Sample records for administration significantly inhibited

  1. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration

    PubMed Central

    Yu, Jun; Yan, Yijin; Li, King-Lun; Wang, Yao; Huang, Yanhua H.; Urban, Nathaniel N.; Nestler, Eric J.; Schlüter, Oliver M.; Dong, Yan

    2017-01-01

    The basolateral amygdala (BLA) sends excitatory projections to the nucleus accumbens (NAc) and regulates motivated behaviors partially by activating NAc medium spiny neurons (MSNs). Here, we characterized a feedforward inhibition circuit, through which BLA-evoked activation of NAc shell (NAcSh) MSNs was fine-tuned by GABAergic monosynaptic innervation from adjacent fast-spiking interneurons (FSIs). Specifically, BLA-to-NAcSh projections predominantly innervated NAcSh FSIs compared with MSNs and triggered action potentials in FSIs preceding BLA-mediated activation of MSNs. Due to these anatomical and temporal properties, activation of the BLA-to-NAcSh projection resulted in a rapid FSI-mediated inhibition of MSNs, timing-contingently dictating BLA-evoked activation of MSNs. Cocaine self-administration selectively and persistently up-regulated the presynaptic release probability of BLA-to-FSI synapses, entailing enhanced FSI-mediated feedforward inhibition of MSNs upon BLA activation. Experimentally enhancing the BLA-to-FSI transmission in vivo expedited the acquisition of cocaine self-administration. These results reveal a previously unidentified role of an FSI-embedded circuit in regulating NAc-based drug seeking and taking. PMID:28973852

  2. Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model.

    PubMed

    Rojewska, Ewelina; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2016-03-01

    Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dopamine D3 receptor antagonist SB-277011A inhibits methamphetamine self-administration and methamphetamine-induced reinstatement of drug-seeking in rats

    PubMed Central

    Higley, Amanda E.; Kiefer, Stephen W.; Li, Xia; Gaál, József; Xi, Zheng-Xiong; Gardner, Eliot L.

    2013-01-01

    We have previously reported that selective blockade of brain dopamine D3 receptors by SB-277011A significantly attenuates cocaine self-administration and cocaine-induced reinstatement of drug-seeking behavior. In the present study, we investigated whether SB-277011A similarly inhibits methamphetamine self-administration and methamphetamine-induced reinstatement to drug-seeking behavior. Male Long–Evans rats were allowed to intravenously self-administer methamphetamine (0.05 mg/kg/infusion) under fixed-ratio 2 (FR2) or progressive-ratio (PR) reinforcement conditions, and some rats were tested for methamphetamine-induced reinstatement of drug-seeking behavior after extinction of self-administration. The effects of SB-277011A on each of these methamphetamine-supported behaviors were then tested. Acute intraperitoneal (i.p.) administration of SB-277011A failed to alter methamphetamine self-administration under FR2 reinforcement, but significantly lowered the break-point for methamphetamine self-administration under PR reinforcement. SB-277011A also significantly inhibited methamphetamine-triggered reinstatement of extinguished drug-seeking behavior. Overall, these data show that blockade of dopamine D3 receptors by SB-277011A attenuates the rewarding and incentive motivational effects of methamphetamine in rats, supporting the development of selective dopamine D3 antagonists for the treatment of methamphetamine addiction. PMID:21466803

  4. Saccharomyces boulardii administration can inhibit the formation of gastric lymphoid follicles induced by Helicobacter suis infection.

    PubMed

    Yang, Lin; Tian, Zi-Bin; Yu, Ya-Nan; Zhang, Cui-Ping; Li, Xiao-Yu; Mao, Tao; Jing, Xue; Zhao, Wen-Jun; Ding, Xue-Li; Yang, Ruo-Ming; Zhang, Shuai-Qing

    2017-01-01

    Helicobacter suis has a greater tendency to induce gastric mucosa-associated lymphoid tissue lymphoma compared with other Helicobacter species in humans and animals. Saccharomyces boulardii has been established as an adjunct to H. pylori eradication treatment, but the effect of S. boulardii administration alone on Helicobacter infection remains unclear. Here, we found that S. boulardii administration effectively decreased the bacterial load of H. suis and inhibited the formation of lymphoid follicles in the stomach post-infection. The levels of H. suis-specific immunoglobulin A (IgA) and secretory IgA in the gastric juice and small intestinal secretions and the production of mouse β-defensin-3 in the small intestinal secretions were significantly increased by S. boulardii administration at 12 weeks after H. suis infection. In addition, feeding with S. boulardii inhibited the expression of inflammatory cytokines and lymphoid follicle formation-related factors after H. suis infection. These results suggested that S. boulardii may be useful for the prevention and treatment of Helicobacter infection-related diseases in humans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. N-acetylaspartylglutamate Inhibits Heroin Self-Administration and Heroin-Seeking Behaviors Induced by Cue or Priming in Rats.

