Sample records for adjustable time step

  1. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!

    PubMed

    Bank, Paulina J M; Roerdink, Melvyn; Peper, C E

    2011-03-01

    Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed.

  2. Elderly Fallers Enhance Dynamic Stability Through Anticipatory Postural Adjustments during a Choice Stepping Reaction Time

    PubMed Central

    Tisserand, Romain; Robert, Thomas; Chabaud, Pascal; Bonnefoy, Marc; Chèze, Laurence

    2016-01-01

    In the case of disequilibrium, the capacity to step quickly is critical to avoid falling in elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT), where elderly fallers (F) take longer to step than elderly non-fallers (NF). However, the reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA) that elderly F develop in a stepping context and their consequences on the dynamic stability. Forty-four community-dwelling elderly subjects (20 F and 24 NF) performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP); in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS) at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall. PMID:27965561

  3. Aging effect on step adjustments and stability control in visually perturbed gait initiation.

    PubMed

    Sun, Ruopeng; Cui, Chuyi; Shea, John B

    2017-10-01

    Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Postural adjustment errors reveal deficits in inhibition during lateral step initiation in older adults

    PubMed Central

    Fuhrman, Susan I.; Redfern, Mark S.; Jennings, J. Richard; Perera, Subashan; Nebes, Robert D.; Furman, Joseph M.

    2013-01-01

    Postural dual-task studies have demonstrated effects of various executive function components on gait and postural control in older adults. The purpose of the study was to explore the role of inhibition during lateral step initiation. Forty older adults participated (range 70–94 yr). Subjects stepped to the left or right in response to congruous and incongruous visual cues that consisted of left and right arrows appearing on left or right sides of a monitor. The timing of postural adjustments was identified by inflection points in the vertical ground reaction forces (VGRF) measured separately under each foot. Step responses could be classified into preferred and nonpreferred step behavior based on the number of postural adjustments that were made. Delays in onset of the first postural adjustment (PA1) and liftoff (LO) of the step leg during preferred steps progressively increased among the simple, choice, congruous, and incongruous tasks, indicating interference in processing the relevant visuospatial cue. Incongruous cues induced subjects to make more postural adjustments than they typically would (i.e., nonpreferred steps), representing errors in selection of the appropriate motor program. During these nonpreferred steps, the onset of the PA1 was earlier than during the preferred steps, indicating a failure to inhibit an inappropriate initial postural adjustment. The functional consequence of the additional postural adjustments was a delay in the LO compared with steps in which they did not make an error. These results suggest that deficits in inhibitory function may detrimentally affect step decision processing, by delaying voluntary step responses. PMID:23114211

  5. Postural adjustment errors during lateral step initiation in older and younger adults

    PubMed Central

    Sparto, Patrick J.; Fuhrman, Susan I.; Redfern, Mark S.; Perera, Subashan; Jennings, J. Richard; Furman, Joseph M.

    2016-01-01

    The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70 – 94 y) and twenty younger adults (21 – 58 y) performed visually-cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g. a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance. PMID:25595953

  6. Postural adjustment errors during lateral step initiation in older and younger adults

    PubMed Central

    Sparto, Patrick J.; Fuhrman, Susan I.; Redfern, Mark S.; Perera, Subashan; Jennings, J. Richard; Furman, Joseph M.

    2014-01-01

    The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70 – 94 y) and twenty younger adults (21 – 58 y) performed visually-cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g. a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance. PMID:25183162

  7. Actively adjustable step-type ultrasonic horns in longitudinal vibration

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu; Guo, Hao; Xu, Jie

    2018-04-01

    Actively adjustable longitudinal step-type ultrasonic horns are proposed and studied. The horn is composed of a traditional ultrasonic horn and piezoelectric material. In practical applications, this kind of step-type ultrasonic horn is mechanically excited by an ultrasonic transducer and the piezoelectric material is connected to an adjustable electric impedance. In this research, the effects of the electric impedance and of the location of the piezoelectric material on the performance of the horn are studied. It is shown that when the electric resistance is increased, the resonance frequency of the horn is increased; the displacement magnification is increased when the piezoelectric material is located in the large end and decreased when the piezoelectric material is located in the small end of the horn. The displacement magnification for the piezoelectric material in the large end is larger than that for the piezoelectric material in the small end of the horn. Some step-type ultrasonic horns are designed and manufactured; the resonance frequency and the displacement magnification are measured by means of POLYTEC Laser Scanning vibrometer. It is shown that the theoretical resonance frequency and the displacement magnification are in good agreement with the measured results. It is concluded that by means of the insertion of the piezoelectric material in the longitudinal horn, the horn performance can be adjusted by changing the electric impedance and the location of the piezoelectric material in the horn. It is expected that this kind of adjustable ultrasonic horns can be used in traditional and potential ultrasonic technologies where the vibrational performance adjustment is needed.

  8. A step in time: Changes in standard-frequency and time-signal broadcasts, 1 January 1972

    NASA Technical Reports Server (NTRS)

    Chi, A. R.; Fosque, H. S.

    1973-01-01

    An improved coordinated universal time (UTC) system has been adopted by the International Radio Consultative Committee. It was implemented internationally by the standard-frequency and time-broadcast stations on 1 Jan. 1972. The new UTC system eliminates the frequency offset of 300 parts in 10 to the 10th power between the old UTC and atomic time, thus making the broadcast time interval (the UTC second) constant and defined by the resonant frequency of cesium atoms. The new time scale is kept in synchronism with the rotation of the Earth within plus or minus 0.7 s by step-time adjustments of exactly 1 s, when needed. A time code has been added to the disseminated time signals to permit universal time to be obtained from the broadcasts to the nearest 0.1 s for users requiring such precision. The texts of the International Radio Consultative Committee recommendation and report to implement the new UTC system are given. The coding formats used by various standard time broadcast services to transmit the difference between the universal time (UT1) and the UTC are also given. For users' convenience, worldwide primary VLF and HF transmissions stations, frequencies, and schedules of time emissions are also included. Actual time-step adjustments made by various stations on 1 Jan. 1972, are provided for future reference.

  9. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson's disease.

    PubMed

    Jacobs, J V; Lou, J S; Kraakevik, J A; Horak, F B

    2009-12-01

    The supplementary motor area (SMA) is thought to contribute to the generation of anticipatory postural adjustments (APAs, which act to stabilize supporting body segments prior to movement), but its precise role remains unclear. In addition, participants with Parkinson's disease (PD) exhibit impaired function of the SMA as well as decreased amplitudes and altered timing of the APA during step initiation, but the contribution of the SMA to these impairments also remains unclear. To determine how the SMA contributes to generating the APA and to the impaired APAs of participants with PD, we examined the voluntary steps of eight participants with PD and eight participants without PD, before and after disrupting the SMA and dorsolateral premotor cortex (dlPMC), in separate sessions, with 1-Hz repetitive transcranial magnetic stimulation (rTMS). Both groups exhibited decreased durations of their APAs after rTMS over the SMA but not over the dlPMC. Peak amplitudes of the APAs were unaffected by rTMS to either site. The symptom severity of the participants with PD positively correlated with the extent that rTMS over the SMA affected the durations of their APAs. The results suggest that the SMA contributes to the timing of the APA and that participants with PD exhibit impaired timing of their APAs, in part, due to progressive dysfunction of circuits associated with the SMA.

  10. Anticipatory postural adjustments contribute to age-related changes in compensatory steps associated with unilateral perturbations.

    PubMed

    Hyodo, Masaki; Saito, Mayumi; Ushiba, Junichi; Tomita, Yutaka; Minami, Mihoko; Masakado, Yoshihisa

    2012-07-01

    Compensatory steps are essential for preventing falls following perturbations. This study aimed to explore age-related changes in compensatory steps to unilateral perturbations, specifically in terms of whether anticipatory postural adjustments (APAs) play a role in stabilizing lateral balance. Five young and five elderly male adults participated. The split-belt treadmill was used to provide bi- and unilateral perturbations, as forward or backward transitions, applied 10 times in random order. Backward steps evoked by unilateral forward perturbations were evaluated. We measured temporal characteristics, mediolateral (ML) center of mass (COM) motion, and ML step length of compensatory steps. Compensatory steps to unexpected perturbations showed delayed onset of foot-off (FO) and expanded lateral swing length in elderly compared to young subjects. Differences in COM motions and step width arose related to APAs. Elderly subjects showing APAs exhibited no significant differences in ML COM, ML COM velocity, or ML swing length compared to young subjects. However, elderly subjects without APAs showed significant changes toward instability in these parameters. The fact that APAs play a notable role, particularly in the elderly, in stability offers a new insight into preventing falls. However, APAs occurred in 29% of the steps of young and 35% of the steps of elderly subjects. If the occurrence of APAs in elderly people in response to compensatory steps was more frequent, fall risk would be reduced. Further studies, particularly into APA frequency, might contribute to improved intervention to prevent falls. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Grandparenting and adolescent adjustment in two-parent biological, lone-parent, and step-families.

    PubMed

    Attar-Schwartz, Shalhevet; Tan, Jo-Pei; Buchanan, Ann; Flouri, Eirini; Griggs, Julia

    2009-02-01

    There is limited research on the links between grandparenting and adolescents' well-being, especially from the perspective of the adolescents. The study examined whether grandparent involvement varied in two-parent biological, lone-parent, and step-families and whether this had a different contribution to the emotional and behavioral adjustment of adolescents across different family structures. The study is based on a sample of 1,515 secondary school students (ages 11-16 years) from England and Wales who completed a structured questionnaire. Findings of hierarchical regression analyses showed that among the whole sample, greater grandparent involvement was associated with fewer emotional problems (p < .01) and with more prosocial behavior (p < .001). In addition, while there were no differences in the level of grandparent involvement across the different family structures, grandparent involvement was more strongly associated with reduced adjustment difficulties among adolescents from lone-parent and step-families than those from two-parent biological families. A possible implication is that the positive role of grandparent involvement in lone-parent and step- families should be more emphasized in family psychology. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  12. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  13. Risk-adjusted monitoring of survival times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sego, Landon H.; Reynolds, Marion R.; Woodall, William H.

    2009-02-26

    We consider the monitoring of clinical outcomes, where each patient has a di®erent risk of death prior to undergoing a health care procedure.We propose a risk-adjusted survival time CUSUM chart (RAST CUSUM) for monitoring clinical outcomes where the primary endpoint is a continuous, time-to-event variable that may be right censored. Risk adjustment is accomplished using accelerated failure time regression models. We compare the average run length performance of the RAST CUSUM chart to the risk-adjusted Bernoulli CUSUM chart, using data from cardiac surgeries to motivate the details of the comparison. The comparisons show that the RAST CUSUM chart is moremore » efficient at detecting a sudden decrease in the odds of death than the risk-adjusted Bernoulli CUSUM chart, especially when the fraction of censored observations is not too high. We also discuss the implementation of a prospective monitoring scheme using the RAST CUSUM chart.« less

  14. Errors in Postural Preparation Lead to Increased Choice Reaction Times for Step Initiation in Older Adults

    PubMed Central

    Nutt, John G.; Horak, Fay B.

    2011-01-01

    Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431

  15. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  16. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    PubMed

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  17. Inverting the planning gradient: adjustment of grasps to late segments of multi-step object manipulations.

    PubMed

    Mathew, Hanna; Kunde, Wilfried; Herbort, Oliver

    2017-05-01

    When someone grasps an object, the grasp depends on the intended object manipulation and usually facilitates it. If several object manipulation steps are planned, the first step has been reported to primarily determine the grasp selection. We address whether the grasp can be aligned to the second step, if the second step's requirements exceed those of the first step. Participants grasped and rotated a dial first by a small extent and then by various extents in the opposite direction, without releasing the dial. On average, when the requirements of the first and the second step were similar, participants mostly aligned the grasp to the first step. When the requirements of the second step were considerably higher, participants aligned the grasp to the second step, even though the first step still had a considerable impact. Participants employed two different strategies. One subgroup initially aligned the grasp to the first step and then ceased adjusting the grasp to either step. Another group also initially aligned the grasp to the first step and then switched to aligning it primarily to the second step. The data suggest that participants are more likely to switch to the latter strategy when they experienced more awkward arm postures. In summary, grasp selections for multi-step object manipulations can be aligned to the second object manipulation step, if the requirements of this step clearly exceed those of the first step and if participants have some experience with the task.

  18. Accessory stimulus modulates executive function during stepping task

    PubMed Central

    Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo

    2015-01-01

    When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. PMID:25925321

  19. Adjustment to time of use pricing: Persistence of habits or change

    NASA Astrophysics Data System (ADS)

    Rebello, Derrick Michael

    1999-11-01

    Generally the dynamics related to residential electricity consumption under TOU rates have not been analyzed completely. A habit persistence model is proposed to account for the dynamics that may be present as a result of recurring habits or lack of information about the effects of shifting load across TOU periods. In addition, the presence of attrition bias necessitated a two-step estimation approach. The decision to remain in the program modeled in the first-step, while demand for electricity was estimated in the second-step. Results show that own-price effects and habit persistence have the most significant effect the model. The habit effects, which while small in absolute terms, are significant. Elasticity estimates show that electricity consumption is inelastic during all periods of the day. Estimates of the long-run elasticities were nearly identical to short-run estimates, showing little or no adjustment across time. Cross-price elasticities indicate a willingness to substitute consumption across periods implying that TOU goods are weak substitutes. The most significant substitution occurs during the period of 5:00 PM to 9:00 PM, when most individuals are likely to be home and active.

  20. Manual for implementing a Shared Time Engineering Program (STEP) September 1980 through September 1983

    NASA Astrophysics Data System (ADS)

    Aronoff, H. I.; Leslie, J. J.; Mittleman, A. N.; Holt, S.

    1983-11-01

    This manual describes a Shared Time Engineering Program (STEP) conducted by the New England Apparel Manufacturers Association (NEAMA) headquartered in Fall River Massachusetts, and funded by the Office of Trade Adjustment Assistance of the U.S. Department of Commerce. It is addressed to industry association executives, industrial engineers and others interested in examining an innovative model of industrial engineering assistance to small plants which might be adapted to their particular needs.

  1. Anticipatory postural adjustments during lateral step motion in patients with hip osteoarthritis.

    PubMed

    Tateuchi, Hiroshige; Ichihashi, Noriaki; Shinya, Masahiro; Oda, Shingo

    2011-02-01

    Patients with hip osteoarthritis (OA) have difficulty with mediolateral postural control. Since the symptom of hip OA includes joint pain, which mostly occurs upon initial movement, patients with hip OA might have disabling problems with movement initiation. This study aimed to identify the movement strategy during the anticipatory postural adjustments in the lateral step motion in patients with hip OA. We studied 18 female subjects with unilateral hip OA and 10 healthy subjects, and measured temporal, kinetic, and kinematic variables. Patients with hip OA required a longer duration of anticipation phase than the control subjects, the total duration of lateral stepping was not different between the groups. Displacement of the center of mass to the supporting (affected) side during the anticipation phase was not different between the two groups. These findings suggest that, in patients with hip OA, the center of mass slowly moved to the affected side. Furthermore, patients with hip OA showed greater shift of the trunk to the supporting side than did the control subjects. These movement characteristics might contribute to the achievement of both protection of the affected hip joint and quickness in the subsequent lateral step in patients with hip OA.

  2. Walking velocity and step length adjustments affect knee joint contact forces in healthy weight and obese adults.

    PubMed

    Milner, Clare E; Meardon, Stacey A; Hawkins, Jillian L; Willson, John D

    2018-04-28

    Knee osteoarthritis is a major public health problem and adults with obesity are particularly at risk. One approach to alleviating this problem is to reduce the mechanical load at the joint during daily activity. Adjusting temporospatial parameters of walking could mitigate cumulative knee joint mechanical loads. The purpose of this study was to determine how adjustments to velocity and step length affects knee joint loading in healthy weight adults and adults with obesity. We collected three-dimensional gait analysis data on 10 adults with a normal body mass index and 10 adults with obesity during over ground walking in nine different conditions. In addition to preferred velocity and step length, we also conducted combinations of 15% increased and decreased velocity and step length. Peak tibiofemoral joint impulse and knee adduction angular impulse were reduced in the decreased step length conditions in both healthy weight adults (main effect) and those with obesity (interaction effect). Peak knee joint adduction moment was also reduced with decreased step length, and with decreased velocity in both groups. We conclude from these results that adopting shorter step lengths during daily activity and when walking for exercise can reduce mechanical stimuli associated with articular cartilage degenerative processes in adults with and without obesity. Thus, walking with reduced step length may benefit adults at risk for disability due to knee osteoarthritis. Adopting a shorter step length during daily walking activity may reduce knee joint loading and thus benefit those at risk for knee cartilage degeneration. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:XX-XX, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. ANTICIPATORY POSTURAL ADJUSTMENTS PRIOR TO STEP INITIATION ARE HYPOMETRIC IN UNTREATED PARKINSON'S DISEASE: AN ACCELEROMETER-BASED APPROACH

    PubMed Central

    Mancini, Martina; Zampieri, Cris; Carlson-Kuhta, Patricia; Chiari, Lorenzo; Horak, Fay B.

    2010-01-01

    Background and purpose Anticipatory postural adjustments (APAs), prior to step initiation, are bradykinetic in advanced Parkinson's disease (PD) and may be one of the factors associated with ‘start hesitation’. However, little is known about APAs in the early stage of PD. In this study, we determined whether body-worn accelerometers could be used to characterize step initiation deficits in subjects with early-to-moderate, untreated PD. Methods Eleven PD and 12 healthy control subjects were asked to take two steps. Postural adjustments were compared from center of pressure (COP) and from acceleration of the trunk at the center of mass level (L5). Results Our findings show that APAs measured from the peak COP displacement towards the swing leg and the peak trunk acceleration towards the stance leg were smaller in untreated PD compared to control subjects. The magnitude of APAs measured from peak COP displacements and accelerations were correlated. Conclusion These results suggest that quantitative analysis of step initiation from one accelerometer on the trunk could provide useful information for the characterization of patients in early stages of PD, when clinical evidence of start hesitation may not be detectable. Ambulatory monitoring of step initiation is also promising for monitoring patient progression in the home environment, and eventually providing feedback for preventing freezing of gait episodes. PMID:19473350

  4. New Parents’ Psychological Adjustment and Trajectories of Early Parental Involvement

    PubMed Central

    Jia, Rongfang; Kotila, Letitia E.; Schoppe-Sullivan, Sarah J.; Kamp Dush, Claire M.

    2016-01-01

    Trajectories of parental involvement time (engagement and child care) across 3, 6, and 9 months postpartum and associations with parents’ own and their partners’ psychological adjustment (dysphoria, anxiety, and empathic personal distress) were examined using a sample of dual-earner couples experiencing first-time parenthood (N = 182 couples). Using time diary measures that captured intensive parenting moments, hierarchical linear modeling analyses revealed that patterns of associations between psychological adjustment and parental involvement time depended on the parenting domain, aspect of psychological adjustment, and parent gender. Psychological adjustment difficulties tended to bias the 2-parent system toward a gendered pattern of “mother step in” and “father step out,” as father involvement tended to decrease, and mother involvement either remained unchanged or increased, in response to their own and their partners’ psychological adjustment difficulties. In contrast, few significant effects were found in models using parental involvement to predict psychological adjustment. PMID:27397935

  5. The prevalence of upright non-stepping time in comparison to stepping time in 11-13 year old school children across seasons.

    PubMed

    McCrorie, P Rw; Duncan, E; Granat, M H; Stansfield, B W

    2012-11-01

    Evidence suggests that behaviours such as standing are beneficial for our health. Unfortunately, little is known of the prevalence of this state, its importance in relation to time spent stepping or variation across seasons. The aim of this study was to quantify, in young adolescents, the prevalence and seasonal changes in time spent upright and not stepping (UNSt(time)) as well as time spent upright and stepping (USt(time)), and their contribution to overall upright time (U(time)). Thirty-three adolescents (12.2 ± 0.3 y) wore the activPAL activity monitor during four school days on two occasions: November/December (winter) and May/June (summer). UNSt(time) contributed 60% of daily U(time) at winter (Mean = 196 min) and 53% at summer (Mean = 171 min); a significant seasonal effect, p < 0.001. USt(time) was significantly greater in summer compared to winter (153 min versus 131 min, p < 0.001). The effects in UNSt(time) could be explained through significant seasonal differences during the school hours (09:00-16:00), whereas the effects in USt(time) could be explained through significant seasonal differences in the evening period (16:00-22:00). Adolescents spent a greater amount of time upright and not stepping than they did stepping, in both winter and summer. The observed seasonal effects for both UNSt(time) and USt(time) provide important information for behaviour change intervention programs.

  6. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.

    PubMed

    Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka

    2016-03-01

    We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).

  7. Insect–computer hybrid legged robot with user-adjustable speed, step length and walking gait

    PubMed Central

    Cao, Feng; Zhang, Chao; Choo, Hao Yu

    2016-01-01

    We have constructed an insect–computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g. gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e. applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. PMID:27030043

  8. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  9. Newmark local time stepping on high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less

  10. Adaptive time stepping for fluid-structure interaction solvers

    DOE PAGES

    Mayr, M.; Wall, W. A.; Gee, M. W.

    2017-12-22

    In this work, a novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additionalmore » cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. Finally, the demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.« less

  11. Adaptive time stepping for fluid-structure interaction solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayr, M.; Wall, W. A.; Gee, M. W.

    In this work, a novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additionalmore » cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. Finally, the demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.« less

  12. Effects of walking speed on the step-by-step control of step width.

    PubMed

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  13. Multi-step prediction for influenza outbreak by an adjusted long short-term memory.

    PubMed

    Zhang, J; Nawata, K

    2018-05-01

    Influenza results in approximately 3-5 million annual cases of severe illness and 250 000-500 000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to help hospitals to perform dynamical assignments of beds to influenza patients for the annually varied influenza season, and aid pharmaceutical companies to formulate a flexible plan of manufacturing vaccine for the yearly different influenza vaccine. In this study, we utilised four different multi-step prediction algorithms in the long short-term memory (LSTM). The result showed that implementing multiple single-output prediction in a six-layer LSTM structure achieved the best accuracy. The mean absolute percentage errors from two- to 13-step-ahead prediction for the US influenza-like illness rates were all <15%, averagely 12.930%. To the best of our knowledge, it is the first time that LSTM has been applied and refined to perform multi-step-ahead prediction for influenza outbreaks. Hopefully, this modelling methodology can be applied in other countries and therefore help prevent and control influenza worldwide.

  14. Short-term Time Step Convergence in a Climate Model

    DOE PAGES

    Wan, Hui; Rasch, Philip J.; Taylor, Mark; ...

    2015-02-11

    A testing procedure is designed to assess the convergence property of a global climate model with respect to time step size, based on evaluation of the root-mean-square temperature difference at the end of very short (1 h) simulations with time step sizes ranging from 1 s to 1800 s. A set of validation tests conducted without sub-grid scale parameterizations confirmed that the method was able to correctly assess the convergence rate of the dynamical core under various configurations. The testing procedure was then applied to the full model, and revealed a slow convergence of order 0.4 in contrast to themore » expected first-order convergence. Sensitivity experiments showed without ambiguity that the time stepping errors in the model were dominated by those from the stratiform cloud parameterizations, in particular the cloud microphysics. This provides a clear guidance for future work on the design of more accurate numerical methods for time stepping and process coupling in the model.« less

  15. Using a detailed uncertainty analysis to adjust mapped rates of forest disturbance derived from Landsat time series data (Invited)

    NASA Astrophysics Data System (ADS)

    Cohen, W. B.; Yang, Z.; Stehman, S.; Huang, C.; Healey, S. P.

    2013-12-01

    Forest ecosystem process models require spatially and temporally detailed disturbance data to accurately predict fluxes of carbon or changes in biodiversity over time. A variety of new mapping algorithms using dense Landsat time series show great promise for providing disturbance characterizations at an annual time step. These algorithms provide unprecedented detail with respect to timing, magnitude, and duration of individual disturbance events, and causal agent. But all maps have error and disturbance maps in particular can have significant omission error because many disturbances are relatively subtle. Because disturbance, although ubiquitous, can be a relatively rare event spatially in any given year, omission errors can have a great impact on mapped rates. Using a high quality reference disturbance dataset, it is possible to not only characterize map errors but also to adjust mapped disturbance rates to provide unbiased rate estimates with confidence intervals. We present results from a national-level disturbance mapping project (the North American Forest Dynamics project) based on the Vegetation Change Tracker (VCT) with annual Landsat time series and uncertainty analyses that consist of three basic components: response design, statistical design, and analyses. The response design describes the reference data collection, in terms of the tool used (TimeSync), a formal description of interpretations, and the approach for data collection. The statistical design defines the selection of plot samples to be interpreted, whether stratification is used, and the sample size. Analyses involve derivation of standard agreement matrices between the map and the reference data, and use of inclusion probabilities and post-stratification to adjust mapped disturbance rates. Because for NAFD we use annual time series, both mapped and adjusted rates are provided at an annual time step from ~1985-present. Preliminary evaluations indicate that VCT captures most of the higher

  16. Real-time adjustment of ventricular restraint therapy in heart failure.

    PubMed

    Ghanta, Ravi K; Lee, Lawrence S; Umakanthan, Ramanan; Laurence, Rita G; Fox, John A; Bolman, Ralph Morton; Cohn, Lawrence H; Chen, Frederick Y

    2008-12-01

    Current ventricular restraint devices do not allow for either the measurement or adjustment of ventricular restraint level. Periodic adjustment of restraint level post-device implantation may improve therapeutic efficacy. We evaluated the feasibility of an adjustable quantitative ventricular restraint (QVR) technique utilizing a fluid-filled polyurethane epicardial balloon to measure and adjust restraint level post-implantation guided by physiologic parameters. QVR balloons were implanted in nine ovine with post-infarction dilated heart failure. Restraint level was defined by the maximum restraint pressure applied by the balloon to the epicardium at end-diastole. An access line connected the balloon lumen to a subcutaneous portacath to allow percutaneous access. Restraint level was adjusted while left ventricular (LV) end-diastolic volume (EDV) and cardiac output was assessed with simultaneous transthoracic echocardiography. All nine ovine successfully underwent QVR balloon implantation. Post-implantation, restraint level could be measured percutaneously in real-time and dynamically adjusted by instillation and withdrawal of fluid from the balloon lumen. Using simultaneous echocardiography, restraint level could be adjusted based on LV EDV and cardiac output. After QVR therapy for 21 days, LV EDV decreased from 133+/-15 ml to 113+/-17 ml (p<0.05). QVR permits real-time measurement and physiologic adjustment of ventricular restraint therapy after device implantation.

  17. Adaptive time steps in trajectory surface hopping simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spörkel, Lasse, E-mail: spoerkel@kofo.mpg.de; Thiel, Walter, E-mail: thiel@kofo.mpg.de

    2016-05-21

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energymore » surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.« less

  18. Adaptive time steps in trajectory surface hopping simulations

    NASA Astrophysics Data System (ADS)

    Spörkel, Lasse; Thiel, Walter

    2016-05-01

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energy surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.

  19. Short‐term time step convergence in a climate model

    PubMed Central

    Rasch, Philip J.; Taylor, Mark A.; Jablonowski, Christiane

    2015-01-01

    Abstract This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral‐element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process‐coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid‐scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full‐physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4—considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid‐scale physical parameterizations, the stratiform cloud schemes are associated with the largest time‐stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time‐stepping errors and identify the related model sensitivities. PMID:27660669

  20. Lateral step initiation behavior in older adults.

    PubMed

    Sparto, Patrick J; Jennings, J Richard; Furman, Joseph M; Redfern, Mark S

    2014-02-01

    Older adults have varied postural responses during induced and voluntary lateral stepping. The purpose of the research was to quantify the occurrence of different stepping strategies during lateral step initiation in older adults and to relate the stepping responses to retrospective history of falls. Seventy community-ambulating older adults (mean age 76 y, range 70-94 y) performed voluntary lateral steps as quickly as possible to the right or left in response to a visual cue, in a blocked design. Vertical ground reaction forces were measured using a forceplate, and the number and latency of postural adjustments were quantified. Subjects were assigned to groups based on their stepping strategy. The frequency of trials with one or two postural adjustments was compared with data from 20 younger adults (mean age 38 y, range 21-58 y). Logistic regression was used to relate presence of a fall in the previous year with the number and latency of postural adjustments. In comparison with younger adults, who almost always demonstrated one postural adjustment when stepping laterally, older adults constituted a continuous distribution in the percentage of step trials made with one postural adjustment (from 0% to 100% of trials). Latencies of the initial postural adjustment and foot liftoff varied depending on the number of postural adjustments made. A history of falls was associated a larger percentage of two postural adjustments, and a longer latency of foot liftoff. In conclusion, the number and latency of postural adjustments made during voluntary lateral stepping provides additional evidence that lateral control of posture may be a critical indicator of aging. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Lateral step initiation behavior in older adults

    PubMed Central

    Sparto, Patrick J; Jennings, J Richard; Furman, Joseph M; Redfern, Mark S

    2013-01-01

    Older adults have varied postural responses during induced and voluntary lateral stepping. The purpose of the research was to quantify the occurrence of different stepping strategies during lateral step initiation in older adults and to relate the stepping responses to retrospective history of falls. Seventy community-ambulating older adults (mean age 76 y, range 70–94 y) performed voluntary lateral steps as quickly as possible to the right or left in response to a visual cue, in a blocked design. Vertical ground reaction forces were measured using a forceplate, and the number and latency of postural adjustments were quantified. Subjects were assigned to groups based on their stepping strategy. The frequency of trials with one or two postural adjustments was compared with data from 20 younger adults (mean age 38 y, range 21–58 y). Logistic regression was used to relate presence of a fall in the previous year with the number and latency of postural adjustments. In comparison with younger adults, who almost always demonstrated one postural adjustment when stepping laterally, older adults constituted a continuous distribution in the percentage of step trials made with one postural adjustment (from 0% to 100% of trials). Latencies of the initial postural adjustment and foot liftoff varied depending on the number of postural adjustments made. A history of falls was associated a larger percentage of two postural adjustments, and a longer latency of foot liftoff. In conclusion, the number and latency of postural adjustments made during voluntary lateral stepping provides additional evidence that lateral control of posture may be a critical indicator of aging. PMID:24295896

  2. Quick foot placement adjustments during gait are less accurate in individuals with focal cerebellar lesions.

    PubMed

    Hoogkamer, Wouter; Potocanac, Zrinka; Van Calenbergh, Frank; Duysens, Jacques

    2017-10-01

    Online gait corrections are frequently used to restore gait stability and prevent falling. They require shorter response times than voluntary movements which suggests that subcortical pathways contribute to the execution of online gait corrections. To evaluate the potential role of the cerebellum in these pathways we tested the hypotheses that online gait corrections would be less accurate in individuals with focal cerebellar damage than in neurologically intact controls and that this difference would be more pronounced for shorter available response times and for short step gait corrections. We projected virtual stepping stones on an instrumented treadmill while some of the approaching stepping stones were shifted forward or backward, requiring participants to adjust their foot placement. Varying the timing of those shifts allowed us to address the effect of available response time on foot placement error. In agreement with our hypothesis, individuals with focal cerebellar lesions were less accurate in adjusting their foot placement in reaction to suddenly shifted stepping stones than neurologically intact controls. However, the cerebellar lesion group's foot placement error did not increase more with decreasing available response distance or for short step versus long step adjustments compared to the control group. Furthermore, foot placement error for the non-shifting stepping stones was also larger in the cerebellar lesion group as compared to the control group. Consequently, the reduced ability to accurately adjust foot placement during walking in individuals with focal cerebellar lesions appears to be a general movement control deficit, which could contribute to increased fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling

    NASA Astrophysics Data System (ADS)

    Miki, Yohei; Umemura, Masayuki

    2017-04-01

    The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.

  4. Split-Step Timing of Professional and Junior Tennis Players

    PubMed Central

    Leskosek, Bojan; Filipcic, Tjasa

    2017-01-01

    Abstract The purpose of the study was to determine the timing of a split-step in three categories of tennis players in four groups of strokes. Subjects were divided into three groups: male and female junior, and male professional tennis players. During two tournaments, all matches were recorded with two fixed video cameras. For every stroke, the timing of the split-step between the opponent’s impact point when hitting the ball and the player’s split-step was measured. A two-way analysis of variance (ANOVA) was used to determine the differences between groups of strokes, players and the interaction Player x Stroke Group. A Tukey post-hoc test was employed to determine specific differences. The results revealed differences between players in detecting the opponent’s movement, stroke and ball flight, which were reflected in different split-step timings. Each tennis player has his/her own timing mechanism which they adapt to various game situations. Response times differ significantly depending on the game situation. On average, they are the lowest in the serve, and then gradually rise from the return of the serve to baseline game, reaching the highest values in specific game situations. Players react faster in the first serve than in the second one and in the return of the serve, the response times are lower after the return of the second serve PMID:28210342

  5. Redo Laparoscopic Gastric Bypass: One-Step or Two-Step Procedure?

    PubMed

    Theunissen, Caroline M J; Guelinckx, Nele; Maring, John K; Langenhoff, Barbara S

    2016-11-01

    The adjustable gastric band (AGB) is a bariatric procedure that used to be widely performed. However, AGB failure-signifying band-related complications or unsatisfactory weight loss, resulting in revision surgery (redo operations)-frequently occurs. Often this entails a conversion to a laparoscopic Roux-en-Y gastric bypass (LRYGB). This can be performed as a one-step or two-step (separate band removal) procedure. Data were collected from patients operated from 2012 to 2014 in a single bariatric centre. We compared 107 redo LRYGB after AGB failure with 1020 primary LRYGB. An analysis was performed of the one-step vs. two-step redo procedures. All redo procedures were performed by experienced bariatric surgeons. No difference in major complication rate was seen (2.8 vs. 2.3 %, p = 0.73) between redo and primary LRYGB, and overall complication severity for redos was low (mainly Clavien-Dindo 1 or 2). Weight loss results were comparable for primary and redo procedures. The one-step and two-step redos were comparable regarding complication rates and readmissions. The operating time for the one-step redo LRYGB was 136 vs. 107.5 min for the two-step (median, p < 0.001), excluding the operating time of separate AGB removal (mean 61 min, range 36-110). Removal of a failed AGB and LRYGB in a one-step procedure is safe when performed by experienced bariatric surgeons. However, when erosion or perforation of the AGB occurs, we advise caution and would perform the redo LRYGB as a two-step procedure. Equal weights can be achieved at 1 year post redo LRYGB as after primary LRYGB procedures.

  6. Reinforced two-step-ahead weight adjustment technique for online training of recurrent neural networks.

    PubMed

    Chang, Li-Chiu; Chen, Pin-An; Chang, Fi-John

    2012-08-01

    A reliable forecast of future events possesses great value. The main purpose of this paper is to propose an innovative learning technique for reinforcing the accuracy of two-step-ahead (2SA) forecasts. The real-time recurrent learning (RTRL) algorithm for recurrent neural networks (RNNs) can effectively model the dynamics of complex processes and has been used successfully in one-step-ahead forecasts for various time series. A reinforced RTRL algorithm for 2SA forecasts using RNNs is proposed in this paper, and its performance is investigated by two famous benchmark time series and a streamflow during flood events in Taiwan. Results demonstrate that the proposed reinforced 2SA RTRL algorithm for RNNs can adequately forecast the benchmark (theoretical) time series, significantly improve the accuracy of flood forecasts, and effectively reduce time-lag effects.

  7. An adaptive time-stepping strategy for solving the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk

    2013-09-15

    In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less

  8. Decreasing triage time: effects of implementing a step-wise ESI algorithm in an EHR.

    PubMed

    Villa, Stephen; Weber, Ellen J; Polevoi, Steven; Fee, Christopher; Maruoka, Andrew; Quon, Tina

    2018-06-01

    To determine if adapting a widely-used triage scale into a computerized algorithm in an electronic health record (EHR) shortens emergency department (ED) triage time. Before-and-after quasi-experimental study. Urban, tertiary care hospital ED. Consecutive adult patient visits between July 2011 and June 2013. A step-wise algorithm, based on the Emergency Severity Index (ESI-5) was programmed into the triage module of a commercial EHR. Duration of triage (triage interval) for all patients and change in percentage of high acuity patients (ESI 1 and 2) completing triage within 15 min, 12 months before-and-after implementation of the algorithm. Multivariable analysis adjusted for confounders; interrupted time series demonstrated effects over time. Secondary outcomes examined quality metrics and patient flow. About 32 546 patient visits before and 33 032 after the intervention were included. Post-intervention patients were slightly older, census was higher and admission rate slightly increased. Median triage interval was 5.92 min (interquartile ranges, IQR 4.2-8.73) before and 2.8 min (IQR 1.88-4.23) after the intervention (P < 0.001). Adjusted mean triage interval decreased 3.4 min (95% CI: -3.6, -3.2). The proportion of high acuity patients completing triage within 15 min increased from 63.9% (95% CI 62.5, 65.2%) to 75.0% (95% CI 73.8, 76.1). Monthly time series demonstrated immediate and sustained improvement following the intervention. Return visits within 72 h and door-to-balloon time were unchanged. Total length of stay was similar. The computerized triage scale improved speed of triage, allowing more high acuity patients to be seen within recommended timeframes, without notable impact on quality.

  9. Associations of office workers' objectively assessed occupational sitting, standing and stepping time with musculoskeletal symptoms.

    PubMed

    Coenen, Pieter; Healy, Genevieve N; Winkler, Elisabeth A H; Dunstan, David W; Owen, Neville; Moodie, Marj; LaMontagne, Anthony D; Eakin, Elizabeth A; O'Sullivan, Peter B; Straker, Leon M

    2018-04-22

    We examined the association of musculoskeletal symptoms (MSS) with workplace sitting, standing and stepping time, as well as sitting and standing time accumulation (i.e. usual bout duration of these activities), measured objectively with the activPAL3 monitor. Using baseline data from the Stand Up Victoria trial (216 office workers, 14 workplaces), cross-sectional associations of occupational activities with self-reported MSS (low-back, upper and lower extremity symptoms in the last three months) were examined using probit regression, correcting for clustering and adjusting for confounders. Sitting bout duration was significantly (p < 0.05) associated, non-linearly, with MSS, such that those in the middle tertile displayed the highest prevalence of upper extremity symptoms. Other associations were non-significant but sometimes involved large differences in symptom prevalence (e.g. 38%) by activity. Though causation is unclear, these non-linear associations suggest that sitting and its alternatives (i.e. standing and stepping) interact with MSS and this should be considered when designing safe work systems. Practitioner summary: We studied associations of objectively assessed occupational activities with musculoskeletal symptoms in office workers. Workers who accumulated longer sitting bouts reported fewer upper extremity symptoms. Total activity duration was not significantly associated with musculoskeletal symptoms. We underline the importance of considering total volumes and patterns of activity time in musculoskeletal research.

  10. Real-time adjusting of rainfall estimates from commercial microwave links

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Dohnal, Michal; Bareš, Vojtěch

    2017-04-01

    Urban stormwater predictions require reliable rainfall information with space-time resolution higher than commonly provided by standard rainfall monitoring networks of national weather services. Rainfall data from commercial microwave links (CMLs) could fill this gap. CMLs are line-of-sight radio connections widely used by cellular operators which operate at millimeter bands, where radio waves are attenuated by raindrops. Attenuation data of each single CML in the cellular network can be remotely accessed in (near) real-time with virtually arbitrary sampling frequency and convert to rainfall intensity. Unfortunately, rainfall estimates from CMLs can be substantially biased. Fencl et al., (2017), therefore, proposed adjusting method which enables to correct for this bias. They used rain gauge (RG) data from existing rainfall monitoring networks, which would have otherwise insufficient spatial and temporal resolution for urban rainfall monitoring when used alone without CMLs. In this investigation, we further develop the method to improve its performance in a real-time setting. First, a shortcoming of the original algorithm which delivers unreliable results at the beginning of a rainfall event is overcome by introducing model parameter prior distributions estimated from previous parameter realizations. Second, weights reflecting variance between RGs are introduced into cost function, which is minimized when optimizing model parameters. Finally, RG data used for adjusting are preprocessed by moving average filter. The performance of improved adjusting method is evaluated on four short CMLs (path length < 2 km) located in the small urban catchment (2.3 km2) in Prague-Letnany (CZ). The adjusted CMLs are compared to reference rainfall calculated from six RGs in the catchment. The suggested improvements of the method lead on average to 10% higher Nash-Sutcliffe efficiency coefficient (median value 0.85) for CML adjustment to hourly RG data. Reliability of CML rainfall

  11. Consistency of internal fluxes in a hydrological model running at multiple time steps

    NASA Astrophysics Data System (ADS)

    Ficchi, Andrea; Perrin, Charles; Andréassian, Vazken

    2016-04-01

    Improving hydrological models remains a difficult task and many ways can be explored, among which one can find the improvement of spatial representation, the search for more robust parametrization, the better formulation of some processes or the modification of model structures by trial-and-error procedure. Several past works indicate that model parameters and structure can be dependent on the modelling time step, and there is thus some rationale in investigating how a model behaves across various modelling time steps, to find solutions for improvements. Here we analyse the impact of data time step on the consistency of the internal fluxes of a rainfall-runoff model run at various time steps, by using a large data set of 240 catchments. To this end, fine time step hydro-climatic information at sub-hourly resolution is used as input of a parsimonious rainfall-runoff model (GR) that is run at eight different model time steps (from 6 minutes to one day). The initial structure of the tested model (i.e. the baseline) corresponds to the daily model GR4J (Perrin et al., 2003), adapted to be run at variable sub-daily time steps. The modelled fluxes considered are interception, actual evapotranspiration and intercatchment groundwater flows. Observations of these fluxes are not available, but the comparison of modelled fluxes at multiple time steps gives additional information for model identification. The joint analysis of flow simulation performance and consistency of internal fluxes at different time steps provides guidance to the identification of the model components that should be improved. Our analysis indicates that the baseline model structure is to be modified at sub-daily time steps to warrant the consistency and realism of the modelled fluxes. For the baseline model improvement, particular attention is devoted to the interception model component, whose output flux showed the strongest sensitivity to modelling time step. The dependency of the optimal model

  12. Anticipatory Postural Adjustment During Self-Initiated, Cued, and Compensatory Stepping in Healthy Older Adults and Patients With Parkinson Disease.

    PubMed

    Schlenstedt, Christian; Mancini, Martina; Horak, Fay; Peterson, Daniel

    2017-07-01

    To characterize anticipatory postural adjustments (APAs) across a variety of step initiation tasks in people with Parkinson disease (PD) and healthy subjects. Cross-sectional study. Step initiation was analyzed during self-initiated gait, perceptual cued gait, and compensatory forward stepping after platform perturbation. People with PD were assessed on and off levodopa. University research laboratory. People (N=31) with PD (n=19) and healthy aged-matched subjects (n=12). Not applicable. Mediolateral (ML) size of APAs (calculated from center of pressure recordings), step kinematics, and body alignment. With respect to self-initiated gait, the ML size of APAs was significantly larger during the cued condition and significantly smaller during the compensatory condition (P<.001). Healthy subjects and patients with PD did not differ in body alignment during the stance phase prior to stepping. No significant group effect was found for ML size of APAs between healthy subjects and patients with PD. However, the reduction in APA size from cued to compensatory stepping was significantly less pronounced in PD off medication compared with healthy subjects, as indicated by a significant group by condition interaction effect (P<.01). No significant differences were found comparing patients with PD on and off medications. Specific stepping conditions had a significant effect on the preparation and execution of step initiation. Therefore, APA size should be interpreted with respect to the specific stepping condition. Across-task changes in people with PD were less pronounced compared with healthy subjects. Antiparkinsonian medication did not significantly improve step initiation in this mildly affected PD cohort. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  14. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  15. Molecular dynamics based enhanced sampling of collective variables with very large time steps.

    PubMed

    Chen, Pei-Yang; Tuckerman, Mark E

    2018-01-14

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  16. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  17. [Collaborative application of BEPS at different time steps.

    PubMed

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-09-01

    BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.

  18. Association Between Sitting Time and Cardiometabolic Risk Factors After Adjustment for Cardiorespiratory Fitness, Cooper Center Longitudinal Study, 2010–2013

    PubMed Central

    Shuval, Kerem; Balasubramanian, Bijal A.; Kendzor, Darla E.; Radford, Nina B.; DeFina, Laura F.; Gabriel, Kelley Pettee

    2016-01-01

    Introduction Objective estimates, based on waist-worn accelerometers, indicate that adults spend over half their day (55%) in sedentary behaviors. Our study examined the association between sitting time and cardiometabolic risk factors after adjustment for cardiorespiratory fitness (CRF). Methods A cross-sectional analysis was conducted with 4,486 men and 1,845 women who reported daily estimated sitting time, had measures for adiposity, blood lipids, glucose, and blood pressure, and underwent maximal stress testing. We used a modeling strategy using logistic regression analysis to assess CRF as a potential effect modifier and to control for potential confounding effects of CRF. Results Men who sat almost all of the time (about 100%) were more likely to be obese whether defined by waist girth (OR, 2.61; 95% CI, 1.25–5.47) or percentage of body fat (OR, 3.33; 95% CI, 1.35–8.20) than were men who sat almost none of the time (about 0%). Sitting time was not significantly associated with other cardiometabolic risk factors after adjustment for CRF level. For women, no significant associations between sitting time and cardiometabolic risk factors were observed after adjustment for CRF and other covariates. Conclusion As health professionals struggle to find ways to combat obesity and its health effects, reducing sitting time can be an initial step in a total physical activity plan that includes strategies to reduce sedentary time through increases in physical activity among men. In addition, further research is needed to elucidate the relationships between sitting time and CRF for women as well as the underlying mechanisms involved in these relationships. PMID:28033088

  19. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    NASA Technical Reports Server (NTRS)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  20. Asynchronous adaptive time step in quantitative cellular automata modeling

    PubMed Central

    Zhu, Hao; Pang, Peter YH; Sun, Yan; Dhar, Pawan

    2004-01-01

    Background The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. Results Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. Conclusions Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment. PMID:15222901

  1. Resuscitator’s perceptions and time for corrective ventilation steps during neonatal resuscitation☆

    PubMed Central

    Sharma, Vinay; Lakshminrusimha, Satyan; Carrion, Vivien; Mathew, Bobby

    2016-01-01

    Background The 2010 neonatal resuscitation program (NRP) guidelines incorporate ventilation corrective steps (using the mnemonic – MRSOPA) into the resuscitation algorithm. The perception of neonatal providers, time taken to perform these maneuvers or the effectiveness of these additional steps has not been evaluated. Methods Using two simulated clinical scenarios of varying degrees of cardiovascular compromise –perinatal asphyxia with (i) bradycardia (heart rate – 40 min−1) and (ii) cardiac arrest, 35 NRP certified providers were evaluated for preference to performing these corrective measures, the time taken for performing these steps and time to onset of chest compressions. Results The average time taken to perform ventilation corrective steps (MRSOPA) was 48.9 ± 21.4 s. Providers were less likely to perform corrective steps and proceed directly to endotracheal intubation in the scenario of cardiac arrest as compared to a state of bradycardia. Cardiac compressions were initiated significantly sooner in the scenario of cardiac arrest 89 ± 24 s as compared to severe bradycardia 122 ± 23 s, p < 0.0001. There were no differences in the time taken to initiation of chest compressions between physicians or mid-level care providers or with the level of experience of the provider. Conclusions Effective ventilation of the lungs with corrective steps using a mask is important in most cases of neonatal resuscitation. Neonatal resuscitators prefer early endotracheal intubation and initiation of chest compressions in the presence of asystolic cardiac arrest. Corrective ventilation steps can potentially postpone initiation of chest compressions and may delay return of spontaneous circulation in the presence of severe cardiovascular compromise. PMID:25796996

  2. Next Steps in Network Time Synchronization For Navy Shipboard Applications

    DTIC Science & Technology

    2008-12-01

    40th Annual Precise Time and Time Interval (PTTI) Meeting NEXT STEPS IN NETWORK TIME SYNCHRONIZATION FOR NAVY SHIPBOARD APPLICATIONS...dynamic manner than in previous designs. This new paradigm creates significant network time synchronization challenges. The Navy has been...deploying the Network Time Protocol (NTP) in shipboard computing infrastructures to meet the current network time synchronization requirements

  3. Multiple time step integrators in ab initio molecular dynamics.

    PubMed

    Luehr, Nathan; Markland, Thomas E; Martínez, Todd J

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  4. Dynamical adjustment of Scandinavian glacier mass-balance time series

    NASA Astrophysics Data System (ADS)

    Bonan, D.; Christian, J. E.; Christianson, K. A.

