotherm is sensitive to the electrical properties of tissue while the heat source is active, and to the thermal parameters during cooling. Conclusions: The parameter ranges chosen for the sensitivity analysis are believed to represent all that is currently known about their values in combination. The Morris method is able to compute global parameter sensitivities taking into account the interaction of all parameters, something that has not been done before. Research is needed to better understand the uncertainties in the cell death, electrical conductivity and perfusion models, but the other parameters are only of second order, providing a significant simplification. PMID:26000972

  17. Uncertainty analyses of the calibrated parameter values of a water quality model

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.; Lindenschmidt, K.-E.

    2003-04-01

    For river basin management water quality models are increasingly used for the analysis and evaluation of different management measures. However substantial uncertainties exist in parameter values depending on the available calibration data. In this paper an uncertainty analysis for a water quality model is presented, which considers the impact of available model calibration data and the variance of input variables. The investigation was conducted based on four extensive flowtime related longitudinal surveys in the River Elbe in the years 1996 to 1999 with varying discharges and seasonal conditions. For the model calculations the deterministic model QSIM of the BfG (Germany) was used. QSIM is a one dimensional water quality model and uses standard algorithms for hydrodynamics and phytoplankton dynamics in running waters, e.g. Michaelis Menten/Monod kinetics, which are used in a wide range of models. The multi-objective calibration of the model was carried out with the nonlinear parameter estimator PEST. The results show that for individual flow time related measuring surveys very good agreements between model calculation and measured values can be obtained. If these parameters are applied to deviating boundary conditions, substantial errors in model calculation can occur. These uncertainties can be decreased with an increased calibration database. More reliable model parameters can be identified, which supply reasonable results for broader boundary conditions. The extension of the application of the parameter set on a wider range of water quality conditions leads to a slight reduction of the model precision for the specific water quality situation. Moreover the investigations show that highly variable water quality variables like the algal biomass always allow a smaller forecast accuracy than variables with lower coefficients of variation like e.g. nitrate.

  18. Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

    NASA Astrophysics Data System (ADS)

    Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.

    2018-05-01

    Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy

  19. Generic NICA-Donnan model parameters for metal-ion binding by humic substances.

    PubMed

    Milne, Christopher J; Kinniburgh, David G; van Riemsdijk, Willem H; Tipping, Edward

    2003-03-01

    A total of 171 datasets of literature and experimental data for metal-ion binding by fulvic and humic acids have been digitized and re-analyzed using the NICA-Donnan model. Generic parameter values have been derived that can be used for modeling in the absence of specific metalion binding measurements. These values complement the previously derived generic descriptions of proton binding. For ions where the ranges of pH, concentration, and ionic strength conditions are well covered by the available data,the generic parameters successfully describe the metalion binding behavior across a very wide range of conditions and for different humic and fulvic acids. Where published data for other metal ions are too sparse to constrain the model well, generic parameters have been estimated by interpolating trends observable in the parameter values of the well-defined data. Recommended generic NICA-Donnan model parameters are provided for 23 metal ions (Al, Am, Ba, Ca, Cd, Cm, Co, CrIII, Cu, Dy, Eu, FeII, FeIII, Hg, Mg, Mn, Ni, Pb, Sr, Thv, UVIO2, VIIIO, and Zn) for both fulvic and humic acids. These parameters probably represent the best NICA-Donnan description of metal-ion binding that can be achieved using existing data.

  20. A Robust and Fast Method to Compute Shallow States without Adjustable Parameters: Simulations for a Silicon-Based Qubit

    NASA Astrophysics Data System (ADS)

    Debernardi, Alberto; Fanciulli, Marco

    Within the framework of the envelope function approximation we have computed - without adjustable parameters and with a reduced computational effort due to analytical expression of relevant Hamiltonian terms - the energy levels of the shallow P impurity in silicon and the hyperfine and superhyperfine splitting of the ground state. We have studied the dependence of these quantities on the applied external electric field along the [001] direction. Our results reproduce correctly the experimental splitting of the impurity ground states detected at zero electric field and provide reliable predictions for values of the field where experimental data are lacking. Further, we have studied the effect of confinement of a shallow state of a P atom at the center of a spherical Si-nanocrystal embedded in a SiO2 matrix. In our simulations the valley-orbit interaction of a realistically screened Coulomb potential and of the core potential are included exactly, within the numerical accuracy due to the use of a finite basis set, while band-anisotropy effects are taken into account within the effective-mass approximation.