    PubMed

    Zhu, Huaqiang; Lai, Miaojun; Chen, Weisheng; Mei, Disen; Zhang, Fuqiang; Liu, Huifeng; Zhou, Wenhua

    2017-08-01

    Activation of presynaptic group II metabotropic glutamate receptors (mGluR2/3) inhibits drug reward and drug-seeking behavior, but the role of N-acetylaspartylglutamate (NAAG), an agonist of endogenous mGluR2/3, in heroin reward and heroin-seeking behavior remained unclear. Here, we aimed to explore the effects of exogenous NAAG on heroin self-administration and heroin-seeking behavior. First, rats were trained to self-administer heroin under a fixed ratio 1 (FR1) schedule for 10 days, then received NAAG (50 or 100 μg/10 μL in each nostril) in the absence or presence of LY341495 (1 mg/kg, i.p.), an antagonist of mGluR2/3, on day 11 and the effects of NAAG on heroin self-administration under FR1 were recorded for 3 consecutive days. Motivation was assessed in heroin self-administration under a progressive ratio schedule on day 11 in another 5 groups with the same doses of NAAG. Additional rats were withdrawn for 14 days after 14 days of heroin self-administration, then received the same pharmacological pretreatment and were tested for heroin-seeking behaviors induced by heroin priming or cues. The results showed that intranasal administration of NAAG significantly decreased intravenous heroin self-administration on day 12, but not on day 11. Pretreatment with LY341495 prior to testing on day 12 prevented the inhibitory effect of NAAG on heroin reinforcement. The break-point for reward motivation was significantly reduced by NAAG. Moreover, NAAG also significantly inhibited the heroin-seeking behaviors induced by heroin priming or cues and these were restored by pretreatment with LY341495. These results demonstrated that NAAG, via activation of presynaptic mGluR2/3, attenuated the heroin reinforcement, heroin motivational value, and heroin-seeking behavior, suggesting that it may be used as an adjunct treatment for heroin addiction.

  6. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    PubMed

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P < 0.05) change in permeability in the presence of GFJ. Chronic administration of GFJ resulted in a significant decrease in absorptive transport of indinavir, which was even greater than that produced by rifampicin pretreatment. No change in permeability of propranolol, a passive permeability marker, was observed. Further, the decrease in absorptive transport of INDI was reversed by the P-gp inhibitor verapamil. In conclusion, GFJ extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  7. Effect of Different Administration Paradigms on Cholinesterase Inhibition following Repeated Chlorpyrifos Exposure in Late Preweanling Rats

    PubMed Central

    Carr, Russell L.; Nail, Carole A.

    2008-01-01

    Chlorpyrifos (CPS) is widely used in agricultural settings and residue analysis has suggested that children in agricultural communities are at risk of exposure. This has resulted in a large amount of literature investigating the potential for CPS-induced developmental neurotoxic effects. Two developmental routes of administration of CPS are orally in corn oil at a rate of 0.5 ml/kg and subcutaneously in dimethyl sulfoxide (DMSO) at a rate of 1.0 ml/kg. For comparison between these methods, rat pups were exposed daily from days 10 to 16 to CPS (5 mg/kg) either orally dissolved in corn oil or subcutaneously dissolved in DMSO, both at rates of either 0.5 or 1.0 ml/kg. A representative vehicle/route group was present for each treatment. Both the low and high volume CPS in DMSO subcutaneous groups were lower than that of the low and high volume CPS in oil oral groups. At 4 h following the final administration, serum carboxylesterase was inhibited > 90% with all treatments. For cholinesterase activity in the cerebellum, medulla-pons, forebrain, and hindbrain, and serum, inhibition in the CPS-oil groups was similar and inhibition in the CPS-DMSO groups was similar. However, significantly greater inhibition was present in the high volume CPS-DMSO group as compared to the CPS-oil groups. Inhibition in the low volume CPS-DMSO group was generally between that in the CPS-oil groups and the high volume CPS-DMSO group. These data suggest that using DMSO as a vehicle for CPS may alter the level of brain ChE inhibition. PMID:18703558

  8. Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease.