    2017-12-01

    Glacier mass wastage is often cited as one of the most visible manifestations of anthropogenic climate change. Annual glacier mass-balance is related to local climate and atmospheric circulation, as it is defined as the yearly sum of accumulation and ablation—processes that are strongly influenced by year-to-year fluctuations in precipitation and temperature. Glacier response to a climatic trend can, however, be masked by internal variability in atmospheric circulation, and by non-climatic factors (such as topographic control, wind deposition, and incident solar radiation). Thus, unambiguous attribution of a negative glacier mass-balance trend to anthropogenic forcing remains challenging. Maritime glacier mass-balance records may be especially difficult to interpret due to the high winter balances from decadal-scale climate oscillations and the relatively short time series. Here we examine the influence of climate and atmospheric circulation variability on 14 Norwegian glaciers that span 20° of latitude, from southern Norway to Svalbard. We use dynamical adjustment—a statistical method based on partial least squares regression—to identify the components of variability within the mass-balance records that are associated with the time-varying sea level pressure (SLP) and sea surface temperature (SST) fields. We find that 30-50% of the variance in the winter mass-balance records of the glaciers in southern Norway is explained by using sea level pressure as a predictor. The leading SLP predictor pattern mimics the spatial signature of the North Atlantic Oscillation (NAO), indicating that winter balance is strongly influenced by the NAO. Moreover, the adjusted mass-balance records indicate a geographic trend: the southern Norwegian glaciers have significant negative trends in the summer balance that remain negative after adjustment, while the more northern glaciers have negative winter balance trends that only become significant after adjustment. We look into

  5. A new method for the adjustment of neochordal length: the adjustable slip knot technique.

    PubMed

    Yano, Mitsuhiro; Sakaguchi, Syuuhei; Furukawa, Kohji; Nakamura, Eisaku

    2015-08-01

    The use of expanded polytetrafluoroethylene (ePTFE) sutures for the correction of mitral valve prolapse has become a standardized procedure. Adjustment of neochordal length is crucial to the efficacy of this technique. Various methods have been described for this purpose; however, the fine adjustment of neochordal length is technically challenging. We describe a simple and effective technique for the implantation of neochordae, which we have termed the 'adjustable slip knot technique'. The first step of this technique is reinforcement of the papillary muscle by a Teflon pledget with or without polytetrafluoroethylene (CV-4) loops. The second step is the formation of a neochordal loop by introducing an ePTFE suture between the affected mitral leaflet and the papillary muscle or ePTFE loops. The third step is the adjustment of the length of neochordae. The formation of a slip knot in one arm of the ePTFE suture is the pivot of this technique. The neochordal loop can be constricted by the application of tension to one arm of the suture. We applied this technique in 5 patients with satisfactory results. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. Patients with Chronic Obstructive Pulmonary Disease Walk with Altered Step Time and Step Width Variability as Compared with Healthy Control Subjects.

    PubMed

    Yentes, Jennifer M; Rennard, Stephen I; Schmid, Kendra K; Blanke, Daniel; Stergiou, Nicholas

    2017-06-01

    Compared with control subjects, patients with chronic obstructive pulmonary disease (COPD) have an increased incidence of falls and demonstrate balance deficits and alterations in mediolateral trunk acceleration while walking. Measures of gait variability have been implicated as indicators of fall risk, fear of falling, and future falls. To investigate whether alterations in gait variability are found in patients with COPD as compared with healthy control subjects. Twenty patients with COPD (16 males; mean age, 63.6 ± 9.7 yr; FEV 1 /FVC, 0.52 ± 0.12) and 20 control subjects (9 males; mean age, 62.5 ± 8.2 yr) walked for 3 minutes on a treadmill while their gait was recorded. The amount (SD and coefficient of variation) and structure of variability (sample entropy, a measure of regularity) were quantified for step length, time, and width at three walking speeds (self-selected and ±20% of self-selected speed). Generalized linear mixed models were used to compare dependent variables. Patients with COPD demonstrated increased mean and SD step time across all speed conditions as compared with control subjects. They also walked with a narrower step width that increased with increasing speed, whereas the healthy control subjects walked with a wider step width that decreased as speed increased. Further, patients with COPD demonstrated less variability in step width, with decreased SD, compared with control subjects at all three speed conditions. No differences in regularity of gait patterns were found between groups. Patients with COPD walk with increased duration of time between steps, and this timing is more variable than that of control subjects. They also walk with a narrower step width in which the variability of the step widths from step to step is decreased. Changes in these parameters have been related to increased risk of falling in aging research. This provides a mechanism that could explain the increased prevalence of falls in patients with COPD.

  7. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    PubMed

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  8. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    PubMed

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  9. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.

    PubMed

    Shelley, M J; Tao, L

    2001-01-01

    To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.

  10. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  11. Automatic Adjustments of a Trans-oesophageal Ultrasound Robot for Monitoring Intra-operative Catheters

    NASA Astrophysics Data System (ADS)

    Wang, Shuangyi; Housden, James; Singh, Davinder; Rhode, Kawal

    2017-12-01

    3D trans-oesophageal echocardiography (TOE) has become a powerful tool for monitoring intra-operative catheters used during cardiac procedures in recent years. However, the control of the TOE probe remains as a manual task and therefore the operator has to hold the probe for a long period of time and sometimes in a radiation environment. To solve this problem, an add-on robotic system has been developed for holding and manipulating a commercial TOE probe. This paper focuses on the application of making automatic adjustments to the probe pose in order to accurately monitor the moving catheters. The positioning strategy is divided into an initialization step based on a pre-planning method and a localized adjustments step based on the robotic differential kinematics and related image servoing techniques. Both steps are described in the paper along with simulation experiments performed to validate the concept. The results indicate an error less than 0.5 mm for the initialization step and an error less than 2 mm for the localized adjustments step. Compared to the much bigger live 3D image volume, it is concluded that the methods are promising. Future work will focus on evaluating the method in the real TOE scanning scenario.

  12. Adjustment of sleep and the circadian temperature rhythm after flights across nine time zones

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Myhre, Grete; Graeber, R. Curtis; Lauber, John K.; Andersen, Harald T.

    1989-01-01

    The adjustment of sleep-wake patterns and the circadian temperature rhythm was monitored in nine Royal Norwegian Airforce volunteers operating P-3 aircraft during a westward training deployment across nine time zones. Subjects recorded all sleep and nap times, rated nightly sleep quality, and completed personality inventories. Rectal temperature, heart rate, and wrist activity were continuously monitored. Adjustment was slower after the return eastward flight than after the outbound westward flight. The eastward flight produced slower readjustment of sleep timing to local time and greater interindividual variability in the patterns of adjustment of sleep and temperature. One subject apparently exhibited resynchronization by partition, with the temperature rhythm undergoing the reciprocal 15-h delay. In contrast, average heart rates during sleep were significantly elevated only after westward flight. Interindividual differences in adjustment of the temperature rhythm were correlated with some of the personality measures. Larger phase delays in the overall temperature waveform (as measured on the 5th day after westward flight) were exhibited by extraverts, and less consistently by evening types.

  13. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    DOE PAGES

    Chen, Bo; Chen, Chen; Wang, Jianhui; ...

    2017-07-07

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less

  14. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Chen, Chen; Wang, Jianhui

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less

  15. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2017-10-01

    Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.

  16. Evaluation of atomic pressure in the multiple time-step integration algorithm.

    PubMed

    Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu

    2017-04-15

    In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Stepping to the Beat: Feasibility and Potential Efficacy of a Home-Based Auditory-Cued Step Training Program in Chronic Stroke.

    PubMed

    Wright, Rachel L; Brownless, Simone Briony; Pratt, David; Sackley, Catherine M; Wing, Alan M

    2017-01-01

    Hemiparesis after stroke typically results in a reduced walking speed, an asymmetrical gait pattern and a reduced ability to make gait adjustments. The purpose of this pilot study was to investigate the feasibility and preliminary efficacy of home-based training involving auditory cueing of stepping in place. Twelve community-dwelling participants with chronic hemiparesis completed two 3-week blocks of home-based stepping to music overlaid with an auditory metronome. Tempo of the metronome was increased 5% each week. One 3-week block used a regular metronome, whereas the other 3-week block had phase shift perturbations randomly inserted to cue stepping adjustments. All participants reported that they enjoyed training, with 75% completing all training blocks. No adverse events were reported. Walking speed, Timed Up and Go (TUG) time and Dynamic Gait Index (DGI) scores (median [inter-quartile range]) significantly improved between baseline (speed = 0.61 [0.32, 0.85] m⋅s -1 ; TUG = 20.0 [16.0, 39.9] s; DGI = 14.5 [11.3, 15.8]) and post stepping training (speed = 0.76 [0.39, 1.03] m⋅s -1 ; TUG = 16.3 [13.3, 35.1] s; DGI = 16.0 [14.0, 19.0]) and was maintained at follow-up (speed = 0.75 [0.41, 1.03] m⋅s -1 ; TUG = 16.5 [12.9, 34.1] s; DGI = 16.5 [13.5, 19.8]). This pilot study suggests that auditory-cued stepping conducted at home was feasible and well-tolerated by participants post-stroke, with improvements in walking and functional mobility. No differences were detected between regular and phase-shift training with the metronome at each assessment point.

  18. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less

  19. Enforcing the Courant-Friedrichs-Lewy condition in explicitly conservative local time stepping schemes

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.

    2018-04-01

    An optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubic "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a constraint on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.

  20. Where did the time go? Friction evolves with slip following large velocity steps, normal stress steps, and (?) during long holds

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Bhattacharya, P.; Tullis, T. E.; Okazaki, K.; Beeler, N. M.

    2016-12-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law state evolution) or with time even without slip (Aging law state evolution). While rate stepping experiments show support for the Slip law, laboratory observed frictional behavior of initially bare rock surfaces near zero slip rate has traditionally been interpreted to show support for time-dependent evolution of frictional strength. Such laboratory derived support for time-dependent evolution has been one of the motivations behind the Aging law being widely used to model earthquake cycles on natural faults.Through a combination of theoretical results and new experimental data on initially bare granite, we show stronger support for the other end member view, i.e. that friction under a wide range of sliding conditions evolves only with slip. Our dataset is unique in that it combines up to 3.5 orders of magnitude rate steps, sequences of holds up to 10000s, and 5% normal stress steps at order of magnitude different sliding rates during the same experimental run. The experiments were done on the Brown rotary shear apparatus using servo feedback, making the machine stiff enough to provide very large departures from steady-state while maintaining stable, quasi-static sliding. Across these diverse sliding conditions, and in particular for both large velocity step decreases and the longest holds, the data are much more consistent with the Slip law version of slip-dependence than the time-dependence formulated in the Aging law. The shear stress response to normal stress steps is also consistently better explained by the Slip law when paired with the Linker-Dieterich type response to normal stress perturbations. However, the remarkable symmetry and slip-dependence of the normal stress step increases and decreases suggest deficiencies in the Linker-Dieterich formulation that we will probe in future experiments.High quality

  1. A kinematic analysis of the rapid step test in balance-impaired and unimpaired older women.

    PubMed

    Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B

    2007-04-01

    Little is known about the kinematic and kinetic determinants that might explain age and balance-impairment alterations in the results of volitional stepping performance tests. Maximal unipedal stance time (UST) was used to distinguish "balance-impaired" old (BI, UST<10s, N=15, mean age=76 years) from unimpaired old (O, UST>30s, N=12, mean age=71 years) before they and healthy young females (Y, UST>30s, N=13, mean age=23 years) performed the rapid step test (RST). The RST evaluates the time required to take volitional front, side, and back steps of at least 80% maximum step length in response to verbal commands. Kinematic and kinetic data were recorded during the RST. The results indicate that the initiation phase of the step was the major source of age- and balance impairment-related delays. The delays in BI were primarily caused by increased postural adjustments prior to step initiation, as measured by center-of-pressure (COP) path length (p<0.003). The Step landing phase showed similar, but non-significant, temporal trends. Step length and peak center-of-mass (COM) deceleration during the Step-Out landing decreased in O by 18% (p=0.0002) and 24% (p=0.001), respectively, and a further 12% (p=0.04) and 18% (p=0.08) in BI. We conclude that the delay in BI step initiation was due to the increase in their postural adjustments prior to step initiation.

  2. Quantifying the impact of time-varying baseline risk adjustment in the self-controlled risk interval design.

    PubMed

    Li, Lingling; Kulldorff, Martin; Russek-Cohen, Estelle; Kawai, Alison Tse; Hua, Wei

    2015-12-01

    The self-controlled risk interval design is commonly used to assess the association between an acute exposure and an adverse event of interest, implicitly adjusting for fixed, non-time-varying covariates. Explicit adjustment needs to be made for time-varying covariates, for example, age in young children. It can be performed via either a fixed or random adjustment. The random-adjustment approach can provide valid point and interval estimates but requires access to individual-level data for an unexposed baseline sample. The fixed-adjustment approach does not have this requirement and will provide a valid point estimate but may underestimate the variance. We conducted a comprehensive simulation study to evaluate their performance. We designed the simulation study using empirical data from the Food and Drug Administration-sponsored Mini-Sentinel Post-licensure Rapid Immunization Safety Monitoring Rotavirus Vaccines and Intussusception study in children 5-36.9 weeks of age. The time-varying confounder is age. We considered a variety of design parameters including sample size, relative risk, time-varying baseline risks, and risk interval length. The random-adjustment approach has very good performance in almost all considered settings. The fixed-adjustment approach can be used as a good alternative when the number of events used to estimate the time-varying baseline risks is at least the number of events used to estimate the relative risk, which is almost always the case. We successfully identified settings in which the fixed-adjustment approach can be used as a good alternative and provided guidelines on the selection and implementation of appropriate analyses for the self-controlled risk interval design. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    PubMed

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  4. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics

    PubMed Central

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-01-01

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876

  5. Steps that count: physical activity recommendations, brisk walking, and steps per minute--how do they relate?

    PubMed

    Pillay, Julian D; Kolbe-Alexander, Tracy L; Proper, Karin I; van Mechelen, Willem; Lambert, Estelle V

    2014-03-01

    Brisk walking is recommended as a form of health-enhancing physical activity. This study determines the steps/minute rate corresponding to self-paced brisk walking (SPBW); a predicted steps/minute rate for moderate physical activity (MPA) and a comparison of the 2 findings. A convenience sample (N = 58: 34 men, 24 women, 31.7 ± 7.7 yrs), wearing pedometers and a heart rate (HR) monitor, performed SPBW for 10 minutes and 5 indoor sessions, regulated by a metronome (ranging from 60-120 steps/minute). Using steps/minute and HR data of the trials, a steps/minute rate for MPA was predicted. Adjustments were subsequently made for aerobic fitness (using maximal oxygen uptake (VO2max) estimates), age, and sex as possible contributors to stepping rate differences. Average steps/minute rate for SPBW was 118 ± 9 (116 ± 9; 121 ± 8 for men/women, respectively; P = .022); predicted steps/minute rate for MPA was 122 ± 37 (127 ± 36; 116 ± 39 for men/women, respectively; P < .99) and was similar to steps/minute rate of SPBW (P = .452), even after adjusting for age, sex, and aerobic fitness. Steps/minute rates of SPBW correlates closely with targeted HR for MPA, independent of aerobic fitness; predicted steps/minute rate for MPA relates closely to steps/minute rates of SPBW. Findings support current PA messages that use the term brisk walking as a reference for MPA.

  6. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Kavetski, Dmitri

    2010-10-01

    A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.

  7. The large discretization step method for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1995-01-01

    A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.

  8. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    DOE PAGES

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less

  9. Reciprocal Relations between Children's Sleep and Their Adjustment over Time

    ERIC Educational Resources Information Center

    Kelly, Ryan J.; El-Sheikh, Mona

    2014-01-01

    Child sleep and adjustment research with community samples is on the rise with a recognized need of explicating this association. We examined reciprocal relations between children's sleep and their internalizing and externalizing symptoms using 3 waves of data spanning 5 years. Participants included 176 children at Time 1 (M = 8.68 years; 69%…

  10. Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles

    PubMed Central

    Lane, Kevin J; Levy, Jonathan I; Scammell, Madeleine Kangsen; Patton, Allison P; Durant, John L; Mwamburi, Mkaya; Zamore, Wig; Brugge, Doug

    2015-01-01

    Exposures to ultrafine particles (<100 nm, estimated as particle number concentration, PNC) differ from ambient concentrations because of the spatial and temporal variability of both PNC and people. Our goal was to evaluate the influence of time-activity adjustment on exposure assignment and associations with blood biomarkers for a near-highway population. A regression model based on mobile monitoring and spatial and temporal variables was used to generate hourly ambient residential PNC for a full year for a subset of participants (n=140) in the Community Assessment of Freeway Exposure and Health study. We modified the ambient estimates for each hour using personal estimates of hourly time spent in five micro-environments (inside home, outside home, at work, commuting, other) as well as particle infiltration. Time-activity adjusted (TAA)-PNC values differed from residential ambient annual average (RAA)-PNC, with lower exposures predicted for participants who spent more time away from home. Employment status and distance to highway had a differential effect on TAA-PNC. We found associations of RAA-PNC with high sensitivity C-reactive protein and Interleukin-6, although exposure-response functions were non-monotonic. TAA-PNC associations had larger effect estimates and linear exposure-response functions. Our findings suggest that time-activity adjustment improves exposure assessment for air pollutants that vary greatly in space and time. PMID:25827314

  11. Maternal expectations and postpartum emotional adjustment in first-time mothers: results of a questionnaire survey.

    PubMed

    Henshaw, Erin J; Fried, Rachel; Teeters, Jenni Beth; Siskind, Emily E

    2014-09-01

    Several predictors of postpartum mood have been identified in the literature, but the role of maternal expectations in postpartum mental health remains unclear. The aim of this study was to identify whether maternal expectations during the postpartum hospital stay predict adjustment and depressive symptoms at 6 weeks postpartum. The sample included 233 first-time mothers recruited from the postpartum unit of a Midwestern hospital. Participants completed measures of maternal expectations and depressive symptoms (EPDS) at Time 1 (2 d postpartum) and completed EPDS and an Emotional Adjustment Scale (BaM-13) at Time 2 (6 weeks postpartum). A conditional relationship between the expectation that an infant's behavior will reflect maternal skill and Time 2 outcomes (BaM-13 and EPDS) was found, such that endorsing this belief predicted increased depression and poorer adjustment in those with higher (but not lower) Time 1 EPDS scores. Time 2 BaM-13 scores were also negatively predicted by expectations of self-sacrifice and positively predicted by expectations that parenthood would be naturally fulfilling. The expectations that new mothers hold about parenting soon after delivery are predictive of emotional adjustment in the early postpartum period, suggesting a role for discussion of expectations in future preventive strategies.

  12. Comparing an annual and daily time-step model for predicting field-scale phosphorus loss

    USDA-ARS?s Scientific Manuscript database

    Numerous models exist for describing phosphorus (P) losses from agricultural fields. The complexity of these models varies considerably ranging from simple empirically-based annual time-step models to more complex process-based daily time step models. While better accuracy is often assumed with more...

  13. Enforcing the Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping schemes

    DOE PAGES

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.

    2018-01-30

    In this study, an optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubicmore » "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a condition on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.« less

  14. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds

    PubMed Central

    Dambreville, Charline; Labarre, Audrey; Thibaudier, Yann; Hurteau, Marie-France

    2015-01-01

    When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds. PMID:26084910

  15. Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.

    PubMed

    Ouyang, Yicun; Yin, Hujun

    2018-05-01

    Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.

  16. Conflict adaptation in time: foreperiods as contextual cues for attentional adjustment.

    PubMed

    Wendt, Mike; Kiesel, Andrea

    2011-10-01

    Interference evoked by distractor stimulus information, such as flankers in the Eriksen task, is reduced when the proportion of conflicting stimuli is increased. This modulation is sensitive to contextual cues such as stimulus location or color, suggesting attentional adjustment to conflict contingencies on the basis of context information. In the present study, we explored whether conflict adjustment is modulated by temporal variation of conflict likelihood. To this end, we associated low and high proportions of conflict stimuli with foreperiods of different lengths. Flanker interference was higher with foreperiods associated with low conflict proportions, suggesting that participants use the foreperiod as a contextual cue for attentional adjustment. We conjecture that participants initially adopt the strategy useful for conflict contingencies associated with short foreperiods, and then readjust during the trial, in the absence of any additional exogenous cue, when the imperative stimulus has not occurred during a certain time interval.

  17. A local time stepping algorithm for GPU-accelerated 2D shallow water models

    NASA Astrophysics Data System (ADS)

    Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo

    2018-01-01

    In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.

  18. 4 Steps for Redesigning Time for Student and Teacher Learning

    ERIC Educational Resources Information Center

    Nazareno, Lori

    2017-01-01

    Everybody complains about a lack of time in school, but few are prepared to do anything about it. Laying the foundation before making such a shift is essential to the success of the change. Once a broad-based team has been chosen to do the work, they can follow a process explained in four steps with the apt acronym of T.I.M.E.: Taking stock,…

  19. 76 FR 7883 - Postal Service Rate Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... POSTAL REGULATORY COMMISSION [Docket No. R2011-4; Order No. 663] Postal Service Rate Adjustment AGENCY: Postal Regulatory Commission. ACTION: Notice. SUMMARY: The Commission is noticing a recently-filed Postal Service request concerning a Type 2 rate adjustment. This notice addresses procedural steps...

  20. Efficient variable time-stepping scheme for intense field-atom interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Kosloff, R.

    1993-03-01

    The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less

  1. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals

    PubMed Central

    Száz, Dénes; Farkas, Alexandra; Blahó, Miklós; Barta, András; Egri, Ádám; Kretzer, Balázs; Hegedüs, Tibor; Jäger, Zoltán; Horváth, Gábor

    2016-01-01

    According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather. Combining these sunstones with their sun-dial, they could determine the position of the occluded sun, from which the geographical northern direction could be guessed. In psychophysical laboratory experiments, we studied the accuracy of the first step of this sky-polarimetric Viking navigation. We measured the adjustment error e of rotatable cordierite, tourmaline and calcite crystals when the task was to determine the direction of polarization of white light as a function of the degree of linear polarization p. From the obtained error functions e(p), the thresholds p* above which the first step can still function (i.e. when the intensity change seen through the rotating analyser can be sensed) were derived. Cordierite is about twice as reliable as tourmaline. Calcite sunstones have smaller adjustment errors if the navigator looks for that orientation of the crystal where the intensity difference between the two spots seen in the crystal is maximal, rather than minimal. For higher p (greater than pcrit) of incident light, the adjustment errors of calcite are larger than those of the dichroic cordierite (pcrit=20%) and tourmaline (pcrit=45%), while for lower p (less than pcrit) calcite usually has lower adjustment errors than dichroic sunstones. We showed that real calcite crystals are not as ideal sunstones as it was believed earlier, because they usually contain scratches, impurities and crystal defects which increase considerably their adjustment errors. Thus, cordierite and tourmaline can also be at least as good sunstones as calcite. Using the psychophysical e(p) functions and the patterns of the degree of skylight polarization measured by full-sky imaging polarimetry, we computed how accurately the northern direction can be determined with the use of the Viking sun

  2. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals.

    PubMed

    Száz, Dénes; Farkas, Alexandra; Blahó, Miklós; Barta, András; Egri, Ádám; Kretzer, Balázs; Hegedüs, Tibor; Jäger, Zoltán; Horváth, Gábor

    2016-01-01

    According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather. Combining these sunstones with their sun-dial, they could determine the position of the occluded sun, from which the geographical northern direction could be guessed. In psychophysical laboratory experiments, we studied the accuracy of the first step of this sky-polarimetric Viking navigation. We measured the adjustment error e of rotatable cordierite, tourmaline and calcite crystals when the task was to determine the direction of polarization of white light as a function of the degree of linear polarization p. From the obtained error functions e(p), the thresholds p* above which the first step can still function (i.e. when the intensity change seen through the rotating analyser can be sensed) were derived. Cordierite is about twice as reliable as tourmaline. Calcite sunstones have smaller adjustment errors if the navigator looks for that orientation of the crystal where the intensity difference between the two spots seen in the crystal is maximal, rather than minimal. For higher p (greater than p crit) of incident light, the adjustment errors of calcite are larger than those of the dichroic cordierite (p crit=20%) and tourmaline (p crit=45%), while for lower p (less than p crit) calcite usually has lower adjustment errors than dichroic sunstones. We showed that real calcite crystals are not as ideal sunstones as it was believed earlier, because they usually contain scratches, impurities and crystal defects which increase considerably their adjustment errors. Thus, cordierite and tourmaline can also be at least as good sunstones as calcite. Using the psychophysical e(p) functions and the patterns of the degree of skylight polarization measured by full-sky imaging polarimetry, we computed how accurately the northern direction can be determined with the use of the Viking

  3. Large time-step stability of explicit one-dimensional advection schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    There is a wide-spread belief that most explicit one-dimensional advection schemes need to satisfy the so-called 'CFL condition' - that the Courant number, c = udelta(t)/delta(x), must be less than or equal to one, for stability in the von Neumann sense. This puts severe limitations on the time-step in high-speed, fine-grid calculations and is an impetus for the development of implicit schemes, which often require less restrictive time-step conditions for stability, but are more expensive per time-step. However, it turns out that, at least in one dimension, if explicit schemes are formulated in a consistent flux-based conservative finite-volume form, von Neumann stability analysis does not place any restriction on the allowable Courant number. Any explicit scheme that is stable for c is less than 1, with a complex amplitude ratio, G(c), can be easily extended to arbitrarily large c. The complex amplitude ratio is then given by exp(- (Iota)(Nu)(Theta)) G(delta(c)), where N is the integer part of c, and delta(c) = c - N (less than 1); this is clearly stable. The CFL condition is, in fact, not a stability condition at all, but, rather, a 'range restriction' on the 'pieces' in a piece-wise polynomial interpolation. When a global view is taken of the interpolation, the need for a CFL condition evaporates. A number of well-known explicit advection schemes are considered and thus extended to large delta(t). The analysis also includes a simple interpretation of (large delta(t)) total-variation-diminishing (TVD) constraints.

  4. Development of a real time activity monitoring Android application utilizing SmartStep.

    PubMed

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  5. High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.

    2014-01-01

    This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.

  6. Dependence of Hurricane intensity and structures on vertical resolution and time-step size

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Lin; Wang, Xiaoxue

    2003-09-01

    In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.

  7. Anticipatory postural adjustments for altering direction during walking.

    PubMed

    Xu, Dali; Carlton, Les G; Rosengren, Karl S

    2004-09-01

    The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.

  8. Step-wise refolding of recombinant proteins.

    PubMed

    Tsumoto, Kouhei; Arakawa, Tsutomu; Chen, Linda

    2010-04-01

    Protein refolding is still on trial-and-error basis. Here we describe step-wise dialysis refolding, in which denaturant concentration is altered in step-wise fashion. This technology controls the folding pathway by adjusting the concentrations of the denaturant and other solvent additives to induce sequential folding or disulfide formation.

  9. Measuring border delay and crossing times at the US-Mexico border : part II. Step-by-step guidelines for implementing a radio frequency identification (RFID) system to measure border crossing and wait times.

    DOT National Transportation Integrated Search

    2012-06-01

    The purpose of these step-by-step guidelines is to assist in planning, designing, and deploying a system that uses radio frequency identification (RFID) technology to measure the time needed for commercial vehicles to complete the northbound border c...

  10. Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Petrov, A. N.; Vorobtsov, I. V.

    2017-10-01

    The development of 3d boundary elements modeling of dynamic partially saturated poroelastic media using a stepping scheme is presented in this paper. Boundary Element Method (BEM) in Laplace domain and the time-stepping scheme for numerical inversion of the Laplace transform are used to solve the boundary value problem. The modified stepping scheme with a varied integration step for quadrature coefficients calculation using the symmetry of the integrand function and integral formulas of Strongly Oscillating Functions was applied. The problem with force acting on a poroelastic prismatic console end was solved using the developed method. A comparison of the results obtained by the traditional stepping scheme with the solutions obtained by this modified scheme shows that the computational efficiency is better with usage of combined formulas.

  11. The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.

    PubMed

    Du, Yue; Clark, Jane E

    2018-05-03

    This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.

  12. Ripcord adjustable suture technique for use in strabismus surgery.

    PubMed

    Coats, D K

    2001-09-01

    Adjustable sutures in strabismus surgery may be difficult or impossible in poorly cooperative patients. An adjunct suture technique that allows a 1-step, all-or-nothing, preprogrammed adjustment in patients not considered good candidates for standard postoperative adjustable sutures is described. Twelve patients underwent adjustable strabismus surgery using the ripcord technique. Six patients had unacceptable alignment after surgery. In 5 of these, alignment was successfully adjusted. The ripcord adjustable suture technique is effective and is well tolerated by patients.

  13. The time course of phase correction: A kinematic investigation of motor adjustment to timing perturbations during sensorimotor synchronization

    PubMed Central

    Hove, Michael J.; Balasubramaniam, Ramesh; Keller, Peter E.

    2014-01-01

    Synchronizing movements with a beat requires rapid compensation for timing errors. The phase-correction response (PCR) has been studied extensively in finger tapping by shifting a metronome onset and measuring the adjustment of the following tap time. How the response unfolds during the subsequent tap cycle remains unknown. Using motion capture, we examined finger kinematics during the PCR. Participants tapped with a metronome containing phase perturbations. They tapped in ‘legato’ and ‘staccato’ style at various tempi, which altered the timing of the constituent movement stages (dwell at the surface, extension, flexion). After a phase perturbation, tapping kinematics changed compared to baseline, and the PCR was distributed differently across movement stages. In staccato tapping, the PCR trajectory changed primarily during finger extension across tempi. In legato tapping, at fast tempi the PCR occurred primarily during extension, whereas at slow tempi most phase correction was already completed during dwell. Across conditions, timing adjustments occurred primarily 100-250 ms into the following tap cycle. The change in movement around 100 ms represents the time to integrate information into an already planned movement and the rapidity suggests a subcortical route. PMID:25151103

  14. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  15. Toward a Global Bundle Adjustment of SPOT 5 - HRS Images

    NASA Astrophysics Data System (ADS)

    Massera, S.; Favé, P.; Gachet, R.; Orsoni, A.

    2012-07-01

    The HRS (High Resolution Stereoscopic) instrument carried on SPOT 5 enables quasi-simultaneous acquisition of stereoscopic images on wide segments - 120 km wide - with two forward and backward-looking telescopes observing the Earth with an angle of 20° ahead and behind the vertical. For 8 years IGN (Institut Géographique National) has been developing techniques to achieve spatiotriangulation of these images. During this time the capacities of bundle adjustment of SPOT 5 - HRS spatial images have largely improved. Today a global single block composed of about 20,000 images can be computed in reasonable calculation time. The progression was achieved step by step: first computed blocks were only composed of 40 images, then bigger blocks were computed. Finally only one global block is now computed. In the same time calculation tools have improved: for example the adjustment of 2,000 images of North Africa takes about 2 minutes whereas 8 hours were needed two years ago. To reach such a result a new independent software was developed to compute fast and efficient bundle adjustments. In the same time equipment - GCPs (Ground Control Points) and tie points - and techniques have also evolved over the last 10 years. Studies were made to get recommendations about the equipment in order to make an accurate single block. Tie points can now be quickly and automatically computed with SURF (Speeded Up Robust Features) techniques. Today the updated equipment is composed of about 500 GCPs and studies show that the ideal configuration is around 100 tie points by square degree. With such an equipment, the location of the global HRS block becomes a few meters accurate whereas non adjusted images are only 15 m accurate. This paper will describe the methods used in IGN Espace to compute a global single block composed of almost 20,000 HRS images, 500 GCPs and several million of tie points in reasonable calculation time. Many advantages can be found to use such a block. Because the

  16. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    NASA Astrophysics Data System (ADS)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave

  17. Comparison of sum-of-hourly and daily time step standardized ASCE Penman-Monteith reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Djaman, Koffi; Irmak, Suat; Sall, Mamadou; Sow, Abdoulaye; Kabenge, Isa

    2017-10-01

    The objective of this study was to quantify differences associated with using 24-h time step reference evapotranspiration (ETo), as compared with the sum of hourly ETo computations with the standardized ASCE Penman-Monteith (ASCE-PM) model for semi-arid dry conditions at Fanaye and Ndiaye (Senegal) and semiarid humid conditions at Sapu (The Gambia) and Kankan (Guinea). The results showed that there was good agreement between the sum of hourly ETo and daily time step ETo at all four locations. The daily time step overestimated the daily ETo relative to the sum of hourly ETo by 1.3 to 8% for the whole study periods. However, there is location and monthly dependence of the magnitude of ETo values and the ratio of the ETo values estimated by both methods. Sum of hourly ETo tends to give higher ETo during winter time at Fanaye and Sapu, while the daily ETo was higher from March to November at the same weather stations. At Ndiaye and Kankan, daily time step estimates of ETo were high during the year. The simple linear regression slopes between the sum of 24-h ETo and the daily time step ETo at all weather stations varied from 1.02 to 1.08 with high coefficient of determination (R 2 ≥ 0.87). Application of the hourly ETo estimation method might help on accurate ETo estimation to meet irrigation requirement under precision agriculture.

  18. The effect of step stool use and provider height on CPR quality during pediatric cardiac arrest: A simulation-based multicentre study.

    PubMed

    Cheng, Adam; Lin, Yiqun; Nadkarni, Vinay; Wan, Brandi; Duff, Jonathan; Brown, Linda; Bhanji, Farhan; Kessler, David; Tofil, Nancy; Hecker, Kent; Hunt, Elizabeth A

    2018-01-01

    We aimed to explore whether a) step stool use is associated with improved cardiopulmonary resuscitation (CPR) quality; b) provider adjusted height is associated with improved CPR quality; and if associations exist, c) determine whether just-in-time (JIT) CPR training and/or CPR visual feedback attenuates the effect of height and/or step stool use on CPR quality. We analysed data from a trial of simulated cardiac arrests with three study arms: No intervention; CPR visual feedback; and JIT CPR training. Step stool use was voluntary. We explored the association between 1) step stool use and CPR quality, and 2) provider adjusted height and CPR quality. Adjusted height was defined as provider height + 23 cm (if step stool was used). Below-average height participants were ≤ gender-specific average height; the remainder were above average height. We assessed for interaction between study arm and both adjusted height and step stool use. One hundred twenty-four subjects participated; 1,230 30-second epochs of CPR were analysed. Step stool use was associated with improved compression depth in below-average (female, p=0.007; male, p<0.001) and above-average (female, p=0.001; male, p<0.001) height providers. There is an association between adjusted height and compression depth (p<0.001). Visual feedback attenuated the effect of height (p=0.025) on compression depth; JIT training did not (p=0.918). Visual feedback and JIT training attenuated the effect of step stool use (p<0.001) on compression depth. Step stool use is associated with improved compression depth regardless of height. Increased provider height is associated with improved compression depth, with visual feedback attenuating the effects of height and step stool use.

  19. The Throw-and-Catch Model of Human Gait: Evidence from Coupling of Pre-Step Postural Activity and Step Location

    PubMed Central

    Bancroft, Matthew J.; Day, Brian L.

    2016-01-01

    Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body’s momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait. PMID:28066208

  20. The Throw-and-Catch Model of Human Gait: Evidence from Coupling of Pre-Step Postural Activity and Step Location.

    PubMed

    Bancroft, Matthew J; Day, Brian L

    2016-01-01

    Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body's momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait.

  1. A three dimensional multigrid multiblock multistage time stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.

    1991-01-01

    A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.

  2. The time-adjusted gradual replacement injection method enables better visualization of the right heart.

    PubMed

    Nakahara, Takehiro; Jinzaki, Masahiro; Niwamae, Nogiku; Saito, Yuuichirou; Arai, Masashi; Tsushima, Yoshito; Kuribayashi, Sachio; Kurabayashi, Masahiko

    2014-01-01

    Despite the improvement of cardiac CT, right heart visualization remains challenging. We herein describe a new method, called the time-adjusted gradual replacement injection protocol. The aim of this study was to compare this protocol with the split-bolus injection protocol. Fifty-two patients who had undergone dual-source cardiac CT were retrospectively recruited. Twenty-six patients were injected by using the split-bolus injection protocol, and 26 patients were injected by using the time-adjusted gradual replacement injection protocol. For this method, we injected contrast medium for 10 seconds at a flow rate of 0.07 × body weight mL/s, then gradually replaced the contrast material with saline until 2 seconds before finishing the scans. The CT attenuation was measured in 4 chambers, the aorta, and the coronary arteries. The visualization of the anatomic structures and the occurrence and severity of streak artifacts were scored for the cardiac structures in the heart. For the analyses, either Welch t-test or Student t-test was performed. In the right heart, the CT values and visualization scores were significantly higher in the time-adjusted replacement injection group than in the split-bolus injection group, whereas the artifact scores were comparable between the 2 groups. The CT values, visualization scores, and artifact scores of the left heart were not significantly different between the 2 groups. In this study, the time-adjusted gradual replacement injection protocol provided excellent attenuation for visualization of the right heart. This method may help to accurately evaluate the right cardiac anatomy and thereby identify any potential diseases. Copyright © 2014 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  3. Coherent Risk-Adjusted Decisions Over Time: a Bilevel Programming Approach

    DTIC Science & Technology

    2015-03-23

    AFRL-AFOSR-VA-TR-2015-0310 Coherent Risk-Adjusted Decisions Over Time: a Bilevel Programming Approach Jonathan Eckstein RUTGERS THE STATE UNIVERSITY...FA9550-11-1-0164 5b. GRANT NUMBER FA9550-11-1-0164 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Eckstein, Jonathan Ruszczynski, Andrzej 5d. PROJECT... Jonathan Eckstein a. REPORT U b. ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code) 848-445-0510 Standard Form 298 (Rev. 8/98

  4. Suggestions for CAP-TSD mesh and time-step input parameters

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1991-01-01

    Suggestions for some of the input parameters used in the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code are presented. These parameters include those associated with the mesh design and time step. The guidelines are based principally on experience with a one-dimensional model problem used to study wave propagation in the vertical direction.

  5. On the correct use of stepped-sine excitations for the measurement of time-varying bioimpedance.

    PubMed

    Louarroudi, E; Sanchez, B

    2017-02-01

    When a linear time-varying (LTV) bioimpedance is measured using stepped-sine excitations, a compromise must be made: the temporal distortions affecting the data depend on the experimental time, which in turn sets the data accuracy and limits the temporal bandwidth of the system that needs to be measured. Here, the experimental time required to measure linear time-invariant bioimpedance with a specified accuracy is analyzed for different stepped-sine excitation setups. We provide simple equations that allow the reader to know whether LTV bioimpedance can be measured through repeated time- invariant stepped-sine experiments. Bioimpedance technology is on the rise thanks to a plethora of healthcare monitoring applications. The results presented can help to avoid distortions in the data while measuring accurately non-stationary physiological phenomena. The impact of the work presented is broad, including the potential of enhancing bioimpedance studies and healthcare devices using bioimpedance technology.

  6. Adjusted regression trend test for a multicenter clinical trial.

    PubMed

    Quan, H; Capizzi, T

    1999-06-01

    Studies using a series of increasing doses of a compound, including a zero dose control, are often conducted to study the effect of the compound on the response of interest. For a one-way design, Tukey et al. (1985, Biometrics 41, 295-301) suggested assessing trend by examining the slopes of regression lines under arithmetic, ordinal, and arithmetic-logarithmic dose scalings. They reported the smallest p-value for the three significance tests on the three slopes for safety assessments. Capizzi et al. (1992, Biometrical Journal 34, 275-289) suggested an adjusted trend test, which adjusts the p-value using a trivariate t-distribution, the joint distribution of the three slope estimators. In this paper, we propose an adjusted regression trend test suitable for two-way designs, particularly for multicenter clinical trials. In a step-down fashion, the proposed trend test can be applied to a multicenter clinical trial to compare each dose with the control. This sequential procedure is a closed testing procedure for a trend alternative. Therefore, it adjusts p-values and maintains experimentwise error rate. Simulation results show that the step-down trend test is overall more powerful than a step-down least significant difference test.

  7. An 18-ps TDC using timing adjustment and bin realignment methods in a Cyclone-IV FPGA

    NASA Astrophysics Data System (ADS)

    Cao, Guiping; Xia, Haojie; Dong, Ning

    2018-05-01

    The method commonly used to produce a field-programmable gate array (FPGA)-based time-to-digital converter (TDC) creates a tapped delay line (TDL) for time interpolation to yield high time precision. We conduct timing adjustment and bin realignment to implement a TDC in the Altera Cyclone-IV FPGA. The former tunes the carry look-up table (LUT) cell delay by changing the LUT's function through low-level primitives according to timing analysis results, while the latter realigns bins according to the timing result obtained by timing adjustment so as to create a uniform TDL with bins of equivalent width. The differential nonlinearity and time resolution can be improved by realigning the bins. After calibration, the TDC has a 18 ps root-mean-square timing resolution and a 45 ps least-significant bit resolution.

  8. Two Independent Contributions to Step Variability during Over-Ground Human Walking

    PubMed Central

    Collins, Steven H.; Kuo, Arthur D.

    2013-01-01

    Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308

  9. Time-Delayed Two-Step Selective Laser Photodamage of Dye-Biomolecule Complexes

    NASA Astrophysics Data System (ADS)

    Andreoni, A.; Cubeddu, R.; de Silvestri, S.; Laporta, P.; Svelto, O.

    1980-08-01

    A scheme is proposed for laser-selective photodamage of biological molecules, based on time-delayed two-step photoionization of a dye molecule bound to the biomolecule. The validity of the scheme is experimentally demonstrated in the case of the dye Proflavine, bound to synthetic polynucleotides.

  10. Coordination of rapid stepping with arm pointing: anticipatory changes and step adaptation.

    PubMed

    Yiou, Eric; Schneider, Cyril; Roussel, Didier

    2007-06-01

    The present study explored whether rapid stepping is influenced by the coordination of an arm pointing task. Nine participants were instructed to (a) point the index finger of the dominant arm towards a target from the standing posture, (b) initiate a rapid forward step with the contralateral leg, and (c) synchronize stepping and pointing (combined task). Force plate and ankle muscle electromyography (EMG) recordings were contrasted between (b) and (c). In the combined task, the arm acceleration trace most often peaked around foot-off, coinciding with a 15% increase in the forward acceleration of the center of gravity (CoG). Backward displacement of the center of foot pressure at foot-off, duration of anticipatory postural adjustments (APAs) and ankle muscle EMG activity remained unchanged. In contrast, durations of swing phase and whole step were reduced and step length was smaller in the combined task. A reduction in the swing phase was correlated with an increased CoG forward acceleration at foot-off. Changes in the biomechanics of step initiation during the combined task might be ascribed to the postural dynamics elicited by arm pointing, and not to a modulation of the step APAs programming.

  11. Do characteristics of a stationary obstacle lead to adjustments in obstacle stepping strategies?

    PubMed

    Worden, Timothy A; De Jong, Audrey F; Vallis, Lori Ann

    2016-01-01

    Navigating cluttered and complex environments increases the risk of falling. To decrease this risk, it is important to understand the influence of obstacle visual cues on stepping parameters, however the specific obstacle characteristics that have the greatest influence on avoidance strategies is still under debate. The purpose of the current work is to provide further insight on the relationship between obstacle appearance in the environment and modulation of stepping parameters. Healthy young adults (N=8) first stepped over an obstacle with one visible top edge ("floating"; 8 trials) followed by trials where experimenters randomly altered the location of a ground reference object to one of 7 different positions (8 trials per location), which ranged from 6cm in front of, directly under, or up to 6cm behind the floating obstacle (at 2cm intervals). Mean take-off and landing distance as well as minimum foot clearance values were unchanged across different positions of the ground reference object; a consistent stepping trajectory was observed for all experimental conditions. Contrary to our hypotheses, results of this study indicate that ground based visual cues are not essential for the planning of stepping and clearance strategies. The simultaneous presentation of both floating and ground based objects may have provided critical information that lead to the adoption of a consistent strategy for clearing the top edge of the obstacle. The invariant foot placement observed here may be an appropriate stepping strategy for young adults, however this may not be the case across the lifespan or in special populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Different methods to analyze stepped wedge trial designs revealed different aspects of intervention effects.

    PubMed

    Twisk, J W R; Hoogendijk, E O; Zwijsen, S A; de Boer, M R

    2016-04-01

    Within epidemiology, a stepped wedge trial design (i.e., a one-way crossover trial in which several arms start the intervention at different time points) is increasingly popular as an alternative to a classical cluster randomized controlled trial. Despite this increasing popularity, there is a huge variation in the methods used to analyze data from a stepped wedge trial design. Four linear mixed models were used to analyze data from a stepped wedge trial design on two example data sets. The four methods were chosen because they have been (frequently) used in practice. Method 1 compares all the intervention measurements with the control measurements. Method 2 treats the intervention variable as a time-independent categorical variable comparing the different arms with each other. In method 3, the intervention variable is a time-dependent categorical variable comparing groups with different number of intervention measurements, whereas in method 4, the changes in the outcome variable between subsequent measurements are analyzed. Regarding the results in the first example data set, methods 1 and 3 showed a strong positive intervention effect, which disappeared after adjusting for time. Method 2 showed an inverse intervention effect, whereas method 4 did not show a significant effect at all. In the second example data set, the results were the opposite. Both methods 2 and 4 showed significant intervention effects, whereas the other two methods did not. For method 4, the intervention effect attenuated after adjustment for time. Different methods to analyze data from a stepped wedge trial design reveal different aspects of a possible intervention effect. The choice of a method partly depends on the type of the intervention and the possible time-dependent effect of the intervention. Furthermore, it is advised to combine the results of the different methods to obtain an interpretable overall result. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Variability of Anticipatory Postural Adjustments During Gait Initiation in Individuals With Parkinson Disease.

    PubMed

    Lin, Cheng-Chieh; Creath, Robert A; Rogers, Mark W

    2016-01-01

    In people with Parkinson disease (PD), difficulties with initiating stepping may be related to impairments of anticipatory postural adjustments (APAs). Increased variability in step length and step time has been observed in gait initiation in individuals with PD. In this study, we investigated whether the ability to generate consistent APAs during gait initiation is compromised in these individuals. Fifteen subjects with PD and 8 healthy control subjects were instructed to take rapid forward steps after a verbal cue. The changes in vertical force and ankle marker position were recorded via force platforms and a 3-dimensional motion capture system, respectively. Means, standard deviations, and coefficients of variation of both timing and magnitude of vertical force, as well as stepping variables, were calculated. During the postural phase of gait initiation the interval was longer and the force modulation was smaller in subjects with PD. Both the variability of timing and force modulation were larger in subjects with PD. Individuals with PD also had a longer time to complete the first step, but no significant differences were found for the variability of step time, length, and speed between groups. The increased variability of APAs during gait initiation in subjects with PD could affect posture-locomotion coupling, and lead to start hesitation, and even falls. Future studies are needed to investigate the effect of rehabilitation interventions on the variability of APAs during gait initiation in individuals with PD.Video abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A119).

  14. A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-15

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than amore » single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is

  15. A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations

    NASA Astrophysics Data System (ADS)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-01

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems - a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in

  16. Experimental study on the stability and failure of individual step-pool

    NASA Astrophysics Data System (ADS)

    Zhang, Chendi; Xu, Mengzhen; Hassan, Marwan A.; Chartrand, Shawn M.; Wang, Zhaoyin

    2018-06-01

    Step-pools are one of the most common bedforms in mountain streams, the stability and failure of which play a significant role for riverbed stability and fluvial processes. Given this importance, flume experiments were performed with a manually constructed step-pool model. The experiments were carried out with a constant flow rate to study features of step-pool stability as well as failure mechanisms. The results demonstrate that motion of the keystone grain (KS) caused 90% of the total failure events. The pool reached its maximum depth and either exhibited relative stability for a period before step failure, which was called the stable phase, or the pool collapsed before its full development. The critical scour depth for the pool increased linearly with discharge until the trend was interrupted by step failure. Variability of the stable phase duration ranged by one order of magnitude, whereas variability of pool scour depth was constrained within 50%. Step adjustment was detected in almost all of the runs with step-pool failure and was one or two orders smaller than the diameter of the step stones. Two discharge regimes for step-pool failure were revealed: one regime captures threshold conditions and frames possible step-pool failure, whereas the second regime captures step-pool failure conditions and is the discharge of an exceptional event. In the transitional stage between the two discharge regimes, pool and step adjustment magnitude displayed relatively large variabilities, which resulted in feedbacks that extended the duration of step-pool stability. Step adjustment, which was a type of structural deformation, increased significantly before step failure. As a result, we consider step deformation as the direct explanation to step-pool failure rather than pool scour, which displayed relative stability during step deformations in our experiments.