  1. Optimal structure and parameter learning of Ising models

    DOE PAGES

    Lokhov, Andrey; Vuffray, Marc Denis; Misra, Sidhant; ...

    2018-03-16

    Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. Here, we introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, whichmore » is known to be the hardest for learning. Here, the efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. Finally, this study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.« less

  2. Optimal structure and parameter learning of Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokhov, Andrey; Vuffray, Marc Denis; Misra, Sidhant

    Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. Here, we introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, whichmore » is known to be the hardest for learning. Here, the efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. Finally, this study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.« less

  3. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Gautam, D.K.; Tokar, S.A.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32000km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC-RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC-RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC-RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction. ?? 2011 The Authors. Journal of Flood Risk Management ?? 2011 The Chartered Institution of Water and Environmental Management.

  4. Toward On-line Parameter Estimation of Concentric Tube Robots Using a Mechanics-based Kinematic Model

    PubMed Central

    Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo

    2017-01-01

    Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554

  5. Comparing basal area growth models, consistency of parameters, and accuracy of prediction

    Treesearch

    J.J. Colbert; Michael Schuckers; Desta Fekedulegn

    2002-01-01

    We fit alternative sigmoid growth models to sample tree basal area historical data derived from increment cores and disks taken at breast height. We examine and compare the estimated parameters for these models across a range of sample sites. Models are rated on consistency of parameters and on their ability to fit growth data from four sites that are located across a...

  6. Modeling of Turbulent Boundary Layer Surface Pressure Fluctuation Auto and Cross Spectra - Verification and Adjustments Based on TU-144LL Data

    NASA Technical Reports Server (NTRS)

    Rackl, Robert; Weston, Adam

    2005-01-01

    The literature on turbulent boundary layer pressure fluctuations provides several empirical models which were compared to the measured TU-144 data. The Efimtsov model showed the best agreement. Adjustments were made to improve its agreement further, consisting of the addition of a broad band peak in the mid frequencies, and a minor modification to the high frequency rolloff. The adjusted Efimtsov predicted and measured results are compared for both subsonic and supersonic flight conditions. Measurements in the forward and middle portions of the fuselage have better agreement with the model than those from the aft portion. For High Speed Civil Transport supersonic cruise, interior levels predicted by use of this model are expected to increase by 1-3 dB due to the adjustments to the Efimtsov model. The space-time cross-correlations and cross-spectra of the fluctuating surface pressure were also investigated. This analysis is an important ingredient in structural acoustic models of aircraft interior noise. Once again the measured data were compared to the predicted levels from the Efimtsov model.

  7. Optimization of a centrifugal compressor impeller using CFD: the choice of simulation model parameters

    NASA Astrophysics Data System (ADS)

    Neverov, V. V.; Kozhukhov, Y. V.; Yablokov, A. M.; Lebedev, A. A.

    2017-08-01

    Nowadays the optimization using computational fluid dynamics (CFD) plays an important role in the design process of turbomachines. However, for the successful and productive optimization it is necessary to define a simulation model correctly and rationally. The article deals with the choice of a grid and computational domain parameters for optimization of centrifugal compressor impellers using computational fluid dynamics. Searching and applying optimal parameters of the grid model, the computational domain and solver settings allows engineers to carry out a high-accuracy modelling and to use computational capability effectively. The presented research was conducted using Numeca Fine/Turbo package with Spalart-Allmaras and Shear Stress Transport turbulence models. Two radial impellers was investigated: the high-pressure at ψT=0.71 and the low-pressure at ψT=0.43. The following parameters of the computational model were considered: the location of inlet and outlet boundaries, type of mesh topology, size of mesh and mesh parameter y+. Results of the investigation demonstrate that the choice of optimal parameters leads to the significant reduction of the computational time. Optimal parameters in comparison with non-optimal but visually similar parameters can reduce the calculation time up to 4 times. Besides, it is established that some parameters have a major impact on the result of modelling.