    PubMed

    Zambrano, Laura M G; Brandao, Dayane A; Rocha, Fernanda R G; Marsiglio, Raquel P; Longo, Ieda B; Primo, Fernando L; Tedesco, Antonio C; Guimaraes-Stabili, Morgana R; Rossa Junior, Carlos

    2018-04-27

    There is evidence indicating that curcumin has multiple biological activities, including anti-inflammatory properties. In vitro and in vivo studies demonstrate that curcumin may attenuate inflammation and the connective tissue destruction associated with periodontal disease. Most of these studies use systemic administration, and considering the site-specific nature of periodontal disease and also the poor pharmacodynamic properties of curcumin, we conducted this proof of principle study to assess the biological effect of the local administration of curcumin in a nanoparticle vehicle on experimental periodontal disease. We used 16 rats divided into two groups of 8 animals according to the induction of experimental periodontal disease by bilateral injections of LPS or of the vehicle control directly into the gingival tissues 3×/week for 4 weeks. The same volume of curcumin-loaded nanoparticles or of nanoparticle vehicle was injected into the same sites 2×/week. µCT analysis showed that local administration of curcumin resulted in a complete inhibition of inflammatory bone resorption and in a significant decrease of both osteoclast counts and of the inflammatory infiltrate; as well as a marked attenuation of p38 MAPK and NF-kB activation. We conclude that local administration of curcumin-loaded nanoparticles effectively inhibited inflammation and bone resorption associated with experimental periodontal disease.

  9. Effects of MAO inhibition and a combination of minor alkaloids, β-carbolines, and acetaldehyde on nicotine self-administration in adult male rats*

    PubMed Central

    Smith, Tracy T.; Schaff, Matthew B.; Rupprecht, Laura E.; Schassburger, Rachel L.; Buffalari, Deanne M.; Murphy, Sharon E.; Sved, Alan F.; Donny, Eric C.

    2015-01-01

    Introduction Although nicotine is the primary reinforcing constituent in cigarettes, there is evidence that other constituents in cigarette smoke may interact with nicotine to reinforce smoking behavior. Methods The present experiments investigated whether a novel combination of these cigarette smoke constituents would increase nicotine self-administration in adult male rats. The constituents included five minor alkaloids (anabasine, nornicotine, cotinine, myosmine, and anatabine), two β-carbolines (harman and norharman), and acetaldehyde. All doses were indexed to be proportional to concentrations in cigarette smoke given a standard dose of nicotine used in rodent self-administration, or ten times higher than this standard. To model MAO inhibition seen in chronic smokers, some groups received separate injections of tranylcypromine prior to each self-administration session. Results Tranylcypromine increased low-dose nicotine self-administration independent of other smoke constituents, which had no effect on self-administration behavior. The effect of tranylcypromine was confirmed across a large range of reinforcement schedules. The effect of tranylcypromine on low-dose nicotine self-administration was observed regardless of whether the injection was delivered 1-hr or 23-hrs prior to the self-administration session, consistent with the interpretation that MAO inhibition was responsible for the increase in self-administration, instead of acute off-target effects. Conclusions These data suggest that this cocktail of constituents does not significantly alter the primary reinforcing effects of nicotine, but constituents that inhibit MAO may increase the primary reinforcing effects of nicotine, especially at low doses. PMID:26257022

  10. Access to a running wheel inhibits the acquisition of cocaine self-administration.

    PubMed

    Smith, Mark A; Pitts, Elizabeth G

    2011-12-01

    Physical activity decreases cocaine self-administration in laboratory animals and is associated with positive outcomes in substance abuse treatment programs; however, less is known about its efficacy in preventing the establishment of regular patterns of substance use in drug-naive individuals. The purpose of the present study was to examine the effects of access to a running wheel on the acquisition of cocaine self-administration in experimentally naive rats. Male, Long-Evans rats were obtained at weaning and assigned to sedentary (no wheel) or exercising (access to wheel) conditions immediately upon arrival. After six weeks, rats were surgically implanted with intravenous catheters and placed in operant conditioning chambers for 2 h/day for 15 consecutive days. Each session began with a noncontingent priming infusion of cocaine, followed by a free-operant period in which each response on the active lever produced an infusion of cocaine on a fixed ratio (FR1) schedule of reinforcement. For days 1-5, responding was reinforced with 0.25 mg/kg/infusion cocaine; for days 6-15, responding was reinforced with 0.75 mg/kg/infusion cocaine. In addition, all rats were calorically restricted during days 11-15 to 85% to 95% of their free-feeding body weight. Compared to sedentary rats, exercising rats acquired cocaine self-administration at a significantly slower rate and emitted significantly fewer active lever presses during the 15 days of behavioral testing. These data indicate that access to a running wheel inhibits the acquisition of cocaine self-administration, and that physical activity may be an effective intervention in substance abuse prevention programs. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Chronic ethanol administration inhibits calmodulin-dependent Ca++ uptake in synaptosomal membranes.