  17. Positivity-preserving dual time stepping schemes for gas dynamics

    NASA Astrophysics Data System (ADS)

    Parent, Bernard

    2018-05-01

    A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.

  18. Error correction in short time steps during the application of quantum gates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, L.A. de, E-mail: leonardo.castro@usp.br; Napolitano, R.D.J.

    2016-04-15

    We propose a modification of the standard quantum error-correction method to enable the correction of errors that occur due to the interaction with a noisy environment during quantum gates without modifying the codification used for memory qubits. Using a perturbation treatment of the noise that allows us to separate it from the ideal evolution of the quantum gate, we demonstrate that in certain cases it is necessary to divide the logical operation in short time steps intercalated by correction procedures. A prescription of how these gates can be constructed is provided, as well as a proof that, even for themore » cases when the division of the quantum gate in short time steps is not necessary, this method may be advantageous for reducing the total duration of the computation.« less

  19. Impact analysis of tap switch out of step for converter transformer

    NASA Astrophysics Data System (ADS)

    Hong-yue, ZHANG; Zhen-hua, ZHANG; Zhang-xue, XIONG; Gao-wang, YU

    2017-06-01

    AC transformer load regulation is mainly used to adjust the load side voltage level, improve the quality of power supply, the voltage range is relatively narrow. In DC system, converter transformer is the core equipment of AC and DC power converter and inverter. converter transformer tap adjustment can maintain the normal operation of the converter in small angle range control, the absorption of reactive power, economic operation, valve less stress, valve damping circuit loss, AC / DC harmonic component is also smaller. In this way, the tap switch action is more frequent, and a large range of the tap switch adjustment is required. Converter transformer with a more load voltage regulation switch, the voltage regulation range of the switch is generally 20~30%, the adjustment of each file is 1%~2%. Recently it is often found that the tap switch of Converter Transformers is out of step in Converter station. In this paper, it is analyzed in detail the impact of tap switch out of step for differential protection, overexcitation protection and zero sequence over current protection. Analysis results show that: the tap switch out of step has no effect on the differential protection and the overexcitation protection including the tap switch. But the tap switch out of step has effect on zero sequence overcurrent protection of out of step star-angle converter transformer. The zero sequence overcurrent protection will trip when the tap switch out of step is greater than 3 for out of step star-angle converter transformer.

  20. Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.

    2004-01-01

    Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.

  1. Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping.

    PubMed

    Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G

    2010-12-01

    This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Seok; Song, Ki-Won

    2015-11-01

    The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.

  3. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkimaki, Konsta; Hirvijoki, E.; Terava, J.

    Here, we report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell–Jüttner statistics. The implementation is based on the Beliaev–Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space.

  4. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    DOE PAGES

    Sarkimaki, Konsta; Hirvijoki, E.; Terava, J.

    2017-10-12

    Here, we report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell–Jüttner statistics. The implementation is based on the Beliaev–Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space.

  5. Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Huynh, H. T.

    1997-01-01

    A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.

  6. 49 CFR 393.53 - Automatic brake adjusters and brake adjustment indicators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... indicators. 393.53 Section 393.53 Transportation Other Regulations Relating to Transportation (Continued... brake adjustment indicators. (a) Automatic brake adjusters (hydraulic brake systems). Each commercial... vehicle at the time it was manufactured. (c) Brake adjustment indicator (air brake systems). On each...

  7. 49 CFR 393.53 - Automatic brake adjusters and brake adjustment indicators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... indicators. 393.53 Section 393.53 Transportation Other Regulations Relating to Transportation (Continued... brake adjustment indicators. (a) Automatic brake adjusters (hydraulic brake systems). Each commercial... vehicle at the time it was manufactured. (c) Brake adjustment indicator (air brake systems). On each...

  8. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce themore » required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.« less

  9. Modeling Stepped Leaders Using a Time Dependent Multi-dipole Model and High-speed Video Data

    NASA Astrophysics Data System (ADS)

    Karunarathne, S.; Marshall, T.; Stolzenburg, M.; Warner, T. A.; Orville, R. E.

    2012-12-01

    In summer of 2011, we collected lightning data with 10 stations of electric field change meters (bandwidth of 0.16 Hz - 2.6 MHz) on and around NASA/Kennedy Space Center (KSC) covering nearly 70 km × 100 km area. We also had a high-speed video (HSV) camera recording 50,000 images per second collocated with one of the electric field change meters. In this presentation we describe our use of these data to model the electric field change caused by stepped leaders. Stepped leaders of a cloud to ground lightning flash typically create the initial path for the first return stroke (RS). Most of the time, stepped leaders have multiple complex branches, and one of these branches will create the ground connection for the RS to start. HSV data acquired with a short focal length lens at ranges of 5-25 km from the flash are useful for obtaining the 2-D location of these multiple branches developing at the same time. Using HSV data along with data from the KSC Lightning Detection and Ranging (LDAR2) system and the Cloud to Ground Lightning Surveillance System (CGLSS), the 3D path of a leader may be estimated. Once the path of a stepped leader is obtained, the time dependent multi-dipole model [ Lu, Winn,and Sonnenfeld, JGR 2011] can be used to match the electric field change at various sensor locations. Based on this model, we will present the time-dependent charge distribution along a leader channel and the total charge transfer during the stepped leader phase.

  10. Real time monitoring of risk-adjusted paediatric cardiac surgery outcomes using variable life-adjusted display: implementation in three UK centres

    PubMed Central

    Pagel, Christina; Utley, Martin; Crowe, Sonya; Witter, Thomas; Anderson, David; Samson, Ray; McLean, Andrew; Banks, Victoria; Tsang, Victor; Brown, Katherine

    2013-01-01

    Objective To implement routine in-house monitoring of risk-adjusted 30-day mortality following paediatric cardiac surgery. Design Collaborative monitoring software development and implementation in three specialist centres. Patients and methods Analyses incorporated 2 years of data routinely audited by the National Institute of Cardiac Outcomes Research (NICOR). Exclusion criteria were patients over 16 or undergoing non-cardiac or only catheter procedures. We applied the partial risk adjustment in surgery (PRAiS) risk model for death within 30 days following surgery and generated variable life-adjusted display (VLAD) charts for each centre. These were shared with each clinical team and feedback was sought. Results Participating centres were Great Ormond Street Hospital, Evelina Children's Hospital and The Royal Hospital for Sick Children in Glasgow. Data captured all procedures performed between 1 January 2010 and 31 December 2011. This incorporated 2490 30-day episodes of care, 66 of which were associated with a death within 30 days.The VLAD charts generated for each centre displayed trends in outcomes benchmarked to recent national outcomes. All centres ended the 2-year period within four deaths from what would be expected. The VLAD charts were shared in multidisciplinary meetings and clinical teams reported that they were a useful addition to existing quality assurance initiatives. Each centre is continuing to use the prototype software to monitor their in-house surgical outcomes. Conclusions Timely and routine monitoring of risk-adjusted mortality following paediatric cardiac surgery is feasible. Close liaison with hospital data managers as well as clinicians was crucial to the success of the project. PMID:23564473

  11. On large time step TVD scheme for hyperbolic conservation laws and its efficiency evaluation

    NASA Astrophysics Data System (ADS)

    Qian, ZhanSen; Lee, Chun-Hian

    2012-08-01

    A large time step (LTS) TVD scheme originally proposed by Harten is modified and further developed in the present paper and applied to Euler equations in multidimensional problems. By firstly revealing the drawbacks of Harten's original LTS TVD scheme, and reasoning the occurrence of the spurious oscillations, a modified formulation of its characteristic transformation is proposed and a high resolution, strongly robust LTS TVD scheme is formulated. The modified scheme is proven to be capable of taking larger number of time steps than the original one. Following the modified strategy, the LTS TVD schemes for Yee's upwind TVD scheme and Yee-Roe-Davis's symmetric TVD scheme are constructed. The family of the LTS schemes is then extended to multidimensional by time splitting procedure, and the associated boundary condition treatment suitable for the LTS scheme is also imposed. The numerical experiments on Sod's shock tube problem, inviscid flows over NACA0012 airfoil and ONERA M6 wing are performed to validate the developed schemes. Computational efficiencies for the respective schemes under different CFL numbers are also evaluated and compared. The results reveal that the improvement is sizable as compared to the respective single time step schemes, especially for the CFL number ranging from 1.0 to 4.0.

  12. Cut-off values for step count and TV viewing time as discriminators of hyperglycaemia in Brazilian children and adolescents.

    PubMed

    Gordia, Alex Pinheiro; Quadros, Teresa Maria Bianchini de; Silva, Luciana Rodrigues; Mota, Jorge

    2016-09-01

    The use of step count and TV viewing time to discriminate youngsters with hyperglycaemia is still a matter of debate. To establish cut-off values for step count and TV viewing time in children and adolescents using glycaemia as the reference criterion. A cross-sectional study was conducted on 1044 schoolchildren aged 6-18 years from Northeastern Brazil. Daily step counts were assessed with a pedometer over 1 week and TV viewing time by self-report. The area under the curve (AUC) ranged from 0.52-0.61 for step count and from 0.49-0.65 for TV viewing time. The daily step count with the highest discriminatory power for hyperglycaemia was 13 884 (sensitivity = 77.8; specificity = 51.8) for male children and 12 371 (sensitivity = 55.6; specificity = 55.5) and 11 292 (sensitivity = 57.7; specificity = 48.6) for female children and adolescents respectively. The cut-off for TV viewing time with the highest discriminatory capacity for hyperglycaemia was 3 hours/day (sensitivity = 57.7-77.8; specificity = 48.6-53.2). This study represents the first step for the development of criteria based on cardiometabolic risk factors for step count and TV viewing time in youngsters. However, the present cut-off values have limited practical application because of their poor accuracy and low sensitivity and specificity.

  13. Atypical anticipatory postural adjustments during gait initiation among individuals with sub-acute stroke.

    PubMed

    Rajachandrakumar, Roshanth; Fraser, Julia E; Schinkel-Ivy, Alison; Inness, Elizabeth L; Biasin, Lou; Brunton, Karen; McIlroy, William E; Mansfield, Avril

    2017-02-01

    Anticipatory postural adjustments, executed prior to gait initiation, help preserve lateral stability when stepping. Atypical patterns of anticipatory activity prior to gait initiation may occur in individuals with unilateral impairment (e.g., stroke). This study aimed to determine the prevalence, correlates, and consequences of atypical anticipatory postural adjustment patterns prior to gait initiation in a sub-acute stroke population. Forty independently-ambulatory individuals with sub-acute stroke stood on two force plates and initiated gait at a self-selected speed. Medio-lateral centre of pressure displacement was calculated and used to define anticipatory postural adjustments (shift in medio-lateral centre of pressure >10mm from baseline). Stroke severity, motor recovery, and functional balance and mobility status were also obtained. Three patterns were identified: single (typical), absent (atypical), and multiple (atypical) anticipatory postural adjustments. Thirty-five percent of trials had atypical anticipatory postural adjustments (absent and multiple). Frequency of absent anticipatory postural adjustments was negatively correlated with walking speed. Multiple anticipatory postural adjustments were more prevalent when leading with the non-paretic than the paretic limb. Trials with multiple anticipatory postural adjustments had longer duration of anticipatory postural adjustment and time to foot-off, and shorter unloading time than trials with single anticipatory postural adjustments. A high prevalence of atypical anticipatory control prior to gait initiation was found in individuals with stroke. Temporal differences were identified with multiple anticipatory postural adjustments, indicating altered gait initiation. These findings provide insight into postural control during gait initiation in individuals with sub-acute stroke, and may inform interventions to improve ambulation in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Shyness-Sensitivity, Aggression, and Adjustment in Urban Chinese Adolescents at Different Historical Times

    ERIC Educational Resources Information Center

    Liu, Junsheng; Chen, Xinyin; Li, Dan; French, Doran

    2012-01-01

    The market-oriented economic reform in China over the past two decades has resulted in considerable changes in social attitudes regarding youth's behaviors. This study examined the relations of shyness and aggression to adjustment in Chinese adolescents at different historical times. Participants came from two cohorts (1994 and 2008) of…

  15. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics — Monte Carlo Canonical Propagation Algorithm

    PubMed Central

    Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît

    2016-01-01

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826

  16. Cingi Steps for preoperative computer-assisted image editing before reduction rhinoplasty.

    PubMed

    Cingi, Can Cemal; Cingi, Cemal; Bayar Muluk, Nuray

    2014-04-01

    The aim of this work is to provide a stepwise systematic guide for a preoperative photo-editing procedure for rhinoplasty cases involving the cooperation of a graphic artist and a surgeon. One hundred female subjects who planned to undergo a reduction rhinoplasty operation were included in this study. The Cingi Steps for Preoperative Computer Imaging (CS-PCI) program, a stepwise systematic guide for image editing using Adobe PhotoShop's "liquify" effect, was applied to the rhinoplasty candidates. The stages of CS-PCI are as follows: (1) lowering the hump; (2) shortening the nose; (3) adjusting the tip projection, (4) perfecting the nasal dorsum, (5) creating a supratip break, and (6) exaggerating the tip projection and/or dorsal slope. Performing the Cingi Steps allows the patient to see what will happen during the operation and observe the final appearance of his or her nose. After the application of described steps, 71 patients (71%) accepted step 4, and 21 (21%) of them accepted step 5. Only 10 patients (10%) wanted to make additional changes to their operation plans. The main benefits of using this method is that it decreases the time needed by the surgeon to perform a graphic analysis, and it reduces the time required for the patient to reach a decision about the procedure. It is an easy and reliable method that will provide improved physician-patient communication, increased patient confidence, and enhanced surgical planning while limiting the time needed for planning. © 2014 ARS-AAOA, LLC.

  17. A time step criterion for the stable numerical simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa

    2017-04-01

    The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure

  18. Long-term Outcomes After Stepping Down Asthma Controller Medications: A Claims-Based, Time-to-Event Analysis.

    PubMed

    Rank, Matthew A; Johnson, Ryan; Branda, Megan; Herrin, Jeph; van Houten, Holly; Gionfriddo, Michael R; Shah, Nilay D

    2015-09-01

    Long-term outcomes after stepping down asthma medications are not well described. This study was a retrospective time-to-event analysis of individuals diagnosed with asthma who stepped down their asthma controller medications using a US claims database spanning 2000 to 2012. Four-month intervals were established and a step-down event was defined by a ≥ 50% decrease in days-supplied of controller medications from one interval to the next; this definition is inclusive of step-down that occurred without health-care provider guidance or as a consequence of a medication adherence lapse. Asthma stability in the period prior to step-down was defined by not having an asthma exacerbation (inpatient visit, ED visit, or dispensing of a systemic corticosteroid linked to an asthma visit) and having fewer than two rescue inhaler claims in a 4-month period. The primary outcome in the period following step-down was time-to-first asthma exacerbation. Thirty-two percent of the 26,292 included individuals had an asthma exacerbation in the 24-month period following step-down of asthma controller medication, though only 7% had an ED visit or hospitalization for asthma. The length of asthma stability prior to stepping down asthma medication was strongly associated with the risk of an asthma exacerbation in the subsequent 24-month period: < 4 months' stability, 44%; 4 to 7 months, 34%; 8 to 11 months, 30%; and ≥ 12 months, 21% (P < .001). In a large, claims-based, real-world study setting, 32% of individuals have an asthma exacerbation in the 2 years following a step-down event.

  19. Parent-Child Shared Time from Middle Childhood to Late Adolescence: Developmental Course and Adjustment Correlates

    ERIC Educational Resources Information Center

    Lam, Chun Bun; McHale, Susan M.; Crouter, Ann C.

    2012-01-01

    The development and adjustment correlates of parent-child social (parent, child, and others present) and dyadic time (only parent and child present) from age 8 to 18 were examined. Mothers, fathers, and firstborns and secondborns from 188 White families participated in both home and nightly phone interviews. Social time declined across…

  20. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  1. A properly adjusted forage harvester can save time and money

    USDA-ARS?s Scientific Manuscript database

    A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....

  2. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis

    NASA Astrophysics Data System (ADS)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann

    2017-04-01

    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for

  3. Effects of Timing of Adversity on Adolescent and Young Adult Adjustment

    ERIC Educational Resources Information Center

    Kiff, Cara J.; Cortes, Rebecca C.; Lengua, Liliana J.; Kosterman, Rick; Hawkins, J. David; Mason, W. Alex

    2012-01-01

    Exposure to adversity during childhood and adolescence predicts adjustment across development. Furthermore, adolescent adjustment problems persist into young adulthood. This study examined relations of contextual adversity with concurrent adolescent adjustment and prospective mental health and health outcomes in young adulthood. A longitudinal…

  4. Review of Real-Time Simulator and the Steps Involved for Implementation of a Model from MATLAB/SIMULINK to Real-Time

    NASA Astrophysics Data System (ADS)

    Mikkili, Suresh; Panda, Anup Kumar; Prattipati, Jayanthi

    2015-06-01

    Nowadays the researchers want to develop their model in real-time environment. Simulation tools have been widely used for the design and improvement of electrical systems since the mid twentieth century. The evolution of simulation tools has progressed in step with the evolution of computing technologies. In recent years, computing technologies have improved dramatically in performance and become widely available at a steadily decreasing cost. Consequently, simulation tools have also seen dramatic performance gains and steady cost decreases. Researchers and engineers now have the access to affordable, high performance simulation tools that were previously too cost prohibitive, except for the largest manufacturers. This work has introduced a specific class of digital simulator known as a real-time simulator by answering the questions "what is real-time simulation", "why is it needed" and "how it works". The latest trend in real-time simulation consists of exporting simulation models to FPGA. In this article, the Steps involved for implementation of a model from MATLAB to REAL-TIME are provided in detail.

  5. ChromAlign: A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces.

    PubMed

    Sadygov, Rovshan G; Maroto, Fernando Martin; Hühmer, Andreas F R

    2006-12-15

    We present an algorithmic approach to align three-dimensional chromatographic surfaces of LC-MS data of complex mixture samples. The approach consists of two steps. In the first step, we prealign chromatographic profiles: two-dimensional projections of chromatographic surfaces. This is accomplished by correlation analysis using fast Fourier transforms. In this step, a temporal offset that maximizes the overlap and dot product between two chromatographic profiles is determined. In the second step, the algorithm generates correlation matrix elements between full mass scans of the reference and sample chromatographic surfaces. The temporal offset from the first step indicates a range of the mass scans that are possibly correlated, then the correlation matrix is calculated only for these mass scans. The correlation matrix carries information on highly correlated scans, but it does not itself determine the scan or time alignment. Alignment is determined as a path in the correlation matrix that maximizes the sum of the correlation matrix elements. The computational complexity of the optimal path generation problem is reduced by the use of dynamic programming. The program produces time-aligned surfaces. The use of the temporal offset from the first step in the second step reduces the computation time for generating the correlation matrix and speeds up the process. The algorithm has been implemented in a program, ChromAlign, developed in C++ language for the .NET2 environment in WINDOWS XP. In this work, we demonstrate the applications of ChromAlign to alignment of LC-MS surfaces of several datasets: a mixture of known proteins, samples from digests of surface proteins of T-cells, and samples prepared from digests of cerebrospinal fluid. ChromAlign accurately aligns the LC-MS surfaces we studied. In these examples, we discuss various aspects of the alignment by ChromAlign, such as constant time axis shifts and warping of chromatographic surfaces.

  6. A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures

    NASA Astrophysics Data System (ADS)

    Kossieris, Panagiotis; Makropoulos, Christos; Onof, Christian; Koutsoyiannis, Demetris

    2018-01-01

    Many hydrological applications, such as flood studies, require the use of long rainfall data at fine time scales varying from daily down to 1 min time step. However, in the real world there is limited availability of data at sub-hourly scales. To cope with this issue, stochastic disaggregation techniques are typically employed to produce possible, statistically consistent, rainfall events that aggregate up to the field data collected at coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the aforementioned scheme, initially designed and tested for the disaggregation of daily rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of the recent developments in Poisson-cluster processes incorporating in the methodology a Bartlett-Lewis model variant that introduces dependence between cell intensity and duration in order to capture the variability of rainfall at sub-hourly time scales. The disaggregation scheme is implemented in an R package, named HyetosMinute, to support disaggregation from daily down to 1-min time scale. The applicability of the methodology was assessed on a 5-min rainfall records collected in Bochum, Germany, comparing the performance of the above mentioned model variant against the original Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the disaggregation process reproduces adequately the most important statistical characteristics of rainfall at wide range of time scales, while the introduction of the model with dependent intensity-duration results in a better performance in terms of skewness, rainfall extremes and dry proportions.

  7. A multistage time-stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, E.

    1985-01-01

    A class of explicit multistage time-stepping schemes is used to construct an algorithm for solving the compressible Navier-Stokes equations. Flexibility in treating arbitrary geometries is obtained with a finite-volume formulation. Numerical efficiency is achieved by employing techniques for accelerating convergence to steady state. Computer processing is enhanced through vectorization of the algorithm. The scheme is evaluated by solving laminar and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical results are compared with theoretical solutions or other numerical solutions and/or experimental data.

  8. Step styles of pedestrians at different densities

    NASA Astrophysics Data System (ADS)

    Wang, Jiayue; Weng, Wenguo; Boltes, Maik; Zhang, Jun; Tordeux, Antoine; Ziemer, Verena

    2018-02-01

    Stepping locomotion is the basis of human movement. The investigation of stepping locomotion and its affecting factors is necessary for a more realistic knowledge of human movement, which is usually referred to as walking with equal step lengths for the right and left leg. To study pedestrians’ stepping locomotion, a set of single-file movement experiments involving 39 participants of the same age walking on a highly curved oval course is conducted. The microscopic characteristics of the pedestrians including 1D Voronoi density, speed, and step length are calculated based on a projected coordinate. The influence of the projection lines with different radii on the measurement of these quantities is investigated. The step lengths from the straight and curved parts are compared using the Kolmogorov-Smirnov test. During the experiments, six different step styles are observed and the proportions of different step styles change with the density. At low density, the main step style is the stable-large step style and the step lengths of one pedestrian are almost constant. At high density, some pedestrians adjust and decrease their step lengths. Some pedestrians take relatively smaller and larger steps alternately to adapt to limited space.

  9. A Newton-Raphson Method Approach to Adjusting Multi-Source Solar Simulators

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    NASA Glenn Research Center has been using an in house designed X25 based multi-source solar simulator since 2003. The simulator is set up for triple junction solar cells prior to measurements b y adjusting the three sources to produce the correct short circuit current, lsc, in each of three AM0 calibrated sub-cells. The past practice has been to adjust one source on one sub-cell at a time, iterating until all the sub-cells have the calibrated Isc. The new approach is to create a matrix of measured lsc for small source changes on each sub-cell. A matrix, A, is produced. This is normalized to unit changes in the sources so that Ax(delta)s = (delta)isc. This matrix can now be inverted and used with the known Isc differences from the AM0 calibrated values to indicate changes in the source settings, (delta)s = A ·'x.(delta)isc This approach is still an iterative one, but all sources are changed during each iteration step. It typically takes four to six steps to converge on the calibrated lsc values. Even though the source lamps may degrade over time, the initial matrix evaluation i s not performed each time, since measurement matrix needs to be only approximate. Because an iterative approach is used the method will still continue to be valid. This method may become more important as state-of-the-art solar cell junction responses overlap the sources of the simulator. Also, as the number of cell junctions and sources increase, this method should remain applicable.

  10. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis.

    PubMed

    Chidori, Kazuhiro; Yamamoto, Yuji

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.

  11. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis

    PubMed Central

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls. PMID:28700633

  12. Automated working distance adjustment for a handheld OCT-Laryngoscope

    NASA Astrophysics Data System (ADS)

    Donner, Sabine; Bleeker, Sebastian; Ripken, Tammo; Krueger, Alexander

    2014-03-01

    Optical coherence tomography (OCT) is an imaging technique which enables diagnosis of vocal cord tissue structure by non-contact optical biopsies rather than invasive tissue biopsies. For diagnosis on awake patients OCT was adapted to a rigid indirect laryngoscope. The working distance must match the probe-sample distance, which varies from patient to patient. Therefore the endoscopic OCT sample arm has a variable working distance of 40 mm to 80 mm. The current axial position is identified by automated working distance adjustments based on image processing. The OCT reference plane and the focal plane of the sample arm are moved according to position errors. Repeated position adjustment during the whole diagnostic procedure keeps the tissue sample at the optimal axial position. The auto focus identifies and adjusts the working distance within the range of 50 mm within a maximum time of 2.7 s. Continuous image stabilisation reduces axial sample movement within the sampling depth for handheld OCT scanning. Rapid autofocus reduces the duration of the diagnostic procedure and axial position stabilisation eases the use of the OCT laryngoscope. Therefore this work is an important step towards the integration of OCT into indirect laryngoscopes.

  13. Healing the healer: one step at a time.

    PubMed

    Gershon, J Casey

    2014-03-01

    Health care workers have the most challenging of professions. They are expected to work long hours while demonstrating compassion and care for the patients that they serve. Although health care practitioners are among the most disciplined of working professionals, they are often some of the unhealthiest of individuals, facing enormous amounts of stress in their lives. Healing the Healer: One Step at a Time is a 6-week health fitness program. It explores the unique challenges faced in the field of health care and teaches techniques to address those challenges head on. Healing the Healer uses Nordic walking as the exercise portion of the class. The case study examines the structure, purpose, and design of this 6-week course. Special attention is given to four basic sections: balance, pacing, joy, and discipline. The arguments presented in this article are theory based and supported by case study evidence.

  14. Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity

    NASA Technical Reports Server (NTRS)

    Zhang, Xiang (Inventor); Chen, Fanqing Frank (Inventor); Su, Kai-Hang (Inventor); Wei, Qi-Huo (Inventor); Ellman, Jonathan A. (Inventor); Sun, Cheng (Inventor)

    2014-01-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  15. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    DOEpatents

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  16. Modular Bundle Adjustment for Photogrammetric Computations

    NASA Astrophysics Data System (ADS)

    Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.

    2018-05-01

    In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

  17. Effects of Turbulence Model and Numerical Time Steps on Von Karman Flow Behavior and Drag Accuracy of Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Amalia, E.; Moelyadi, M. A.; Ihsan, M.

    2018-04-01

    The flow of air passing around a circular cylinder on the Reynolds number of 250,000 is to show Von Karman Vortex Street Phenomenon. This phenomenon was captured well by using a right turbulence model. In this study, some turbulence models available in software ANSYS Fluent 16.0 was tested to simulate Von Karman vortex street phenomenon, namely k- epsilon, SST k-omega and Reynolds Stress, Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). In addition, it was examined the effect of time step size on the accuracy of CFD simulation. The simulations are carried out by using two-dimensional and three- dimensional models and then compared with experimental data. For two-dimensional model, Von Karman Vortex Street phenomenon was captured successfully by using the SST k-omega turbulence model. As for the three-dimensional model, Von Karman Vortex Street phenomenon was captured by using Reynolds Stress Turbulence Model. The time step size value affects the smoothness quality of curves of drag coefficient over time, as well as affecting the running time of the simulation. The smaller time step size, the better inherent drag coefficient curves produced. Smaller time step size also gives faster computation time.

  18. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson's disease: Implications for fall risk.

    PubMed

    Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C

    2018-02-01

    Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population

    PubMed Central

    2012-01-01

    Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population. Methods The data consisted of de-regressed proofs (DRP) for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect. Results Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method

  20. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  1. Mechanisms for regulating step length while running towards and over an obstacle.

    PubMed

    Larsen, Roxanne J; Jackson, William H; Schmitt, Daniel

    2016-10-01

    The ability to run across uneven terrain with continuous stable movement is critical to the safety and efficiency of a runner. Successful step-to-step stabilization while running may be mediated by minor adjustments to a few key parameters (e.g., leg stiffness, step length, foot strike pattern). However, it is not known to what degree runners in relatively natural settings (e.g., trails, paved road, curbs) use the same strategies across multiple steps. This study investigates how three readily measurable running parameters - step length, foot placement, and foot strike pattern - are adjusted in response to encountering a typical urban obstacle - a sidewalk curb. Thirteen subjects were video-recorded as they ran at self-selected slow and fast paces. Runners targeted a specific distance before the curb for foot placement, and lengthened their step over the curb (p<0.0001) regardless of where the step over the curb was initiated. These strategies of adaptive locomotion disrupt step cycles temporarily, and may increase locomotor cost and muscle loading, but in the end assure dynamic stability and minimize the risk of injury over the duration of a run. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Particular adaptations to potentially slippery surfaces: the effects of friction on consecutive postural adjustments (CPA).

    PubMed

    Memari, Sahel; Le Bozec, Serge; Bouisset, Simon

    2014-02-21

    This research deals with the postural adjustments that occur after the end of voluntary movement ("consecutive postural adjustments": CPAs). The influence of a potentially slippery surface on CPA characteristics was considered, with the aim of exploring more deeply the postural component of the task-movement. Seven male adults were asked to perform a single step, as quickly as possible, to their own footprint marked on the ground. A force plate measured the resultant reaction forces along the antero-posterior axis (R(x)) and the centre of pressure (COP) displacements along the antero-posterior and lateral axes (Xp and Yp). The velocity of the centre of gravity (COG) along the antero-posterior axis and the corresponding impulse (∫R(x)dt) were calculated; the peak velocity (termed "progression velocity": V(xG)) was measured. The required coefficient of friction (RCOF) along the progression axis (pμ(x)) was determined. Two materials, differing by their COF, were laid at foot contact (FC), providing a rough foot contact (RoFC), and a smooth foot contact (SmFC) considered to be potentially slippery. Two step lengths were also performed: a short step (SS) and a long step (LS). Finally, the subjects completed four series of ten steps each. These were preceded by preliminary trials, to allow them to acquire the necessary adaptation to experimental conditions. The antero-posterior force time course presented a positive phase, that included APAs ("anticipatory postural adjustments") and step execution (STEP), followed by a negative one, corresponding to CPAs. The backward impulse (CPI) was equal to the forward one (BPI), independently of friction and progression velocity. Moreover, V(xG) did not differ according to friction, but was faster when the step length was greater. Last CPA peak amplitudes (pCPA) were significantly greater and CPA durations (dCPA) shorter for RoFC and conversely for SmFC, contrary to APA. Finally, the results show a particular adaptation to the

  3. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation.

    PubMed

    Karasawa, N; Mitsutake, A; Takano, H

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  4. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation

    NASA Astrophysics Data System (ADS)

    Karasawa, N.; Mitsutake, A.; Takano, H.

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  5. 29 CFR 785.42 - Adjusting grievances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Adjusting Grievances, Medical Attention, Civic and Charitable Work, and Suggestion Systems § 785.42 Adjusting grievances. Time spent in adjusting grievances between an employer and employees during the time the employees are required to be on the premises is hours worked, but in the event a bona fide union...

  6. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Clark, Martyn P.

    2010-10-01

    Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable

  7. An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps

    ERIC Educational Resources Information Center

    Jennings, Laura D.; Keller, Steven W.

    2005-01-01

    An interactive classroom activity that includes two-step reaction of unwrapping and eating chocolate candies is described which brings not only the reaction intermediate, but also the reactants and products into macroscopic view. The qualitative activation barriers of both steps can be adjusted independently.

  8. Two-Step Optimization for Spatial Accessibility Improvement: A Case Study of Health Care Planning in Rural China

    PubMed Central

    Luo, Jing; Tian, Lingling; Luo, Lei; Yi, Hong

    2017-01-01

    A recent advancement in location-allocation modeling formulates a two-step approach to a new problem of minimizing disparity of spatial accessibility. Our field work in a health care planning project in a rural county in China indicated that residents valued distance or travel time from the nearest hospital foremost and then considered quality of care including less waiting time as a secondary desirability. Based on the case study, this paper further clarifies the sequential decision-making approach, termed “two-step optimization for spatial accessibility improvement (2SO4SAI).” The first step is to find the best locations to site new facilities by emphasizing accessibility as proximity to the nearest facilities with several alternative objectives under consideration. The second step adjusts the capacities of facilities for minimal inequality in accessibility, where the measure of accessibility accounts for the match ratio of supply and demand and complex spatial interaction between them. The case study illustrates how the two-step optimization method improves both aspects of spatial accessibility for health care access in rural China. PMID:28484707

  9. Two-Step Optimization for Spatial Accessibility Improvement: A Case Study of Health Care Planning in Rural China.

    PubMed

    Luo, Jing; Tian, Lingling; Luo, Lei; Yi, Hong; Wang, Fahui

    2017-01-01

    A recent advancement in location-allocation modeling formulates a two-step approach to a new problem of minimizing disparity of spatial accessibility. Our field work in a health care planning project in a rural county in China indicated that residents valued distance or travel time from the nearest hospital foremost and then considered quality of care including less waiting time as a secondary desirability. Based on the case study, this paper further clarifies the sequential decision-making approach, termed "two-step optimization for spatial accessibility improvement (2SO4SAI)." The first step is to find the best locations to site new facilities by emphasizing accessibility as proximity to the nearest facilities with several alternative objectives under consideration. The second step adjusts the capacities of facilities for minimal inequality in accessibility, where the measure of accessibility accounts for the match ratio of supply and demand and complex spatial interaction between them. The case study illustrates how the two-step optimization method improves both aspects of spatial accessibility for health care access in rural China.

  10. Introducing conjoint analysis method into delayed lotteries studies: its validity and time stability are higher than in adjusting.

    PubMed

    Białek, Michał; Markiewicz, Łukasz; Sawicki, Przemysław

    2015-01-01

    The delayed lotteries are much more common in everyday life than are pure lotteries. Usually, we need to wait to find out the outcome of the risky decision (e.g., investing in a stock market, engaging in a relationship). However, most research has studied the time discounting and probability discounting in isolation using the methodologies designed specifically to track changes in one parameter. Most commonly used method is adjusting, but its reported validity and time stability in research on discounting are suboptimal. The goal of this study was to introduce the novel method for analyzing delayed lotteries-conjoint analysis-which hypothetically is more suitable for analyzing individual preferences in this area. A set of two studies compared the conjoint analysis with adjusting. The results suggest that individual parameters of discounting strength estimated with conjoint have higher predictive value (Study 1 and 2), and they are more stable over time (Study 2) compared to adjusting. We discuss these findings, despite the exploratory character of reported studies, by suggesting that future research on delayed lotteries should be cross-validated using both methods.

  11. Step Care treatment for smoking cessation

    PubMed Central

    Ebbert, Jon O.; Little, Melissa A.; Klesges, Robert C.; Bursac, Zoran; Johnson, Karen C.; Thomas, Fridtjof; Vander Weg, Mark W.

    2017-01-01

    Abstract We compared the effectiveness of a ‘stepped care’ approach with increasing treatment intensity (‘Step Care’) to one with repeated treatments (‘Recycle’) among cigarette smokers interested in quitting smoking. Step 1 of the Step Care intervention consisted of a single counseling session, nicotine patch for six weeks and telephonic contact. For smokers not achieving tobacco abstinence 6 months after randomization with Step 1, the intensity of the intervention increased to four counseling sessions, bupropion sustained-release, nine telephone calls and three mailings (Step 2). For those not achieving tobacco abstinence 12 months after randomization, smokers received six behavioral counseling sessions, nicotine patch and nicotine gum, nine telephone calls and three mailings (Step 3). The Recycle participants received one session of health behavior counseling, six weeks of the nicotine patch and a telephone call at each step. 270 cigarette smokers were randomized. At 24 months after randomization using an intention to treat analysis, no statistically significant difference was observed in prolonged smoking abstinence between the Step Care and Recycle condition (16.9% versus 9.4%; adjusted OR = 1.88; 95% CI 0.88–4.01; P =0.10). Additional research is needed to explore whether a stepped care intervention increases long-term smoking abstinence rates compared with repeating the same intervention. PMID:28158558

  12. Introducing conjoint analysis method into delayed lotteries studies: its validity and time stability are higher than in adjusting

    PubMed Central

    Białek, Michał; Markiewicz, Łukasz; Sawicki, Przemysław

    2015-01-01

    The delayed lotteries are much more common in everyday life than are pure lotteries. Usually, we need to wait to find out the outcome of the risky decision (e.g., investing in a stock market, engaging in a relationship). However, most research has studied the time discounting and probability discounting in isolation using the methodologies designed specifically to track changes in one parameter. Most commonly used method is adjusting, but its reported validity and time stability in research on discounting are suboptimal. The goal of this study was to introduce the novel method for analyzing delayed lotteries—conjoint analysis—which hypothetically is more suitable for analyzing individual preferences in this area. A set of two studies compared the conjoint analysis with adjusting. The results suggest that individual parameters of discounting strength estimated with conjoint have higher predictive value (Study 1 and 2), and they are more stable over time (Study 2) compared to adjusting. We discuss these findings, despite the exploratory character of reported studies, by suggesting that future research on delayed lotteries should be cross-validated using both methods. PMID:25674069

  13. Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique

    PubMed Central

    Riaz, Muhammad Mohsin; Ghafoor, Abdul

    2014-01-01

    Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332

  14. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent ofmore » this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)« less

  15. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The main goals are the development, validation, and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems. A solution method that combines a finite volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  16. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    NASA Astrophysics Data System (ADS)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  17. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.

    PubMed

    Jin, Bangti; Li, Buyang; Zhou, Zhi

    2018-01-01

    In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.

  18. Time with Peers from Middle Childhood to Late Adolescence: Developmental Course and Adjustment Correlates

    PubMed Central

    Lam, Chun Bun; McHale, Susan M.; Crouter, Ann C.

    2014-01-01

    This study examined the developmental course and adjustment correlates of time with peers from age 8 to 18. On 7 occasions over 8 years, the two eldest siblings from 201 European American, working- and middle-class families provided questionnaire and/or phone diary data. Multilevel models revealed that girls’ time with mixed/opposite-sex peers increased beginning in middle childhood, but boys’ time increased beginning in early adolescence. For both girls and boys, time with same-sex peers peaked in mid-adolescence. At the within-person level, unsupervised time with mixed/opposite-sex peers longitudinally predicted problem behaviors and depressive symptoms, and supervised time with mixed/opposite-sex peers longitudinally predicted better school performance. Findings highlight the importance of social context in understanding peer involvement and its implications for youth development. PMID:24673293

  19. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.

    PubMed

    van den Tillaar, Roland; Gamble, Paul

    2018-03-26

    This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2  ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2  ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.

  20. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE PAGES

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore » also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less

  1. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, John M., E-mail: finn@lanl.gov

    2015-03-15

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint.more » We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004

  2. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  3. Time spent in sedentary posture is associated with waist circumference and cardiovascular risk.

    PubMed

    Tigbe, W W; Granat, M H; Sattar, N; Lean, M E J

    2017-05-01

    The relationship between metabolic risk and time spent sitting, standing and stepping has not been well established. The present study aimed to determine associations of objectively measured time spent siting, standing and stepping, with coronary heart disease (CHD) risk. A cross-sectional study of healthy non-smoking Glasgow postal workers, n=111 (55 office workers, 5 women, and 56 walking/delivery workers, 10 women), who wore activPAL physical activity monitors for 7 days. Cardiovascular risks were assessed by metabolic syndrome categorisation and 10-year PROCAM (prospective cardiovascular Munster) risk. Mean (s.d.) age was 40 (8) years, body mass index 26.9 (3.9) kg m -2 and waist circumference 95.4 (11.9) cm. Mean (s.d.) high-density lipoprotein cholesterol (HDL cholesterol) 1.33 (0.31), low-density lipoprotein cholesterol 3.11 (0.87), triglycerides 1.23 (0.64) mmol l -1 and 10-year PROCAM risk 1.8 (1.7)%. The participants spent mean (s.d.) 9.1 (1.8) h per day sedentary, 7.6 (1.2) h per day sleeping, 3.9 (1.1) h per day standing and 3.3 (0.9) h per day stepping, accumulating 14 708 (4984) steps per day in 61 (25) sit-to-stand transitions per day. In univariate regressions-adjusting for age, sex, family history of CHD, shift worked, job type and socioeconomic status-waist circumference (P=0.005), fasting triglycerides (P=0.002), HDL cholesterol (P=0.001) and PROCAM risk (P=0.047) were detrimentally associated with sedentary time. These associations remained significant after further adjustment for sleep, standing and stepping in stepwise regression models. However, after further adjustment for waist circumference, the associations were not significant. Compared with those without the metabolic syndrome, participants with the metabolic syndrome were significantly less active-fewer steps, shorter stepping duration and longer time sitting. Those with no metabolic syndrome features walked >15 000 steps per day or spent >7 h per day upright

  4. A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin

    2018-09-01

    A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves

  5. Incorporating the sampling design in weighting adjustments for panel attrition

    PubMed Central

    Chen, Qixuan; Gelman, Andrew; Tracy, Melissa; Norris, Fran H.; Galea, Sandro

    2015-01-01

    We review weighting adjustment methods for panel attrition and suggest approaches for incorporating design variables, such as strata, clusters and baseline sample weights. Design information can typically be included in attrition analysis using multilevel models or decision tree methods such as the CHAID algorithm. We use simulation to show that these weighting approaches can effectively reduce bias in the survey estimates that would occur from omitting the effect of design factors on attrition while keeping the resulted weights stable. We provide a step-by-step illustration on creating weighting adjustments for panel attrition in the Galveston Bay Recovery Study, a survey of residents in a community following a disaster, and provide suggestions to analysts in decision making about weighting approaches. PMID:26239405

  6. Transfer effects of step training on stepping performance in untrained directions in older adults: A randomized controlled trial.

    PubMed

    Okubo, Yoshiro; Menant, Jasmine; Udyavar, Manasa; Brodie, Matthew A; Barry, Benjamin K; Lord, Stephen R; L Sturnieks, Daina

    2017-05-01

    Although step training improves the ability of quick stepping, some home-based step training systems train limited stepping directions and may cause harm by reducing stepping performance in untrained directions. This study examines the possible transfer effects of step training on stepping performance in untrained directions in older people. Fifty four older adults were randomized into: forward step training (FT); lateral plus forward step training (FLT); or no training (NT) groups. FT and FLT participants undertook a 15-min training session involving 200 step repetitions. Prior to and post training, choice stepping reaction time and stepping kinematics in untrained, diagonal and lateral directions were assessed. Significant interactions of group and time (pre/post-assessment) were evident for the first step after training indicating negative (delayed response time) and positive (faster peak stepping speed) transfer effects in the diagonal direction in the FT group. However, when the second to the fifth steps after training were included in the analysis, there were no significant interactions of group and time for measures in the diagonal stepping direction. Step training only in the forward direction improved stepping speed but may acutely slow response times in the untrained diagonal direction. However, this acute effect appears to dissipate after a few repeated step trials. Step training in both forward and lateral directions appears to induce no negative transfer effects in diagonal stepping. These findings suggest home-based step training systems present low risk of harm through negative transfer effects in untrained stepping directions. ANZCTR 369066. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of step-by-step kinematics in repeated 30m sprints in female soccer players.

    PubMed

    van den Tillaar, Roland

    2018-01-04

    The aim of this study was to compare kinematics in repeated 30m sprints in female soccer players. Seventeen subjects performed seven 30m sprints every 30s in one session. Kinematics were measured with an infrared contact mat and laser gun, and running times with an electronic timing device. The main findings were that sprint times increased in the repeated sprint ability test. The main changes in kinematics during the repeated sprint ability test were increased contact time and decreased step frequency, while no change in step length was observed. The step velocity increased in almost each step until the 14, which occurred around 22m. After this, the velocity was stable until the last step, when it decreased. This increase in step velocity was mainly caused by the increased step length and decreased contact times. It was concluded that the fatigue induced in repeated 30m sprints in female soccer players resulted in decreased step frequency and increased contact time. Employing this approach in combination with a laser gun and infrared mat for 30m makes it very easy to analyse running kinematics in repeated sprints in training. This extra information gives the athlete, coach and sports scientist the opportunity to give more detailed feedback and help to target these changes in kinematics better to enhance repeated sprint performance.

  8. Monitoring risk-adjusted medical outcomes allowing for changes over time.

    PubMed

    Steiner, Stefan H; Mackay, R Jock

    2014-10-01

    We consider the problem of monitoring and comparing medical outcomes, such as surgical performance, over time. Performance is subject to change due to a variety of reasons including patient heterogeneity, learning, deteriorating skills due to aging, etc. For instance, we expect inexperienced surgeons to improve their skills with practice. We propose a graphical method to monitor surgical performance that incorporates risk adjustment to account for patient heterogeneity. The procedure gives more weight to recent outcomes and down-weights the influence of outcomes further in the past. The chart is clinically interpretable as it plots an estimate of the failure rate for a "standard" patient. The chart also includes a measure of uncertainty in this estimate. We can implement the method using historical data or start from scratch. As the monitoring proceeds, we can base the estimated failure rate on a known risk model or use the observed outcomes to update the risk model as time passes. We illustrate the proposed method with an example from cardiac surgery. © The Author 2013. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Adjustment of the San Francisco estuary and watershed to decreasing sediment supply in the 20th century

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2013-01-01

    The general progression of human land use is an initial disturbance (e.g., deforestation, mining, agricultural expansion, overgrazing, and urbanization) that creates a sediment pulse to an estuary followed by dams that reduce sediment supply. We present a conceptual model of the effects of increasing followed by decreasing sediment supply that includes four sequential regimes, which propagate downstream: a stationary natural regime, transient increasing sediment supply, transient decreasing sediment supply, and a stationary altered regime. The model features characteristic lines that separate the four regimes. Previous studies of the San Francisco Estuary and watershed are synthesized in the context of this conceptual model. Hydraulic mining for gold in the watershed increased sediment supply to the estuary in the late 1800s. Adjustment to decreasing sediment supply began in the watershed and upper estuary around 1900 and in the lower estuary in the 1950s. Large freshwater flow in the late 1990s caused a step adjustment throughout the estuary and watershed. It is likely that the estuary and watershed are still capable of adjusting but further adjustment will be as steps that occur only during greater floods than previously experienced during the adjustment period. Humans are actively managing the system to try to prevent greater floods. If this hypothesis of step changes occurring for larger flows is true, then the return interval of step changes will increase or, if humans successfully control floods in perpetuity, there will be no more step changes.

  10. Analysis of Longitudinal Studies With Repeated Outcome Measures: Adjusting for Time-Dependent Confounding Using Conventional Methods.

    PubMed

    Keogh, Ruth H; Daniel, Rhian M; VanderWeele, Tyler J; Vansteelandt, Stijn

    2018-05-01

    Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemiology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure, standard regression methods can lead to bias. Methods such as inverse probability weighted estimation of marginal structural models have been developed to address this problem. However, in this paper we show how standard regression methods can be used, even in the presence of time-dependent confounding, to estimate the total effect of an exposure on a subsequent outcome by controlling appropriately for prior exposures, outcomes, and time-varying covariates. We refer to the resulting estimation approach as sequential conditional mean models (SCMMs), which can be fitted using generalized estimating equations. We outline this approach and describe how including propensity score adjustment is advantageous. We compare the causal effects being estimated using SCMMs and marginal structural models, and we compare the two approaches using simulations. SCMMs enable more precise inferences, with greater robustness against model misspecification via propensity score adjustment, and easily accommodate continuous exposures and interactions. A new test for direct effects of past exposures on a subsequent outcome is described.