  8. A new approach to the extraction of single exponential diode model parameters

    NASA Astrophysics Data System (ADS)

    Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.

    2018-06-01

    A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.

  9. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries

    PubMed Central

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405

  10. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    PubMed

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  11. The Association between Parameters of Malnutrition and Diagnostic Measures of Sarcopenia in Geriatric Outpatients

    PubMed Central

    Reijnierse, Esmee M.; Trappenburg, Marijke C.; Leter, Morena J.; Blauw, Gerard Jan; de van der Schueren, Marian A. E.; Meskers, Carel G. M.; Maier, Andrea B.

    2015-01-01

    Objectives Diagnostic criteria for sarcopenia include measures of muscle mass, muscle strength and physical performance. Consensus on the definition of sarcopenia has not been reached yet. To improve insight into the most clinically valid definition of sarcopenia, this study aimed to compare the association between parameters of malnutrition, as a risk factor in sarcopenia, and diagnostic measures of sarcopenia in geriatric outpatients. Material and Methods This study is based on data from a cross-sectional study conducted in a geriatric outpatient clinic including 185 geriatric outpatients (mean age 82 years). Parameters of malnutrition included risk of malnutrition (assessed by the Short Nutritional Assessment Questionnaire), loss of appetite, unintentional weight loss and underweight (body mass index <22 kg/m2). Diagnostic measures of sarcopenia included relative muscle mass (lean mass and appendicular lean mass [ALM] as percentages), absolute muscle mass (total lean mass and ALM/height2), handgrip strength and walking speed. All diagnostic measures of sarcopenia were standardized. Associations between parameters of malnutrition (independent variables) and diagnostic measures of sarcopenia (dependent variables) were analysed using multivariate linear regression models adjusted for age, body mass, fat mass and height in separate models. Results None of the parameters of malnutrition was consistently associated with diagnostic measures of sarcopenia. The strongest associations were found for both relative and absolute muscle mass; less stronger associations were found for muscle strength and physical performance. Underweight (p = <0.001) and unintentional weight loss (p = 0.031) were most strongly associated with higher lean mass percentage after adjusting for age. Loss of appetite (p = 0.003) and underweight (p = 0.021) were most strongly associated with lower total lean mass after adjusting for age and fat mass. Conclusion Parameters of malnutrition relate

  12. Calibration and LOD/LOQ estimation of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs expressed in E. coli using a four-parameter logistic model.

    PubMed

    Lee, K R; Dipaolo, B; Ji, X

    2000-06-01

    Calibration is the process of fitting a model based on reference data points (x, y), then using the model to estimate an unknown x based on a new measured response, y. In DNA assay, x is the concentration, and y is the measured signal volume. A four-parameter logistic model was used frequently for calibration of immunoassay when the response is optical density for enzyme-linked immunosorbent assay (ELISA) or adjusted radioactivity count for radioimmunoassay (RIA). Here, it is shown that the same model or a linearized version of the curve are equally useful for the calibration of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs and calculation of performance measures of the assay.

  13. Parametric Adjustments to the Rankine Vortex Wind Model for Gulf of Mexico Hurricanes

    DTIC Science & Technology

    2012-11-01

    2012 4. TITLE AND SUBTITLE Parametric Adjustments to the Rankine Vortex Wind Model for Gulf of Mexico Hurricanes 5a. CONTRACT NUMBER 5b. GRANT ...may be used to construct spatially varying wind fields for the GOM region (e.g., Thompson and Cardone [12]), but this requires using a complicated...Storm Damage Reduc- tion, and Dredging Operations and Environmental Research (DOER). The USACE Headquarters granted permission to publish this paper