    PubMed

    Ross, D H

    1986-06-01

    Chronic ethanol administration inhibits ATP-dependent Ca++ uptake in a preparation of synaptic membranes prepared from mice following 1, 4 and 7 days of ethanol exposure in a liquid diet. Addition of calmodulin (2.5 micrograms) to membranes from mice receiving the control diet produced a slight stimulation of ATP dependent Ca++ uptake. Membranes from ETOH treated mice exhibited reduced capacity to take up Ca++ in ATP-dependent fashion. When calmodulin was added to membranes isolated from mice receiving ETOH on Days 1, 4 and 7 ATP-dependent Ca++ uptake was significantly stimulated (p less than 0.01) compared to (1) ETOH treated membranes in absence of calmodulin, and (2) control membranes. Behavioral tolerance as estimated by bar holding technique was found to be 25, 65 and 91 percent complete for Days 1, 4 and 7 respectively. These studies demonstrate that continued exposure of mice to ethanol via consumption of an ethanol containing liquid diet inhibits one of the mechanisms involving the cytosolic buffering of intracellular Ca++ in nerve terminals. This biochemical effect seen in parallel with the development of tolerance to ethanol impairment of bar holding suggests that increased cytosolic Ca++ may aid in central nervous system adaptation to ethanol.

  12. Optimal routes of administration, vehicles and timing of progesterone treatment for inhibition of delivery during pregnancy.

    PubMed

    Fang, Dajun; Moreno, Mario; Garfield, Robert E; Kuon, Ruben; Xia, Huimin

    2017-09-01

    Progestins, notably progesterone (P4) and 17 alpha hydroxyprogesterone caproate, are presently used to treat pregnant women at risk of preterm birth. The aim of this study was to assess the optimal treatment options for progesterone (P4) to delay delivery using a sensitive bioassay for progesterone. Pregnant rats, known to be highly sensitive to progestins, were treated with P4, including Prochieve ® (also known as Crinone ® ), in various vehicles from day 13 of gestation and in late gestation, days 19 to 22, and delivery times noted. Various routes of administration of P4 and various treatment periods were studied. Use of micronized P4 by rectal, subcutaneous injection (sc) and topical (transdermal) administration in various oils all significantly (P<0.05-<0.001) delay delivery, but vaginal Prochieve ® did not. Administration of P4 in late gestation also prevented (P<0.001) delivery even when given 8h before delivery. Prochieve ® possesses little biological activity to suppress delivery in a sensitive bioassay system and suggests that this preparation may be of little value in prevention and inhibition of preterm birth. Further, this study shows: 1) Inhibition of delivery is increased with P4 treatments when given subcutaneously or topically. 2) P4 in fish oil provides the best vehicle for topical treatment and may be an effective treatment of preterm birth. 3) P4 in fish oil also delays delivery even when treatment begins just prior to normal delivery. 4) To prevent preterm birth in pregnant women, randomized controlled studies are needed with a potent progestin using better formulations and routes of administration. Copyright © 2017. Published by Elsevier B.V.

  13. Central inhibition of initiation of swallowing by systemic administration of diazepam and baclofen in anaesthetized rats.

    PubMed

    Tsujimura, Takanori; Sakai, Shogo; Suzuki, Taku; Ujihara, Izumi; Tsuji, Kojun; Magara, Jin; Canning, Brendan J; Inoue, Makoto

    2017-05-01

    Dysphagia is caused not only by neurological and/or structural damage but also by medication. We hypothesized memantine, dextromethorphan, diazepam, and baclofen, all commonly used drugs with central sites of action, may regulate swallowing function. Swallows were evoked by upper airway (UA)/pharyngeal distension, punctate mechanical stimulation using a von Frey filament, capsaicin or distilled water (DW) applied topically to the vocal folds, and electrical stimulation of a superior laryngeal nerve (SLN) in anesthetized rats and were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles and by visualizing laryngeal elevation. The effects of intraperitoneal or topical administration of each drug on swallowing function were studied. Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABA A receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABA B receptor antagonist diminished the effects of baclofen. Topically applied diazepam or baclofen had no effect on swallowing. These data indicate that diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats. NEW & NOTEWORTHY Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABA A receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABA B receptor antagonist diminished the effects of baclofen. Topical applied diazepam or baclofen was without effect on swallowing. Diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats. Copyright © 2017 the American Physiological Society.

  14. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all ofmore » which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice

  15. Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats.

    PubMed

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang

    2017-04-01

    Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis.

  16. Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats

    PubMed Central

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang

    2017-01-01

    Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis. PMID:28413513

  17. Endogenous Opioid Inhibition of Chronic Low Back Pain Influences Degree of Back Pain Relief Following Morphine Administration

    PubMed Central

    Bruehl, Stephen; Burns, John W.; Gupta, Rajnish; Buvanendran, Asokumar; Chont, Melissa; Schuster, Erik; France, Christopher R.