  11. Out of the picture: a study of family drawings by children from step-, single-parent, and non-step families.

    PubMed

    Dunn, Judy; O'Connor, Thomas G; Levy, Irit

    2002-12-01

    Investigated the family drawings of 180 children ages 5 to 7 years in various family settings, including stepfather, single-parent, complex stepfamilies, and 2-parent control families. The relations of family type and biological relatedness to omission of family members and grouping of parents were examined. Children from step- and single-parent families were more likely to exclude family members than children from "control" non-step families, and exclusion was predicted from biological relatedness. Children who were biologically related to both resident parents were also more likely to group their parents together. Omission of family members was found to be associated with children's adjustment (specifically more externalizing and internalizing behavior) as reported by teachers and parents. The results indicate that biological relatedness is a salient aspect of very young children's representations of their families. The association between adjustment and exclusion of family members and grouping of parents indicates that family drawings may be useful research and clinical tools, when used in combination with other methods of assessment.

  12. Parent-Child Shared Time From Middle Childhood to Late Adolescence: Developmental Course and Adjustment Correlates

    PubMed Central

    Lam, Chun Bun; McHale, Susan M.; Crouter, Ann C.

    2012-01-01

    The development and adjustment correlates of parent-child social (parent, child, and others present) and dyadic time (only parent and child present) from age 8 to 18 were examined. Mothers, fathers, and firstborns and secondborns from 188 White families participated in both home and nightly phone interviews. Social time declined across adolescence, but dyadic time with mothers and fathers peaked in early and middle adolescence, respectively. Additionally, secondborns’ social time declined more slowly than firstborns’, and gendered time use patterns were more pronounced in boys and in opposite-sex sibling dyads. Finally, youths who spent more dyadic time with their fathers, on average, had higher general self-worth, and changes in social time with fathers were positively linked to changes in social competence. PMID:22925042

  13. Achieving 10,000 steps: a comparison of public transport users and drivers in a university setting.

    PubMed

    Villanueva, Karen; Giles-Corti, Billie; McCormack, Gavin

    2008-09-01

    To compare pedometer steps of university students who used public transport and private motor vehicles to travel to and or from The University of Western Australia (UWA). 103 undergraduate students in 2006 recruited by e-mail and snowballing wore a pedometer for five consecutive university days, and completed a travel and physical activity diary. Compared with private motor vehicle users, public transport users performed more daily steps (11443 vs. 10242 steps/day, p=0.04) After adjusting for gender, age group and average daily minutes of self-reported leisure-time physical activity, the odds of achieving 10,000 steps/day was higher in public transport users compared with private motor vehicle users (OR 3.55; 95% CI 1.34-9.38, p=0.01). Walking associated with public transport use appeared to contribute to university students achieving higher levels of daily steps. Encouraging public transport use could help increase and maintain community physical activity levels.

  14. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    PubMed

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  15. Performance of an attention-demanding task during treadmill walking shifts the noise qualities of step-to-step variation in step width.

    PubMed

    Grabiner, Mark D; Marone, Jane R; Wyatt, Marilynn; Sessoms, Pinata; Kaufman, Kenton R

    2018-06-01

    The fractal scaling evident in the step-to-step fluctuations of stepping-related time series reflects, to some degree, neuromotor noise. The primary purpose of this study was to determine the extent to which the fractal scaling of step width, step width and step width variability are affected by performance of an attention-demanding task. We hypothesized that the attention-demanding task would shift the structure of the step width time series toward white, uncorrelated noise. Subjects performed two 10-min treadmill walking trials, a control trial of undisturbed walking and a trial during which they performed a mental arithmetic/texting task. Motion capture data was converted to step width time series, the fractal scaling of which were determined from their power spectra. Fractal scaling decreased by 22% during the texting condition (p < 0.001) supporting the hypothesized shift toward white uncorrelated noise. Step width and step width variability increased 19% and five percent, respectively (p < 0.001). However, a stepwise discriminant analysis to which all three variables were input revealed that the control and dual task conditions were discriminated only by step width fractal scaling. The change of the fractal scaling of step width is consistent with increased cognitive demand and suggests a transition in the characteristics of the signal noise. This may reflect an important advance toward the understanding of the manner in which neuromotor noise contributes to some types of falls. However, further investigation of the repeatability of the results, the sensitivity of the results to progressive increases in cognitive load imposed by attention-demanding tasks, and the extent to which the results can be generalized to the gait of older adults seems warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Modelling of Sub-daily Hydrological Processes Using Daily Time-Step Models: A Distribution Function Approach to Temporal Scaling

    NASA Astrophysics Data System (ADS)

    Kandel, D. D.; Western, A. W.; Grayson, R. B.

    2004-12-01

    Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and

  17. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  18. [Adjustment of time allocation and daily emotional experience during the transition to the role of a working mother].

    PubMed

    Hasegawa, Yuka

    2010-06-01

    The purpose of this study is twofold: (a) to examine how women adjust their time allocation when they become working mothers; and (b) to assess the effect of their adjustment on their daily emotional experience. Using a methodology based on the Day Reconstruction Method which is designed to reduce systematic bias, seven women responded to a questionnaire during parental leave (T1), within 1 month after returning to work (T2), and 3 months after returning to work (T3). The results revealed that most of the participants tended to utilize the time available to them for sleep and child care by decreasing housework and leisure. They experienced increased pressure in terms of time and felt more or equally energetic or intimate toward their families in both T2 and T3. The other participants, who had less time available for sleep or meals, experienced increased depression or tiredness.

  19. [Differences in anticipatory postural adjustments between self-generated and triggered gait initiation in 20 healthy subjects].

    PubMed

    Delval, A; Krystkowiak, P; Blatt, J-L; Labyt, E; Destée, A; Derambure, P; Defebvre, L

    2005-01-01

    Preparation of upper-limb movements differs between self-paced and triggered conditions. This study analyzed the anticipatory postural adjustments (APAs) of gait initiation in normal subjects in 2 conditions: self-generated and triggered by a "beep" sound. We recorded kinematic, spatiotemporal parameters of the first two steps by means of video motion analysis (6 infrared cameras), and kinetic parameters (using a force platform and the optoelectronic system) in 20 normal subjects. Two conditions: 1) self-generated initiation; and 2) initiation triggered by a "beep" sound were studied to evaluate the APA phase, by recording kinetic data (duration of the APAs, trajectory of the center of pressure, speed and trajectory of the center of mass). Kinematic data (first and second step speed, length and duration) were also recorded. First step speed and length were increased in self-paced gait initiation compared to triggered gait initiation in controls. We found no difference between the 2 conditions in terms of second step kinematic data. It was caused by a significant difference between the 2 conditions for the temporal characteristics of anticipatory postural adjustments (APAs) in the initiation of the first step, which was longer when normal subjects performed self-generated gait initiation. The trajectory of center of pressure and center of mass remained the same in the 2 conditions. APAs of gait initiation process are delayed under self-paced condition, although they do not differ qualitatively between reaction time and self-paced condition. Neuphysiological support of self-generated movement could explain these differences.

  20. Multiple-time-stepping generalized hybrid Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escribano, Bruno, E-mail: bescribano@bcamath.org; Akhmatskaya, Elena; IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao

    2015-01-01

    Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC).more » The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.« less

  1. Counterrotating prop-fan simulations which feature a relative-motion multiblock grid decomposition enabling arbitrary time-steps

    NASA Technical Reports Server (NTRS)

    Janus, J. Mark; Whitfield, David L.

    1990-01-01

    Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.

  2. An improved accrual: reducing medical malpractice year-end adjustments.

    PubMed

    Frese, Richard C

    2012-08-01

    Healthcare organizations can improve their year-end malpractice insurance accruals by taking the following steps: Maintain productive communication. Match accrual and accounting policies. Adjust amount of credit to own historical loss experience. Request more frequent analysis. Obtain a second opinion.

  3. In Vitro Stretch Injury Induces Time- and Severity-Dependent Alterations of STEP Phosphorylation and Proteolysis in Neurons

    PubMed Central

    Mesfin, Mahlet N.; von Reyn, Catherine R.; Mott, Rosalind E.; Putt, Mary E.

    2012-01-01

    Abstract Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP61 expression progressively increases after sublethal stretch with no change in calpain-mediated STEP33 formation, while lethal stretch injury results in STEP33 formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP33 formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP33 formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP33 should be further examined as an early marker of neuronal fate after stretch injury. PMID:22435660

  4. Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback

    NASA Astrophysics Data System (ADS)

    Zhang, Wenle; Liu, Jianchang

    2016-04-01

    This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.

  5. One Step at a Time: Using Task Analyses to Teach Skills

    ERIC Educational Resources Information Center

    Snodgrass, Melinda R.; Meadan, Hedda; Ostrosky, Michaelene M.; Cheung, W. Catherine

    2017-01-01

    Task analyses are useful when teaching children how to complete tasks by breaking the tasks into small steps, particularly when children struggle to learn a skill during typical classroom instruction. We describe how to create a task analysis by identifying the steps a child needs to independently perform the task, how to assess what steps a child…

  6. Self-triggered assistive stimulus training improves step initiation in persons with Parkinson’s disease

    PubMed Central

    2013-01-01

    Background Prior studies demonstrated that hesitation-prone persons with Parkinson’s disease (PDs) acutely improve step initiation using a novel self-triggered stimulus that enhances lateral weight shift prior to step onset. PDs showed reduced anticipatory postural adjustment (APA) durations, earlier step onsets, and faster 1st step speed immediately following stimulus exposure. Objective This study investigated the effects of long-term stimulus exposure. Methods Two groups of hesitation-prone subjects with Parkinson’s disease (PD) participated in a 6-week step-initiation training program involving one of two stimulus conditions: 1) Drop. The stance-side support surface was lowered quickly (1.5 cm); 2) Vibration. A short vibration (100 ms) was applied beneath the stance-side support surface. Stimuli were self-triggered by a 5% reduction in vertical force under the stance foot during the APA. Testing was at baseline, immediately post-training, and 6 weeks post-training. Measurements included timing and magnitude of ground reaction forces, and step speed and length. Results Both groups improved their APA force modulation after training. Contrary to previous results, neither group showed reduced APA durations or earlier step onset times. The vibration group showed 55% increase in step speed and a 39% increase in step length which were retained 6 weeks post-training. The drop group showed no stepping-performance improvements. Conclusions The acute sensitivity to the quickness-enhancing effects of stimulus exposure demonstrated in previous studies was supplanted by improved force modulation following prolonged stimulus exposure. The results suggest a potential approach to reduce the severity of start hesitation in PDs, but further study is needed to understand the relationship between short- and long-term effects of stimulus exposure. PMID:23363975

  7. Postoperative Time Dependent Tibiofemoral Articular Cartilage Contact Kinematics during Step-up after ACL Reconstruction

    PubMed Central

    Lin, Lin; Li, Jing-Sheng; Kernkamp, Willem A.; Hosseini, Ali; Kim, ChangWan; Yin, Peng; Wang, Lianxin; Tsai, Tsung-Yuan; Asnis, Peter; Li, Guoan

    2016-01-01

    This study was to investigate the in vivo tibiofemoral cartilage contact locations before and after anterior cruciate ligament (ACL) reconstruction at 6 and 36 months. Ten patients with unilateral ACL injury were included. A step-up motion was analyzed using a combined magnetic resonance modeling and dual fluoroscopic imaging techniques. The preoperative (i.e. ACL deficient and healthy contralateral) and postoperative cartilage contact locations at 6 and 36 months were analyzed. Similar patterns of the cartilage contact locations during the step-up motion were found for the preoperative and postoperative knee states as compared to the preoperative healthy contralateral side. At the end of step-up motion, the medial contact locations at postoperative 36 months were more anterior when compared to the preoperative healthy contralateral (p=0.02) and 6 months postoperative knee states (p=0.01). The changes of the cartilage contact locations at 36 months after ACL reconstruction compared to the healthy contralateral side were strongly correlated with the changes at 6 months postoperatively. This study showed that the tibiofemoral cartilage contact locations of the knee changes with time after ACL reconstruction, implying an ongoing recovery process within the 36 months after the surgery. There could be an association between the short-term (6 months) and longer-term (36 months) contact kinematics after ACL reconstruction. Future studies need to investigate the intrinsic relationship between knee kinematics at different times after ACL reconstruction. PMID:27720228

  8. One step screening of retroviral producer clones by real time quantitative PCR.

    PubMed

    Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C

    1999-01-01

    Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.

  9. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis.

    PubMed

    Okubo, Yoshiro; Schoene, Daniel; Lord, Stephen R

    2017-04-01

    To examine the effects of stepping interventions on fall risk factors and fall incidence in older people. Electronic databases (PubMed, EMBASE, CINAHL, Cochrane, CENTRAL) and reference lists of included articles from inception to March 2015. Randomised (RCT) or clinical controlled trials (CCT) of volitional and reactive stepping interventions that included older (minimum age 60) people providing data on falls or fall risk factors. Meta-analyses of seven RCTs (n=660) showed that the stepping interventions significantly reduced the rate of falls (rate ratio=0.48, 95% CI 0.36 to 0.65, p<0.0001, I 2 =0%) and the proportion of fallers (risk ratio=0.51, 95% CI 0.38 to 0.68, p<0.0001, I 2 =0%). Subgroup analyses stratified by reactive and volitional stepping interventions revealed a similar efficacy for rate of falls and proportion of fallers. A meta-analysis of two RCTs (n=62) showed that stepping interventions significantly reduced laboratory-induced falls, and meta-analysis findings of up to five RCTs and CCTs (n=36-416) revealed that stepping interventions significantly improved simple and choice stepping reaction time, single leg stance, timed up and go performance (p<0.05), but not measures of strength. The findings indicate that both reactive and volitional stepping interventions reduce falls among older adults by approximately 50%. This clinically significant reduction may be due to improvements in reaction time, gait, balance and balance recovery but not in strength. Further high-quality studies aimed at maximising the effectiveness and feasibility of stepping interventions are required. CRD42015017357. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Antecedents of maternal parenting stress: the role of attachment style, prenatal attachment, and dyadic adjustment in first-time mothers

    PubMed Central

    Mazzeschi, Claudia; Pazzagli, Chiara; Radi, Giulia; Raspa, Veronica; Buratta, Livia

    2015-01-01

    The transition to parenthood is widely considered a period of increased vulnerability often accompanied by stress. Abidin conceived parenting stress as referring to specific difficulties in adjusting to the parenting role. Most studies of psychological distress arising from the demands of parenting have investigated the impact of stress on the development of dysfunctional parent–child relationships and on adult and child psychopathology. Studies have largely focused on mothers’ postnatal experience; less attention has been devoted to maternal prenatal characteristics associated with subsequent parental stress and studies of maternal prenatal predictors are few. Furthermore, no studies have examined that association exclusively with samples of first-time mothers. With an observational prospective study design with two time periods, the aim of this study was to investigate the role of mothers’ attachment style, maternal prenatal attachment to the fetus and dyadic adjustment during pregnancy (7th months of gestation) and their potential unique contribution to parenting stress 3 months after childbirth in a sample of nulliparous women. Results showed significant correlations between antenatal measures. Maternal attachment style (especially relationship anxiety) was negatively correlated with prenatal attachment and with dyadic adjustment; positive correlations resulted between prenatal attachment and dyadic adjustment. Each of the investigated variables was also good predictor of parenting stress 3 months after childbirth. Findings suggested how these dimensions could be considered as risk factors in the transition to motherhood and in the very beginning of the emergence of the caregiving system, especially with first-time mothers. PMID:26441808

  11. Antecedents of maternal parenting stress: the role of attachment style, prenatal attachment, and dyadic adjustment in first-time mothers.

    PubMed

    Mazzeschi, Claudia; Pazzagli, Chiara; Radi, Giulia; Raspa, Veronica; Buratta, Livia

    2015-01-01

    The transition to parenthood is widely considered a period of increased vulnerability often accompanied by stress. Abidin conceived parenting stress as referring to specific difficulties in adjusting to the parenting role. Most studies of psychological distress arising from the demands of parenting have investigated the impact of stress on the development of dysfunctional parent-child relationships and on adult and child psychopathology. Studies have largely focused on mothers' postnatal experience; less attention has been devoted to maternal prenatal characteristics associated with subsequent parental stress and studies of maternal prenatal predictors are few. Furthermore, no studies have examined that association exclusively with samples of first-time mothers. With an observational prospective study design with two time periods, the aim of this study was to investigate the role of mothers' attachment style, maternal prenatal attachment to the fetus and dyadic adjustment during pregnancy (7th months of gestation) and their potential unique contribution to parenting stress 3 months after childbirth in a sample of nulliparous women. Results showed significant correlations between antenatal measures. Maternal attachment style (especially relationship anxiety) was negatively correlated with prenatal attachment and with dyadic adjustment; positive correlations resulted between prenatal attachment and dyadic adjustment. Each of the investigated variables was also good predictor of parenting stress 3 months after childbirth. Findings suggested how these dimensions could be considered as risk factors in the transition to motherhood and in the very beginning of the emergence of the caregiving system, especially with first-time mothers.

  12. Parent-child shared time from middle childhood to late adolescence: developmental course and adjustment correlates.

    PubMed

    Lam, Chun Bun; McHale, Susan M; Crouter, Ann C

    2012-11-01

    The development and adjustment correlates of parent-child social (parent, child, and others present) and dyadic time (only parent and child present) from age 8 to 18 were examined. Mothers, fathers, and firstborns and secondborns from 188 White families participated in both home and nightly phone interviews. Social time declined across adolescence, but dyadic time with mothers and fathers peaked in early and middle adolescence, respectively. In addition, secondborns' social time declined more slowly than firstborns', and gendered time use patterns were more pronounced in boys and in opposite-sex sibling dyads. Finally, youths who spent more dyadic time with their fathers, on average, had higher general self-worth, and changes in social time with fathers were positively linked to changes in social competence. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  13. Enhancing systematic implementation of skills training modules for persons with schizophrenia: three steps forward and two steps back?

    PubMed

    van Erp, Nicole H J; van Vugt, Maaike; Verhoeven, Dorien; Kroon, Hans

    2009-01-01

    This brief report addresses the systematic implementation of skills training modules for persons with schizophrenia or related disorders in three Dutch mental health agencies. Information on barriers, strategies and integration into routine daily practice was gathered at 0, 12 and 24 months through interviews with managers, program leaders, trainers, practitioners and clients. Overall implementation of the skills training modules for 74% of the persons with schizophrenia or related disorders was not feasible. Implementation was impeded by an incapable program leader, organizational changes, disappointing referrals and loss of trainers. The agencies made important steps forward to integrate the modules into routine daily practice. A reach percentage of 74% in two years time is too ambitious and needs to be adjusted. Systematic integration of the modules into routine daily practice is feasible, but requires solid program management and continuous effort to involve clients and practitioners.

  14. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering

  15. Outward Bound to the Galaxies--One Step at a Time

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Miller-Friedmann, Jaimie; Sienkiewicz, Frank; Antonucci, Paul

    2012-01-01

    Less than a century ago, astronomers began to unlock the cosmic distances within and beyond the Milky Way. Understanding the size and scale of the universe is a continuing, step-by-step process that began with the remarkably accurate measurement of the distance to the Moon made by early Greeks. In part, the authors have ITEAMS (Innovative…

  16. A step-defined sedentary lifestyle index: <5000 steps/day.

    PubMed

    Tudor-Locke, Catrine; Craig, Cora L; Thyfault, John P; Spence, John C

    2013-02-01

    Step counting (using pedometers or accelerometers) is widely accepted by researchers, practitioners, and the general public. Given the mounting evidence of the link between low steps/day and time spent in sedentary behaviours, how few steps/day some populations actually perform, and the growing interest in the potentially deleterious effects of excessive sedentary behaviours on health, an emerging question is "How many steps/day are too few?" This review examines the utility, appropriateness, and limitations of using a reoccurring candidate for a step-defined sedentary lifestyle index: <5000 steps/day. Adults taking <5000 steps/day are more likely to have a lower household income and be female, older, of African-American vs. European-American heritage, a current vs. never smoker, and (or) living with chronic disease and (or) disability. Little is known about how contextual factors (e.g., built environment) foster such low levels of step-defined physical activity. Unfavorable indicators of body composition and cardiometabolic risk have been consistently associated with taking <5000 steps/day. The acute transition (3-14 days) of healthy active young people from higher (>10 000) to lower (<5000 or as low as 1500) daily step counts induces reduced insulin sensitivity and glycemic control, increased adiposity, and other negative changes in health parameters. Although few alternative values have been considered, the continued use of <5000 steps/day as a step-defined sedentary lifestyle index for adults is appropriate for researchers and practitioners and for communicating with the general public. There is little evidence to advocate any specific value indicative of a step-defined sedentary lifestyle index in children and adolescents.

  17. Micromachined needles and lancets with design adjustable bevel angles

    NASA Astrophysics Data System (ADS)

    Sparks, Douglas; Hubbard, Timothy

    2004-08-01

    A new method of micromachining hollow needles and two-dimensional needle arrays from single crystal silicon is described. The process involves a combination of fusion bonding, photolithography and anisotropic plasma etching. The cannula produced with this process can have design adjustable bevel angles, wall thickness and channel dimensions. A subset of processing steps can be employed to produce silicon blades and lancets with design adjustable bevel angles and shaft dimensions. Applications for this technology include painless drug infusion, blood diagnosis, glucose monitoring, cellular injection and the manufacture of microkeratomes for ocular, vascular and neural microsurgery.

  18. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin.

    PubMed

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; Moraes, Rafael Ratto de

    2017-01-01

    This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.

  19. Deformation of the self-adjusting file on simulated curved root canals: a time-dependent study.

    PubMed

    Akçay, Ilgın; Yiğit-Özer, Senem; Adigüzel, Özkan; Kaya, Sadulah

    2011-11-01

    This study examined the surface changes of self-adjusting file after operating in different degrees of canal curvatures with a fixed radius of curvature in different operation intervals. Artificial canals were manufactured in a 5-mm radius of curvature with 45° and 60° angles of curvature. Forty self-adjusting files were divided into 2 groups and submitted to functional fatigue to failure. Twenty files were tested using the 45° angle and the remaining 20 were tested using the 60° angle at 4 minutes for 7 periods in a total of 28 minutes. The average time frame for each 4-minute inspection period was considered as the moment of failure at 2, 6, 10, 14, 18, 22, and 26 minutes, respectively. Instruments were evaluated using scanning electron microscopy to characterize the material under study. The lattice detachment began at the second period for both groups and continued to increase along with the ongoing testing time. The detachment that occurred in 60° canal curvature was higher at the third and fourth periods when compared with the 45° group (P < .05). For both groups, during the third period, detachment of the arch of the lattice was only one sided; however, this deformation was severe between the fourth and sixth periods with a 2-sided detachment, which was easier to separate. The rough surface became smooth after usage. No full separation of the file was evident for both groups. In multirooted teeth with severely curved root canals, using more than one self-adjusting file might be recommended to prevent lattice detachment. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. Associations between the Objectively Measured Office Environment and Workplace Step Count and Sitting Time: Cross-Sectional Analyses from the Active Buildings Study.

    PubMed

    Fisher, Abi; Ucci, Marcella; Smith, Lee; Sawyer, Alexia; Spinney, Richard; Konstantatou, Marina; Marmot, Alexi

    2018-06-01

    Office-based workers spend a large proportion of the day sitting and tend to have low overall activity levels. Despite some evidence that features of the external physical environment are associated with physical activity, little is known about the influence of the spatial layout of the internal environment on movement, and the majority of data use self-report. This study investigated associations between objectively-measured sitting time and activity levels and the spatial layout of office floors in a sample of UK office-based workers. Participants wore activPAL accelerometers for at least three consecutive workdays. Primary outcomes were steps and proportion of sitting time per working hour. Primary exposures were office spatial layout, which was objectively-measured by deriving key spatial variables: 'distance from each workstation to key office destinations', 'distance from participant's workstation to all other workstations', 'visibility of co-workers', and workstation 'closeness'. 131 participants from 10 organisations were included. Fifty-four per cent were female, 81% were white, and the majority had a managerial or professional role (72%) in their organisation. The average proportion of the working hour spent sitting was 0.7 (SD 0.15); participants took on average 444 (SD 210) steps per working hour. Models adjusted for confounders revealed significant negative associations between step count and distance from each workstation to all other office destinations (e.g., B = -4.66, 95% CI: -8.12, -1.12, p < 0.01) and nearest office destinations (e.g., B = -6.45, 95% CI: -11.88, -0.41, p < 0.05) and visibility of workstations when standing (B = -2.35, 95% CI: -3.53, -1.18, p < 0.001). The magnitude of these associations was small. There were no associations between spatial variables and sitting time per work hour. Contrary to our hypothesis, the further participants were from office destinations the less they walked, suggesting that changing the relative

  1. The Influence of Time Spent in Outdoor Play on Daily and Aerobic Step Count in Costa Rican Children

    ERIC Educational Resources Information Center

    Morera Castro, Maria del Rocio

    2011-01-01

    The purpose of this study is to examine the influence of time spent in outdoor play (i.e., on weekday and weekend days) on daily (i.e., average step count) and aerobic step count (i.e., average moderate to vigorous physical activity [MVPA] during the weekdays and weekend days) in fifth grade Costa Rican children. It was hypothesized that: (a)…

  2. PHISICS/RELAP5-3D Adaptive Time-Step Method Demonstrated for the HTTR LOFC#1 Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Robin Ivey; Balestra, Paolo; Strydom, Gerhard

    A collaborative effort between Japan Atomic Energy Agency (JAEA) and Idaho National Laboratory (INL) as part of the Civil Nuclear Energy Working Group is underway to model the high temperature engineering test reactor (HTTR) loss of forced cooling (LOFC) transient that was performed in December 2010. The coupled version of RELAP5-3D, a thermal fluids code, and PHISICS, a neutronics code, were used to model the transient. The focus of this report is to summarize the changes made to the PHISICS-RELAP5-3D code for implementing an adaptive time step methodology into the code for the first time, and to test it usingmore » the full HTTR PHISICS/RELAP5-3D model developed by JAEA and INL and the LOFC simulation. Various adaptive schemes are available based on flux or power convergence criteria that allow significantly larger time steps to be taken by the neutronics module. The report includes a description of the HTTR and the associated PHISICS/RELAP5-3D model test results as well as the University of Rome sub-contractor report documenting the adaptive time step theory and methodology implemented in PHISICS/RELAP5-3D. Two versions of the HTTR model were tested using 8 and 26 energy groups. It was found that most of the new adaptive methods lead to significant improvements in the LOFC simulation time required without significant accuracy penalties in the prediction of the fission power and the fuel temperature. In the best performing 8 group model scenarios, a LOFC simulation of 20 hours could be completed in real-time, or even less than real-time, compared with the previous version of the code that completed the same transient 3-8 times slower than real-time. A few of the user choice combinations between the methodologies available and the tolerance settings did however result in unacceptably high errors or insignificant gains in simulation time. The study is concluded with recommendations on which methods to use for this HTTR model. An important caveat is that these

  3. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  4. Medicare spending by state: the border-crossing adjustment.

    PubMed

    Basu, J; Lazenby, H C; Levit, K R

    1995-01-01

    As the first step in a pioneering effort by the Health Care Financing Administration (HCFA) to measure interstate border crossing for services used by both Medicare and non-Medicare beneficiaries, the authors study the spending behavior of Medicare beneficiaries for 10 Medicare-covered services. Based on interstate flow-of-expenditure data developed for calendar year 1991, the authors analyze the spending patterns of State residents by studying the inflow and outflow rates and the netflow ratios of expenditures incurred by Medicare patients. The report also provides per capita expenditure estimates with residence-based adjustments and evaluates the impact of the border-crossing adjustment for individual services and States.

  5. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin

    PubMed Central

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; de Moraes, Rafael Ratto

    2017-01-01

    Abstract Objectives: This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Material and methods: Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. Results: In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Conclusion: Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup. PMID:29069150

  6. Effects of parent drug use and personality on toddler adjustment.

    PubMed

    Brook, J S; Whiteman, M; Shapiro, J; Cohen, P

    1996-03-01

    The interrelation between parental drug use and parental personality and the effects on 18-month-old children's adjustment were examined. Data on the parents were available at four points in time: Time 1 at mean age 6.1 years, Time 2 at mean age 13.7 years, Time 3 at mean age 16.4 years, and at Time 4 at mean age 22.2 years. Data on their toddlers at 18 months of age were also available. Structured interviews were used to assess personality and drug use and the toddlers' adjustment. Time 3 parental personality traits were related to Time 4 personality traits, which in turn were related to toddler adjustment. The influence of parental alcohol involvement (Time 3) on toddler adjustment was mediated by parental personality (Times 3 and 4) and parental alcohol problems (Time 4). Interactive effects demonstrated that protective parental personality traits (nondrug conducive) enhanced the effects of low parental drug use, resulting in the highest amounts of toddler adjustment. There are significant pathways between parental personality and drug use and toddler adjustment. Parental protective factors enhance the effect of parental low drug use on toddler adjustment.

  7. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3

  8. Improved Conjugate Gradient Bundle Adjustment of Dunhuang Wall Painting Images

    NASA Astrophysics Data System (ADS)

    Hu, K.; Huang, X.; You, H.

    2017-09-01

    Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA) method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.

  9. Biomechanical influences on balance recovery by stepping.

    PubMed

    Hsiao, E T; Robinovitch, S N

    1999-10-01

    Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.

  10. Real‐time monitoring and control of the load phase of a protein A capture step

    PubMed Central

    Rüdt, Matthias; Brestrich, Nina; Rolinger, Laura

    2016-01-01

    ABSTRACT The load phase in preparative Protein A capture steps is commonly not controlled in real‐time. The load volume is generally based on an offline quantification of the monoclonal antibody (mAb) prior to loading and on a conservative column capacity determined by resin‐life time studies. While this results in a reduced productivity in batch mode, the bottleneck of suitable real‐time analytics has to be overcome in order to enable continuous mAb purification. In this study, Partial Least Squares Regression (PLS) modeling on UV/Vis absorption spectra was applied to quantify mAb in the effluent of a Protein A capture step during the load phase. A PLS model based on several breakthrough curves with variable mAb titers in the HCCF was successfully calibrated. The PLS model predicted the mAb concentrations in the effluent of a validation experiment with a root mean square error (RMSE) of 0.06 mg/mL. The information was applied to automatically terminate the load phase, when a product breakthrough of 1.5 mg/mL was reached. In a second part of the study, the sensitivity of the method was further increased by only considering small mAb concentrations in the calibration and by subtracting an impurity background signal. The resulting PLS model exhibited a RMSE of prediction of 0.01 mg/mL and was successfully applied to terminate the load phase, when a product breakthrough of 0.15 mg/mL was achieved. The proposed method has hence potential for the real‐time monitoring and control of capture steps at large scale production. This might enhance the resin capacity utilization, eliminate time‐consuming offline analytics, and contribute to the realization of continuous processing. Biotechnol. Bioeng. 2017;114: 368–373. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:27543789

  11. Do Adjusting-Amount and Adjusting-Delay Procedures Produce Equivalent Estimates of Subjective Value in Pigeons?

    ERIC Educational Resources Information Center

    Green, Leonard; Myerson, Joel; Shah, Anuj K.; Estle, Sara J.; Holt, Daniel D.

    2007-01-01

    The current experiment examined whether adjusting-amount and adjusting-delay procedures provide equivalent measures of discounting. Pigeons' discounting on the two procedures was compared using a within-subject yoking technique in which the indifference point (number of pellets or time until reinforcement) obtained with one procedure determined…

  12. Giant Steps in Cefalù

    NASA Astrophysics Data System (ADS)

    Jeffery, David J.; Mazzali, Paolo A.

    2007-08-01

    Giant steps is a technique to accelerate Monte Carlo radiative transfer in optically-thick cells (which are isotropic and homogeneous in matter properties and into which astrophysical atmospheres are divided) by greatly reducing the number of Monte Carlo steps needed to propagate photon packets through such cells. In an optically-thick cell, packets starting from any point (which can be regarded a point source) well away from the cell wall act essentially as packets diffusing from the point source in an infinite, isotropic, homogeneous atmosphere. One can replace many ordinary Monte Carlo steps that a packet diffusing from the point source takes by a randomly directed giant step whose length is slightly less than the distance to the nearest cell wall point from the point source. The giant step is assigned a time duration equal to the time for the RMS radius for a burst of packets diffusing from the point source to have reached the giant step length. We call assigning giant-step time durations this way RMS-radius (RMSR) synchronization. Propagating packets by series of giant steps in giant-steps random walks in the interiors of optically-thick cells constitutes the technique of giant steps. Giant steps effectively replaces the exact diffusion treatment of ordinary Monte Carlo radiative transfer in optically-thick cells by an approximate diffusion treatment. In this paper, we describe the basic idea of giant steps and report demonstration giant-steps flux calculations for the grey atmosphere. Speed-up factors of order 100 are obtained relative to ordinary Monte Carlo radiative transfer. In practical applications, speed-up factors of order ten and perhaps more are possible. The speed-up factor is likely to be significantly application-dependent and there is a trade-off between speed-up and accuracy. This paper and past work suggest that giant-steps error can probably be kept to a few percent by using sufficiently large boundary-layer optical depths while still

  13. Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation.

    PubMed

    Christensen, Ole F

    2012-12-03

    Single-step methods provide a coherent and conceptually simple approach to incorporate genomic information into genetic evaluations. An issue with single-step methods is compatibility between the marker-based relationship matrix for genotyped animals and the pedigree-based relationship matrix. Therefore, it is necessary to adjust the marker-based relationship matrix to the pedigree-based relationship matrix. Moreover, with data from routine evaluations, this adjustment should in principle be based on both observed marker genotypes and observed phenotypes, but until now this has been overlooked. In this paper, I propose a new method to address this issue by 1) adjusting the pedigree-based relationship matrix to be compatible with the marker-based relationship matrix instead of the reverse and 2) extending the single-step genetic evaluation using a joint likelihood of observed phenotypes and observed marker genotypes. The performance of this method is then evaluated using two simulated datasets. The method derived here is a single-step method in which the marker-based relationship matrix is constructed assuming all allele frequencies equal to 0.5 and the pedigree-based relationship matrix is constructed using the unusual assumption that animals in the base population are related and inbred with a relationship coefficient γ and an inbreeding coefficient γ / 2. Taken together, this γ parameter and a parameter that scales the marker-based relationship matrix can handle the issue of compatibility between marker-based and pedigree-based relationship matrices. The full log-likelihood function used for parameter inference contains two terms. The first term is the REML-log-likelihood for the phenotypes conditional on the observed marker genotypes, whereas the second term is the log-likelihood for the observed marker genotypes. Analyses of the two simulated datasets with this new method showed that 1) the parameters involved in adjusting marker-based and pedigree

  14. Overcoming the detection bandwidth limit in precision spectroscopy: The analytical apparatus function for a stepped frequency scan

    NASA Astrophysics Data System (ADS)

    Rohart, François

    2017-01-01

    In a previous paper [Rohart et al., Phys Rev A 2014;90(042506)], the influence of detection-bandwidth properties on observed line-shapes in precision spectroscopy was theoretically modeled for the first time using the basic model of a continuous sweeping of the laser frequency. Specific experiments confirmed general theoretical trends but also revealed several insufficiencies of the model in case of stepped frequency scans. As a consequence in as much as up-to-date experiments use step-by-step frequency-swept lasers, a new model of the influence of the detection-bandwidth is developed, including a realistic timing of signal sampling and frequency changes. Using Fourier transform techniques, the resulting time domain apparatus function gets a simple analytical form that can be easily implemented in line-shape fitting codes without any significant increase of computation durations. This new model is then considered in details for detection systems characterized by 1st and 2nd order bandwidths, underlining the importance of the ratio of detection time constant to frequency step duration, namely for the measurement of line frequencies. It also allows a straightforward analysis of corresponding systematic deviations on retrieved line frequencies and broadenings. Finally, a special attention is paid to consequences of a finite detection-bandwidth in Doppler Broadening Thermometry, namely to experimental adjustments required for a spectroscopic determination of the Boltzmann constant at the 1-ppm level of accuracy. In this respect, the interest of implementing a Butterworth 2nd order filter is emphasized.

  15. A 15-Step Synthesis of (+)-Ryanodol

    PubMed Central

    Chuang, Kangway V.; Xu, Chen; Reisman, Sarah E.

    2017-01-01

    (+)-Ryanodine and (+)-ryanodol are complex diterpenoids that modulate intracellular Ca2+ release at ryanodine receptors, ion channels critical for skeletal and cardiac muscle excitation–contraction coupling and synaptic transmission. Chemical derivatization of these diterpenoids has demonstrated that certain peripheral structural modifications can alter binding affinity and selectivity among ryanodine receptor isoforms. Here we report a short chemical synthesis of (+)-ryanodol that proceeds in only 15 steps from the commercially available terpene (S)-pulegone. The efficiency of the synthesis derives from the use of a Pauson-Khand reaction to rapidly build the carbon framework, and a remarkable SeO2-mediated oxidation to install three oxygen atoms in single step. This work highlights how strategic C–O bond constructions can streamline the synthesis of poly-hydroxylated terpenes by minimizing protecting group and redox adjustments. PMID:27563092

  16. Parental Divorce and Children's Adjustment.

    PubMed

    Lansford, Jennifer E

    2009-03-01

    This article reviews the research literature on links between parental divorce and children's short-term and long-term adjustment. First, I consider evidence regarding how divorce relates to children's externalizing behaviors, internalizing problems, academic achievement, and social relationships. Second, I examine timing of the divorce, demographic characteristics, children's adjustment prior to the divorce, and stigmatization as moderators of the links between divorce and children's adjustment. Third, I examine income, interparental conflict, parenting, and parents well-being as mediators of relations between divorce and children's adjustment. Fourth, I note the caveats and limitations of the research literature. Finally, I consider notable policies related to grounds for divorce, child support, and child custody in light of how they might affect children s adjustment to their parents divorce. © 2009 Association for Psychological Science.

  17. A Future-Oriented Retirement Transition Adjustment Framework

    ERIC Educational Resources Information Center

    Hesketh, Beryl; Griffin, Barbara; Loh, Vanessa

    2011-01-01

    This theoretical paper presents a person-environment fit framework that extends the Minnesota Theory of Work Adjustment to retirement transition and adjustment. The proposed Retirement Transition and Adjustment Framework (RTAF) also accommodates dynamic intra-individual and environment change over time, configural combinations of variables, and an…

  18. 26 CFR 1.754-1 - Time and manner of making election to adjust basis of partnership property.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... general. A partnership having an election in effect under this section may revoke such election with the... required to be filed. A partnership which wishes to revoke such an election shall file with the district... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Time and manner of making election to adjust...

  19. Bayes linear covariance matrix adjustment

    NASA Astrophysics Data System (ADS)

    Wilkinson, Darren J.

    1995-12-01

    In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be amenable to a similar approach. Diagnostics for matrix adjustments are also discussed.

  20. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  1. Time to adjust to changes in ventilation settings varies significantly between different T-piece resuscitators, self-inflating bags, and manometer equipped self-inflating bags.

    PubMed

    Hartung, Julia C; Dold, Simone K; Thio, Marta; tePas, Arjan; Schmalisch, Gerd; Roehr, Charles Christoph

    2014-06-01

    Resuscitation guidelines give no preference over use of self-inflating bags (SIBs) or T-piece resuscitators (TPR) for manual neonatal ventilation. We speculated that devices would differ significantly regarding time required to adjust to changed ventilation settings. This was a laboratory study. Time to adjust from baseline peak inflation pressure (PIP) (20 cmH2O) to target PIP (25 and 40 cmH2O), ability to adhere to predefined ventilation settings (PIP, PEEP, and inflation rate [IR]), and the variability within and between operators were assessed for a SIB without manometer, SIB with manometer (SIBM), and two TPRs. Adjustment time was significantly longer with TPRs, compared with SIB and SIBM. The SIBM and TPRs were < 5% (median) off target PIP, and the SIB was 14% off target PIP. Significant variability between operators (interquartile range [IQR]: 71%) was seen with SIBs. PIP adjustment takes longer with TPRs, compared with SIB/SIBM. TPRs and SIBM allow satisfactory adherence to ventilation parameters. SIBs should only be used with manometer attached. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  3. Effects of acute alcohol intoxication on automated processing: evidence from the double-step paradigm.

    PubMed

    Vorstius, Christian; Radach, Ralph; Lang, Alan R

    2012-02-01

    Reflexive and voluntary levels of processing have been studied extensively with respect to possible impairments due to alcohol intoxication. This study examined alcohol effects at the 'automated' level of processing essential to many complex visual processing tasks (e.g., reading, visual search) that involve ongoing modifications or reprogramming of well-practiced routines. Data from 30 participants (16 male) were collected in two counterbalanced sessions (alcohol vs. no-alcohol control; mean breath alcohol concentration = 68 mg/dL vs. 0 mg/dL). Eye movements were recorded during a double-step task where 75% of trials involved two target stimuli in rapid succession (inter-stimulus interval [ISI]=40, 70, or 100 ms) so that they could elicit two distinct saccades or eye movements (double steps). On 25% of trials a single target appeared. Results indicated that saccade latencies were longer under alcohol. In addition, the proportion of single-step responses and the mean saccade amplitude (length) of primary saccades decreased significantly with increasing ISI. The key novel finding, however, was that the reprogramming time needed to cancel the first saccade and adjust saccade amplitude was extended significantly by alcohol. The additional time made available by prolonged latencies due to alcohol was not utilized by the saccade programming system to decrease the number of two-step responses. These results represent the first demonstration of specific alcohol-induced programming deficits at the automated level of oculomotor processing.

  4. Use of age-adjusted rates of suicide in time series studies in Israel.

    PubMed

    Bridges, F Stephen; Tankersley, William B

    2009-01-01

    Durkheim's modified theory of suicide was examined to explore how consistent it was in predicting Israeli rates of suicide from 1965 to 1997 when using age-adjusted rates rather than crude ones. In this time-series study, Israeli male and female rates of suicide increased and decreased, respectively, between 1965 and 1997. Conforming to Durkheim's modified theory, the Israeli male rate of suicide was lower in years when rates of marriage and birth are higher, while rates of suicide are higher in years when rates of divorce are higher, the opposite to that of Israeli women. The corrected regression coefficients suggest that the Israeli female rate of suicide remained lower in years when rate of divorce is higher, again the opposite suggested by Durkheim's modified theory. These results may indicate that divorce affects the mental health of Israeli women as suggested by their lower rate of suicide. Perhaps the "multiple roles held by Israeli females creates suicidogenic stress" and divorce provides some sense of stress relief, mentally speaking. The results were not as consistent with predictions suggested by Durkheim's modified theory of suicide as were rates from the United States for the same period nor were they consistent with rates based on "crude" suicide data. Thus, using age-adjusted rates of suicide had an influence on the prediction of the Israeli rate of suicide during this period.

  5. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    NASA Astrophysics Data System (ADS)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  6. Application of the Virginia STEPS (Student/Teacher Education Planning System) by Basic Skills Education Teachers.

    ERIC Educational Resources Information Center

    Seguin, Barbara; Swanson, Lois

    The Virginia STEPS (Student/Teacher Education Planning System) was developed to enable adult basic education (ABE) students to become independent learners responsible for planning, carrying out, evaluating, and making adjustments in their education. ABE instructors at Blackhawk Technical College in Wisconsin have adapted the STEPS model to make…

  7. Uncertainty assessment in geodetic network adjustment by combining GUM and Monte-Carlo-simulations

    NASA Astrophysics Data System (ADS)

    Niemeier, Wolfgang; Tengen, Dieter

    2017-06-01

    In this article first ideas are presented to extend the classical concept of geodetic network adjustment by introducing a new method for uncertainty assessment as two-step analysis. In the first step the raw data and possible influencing factors are analyzed using uncertainty modeling according to GUM (Guidelines to the Expression of Uncertainty in Measurements). This approach is well established in metrology, but rarely adapted within Geodesy. The second step consists of Monte-Carlo-Simulations (MC-simulations) for the complete processing chain from raw input data and pre-processing to adjustment computations and quality assessment. To perform these simulations, possible realizations of raw data and the influencing factors are generated, using probability distributions for all variables and the established concept of pseudo-random number generators. Final result is a point cloud which represents the uncertainty of the estimated coordinates; a confidence region can be assigned to these point clouds, as well. This concept may replace the common concept of variance propagation and the quality assessment of adjustment parameters by using their covariance matrix. It allows a new way for uncertainty assessment in accordance with the GUM concept for uncertainty modelling and propagation. As practical example the local tie network in "Metsähovi Fundamental Station", Finland is used, where classical geodetic observations are combined with GNSS data.

  8. Effect of long term high altitude exposure on cardiovascular autonomic adjustment during rest and post-exercise recovery.

    PubMed

    Bhattarai, Prem; Paudel, Bishnu H; Thakur, Dilip; Bhattarai, Balkrishna; Subedi, Bijay; Khadka, Rita

    2018-01-01

    Despite the successful adaptation to high altitude, some differences do occur due to long term exposure to the hypoxic environment. The effect of long term high altitude exposure on cardiac autonomic adjustment during basal and post-exercise recovery is less known. Thus we aimed to study the differences in basal cardiac autonomic adjustment and its response to exercise in highlanders and to compare it with lowlanders. The study was conducted on 29 healthy highlander males who were born and brought up at altitude of 3000 m and above from the sea level, their cardiac autonomic adjustment was compared with age, sex, physical activity and ethnicity-matched 29 healthy lowlanders using Heart Rate Variability (HRV) during rest and recovery from sub-maximal exercise (3 m step test). Intergroup comparison between the highlanders and lowlanders and intragroup comparison between the rest and the postexercise recovery conditions were done. Resting heart rate and HRV during rest was comparable between the groups. However, heart rate recovery after 3 min step test was faster in highlanders ( p  < 0.05) along with significantly higher LF power and total power during the recovery phase. Intragroup comparison of highlanders showed higher SDNN ( p  < 0.05) and lower LF/HF ratio ( p  < 0.05) during recovery phase compared to rest which was not significantly different in two phases in lowlanders. Further highlander showed complete recovery of RMSSD, NN50, pNN50 and HF power back to resting level within five minutes, whereas, these parameters failed to return back to resting level in lowlanders within the same time frame. Highlanders completely recovered back to their resting state within five minutes from cessation of step test with parasympathetic reactivation; however, recovery in lowlanders was delayed.

  9. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    PubMed

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  10. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images

    PubMed Central

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597

  11. Anticipatory adjustments to abrupt changes of opposing forces.

    PubMed

    Rapp, Katrin; Heuer, Herbert

    2015-01-01

    Anticipatory adjustments to abrupt load changes are based on task-specific predictive information. The authors asked whether anticipatory adjustments to abrupt offsets of horizontal forces are related to expectancy. In two experiments participants held a position against an opposing force or moved against it. At force offset they had to stop rapidly. Duration of the opposing force or distance moved against it varied between blocks of trials and was constant within each block, or it varied from trial to trial. These two variations resulted in opposite changes of the expectancy of force offset with the passage of time or distance. With constant force durations or distances in each block of trials, anticipatory adjustments tended to be poorest with the longest duration or distance, but with variable force durations or distances they tended to be best with the longest duration or distance. Thus anticipatory adjustments were related to expectancy rather than time or distance per se. Anticipatory adjustments resulted in shorter peak amplitudes of the involuntary movements, accompanied by longer movement times in Experiment 1 and faster movement times in Experiment 2. Thus, for different states of the limb at abrupt dynamic changes anticipatory adjustments involve different mechanisms that modulate different mechanical characteristics.

  12. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment.

    PubMed

    Bunce, David; Haynes, Becky I; Lord, Stephen R; Gschwind, Yves J; Kochan, Nicole A; Reppermund, Simone; Brodaty, Henry; Sachdev, Perminder S; Delbaere, Kim

    2017-06-01

    Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Methods for automatic trigger threshold adjustment

    DOEpatents

    Welch, Benjamin J; Partridge, Michael E

    2014-03-18

    Methods are presented for adjusting trigger threshold values to compensate for drift in the quiescent level of a signal monitored for initiating a data recording event, thereby avoiding false triggering conditions. Initial threshold values are periodically adjusted by re-measuring the quiescent signal level, and adjusting the threshold values by an offset computation based upon the measured quiescent signal level drift. Re-computation of the trigger threshold values can be implemented on time based or counter based criteria. Additionally, a qualification width counter can be utilized to implement a requirement that a trigger threshold criterion be met a given number of times prior to initiating a data recording event, further reducing the possibility of a false triggering situation.