  14. Adjustment method for embedded metrology engine in an EM773 series microcontroller.

    PubMed

    Blazinšek, Iztok; Kotnik, Bojan; Chowdhury, Amor; Kačič, Zdravko

    2015-09-01

    This paper presents the problems of implementation and adjustment (calibration) of a metrology engine embedded in NXP's EM773 series microcontroller. The metrology engine is used in a smart metering application to collect data about energy utilization and is controlled with the use of metrology engine adjustment (calibration) parameters. The aim of this research is to develop a method which would enable the operators to find and verify the optimum parameters which would ensure the best possible accuracy. Properly adjusted (calibrated) metrology engines can then be used as a base for variety of products used in smart and intelligent environments. This paper focuses on the problems encountered in the development, partial automatisation, implementation and verification of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Determination of adsorption parameters in numerical simulation for polymer flooding

    NASA Astrophysics Data System (ADS)

    Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu

    2018-02-01

    A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.

  16. Getting a feel for parameters: using interactive parallel plots as a tool for parameter identification in the new rainfall-runoff model WALRUS

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Teuling, Ryan; Uijlenhoet, Remko

    2015-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS) to fill the gap between complex, spatially distributed models often used in lowland catchments and simple, parametric models which have mostly been developed for mountainous catchments (Brauer et al., 2014ab). This parametric rainfall-runoff model can be used all over the world in both freely draining lowland catchments and polders with controlled water levels. The open source model code is implemented in R and can be downloaded from www.github.com/ClaudiaBrauer/WALRUS. The structure and code of WALRUS are simple, which facilitates detailed investigation of the effect of parameters on all model variables. WALRUS contains only four parameters requiring calibration; they are intended to have a strong, qualitative relation with catchment characteristics. Parameter estimation remains a challenge, however. The model structure contains three main feedbacks: (1) between groundwater and surface water; (2) between saturated and unsaturated zone; (3) between catchment wetness and (quick/slow) flowroute division. These feedbacks represent essential rainfall-runoff processes in lowland catchments, but increase the risk of parameter dependence and equifinality. Therefore, model performance should not only be judged based on a comparison between modelled and observed discharges, but also based on the plausibility of the internal modelled variables. Here, we present a method to analyse the effect of parameter values on internal model states and fluxes in a qualitative and intuitive way using interactive parallel plotting. We applied WALRUS to ten Dutch catchments with different sizes, slopes and soil types and both freely draining and polder areas. The model was run with a large number of parameter sets, which were created using Latin Hypercube Sampling. The model output was characterised in terms of several signatures, both measures of goodness of fit and statistics of internal model variables (such as the

  17. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems

    PubMed Central

    Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.

    2016-01-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060

  18. Dynamic imaging model and parameter optimization for a star tracker.

    PubMed

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2016-03-21

    Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.

  19. Methods for Calibration of Prout-Tompkins Kinetics Parameters Using EZM Iteration and GLO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wemhoff, A P; Burnham, A K; de Supinski, B

    2006-11-07

    This document contains information regarding the standard procedures used to calibrate chemical kinetics parameters for the extended Prout-Tompkins model to match experimental data. Two methods for calibration are mentioned: EZM calibration and GLO calibration. EZM calibration matches kinetics parameters to three data points, while GLO calibration slightly adjusts kinetic parameters to match multiple points. Information is provided regarding the theoretical approach and application procedure for both of these calibration algorithms. It is recommended that for the calibration process, the user begin with EZM calibration to provide a good estimate, and then fine-tune the parameters using GLO. Two examples have beenmore » provided to guide the reader through a general calibrating process.« less

  20. A Normalized Direct Approach for Estimating the Parameters of the Normal Ogive Three-Parameter Model for Ability Tests.

    ERIC Educational Resources Information Center

    Gugel, John F.

    A new method for estimating the parameters of the normal ogive three-parameter model for multiple-choice test items--the normalized direct (NDIR) procedure--is examined. The procedure is compared to a more commonly used estimation procedure, Lord's LOGIST, using computer simulations. The NDIR procedure uses the normalized (mid-percentile)…