    2014-01-01

    Background and Objectives Factors underlying differential responsiveness to opioid analgesic medications used in chronic pain management are poorly understood. We tested whether individual differences in endogenous opioid inhibition of chronic low back pain were associated with magnitude of acute reductions in back pain ratings following morphine administration. Methods In randomized, counterbalanced order over three sessions, 50 chronic low back pain patients received intravenous naloxone (8mg), morphine (0.08 mg/kg), or placebo. Back pain intensity was rated pre-drug and again after peak drug activity was achieved using the McGill Pain Questionnaire-Short Form (Sensory and Affective subscales, VAS intensity measure). Opioid blockade effect measures to index degree of endogenous opioid inhibition of back pain intensity were derived as the difference between pre-to post-drug changes in pain intensity across placebo and naloxone conditions, with similar morphine responsiveness measures derived across placebo and morphine conditions. Results Morphine significantly reduced back pain compared to placebo (MPQ-Sensory, VAS; P < .01). There were no overall effects of opioid blockade on back pain intensity. However, individual differences in opioid blockade effects were significantly associated with degree of acute morphine-related reductions in back pain on all measures, even after controlling for effects of age, sex, and chronic pain duration (P < .03). Individuals exhibiting greater endogenous opioid inhibition of chronic back pain intensity reported less acute relief of back pain with morphine. Conclusions Morphine appears to provide better acute relief of chronic back pain in individuals with lower natural opioidergic inhibition of chronic pain intensity. Possible implications for personalized medicine are discussed. PMID:24553304

  18. Inhibition of benzo(a)pyrene-induced mammary carcinogenesis by retinyl acetate. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.L.; Burns, F.J.; Albert, R.E.

    1981-03-01

    The administration of a 250-ppM retinyl acetate dietary supplement for various periods relative to intragastric administration of 50 mg benzo(a)pyrene (BP) significantly inhibited the induction of mammary cancers in virgin female inbred LEW/Mai rats. With day of BP administration taken as time 0, groups receiving the retinoid from weeks -2 to +1, +1 to +90, +20 to +90, and -2 to +90 showed a significant reduction in tumor response as compared to controls. The inhibition of carcinogenesis achieved by a +1 to +20 administration schedule was temporary. A 2-week exposure to supplemental retinyl acetate significantly reduced the mammary gland parenchymalmore » cell labeling index in ductal, alveolar, and terminal end bud structures. Beginning the retinyl acetate supplement 1 week after the administration of BP significantly reduced the number of terminal ductal hyperplasias. The inhibition of carcinogenesis achieved by a short period of retinyl acetate administration before and during the period of carcinogen availability as well as the inhibition achieved by long-term postcarcinogen retinoid exposure may involve an antiproliferative effect on the rat mammary gland.« less

  19. Testosterone Administration Inhibits Hepcidin Transcription and is Associated with Increased Iron Incorporation into Red Blood Cells

    PubMed Central

    Guo, Wen; Bachman, Eric; Li, Michelle; Roy, Cindy N.; Blusztajn, Jerzy; Wong, Siu; Chan, Stephen Y.; Serra, Carlo; Jasuja, Ravi; Travison, Thomas G.; Muckenthaler, Martina U.; Nemeth, Elizabeta; Bhasin, Shalender

    2013-01-01

    Testosterone administration increases hemoglobin levels and has been used to treat anemia of chronic disease. Erythrocytosis is the most frequent adverse event associated with testosterone therapy of hypogonadal men, especially older men. However, the mechanisms by which testosterone increases hemoglobin remain unknown. Testosterone administration in male and female mice was associated with a greater increase in hemoglobin and hematocrit, reticulocyte count, reticulocyte hemoglobin concentration, and serum iron and transferring saturation than placebo. Testosterone downregulated hepatic hepcidin mRNA expression, upregulated renal erythropoietin mRNA expression, and increased erythropoietin levels. Testosterone-induced suppression of hepcidin expression was independent of its effects on erythropoietin or hypoxia-sensing mechanisms. Transgenic mice with liver-specific constitutive hepcidin over-expression failed to exhibit the expected increase in hemoglobin in response to testosterone administration. Testosterone upregulated splenic ferroportin expression and reduced iron retention in spleen. After intravenous administration of transferrin-bound 58Fe, the amount of 58Fe incorporated into red blood cells was significantly greater in testosterone-treated mice than in placebo-treated mice. Serum from testosterone-treated mice stimulated hemoglobin synthesis in K562 erythroleukemia cells more than that from vehicle-treated mice. Testosterone administration promoted the association of androgen receptor (AR) with Smad1 and Smad4 to reduce their binding to BMP-response elements in hepcidin promoter in the liver. Ectopic expression of AR in hepatocytes suppressed hepcidin transcription; this effect was blocked dose-dependently by AR antagonist flutamide. Testosterone did not affect hepcidin mRNA stability. Conclusion: Testosterone inhibits hepcidin transcription through its interaction with BMP-Smad signaling. Testosterone administration is associated with increased iron