  14. Dynamic replanning of 3D automated reconstruction using situation graph trees and illumination adjustment

    NASA Astrophysics Data System (ADS)

    Kohler, Sophie; Far, Aïcha Beya; Hirsch, Ernest

    2007-01-01

    This paper presents an original approach for the optimal 3D reconstruction of manufactured workpieces based on a priori planification of the task, enhanced on-line through dynamic adjustment of the lighting conditions, and built around a cognitive intelligent sensory system using so-called Situation Graph Trees. The system takes explicitely structural knowledge related to image acquisition conditions, type of illumination sources, contents of the scene (e. g., CAD models and tolerance information), etc. into account. The principle of the approach relies on two steps. First, a socalled initialization phase, leading to the a priori task plan, collects this structural knowledge. This knowledge is conveniently encoded, as a sub-part, in the Situation Graph Tree building the backbone of the planning system specifying exhaustively the behavior of the application. Second, the image is iteratively evaluated under the control of this Situation Graph Tree. The information describing the quality of the piece to analyze is thus extracted and further exploited for, e. g., inspection tasks. Lastly, the approach enables dynamic adjustment of the Situation Graph Tree, enabling the system to adjust itself to the actual application run-time conditions, thus providing the system with a self-learning capability.

  15. Matrix-Dominated Time-Dependent Deformation and Damage of Graphite Epoxy Composite -- Experimental Data under Multiple-Step Relaxation.

    DTIC Science & Technology

    1983-05-01

    50 50 51 - 2 1 No input -- -- -- -- -- -- -- 2 No input - - - - - - - 3 No input -- - - - - - - 4 No input - - - - - - - 5 52 53 54 -- 329 329 330 6...398 *SOverall 160 160 161 161 6 1 162 153 164 165 399 400 401 402 2 166 167 168 169 403 404 405 406 3 170 171 172 173 407 408 409 410 4 174 175 176...0 ’<K fle.- 0 * 00 0 0 FILTERED DATA 70,:TIME =T - 183.798 (HRS.) - 52 - o- - A T360/52M8 - STEP/RELAXATIO4 - SPECIMEN No. 2 - STEP No. 5 00 0= mmia a

  16. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  17. One-step method for the production of nanofluids

    DOEpatents

    Kostic, Milivoje [Chicago, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John R [Downers Grove, IL; Choi, Stephen U. S. [Napersville, IL

    2010-05-18

    A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.

  18. Electric and hybrid electric vehicle study utilizing a time-stepping simulation

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.

    1992-01-01

    The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.

  19. Control of mediolateral stability during rapid step initiation with preferred and non-preferred leg: is it symmetrical?

    PubMed

    Yiou, E; Do, M C

    2010-05-01

    During voluntary stepping initiation, postural stability along the mediolateral direction is controlled via "anticipatory postural adjustment" (APA). This study tested the hypothesis that, in young healthy subjects, the biomechanical features of mediolateral APA depend on the leg that initiates stepping. Subjects (N=10) initiated a rapid single step with the preferred (P condition) and the non-preferred leg (NP condition) on a force-plate. Results showed that mediolateral APA duration (P=0.020) and amplitude were higher (as attested by the increase in maximal center-of-gravity velocity (P=0.003) and displacement (P<0.001) during APA), and that mediolateral stability was better (as attested by the attenuation in center-of-gravity velocity at time of swing-foot contact (P=0.007)) in P than in NP. These results support the view that stepping initiation in healthy subjects involves postural asymmetry. This statement may have relevant implications in clinical evaluation where postural asymmetry is generally considered as reflecting postural impairment. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    PubMed

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  1. Housework Time from Middle Childhood through Adolescence: Links to Parental Work Hours and Youth Adjustment

    PubMed Central

    Lam, Chun Bun; Greene, Kaylin M.; McHale, Susan M.

    2016-01-01

    The developmental course, family correlates, and adjustment implications of youth housework participation from age 8–18 were examined. Mothers, fathers, and two siblings from 201 European American families provided questionnaire and/or daily diary data on six occasions across 7 years. Multilevel modeling within an accelerated longitudinal design revealed that girls spent more time on housework than did boys but that housework time of both girls and boys increased from middle childhood to mid-adolescence and leveled off thereafter. In years when mothers were employed for more hours than usual, girls, but not boys, spent more time on housework than usual. Housework time was linked to more depressive symptoms (at a between-person level) and predicted lower school grades (at a within-person level) for youth with low familism values. Housework time also predicted more depressive symptoms (at a within-person level) for youth with high parent-youth conflict about housework. Findings highlight the gendered nature of housework allocation and the importance of considering both individual and contextual factors when examining youth daily activities. PMID:27736102

  2. Adjustments for the display of quantized ion channel dwell times in histograms with logarithmic bins.

    PubMed

    Stark, J A; Hladky, S B

    2000-02-01

    Dwell-time histograms are often plotted as part of patch-clamp investigations of ion channel currents. The advantages of plotting these histograms with a logarithmic time axis were demonstrated by, J. Physiol. (Lond.). 378:141-174), Pflügers Arch. 410:530-553), and, Biophys. J. 52:1047-1054). Sigworth and Sine argued that the interpretation of such histograms is simplified if the counts are presented in a manner similar to that of a probability density function. However, when ion channel records are recorded as a discrete time series, the dwell times are quantized. As a result, the mapping of dwell times to logarithmically spaced bins is highly irregular; bins may be empty, and significant irregularities may extend beyond the duration of 100 samples. Using simple approximations based on the nature of the binning process and the transformation rules for probability density functions, we develop adjustments for the display of the counts to compensate for this effect. Tests with simulated data suggest that this procedure provides a faithful representation of the data.

  3. What Do Young Adolescents Do When School Let's Out? Discretionary Time Use and Its Relation to School Adjustment

    ERIC Educational Resources Information Center

    Meece, Darrell; Pettit, Gregory; Mize, Jacquelyn; Hayes, Margaret

    1998-01-01

    In the present research we examined variations in the after-school experience of young adolescents as a function of family background characteristics and the extent to which after-school activities were associated with behavioral adjustment at school. After-school time use was assessed through telephone interviews with 438 young adolescents…

  4. Development and Assessment of Altitude Adjustable Convergent Divergent Nozzles Using Passive Flow Control

    NASA Astrophysics Data System (ADS)

    Mandour Eldeeb, Mohamed

    The backward facing steps nozzle (BFSN) is a new developed flow adjustable exit area nozzle. It consists of two parts, the first is a base nozzle with small area ratio and the second part is a nozzle extension with surface consists of backward facing steps. The steps number and heights are carefully chosen to produce controlled flow separation at steps edges that adjust the nozzle exit area at all altitudes (pressure ratios). The BFSN performance parameters are assessed numerically in terms of thrust and side loads against the dual-bell nozzle with the same pressure ratios and cross sectional areas. Cold flow inside the planar BFSN and planar DBN are simulated using three-dimensional turbulent Navier-Stoke equations solver at different pressure ratios. The pressure distribution over the upper and the lower nozzles walls show symmetrical flow separation location inside the BFSN and an asymmetrical flow separation location inside the DBN at same vertical plane. The side loads are calculated by integrate the pressure over the nozzles walls at different pressure ratios for both nozzles. Time dependent solution for the DBN and the BFSN are obtained by solving two-dimensional turbulent flow. The side loads over the upper and lower nozzles walls are plotted against the flow time. The BFSN side loads history shows a small values of fluctuated side loads compared with the DBN which shows a high values with high fluctuations. Hot flow 3-D numerical solutions inside the axi-symmetric BFSN and DBN are obtained at different pressure ratios and compared to assess the BFSN performance against the DBN. Pressure distributions over the nozzles walls at different circumferential angels are plotted for both nozzles. The results show that the flow separation location is axi-symmetric inside the BFSN with symmetrical pressure distributions over the nozzle circumference at different pressure ratios. While the DBN results show an asymmetrical flow separation locations over the nozzle

  5. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    PubMed

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  6. Monitoring risk-adjusted outcomes in congenital heart surgery: does the appropriateness of a risk model change with time?

    PubMed

    Tsang, Victor T; Brown, Katherine L; Synnergren, Mats Johanssen; Kang, Nicholas; de Leval, Marc R; Gallivan, Steve; Utley, Martin

    2009-02-01

    Risk adjustment of outcomes in pediatric congenital heart surgery is challenging due to the great diversity in diagnoses and procedures. We have previously shown that variable life-adjusted display (VLAD) charts provide an effective graphic display of risk-adjusted outcomes in this specialty. A question arises as to whether the risk model used remains appropriate over time. We used a recently developed graphic technique to evaluate the performance of an existing risk model among those patients at a single center during 2000 to 2003 originally used in model development. We then compared the distribution of predicted risk among these patients with that among patients in 2004 to 2006. Finally, we constructed a VLAD chart of risk-adjusted outcomes for the latter period. Among 1083 patients between April 2000 and March 2003, the risk model performed well at predicted risks above 3%, underestimated mortality at 2% to 3% predicted risk, and overestimated mortality below 2% predicted risk. There was little difference in the distribution of predicted risk among these patients and among 903 patients between June 2004 and October 2006. Outcomes for the more recent period were appreciably better than those expected according to the risk model. This finding cannot be explained by any apparent bias in the risk model combined with changes in case-mix. Risk models can, and hopefully do, become out of date. There is scope for complacency in the risk-adjusted audit if the risk model used is not regularly recalibrated to reflect changing standards and expectations.

  7. Global phenomena from local rules: Peer-to-peer networks and crystal steps

    NASA Astrophysics Data System (ADS)

    Finkbiner, Amy

    Even simple, deterministic rules can generate interesting behavior in dynamical systems. This dissertation examines some real world systems for which fairly simple, locally defined rules yield useful or interesting properties in the system as a whole. In particular, we study routing in peer-to-peer networks and the motion of crystal steps. Peers can vary by three orders of magnitude in their capacities to process network traffic. This heterogeneity inspires our use of "proportionate load balancing," where each peer provides resources in proportion to its individual capacity. We provide an implementation that employs small, local adjustments to bring the entire network into a global balance. Analytically and through simulations, we demonstrate the effectiveness of proportionate load balancing on two routing methods for de Bruijn graphs, introducing a new "reversed" routing method which performs better than standard forward routing in some cases. The prevalence of peer-to-peer applications prompts companies to locate the hosts participating in these networks. We explore the use of supervised machine learning to identify peer-to-peer hosts, without using application-specific information. We introduce a model for "triples," which exploits information about nearly contemporaneous flows to give a statistical picture of a host's activities. We find that triples, together with measurements of inbound vs. outbound traffic, can capture most of the behavior of peer-to-peer hosts. An understanding of crystal surface evolution is important for the development of modern nanoscale electronic devices. The most commonly studied surface features are steps, which form at low temperatures when the crystal is cut close to a plane of symmetry. Step bunching, when steps arrange into widely separated clusters of tightly packed steps, is one important step phenomenon. We analyze a discrete model for crystal steps, in which the motion of each step depends on the two steps on either side of

  8. Network Adjustment of Orbit Errors in SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Bahr, Hermann; Hanssen, Ramon

    2010-03-01

    Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.

  9. Age-related changes in compensatory stepping in response to unpredictable perturbations.

    PubMed

    McIlroy, W E; Maki, B E

    1996-11-01

    Recent studies highlight the importance of compensatory stepping to preserve stability, and the spatial and temporal demands placed on the control of this reaction. Age-related changes in the control of stepping could greatly influence the risk of falling. The present study compares, in healthy elderly and young adults, the characteristics of compensatory stepping responses to unpredictable postural perturbations. A moving platform was used to unpredictably perturb the upright stance of 14 naive, active and mobile subjects (5 aged 22 to 28 and 9 aged 65 to 81). The first 10 randomized trials (5 forward and 5 backward) were evaluated to allow a focus on reactions to relatively novel perturbations. The behavior of the subjects was not constrained. Forceplate and kinematic measures were used to evaluate the responses evoked by the brief (600 msec) platform translation. Subjects stepped in 98% of the trials. Although the elderly were less likely to execute a lateral anticipatory postural adjustment prior to foot-lift, the onset of swing-leg unloading tended to begin at the same time in the two age groups. There was remarkable similarity between the young and elderly in many other characteristics of the first step of the response. In spite of this similarity, the elderly subjects were twice as likely to take additional steps to regain stability (63% of trials for elderly). Moreover, in elderly subjects, the additional steps were often directed so as to preserve lateral stability, whereas the young rarely showed this tendency. Given the functional significance of base-of-support changes as a strategy for preserving stability and the age-related differences presently revealed, assessment of the capacity to preserve stability against unpredictable perturbation, and specific measures such as the occurrence or placement of multiple steps, may prove to be a significant predictor of falling risk and an important outcome in evaluating or developing intervention strategies to

  10. Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations

    NASA Astrophysics Data System (ADS)

    Liu, Changying; Wu, Xinyuan

    2017-07-01

    In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.

  11. Adjusting survival time estimates to account for treatment switching in randomized controlled trials--an economic evaluation context: methods, limitations, and recommendations.

    PubMed

    Latimer, Nicholas R; Abrams, Keith R; Lambert, Paul C; Crowther, Michael J; Wailoo, Allan J; Morden, James P; Akehurst, Ron L; Campbell, Michael J

    2014-04-01

    Treatment switching commonly occurs in clinical trials of novel interventions in the advanced or metastatic cancer setting. However, methods to adjust for switching have been used inconsistently and potentially inappropriately in health technology assessments (HTAs). We present recommendations on the use of methods to adjust survival estimates in the presence of treatment switching in the context of economic evaluations. We provide background on the treatment switching issue and summarize methods used to adjust for it in HTAs. We discuss the assumptions and limitations associated with adjustment methods and draw on results of a simulation study to make recommendations on their use. We demonstrate that methods used to adjust for treatment switching have important limitations and often produce bias in realistic scenarios. We present an analysis framework that aims to increase the probability that suitable adjustment methods can be identified on a case-by-case basis. We recommend that the characteristics of clinical trials, and the treatment switching mechanism observed within them, should be considered alongside the key assumptions of the adjustment methods. Key assumptions include the "no unmeasured confounders" assumption associated with the inverse probability of censoring weights (IPCW) method and the "common treatment effect" assumption associated with the rank preserving structural failure time model (RPSFTM). The limitations associated with switching adjustment methods such as the RPSFTM and IPCW mean that they are appropriate in different scenarios. In some scenarios, both methods may be prone to bias; "2-stage" methods should be considered, and intention-to-treat analyses may sometimes produce the least bias. The data requirements of adjustment methods also have important implications for clinical trialists.

  12. Collocation and Galerkin Time-Stepping Methods

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.

    2011-01-01

    We study the numerical solutions of ordinary differential equations by one-step methods where the solution at tn is known and that at t(sub n+1) is to be calculated. The approaches employed are collocation, continuous Galerkin (CG) and discontinuous Galerkin (DG). Relations among these three approaches are established. A quadrature formula using s evaluation points is employed for the Galerkin formulations. We show that with such a quadrature, the CG method is identical to the collocation method using quadrature points as collocation points. Furthermore, if the quadrature formula is the right Radau one (including t(sub n+1)), then the DG and CG methods also become identical, and they reduce to the Radau IIA collocation method. In addition, we present a generalization of DG that yields a method identical to CG and collocation with arbitrary collocation points. Thus, the collocation, CG, and generalized DG methods are equivalent, and the latter two methods can be formulated using the differential instead of integral equation. Finally, all schemes discussed can be cast as s-stage implicit Runge-Kutta methods.

  13. Comparative-effectiveness research to aid population decision making by relating clinical outcomes and quality-adjusted life years.

    PubMed

    Campbell, Jonathan D; Zerzan, Judy; Garrison, Louis P; Libby, Anne M

    2013-04-01

    Comparative-effectiveness research (CER) at the population level is missing standardized approaches to quantify and weigh interventions in terms of their clinical risks, benefits, and uncertainty. We proposed an adapted CER framework for population decision making, provided example displays of the outputs, and discussed the implications for population decision makers. Building on decision-analytical modeling but excluding cost, we proposed a 2-step approach to CER that explicitly compared interventions in terms of clinical risks and benefits and linked this evidence to the quality-adjusted life year (QALY). The first step was a traditional intervention-specific evidence synthesis of risks and benefits. The second step was a decision-analytical model to simulate intervention-specific progression of disease over an appropriate time. The output was the ability to compare and quantitatively link clinical outcomes with QALYs. The outputs from these CER models include clinical risks, benefits, and QALYs over flexible and relevant time horizons. This approach yields an explicit, structured, and consistent quantitative framework to weigh all relevant clinical measures. Population decision makers can use this modeling framework and QALYs to aid in their judgment of the individual and collective risks and benefits of the alternatives over time. Future research should study effective communication of these domains for stakeholders. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.

  14. Kinect-based choice reaching and stepping reaction time tests for clinical and in-home assessment of fall risk in older people: a prospective study.

    PubMed

    Ejupi, Andreas; Gschwind, Yves J; Brodie, Matthew; Zagler, Wolfgang L; Lord, Stephen R; Delbaere, Kim

    2016-01-01

    Quick protective reactions such as reaching or stepping are important to avoid a fall or minimize injuries. We developed Kinect-based choice reaching and stepping reaction time tests (Kinect-based CRTs) and evaluated their ability to differentiate between older fallers and non-fallers and the feasibility of administering them at home. A total of 94 community-dwelling older people were assessed on the Kinect-based CRTs in the laboratory and were followed-up for falls for 6 months. Additionally, a subgroup (n = 20) conducted the Kinect-based CRTs at home. Signal processing algorithms were developed to extract features for reaction, movement and the total time from the Kinect skeleton data. Nineteen participants (20.2 %) reported a fall in the 6 months following the assessment. The reaction time (fallers: 797 ± 136 ms, non-fallers: 714 ± 89 ms), movement time (fallers: 392 ± 50 ms, non-fallers: 358 ± 51 ms) and total time (fallers: 1189 ± 170 ms, non-fallers: 1072 ± 109 ms) of the reaching reaction time test differentiated well between the fallers and non-fallers. The stepping reaction time test did not significantly discriminate between the two groups in the prospective study. The correlations between the laboratory and in-home assessments were 0.689 for the reaching reaction time and 0.860 for stepping reaction time. The study findings indicate that the Kinect-based CRT tests are feasible to administer in clinical and in-home settings, and thus represents an important step towards the development of sensor-based fall risk self-assessments. With further validation, the assessments may prove useful as a fall risk screen and home-based assessment measures for monitoring changes over time and effects of fall prevention interventions.

  15. DataView: Medicare Spending by State: The Border-Crossing Adjustment

    PubMed Central

    Basu, Joy; Lazenby, Helen C.; Levit, Katharine R.

    1995-01-01

    As the first step in a pioneering effort by the Health Care Financing Administration (HCFA) to measure interstate border crossing for services used by both Medicare and non-Medicare beneficiaries, the authors study the spending behavior of Medicare beneficiaries for 10 Medicare-covered services. Based on interstate flow-of-expenditure data developed for calendar year 1991, the authors analyze the spending patterns of State residents by studying the inflow and outflow rates and the net flow ratios of expenditures incurred by Medicare patients. The report also provides per capita expenditure estimates with residence-based adjustments and evaluates the impact of the border-crossing adjustment for individual services and States. PMID:10157375

  16. One-step method for the production of nanofluids

    DOEpatents

    Kostic, Milivoje [Sycamore, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John [Downers Grove, IL; Choi, Stephen U. S. [Naperville, IL

    2011-08-16

    A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.

  17. Effect of the processing steps on compositions of table olive since harvesting time to pasteurization.

    PubMed

    Nikzad, Nasim; Sahari, Mohammad A; Vanak, Zahra Piravi; Safafar, Hamed; Boland-nazar, Seyed A

    2013-08-01

    Weight, oil, fatty acids, tocopherol, polyphenol, and sterol properties of 5 olive cultivars (Zard, Fishomi, Ascolana, Amigdalolia, and Conservalia) during crude, lye treatment, washing, fermentation, and pasteurization steps were studied. Results showed: oil percent was higher and lower in Ascolana (crude step) and in Fishomi (pasteurization step), respectively; during processing steps, in all cultivars, oleic, palmitic, linoleic, and stearic acids were higher; the highest changes in saturated and unsaturated fatty acids were in fermentation step; the highest and the lowest ratios of ω3 / ω6 were in Ascolana (washing step) and in Zard (pasteurization step), respectively; the highest and the lowest tocopherol were in Amigdalolia and Fishomi, respectively, and major damage occurred in lye step; the highest and the lowest polyphenols were in Ascolana (crude step) and in Zard and Ascolana (pasteurization step), respectively; the major damage among cultivars occurred during lye step, in which the polyphenol reduced to 1/10 of first content; sterol did not undergo changes during steps. Reviewing of olive patents shows that many compositions of fruits such as oil quality, fatty acids, quantity and its fraction can be changed by alteration in cultivar and process.

  18. A Class of Prediction-Correction Methods for Time-Varying Convex Optimization

    NASA Astrophysics Data System (ADS)

    Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro

    2016-09-01

    This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.

  19. Randomized trial of a dual-hormone artificial pancreas with dosing adjustment during exercise compared with no adjustment and sensor-augmented pump therapy.

    PubMed

    Jacobs, P G; El Youssef, J; Reddy, R; Resalat, N; Branigan, D; Condon, J; Preiser, N; Ramsey, K; Jones, M; Edwards, C; Kuehl, K; Leitschuh, J; Rajhbeharrysingh, U; Castle, J R

    2016-11-01

    To test whether adjusting insulin and glucagon in response to exercise within a dual-hormone artificial pancreas (AP) reduces exercise-related hypoglycaemia. In random order, 21 adults with type 1 diabetes (T1D) underwent three 22-hour experimental sessions: AP with exercise dosing adjustment (APX); AP with no exercise dosing adjustment (APN); and sensor-augmented pump (SAP) therapy. After an overnight stay and 2 hours after breakfast, participants exercised for 45 minutes at 60% of their maximum heart rate, with no snack given before exercise. During APX, insulin was decreased and glucagon was increased at exercise onset, while during SAP therapy, subjects could adjust dosing before exercise. The two primary outcomes were percentage of time spent in hypoglycaemia (<3.9 mmol/L) and percentage of time spent in euglycaemia (3.9-10 mmol/L) from the start of exercise to the end of the study. The mean (95% confidence interval) times spent in hypoglycaemia (<3.9 mmol/L) after the start of exercise were 0.3% (-0.1, 0.7) for APX, 3.1% (0.8, 5.3) for APN, and 0.8% (0.1, 1.4) for SAP therapy. There was an absolute difference of 2.8% less time spent in hypoglycaemia for APX versus APN (p = .001) and 0.5% less time spent in hypoglycaemia for APX versus SAP therapy (p = .16). Mean time spent in euglycaemia was similar across the different sessions. Adjusting insulin and glucagon delivery at exercise onset within a dual-hormone AP significantly reduces hypoglycaemia compared with no adjustment and performs similarly to SAP therapy when insulin is adjusted before exercise. © 2016 John Wiley & Sons Ltd.

  20. SPAR-H Step-by-Step Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. J. Galyean; A. M. Whaley; D. L. Kelly

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from themore » psychology literature.« less

  1. Housework time from middle childhood through adolescence: Links to parental work hours and youth adjustment.

    PubMed

    Lam, Chun Bun; Greene, Kaylin M; McHale, Susan M

    2016-12-01

    The developmental course, family correlates, and adjustment implications of youth housework participation from age 8-18 were examined. Mothers, fathers, and 2 siblings from 201 European American families provided questionnaire and/or daily diary data on 6 occasions across 7 years. Multilevel modeling within an accelerated longitudinal design revealed that girls spent more time on housework than did boys, but that housework time of both girls and boys increased from middle childhood to mid-adolescence and leveled off thereafter. In years when mothers were employed for more hours than usual, girls, but not boys, spent more time on housework than usual. Housework time was linked to more depressive symptoms (at a between-person level) and predicted lower school grades (at a within-person level) for youth with low familism values. Housework time also predicted more depressive symptoms (at a within-person level) for youth with high parent-youth conflict about housework. Findings highlight the gendered nature of housework allocation and the importance of considering both individual and contextual factors when examining youth daily activities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Co-evolving Physical and Biological Organization in Step-pool Channels: Experiments from a Restoration Reach on Wildcat Creek, California

    NASA Astrophysics Data System (ADS)

    Chin, A.; O'Dowd, A. P.; Mendez, P. K.; Velasco, K. Z.; Leventhal, R. D.; Storesund, R.; Laurencio, L. R.

    2014-12-01

    Step-pools are important features in fluvial systems. Through energy dissipation, step-pools provide stability in high-energy environments that otherwise may erode and degrade. Although research has focused on geomorphological aspects of step-pool channels, the ecological significance of step-pool streams is increasingly recognized. Step-pool streams often contain higher density and diversity of benthic macroinvertebrates and are critical habitats for organisms such as salmonids and tailed frogs. Step-pools are therefore increasingly used to restore eroding channels and improve ecological conditions. This paper addresses a restoration reach of Wildcat Creek in Berkeley, California that featured an installation of step-pools in 2012. The design framework recognized step-pool formation as a self-organizing process that produces a rhythmic morphology. After placing step particles at locations where step-pools are expected to form according to hydraulic theory, the self-organizing approach allowed fluvial processes to refine the rocks into adjusted sequences over time. In addition, a 30-meter "experimental" reach was created to explore the co-evolution of geomorphological and ecological characteristics. After constructing a plane bed channel, boulders and cobbles piled at the upstream end allowed natural flows to mobilize and sort them into step-pool sequences. Ground surveys and LiDAR recorded the development of step-pool sequences over several seasons. Concurrent sampling of benthic macroinvertebrates documented the formation of biological communities in conjunction with habitat. Biological sampling in an upstream reference reach provided a comparison with the restored reach over time. Results to date show an emergent step-pool channel with steps that segment the plane bed into initial step and pool habitats. Biological communities are beginning to form, showing more distinction among habitat types during some seasons, although they do not yet approach reference

  3. STEPS: Moving from Welfare to Work.

    ERIC Educational Resources Information Center

    Vail, Ann; Cummings, Merrilyn; Kratzer, Connie; Galindo, Vickie

    Cooperative extension service faculty at New Mexico State University started the Steps to Employment and Personal Success (STEPS) program to help Temporary Assistance for Needy Families (TANF) clients qualify for and maintain full-time employment and strengthen their families for long-term success. Clients are referred to STEPS by New Mexico…

  4. Relationships between parenting and adolescent adjustment over time: genetic and environmental contributions.

    PubMed

    Neiderhiser, J M; Reiss, D; Hetherington, E M; Plomin, R

    1999-05-01

    The predictive association between parenting and adolescent adjustment has been assumed to be environmental; however, genetic and environmental contributions have not been examined. This article represents one effort to examine these associations in which a genetically informative design was used. Participants were 395 families with adolescent siblings who participated in the Nonshared Environment in Adolescent Development (D. Reiss et al., 1994) project at 2 times of assessment, 3 years apart. There were 5 sibling types in 2 types of families: 63 identical twins, 75 fraternal twins, and 58 full siblings in nondivorced families and 95 full, 60 half, and 44 genetically unrelated siblings in stepfamilies. Results indicate that the cross-lagged associations between parental conflict-negativity and adolescent antisocial behavior and depressive symptoms can be explained primarily by genetic factors. These findings emphasize the need to recognize and examine the impact that adolescents have on parenting and the contribution of genetic factors to developmental change.

  5. On the Existence of Step-To-Step Breakpoint Transitions in Accelerated Sprinting

    PubMed Central

    McGhie, David; Danielsen, Jørgen; Sandbakk, Øyvind; Haugen, Thomas

    2016-01-01

    Accelerated running is characterised by a continuous change of kinematics from one step to the next. It has been argued that breakpoints in the step-to-step transitions may occur, and that these breakpoints are an essential characteristic of dynamics during accelerated running. We examined this notion by comparing a continuous exponential curve fit (indicating continuity, i.e., smooth transitions) with linear piecewise fitting (indicating breakpoint). We recorded the kinematics of 24 well trained sprinters during a 25 m sprint run with start from competition starting blocks. Kinematic data were collected for 24 anatomical landmarks in 3D, and the location of centre of mass (CoM) was calculated from this data set. The step-to-step development of seven variables (four related to CoM position, and ground contact time, aerial time and step length) were analysed by curve fitting. In most individual sprints (in total, 41 sprints were successfully recorded) no breakpoints were identified for the variables investigated. However, for the mean results (i.e., the mean curve for all athletes) breakpoints were identified for the development of vertical CoM position, angle of acceleration and distance between support surface and CoM. It must be noted that for these variables the exponential fit showed high correlations (r2>0.99). No relationship was found between the occurrences of breakpoints for different variables as investigated using odds ratios (Mantel-Haenszel Chi-square statistic). It is concluded that although breakpoints regularly appear during accelerated running, these are not the rule and thereby unlikely a fundamental characteristic, but more likely an expression of imperfection of performance. PMID:27467387

  6. A proposed adjustable RF cable connector

    NASA Technical Reports Server (NTRS)

    Stringer, E. J.; Doyle, J. D.

    1973-01-01

    In system that requires negligible loss, it may be necessary to adjust cable length to exact multiple of transmitted wavelength. Adjustable cable connector saves time and cost by eliminating need to add to or cut from cable. Device was especially designed for use with high frequencies. For particular application, connector of suitable dimensions should be used.

  7. Detection and Correction of Step Discontinuities in Kepler Flux Time Series

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, J. J.; Morris, R. L.

    2011-01-01

    PDC 8.0 includes an implementation of a new algorithm to detect and correct step discontinuities appearing in roughly one of every 20 stellar light curves during a given quarter. The majority of such discontinuities are believed to result from high-energy particles (either cosmic or solar in origin) striking the photometer and causing permanent local changes (typically -0.5%) in quantum efficiency, though a partial exponential recovery is often observed [1]. Since these features, dubbed sudden pixel sensitivity dropouts (SPSDs), are uncorrelated across targets they cannot be properly accounted for by the current detrending algorithm. PDC detrending is based on the assumption that features in flux time series are due either to intrinsic stellar phenomena or to systematic errors and that systematics will exhibit measurable correlations across targets. SPSD events violate these assumptions and their successful removal not only rectifies the flux values of affected targets, but demonstrably improves the overall performance of PDC detrending [1].

  8. Effect of increased exposure times on amount of residual monomer released from single-step self-etch adhesives.

    PubMed

    Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet

    2015-10-16

    The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.

  9. Cortisol response to family interaction as a predictor for adjustment.

    PubMed

    Gans, Susan E; Johnson, Vanessa Kahen

    2016-10-01

    Emerging adult (EA) cortisol response during family interaction predicts change in EA anxious behavior during the transition to college (Johnson & Gans, in press). In the present study, we take an initial step toward integrating family systems research and physiology by including assessment of EA salivary cortisol collected during a triadic (mother-father-EA offspring) family interaction task. Emerging adults (N = 101) between the ages of 17 and 19 were assessed at 3 time points across their first college year: the summer before college, Fall and Spring semesters. Two parents accompanied the emerging adult child to the summer assessment; all family members provided 4 saliva samples each at 20-min intervals. Later assessments of emerging adults included measures of internalizing behaviors. EA's cortisol secretion patterns during family interaction predict observed and self-reported family relatedness, as well as patterns of internalizing behavior during the college transition. Observed family functioning appeared to moderate the relationship between EA cortisol response during family interaction and anxious behavior when adapting to college. Different patterns of results emerged, however, for EA men and women. The approach taken by this study provides a first step toward understanding how interrelationships among elements of physiology and family functioning contribute to later adjustment. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Study Behaviors and USMLE Step 1 Performance: Implications of a Student Self-Directed Parallel Curriculum.

    PubMed

    Burk-Rafel, Jesse; Santen, Sally A; Purkiss, Joel

    2017-11-01

    To determine medical students' study behaviors when preparing for the United States Medical Licensing Examination (USMLE) Step 1, and how these behaviors are associated with Step 1 scores when controlling for likely covariates. The authors distributed a study-behaviors survey in 2014 and 2015 at their institution to two cohorts of medical students who had recently taken Step 1. Demographic and academic data were linked to responses. Descriptive statistics, bivariate correlations, and multiple linear regression analyses were performed. Of 332 medical students, 274 (82.5%) participated. Most students (n = 211; 77.0%) began studying for Step 1 during their preclinical curriculum, increasing their intensity during a protected study period during which they averaged 11.0 hours studying per day (standard deviation [SD] 2.1) over a period of 35.3 days (SD 6.2). Students used numerous third-party resources, including reading an exam-specific 700-page review book on average 2.1 times (SD 0.8) and completing an average of 3,597 practice multiple-choice questions (SD 1,611). Initiating study prior to the designated study period, increased review book usage, and attempting more practice questions were all associated with higher Step 1 scores, even when controlling for Medical College Admission Test scores, preclinical exam performance, and self-identified score goal (adjusted R = 0.56, P < .001). Medical students at one public institution engaged in a self-directed, "parallel" Step 1 curriculum using third-party study resources. Several study behaviors were associated with improved USMLE Step 1 performance, informing both institutional- and student-directed preparation for this high-stakes exam.

  11. Price adjustment clauses : report.

    DOT National Transportation Integrated Search

    2012-10-01

    Price adjustment mechanisms exist to account for fluctuations in commodity or labor prices and have : been used for highway construction in 47 states. They are useful in stabilizing bid prices in times of : economic uncertainty and preventing default...

  12. The Relaxation of Vicinal (001) with ZigZag [110] Steps

    NASA Astrophysics Data System (ADS)

    Hawkins, Micah; Hamouda, Ajmi Bh; González-Cabrera, Diego Luis; Einstein, Theodore L.

    2012-02-01

    This talk presents a kinetic Monte Carlo study of the relaxation dynamics of [110] steps on a vicinal (001) simple cubic surface. This system is interesting because [110] steps have different elementary excitation energetics and favor step diffusion more than close-packed [100] steps. In this talk we show how this leads to relaxation dynamics showing greater fluctuations on a shorter time scale for [110] steps as well as 2-bond breaking processes being rate determining in contrast to 3-bond breaking processes for [100] steps. The existence of a steady state is shown via the convergence of terrace width distributions at times much longer than the relaxation time. In this time regime excellent fits to the modified generalized Wigner distribution (as well as to the Berry-Robnik model when steps can overlap) were obtained. Also, step-position correlation function data show diffusion-limited increase for small distances along the step as well as greater average step displacement for zigzag steps compared to straight steps for somewhat longer distances along the step. Work supported by NSF-MRSEC Grant DMR 05-20471 as well as a DOE-CMCSN Grant.

  13. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice

    PubMed Central

    Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo

    2011-01-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375

  14. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    PubMed

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  15. Principles of antibiotic application in children with lobar pneumonia: Step-up or step-down.

    PubMed

    Li, Yan; Han, Feng; Yang, Yan; Chu, Jianwei

    2017-06-01

    In order to provide a scientific basis for rational use of antibiotics, we studied and compared the therapeutic effects of step-down and step-up antibiotic treatment schemes in children with lobar pneumonia. Eighty cases of children with lobar pneumonia were enrolled in this study and were randomly divided into two groups: The observation group and the control group, with 40 cases in each group. In the observation group, there were 23 cases with mild and 17 cases with severe lobar pneumonia, and in the control group, 25 were mild and 15 were severe cases. Patients in the control group were treated with antibiotics using step-up therapy method, while patients in the observation group were treated using step-down antibiotic therapy. Our results showed no significant differences in white blood cell (WBC) reduction rate, the course of antibiotic treatment, disappearance time of pulmonary rales and total efficiency in children with mild lobar pneumonia in the observation group after 72 h of treatment. The level of high-sensitivity C-reactive protein (hs-CRP) and procalcitonin (PCT) in the observation group were significantly lower. After 72 h of treatment of children with severe lobar pneumonia in the observation group, the rate of WBC reduction accelerated significantly. Compared to the patients in the control group, the course of antibiotic treatment and disappearance time of pulmonary rales were shortened significantly, while the total efficiency of treatment was improved considerably in the observation group. Also in the observation group, hs-CRP and PCT levels were significantly lower than that in the control group. In severe cases, step-down therapy showed a better result in relieving the inflammatory reactions. The disappearance time of pulmonary rales and the effective rate of treatment was significantly higher than those of step-up therapy. It was obvious that for children with severe lobar pneumonia, step-down therapy produced better results in relieving the

  16. Advancing parabolic operators in thermodynamic MHD models: Explicit super time-stepping versus implicit schemes with Krylov solvers

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.

    2017-05-01

    We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.

  17. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  18. Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.

    PubMed

    Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries

    2018-01-01

    Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p  < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p  < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p  < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p  < 0.0001) and REV-ERBα ( p  < 0.01) in the BAT and CLOCK ( p  < 0.05), PER2 ( p  < 0.05), CRY1 ( p  < 0.05), CRY2 ( p  < 0.01), and REV-ERBα ( p  < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic

  19. One False Step: "Detroit," "Step" and Movies of Rising and Falling

    ERIC Educational Resources Information Center

    Beck, Bernard

    2018-01-01

    "Detroit" and "Step" are two recent movies in the context of urban riots in protest of police brutality. They refer to time periods separated by half a century, but there are common themes in the two that seem appropriate to both times. The movies are not primarily concerned with the riot events, but the riot is a major…

  20. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  1. A Matter of Timing: Developmental Theories of Romantic Involvement and Psychosocial Adjustment

    PubMed Central

    Furman, Wyndol; Collibee, Charlene

    2014-01-01

    The present study compared two theories of the association between romantic involvement and adjustment—a social timetable theory and a developmental task theory. We examined seven waves of longitudinal data on a community based sample of 200 participants (M age Wave 1 = 15 years, 10 months). In each wave, multiple measures of substance use, externalizing symptoms, and internalizing symptoms were gathered, typically from multiple reporters. Multilevel modeling revealed that greater levels of romantic involvement in adolescence were associated with higher levels of substance use and externalizing symptoms, but became associated with lower levels in adulthood. Similarly, having a romantic partner was associated with greater levels of substance use, externalizing symptoms, and internalizing symptoms in adolescence, but was associated with lower levels in young adulthood. The findings were not consistent with a social timetable theory, which predicts that nonnormative involvement is associated with poor adjustment. Instead, the findings are consistent with a developmental task theory which predicts that precocious romantic involvement undermines development and adaptation, but when romantic involvement becomes a salient developmental task in adulthood, it is associated with positive adjustment. Discussion focuses on the processes that may underlie the changing nature of the association between romantic involvement and adjustment. PMID:24703413

  2. Intra-operative adjustment of standard planes in C-arm CT image data.

    PubMed

    Brehler, Michael; Görres, Joseph; Franke, Jochen; Barth, Karl; Vetter, Sven Y; Grützner, Paul A; Meinzer, Hans-Peter; Wolf, Ivo; Nabers, Diana

    2016-03-01

    With the help of an intra-operative mobile C-arm CT, medical interventions can be verified and corrected, avoiding the need for a post-operative CT and a second intervention. An exact adjustment of standard plane positions is necessary for the best possible assessment of the anatomical regions of interest but the mobility of the C-arm causes the need for a time-consuming manual adjustment. In this article, we present an automatic plane adjustment at the example of calcaneal fractures. We developed two feature detection methods (2D and pseudo-3D) based on SURF key points and also transferred the SURF approach to 3D. Combined with an atlas-based registration, our algorithm adjusts the standard planes of the calcaneal C-arm images automatically. The robustness of the algorithms is evaluated using a clinical data set. Additionally, we tested the algorithm's performance for two registration approaches, two resolutions of C-arm images and two methods for metal artifact reduction. For the feature extraction, the novel 3D-SURF approach performs best. As expected, a higher resolution ([Formula: see text] voxel) leads also to more robust feature points and is therefore slightly better than the [Formula: see text] voxel images (standard setting of device). Our comparison of two different artifact reduction methods and the complete removal of metal in the images shows that our approach is highly robust against artifacts and the number and position of metal implants. By introducing our fast algorithmic processing pipeline, we developed the first steps for a fully automatic assistance system for the assessment of C-arm CT images.

  3. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  4. [Adjusting Platelet Counts for Platelet Aggregation Tests].

    PubMed

    Ling, Li-Qin; Yang, Xin-Chun; Chen, Hao; Liu, Chao-Nan; Chen, Si; Jiang, Hong; Jin, Ya-Xiong; Zhou, Jing

    2018-03-01

    To explore a better method to adjust platelet counts for light transmission aggregometry (LTA). Blood samples from 36 healthy participants aged from 18 to 50 yr. were collected.Platelet-rich plasma (PRP) was diluted using platelet-poor plasma (PPP) and physiological saline (PS),respectively,in a ratio of 1.5,2,2.5 and 3 times. Platelet aggregation was induced by adenosine diphosphate (ADP),arachidonic acid (ARA),collagen (COL), epinephrine (EPI),or ristocetin (RIS). The maximal aggregation rates (MAs) of different approaches were compared. We also compared the MAs induced by RIS between PRP-obtained-PPP and whole blood-obtained-PPP (2 100× g, 5 min). Compared with the original PRP,the MAs induced by ADP,ARA,and EPI decreased in PPP-adjusted PRP (significant at 2-3 times dilution ratio, P <0.05),but not in PS-adjusted PRP ( P >0.05). The MA induced by RIS decreased in PS-adjusted PRP (significant at all dilution ratios, P <0.05),but not in PPP-adjusted PRP ( P >0.05). No changes in the MA induced by COL were found in PS-adjusted PRP and PPP-adjusted PRP ( P >0.05). Whole blood-obtained-PPP (2 100× g, 5 min) had the same MA induced by ristocetin compared with PRP-obtained-PPP ( P >0.05). PS is recommended for adjusting platelets counts for platelet aggregation induced by ADP,ARA,COL and EPI. Whole blood-obtained-PPP (2 100 × g, 5 min) is recommended for RIS-induced aggregation as a matter of convenience. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  5. A spatial model of bird abundance as adjusted for detection probability

    USGS Publications Warehouse

    Gorresen, P.M.; Mcmillan, G.P.; Camp, R.J.; Pratt, T.K.

    2009-01-01

    Modeling the spatial distribution of animals can be complicated by spatial and temporal effects (i.e. spatial autocorrelation and trends in abundance over time) and other factors such as imperfect detection probabilities and observation-related nuisance variables. Recent advances in modeling have demonstrated various approaches that handle most of these factors but which require a degree of sampling effort (e.g. replication) not available to many field studies. We present a two-step approach that addresses these challenges to spatially model species abundance. Habitat, spatial and temporal variables were handled with a Bayesian approach which facilitated modeling hierarchically structured data. Predicted abundance was subsequently adjusted to account for imperfect detection and the area effectively sampled for each species. We provide examples of our modeling approach for two endemic Hawaiian nectarivorous honeycreepers: 'i'iwi Vestiaria coccinea and 'apapane Himatione sanguinea. ?? 2009 Ecography.

  6. Adjustment to Widowhood and Divorce: A Review.

    ERIC Educational Resources Information Center

    Kitson, Gay C.; And Others

    1989-01-01

    Examines studies of adjustment to widowhood and/or divorce and points out those places where findings are similar or different. Explores impact upon adjustment of cause of death or divorce, timing of event, demographic correlates, economic issues, social support, and attachment. Concludes with discussion of methodological issues and topics for…

  7. 26 CFR 1.985-5 - Adjustments required upon change in functional currency.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...

  8. 26 CFR 1.985-5 - Adjustments required upon change in functional currency.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...

  9. 26 CFR 1.985-5 - Adjustments required upon change in functional currency.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...

  10. 26 CFR 1.985-5 - Adjustments required upon change in functional currency.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...

  11. 26 CFR 1.985-5 - Adjustments required upon change in functional currency.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...

  12. Empirical evidence for resource-rational anchoring and adjustment.

    PubMed

    Lieder, Falk; Griffiths, Thomas L; M Huys, Quentin J; Goodman, Noah D

    2018-04-01

    People's estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people's rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time. To test this hypothesis, we designed a new numerical estimation paradigm that controls people's knowledge and varies the cost of time and error independently while allowing people to invest as much or as little time and effort into refining their estimate as they wish. Two experiments confirmed the prediction that adjustment decreases with time cost but increases with error cost regardless of whether the anchor was self-generated or provided. These results support the hypothesis that people rationally adapt their number of adjustments to achieve a near-optimal speed-accuracy tradeoff. This suggests that the anchoring bias might be a signature of the rational use of finite time and limited cognitive resources rather than a sign of human irrationality.

  13. Lateral stepping for postural correction in Parkinson's disease.

    PubMed

    King, Laurie A; Horak, Fay B

    2008-03-01

    To characterize the lateral stepping strategies for postural correction in patients with Parkinson's disease (PD) and the effect of their anti-parkinson medication. Observational study. Outpatient neuroscience laboratory. Thirteen participants with idiopathic PD in their on (PD on) and off (PD off) levodopa state and 14 healthy elderly controls. Movable platform with lateral translations of 12 cm at 14.6 cm/s ramp velocity. The incidence and characteristics of 3 postural strategies were observed: lateral side-step, crossover step, or no step. Corrective stepping was characterized by latency to step after perturbation onset, step velocity, and step length and presence of an anticipatory postural adjustment (APA). Additionally, percentages of trials resulting in falls were identified for each group. Whereas elderly control participants never fell, PD participants fell in 24% and 35% of trials in the on and off medication states, respectively. Both PD and control participants most often used a lateral side-step strategy; 70% (control), 67% (PD off), and 73% (PD on) of all trials, respectively. PD participants fell most often when using a crossover strategy (75% of all crossover trials) or no-step strategy (100% of all no-step trials). In the off medication state, PD participants' lateral stepping strategies were initiated later than controls (370+/-37 ms vs 280+/-10 ms, P<.01), and steps were smaller (254+/-20 mm vs 357+/-17 mm, P<.01) and slower (0.99+/-0.08 m/s vs 1.20+/-0.07 m/s, P<.05). No differences were found between the PD off versus PD on state in the corrective stepping characteristics. Unlike control participants, PD participants often (56% of side-step strategy trials) failed to activate an APA before stepping, although their APAs, when present, were of similar latency and magnitude as for control participants. Levodopa on or off state did not significantly affect falls, APAs, or lateral step latency, velocity, or amplitude (P>.05). PD participants showed

  14. Preparation for Compensatory Forward Stepping in Parkinson’s Disease

    PubMed Central

    King, Laurie A.; St George, Rebecca J.; Carlson-Kuhta, Patricia; Nutt, John G.; Horak, Fay B.

    2010-01-01

    Objective To characterize preparation for compensatory stepping in people with Parkinson’s disease (PD) compared with healthy control subjects, and to determine whether levodopa medication improves preparation or the execution phases of the step. Design Observational study. Setting Outpatient neuroscience laboratory. Participants Nineteen participants with idiopathic PD tested both in the on and off levodopa states and 17 healthy subjects. Intervention Moveable platform with posterior translations of 24cm at 56cm/s. Main Outcome Measures Compensatory steps forward, in response to a backward surface translation (24cm amplitude at 56cm/s), were categorized according to the presence of an anticipatory postural adjustment (APA) before stepping: no APA, single APA, or multiple APAs. The following step parameters were calculated: step latency, step length, center of mass (CoM) average velocity, and CoM displacement at the step initiation. Results Lateral APAs were evident in 57% and 42% of trials for people with PD in the off and on medication states, respectively, compared with only 10% of trials for control subjects. Compared with subjects with PD who did not have APAs, those subjects with PD who did make an APA prior to stepping had significantly later (mean ± SEM, 356 ± 16ms vs 305 ± 8ms) and shorter (mean ± SEM, 251 ± 27mm vs 300 ± 16mm) steps, their CoM was significantly farther forward (185 ± 7mm vs 171 ± 5mm) at foot-off, and they took significantly more steps to regain equilibrium. Levodopa did not affect the preparation or execution phase of compensatory stepping. Poor axial scores and reports of freezing in the United Parkinson’s Disease Rating Scale were associated with use of 1 or more APAs before compensatory stepping. Conclusions Lateral postural preparation prior to compensatory stepping in subjects with PD was associated with inefficient balance recovery from external perturbations. PMID:20801249

  15. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  16. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE PAGES

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob; ...

    2017-09-12

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  17. Evolution of robot-assisted orthotopic ileal neobladder formation: a step-by-step update to the University of Southern California (USC) technique.