  20. Alteration of aluminium inhibition of synaptosomal (Na(+)/K(+))ATPase by colestipol administration.

    PubMed

    Silva, V S; Oliveira, L; Gonçalves, P P

    2013-11-01

    The ability of aluminium to inhibit the (Na(+)/K(+))ATPase activity has been observed by several authors. During chronic dietary exposure to AlCl3, brain (Na(+)/K(+))ATPase activity drops, even if no alterations of catalytic subunit protein expression and of energy charge potential are observed. The aluminium effect on (Na(+)/K(+))ATPase activity seems to implicate the reduction of interacting protomers within the oligomeric ensemble of the membrane-bound (Na(+)/K(+))ATPase. The activity of (Na(+)/K(+))ATPase is altered by the microviscosity of lipid environment. We studied if aluminium inhibitory effect on (Na(+)/K(+))ATPase is modified by alterations in synaptosomal membrane cholesterol content. Adult male Wistar rats were submitted to chronic dietary AlCl3 exposure (0.03 g/day of AlCl3) and/or to colestipol, a hypolidaemic drug (0.31 g/day) during 4 months. The activity of (Na(+)/K(+))ATPase was studied in brain cortex synaptosomes with different cholesterol contents. Additionally, we incubate synaptosomes with methyl-β-cyclodextrin for both enrichment and depletion of membrane cholesterol content, with or without 300 μM AlCl3. This enzyme activity was significantly reduced by micromolar AlCl3 added in vitro and when aluminium was orally administered to rats. The oral administration of colestipol reduced the cholesterol content and concomitantly inhibited the (Na(+)/K(+))ATPase. The aluminium inhibitory effect on synaptosomal (Na(+)/K(+))ATPase was reduced by cholesterol depletion both in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effects of monoamine oxidase inhibition by clorgyline, deprenil or tranylcypromine on 5-hydroxytryptamine concentrations in rat brain and hyperactivity following subsequent tryptophan administration.

    PubMed Central

    Green, A R; Youdim, M B

    1975-01-01

    1 The effect of various doses of tranylcypromine on the degree of inhibition of rat brain monoamine oxidase (MAO) using 5-hydroxytryptamine (5-HT), dopamine and phenylethylamine as substrates has been examined 120 min after injection of the inhibitor. The concentration of brain 5-HT was also examined both after tranylcypromine alone and also when L-tryptophan (100 mg/kg) had been given 30 min after the tranylcypromine. 2 All doses of tranylcypromine greater than 2.5 mg/kg totally inhibited MAO oxidation of 5-HT, phenylethylamine and dopamine as measured in vitro and produced a similar rise of brain 5-HT in vivo. When tryptophan was also given, there was a further rise of brain 5-HT, which was comparable after all doses of tranylcypromine above 2.5 mg/kg and the characteristic syndrome of hyperactivity made is appearance. 3 Clorgyline (a "Type A" MAO inhibitor), in doses up to 10 mg/kg, did not totally inhibit MAO activity towards phenylethylamine although it did inhibit 5-HT oxidation by 100%. Deprenil (a "Type B" MAO inhibitor) at doses up to 10 mg/kg did not fully inhibit 5-HT oxidation although phenylethylamine oxidation was inhibited almost completely. Administration of either compound alone did not produce as great an accumulation of brain 5-HT as that seen after tranylcypromine (2.5 mg/kg) and subsequent administration of tryptophan did not cause hyperactivity or the rise of brain 5-HT seen after tranylcypromine (2.5 mg/kg) plus tryptophan. 4 Administration of clorgyline plus deprenil (2.5 mg/kg of each) almost totally inhibited oxidation of both 5-HT and phenylethylamine; subsequent tryptophan administration resulted in a rise of brain 5-HT nearly as great as that seen following tranylcypromine (2.5 mg/kg) plus tryptophan and the animals became hyperactive. 5 No evidence was found pointing to the formation of any other 5-substituted indole in the brain following tranylcypromine plus L-tryptophan administration as suggested by others. 6 It is concluded that

  2. Cholinesterase inhibition and acetylcholine accumulation following intracerebral administration of paraoxon in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, A.; Liu, J.; Karanth, S.