    PubMed

    Chopra, Sameer; de Castro Abreu, Andre Luis; Berger, Andre K; Sehgal, Shuchi; Gill, Inderbir; Aron, Monish; Desai, Mihir M

    2017-01-01

    To describe our, step-by-step, technique for robotic intracorporeal neobladder formation. The main surgical steps to forming the intracorporeal orthotopic ileal neobladder are: isolation of 65 cm of small bowel; small bowel anastomosis; bowel detubularisation; suture of the posterior wall of the neobladder; neobladder-urethral anastomosis and cross folding of the pouch; and uretero-enteral anastomosis. Improvements have been made to these steps to enhance time efficiency without compromising neobladder configuration. Our technical improvements have resulted in an improvement in operative time from 450 to 360 min. We describe an updated step-by-step technique of robot-assisted intracorporeal orthotopic ileal neobladder formation. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  18. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE PAGES

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  19. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sungduk; Pritchard, Michael S.

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  20. Sibling conflict in middle childhood predicts children's adjustment in early adolescence.

    PubMed

    Stocker, Clare M; Burwell, Rebecca A; Briggs, Megan L

    2002-03-01

    Associations between sibling conflict in middle childhood and psychological adjustment in early adolescence were studied in a sample of 80 boys and 56 girls. Parents and children provided self-report data about family relationships and children's adjustment. Parents' hostility to children was assessed from videotaped interactions. Results showed that sibling conflict at Time 1 predicted increases in children's anxiety, depressed mood, and delinquent behavior 2 years later. Moreover, earlier sibling conflict at Time 1 accounted for unique variance in young adolescents' Time 2 anxiety, depressed mood, and delinquent behavior above and beyond the variance explained by earlier maternal hostility and marital conflict. Children's adjustment at Time 1 did not predict sibling conflict at Time 2. Results highlight the unique significance of the earlier sibling relationship for young adolescents' psychological adjustment.

  1. Step Detection Robust against the Dynamics of Smartphones

    PubMed Central

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  2. Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications

    PubMed Central

    Abdulrazzaq, Bilal I.; Ibrahim, Omar J.; Kawahito, Shoji; Sidek, Roslina M.; Shafie, Suhaidi; Yunus, Nurul Amziah Md.; Lee, Lini; Halin, Izhal Abdul

    2016-01-01

    A Delay-Locked Loop (DLL) with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS) jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS) process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz. PMID:27690040

  3. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    PubMed

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  4. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  5. Several steps/day indicators predict changes in anthropometric outcomes: HUB City Steps.

    PubMed

    Thomson, Jessica L; Landry, Alicia S; Zoellner, Jamie M; Tudor-Locke, Catrine; Webster, Michael; Connell, Carol; Yadrick, Kathy

    2012-11-15

    Walking for exercise remains the most frequently reported leisure-time activity, likely because it is simple, inexpensive, and easily incorporated into most people's lifestyle. Pedometers are simple, convenient, and economical tools that can be used to quantify step-determined physical activity. Few studies have attempted to define the direct relationship between dynamic changes in pedometer-determined steps/day and changes in anthropometric and clinical outcomes. Hence, the objective of this secondary analysis was to evaluate the utility of several descriptive indicators of pedometer-determined steps/day for predicting changes in anthropometric and clinical outcomes using data from a community-based walking intervention, HUB City Steps, conducted in a southern, African American population. A secondary aim was to evaluate whether treating steps/day data for implausible values affected the ability of these data to predict intervention-induced changes in clinical and anthropometric outcomes. The data used in this secondary analysis were collected in 2010 from 269 participants in a six-month walking intervention targeting a reduction in blood pressure. Throughout the intervention, participants submitted weekly steps/day diaries based on pedometer self-monitoring. Changes (six-month minus baseline) in anthropometric (body mass index, waist circumference, percent body fat [%BF], fat mass) and clinical (blood pressure, lipids, glucose) outcomes were evaluated. Associations between steps/day indicators and changes in anthropometric and clinical outcomes were assessed using bivariate tests and multivariable linear regression analysis which controlled for demographic and baseline covariates. Significant negative bivariate associations were observed between steps/day indicators and the majority of anthropometric and clinical outcome changes (r = -0.3 to -0.2: P < 0.05). After controlling for covariates in the regression analysis, only the relationships between steps

  6. Iteratively improving Hi-C experiments one step at a time.

    PubMed

    Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton

    2018-06-01

    The 3D organization of eukaryotic chromosomes affects key processes such as gene expression, DNA replication, cell division, and response to DNA damage. The genome-wide chromosome conformation capture (Hi-C) approach can characterize the landscape of 3D genome organization by measuring interaction frequencies between all genomic regions. Hi-C protocol improvements and rapid advances in DNA sequencing power have made Hi-C useful to study diverse biological systems, not only to elucidate the role of 3D genome structure in proper cellular function, but also to characterize genomic rearrangements, assemble new genomes, and consider chromatin interactions as potential biomarkers for diseases. Yet, the Hi-C protocol is still complex and subject to variations at numerous steps that can affect the resulting data. Thus, there is still a need for better understanding and control of factors that contribute to Hi-C experiment success and data quality. Here, we evaluate recently proposed Hi-C protocol modifications as well as often overlooked variables in sample preparation and examine their effects on Hi-C data quality. We examine artifacts that can occur during Hi-C library preparation, including microhomology-based artificial template copying and chimera formation that can add noise to the downstream data. Exploring the mechanisms underlying Hi-C artifacts pinpoints steps that should be further optimized in the future. To improve the utility of Hi-C in characterizing the 3D genome of specialized populations of cells or small samples of primary tissue, we identify steps prone to DNA loss which should be considered to adapt Hi-C to lower cell numbers. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Step-by-step management of refractory gastresophageal reflux disease.

    PubMed

    Hershcovici, T; Fass, R

    2013-01-01

    Up to a third of the patients who receive proton pump inhibitor (PPI) once daily will demonstrate lack or partial response to treatment. There are various mechanisms that contribute to PPI failure and they include residual acid reflux, weakly acidic and weakly alkaline reflux, esophageal hypersensitivity, and psychological comorbidity, among others. Some of these underlying mechanisms may coincide in the same patient. Evaluation for proper compliance and adequate dosing time of PPIs should be the first management step before ordering invasive diagnostic tests. Doubling the PPI dose or switching to another PPI is the second step of management. Upper endoscopy and pH testing appear to have limited diagnostic value in patients who failed PPI treatment. In contrast, esophageal impedance with pH testing (multichannel intraluminal impedance MII-pH) on therapy appears to provide the most insightful information about the subsequent management of these patients (step 3). In step 4, treatment should be tailored to the specific underlying mechanism of patient's PPI failure. For those who demonstrate weakly acidic or weakly alkaline reflux as the underlying cause of their residual symptoms, transient lower esophageal sphincter relaxation reducers, endoscopic treatment, antireflux surgery and pain modulators should be considered. In those with functional heartburn, pain modulators are the cornerstone of therapy. © 2012 Copyright the Authors. Journal compilation © 2012, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  8. Emotion Regulation Profiles, Temperament, and Adjustment Problems in Preadolescents

    PubMed Central

    Zalewski, Maureen; Lengua, Liliana J.; Trancik, Anika; Wilson, Anna C.; Bazinet, Alissa

    2014-01-01

    The longitudinal relations of emotion regulation profiles to temperament and adjustment in a community sample of preadolescents (N = 196, 8–11 years at Time 1) were investigated using person-oriented latent profile analysis (LPA). Temperament, emotion regulation, and adjustment were measured at 3 different time points, with each time point occurring 1 year apart. LPA identified 5 frustration and 4 anxiety regulation profiles based on children’s physiological, behavioral, and self-reported reactions to emotion-eliciting tasks. The relation of effortful control to conduct problems was mediated by frustration regulation profiles, as was the relation of effortful control to depression. Anxiety regulation profiles did not mediate relations between temperament and adjustment. PMID:21413935

  9. SIM_ADJUST -- A computer code that adjusts simulated equivalents for observations or predictions

    USGS Publications Warehouse

    Poeter, Eileen P.; Hill, Mary C.

    2008-01-01

    This report documents the SIM_ADJUST computer code. SIM_ADJUST surmounts an obstacle that is sometimes encountered when using universal model analysis computer codes such as UCODE_2005 (Poeter and others, 2005), PEST (Doherty, 2004), and OSTRICH (Matott, 2005; Fredrick and others (2007). These codes often read simulated equivalents from a list in a file produced by a process model such as MODFLOW that represents a system of interest. At times values needed by the universal code are missing or assigned default values because the process model could not produce a useful solution. SIM_ADJUST can be used to (1) read a file that lists expected observation or prediction names and possible alternatives for the simulated values; (2) read a file produced by a process model that contains space or tab delimited columns, including a column of simulated values and a column of related observation or prediction names; (3) identify observations or predictions that have been omitted or assigned a default value by the process model; and (4) produce an adjusted file that contains a column of simulated values and a column of associated observation or prediction names. The user may provide alternatives that are constant values or that are alternative simulated values. The user may also provide a sequence of alternatives. For example, the heads from a series of cells may be specified to ensure that a meaningful value is available to compare with an observation located in a cell that may become dry. SIM_ADJUST is constructed using modules from the JUPITER API, and is intended for use on any computer operating system. SIM_ADJUST consists of algorithms programmed in Fortran90, which efficiently performs numerical calculations.

  10. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    PubMed

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory

    NASA Astrophysics Data System (ADS)

    MacDonald, Christopher L.; Bhattacharya, Nirupama; Sprouse, Brian P.; Silva, Gabriel A.

    2015-09-01

    Computing numerical solutions to fractional differential equations can be computationally intensive due to the effect of non-local derivatives in which all previous time points contribute to the current iteration. In general, numerical approaches that depend on truncating part of the system history while efficient, can suffer from high degrees of error and inaccuracy. Here we present an adaptive time step memory method for smooth functions applied to the Grünwald-Letnikov fractional diffusion derivative. This method is computationally efficient and results in smaller errors during numerical simulations. Sampled points along the system's history at progressively longer intervals are assumed to reflect the values of neighboring time points. By including progressively fewer points backward in time, a temporally 'weighted' history is computed that includes contributions from the entire past of the system, maintaining accuracy, but with fewer points actually calculated, greatly improving computational efficiency.

  12. Analysis of Choice Stepping with Visual Interference Can Detect Prolonged Postural Preparation in Older Adults with Mild Cognitive Impairment at High Risk of Falling.

    PubMed

    Uemura, Kazuki; Hasegawa, Takashi; Tougou, Hiroki; Shuhei, Takahashi; Uchiyama, Yasushi

    2015-01-01

    We aimed to clarify postural control deficits in older adults with mild cognitive impairment (MCI) at high risk of falling by addressing the inhibitory process. This study involved 376 community-dwelling older adults with MCI. Participants were instructed to execute forward stepping on the side indicated by the central arrow while ignoring the 2 flanking arrows on each side (→→→→→, congruent, or →→←→→, incongruent). Initial weight transfer direction errors [anticipatory postural adjustment (APA) errors], step execution times, and divided phases (reaction, APA, and swing phases) were measured from vertical force data. Participants were categorized as fallers (n = 37) and non-fallers (n = 339) based on fall experiences in the last 12 months. There were no differences in the step execution times, swing phases, step error rates, and APA error rates between groups, but fallers had a significantly longer APA phase relative to non-fallers in trials of the incongruent condition with APA errors (p = 0.005). Fallers also had a longer reaction phase in trials with the correct APA, regardless of the condition (p = 0.01). Analyses of choice stepping with visual interference can detect prolonged postural preparation as a specific falling-associated deficit in older adults with MCI. © 2015 S. Karger AG, Basel.

  13. Implementation of Time-Resolved Step-Scan Fourier Transform Infrared (FT-IR) Spectroscopy Using a kHz Repetition Rate Pump Laser

    PubMed Central

    MAGANA, DONNY; PARUL, DZMITRY; DYER, R. BRIAN; SHREVE, ANDREW P.

    2011-01-01

    Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)3Cl2 in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers. PMID:21513597

  14. Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (Step Study).

    PubMed

    Duerr, Ann; Huang, Yunda; Buchbinder, Susan; Coombs, Robert W; Sanchez, Jorge; del Rio, Carlos; Casapia, Martin; Santiago, Steven; Gilbert, Peter; Corey, Lawrence; Robertson, Michael N

    2012-07-15

    The Step Study tested whether an adenovirus serotype 5 (Ad5)-vectored human immunodeficiency virus (HIV) vaccine could prevent HIV acquisition and/or reduce viral load set-point after infection. At the first interim analysis, nonefficacy criteria were met. Vaccinations were halted; participants were unblinded. In post hoc analyses, more HIV infections occurred in vaccinees vs placebo recipients in men who had Ad5-neutralizing antibodies and/or were uncircumcised. Follow-up was extended to assess relative risk of HIV acquisition in vaccinees vs placebo recipients over time. We used Cox proportional hazard models for analyses of vaccine effect on HIV acquisition and vaccine effect modifiers, and nonparametric and semiparametric methods for analysis of constancy of relative risk over time. One hundred seventy-two of 1836 men were infected. The adjusted vaccinees vs placebo recipients hazard ratio (HR) for all follow-up time was 1.40 (95% confidence interval [CI], 1.03-1.92; P= .03). Vaccine effect differed by baseline Ad5 or circumcision status during first 18 months, but neither was significant for all follow-up time. The HR among uncircumcised and/or Ad5-seropositive men waned with time since vaccination. No significant vaccine-associated risk was seen among circumcised, Ad5-negative men (HR, 0.97; P=1.0) over all follow-up time. The vaccine-associated risk seen in interim analysis was confirmed but waned with time from vaccination.

  15. Detection of Listeria monocytogenes in ready-to-eat food by Step One real-time polymerase chain reaction.

    PubMed

    Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal

    2012-01-01

    The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.

  16. Loran-C time management

    NASA Technical Reports Server (NTRS)

    Justice, Charles; Mason, Norm; Taggart, Doug

    1994-01-01

    As of 1 Oct. 1993, the US Coast Guard (USCG) supports and operates fifteen Loran-C chains. With the introduction of the Global Positioning Systems (GPS) and the termination of the Department of Defense (DOD) overseas need for Loran-C, the USCG will cease operating the three remaining overseas chains by 31 Dec. 1994. Following this date, the USCG Loran-C system will consist of twelve chains. Since 1971, management of time synchronization of the Loran-C system has been conducted under a Memorandum of Agreement between the US Naval Observatory (USNO) and the USCG. The requirement to maintain synchronization with Coordinated Universal Time (UTC) was initially specified as +/- 25 microseconds. This tolerance was rapidly lowered to +/- 2.5 microseconds in 1974. To manage this synchronization requirement, the USCG incorporated administrative practices which kept the USNO appraised of all aspects of the master timing path. This included procedures for responding to timing path failures, timing adjustments, and time steps. Conducting these aspects of time synchronization depended on message traffic between the various master stations and the USNO. To determine clock adjustment the USCG relied upon the USNO's Series 4 and 100 updates so that the characteristics of the master clock could be plotted and controls appropriately applied. In 1987, Public Law 100-223, under the Airport and Airway Improvement Act Amendment, reduced the synchronization tolerance to approximately 100 nanoseconds for chains serving the National Airspace System (NAS). This action caused changes in the previous administrative procedures and techniques. The actions taken by the USCG to meet the requirements of this law are presented.

  17. Recovery of forward stepping in spinal cord injured patients does not transfer to untrained backward stepping.

    PubMed

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Lacquaniti, Francesco

    2004-08-01

    Six spinal cord injured (SCI) patients were trained to step on a treadmill with body-weight support for 1.5-3 months. At the end of training, foot motion recovered the shape and the step-by-step reproducibility that characterize normal gait. They were then asked to step backward on the treadmill belt that moved in the opposite direction relative to standard forward training. In contrast to healthy subjects, who can immediately reverse the direction of walking by time-reversing the kinematic waveforms, patients were unable to step backward. Similarly patients were unable to perform another untrained locomotor task, namely stepping in place on the idle treadmill. Two patients who were trained to step backward for 2-3 weeks were able to develop control of foot motion appropriate for this task. The results show that locomotor improvement does not transfer to untrained tasks, thus supporting the idea of task-dependent plasticity in human locomotor networks.

  18. Risk Selection, Risk Adjustment and Choice: Concepts and Lessons from the Americas

    PubMed Central

    Ellis, Randall P.; Fernandez, Juan Gabriel

    2013-01-01

    Interest has grown worldwide in risk adjustment and risk sharing due to their potential to contain costs, improve fairness, and reduce selection problems in health care markets. Significant steps have been made in the empirical development of risk adjustment models, and in the theoretical foundations of risk adjustment and risk sharing. This literature has often modeled the effects of risk adjustment without highlighting the institutional setting, regulations, and diverse selection problems that risk adjustment is intended to fix. Perhaps because of this, the existing literature and their recommendations for optimal risk adjustment or optimal payment systems are sometimes confusing. In this paper, we present a unified way of thinking about the organizational structure of health care systems, which enables us to focus on two key dimensions of markets that have received less attention: what choices are available that may lead to selection problems, and what financial or regulatory tools other than risk adjustment are used to influence these choices. We specifically examine the health care systems, choices, and problems in four countries: the US, Canada, Chile, and Colombia, and examine the relationship between selection-related efficiency and fairness problems and the choices that are allowed in each country, and discuss recent regulatory reforms that affect choices and selection problems. In this sample, countries and insurance programs with more choices have more selection problems. PMID:24284351

  19. Light-adjustable lens.

    PubMed Central

    Schwartz, Daniel M

    2003-01-01

    PURPOSE: First, to determine whether a silicone light-adjustable intraocular lens (IOL) can be fabricated and adjusted precisely with a light delivery device (LDD). Second, to determine the biocompatibility of an adjustable IOL and whether the lens can be adjusted precisely in vivo. METHODS: After fabrication of a light-adjustable silicone formulation, IOLs were made and tested in vitro for cytotoxicity, leaching, precision of adjustment, optical quality after adjustment, and mechanical properties. Light-adjustable IOLs were then tested in vivo for biocompatibility and precision of adjustment in a rabbit model. In collaboration with Zeiss-Meditec, a digital LDD was developed and tested to correct for higher-order aberrations in light-adjustable IOLs. RESULTS: The results establish that a biocompatible silicone IOL can be fabricated and adjusted using safe levels of light. There was no evidence of cytotoxicity or leaching. Testing of mechanical properties revealed no significant differences from commercial controls. Implantation of light-adjustable lenses in rabbits demonstrated- excellent biocompatibility after 6 months, comparable to a commercially available IOL. In vivo spherical (hyperopic and myopic) adjustment in rabbits was achieved using an analog light delivery system. The digital light delivery system was tested and achieved correction of higher-order aberrations. CONCLUSION: A silicone light-adjustable IOL and LDD have been developed to enable postoperative, noninvasive adjustment of lens power. The ability to correct higher-order aberrations in these materials has broad potential applicability for optimization of vision in patients undergoing cataract and refractive surgery. PMID:14971588

  20. Electromyographic assessment of muscle activity between genders during unilateral weight-bearing tasks using adjusted distances.

    PubMed

    Bouillon, Lucinda E; Wilhelm, Jacqueline; Eisel, Patricia; Wiesner, Jessica; Rachow, Megan; Hatteberg, Lindsay

    2012-12-01

    Researchers have observed differences in muscle activity patterns between males and females during functional exercises. The research methods employed have used various step heights and lunge distances to assess functional exercise making gender comparisons difficult. The purpose of this study was to examine core and lower extremity muscle activity between genders during single-limb exercises using adjusted distances and step heights based on a percentage of the participant's height. Twenty men and 20 women who were recreationally active and healthy participated in the study. Two-dimensional video and surface electromyography (SEMG) were used to assess performance during three exercise maneuvers (step down, forward lunge, and side-step lunge). Eight muscles were assessed using SEMG (rectus abdominus, external oblique, erector spinae, rectus femoris, tensor fascia latae, gluteus medius, gluteus maximus, biceps femoris). Maximal voluntary isometric contractions (MVIC) were used for each muscle and expressed as %MVIC to normalize SEMG to account for body mass differences. Exercises were randomized and distances were normalized to the participant's lower limb length. Descriptive statistics, mixed-model ANOVA, and ICCs with 95% confidence intervals were calculated. Males were taller, heavier, and had longer leg length when compared to the females. No differences in %MVIC activity were found between genders by task across the eight muscles. For both males and females, the step down task resulted in higher %MVIC for gluteus maximus compared to lunge, (p=0.002). Step down exercise produced higher %MVIC for gluteus medius than lunge (p=0.002) and side step (p=0.006). ICC(3,3) ranged from moderate to high (0.74 to 0.97) for the three tasks. Muscle activation among the eight muscles was similar between females and males during the lunge, side-step, and step down tasks, with distances adjusted to leg length. Both males and females elicited higher muscle activity for gluteus

  1. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  2. A stochastical event-based continuous time step rainfall generator based on Poisson rectangular pulse and microcanonical random cascade models

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph

    2017-04-01

    Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative

  3. 20 CFR 655.1114 - Element IV-What are the timely and significant steps an H-1C employer must take to recruit and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... significant steps an H-1C employer must take to recruit and retain U.S. nurses? 655.1114 Section 655.1114... Workers as Registered Nurses? § 655.1114 Element IV—What are the timely and significant steps an H-1C employer must take to recruit and retain U.S. nurses? (a) The fourth attestation element requires that the...

  4. Continuous-time adaptive critics.

    PubMed

    Hanselmann, Thomas; Noakes, Lyle; Zaknich, Anthony

    2007-05-01

    A continuous-time formulation of an adaptive critic design (ACD) is investigated. Connections to the discrete case are made, where backpropagation through time (BPTT) and real-time recurrent learning (RTRL) are prevalent. Practical benefits are that this framework fits in well with plant descriptions given by differential equations and that any standard integration routine with adaptive step-size does an adaptive sampling for free. A second-order actor adaptation using Newton's method is established for fast actor convergence for a general plant and critic. Also, a fast critic update for concurrent actor-critic training is introduced to immediately apply necessary adjustments of critic parameters induced by actor updates to keep the Bellman optimality correct to first-order approximation after actor changes. Thus, critic and actor updates may be performed at the same time until some substantial error build up in the Bellman optimality or temporal difference equation, when a traditional critic training needs to be performed and then another interval of concurrent actor-critic training may resume.

  5. Making an Adjustable C-Clamp. Kit No. 603. Instructor's Manual [and] Student Learning Activity Manual. [Revised.] T & I--Metalwork.

    ERIC Educational Resources Information Center

    White, Jim; Alexander, Larry

    This student activity kit consists of a programmed, self-instructional learning guide and an accompanying instructor's manual for use in teaching trade and industrial education students how to make an adjustable C-clamp. The student guide contains step-by-step instructions in the following areas: basic layout principles; use of a hack saw, file,…

  6. Training Rapid Stepping Responses in an Individual With Stroke

    PubMed Central

    Inness, Elizabeth L.; Komar, Janice; Biasin, Louis; Brunton, Karen; Lakhani, Bimal; McIlroy, William E.

    2011-01-01

    Background and Purpose Compensatory stepping reactions are important responses to prevent a fall following a postural perturbation. People with hemiparesis following a stroke show delayed initiation and execution of stepping reactions and often are found to be unable to initiate these steps with the more-affected limb. This case report describes a targeted training program involving repeated postural perturbations to improve control of compensatory stepping in an individual with stroke. Case Description Compensatory stepping reactions of a 68-year-old man were examined 52 days after left hemorrhagic stroke. He required assistance to prevent a fall in all trials administered during his initial examination because he showed weight-bearing asymmetry (with more weight borne on the more-affected right side), was unable to initiate stepping with the right leg (despite blocking of the left leg in some trials), and demonstrated delayed response times. The patient completed 6 perturbation training sessions (30–60 minutes per session) that aimed to improve preperturbation weight-bearing symmetry, to encourage stepping with the right limb, and to reduce step initiation and completion times. Outcomes Improved efficacy of compensatory stepping reactions with training and reduced reliance on assistance to prevent falling were observed. Improvements were noted in preperturbation asymmetry and step timing. Blocking the left foot was effective in encouraging stepping with the more-affected right foot. Discussion This case report demonstrates potential short-term adaptations in compensatory stepping reactions following perturbation training in an individual with stroke. Future work should investigate the links between improved compensatory step characteristics and fall risk in this vulnerable population. PMID:21511992

  7. How many steps/day are enough? for adults

    PubMed Central

    2011-01-01

    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include

  8. How many steps/day are enough? For adults.

    PubMed

    Tudor-Locke, Catrine; Craig, Cora L; Brown, Wendy J; Clemes, Stacy A; De Cocker, Katrien; Giles-Corti, Billie; Hatano, Yoshiro; Inoue, Shigeru; Matsudo, Sandra M; Mutrie, Nanette; Oppert, Jean-Michel; Rowe, David A; Schmidt, Michael D; Schofield, Grant M; Spence, John C; Teixeira, Pedro J; Tully, Mark A; Blair, Steven N

    2011-07-28

    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include

  9. The Aristotle score: a complexity-adjusted method to evaluate surgical results.

    PubMed

    Lacour-Gayet, F; Clarke, D; Jacobs, J; Comas, J; Daebritz, S; Daenen, W; Gaynor, W; Hamilton, L; Jacobs, M; Maruszsewski, B; Pozzi, M; Spray, T; Stellin, G; Tchervenkov, C; Mavroudis And, C

    2004-06-01

    Quality control is difficult to achieve in Congenital Heart Surgery (CHS) because of the diversity of the procedures. It is particularly needed, considering the potential adverse outcomes associated with complex cases. The aim of this project was to develop a new method based on the complexity of the procedures. The Aristotle project, involving a panel of expert surgeons, started in 1999 and included 50 pediatric surgeons from 23 countries, representing the EACTS, STS, ECHSA and CHSS. The complexity was based on the procedures as defined by the STS/EACTS International Nomenclature and was undertaken in two steps: the first step was establishing the Basic Score, which adjusts only the complexity of the procedures. It is based on three factors: the potential for mortality, the potential for morbidity and the anticipated technical difficulty. A questionnaire was completed by the 50 centers. The second step was the development of the Comprehensive Aristotle Score, which further adjusts the complexity according to the specific patient characteristics. It includes two categories of complexity factors, the procedure dependent and independent factors. After considering the relationship between complexity and performance, the Aristotle Committee is proposing that: Performance = Complexity x Outcome. The Aristotle score, allows precise scoring of the complexity for 145 CHS procedures. One interesting notion coming out of this study is that complexity is a constant value for a given patient regardless of the center where he is operated. The Aristotle complexity score was further applied to 26 centers reporting to the EACTS congenital database. A new display of centers is presented based on the comparison of hospital survival to complexity and to our proposed definition of performance. A complexity-adjusted method named the Aristotle Score, based on the complexity of the surgical procedures has been developed by an international group of experts. The Aristotle score

  10. Simulations of precipitation using the Community Earth System Model (CESM): Sensitivity to microphysics time step

    NASA Astrophysics Data System (ADS)

    Murthi, A.; Menon, S.; Sednev, I.

    2011-12-01

    An inherent difficulty in the ability of global climate models to accurately simulate precipitation lies in the use of a large time step, Δt (usually 30 minutes), to solve the governing equations. Since microphysical processes are characterized by small time scales compared to Δt, finite difference approximations used to advance microphysics equations suffer from numerical instability and large time truncation errors. With this in mind, the sensitivity of precipitation simulated by the atmospheric component of CESM, namely the Community Atmosphere Model (CAM 5.1), to the microphysics time step (τ) is investigated. Model integrations are carried out for a period of five years with a spin up time of about six months for a horizontal resolution of 2.5 × 1.9 degrees and 30 levels in the vertical, with Δt = 1800 s. The control simulation with τ = 900 s is compared with one using τ = 300 s for accumulated precipitation and radi- ation budgets at the surface and top of the atmosphere (TOA), while keeping Δt fixed. Our choice of τ = 300 s is motivated by previous work on warm rain processes wherein it was shown that a value of τ around 300 s was necessary, but not sufficient, to ensure positive definiteness and numerical stability of the explicit time integration scheme used to integrate the microphysical equations. However, since the entire suite of microphysical processes are represented in our case, we suspect that this might impose additional restrictions on τ. The τ = 300 s case produces differences in large-scale accumulated rainfall from the τ = 900 s case by as large as 200 mm, over certain regions of the globe. The spatial patterns of total accumulated precipitation using τ = 300 s are in closer agreement with satellite observed precipitation, when compared to the τ = 900 s case. Differences are also seen in the radiation budget with the τ = 300 (900) s cases producing surpluses that range between 1-3 W/m2 at both the TOA and surface in the global

  11. Automatic Focus Adjustment of a Microscope

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    AUTOFOCUS is a computer program for use in a control system that automatically adjusts the position of an instrument arm that carries a microscope equipped with an electronic camera. In the original intended application of AUTOFOCUS, the imaging microscope would be carried by an exploratory robotic vehicle on a remote planet, but AUTOFOCUS could also be adapted to similar applications on Earth. Initially control software other than AUTOFOCUS brings the microscope to a position above a target to be imaged. Then the instrument arm is moved to lower the microscope toward the target: nominally, the target is approached from a starting distance of 3 cm in 10 steps of 3 mm each. After each step, the image in the camera is subjected to a wavelet transform, which is used to evaluate the texture in the image at multiple scales to determine whether and by how much the microscope is approaching focus. A focus measure is derived from the transform and used to guide the arm to bring the microscope to the focal height. When the analysis reveals that the microscope is in focus, image data are recorded and transmitted.

  12. Utilizing Visual Effects Software for Efficient and Flexible Isostatic Adjustment Modelling

    NASA Astrophysics Data System (ADS)

    Meldgaard, A.; Nielsen, L.; Iaffaldano, G.

    2017-12-01

    The isostatic adjustment signal generated by transient ice sheet loading is an important indicator of past ice sheet extent and the rheological constitution of the interior of the Earth. Finite element modelling has proved to be a very useful tool in these studies. We present a simple numerical model for 3D visco elastic Earth deformation and a new approach to the design of such models utilizing visual effects software designed for the film and game industry. The software package Houdini offers an assortment of optimized tools and libraries which greatly facilitate the creation of efficient numerical algorithms. In particular, we make use of Houdini's procedural work flow, the SIMD programming language VEX, Houdini's sparse matrix creation and inversion libraries, an inbuilt tetrahedralizer for grid creation, and the user interface, which facilitates effortless manipulation of 3D geometry. We mitigate many of the time consuming steps associated with the authoring of efficient algorithms from scratch while still keeping the flexibility that may be lost with the use of commercial dedicated finite element programs. We test the efficiency of the algorithm by comparing simulation times with off-the-shelf solutions from the Abaqus software package. The algorithm is tailored for the study of local isostatic adjustment patterns, in close vicinity to present ice sheet margins. In particular, we wish to examine possible causes for the considerable spatial differences in the uplift magnitude which are apparent from field observations in these areas. Such features, with spatial scales of tens of kilometres, are not resolvable with current global isostatic adjustment models, and may require the inclusion of local topographic features. We use the presented algorithm to study a near field area where field observations are abundant, namely, Disko Bay in West Greenland with the intention of constraining Earth parameters and ice thickness. In addition, we assess how local

  13. A Step-by-Step Picture of Pulsed (Time-Domain) NMR.

    ERIC Educational Resources Information Center

    Schwartz, Leslie J.

    1988-01-01

    Discusses a method for teaching time pulsed NMR principals that are as simple and pictorial as possible. Uses xyz coordinate figures and presents theoretical explanations using a Fourier transformation spectrum. Assumes no previous knowledge of quantum mechanics for students. Usable for undergraduates. (MVL)

  14. Robotic partial nephrectomy shortens warm ischemia time, reducing suturing time kinetics even for an experienced laparoscopic surgeon: a comparative analysis.

    PubMed

    Faria, Eliney F; Caputo, Peter A; Wood, Christopher G; Karam, Jose A; Nogueras-González, Graciela M; Matin, Surena F

    2014-02-01

    Laparoscopic and robotic partial nephrectomy (LPN and RPN) are strongly related to influence of tumor complexity and learning curve. We analyzed a consecutive experience between RPN and LPN to discern if warm ischemia time (WIT) is in fact improved while accounting for these two confounding variables and if so by which particular aspect of WIT. This is a retrospective analysis of consecutive procedures performed by a single surgeon between 2002-2008 (LPN) and 2008-2012 (RPN). Specifically, individual steps, including tumor excision, suturing of intrarenal defect, and parenchyma, were recorded at the time of surgery. Multivariate and univariate analyzes were used to evaluate influence of learning curve, tumor complexity, and time kinetics of individual steps during WIT, to determine their influence in WIT. Additionally, we considered the effect of RPN on the learning curve. A total of 146 LPNs and 137 RPNs were included. Considering renal function, WIT, suturing time, renorrhaphy time were found statistically significant differences in favor of RPN (p < 0.05). In the univariate analysis, surgical procedure, learning curve, clinical tumor size, and RENAL nephrometry score were statistically significant predictors for WIT (p < 0.05). RPN decreased the WIT on average by approximately 7 min compared to LPN even when adjusting for learning curve, tumor complexity, and both together (p < 0.001). We found RPN was associated with a shorter WIT when controlling for influence of the learning curve and tumor complexity. The time required for tumor excision was not shortened but the time required for suturing steps was significantly shortened.

  15. Towards a comprehensive framework for cosimulation of dynamic models with an emphasis on time stepping

    NASA Astrophysics Data System (ADS)

    Hoepfer, Matthias

    co-simulation approach to modeling and simulation. It lays out the general approach to dynamic system co-simulation, and gives a comprehensive overview of what co-simulation is and what it is not. It creates a taxonomy of the requirements and limits of co-simulation, and the issues arising with co-simulating sub-models. Possible solutions towards resolving the stated problems are investigated to a certain depth. A particular focus is given to the issue of time stepping. It will be shown that for dynamic models, the selection of the simulation time step is a crucial issue with respect to computational expense, simulation accuracy, and error control. The reasons for this are discussed in depth, and a time stepping algorithm for co-simulation with unknown dynamic sub-models is proposed. Motivations and suggestions for the further treatment of selected issues are presented.

  16. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    NASA Astrophysics Data System (ADS)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  17. Unexpected perturbations training improves balance control and voluntary stepping times in older adults - a double blind randomized control trial.

    PubMed

    Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak

    2016-03-04

    Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .

  18. Does Stepping Stones Triple P plus Acceptance and Commitment Therapy improve parent, couple, and family adjustment following paediatric acquired brain injury? A randomised controlled trial.

    PubMed

    Brown, Felicity L; Whittingham, Koa; Boyd, Roslyn N; McKinlay, Lynne; Sofronoff, Kate

    2015-10-01

    To evaluate the efficacy of a behavioural family intervention, Stepping Stones Triple P (SSTP), combined with an Acceptance and Commitment Therapy (ACT) workshop in improving parent, family and couple outcomes following paediatric acquired brain injury (ABI). Fifty-nine parents (90% mothers) of children (mean age 7 years; 35 males, 24 females) with ABI. Participants were randomly assigned to a treatment (10-week group SSTP and ACT program) or a care-as-usual (CAU) control condition (10 weeks). Those in the CAU condition received the treatment after the waitlist period. Self-report measures of parent psychological distress, parent psychological flexibility, parenting confidence, family functioning, and couple relationship, assessed at: pre-intervention, post-intervention, and 6-months post-intervention. Post-intervention, the treatment group showed significant, small to medium improvements relative to the CAU group (at the p < .05 level) on parent psychological distress, parent psychological flexibility, parent confidence in managing behaviours, family adjustment,and number of disagreements between parents. Most improvements were maintained at 6-months. Parent skills training and ACT may be efficacious in improving parent, family, and couple outcomes in families of children with an ABI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A simple test of choice stepping reaction time for assessing fall risk in people with multiple sclerosis.

    PubMed

    Tijsma, Mylou; Vister, Eva; Hoang, Phu; Lord, Stephen R

    2017-03-01

    Purpose To determine (a) the discriminant validity for established fall risk factors and (b) the predictive validity for falls of a simple test of choice stepping reaction time (CSRT) in people with multiple sclerosis (MS). Method People with MS (n = 210, 21-74y) performed the CSRT, sensorimotor, balance and neuropsychological tests in a single session. They were then followed up for falls using monthly fall diaries for 6 months. Results The CSRT test had excellent discriminant validity with respect to established fall risk factors. Frequent fallers (≥3 falls) performed significantly worse in the CSRT test than non-frequent fallers (0-2 falls). With the odds of suffering frequent falls increasing 69% with each SD increase in CSRT (OR = 1.69, 95% CI: 1.27-2.26, p = <0.001). In regression analysis, CSRT was best explained by sway, time to complete the 9-Hole Peg test, knee extension strength of the weaker leg, proprioception and the time to complete the Trails B test (multiple R 2   =   0.449, p < 0.001). Conclusions A simple low tech CSRT test has excellent discriminative and predictive validity in relation to falls in people with MS. This test may prove useful in documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions. Implications for rehabilitation Good choice stepping reaction time (CSRT) is required for maintaining balance. A simple low-tech CSRT test has excellent discriminative and predictive validity in relation to falls in people with MS. This test may prove useful documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions.

  20. Influence of ageing on self-etch adhesives: one-step vs. two-step systems.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Visintini, Erika; Diolosà, Marina; Turco, Gianluca; Salgarello, Stefano; Di Lenarda, Roberto; Cadenaro, Milena; Breschi, Lorenzo

    2013-02-01

    The aim of this study was to evaluate microtensile bond strength (μTBS) to dentine, interfacial nanoleakage expression, and stability after ageing, of two-step vs. one-step self-etch adhesives. Human molars were cut to expose middle/deep dentine, assigned to groups (n = 15), and treated with the following bonding systems: (i) Optibond XTR (a two-step self-etch adhesive; Kerr), (ii) Clearfil SE Bond (a two-step self-etch adhesive; Kuraray), (iii) Adper Easy Bond (a one-step self-etch adhesive; 3M ESPE), and (iv) Bond Force (a one-step self-etch adhesive; Tokuyama). Specimens were processed for μTBS testing after 24 h, 6 months, or 1 yr of storage in artificial saliva at 37°C. Nanoleakage expression was examined in similarly processed additional specimens. At baseline the μTBS results ranked in the following order: Adper Easy Bond = Optibond XTR ≥Clearfil SE = Bond Force, and interfacial nanoleakage analysis showed Clearfil SE Bond = Adper Easy Bond = Optibond XTR> Bond Force. After 1 yr of storage, Optibond XTR, Clearfil SE Bond, and Adper Easy Bond showed higher μTBS and lower interfacial nanoleakage expression compared with Bond Force. In conclusion, immediate bond strength, nanoleakage expression, and stability over time were not related to the number of steps of the bonding systems, but to their chemical formulations. © 2012 Eur J Oral Sci.

  1. Seasonal Influenza Forecasting in Real Time Using the Incidence Decay With Exponential Adjustment Model.

    PubMed

    Nasserie, Tahmina; Tuite, Ashleigh R; Whitmore, Lindsay; Hatchette, Todd; Drews, Steven J; Peci, Adriana; Kwong, Jeffrey C; Friedman, Dara; Garber, Gary; Gubbay, Jonathan; Fisman, David N

    2017-01-01

    Seasonal influenza epidemics occur frequently. Rapid characterization of seasonal dynamics and forecasting of epidemic peaks and final sizes could help support real-time decision-making related to vaccination and other control measures. Real-time forecasting remains challenging. We used the previously described "incidence decay with exponential adjustment" (IDEA) model, a 2-parameter phenomenological model, to evaluate the characteristics of the 2015-2016 influenza season in 4 Canadian jurisdictions: the Provinces of Alberta, Nova Scotia and Ontario, and the City of Ottawa. Model fits were updated weekly with receipt of incident virologically confirmed case counts. Best-fit models were used to project seasonal influenza peaks and epidemic final sizes. The 2015-2016 influenza season was mild and late-peaking. Parameter estimates generated through fitting were consistent in the 2 largest jurisdictions (Ontario and Alberta) and with pooled data including Nova Scotia counts (R 0 approximately 1.4 for all fits). Lower R 0 estimates were generated in Nova Scotia and Ottawa. Final size projections that made use of complete time series were accurate to within 6% of true final sizes, but final size was using pre-peak data. Projections of epidemic peaks stabilized before the true epidemic peak, but these were persistently early (~2 weeks) relative to the true peak. A simple, 2-parameter influenza model provided reasonably accurate real-time projections of influenza seasonal dynamics in an atypically late, mild influenza season. Challenges are similar to those seen with more complex forecasting methodologies. Future work includes identification of seasonal characteristics associated with variability in model performance.

  2. Electronic gaming and psychosocial adjustment.

    PubMed

    Przybylski, Andrew K

    2014-09-01

    The rise of electronic games has driven both concerns and hopes regarding their potential to influence young people. Existing research identifies a series of isolated positive and negative effects, yet no research to date has examined the balance of these potential effects in a representative sample of children and adolescents. The objective of this study was to explore how time spent playing electronic games accounts for significant variation in positive and negative psychosocial adjustment using a representative cohort of children aged 10 to 15 years. A large sample of children and adolescents aged 10 to 15 years completed assessments of psychosocial adjustment and reported typical daily hours spent playing electronic games. Relations between different levels of engagement and indicators of positive and negative psychosocial adjustment were examined, controlling for participant age and gender and weighted for population representativeness. Low levels (<1 hour daily) as well as high levels (>3 hours daily) of game engagement was linked to key indicators of psychosocial adjustment. Low engagement was associated with higher life satisfaction and prosocial behavior and lower externalizing and internalizing problems, whereas the opposite was found for high levels of play. No effects were observed for moderate play levels when compared with non-players. The links between different levels of electronic game engagement and psychosocial adjustment were small (<1.6% of variance) yet statistically significant. Games consistently but not robustly associated with children's adjustment in both positive and negative ways, findings that inform policy-making as well as future avenues for research in the area. Copyright © 2014 by the American Academy of Pediatrics.

  3. A comparative study of adjustable and non-adjustable sutures in primary horizontal muscle surgery in children

    PubMed Central

    Kamal, A M; Abozeid, D; Seif, Y; Hassan, M

    2016-01-01

    Purpose To compare the results of using adjustable and non-adjustable sutures in primary horizontal strabismus surgeries in children. Methods This randomized control trial included 60 cases of primary horizontal deviation. The adjustable suture (AS) group included 30 patients, and the non-adjustable suture (NAS) group included 30 patients. The follow-up period was at least 6 months. A successful motor outcome was defined as orthophoria or a horizontal tropia of 8 PD or less at both near and far distances. The success rate and ocular drift were recorded and analysed. Results The mean age in the AS group was 3.48±2.37 years at the time of surgery. The mean age in the NAS group was 3.55±2.64 years at the time of surgery. The success rate at the end of 6 months was 86.67% in the AS group and 73.33% in the NAS group (P=0.197). In exotropic patients, there was a mean undercorrection drift of 2.86 PD in the AS group and a mean undercorrection drift of 2.17 PD in the NAS group. In esotropic patients, there was a mean undercorrection drift of 0.26 PD in the AS group and a mean undercorrection drift of 1.83 PD in the NAS group. Conclusion There was no significant difference between the groups. However, the success rate was clinically higher in the AS group than in the NAS group. PMID:27419838

  4. Unsteady Crystal Growth Due to Step-Bunch Cascading

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Lin, Hong; Rosenberger, Franz

    1997-01-01

    Based on our experimental findings of growth rate fluctuations during the crystallization of the protein lysozym, we have developed a numerical model that combines diffusion in the bulk of a solution with diffusive transport to microscopic growth steps that propagate on a finite crystal facet. Nonlinearities in layer growth kinetics arising from step interaction by bulk and surface diffusion, and from step generation by surface nucleation, are taken into account. On evaluation of the model with properties characteristic for the solute transport, and the generation and propagation of steps in the lysozyme system, growth rate fluctuations of the same magnitude and characteristic time, as in the experiments, are obtained. The fluctuation time scale is large compared to that of step generation. Variations of the governing parameters of the model reveal that both the nonlinearity in step kinetics and mixed transport-kinetics control of the crystallization process are necessary conditions for the fluctuations. On a microscopic scale, the fluctuations are associated with a morphological instability of the vicinal face, in which a step bunch triggers a cascade of new step bunches through the microscopic interfacial supersaturation distribution.

  5. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  6. A prospective study of adjustment to hemodialysis.

    PubMed

    Lev, E L; Owen, S V

    1998-10-01

    To examine (a) changes in subjects' self-care self-efficacy over time and (b) the relationship of subjects' self-care self-efficacy with adjustment to hemodialysis. A longitudinal design was used to study changes in self-care self-efficacy and associations between self-care self-efficacy and measures of adjustment: health status, mood distress, symptom distress, dialysis stress, and perceived adherence to fluid restriction. Subjects were recruited from 8 settings in the Northeast where outpatient hemodialysis treatment was administered. Sixty-four subjects were recruited to the study. Twenty-eight subjects completed 3 occasions of data collection. Data were collected on three occasions: (a) baseline-within 100 days of beginning treatment; (b) 4 months after beginning treatment; and (c) 8 months after beginning treatment. Eta-squared, a measure of practical significance, is reported for four factors of the self-care self-efficacy measure on each of the three occasions. Associations between self-care self-efficacy and measures of adjustment were examined by means of Pearson correlations. Eta-squared estimates showed generally positive changes occurring over time in subjects' self-care self-efficacy, health status, mood distress, symptom distress, dialysis stress, and perceived adherence to fluid restriction. Changes were more positive at 4-months than at 8-months after enrollment. Significant correlations (p < .05) occurred between self-care self-efficacy and mood states, health status, symptom distress, and perceived adherence to fluid restrictions. Correlations occurred more frequently between self-care self-efficacy and mood states than between self-care self-efficacy and other measures of adjustment. The study provided pilot data suggesting that hemodialysis patients' self-care self-efficacy and measures of adjustment change over time. Patients who had increased confidence in self-care strategies (self-efficacy) were associated with having more positive mood

  7. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences. PMID:27668140

  8. MIDAS robust trend estimator for accurate GPS station velocities without step detection.

    PubMed

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes v ij  = ( x j -x i )/( t j -t i ) computed between all data pairs i  >  j . For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  9. Step Bunching: Influence of Impurities and Solution Flow

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Vekilov, P. G.; Coriell, S. R.; Murray, B. T.; McFadden, G. B.

    1999-01-01

    Step bunching results in striations even at relatively early stages of its development and in inclusions of mother liquor at the later stages. Therefore, eliminating step bunching is crucial for high crystal perfection. At least 5 major effects causing and influencing step bunching are known: (1) Basic morphological instability of stepped interfaces. It is caused by concentration gradient in the solution normal to the face and by the redistribution of solute tangentially to the interface which redistribution enhances occasional perturbations in step density due to various types of noise; (2) Aggravation of the above basic instability by solution flowing tangentially to the face in the same directions as the steps or stabilization of equidistant step train if these flows are antiparallel; (3) Enhanced bunching at supersaturation where step velocity v increases with relative supersaturation s much faster than linear. This v(s) dependence is believed to be associated with impurities. The impurities of which adsorption time is comparable with the time needed to deposit one lattice layer may also be responsible for bunching; (4) Very intensive solution flow stabilizes growing interface even at parallel solution and step flows; (5) Macrosteps were observed to nucleate at crystal corners and edges. Numerical simulation, assuming step-step interactions via surface diffusion also show that step bunching may be induced by random step nucleation at the facet edge and by discontinuity in the step density (a ridge) somewhere in the middle of a face. The corresponding bunching patterns produce the ones observed in experiment. The nature of step bunching generated at the corners and edges and by dislocation step sources, as well as the also relative importance and interrelations between mechanisms 1-5 is not clear, both from experimental and theoretical standpoints. Furthermore, several laws controlling the evolution of existing step bunches have been suggested, though

  10. Several steps/day indicators predict changes in anthropometric outcomes: HUB city steps

    USDA-ARS?s Scientific Manuscript database

    Walking for exercise remains the most frequently reported leisure-time activity, likely because it is simple, inexpensive, and easily incorporated into most people’s lifestyle. Pedometers are simple, convenient, and economical tools that can be used to quantify step-determined physical activity. F...

  11. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    PubMed

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  12. Extended Follow-up Confirms Early Vaccine-Enhanced Risk of HIV Acquisition and Demonstrates Waning Effect Over Time Among Participants in a Randomized Trial of Recombinant Adenovirus HIV Vaccine (Step Study)

    PubMed Central

    Duerr, Ann; Huang, Yunda; Buchbinder, Susan; Coombs, Robert W.; Sanchez, Jorge; del Rio, Carlos; Casapia, Martin; Santiago, Steven; Gilbert, Peter; Corey, Lawrence; Robertson, Michael N.

    2012-01-01

    Background. The Step Study tested whether an adenovirus serotype 5 (Ad5)–vectored human immunodeficiency virus (HIV) vaccine could prevent HIV acquisition and/or reduce viral load set-point after infection. At the first interim analysis, nonefficacy criteria were met. Vaccinations were halted; participants were unblinded. In post hoc analyses, more HIV infections occurred in vaccinees vs placebo recipients in men who had Ad5-neutralizing antibodies and/or were uncircumcised. Follow-up was extended to assess relative risk of HIV acquisition in vaccinees vs placebo recipients over time. Methods. We used Cox proportional hazard models for analyses of vaccine effect on HIV acquisition and vaccine effect modifiers, and nonparametric and semiparametric methods for analysis of constancy of relative risk over time. Results. One hundred seventy-two of 1836 men were infected. The adjusted vaccinees vs placebo recipients hazard ratio (HR) for all follow-up time was 1.40 (95% confidence interval [CI], 1.03–1.92; P = .03). Vaccine effect differed by baseline Ad5 or circumcision status during first 18 months, but neither was significant for all follow-up time. The HR among uncircumcised and/or Ad5-seropositive men waned with time since vaccination. No significant vaccine-associated risk was seen among circumcised, Ad5-negative men (HR, 0.97; P = 1.0) over all follow-up time. Conclusions. The vaccine-associated risk seen in interim analysis was confirmed but waned with time from vaccination. Clinical Trials Registration. NCT00095576. PMID:22561365

  13. Objectively Measured Daily Steps and Subsequent Long Term All-Cause Mortality: The Tasped Prospective Cohort Study.

    PubMed

    Dwyer, Terence; Pezic, Angela; Sun, Cong; Cochrane, Jenny; Venn, Alison; Srikanth, Velandai; Jones, Graeme; Shook, Robin P; Shook, Robin; Sui, Xuemei; Ortaglia, Andrew; Blair, Steven; Ponsonby, Anne-Louise

    2015-01-01

    Self-reported physical activity has been inversely associated with mortality but the effect of objectively measured step activity on mortality has never been evaluated. The objective is to determine the prospective association of daily step activity on mortality among free-living adults. Cohort study of free-living adults residing in Tasmania, Australia between 2000 and 2005 who participated in one of three cohort studies (n = 2 576 total participants). Daily step activity by pedometer at baseline at a mean of 58.8 years of age, and for a subset, repeated monitoring was available 3.7 (SD 1.3) years later (n = 1 679). All-cause mortality (n = 219 deaths) was ascertained by record-linkage to the Australian National Death Index; 90% of participants were followed-up over ten years, until June 2011. Higher daily step count at baseline was linearly associated with lower all-cause mortality (adjusted hazard ratio AHR, 0.94; 95% CI, 0.90 to 0.98 per 1 000 steps; P = 0.004). Risk was altered little by removing deaths occurring in the first two years. Increasing baseline daily steps from sedentary to 10 000 steps a day was associated with a 46% (95% CI, 18% to 65%; P = 0.004) lower risk of mortality in the decade of follow-up. In addition, those who increased their daily steps over the monitoring period had a substantial reduction in mortality risk, after adjusting for baseline daily step count (AHR, 0.39; 95% CI, 0.22 to 0.72; P = 0.002), or other factors (AHR, 0.38; 95% CI, 0.21-0.70; P = 0.002). Higher daily step count was linearly associated with subsequent long term mortality among free living adults. These data are the first to quantify mortality reductions using an objective measure of physical activity in a free living population. They strongly underscore the importance of physical inactivity as a major public health problem.

  14. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    PubMed

    O'Connell, Sandra; ÓLaighin, Gearóid; Quinlan, Leo R

    2017-01-01

    Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both). The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both). As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non-stepping

  15. Social Functioning and Adjustment in Chinese Children: The Imprint of Historical Time

    ERIC Educational Resources Information Center

    Chen, Xinyin; Cen, Guozhen; Li, Dan; He, Yunfeng

    2005-01-01

    This study examined, in 3 cohorts (1990, 1998, and 2002) of elementary school children (M age10 years), relations between social functioning and adjustment in different phases of the societal transition in China. Data were obtained from multiple sources. The results indicate that sociability-cooperation was associated with peer acceptance and…

  16. Predictors of sociocultural adjustment among sojourning Malaysian students in Britain.

    PubMed

    Swami, Viren

    2009-08-01

    The process of cross-cultural migration may be particularly difficult for students travelling overseas for further or higher education, especially where qualitative differences exist between the home and host nations. The present study examined the sociocultural adjustment of sojourning Malaysian students in Britain. Eighty-one Malay and 110 Chinese students enrolled in various courses answered a self-report questionnaire that examined various aspects of sociocultural adjustment. A series of one-way analyses of variance showed that Malay participants experienced poorer sociocultural adjustment in comparison with their Chinese counterparts. They were also less likely than Chinese students to have contact with co-nationals and host nationals, more likely to perceive their actual experience in Britain as worse than they had expected, and more likely to perceive greater cultural distance and greater discrimination. The results of regression analyses showed that, for Malay participants, perceived discrimination accounted for the greatest proportion of variance in sociocultural adjustment (73%), followed by English language proficiency (10%) and contact with host nationals (4%). For Chinese participants, English language proficiency was the strongest predictor of sociocultural adjustment (54%), followed by expectations of life in Britain (18%) and contact with host nationals (3%). By contrast, participants' sex, age, and length of residence failed to emerge as significant predictors for either ethnic group. Possible explanations for this pattern of findings are discussed, including the effects of Islamophobia on Malay-Muslims in Britain, possible socioeconomic differences between Malay and Chinese students, and personality differences between the two ethnic groups. The results are further discussed in relation to practical steps that can be taken to improve the sociocultural adjustment of sojourning students in Britain.

  17. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width.

    PubMed

    Learn, R; Feigenbaum, E

    2016-06-01

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  18. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Learn, R.; Feigenbaum, E.

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  19. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

    DOE PAGES

    Learn, R.; Feigenbaum, E.

    2016-05-27

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  20. ELECTROMYOGRAPHIC ASSESSMENT OF MUSCLE ACTIVITY BETWEEN GENDERS DURING UNILATERAL WEIGHT‐BEARING TASKS USING ADJUSTED DISTANCES

    PubMed Central

    Wilhelm, Jacqueline; Eisel, Patricia; Wiesner, Jessica; Rachow, Megan; Hatteberg, Lindsay

    2012-01-01

    Purpose/Background: Researchers have observed differences in muscle activity patterns between males and females during functional exercises. The research methods employed have used various step heights and lunge distances to assess functional exercise making gender comparisons difficult. The purpose of this study was to examine core and lower extremity muscle activity between genders during single‐limb exercises using adjusted distances and step heights based on a percentage of the participant's height. Methods: Twenty men and 20 women who were recreationally active and healthy participated in the study. Two‐dimensional video and surface electromyography (SEMG) were used to assess performance during three exercise maneuvers (step down, forward lunge, and side‐step lunge). Eight muscles were assessed using SEMG (rectus abdominus, external oblique, erector spinae, rectus femoris, tensor fascia latae, gluteus medius, gluteus maximus, biceps femoris). Maximal voluntary isometric contractions (MVIC) were used for each muscle and expressed as %MVIC to normalize SEMG to account for body mass differences. Exercises were randomized and distances were normalized to the participant's lower limb length. Descriptive statistics, mixed‐model ANOVA, and ICCs with 95% confidence intervals were calculated. Results: Males were taller, heavier, and had longer leg length when compared to the females. No differences in %MVIC activity were found between genders by task across the eight muscles. For both males and females, the step down task resulted in higher %MVIC for gluteus maximus compared to lunge, (p=0.002). Step down exercise produced higher %MVIC for gluteus medius than lunge (p=0.002) and side step (p=0.006). ICC3,3 ranged from moderate to high (0.74 to 0.97) for the three tasks. Conclusions: Muscle activation among the eight muscles was similar between females and males during the lunge, side‐step, and step down tasks, with distances adjusted to leg length. Both males

  1. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    PubMed

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  2. Bundle adjustment with raw inertial observations in UAV applications

    NASA Astrophysics Data System (ADS)

    Cucci, Davide Antonio; Rehak, Martin; Skaloud, Jan

    2017-08-01

    It is well known that accurate aerial position and attitude control is beneficial for image orientation in airborne photogrammetry. The aerial control is traditionally obtained by Kalman filtering/smoothing inertial and GNSS observations prior to the bundle-adjustment. However, in Micro Aerial Vehicles this process may result in poor attitude determination due to the limited quality of the inertial sensors, large alignment uncertainty and residual correlations between sensor biases and initial attitude. We propose to include the raw inertial observations directly into the bundle-adjustment instead of as position and attitude weighted observations from a separate inertial/GNSS fusion step. The necessary observation models are derived in detail within the context of the so called "Dynamic Networks". We examine different real world cases and we show that the proposed approach is superior to the established processing pipeline in challenging scenarios such as mapping in corridors and in areas where the reception of GNSS signals is denied.

  3. Estimates of over-diagnosis of breast cancer due to population-based mammography screening in South Australia after adjustment for lead time effects.

    PubMed

    Beckmann, Kerri; Duffy, Stephen W; Lynch, John; Hiller, Janet; Farshid, Gelareh; Roder, David

    2015-09-01

    To estimate over-diagnosis due to population-based mammography screening using a lead time adjustment approach, with lead time measures based on symptomatic cancers only. Women aged 40-84 in 1989-2009 in South Australia eligible for mammography screening. Numbers of observed and expected breast cancer cases were compared, after adjustment for lead time. Lead time effects were modelled using age-specific estimates of lead time (derived from interval cancer rates and predicted background incidence, using maximum likelihood methods) and screening sensitivity, projected background breast cancer incidence rates (in the absence of screening), and proportions screened, by age and calendar year. Lead time estimates were 12, 26, 43 and 53 months, for women aged 40-49, 50-59, 60-69 and 70-79 respectively. Background incidence rates were estimated to have increased by 0.9% and 1.2% per year for invasive and all breast cancer. Over-diagnosis among women aged 40-84 was estimated at 7.9% (0.1-12.0%) for invasive cases and 12.0% (5.7-15.4%) when including ductal carcinoma in-situ (DCIS). We estimated 8% over-diagnosis for invasive breast cancer and 12% inclusive of DCIS cancers due to mammography screening among women aged 40-84. These estimates may overstate the extent of over-diagnosis if the increasing prevalence of breast cancer risk factors has led to higher background incidence than projected. © The Author(s) 2015.

  4. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger.

    PubMed

    Rogers, Mark W; Mille, Marie-Laure

    2016-08-15

    Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation-induced steps that are triggered as fast as or faster than for younger adults. While age-associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step-triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event-triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  5. Navier-Stokes calculations for DFVLR F5-wing in wind tunnel using Runge-Kutta time-stepping scheme

    NASA Technical Reports Server (NTRS)

    Vatsa, V. N.; Wedan, B. W.

    1988-01-01

    A three-dimensional Navier-Stokes code using an explicit multistage Runge-Kutta type of time-stepping scheme is used for solving the transonic flow past a finite wing mounted inside a wind tunnel. Flow past the same wing in free air was also computed to assess the effect of wind-tunnel walls on such flows. Numerical efficiency is enhanced through vectorization of the computer code. A Cyber 205 computer with 32 million words of internal memory was used for these computations.

  6. Focal cryotherapy: step by step technique description

    PubMed Central

    Redondo, Cristina; Srougi, Victor; da Costa, José Batista; Baghdad, Mohammed; Velilla, Guillermo; Nunes-Silva, Igor; Bergerat, Sebastien; Garcia-Barreras, Silvia; Rozet, François; Ingels, Alexandre; Galiano, Marc; Sanchez-Salas, Rafael; Barret, Eric; Cathelineau, Xavier

    2017-01-01

    ABSTRACT Introduction and objective: Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa). The purpose of this video is to describe the procedure step by step. Materials and methods: We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. Results: The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipment utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40°C) to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1–5). Conclusions: Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment. PMID:28727387

  7. Focal cryotherapy: step by step technique description.

    PubMed

    Redondo, Cristina; Srougi, Victor; da Costa, José Batista; Baghdad, Mohammed; Velilla, Guillermo; Nunes-Silva, Igor; Bergerat, Sebastien; Garcia-Barreras, Silvia; Rozet, François; Ingels, Alexandre; Galiano, Marc; Sanchez-Salas, Rafael; Barret, Eric; Cathelineau, Xavier

    2017-01-01

    Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa). The purpose of this video is to describe the procedure step by step. We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipament utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40ºC) to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1-5). Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment. Copyright® by the International Brazilian Journal of Urology.

  8. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger

    PubMed Central

    Mille, Marie‐Laure

    2016-01-01

    Abstract Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation‐induced steps that are triggered as fast as or faster than for younger adults. While age‐associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step‐triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event‐triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. PMID:26915664

  9. Longitudinal assessment of maternal parenting capacity variables and child adjustment outcomes in pediatric cancer.

    PubMed

    Fedele, David A; Mullins, Larry L; Wolfe-Christensen, Cortney; Carpentier, Melissa Y

    2011-04-01

    This preliminary investigation aimed to longitudinally examine parenting capacity variables, namely parental overprotection, perceived child vulnerability, and parenting stress and their relation to child adjustment in mothers of children on treatment for cancer. As part of a larger study, biological mothers (N=22) completed measures of parental overprotection, perceived child vulnerability, parenting stress, and child adjustment at Time 1 and a follow-up time point. Analyses were conducted to determine whether (1) levels of parental overprotection, perceived child vulnerability, and parenting stress declined from Time 1 to follow-up and (2) if Time 1 parenting capacity variables were associated with child adjustment at follow-up. Results revealed that parental overprotection, perceived child vulnerability, and parenting stress declined from Time 1 to follow-up, and levels of parental overprotection, perceived child vulnerability, and parenting stress at Time 1 were significantly related to child adjustment at follow-up. Collectively, the preliminary findings of this study indicate that mothers of children with cancer evidence improved parenting capacity over time. Furthermore, it seems that Time 1 parenting capacity variables are significantly related to later child adjustment.

  10. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Ferre, Ty P.A.

    2015-01-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively

  11. Regression Trees Identify Relevant Interactions: Can This Improve the Predictive Performance of Risk Adjustment?

    PubMed

    Buchner, Florian; Wasem, Jürgen; Schillo, Sonja

    2017-01-01

    Risk equalization formulas have been refined since their introduction about two decades ago. Because of the complexity and the abundance of possible interactions between the variables used, hardly any interactions are considered. A regression tree is used to systematically search for interactions, a methodologically new approach in risk equalization. Analyses are based on a data set of nearly 2.9 million individuals from a major German social health insurer. A two-step approach is applied: In the first step a regression tree is built on the basis of the learning data set. Terminal nodes characterized by more than one morbidity-group-split represent interaction effects of different morbidity groups. In the second step the 'traditional' weighted least squares regression equation is expanded by adding interaction terms for all interactions detected by the tree, and regression coefficients are recalculated. The resulting risk adjustment formula shows an improvement in the adjusted R 2 from 25.43% to 25.81% on the evaluation data set. Predictive ratios are calculated for subgroups affected by the interactions. The R 2 improvement detected is only marginal. According to the sample level performance measures used, not involving a considerable number of morbidity interactions forms no relevant loss in accuracy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Predictive wall adjustment strategy for two-dimensional flexible walled adaptive wind tunnel: A detailed description of the first one-step method

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Goodyer, Michael J.

    1988-01-01

    Following the realization that a simple iterative strategy for bringing the flexible walls of two-dimensional test sections to streamline contours was too slow for practical use, Judd proposed, developed, and placed into service what was the first Predictive Strategy. The Predictive Strategy reduced by 75 percent or more the number of iterations of wall shapes, and therefore the tunnel run-time overhead attributable to the streamlining process, required to reach satisfactory streamlines. The procedures of the Strategy are embodied in the FORTRAN subroutine WAS (standing for Wall Adjustment Strategy) which is written in general form. The essentials of the test section hardware, followed by the underlying aerodynamic theory which forms the basis of the Strategy, are briefly described. The subroutine is then presented as the Appendix, broken down into segments with descriptions of the numerical operations underway in each, with definitions of variables.

  13. Capacitor charging FET switcher with controller to adjust pulse width

    DOEpatents

    Mihalka, Alex M.

    1986-01-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  14. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  15. A GLM Post-processor to Adjust Ensemble Forecast Traces

    NASA Astrophysics Data System (ADS)

    Thiemann, M.; Day, G. N.; Schaake, J. C.; Draijer, S.; Wang, L.

    2011-12-01

    The skill of hydrologic ensemble forecasts has improved in the last years through a better understanding of climate variability, better climate forecasts and new data assimilation techniques. Having been extensively utilized for probabilistic water supply forecasting, interest is developing to utilize these forecasts in operational decision making. Hydrologic ensemble forecast members typically have inherent biases in flow timing and volume caused by (1) structural errors in the models used, (2) systematic errors in the data used to calibrate those models, (3) uncertain initial hydrologic conditions, and (4) uncertainties in the forcing datasets. Furthermore, hydrologic models have often not been developed for operational decision points and ensemble forecasts are thus not always available where needed. A statistical post-processor can be used to address these issues. The post-processor should (1) correct for systematic biases in flow timing and volume, (2) preserve the skill of the available raw forecasts, (3) preserve spatial and temporal correlation as well as the uncertainty in the forecasted flow data, (4) produce adjusted forecast ensembles that represent the variability of the observed hydrograph to be predicted, and (5) preserve individual forecast traces as equally likely. The post-processor should also allow for the translation of available ensemble forecasts to hydrologically similar locations where forecasts are not available. This paper introduces an ensemble post-processor (EPP) developed in support of New York City water supply operations. The EPP employs a general linear model (GLM) to (1) adjust available ensemble forecast traces and (2) create new ensembles for (nearby) locations where only historic flow observations are available. The EPP is calibrated by developing daily and aggregated statistical relationships form historical flow observations and model simulations. These are then used in operation to obtain the conditional probability density

  16. Consequences of self-handicapping: effects on coping, academic performance, and adjustment.

    PubMed

    Zuckerman, M; Kieffer, S C; Knee, C R

    1998-06-01

    Self-handicappers erect impediments to performance to protect their self-esteem. The impediments may interfere with the ability to do well and, as such, may result in poor adjustment. Using a longitudinal design, the present studies examined prospective effects of self-handicapping on coping, academic performance, and several adjustment-related variables (e.g., self-esteem). It was found that, compared to low self-handicappers, high self-handicappers reported higher usage of coping strategies implying withdrawal and negative focus. High self-handicappers performed less well academically, an effect that was mediated in part by poor study habits. Finally, high self-handicapping resulted in poorer adjustment over time, and poorer adjustment resulted in higher self-handicapping over time. These relations are consistent with the idea of a vicious cycle in which self-handicapping and poor adjustment reinforce one another.

  17. A hierarchically honeycomb-like carbon via one-step surface and pore adjustment with superior capacity for lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhang, Yining; Zhou, Wei; Nie, Hongjiao; Zhang, Huamin

    2014-09-01

    Li-O2 batteries have attracted considerable attention due to their high energy density. The critical challenges that limit the practical applications include effective utilization of electrode space for solid products deposition and acceptable cycling performance. In the present work, a nitrogen-doped micron-sized honeycomb-like carbon is developed for use as a cathode material for Li-O2 batteries. This novel material is obtained by using nano-CaCO3 particles as hard template and sucrose as the carbon source, followed by thermal annealing at 800 °C in ammonia. With one-step ammonia activation, surface nitrogenation and further pore structure optimization are realized simultaneously. The material exhibits enhanced activity for oxygen reduction reaction and oxygen transfer ability. Surprisingly, an improved cycling stability is also obtained. As a result, a superior discharge capacity up to 12,600 mAh g-1 is achieved, about 4 times that of commercial Ketjenblack carbon. The results provide a novel route to construct effective non-metal carbon-based cathodes for high performance of Li-O2 batteries.

  18. Webinar Presentation: Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time

    EPA Pesticide Factsheets

    This presentation, Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome.

  19. Worksite adjustments and work ability among employed cancer survivors.

    PubMed

    Torp, Steffen; Nielsen, Roy A; Gudbergsson, Sævar B; Dahl, Alv A

    2012-09-01

    This study was conducted to determine how many cancer survivors (CSs) make worksite adjustments and what kinds of adjustments they make. Changes in work ability among employed CSs were explored, and clinical, sociodemographic, and work-related factors associated with the current total work ability were studied. CSs of the ten most common invasive types of cancer for men and women in Norway completed a mailed questionnaire 15-39 months after being diagnosed with cancer. Included in the analyses were all participants who worked both at the time of diagnosis and at the time of the survey and who had not changed their labor force status since diagnosis (n = 563). The current total work ability was compared to the lifetime best (0-10 score). Twenty-six percent of the employed CSs had made adjustments at work, and the most common adjustment was changing the number of work hours per week. Despite the fact that 31% and 23% reported reduced physical and mental work abilities, respectively, more than 90% of the CSs reported that they coped well with their work demands. The mean total work ability score was high (8.6) among both men and women. Being self-employed and working part-time at the time of diagnosis showed significant negative correlations with total work ability, while a favorable psychosocial work environment showed a significant positive correlation. CSs with low work ability were more often in contact with the occupational health service and also made more worksite adjustments than others. The prospects of future work life seem optimistic for Norwegian employed CSs who return to work relatively soon after primary treatment.

  20. Rapid Adjustment of Circadian Clocks to Simulated Travel to Time Zones across the Globe.

    PubMed

    Harrison, Elizabeth M; Gorman, Michael R

    2015-12-01

    Daily rhythms in mammalian physiology and behavior are generated by a central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN), the timing of which is set by light from the environment. When the ambient light-dark cycle is shifted, as occurs with travel across time zones, the SCN and its output rhythms must reset or re-entrain their phases to match the new schedule-a sluggish process requiring about 1 day per hour shift. Using a global assay of circadian resetting to 6 equidistant time-zone meridians, we document this characteristically slow and distance-dependent resetting of Syrian hamsters under typical laboratory lighting conditions, which mimic summer day lengths. The circadian pacemaker, however, is additionally entrainable with respect to its waveform (i.e., the shape of the 24-h oscillation) allowing for tracking of seasonally varying day lengths. We here demonstrate an unprecedented, light exposure-based acceleration in phase resetting following 2 manipulations of circadian waveform. Adaptation of circadian waveforms to long winter nights (8 h light, 16 h dark) doubled the shift response in the first 3 days after the shift. Moreover, a bifurcated waveform induced by exposure to a novel 24-h light-dark-light-dark cycle permitted nearly instant resetting to phase shifts from 4 to 12 h in magnitude, representing a 71% reduction in the mismatch between the activity rhythm and the new photocycle. Thus, a marked enhancement of phase shifting can be induced via nonpharmacological, noninvasive manipulation of the circadian pacemaker waveform in a model species for mammalian circadian rhythmicity. Given the evidence of conserved flexibility in the human pacemaker waveform, these findings raise the promise of flexible resetting applicable to circadian disruption in shift workers, frequent time-zone travelers, and any individual forced to adjust to challenging schedules. © 2015 The Author(s).

  1. 50 CFR 648.108 - Framework adjustments to management measures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Management Measures for the Summer Flounder Fisheries § 648.108 Framework adjustments to management measures... Council, at any time, may initiate action to add or adjust management measures within the Summer Flounder... revised text is set forth as follows: § 648.108 Summer flounder gear restrictions. (a) General. (1) Otter...

  2. The discriminant capabilities of stability measures, trunk kinematics, and step kinematics in classifying successful and failed compensatory stepping responses by young adults.

    PubMed

    Crenshaw, Jeremy R; Rosenblatt, Noah J; Hurt, Christopher P; Grabiner, Mark D

    2012-01-03

    This study evaluated the discriminant capability of stability measures, trunk kinematics, and step kinematics to classify successful and failed compensatory stepping responses. In addition, the shared variance between stability measures, step kinematics, and trunk kinematics is reported. The stability measures included the anteroposterior distance (d) between the body center of mass and the stepping limb toe, the margin of stability (MOS), as well as time-to-boundary considering velocity (TTB(v)), velocity and acceleration (TTB(a)), and MOS (TTB(MOS)). Kinematic measures included trunk flexion angle and angular velocity, step length, and the time after disturbance onset of recovery step completion. Fourteen young adults stood on a treadmill that delivered surface accelerations necessitating multiple forward compensatory steps. Thirteen subjects fell from an initial disturbance, but recovered from a second, identical disturbance. Trunk flexion velocity at completion of the first recovery step and trunk flexion angle at completion of the second step had the greatest overall classification of all measures (92.3%). TTB(v) and TTB(a) at completion of both steps had the greatest classification accuracy of all stability measures (80.8%). The length of the first recovery step (r ≤ 0.70) and trunk flexion angle at completion of the second recovery step (r ≤ -0.54) had the largest correlations with stability measures. Although TTB(v) and TTB(a) demonstrated somewhat smaller discriminant capabilities than trunk kinematics, the small correlations between these stability measures and trunk kinematics (|r| ≤ 0.52) suggest that they reflect two important, yet different, aspects of a compensatory stepping response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based onmore » the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.« less

  4. Stepped Care to Optimize Pain care Effectiveness (SCOPE) trial study design and sample characteristics.

    PubMed

    Kroenke, Kurt; Krebs, Erin; Wu, Jingwei; Bair, Matthew J; Damush, Teresa; Chumbler, Neale; York, Tish; Weitlauf, Sharon; McCalley, Stephanie; Evans, Erica; Barnd, Jeffrey; Yu, Zhangsheng

    2013-03-01

    Pain is the most common physical symptom in primary care, accounting for an enormous burden in terms of patient suffering, quality of life, work and social disability, and health care and societal costs. Although collaborative care interventions are well-established for conditions such as depression, fewer systems-based interventions have been tested for chronic pain. This paper describes the study design and baseline characteristics of the enrolled sample for the Stepped Care to Optimize Pain care Effectiveness (SCOPE) study, a randomized clinical effectiveness trial conducted in five primary care clinics. SCOPE has enrolled 250 primary care veterans with persistent (3 months or longer) musculoskeletal pain of moderate severity and randomized them to either the stepped care intervention or usual care control group. Using a telemedicine collaborative care approach, the intervention couples automated symptom monitoring with a telephone-based, nurse care manager/physician pain specialist team to treat pain. The goal is to optimize analgesic management using a stepped care approach to drug selection, symptom monitoring, dose adjustment, and switching or adding medications. All subjects undergo comprehensive outcome assessments at baseline, 1, 3, 6 and 12 months by interviewers blinded to treatment group. The primary outcome is pain severity/disability, and secondary outcomes include pain beliefs and behaviors, psychological functioning, health-related quality of life and treatment satisfaction. Innovations of SCOPE include optimized analgesic management (including a stepped care approach, opioid risk stratification, and criteria-based medication adjustment), automated monitoring, and centralized care management that can cover multiple primary care practices. Published by Elsevier Inc.

  5. Risk-Adjustment Simulation: Plans May Have Incentives To Distort Mental Health And Substance Use Coverage

    PubMed Central

    Montz, Ellen; Layton, Tim; Busch, Alisa B.; Ellis, Randall P.; Rose, Sherri; McGuire, Thomas G.

    2016-01-01

    Under the Affordable Care Act, the risk-adjustment program is designed to compensate health plans for enrolling people with poorer health status so that plans compete on cost and quality rather than the avoidance of high-cost individuals. This study examined health plan incentives to limit covered services for mental health and substance use disorders under the risk-adjustment system used in the health insurance Marketplaces. Through a simulation of the program on a population constructed to reflect Marketplace enrollees, we analyzed the cost consequences for plans enrolling people with mental health and substance use disorders. Our assessment points to systematic underpayment to plans for people with these diagnoses. We document how Marketplace risk adjustment does not remove incentives for plans to limit coverage for services associated with mental health and substance use disorders. Adding mental health and substance use diagnoses used in Medicare Part D risk adjustment is one potential policy step toward addressing this problem in the Marketplaces. PMID:27269018

  6. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    PubMed

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A new and inexpensive non-bit-for-bit solution reproducibility test based on time step convergence (TSC1.0)

    NASA Astrophysics Data System (ADS)

    Wan, Hui; Zhang, Kai; Rasch, Philip J.; Singh, Balwinder; Chen, Xingyuan; Edwards, Jim

    2017-02-01

    A test procedure is proposed for identifying numerically significant solution changes in evolution equations used in atmospheric models. The test issues a fail signal when any code modifications or computing environment changes lead to solution differences that exceed the known time step sensitivity of the reference model. Initial evidence is provided using the Community Atmosphere Model (CAM) version 5.3 that the proposed procedure can be used to distinguish rounding-level solution changes from impacts of compiler optimization or parameter perturbation, which are known to cause substantial differences in the simulated climate. The test is not exhaustive since it does not detect issues associated with diagnostic calculations that do not feedback to the model state variables. Nevertheless, it provides a practical and objective way to assess the significance of solution changes. The short simulation length implies low computational cost. The independence between ensemble members allows for parallel execution of all simulations, thus facilitating fast turnaround. The new method is simple to implement since it does not require any code modifications. We expect that the same methodology can be used for any geophysical model to which the concept of time step convergence is applicable.

  8. Adolescent Adjustment Before and After HIV-Related Parental Death.

    ERIC Educational Resources Information Center

    Rotheram-Borus, Mary Jane; Weiss, Robert; Alber, Susan; Lester, Patricia

    2005-01-01

    The impact of HIV-related parental death on 414 adolescents was examined over a period of 6 years. The adjustment of bereaved adolescents was compared over 4 time periods relative to parental death and was also compared with the adjustment of nonbereaved adolescents. Bereaved adolescents had significantly more emotional distress, negative life…

  9. Two-step rapid sulfur capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the rangemore » of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.« less

  10. Does fall history influence residential adjustments?

    PubMed

    Leland, Natalie; Porell, Frank; Murphy, Susan L

    2011-04-01

    To determine whether reported falls at baseline are associated with an older adult's decision to make a residential adjustment (RA) and the type of adjustment made in the subsequent 2 years. Observations (n = 25,036) were from the Health and Retirement Study, a nationally representative sample of community-living older adults, 65 years of age and older. At baseline, fall history (no fall, 1 fall no injury, 2 or more falls no injury, or 1 or more falls with an injury) and factors potentially associated with RA were used to predict the initiation of an RA (i.e., moving, home modifications, increased use of adaptive equipment, family support, or personal care assistance) during the subsequent 2 years. Compared with those with no history of falls, individuals with a history of falls had higher odds of making any RA. Among those making an RA, individuals with an injurious fall were more likely than those with no history of a fall to start using adaptive equipment or increase their use of personal care assistance. The higher initiation of RAs among fallers may indicate proactive steps to prevent future falls and may be influenced by interactions with the health care system. To optimize fall prevention efforts, older adults would benefit from education and interventions addressing optimal use of RAs before falls occur.

  11. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    NASA Astrophysics Data System (ADS)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  12. A two-step lyssavirus real-time polymerase chain reaction using degenerate primers with superior sensitivity to the fluorescent antigen test.

    PubMed

    Suin, Vanessa; Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael; Van Gucht, Steven

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤ 1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  13. The association of USMLE Step 1 and Step 2 CK scores with residency match specialty and location.

    PubMed

    Gauer, Jacqueline L; Jackson, J Brooks

    2017-01-01

    For future physicians, residency programs offer necessary extended training in specific medical specialties. Medical schools benefit from an understanding of factors that lead their students to match into certain residency specialties. One such factor, often used during the residency application process, is scores on the USA Medical Licensing Exam (USMLE). To determine the relationship between USMLE Step 1 and Step 2 Clinical Knowledge (CK) scores and students' residency specialty match, and the association between both USMLE scores and state of legal residency (Minnesota) at the time of admission with students staying in-state or leaving the state for residency program. USMLE scores and residency match data were analyzed from five graduating classes of students at the University of Minnesota Medical School (N = 1054). A MANOVA found significant differences (p < 0.001) between residency specialties and both USMLE Step 1 and Step 2 CK scores, as well as the combination of the two. Students who matched in Dermatology had the highest mean USMLE scores overall, while students who matched in Family Medicine had the lowest mean scores. Students who went out of state for residency had significantly higher Step 1 scores (p = 0.027) than students who stayed in-state for residency, while there was no significant difference between the groups for Step 2 scores. A significant positive association was found between a student who applied as a legal resident of Minnesota and whether the student stayed in Minnesota for their residency program. Residency specialty match was significantly associated with USMLE Step 1 and USMLE Step 2 CK scores, as was staying in-state or leaving the state for residency. Students who were legal residents of the state at the time of application were more likely to stay in-state for residency, regardless of USMLE score. CK: Clinical knowledge; COMLEX: Comprehensive Osteopathic Medical Licensing Examination; GME: Graduate medical education; NRMP

  14. The association of USMLE Step 1 and Step 2 CK scores with residency match specialty and location

    PubMed Central

    Gauer, Jacqueline L.; Jackson, J. Brooks

    2017-01-01

    ABSTRACT Background: For future physicians, residency programs offer necessary extended training in specific medical specialties. Medical schools benefit from an understanding of factors that lead their students to match into certain residency specialties. One such factor, often used during the residency application process, is scores on the USA Medical Licensing Exam (USMLE). Objectives: To determine the relationship between USMLE Step 1 and Step 2 Clinical Knowledge (CK) scores and students’ residency specialty match, and the association between both USMLE scores and state of legal residency (Minnesota) at the time of admission with students staying in-state or leaving the state for residency program. Design: USMLE scores and residency match data were analyzed from five graduating classes of students at the University of Minnesota Medical School (N = 1054). Results: A MANOVA found significant differences (p < 0.001) between residency specialties and both USMLE Step 1 and Step 2 CK scores, as well as the combination of the two. Students who matched in Dermatology had the highest mean USMLE scores overall, while students who matched in Family Medicine had the lowest mean scores. Students who went out of state for residency had significantly higher Step 1 scores (p = 0.027) than students who stayed in-state for residency, while there was no significant difference between the groups for Step 2 scores. A significant positive association was found between a student who applied as a legal resident of Minnesota and whether the student stayed in Minnesota for their residency program. Conclusions: Residency specialty match was significantly associated with USMLE Step 1 and USMLE Step 2 CK scores, as was staying in-state or leaving the state for residency. Students who were legal residents of the state at the time of application were more likely to stay in-state for residency, regardless of USMLE score. Abbreviations: CK: Clinical knowledge; COMLEX: Comprehensive

  15. Achieving the daily step goal of 10,000 steps: the experience of a Canadian family attached to pedometers.

    PubMed

    Choi, Bernard C K; Pak, Anita W P; Choi, Jerome C L; Choi, Elaine C L

    2007-01-01

    Health experts recommend daily step goals of 10,000 steps for adults and 12,000 steps for youths to achieve a healthy active living. This article reports the findings of a Canadian family project to investigate whether the recommended daily step goals are achievable in a real life setting, and suggests ways to increase the daily steps to meet the goal. The family project also provides an example to encourage more Canadians to conduct family projects on healthy living. This is a pilot feasibility study. A Canadian family was recruited for the study, with 4 volunteers (father, mother, son and daughter). Each volunteer was asked to wear a pedometer and to record daily steps for three time periods of each day during a 2-month period. Both minimal routine steps, and additional steps from special non-routine activities, were recorded at work, school and home. The mean number of daily steps from routine minimal daily activities for the family was 6685 steps in a day (16 hr, approx 400 steps/hr). There was thus a mean deficit of 4315 steps per day, or approximately 30,000 steps per week, from the goal (10,000 steps for adults; 12,000 steps for youths). Special activities that were found to effectively increase the steps above the routine level include: walking at brisk pace, grocery shopping, window shopping in a mall, going to an entertainment centre, and attending parties (such as to celebrate the holiday season and birthdays). To increase our daily steps to meet the daily step goal, a new culture is recommended: "get off the chair". By definition, sitting on a chair precludes the opportunity to walk. We encourage people to get off the chair, to go shopping, and to go partying, as a practical and fun way to increase the daily steps. This paper is a call for increased physical activity to meet the daily step goal.

  16. Height of a faceted macrostep for sticky steps in a step-faceting zone

    NASA Astrophysics Data System (ADS)

    Akutsu, Noriko

    2018-02-01

    The driving force dependence of the surface velocity and the average height of faceted merged steps, the terrace-surface slope, and the elementary step velocity are studied using the Monte Carlo method in the nonequilibrium steady state. The Monte Carlo study is based on a lattice model, the restricted solid-on-solid model with point-contact-type step-step attraction (p-RSOS model). The main focus of this paper is a change of the "kink density" on the vicinal surface. The temperature is selected to be in the step-faceting zone [N. Akutsu, AIP Adv. 6, 035301 (2016), 10.1063/1.4943400] where the vicinal surface is surrounded by the (001) terrace and the (111) faceted step at equilibrium. Long time simulations are performed at this temperature to obtain steady states for the different driving forces that influence the growth/recession of the surface. A Wulff figure of the p-RSOS model is produced through the anomalous surface tension calculated using the density-matrix renormalization group method. The characteristics of the faceted macrostep profile at equilibrium are classified with respect to the connectivity of the surface tension. This surface tension connectivity also leads to a faceting diagram, where the separated areas are, respectively, classified as a Gruber-Mullins-Pokrovsky-Talapov zone, step droplet zone, and step-faceting zone. Although the p-RSOS model is a simplified model, the model shows a wide variety of dynamics in the step-faceting zone. There are four characteristic driving forces: Δ μy,Δ μf,Δ μc o , and Δ μR . For the absolute value of the driving force, |Δ μ | is smaller than Max[ Δ μy,Δ μf] , the step attachment-detachments are inhibited, and the vicinal surface consists of (001) terraces and the (111) side surfaces of the faceted macrosteps. For Max[ Δ μy,Δ μf]<|Δ μ |<Δ μc o , the surface grows/recedes intermittently through the two-dimensional (2D) heterogeneous nucleation at the facet edge of the macrostep. For Δ

  17. Two-Step Formal Advertisement: An Examination.

    DTIC Science & Technology

    1976-10-01

    The purpose of this report is to examine the potential application of the Two-Step Formal Advertisement method of procurement. Emphasis is placed on...Step formal advertising is a method of procurement designed to take advantage of negotiation flexibility and at the same time obtain the benefits of...formal advertising . It is used where the specifications are not sufficiently definite or may be too restrictive to permit full and free competition

  18. [Spectral-Doppler-Sonography - Step by Step].

    PubMed

    Bönhof, Leoni; Steffgen, Ludwig; Bönhof, Jörg

    2018-06-07

    Step by step explanation and detailed overview of the correct approach to spectral-Doppler-sonography, including several practical examples. The article provides comprehensive explanations of the appropriate settings in different situations. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Dynamic balance and stepping versus tai chi training to improve balance and stepping in at-risk older adults.

    PubMed

    Nnodim, Joseph O; Strasburg, Debra; Nabozny, Martina; Nyquist, Linda; Galecki, Andrzej; Chen, Shu; Alexander, Neil B

    2006-12-01

    To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. Prospective intervention trial. Local senior centers and congregate housing facilities. Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. Participants were allocated to TC (n = 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n = 106, mean age 78). At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs.

  20. Unconditionally energy stable time stepping scheme for Cahn–Morral equation: Application to multi-component spinodal decomposition and optimal space tiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir

    An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less

  1. Effect of stepped care on health outcomes in patients with osteoarthritis: an observational study in Dutch general practice.

    PubMed

    Smink, Agnes J; van den Ende, Cornelia H M; Vliet Vlieland, Thea P M; Bijlsma, Johannes W J; Swierstra, Bart A; Kortland, Joke H; Voorn, Theo B; Teerenstra, Steven; Schers, Henk J; Dekker, Joost; Bierma-Zeinstra, Sita M A

    2014-09-01

    A stepped care strategy (SCS) to improve adequate healthcare use in patients with osteoarthritis was developed and implemented in a primary care region in the Netherlands. To assess the association between care that is in line with the SCS recommendations and health outcomes. Data were used from a 2-year observational study of 313 patients who had consulted their GP because of osteoarthritis. Care was considered 'SCS-consistent' if all advised modalities of the previous steps of the SCS were offered before more advanced modalities of subsequent steps. Pain and physical function were measured with the Western Ontario and McMaster Universities Osteoarthritis Index (range 0-100); active pain coping with the Pain Coping Inventory (range 10-40); and self-efficacy with the Dutch General Self-Efficacy Scale (range 12-48). Crude and adjusted associations between SCS-consistent care and outcomes were estimated with generalised estimating equations. No statistically significant differences were found in changes over a 2-year period in pain and physical function between patients who received SCS-inconsistent care (n = 163) and patients who received SCS-consistent care (n = 117). This was also the case after adjusting for possible confounders, that is, -4.3 (95% confidence interval [CI] = -10.3 to 1.7) and -1.9 (95% CI = -7.0 to 3.1), respectively. Furthermore, no differences were found in changes over time between groups in self-efficacy and pain coping. The results raised several important issues that need to be considered regarding the value of the SCS, such as the reasons that GPs provide SCS-inconsistent care, the long-term effects of the SCS, and the effects on costs and side effects. © British Journal of General Practice 2014.

  2. FY*X real-time polymerase chain reaction with melting curve analysis associated with a complete one-step real-time FY genotyping.

    PubMed

    Ansart-Pirenne, H; Martin-Blanc, S; Le Pennec, P-Y; Rouger, P; Cartron, J-P; Tournamille, C

    2007-02-01

    The Duffy (FY) blood group system is controlled by four major alleles: FY*A and FY*B, the Caucasian common alleles, encoding Fy(a) and Fy(b) antigens; FY*X allele responsible for a poorly expressed Fy(b) antigen, and FY*Fy a silent predominant allele among Black population. Despite the recent development of a real-time fluorescent polymerase chain reaction (PCR) method for FY genotyping FY*X genotyping has not been described by this method. This study focused on the real-time FY*X genotyping development associated with a complete, one-step real-time FY genotyping, based on fluorescence resonance energy transfer (FRET) technology. Seventy-two blood samples from Fy(a+b-) Caucasian blood donors were studied by real-time PCR only. Forty-seven Caucasian and Black individual blood samples, referred to our laboratory, were studied by PCR-RFLP and real-time PCR. For each individual, the result of the genotype was compared to the known phenotype. The FY*X allele frequency calculated in an Fy(a+b-) Caucasian blood donors population was 0.014. With the Caucasian and Black patient samples we found a complete correlation between PCR-RFLP and the real-time PCR method whatever the alleles combination tested. When the known phenotype was not correlated to FY*X genotype, the presence of the Fy(b) antigen was always confirmed by adsorption-elution. The real-time technology method is rapid and accurate for FY genotyping. From now, we are able to detect the FY*X allele in all the alleles combinations studied. Regarding its significant frequency, the detection of the FY*X allele is useful for the correct typing of blood donors and recipients considering the therapeutic use of blood units and the preparation of test red blood cells for antibody screening.

  3. Two-step chlorination: A new approach to disinfection of a primary sewage effluent.

    PubMed

    Li, Yu; Yang, Mengting; Zhang, Xiangru; Jiang, Jingyi; Liu, Jiaqi; Yau, Cie Fu; Graham, Nigel J D; Li, Xiaoyan

    2017-01-01

    Sewage disinfection aims at inactivating pathogenic microorganisms and preventing the transmission of waterborne diseases. Chlorination is extensively applied for disinfecting sewage effluents. The objective of achieving a disinfection goal and reducing disinfectant consumption and operational costs remains a challenge in sewage treatment. In this study, we have demonstrated that, for the same chlorine dosage, a two-step addition of chlorine (two-step chlorination) was significantly more efficient in disinfecting a primary sewage effluent than a one-step addition of chlorine (one-step chlorination), and shown how the two-step chlorination was optimized with respect to time interval and dosage ratio. Two-step chlorination of the sewage effluent attained its highest disinfection efficiency at a time interval of 19 s and a dosage ratio of 5:1. Compared to one-step chlorination, two-step chlorination enhanced the disinfection efficiency by up to 0.81- or even 1.02-log for two different chlorine doses and contact times. An empirical relationship involving disinfection efficiency, time interval and dosage ratio was obtained by best fitting. Mechanisms (including a higher overall Ct value, an intensive synergistic effect, and a shorter recovery time) were proposed for the higher disinfection efficiency of two-step chlorination in the sewage effluent disinfection. Annual chlorine consumption costs in one-step and two-step chlorination of the primary sewage effluent were estimated. Compared to one-step chlorination, two-step chlorination reduced the cost by up to 16.7%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.

    PubMed

    Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng

    2018-04-15

    This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting. Copyright © 2018 John Wiley & Sons, Ltd.

  5. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science andmore » Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.« less

  6. Reducing Office Workers' Sitting Time at Work Using Sit-Stand Protocols: Results From a Pilot Randomized Controlled Trial.

    PubMed

    Li, Ingrid; Mackey, Martin G; Foley, Bridget; Pappas, Evangelos; Edwards, Kate; Chau, Josephine Y; Engelen, Lina; Voukelatos, Alexander; Whelan, Anna; Bauman, Adrian; Winkler, Elisabeth; Stamatakis, Emmanuel

    2017-06-01

    To examine the effects of different sit-stand protocols on work-time sitting and physical activity (PA) of office workers. Participants (n = 26, 77% women, mean age 42) were randomly allocated to usual sitting (control) or one of three sit-stand protocols (intervention) facilitated by height-adjustable workstations for a 4-week period between June and August 2015. Sitting, standing, and stepping time were assessed by inclinometry (activPAL); leisure-time physical activity (LTPA) by self-report. One-way analysis of covariance (ANCOVA) and post-hoc (Bonferroni) tests explored between-group differences. Compared with baseline, intervention groups reduced work sitting time by 113 minutes/8-hour workday (95% confidence interval [CI] [-147,-79]) and increased work standing time by 96 minutes/8-hour workday (95% CI [67,125]) without significantly impacting LTPA/sleep time. Sit-stand protocols facilitated by height-adjustable workstations appear to reduce office workers' sitting time without significant adverse effects on LTPA.

  7. 2-Step scalar deadzone quantization for bitplane image coding.

    PubMed

    Auli-Llinas, Francesc

    2013-12-01

    Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.

  8. Identifying elderly people at risk for cognitive decline by using the 2-step test.

    PubMed

    Maruya, Kohei; Fujita, Hiroaki; Arai, Tomoyuki; Hosoi, Toshiki; Ogiwara, Kennichi; Moriyama, Shunnichiro; Ishibashi, Hideaki

    2018-01-01

    [Purpose] The purpose is to verify the effectiveness of the 2-step test in predicting cognitive decline in elderly individuals. [Subjects and Methods] One hundred eighty-two participants aged over 65 years underwent the 2-step test, cognitive function tests and higher level competence testing. Participants were classified as Robust, <1.3, and <1.1 using criteria regarding the locomotive syndrome risk stage for the 2-step test, variables were compared between groups. In addition, ordered logistic analysis was used to analyze cognitive functions as independent variables in the three groups, using the 2-step test results as the dependent variable, with age, gender, etc. as adjustment factors. [Results] In the crude data, the <1.3 and <1.1 groups were older and displayed lower motor and cognitive functions than did the Robust group. Furthermore, the <1.3 group exhibited significantly lower memory retention than did the Robust group. The 2-step test was related to the Stroop test (β: 0.06, 95% confidence interval: 0.01-0.12). [Conclusion] The finding is that the risk stage of the 2-step test is related to cognitive functions, even at an initial risk stage. The 2-step test may help with earlier detection and implementation of prevention measures for locomotive syndrome and mild cognitive impairment.

  9. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer.

    PubMed

    Belevich, Nikolai P; Bertsova, Yulia V; Verkhovskaya, Marina L; Baykov, Alexander A; Bogachev, Alexander V

    2016-02-01

    Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Elite sprinting: are athletes individually step-frequency or step-length reliant?