    2009-05-01

    We evaluated the inhibition of striatal cholinesterase activity following intracerebral administration of paraoxon assaying activity either in tissue homogenates ex vivo or by substrate hydrolysis in situ. Artificial cerebrospinal fluid (aCSF) or paraoxon in aCSF was infused unilaterally (0.5 {mu}l/min for 2 h) and ipsilateral and contralateral striata were harvested for ChE assay ex vivo. High paraoxon concentrations were needed to inhibit ipsilateral striatal cholinesterase activity (no inhibition at < 0.1 mM; 27% at 0.1 mM; 79% at 1 mM paraoxon). With 3 mM paraoxon infusion, substantial ChE inhibition was also noted in contralateral striatum. ChE histochemistry generally confirmed thesemore » concentration- and side-dependent effects. Microdialysates collected for up to 4 h after paraoxon infusion inhibited ChE activity when added to striatal homogenate, suggesting prolonged efflux of paraoxon. Since paraoxon efflux could complicate acetylcholine analysis, we evaluated the effects of paraoxon (0, 0.03, 0.1, 1, 10 or 100 {mu}M, 1.5 {mu}l/min for 45 min) administered by reverse dialysis through a microdialysis probe. ChE activity was then monitored in situ by perfusing the colorimetric substrate acetylthiocholine through the same probe and measuring product (thiocholine) in dialysates. Concentration-dependent inhibition was noted but reached a plateau of about 70% at 1 {mu}M and higher concentrations. Striatal acetylcholine was below the detection limit at all times with 0.1 {mu}M paraoxon but was transiently elevated (0.5-1.5 h) with 10 {mu}M paraoxon. In vivo paraoxon (0.4 mg/kg, sc) in adult rats elicited about 90% striatal ChE inhibition measured ex vivo, but only about 10% inhibition measured in situ. Histochemical analyses revealed intense AChE and glial fibrillary acidic protein staining near the cannula track, suggesting proliferation of inflammatory cells/glia. The findings suggest that ex vivo and in situ cholinesterase assays can provide very

  3. Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting.

    PubMed

    Shields, Grant S; Bonner, Joseph C; Moons, Wesley G

    2015-08-01

    The hormone cortisol is often believed to play a pivotal role in the effects of stress on human cognition. This meta-analysis is an attempt to determine the effects of acute cortisol administration on core executive functions. Drawing on both rodent and stress literatures, we hypothesized that acute cortisol administration would impair working memory and set-shifting but enhance inhibition. Additionally, because cortisol is thought to exert different nongenomic (rapid) and genomic (slow) effects, we further hypothesized that the effects of cortisol would differ as a function of the delay between cortisol administration and cognitive testing. Although the overall analyses were nonsignificant, after separating the rapid, nongenomic effects of cortisol from the slower, genomic effects of cortisol, the rapid effects of cortisol enhanced response inhibition, g+ = 0.113, p=.016, but impaired working memory, g+ = -0.315, p=.008, although these effects reversed over time. Contrary to our hypotheses, there was no effect of cortisol administration on set-shifting. Thus, although we did not find support for the idea that increases in cortisol influence set-shifting, we found that acute increases in cortisol exert differential effects on working memory and inhibition over time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Oral administration of Yokukansan inhibits the development of atopic dermatitis-like lesions in isolated NC/Nga mice.

    PubMed

    Jiang, Ju; Yamaguchi, Takuji; Funakushi, Naoko; Kuhara, Takatoshi; Fan, Ping-shen; Ueki, Rie; Suto, Hajime; Kase, Yoshio; Ikeda, Shigaku; Ogawa, Hideoki

    2009-10-01

    Increasing evidence suggests that stress can trigger and exacerbate atopic dermatitis (AD). Psychotherapy is becoming more important in the treatment of AD patients. Yokukansan (YKS, Yi-Gan San in Chinese), a traditional Japanese medicine, has been widely utilized in the treatment of neurosis, insomnia and anxiety especially in Asian countries. Furthermore, it was reported that YKS inhibited skin lesions in socially isolated mice but not in group-housed mice. Therefore, in the present study it was investigated whether or not YKS was effective in the treatment of AD using socially isolated NC/Nga mice. The present study was designed to assess the effect of YKS on the development of AD-like lesions in socially isolated NC/Nga mice to obtain information about its usefulness in the treatment of AD. Ten-week-old male NC/Nga mice were socially isolated under conventional conditions. YKS was administered orally to mice at the dose of 0.5% or 1.0% together with diet. The efficacy of YKS was evaluated by assessing skin lesion severity, scratching behaviors, skin hydration, and infiltration of inflammatory cells in the skin. Grooming behaviors evoked by social isolation stress and serum corticosterone levels were also measured. Oral administration of YKS to socially isolated NC/Nga mice resulted in the inhibition of exacerbation of AD-like skin lesions. It seemed that the inhibition of exacerbation of AD-like skin lesions observed in NC/Nga mice might be due to suppression of the scratching and grooming behaviors, inhibition of the infiltration of mast cells and eosinophils, and retention of humidity in the skin. Serum corticosterone levels were also significantly inhibited in the 1%-YKS-treated mice as compared with those of the control mice. There were no significant differences in the levels of serum total IgE and nerve growth factor (NGF) between the YKS-treated mice and the non-treated control mice. YKS inhibited the development of AD-like skin lesions in socially