    PubMed

    Salo, Aki I T; Bezodis, Ian N; Batterham, Alan M; Kerwin, David G

    2011-06-01

    The aim of this study was to investigate the step characteristics among the very best 100-m sprinters in the world to understand whether the elite athletes are individually more reliant on step frequency (SF) or step length (SL). A total of 52 male elite-level 100-m races were recorded from publicly available television broadcasts, with 11 analyzed athletes performing in 10 or more races. For each run of each athlete, the average SF and SL over the whole 100-m distance was analyzed. To determine any SF or SL reliance for an individual athlete, the 90% confidence interval (CI) for the difference between the SF-time versus SL-time relationships was derived using a criterion nonparametric bootstrapping technique. Athletes performed these races with various combinations of SF and SL reliance. Athlete A10 yielded the highest positive CI difference (SL reliance), with a value of 1.05 (CI = 0.50-1.53). The largest negative difference (SF reliance) occurred for athlete A11 as -0.60, with the CI range of -1.20 to 0.03. Previous studies have generally identified only one of these variables to be the main reason for faster running velocities. However, this study showed that there is a large variation of performance patterns among the elite athletes and, overall, SF or SL reliance is a highly individual occurrence. It is proposed that athletes should take this reliance into account in their training, with SF-reliant athletes needing to keep their neural system ready for fast leg turnover and SL-reliant athletes requiring more concentration on maintaining strength levels.

  11. On the implementation of faults in finite-element glacial isostatic adjustment models

    NASA Astrophysics Data System (ADS)

    Steffen, Rebekka; Wu, Patrick; Steffen, Holger; Eaton, David W.

    2014-01-01

    Stresses induced in the crust and mantle by continental-scale ice sheets during glaciation have triggered earthquakes along pre-existing faults, commencing near the end of the deglaciation. In order to get a better understanding of the relationship between glacial loading/unloading and fault movement due to the spatio-temporal evolution of stresses, a commonly used model for glacial isostatic adjustment (GIA) is extended by including a fault structure. Solving this problem is enabled by development of a workflow involving three cascaded finite-element simulations. Each step has identical lithospheric and mantle structure and properties, but evolving stress conditions along the fault. The purpose of the first simulation is to compute the spatio-temporal evolution of rebound stress when the fault is tied together. An ice load with a parabolic profile and simple ice history is applied to represent glacial loading of the Laurentide Ice Sheet. The results of the first step describe the evolution of the stress and displacement induced by the rebound process. The second step in the procedure augments the results of the first, by computing the spatio-temporal evolution of total stress (i.e. rebound stress plus tectonic background stress and overburden pressure) and displacement with reaction forces that can hold the model in equilibrium. The background stress is estimated by assuming that the fault is in frictional equilibrium before glaciation. The third step simulates fault movement induced by the spatio-temporal evolution of total stress by evaluating fault stability in a subroutine. If the fault remains stable, no movement occurs; in case of fault instability, the fault displacement is computed. We show an example of fault motion along a 45°-dipping fault at the ice-sheet centre for a two-dimensional model. Stable conditions along the fault are found during glaciation and the initial part of deglaciation. Before deglaciation ends, the fault starts to move, and fault

  12. Computational time reduction for sequential batch solutions in GNSS precise point positioning technique

    NASA Astrophysics Data System (ADS)

    Martín Furones, Angel; Anquela Julián, Ana Belén; Dimas-Pages, Alejandro; Cos-Gayón, Fernando

    2017-08-01

    Precise point positioning (PPP) is a well established Global Navigation Satellite System (GNSS) technique that only requires information from the receiver (or rover) to obtain high-precision position coordinates. This is a very interesting and promising technique because eliminates the need for a reference station near the rover receiver or a network of reference stations, thus reducing the cost of a GNSS survey. From a computational perspective, there are two ways to solve the system of observation equations produced by static PPP either in a single step (so-called batch adjustment) or with a sequential adjustment/filter. The results of each should be the same if they are both well implemented. However, if a sequential solution (that is, not only the final coordinates, but also those observed in previous GNSS epochs), is needed, as for convergence studies, finding a batch solution becomes a very time consuming task owing to the need for matrix inversion that accumulates with each consecutive epoch. This is not a problem for the filter solution, which uses information computed in the previous epoch for the solution of the current epoch. Thus filter implementations need extra considerations of user dynamics and parameter state variations between observation epochs with appropriate stochastic update parameter variances from epoch to epoch. These filtering considerations are not needed in batch adjustment, which makes it attractive. The main objective of this research is to significantly reduce the computation time required to obtain sequential results using batch adjustment. The new method we implemented in the adjustment process led to a mean reduction in computational time by 45%.

  13. Magnetically adjustable intraocular lens.

    PubMed

    Matthews, Michael Wayne; Eggleston, Harry Conrad; Pekarek, Steven D; Hilmas, Greg Eugene

    2003-11-01

    To provide a noninvasive, magnetic adjustment mechanism to the repeatedly and reversibly adjustable, variable-focus intraocular lens (IOL). University of Missouri-Rolla, Rolla, and Eggleston Adjustable Lens, St. Louis, Missouri, USA. Mechanically adjustable IOLs have been fabricated and tested. Samarium and cobalt rare-earth magnets have been incorporated into the poly(methyl methacrylate) (PMMA) optic of these adjustable lenses. The stability of samarium and cobalt in the PMMA matrix was examined with leaching studies. Operational force testing of the magnetic optics with emphasis on the rotational forces of adjustment was done. Prototype optics incorporating rare-earth magnetic inserts were consistently produced. After 32 days in solution, samarium and cobalt concentration reached a maximum of 5 ppm. Operational force measurements indicate that successful adjustments of this lens can be made using external magnetic fields with rotational torques in excess of 0.6 ounce inch produced. Actual lenses were remotely adjusted using magnetic fields. The magnetically adjustable version of this IOL is a viable and promising means of handling the common issues of postoperative refractive errors without the requirement of additional surgery. The repeatedly adjustable mechanism of this lens also holds promise for the developing eyes of pediatric patients and the changing needs of all patients.

  14. The stress-buffering effects of hope on adjustment to multiple sclerosis.

    PubMed

    Madan, Sindia; Pakenham, Kenneth I

    2014-12-01

    Hope is an important resource for coping with chronic illness; however, the role of hope in adjusting to multiple sclerosis (MS) has been neglected, and the mechanisms by which hope exerts beneficial impacts are not well understood. This study aims to examine the direct and stress-moderating effects of dispositional hope and its components (agency and pathways) on adjustment to MS. A total of 296 people with MS completed questionnaires at time 1 at 12 months later and time 2. Focal predictors were stress, hope, agency and pathways, and the adjustment outcomes were anxiety, depression, positive affect, positive states of mind and life satisfaction. Results of regression analyses showed that as predicted, greater hope was associated with better adjustment after controlling for the effects of time 1 adjustment and relevant demographics and illness variables. However, these direct effects of hope were subsumed by stress-buffering effects. Regarding the hope components, the beneficial impacts of agency emerged via a direct effects mechanism, whereas the effects of pathways were evidenced via a moderating mechanism. Findings highlight hope as an important protective coping resource for coping with MS and accentuate the roles of both agency and pathways thinking and their different modes of influence in this process.

  15. The effect of exhausting aerobic exercise on the timing of anticipatory postural adjustments.

    PubMed

    Strang, A J; Choi, H J; Berg, W P

    2008-03-01

    The aim of the study was to investigate the influence of exhausting aerobic exercise on the timing of anticipatory postural adjustments (APAs). The APAs of 12 participants were recorded at baseline, after a .VO2max running test, and again following a 45-min rest period. APAs were induced using a rapid bilateral arm-raising maneuver, and were analyzed in the rectus abdominis, hamstring group, gluteal group, and lumbar and thoracic paraspinal muscles using electromyography. Postural stability was assessed by monitoring anterior/posterior displacement of the center of pressure using a force plate. We hypothesized that APA onset would be ear lier following exhausting aerobic exercise as compared to the baseline measures, but that this effect would be transient (i.e., APA onset following the rest period would not differ from that at baseline). Exhausting aerobic exercise resulted in a significantly earlier APA in one of the 5 muscles evaluated, the thoracic paraspinal group, and this effect persisted 45-min postexercise. Exhausting aerobic exercise did not affect postural stability during the rapid arm-raising maneuver. The findings lend tentative support for the notion that earlier APAs constitute a functional adaptation by the motor system to maintain postural stability in the presence of fatigue.

  16. [Adjustment disorder and DSM-5: A review].

    PubMed

    Appart, A; Lange, A-K; Sievert, I; Bihain, F; Tordeurs, D

    2017-02-01

    This paper exposes the complexity and discrete characteristic of the adjustment disorder with reference to its clinical and scientific diagnosis. Even though the disorder occurs in frequent clinical circumstances after important life events, such as mobbing, burn-out, unemployment, divorce or separation, pregnancy denial, surgical operation or cancer, the adjustment disorder is often not considered in the diagnosis since better known disorders with similar symptoms prevail, such as major depression and anxiety disorder. Ten years ago, Bottéro had already noticed that the adjustment disorder diagnosis remained rather uncommon with reference to patients he was working with while Langlois assimilated this disorder with an invisible diagnosis. In order to maximize the data collection, we used the article review below and challenged their surveys and results: National Center for Biotechnology Information (NBCI - Pubmed) for international articles and Cairn.info for French literature. Moreover, we targeted the following keywords on the search engine and used articles, which had been published from 1 February 1975 to 31 January 2015: "adjustment", "adjustment disorder" and the French translation "trouble de l'adaptation". One hundred and ninety-one articles matched our search criteria. However, after a closer analysis, solely 105 articles were selected as being of interest. Many articles were excluded since they were related to non-psychiatric fields induced by the term "adaptation". Indeed, the number of corresponding articles found for the adjustment disorder literally pointed-out the lack of existing literature on that topic in comparison to more known disorders such as anxiety disorder (2661 articles) or major depression (5481 articles). This represents up to 50 times more articles in comparison to the number of articles we found on adjustment disorder and up to 20 times more articles for the eating disorder (1994), although the prevalence is not significantly

  17. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    PubMed

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  18. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  19. Refractive accuracy with light-adjustable intraocular lenses.

    PubMed

    Villegas, Eloy A; Alcon, Encarna; Rubio, Elena; Marín, José M; Artal, Pablo

    2014-07-01

    To evaluate efficacy, predictability, and stability of refractive treatments using light-adjustable intraocular lenses (IOLs). University Hospital Virgen de la Arrixaca, Murcia, Spain. Prospective nonrandomized clinical trial. Eyes with a light-adjustable IOL (LAL) were treated with spatial intensity profiles to correct refractive errors. The effective changes in refraction in the light-adjustable IOL after every treatment were estimated by subtracting those in the whole eye and the cornea, which were measured with a Hartmann-Shack sensor and a corneal topographer, respectively. The refractive changes in the whole eye and light-adjustable IOL, manifest refraction, and visual acuity were obtained after every light treatment and at the 3-, 6-, and 12-month follow-ups. The study enrolled 53 eyes (49 patients). Each tested light spatial pattern (5 spherical; 3 astigmatic) produced a different refractive change (P<.01). The combination of 2 light adjustments induced a maximum change in spherical power of the light-adjustable IOL of between -1.98 diopters (D) and +2.30 D and in astigmatism of up to -2.68 D with axis errors below 9 degrees. Intersubject variability (standard deviation) ranged between 0.10 D and 0.40 D. The 2 required lock-in procedures induced a small myopic shift (range +0.01 to +0.57 D) that depended on previous adjustments. Light-adjustable IOL implantation achieved accurate refractive outcomes (around emmetropia) with good uncorrected distance visual acuity, which remained stable over time. Further refinements in nomograms and in the treatment's protocol would improve the predictability of refractive and visual outcomes with these IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Changing Safety Culture, One Step at a Time: The Value of the DOE-VPP Program at PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Patrick A.; Isern, Nancy G.

    2005-02-01

    The primary value of the Pacific Northwest National Laboratory (PNNL) Voluntary Protection Program (VPP) is the ongoing partnership between management and staff committed to change Laboratory safety culture one step at a time. VPP enables PNNL's safety and health program to transcend a top-down, by-the-book approach to safety, and it also raises grassroots safety consciousness by promoting a commitment to safety and health 24 hours a day, 7 days a week. PNNL VPP is a dynamic, evolving program that fosters innovative approaches to continuous improvement in safety and health performance at the Laboratory.

  1. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    NASA Astrophysics Data System (ADS)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  2. A Two-Step Lyssavirus Real-Time Polymerase Chain Reaction Using Degenerate Primers with Superior Sensitivity to the Fluorescent Antigen Test

    PubMed Central

    Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible. PMID:24822188

  3. Robotic-assisted laparoscopic radical nephrectomy using the Da Vinci Si system: how to improve surgeon autonomy. Our step-by-step technique.

    PubMed

    Davila, Hugo H; Storey, Raul E; Rose, Marc C

    2016-09-01

    Herein, we describe several steps to improve surgeon autonomy during a Left Robotic-Assisted Laparoscopic Radical Nephrectomy (RALRN), using the Da Vinci Si system. Our kidney cancer program is based on 2 community hospitals. We use the Da Vinci Si system. Access is obtained with the following trocars: Two 8 mm robotic, one 8 mm robotic, bariatric length (arm 3), 15 mm for the assistant and 12 mm for the camera. We use curved monopolar scissors in robotic arm 1, Bipolar Maryland in arm 2, Prograsp Forceps in arm 3, and we alternate throughout the surgery with EndoWrist clip appliers and the vessel sealer. Here, we described three steps and the use of 3 robotic instruments to improve surgeon autonomy. Step 1: the lower pole of the kidney was dissected and this was retracted upwards and laterally. This maneuver was performed using the 3rd robotic arm with the Prograsp Forceps. Step 2: the monopolar scissors was replaced (robotic arm 1) with the robotic EndoWrist clip applier, 10 mm Hem-o-Lok. The renal artery and vein were controlled and transected by the main surgeon. Step 3: the superior, posterolateral dissection and all bleeders were carefully coagulated by the surgeon with the EndoWrist one vessel sealer. We have now performed 15 RALRN following these steps. Our results were: blood loss 300 cc, console time 140 min, operating room time 200 min, anesthesia time 180 min, hospital stay 2.5 days, 1 incisional hernia, pathology: (13) RCC clear cell, (1) chromophobe and (1) papillary type 1. Tumor Stage: (5) T1b, (8) T2a, (2) T2b. We provide a concise, step-by-step technique for radical nephrectomy (RN) using the Da Vinci Si robotic system that may provide more autonomy to the surgeon, while maintaining surgical outcome equivalent to standard laparoscopic RN.

  4. The Satellite Test of the Equivalence Principle (STEP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    STEP will carry concentric test masses to Earth orbit to test a fundamental assumption underlying Einstein's theory of general relativity: that gravitational mass is equivalent to inertial mass. STEP is a 21st-century version of the test that Galileo is said to have performed by dropping a carnon ball and a musket ball simultaneously from the top of the Leaning Tower of Pisa to compare their accelerations. During the STEP experiment, four pairs of test masses will be falling around the Earth, and their accelerations will be measured by superconducting quantum interference devices (SQUIDS). The extended time sensitivity of the instruments will allow the measurements to be a million times more accurate than those made in modern ground-based tests.

  5. Combined effects of speed and directional change on postural adjustments during gait initiation.

    PubMed

    Corbeil, Philippe; Anaka, Evelyn

    2011-10-01

    The study of gait initiation (GI) has primarily focused on gait initiated in a forward direction, however, in everyday life, GI is often combined with a directional change. Ten young adults initiated gait with their right foot in four directions (to the left: -15°, straight ahead: 0°, to the right: 15° and 30°) at self-selected and fast gait speeds. The relationship between starting direction of GI and the lateral center of foot pressure displacement for normal (r(2)=0.57) and fast gait speed (r(2)=0.75) indicated that the lateral component plays an important role with regards to controlling the desired direction of gait. At the first step of the swing limb, the progression velocity of the center of mass (CM) remained slower for the 30° condition only, whereas no difference was found between directions for CM velocity perpendicular to the intended direction. These results suggest that postural adjustments are scaled to initiate gait in a predetermined direction. By the first step, the orientation of CM is toward the intended direction of gait, however, when gait is initiated in combination with a large change in direction, additional adjustments may be required to reach the intended progression velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting.

    PubMed

    Rashed-Ul Islam, S M; Jahan, Munira; Tabassum, Shahina

    2015-01-01

    Virological monitoring is the best predictor for the management of chronic hepatitis B virus (HBV) infections. Consequently, it is important to use the most efficient, rapid and cost-effective testing systems for HBV DNA quantification. The present study compared the performance characteristics of a one-step HBV polymerase chain reaction (PCR) vs the two-step HBV PCR method for quantification of HBV DNA from clinical samples. A total of 100 samples consisting of 85 randomly selected samples from patients with chronic hepatitis B (CHB) and 15 samples from apparently healthy individuals were enrolled in this study. Of the 85 CHB clinical samples tested, HBV DNA was detected from 81% samples by one-step PCR method with median HBV DNA viral load (VL) of 7.50 × 10 3 lU/ml. In contrast, 72% samples were detected by the two-step PCR system with median HBV DNA of 3.71 × 10 3 lU/ml. The one-step method showed strong linear correlation with two-step PCR method (r = 0.89; p < 0.0001). Both methods showed good agreement at Bland-Altman plot, with a mean difference of 0.61 log 10 IU/ml and limits of agreement of -1.82 to 3.03 log 10 IU/ml. The intra-assay and interassay coefficients of variation (CV%) of plasma samples (4-7 log 10 IU/ml) for the one-step PCR method ranged between 0.33 to 0.59 and 0.28 to 0.48 respectively, thus demonstrating a high level of concordance between the two methods. Moreover, elimination of the DNA extraction step in the one-step PCR kit allowed time-efficient and significant labor and cost savings for the quantification of HBV DNA in a resource limited setting. Rashed-Ul Islam SM, Jahan M, Tabassum S. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting. Euroasian J Hepato-Gastroenterol 2015;5(1):11-15.

  7. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting

    PubMed Central

    Jahan, Munira; Tabassum, Shahina

    2015-01-01

    Virological monitoring is the best predictor for the management of chronic hepatitis B virus (HBV) infections. Consequently, it is important to use the most efficient, rapid and cost-effective testing systems for HBV DNA quantification. The present study compared the performance characteristics of a one-step HBV polymerase chain reaction (PCR) vs the two-step HBV PCR method for quantification of HBV DNA from clinical samples. A total of 100 samples consisting of 85 randomly selected samples from patients with chronic hepatitis B (CHB) and 15 samples from apparently healthy individuals were enrolled in this study. Of the 85 CHB clinical samples tested, HBV DNA was detected from 81% samples by one-step PCR method with median HBV DNA viral load (VL) of 7.50 × 103 lU/ml. In contrast, 72% samples were detected by the two-step PCR system with median HBV DNA of 3.71 × 103 lU/ml. The one-step method showed strong linear correlation with two-step PCR method (r = 0.89; p < 0.0001). Both methods showed good agreement at Bland-Altman plot, with a mean difference of 0.61 log10 IU/ml and limits of agreement of -1.82 to 3.03 log10 IU/ml. The intra-assay and interassay coefficients of variation (CV%) of plasma samples (4-7 log10 IU/ml) for the one-step PCR method ranged between 0.33 to 0.59 and 0.28 to 0.48 respectively, thus demonstrating a high level of concordance between the two methods. Moreover, elimination of the DNA extraction step in the one-step PCR kit allowed time-efficient and significant labor and cost savings for the quantification of HBV DNA in a resource limited setting. How to cite this article Rashed-Ul Islam SM, Jahan M, Tabassum S. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting. Euroasian J Hepato-Gastroenterol 2015;5(1):11-15. PMID:29201678

  8. Retzus-sparing robotic-assisted laparoscopic radical prostatectomy: a step-by-step technique description of this first brazilian experience.

    PubMed

    Tobias-Machado, Marcos; Nunes-Silva, Igor; Hidaka, Alexandre Kiyoshi; Sato, Leticia Lumy Kanawa; Almeida, Roberto; Colombo, Jose Roberto; Zampolli, Hamilton de Campos; Pompeo, Antonio Carlos Lima

    2016-01-01

    Retzus-sparing robotic-assisted radical prostatectomy(RARP) is a newly approach that preserve the Retzus structures and provide better recovery of continence and erectile function. In Brazil, this approach has not yet been pre¬viously reported. Our goal is to describe Step-by-Step the Retzus-sparing RARP surgical technique and report our first Brazilian experience. We present a case of a 60-year-old white man with low risk prostate cancer. Surgical materials were four arms Da Vinci robotic platform system, six transperitoneal portals, two prolene wires and Polymer Clips. This surgical tech¬nique was step-by-step described according to Galfano et al. One additional step was added as a modification of Galfano et al. Primary technique description: The closure of the Denovellier fascia. We have operated one patient with this technique. The operative time was 180minutes, console time was135 min, the blood loss was 150ml, none perioperative or postoperative complications was found, hospital stay of 01 day. The anatomopathological classification revealed a pT2aN0M0 specimen with free surgical margins. The patient achieved continence immediately after bladder stent retrieval. Full erection reported after 30 days of surgery. Retzus-sparing RARP approach is feasible and reproducible. However, further comparative studies are neces¬sary to demonstrate potential benefits in continence and sexual outcomes over the standard approaches. Copyright® by the International Brazilian Journal of Urology.

  9. A Longitudinal Study of Perceived Family Adjustment and Emotional Adjustment in Early Adolescence.

    ERIC Educational Resources Information Center

    Ohannessian, Christine McCauley; And Others

    1994-01-01

    Examined the predictive relationship between family adjustment and emotional adjustment during early adolescence and the influence of adolescents' levels of self-worth, peer support, and coping abilities. Found that family adjustment and emotional adjustment are reciprocally related and that high levels of self-worth, peer support, and coping…

  10. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    PubMed

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  11. The Effect of Phosphoric Acid Pre-etching Times on Bonding Performance and Surface Free Energy with Single-step Self-etch Adhesives.

    PubMed

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.

  12. Vigilance and Activity Time-Budget Adjustments of Wintering Hooded Cranes, Grus monacha, in Human-Dominated Foraging Habitats

    PubMed Central

    Li, Chunlin; Zhou, Lizhi; Xu, Li; Zhao, Niannian; Beauchamp, Guy

    2015-01-01

    Due to loss and degradation of natural wetlands, waterbirds increasingly rely on surrounding human-dominated habitats to obtain food. Quantifying vigilance patterns, investigating the trade-off among various activities, and examining the underlying mechanisms will help us understand how waterbirds adapt to human-caused disturbances. During two successive winters (November-February of 2012–13 and 2013–14), we studied the hooded crane, Grus monacha, in the Shengjin Lake National Nature Reserve (NNR), China, to investigate how the species responds to human disturbances through vigilance and activity time-budget adjustments. Our results showed striking differences in the behavior of the cranes when foraging in the highly disturbed rice paddy fields found in the buffer zone compared with the degraded natural wetlands in the core area of the NNR. Time spent vigilant decreased with flock size and cranes spent more time vigilant in the human-dominated buffer zone. In the rice paddy fields, the birds were more vigilant but also fed more at the expense of locomotion and maintenance activities. Adult cranes spent more time vigilant and foraged less than juveniles. We recommend habitat recovery in natural wetlands and community co-management in the surrounding human-dominated landscape for conservation of the hooded crane and, generally, for the vast numbers of migratory waterbirds wintering in the middle and lower reaches of the Yangtze River floodplain. PMID:25768111

  13. Vigilance and activity time-budget adjustments of wintering hooded cranes, Grus monacha, in human-dominated foraging habitats.

    PubMed

    Li, Chunlin; Zhou, Lizhi; Xu, Li; Zhao, Niannian; Beauchamp, Guy

    2015-01-01

    Due to loss and degradation of natural wetlands, waterbirds increasingly rely on surrounding human-dominated habitats to obtain food. Quantifying vigilance patterns, investigating the trade-off among various activities, and examining the underlying mechanisms will help us understand how waterbirds adapt to human-caused disturbances. During two successive winters (November-February of 2012-13 and 2013-14), we studied the hooded crane, Grus monacha, in the Shengjin Lake National Nature Reserve (NNR), China, to investigate how the species responds to human disturbances through vigilance and activity time-budget adjustments. Our results showed striking differences in the behavior of the cranes when foraging in the highly disturbed rice paddy fields found in the buffer zone compared with the degraded natural wetlands in the core area of the NNR. Time spent vigilant decreased with flock size and cranes spent more time vigilant in the human-dominated buffer zone. In the rice paddy fields, the birds were more vigilant but also fed more at the expense of locomotion and maintenance activities. Adult cranes spent more time vigilant and foraged less than juveniles. We recommend habitat recovery in natural wetlands and community co-management in the surrounding human-dominated landscape for conservation of the hooded crane and, generally, for the vast numbers of migratory waterbirds wintering in the middle and lower reaches of the Yangtze River floodplain.

  14. Temperature-Compensated Clock Skew Adjustment

    PubMed Central

    Castillo-Secilla, Jose María; Palomares, Jose Manuel; Olivares, Joaquín

    2013-01-01

    This work analyzes several drift compensation mechanisms in wireless sensor networks (WSN). Temperature is an environmental factor that greatly affects oscillators shipped in every WSN mote. This behavior creates the need of improving drift compensation mechanisms in synchronization protocols. Using the Flooding Time Synchronization Protocol (FTSP), this work demonstrates that crystal oscillators are affected by temperature variations. Thus, the influence of temperature provokes a low performance of FTSP in changing conditions of temperature. This article proposes an innovative correction factor that minimizes the impact of temperature in the clock skew. By means of this factor, two new mechanisms are proposed in this paper: the Adjusted Temperature (AT) and the Advanced Adjusted Temperature (A2T). These mechanisms have been combined with FTSP to produce AT-FTSP and A2T-FTSP Both have been tested in a network of TelosB motes running TinyOS. Results show that both AT-FTSP and A2T-FTSP improve the average synchronization errors compared to FTSP and other temperature-compensated protocols (Environment-Aware Clock Skew Estimation and Synchronization for WSN (EACS) and Temperature Compensated Time Synchronization (TCTS)). PMID:23966192

  15. Effectiveness of a step-by-step oral recount before a practical simulation of fracture fixation.

    PubMed

    Abagge, Marcelo; Uliana, Christiano Saliba; Fischer, Sergei Taggesell; Kojima, Kodi Edson

    2017-10-01

    To evaluate the effectiveness of a step-by-step oral recount by residents before the final execution of a practical exercise simulating a surgical fixation of a radial diaphyseal fracture. The study included 10 residents of orthopaedics and traumatology (four second- year and six first-year residents) divided into two groups with five residents each. All participants initially gathered in a room in which a video was presented demonstrating the practical exercise to be performed. One group (Group A) was referred directly to the practical exercise room. The other group (Group B) attended an extra session before the practical exercise, in which they were invited by instructors to recount all the steps that they would perform during the practical exercise. During this session, the instructors corrected the residents if any errors in the step-by-step recount were identified, and clarified questions from them. After this session, both Groups A and B gathered in a room in which they proceeded to the practical exercise, while being video recorded and evaluated using a 20-point checklist. Group A achieved a 57% accuracy, with results in this group ranging from 7 to 15 points out of a total of a possible 20 points. Group B achieved an 89% accuracy, with results in this group ranging from 15 to 20 points out of 20. An oral step-by-step recount by the residents before the final execution of a practical simulation exercise of surgical fixation of a diaphyseal radial fracture improved the technique and reduced the execution time of the exercise. © 2017 Elsevier Ltd. All rights reserved.

  16. Optimal management of a stochastically varying population when policy adjustment is costly.

    PubMed

    Boettiger, Carl; Bode, Michael; Sanchirico, James N; Lariviere, Jacob; Hastings, Alan; Armsworth, Paul R

    2016-04-01

    Ecological systems are dynamic and policies to manage them need to respond to that variation. However, policy adjustments will sometimes be costly, which means that fine-tuning a policy to track variability in the environment very tightly will only sometimes be worthwhile. We use a classic fisheries management problem, how to manage a stochastically varying population using annually varying quotas in order to maximize profit, to examine how costs of policy adjustment change optimal management recommendations. Costs of policy adjustment (changes in fishing quotas through time) could take different forms. For example, these costs may respond to the size of the change being implemented, or there could be a fixed cost any time a quota change is made. We show how different forms of policy costs have contrasting implications for optimal policies. Though it is frequently assumed that costs to adjusting policies will dampen variation in the policy, we show that certain cost structures can actually increase variation through time. We further show that failing to account for adjustment costs has a consistently worse economic impact than would assuming these costs are present when they are not.

  17. Enhanced conformational sampling via novel variable transformations and very large time-step molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tuckerman, Mark

    2006-03-01

    One of the computational grand challenge problems is to develop methodology capable of sampling conformational equilibria in systems with rough energy landscapes. If met, many important problems, most notably protein folding, could be significantly impacted. In this talk, two new approaches for addressing this problem will be presented. First, it will be shown how molecular dynamics can be combined with a novel variable transformation designed to warp configuration space in such a way that barriers are reduced and attractive basins stretched. This method rigorously preserves equilibrium properties while leading to very large enhancements in sampling efficiency. Extensions of this approach to the calculation/exploration of free energy surfaces will be discussed. Next, a new very large time-step molecular dynamics method will be introduced that overcomes the resonances which plague many molecular dynamics algorithms. The performance of the methods is demonstrated on a variety of systems including liquid water, long polymer chains simple protein models, and oligopeptides.

  18. Gait parameter control timing with dynamic manual contact or visual cues.

    PubMed

    Rabin, Ely; Shi, Peter; Werner, William

    2016-06-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  19. Gait parameter control timing with dynamic manual contact or visual cues

    PubMed Central

    Shi, Peter; Werner, William

    2016-01-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  20. Habituation of self-motion perception following unidirectional angular velocity steps.

    PubMed

    Clément, Gilles; Terlevic, Robert

    2016-09-07

    We investigated whether the perceived angular velocity following velocity steps of 80°/s in the dark decreased with the repetition of the stimulation in the same direction. The perceptual response to velocity steps in the opposite direction was also compared before and after this unidirectional habituation training. Participants indicated their perceived angular velocity by clicking on a wireless mouse every time they felt that they had rotated by 90°. The prehabituation perceptual response decayed exponentially with a time constant of 23.9 s. After 100 velocity steps in the same direction, this time constant was 12.9 s. The time constant after velocity steps in the opposite direction was 13.4 s, indicating that the habituation of the sensation of rotation is not direction specific. The peak velocity of the perceptual response was not affected by the habituation training. The differences between the habituation characteristics of self-motion perception and eye movements confirm that different velocity storage mechanisms mediate ocular and perceptual responses.

  1. Effect of nucleation on instability of step meandering during step-flow growth on vicinal 3C-SiC (0001) surfaces

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Chen, Xuejiang; Su, Juan

    2017-06-01

    A three-dimensional kinetic Monte Carlo (KMC) model has been developed to study the step instability caused by nucleation during the step-flow growth of 3C-SiC. In the model, a lattice mesh was established to fix the position of atoms and bond partners based on the crystal lattice of 3C-SiC. The events considered in the model were adsorption and diffusion of adatoms on the terraces, attachment, detachment and interlayer transport of adatoms at the step edges, and nucleation of adatoms. Then the effects of nucleation on the instability of step meandering and the coalescence of both islands and steps were simulated by the model. The results showed that the instability of step meandering caused by nucleation was affected by the growth temperature. And the effects of nucleation on the instability was also analyzed. Moreover, the surface roughness as a function of time for different temperatures was discussed. Finally, a phase diagram was presented to predict in which conditions the effects of nucleation on step meandering become significant and the three different regimes, the step-flow (SF), 2D nucleation (2DN), and 3D layer by layer (3DLBL) were determined.

  2. Two-step liquid phase microextraction combined with capillary electrophoresis: a new approach to simultaneous determination of basic and zwitterionic compounds.

    PubMed

    Nojavan, Saeed; Moharami, Arezoo; Fakhari, Ali Reza

    2012-08-01

    In this work, two-step hollow fiber-based liquid-phase microextraction procedure was evaluated for extraction of the zwitterionic cetirizine (CTZ) and basic hydroxyzine (HZ) in human plasma. In the first step of extraction, the pH of sample was adjusted at 5.0 in order to promote liquid-phase microextraction of the zwitterionic CTZ. In the second step, the pH of sample was increased up to 11.0 for extraction of basic HZ. In this procedure, the extraction times for the first and the second steps were 30 and 20 min, respectively. Owing to the high ratio between the volumes of donor phase and acceptor phase, CTZ and HZ were enriched by factors of 280 and 355, respectively. The linearity of the analytical method was investigated for both compounds in the range of 10-500 ng mL(-1) (R(2) > 0.999). Limit of quantification (S/N = 10) for CTZ and HZ was 10 ng mL(-1) , while the limit of detection was 3 ng mL(-1) for both compounds at a signal to noise ratio of 3:1. Intraday and interday relative standard deviations (RSDs, n = 6) were in the range of 6.5-16.2%. This procedure enabled CTZ and HZ to be analyzed simultaneously by capillary electrophoresis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A gigawatt level repetitive rate adjustable magnetic pulse compressor.

    PubMed

    Li, Song; Gao, Jing-Ming; Yang, Han-Wu; Qian, Bao-Liang; Li, Ze-Xin

    2015-08-01

    In this paper, a gigawatt level repetitive rate adjustable magnetic pulse compressor is investigated both numerically and experimentally. The device has advantages of high power level, high repetitive rate achievability, and long lifetime reliability. Importantly, dominate parameters including the saturation time, the peak voltage, and even the compression ratio can be potentially adjusted continuously and reliably, which significantly expands the applicable area of the device and generators based on it. Specifically, a two-stage adjustable magnetic pulse compressor, utilized for charging the pulse forming network of a high power pulse generator, is designed with different compression ratios of 25 and 18 through an optimized design process. Equivalent circuit analysis shows that the modification of compression ratio can be achieved by just changing the turn number of the winding. At the same time, increasing inductance of the grounded inductor will decrease the peak voltage and delay the charging process. Based on these analyses, an adjustable compressor was built and studied experimentally in both the single shot mode and repetitive rate mode. Pulses with peak voltage of 60 kV and energy per pulse of 360 J were obtained in the experiment. The rise times of the pulses were compressed from 25 μs to 1 μs and from 18 μs to 1 μs, respectively, at repetitive rate of 20 Hz with good repeatability. Experimental results show reasonable agreement with analyses.

  4. 37 CFR 255.3 - Adjustment of royalty rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fraction thereof, whichever amount is larger, subject to further adjustment pursuant to paragraphs (b....85 cent per minute of playing time or fraction thereof, whichever amount is larger, subject to... embodied in the phonorecord shall be either 5.0 cents, or 0.95 cent per minute of playing time or fraction...

  5. Effects of Forecasts on the Revisions of Concurrent Seasonally Adjusted Data Using the X-11 Seasonal Adjustment Procedure.

    ERIC Educational Resources Information Center

    Bobbitt, Larry; Otto, Mark

    Three Autoregressive Integrated Moving Averages (ARIMA) forecast procedures for Census Bureau X-11 concurrent seasonal adjustment were empirically tested. Forty time series from three Census Bureau economic divisions (business, construction, and industry) were analyzed. Forecasts were obtained from fitted seasonal ARIMA models augmented with…

  6. Comparison of IMRT planning with two-step and one-step optimization: a strategy for improving therapeutic gain and reducing the integral dose

    NASA Astrophysics Data System (ADS)

    Abate, A.; Pressello, M. C.; Benassi, M.; Strigari, L.

    2009-12-01

    The aim of this study was to evaluate the effectiveness and efficiency in inverse IMRT planning of one-step optimization with the step-and-shoot (SS) technique as compared to traditional two-step optimization using the sliding windows (SW) technique. The Pinnacle IMRT TPS allows both one-step and two-step approaches. The same beam setup for five head-and-neck tumor patients and dose-volume constraints were applied for all optimization methods. Two-step plans were produced converting the ideal fluence with or without a smoothing filter into the SW sequence. One-step plans, based on direct machine parameter optimization (DMPO), had the maximum number of segments per beam set at 8, 10, 12, producing a directly deliverable sequence. Moreover, the plans were generated whether a split-beam was used or not. Total monitor units (MUs), overall treatment time, cost function and dose-volume histograms (DVHs) were estimated for each plan. PTV conformality and homogeneity indexes and normal tissue complication probability (NTCP) that are the basis for improving therapeutic gain, as well as non-tumor integral dose (NTID), were evaluated. A two-sided t-test was used to compare quantitative variables. All plans showed similar target coverage. Compared to two-step SW optimization, the DMPO-SS plans resulted in lower MUs (20%), NTID (4%) as well as NTCP values. Differences of about 15-20% in the treatment delivery time were registered. DMPO generates less complex plans with identical PTV coverage, providing lower NTCP and NTID, which is expected to reduce the risk of secondary cancer. It is an effective and efficient method and, if available, it should be favored over the two-step IMRT planning.

  7. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.

    PubMed

    Chang, Sarah R; Nandor, Mark J; Li, Lu; Kobetic, Rudi; Foglyano, Kevin M; Schnellenberger, John R; Audu, Musa L; Pinault, Gilles; Quinn, Roger D; Triolo, Ronald J

    2017-05-30

    Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI. The self-contained HNP combined neural stimulation to activate the paralyzed muscles and generate joint torques for limb movements with a controllable lower limb exoskeleton to stabilize and support the user. An onboard controller processed exoskeleton sensor signals, determined appropriate exoskeletal constraints and stimulation commands for a finite state machine (FSM), and transmitted data over Bluetooth to an off-board computer for real-time monitoring and data recording. The FSM coordinated stimulation and exoskeletal constraints to enable functions, selected with a wireless finger switch user interface, for standing up, standing, stepping, or sitting down. In the stepping function, the FSM used a sensor-based gait event detector to determine transitions between gait phases of double stance, early swing, late swing, and weight acceptance. The HNP restored stepping in three individuals with motor complete paralysis due to SCI. The controller appropriately coordinated stimulation and exoskeletal constraints using the sensor-based FSM for subjects with different stimulation systems. The average range of motion at hip and knee joints during walking were 8.5°-20.8° and 14.0°-43.6°, respectively. Walking speeds varied from 0.03 to 0.06 m/s, and cadences from 10 to 20 steps/min. A self-contained muscle

  8. Player Modeling for Intelligent Difficulty Adjustment

    NASA Astrophysics Data System (ADS)

    Missura, Olana; Gärtner, Thomas

    In this paper we aim at automatically adjusting the difficulty of computer games by clustering players into different types and supervised prediction of the type from short traces of gameplay. An important ingredient of video games is to challenge players by providing them with tasks of appropriate and increasing difficulty. How this difficulty should be chosen and increase over time strongly depends on the ability, experience, perception and learning curve of each individual player. It is a subjective parameter that is very difficult to set. Wrong choices can easily lead to players stopping to play the game as they get bored (if underburdened) or frustrated (if overburdened). An ideal game should be able to adjust its difficulty dynamically governed by the player’s performance. Modern video games utilise a game-testing process to investigate among other factors the perceived difficulty for a multitude of players. In this paper, we investigate how machine learning techniques can be used for automatic difficulty adjustment. Our experiments confirm the potential of machine learning in this application.

  9. In Vitro and In Vivo Single Myosin Step-Sizes in Striated Muscle a

    PubMed Central

    Burghardt, Thomas P.; Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin

    2016-01-01

    Myosin in muscle transduces ATP free energy into the mechanical work of moving actin. It has a motor domain transducer containing ATP and actin binding sites, and, mechanical elements coupling motor impulse to the myosin filament backbone providing transduction/mechanical-coupling. The mechanical coupler is a lever-arm stabilized by bound essential and regulatory light chains. The lever-arm rotates cyclically to impel bound filamentous actin. Linear actin displacement due to lever-arm rotation is the myosin step-size. A high-throughput quantum dot labeled actin in vitro motility assay (Qdot assay) measures motor step-size in the context of an ensemble of actomyosin interactions. The ensemble context imposes a constant velocity constraint for myosins interacting with one actin filament. In a cardiac myosin producing multiple step-sizes, a “second characterization” is step-frequency that adjusts longer step-size to lower frequency maintaining a linear actin velocity identical to that from a shorter step-size and higher frequency actomyosin cycle. The step-frequency characteristic involves and integrates myosin enzyme kinetics, mechanical strain, and other ensemble affected characteristics. The high-throughput Qdot assay suits a new paradigm calling for wide surveillance of the vast number of disease or aging relevant myosin isoforms that contrasts with the alternative model calling for exhaustive research on a tiny subset myosin forms. The zebrafish embryo assay (Z assay) performs single myosin step-size and step-frequency assaying in vivo combining single myosin mechanical and whole muscle physiological characterizations in one model organism. The Qdot and Z assays cover “bottom-up” and “top-down” assaying of myosin characteristics. PMID:26728749

  10. The general alcoholics anonymous tools of recovery: the adoption of 12-step practices and beliefs.

    PubMed

    Greenfield, Brenna L; Tonigan, J Scott

    2013-09-01

    Working the 12 steps is widely prescribed for Alcoholics Anonymous (AA) members although the relative merits of different methods for measuring step work have received minimal attention and even less is known about how step work predicts later substance use. The current study (1) compared endorsements of step work on an face-valid or direct measure, the Alcoholics Anonymous Inventory (AAI), with an indirect measure of step work, the General Alcoholics Anonymous Tools of Recovery (GAATOR); (2) evaluated the underlying factor structure of the GAATOR and changes in step work over time; (3) examined changes in the endorsement of step work over time; and (4) investigated how, if at all, 12-step work predicted later substance use. New AA affiliates (N = 130) completed assessments at intake, 3, 6, and 9 months. Significantly more participants endorsed step work on the GAATOR than on the AAI for nine of the 12 steps. An exploratory factor analysis revealed a two-factor structure for the GAATOR comprising behavioral step work and spiritual step work. Behavioral step work did not change over time, but was predicted by having a sponsor, while Spiritual step work decreased over time and increases were predicted by attending 12-step meetings or treatment. Behavioral step work did not prospectively predict substance use. In contrast, spiritual step work predicted percent days abstinent. Behavioral step work and spiritual step work appear to be conceptually distinct components of step work that have distinct predictors and unique impacts on outcomes. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Self-adjusting threshold mechanism for pixel detectors

    NASA Astrophysics Data System (ADS)

    Heim, Timon; Garcia-Sciveres, Maurice

    2017-09-01

    Readout chips of hybrid pixel detectors use a low power amplifier and threshold discrimination to process charge deposited in semiconductor sensors. Due to transistor mismatch each pixel circuit needs to be calibrated individually to achieve response uniformity. Traditionally this is addressed by programmable threshold trimming in each pixel, but requires robustness against radiation effects, temperature, and time. In this paper a self-adjusting threshold mechanism is presented, which corrects the threshold for both spatial inequality and time variation and maintains a constant response. It exploits the electrical noise as relative measure for the threshold and automatically adjust the threshold of each pixel to always achieve a uniform frequency of noise hits. A digital implementation of the method in the form of an up/down counter and combinatorial logic filter is presented. The behavior of this circuit has been simulated to evaluate its performance and compare it to traditional calibration results. The simulation results show that this mechanism can perform equally well, but eliminates instability over time and is immune to single event upsets.

  12. Infant stepping: a method to study the sensory control of human walking

    PubMed Central

    Yang, Jaynie F; Stephens, Marilee J; Vishram, Rosie

    1998-01-01

    Stepping responses were studied in infants between the ages of 10 days and 10 months while they were supported to step on a slowly moving treadmill belt. Surface electromyography (EMG) from muscles in the lower limb, force exerted by the feet on the treadmill belt, and the motion of the lower limbs were recorded. Two groups of infants were studied, those who had a small amount of daily practice in stepping and those who did not. Practice resulted in a dramatic increase in the incidence of stepping recorded in the laboratory, particularly for the periods between 1 and 6 months of age. The majority of infants showed clear alternation between the flexor and extensor muscles during walking, regardless of age. Co-contraction between flexors and extensors, estimated by the overlap in area between rectified and smoothed EMG from a muscle pair, was greater for some muscle groups in the infant compared with the adult. Practice resulted in a significantly lower co-contraction index for the tibialis anterior- quadriceps muscle pair. Practice did not affect the mean step cycle duration. Infants of all ages could step at a range of treadmill speeds by adjusting their step cycle duration. The relationship between the treadmill speed and cycle duration was well fitted by a power function, similar to those reported for intact cats and adult humans. The change in step cycle duration resulted almost entirely from a change in the extensor burst duration, whereas the flexor burst duration remained constant. Airstepping could be elicited in some infants. The cycle durations for airstepping were close to the shortest cycles recorded on the treadmill. In conclusion, the system for generating rhythmic, alternating activity of the lower limbs for stepping is clearly developed by birth. The stepping is sustained and regular, particularly if stepping practice is incorporated briefly each day. The infant population provides a good subject pool for studying the afferent control of walking in

  13. Planned Hypothesis Tests Are Not Necessarily Exempt from Multiplicity Adjustment

    ERIC Educational Resources Information Center

    Frane, Andrew V.

    2015-01-01

    Scientific research often involves testing more than one hypothesis at a time, which can inflate the probability that a Type I error (false discovery) will occur. To prevent this Type I error inflation, adjustments can be made to the testing procedure that compensate for the number of tests. Yet many researchers believe that such adjustments are…

  14. Needs for further improvement: risk adjustment in the German health insurance system.

    PubMed

    Buchner, Florian; Wasem, Jürgen

    2003-07-01

    The German risk adjustment mechanism is used only within the public system. It was introduced in two steps, 1994 and 1995. Because of the income-related contribution, which the insured pay directly to their sickness fund, income of the insured is equalized by the mechanism and causes the biggest part of the payments among the sickness funds. On the expenditure side age, gender, disability and entitlement for sickness allowances are used as risk adjusters. The mechanism is retrospective, calculating average costs for each of the 670 risk cells defined by the risk adjusters and using these "standardized expenditures" as a base for the payment a single sickness fund gets because of its risk structure. There do still exist incentives for risk selection. The experience shows that mostly the young and healthy are willing to change sickness funds motivated by lower contribution rates. This can be used and is used for self-selection. Another cause of risk selection is regional differences. The central suggestion of an expertise on behalf of the German Ministry of Health on experiences and improvement proposals is the change to a direct modeling of morbidity.

  15. A quick response four decade logarithmic high-voltage stepping supply

    NASA Technical Reports Server (NTRS)

    Doong, H.

    1978-01-01

    An improved high-voltage stepping supply, for space instrumentation is described where low power consumption and fast settling time between steps are required. The high-voltage stepping supply, utilizing an average power of 750 milliwatts, delivers a pair of mirror images with 64 level logarithmic outputs. It covers a four decade range of + or - 2500 to + or - 0.29 volts having an output stability of + or - 0.5 percent or + or - 20 millivolts for all line load and temperature variations. The supply provides a typical step setting time of 1 millisecond with 100 microseconds for the lower two decades. The versatile design features of the high-voltage stepping supply provides a quick response staircase generator as described or a fixed voltage with the option to change levels as required over large dynamic ranges without circuit modifications. The concept can be implemented up to + or - 5000 volts. With these design features, the high-voltage stepping supply should find numerous applications where charged particle detection, electro-optical systems, and high voltage scientific instruments are used.

  16. Weighted triangulation adjustment

    USGS Publications Warehouse

    Anderson, Walter L.

    1969-01-01

    The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.

  17. Plastic deformation treated as material flow through adjustable crystal lattice

    NASA Astrophysics Data System (ADS)

    Minakowski, P.; Hron, J.; Kratochvíl, J.; Kružík, M.; Málek, J.

    2014-08-01

    Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.

  18. Step scaling and the Yang-Mills gradient flow

    NASA Astrophysics Data System (ADS)

    Lüscher, Martin

    2014-06-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0 , T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  19. Army Training: Efforts to Adjust Training Requirements Should Consider the Use of Virtual Training Devices

    DTIC Science & Technology

    2016-08-01

    ARMY TRAINING Efforts to Adjust Training Requirements Should Consider the Use of Virtual Training Devices Report...Requirements Should Consider the Use of Virtual Training Devices What GAO Found In 2010, the Army began modifying its training priorities and goals to...until fiscal year 2017. The Army has taken some steps to improve the integration of virtual training devices into operational training, but gaps in

  20. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.