  5. Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler.

    PubMed

    Zhu, Dexiao; Wang, Hui; Wu, Jintao; Wang, Qian; Xu, Ling; Zhao, Yue; Pang, Kunkun; Shi, Qingqing; Zhao, Wenbo; Zhang, Jing; Sun, Jinhao

    2017-12-01

    Schizophrenia is a devastating mental disease with social deficit as its core component of negative symptoms, which could be induced in rodents by dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist. NMDA receptors are highly expressed during the postnatal period. However, less attention has been paid to the effects of postnatal MK-801 administration on social interaction. In this study, we evaluated the effects of postnatal administration of MK-801 on social interaction and explored the possible mechanisms. Postnatal day-7 mice were intraperitoneally injected with MK-801 twice daily for 5 days, and their social interaction repertoire was monitored by a computerized video in the 10th week. The contact event, relative position event, stop-state, and dynamic event were analyzed with MiceProfiler automatic idTracker system. The results showed that MK-801 reduced the number of the contact events, relative position events, and stop-states, while increased the number and duration of dynamic events. These changes implied that MK-801-injected mice had indifference and lower motivation in social interaction and could be a useful model for studies on the social deficit of schizophrenia. The prefrontal cortex is the key region for social interaction behaviors. Slice patch clamp was performed to analyze the cellular excitability of prefrontal cortical neurons after postnatal treatment with MK-801 in mice. The results demonstrated that MK-801 injection reduced the frequency and amplitude of action potentials, but increased the frequency of miniature inhibitory postsynaptic currents. These data illustrated that the excitability of neurons in the prefrontal cortex was inhibited. Finally, immunoblotting data demonstrated that MK-801 significantly decreased the levels of sirtuin 1 (SIRT1) and phosphorylated protein kinase B (p-PKB) in the prefrontal cortex (both P < 0.05). Taken together, our results indicated that administration of MK-801 to postnatal mice induces

  6. Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway.

    PubMed

    Wu, Dacheng; Wu, Keyan; Zhu, Qingtian; Xiao, Weiming; Shan, Qing; Yan, Zhigang; Wu, Jian; Deng, Bin; Xue, Yan; Gong, Weijuan; Lu, Guotao; Ding, Yanbing

    2018-01-01

    Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF- α in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1 β ) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation.

  7. Effects of sodium benzoate on pre-pulse inhibition deficits and hyperlocomotion in mice after administration of phencyclidine.

    PubMed

    Matsuura, Akiko; Fujita, Yuko; Iyo, Masaomi; Hashimoto, Kenji

    2015-06-01

    A recent clinical study demonstrated that sodium benzoate (SB), a prototype competitive d-amino acid oxidase inhibitor, was effective in the treatment of several symptoms, such as positive and negative symptoms, and cognitive impairment in medicated patients with schizophrenia. The objective of the study was to examine the effects of SB on behavioural abnormalities such as pre-pulse inhibition (PPI) deficits and hyperlocomotion in mice after a single administration of the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP). The effects of SB on behavioural abnormalities (PPI deficits and hyperlocomotion) in mice after PCP administration were examined. Furthermore, effects of SB on tissue levels of amino acids were also examined. A single oral dose of SB (100, 300, or 1000 mg/kg) attenuated PPI deficits in mice after administration of PCP (3.0 mg/kg, s.c.) in a dose-dependent manner. In contrast, L-701,324 (10 mg/kg), an antagonist at the glycine site of the NMDA receptor, did not affect the effect of SB (1000 mg/kg) on PCP-induced PPI deficits. Furthermore, a single oral dose of SB (1000 mg/kg) significantly attenuated the hyperlocomotion in mice after administration of PCP (3.0 mg/kg, s.c.). However, a single oral dose of SB (1000 mg/kg) caused no changes to D-serine levels in plasma or in the frontal cortex, hippocampus, and striatum of these animals. This study suggests that SB induced antipsychotic effects in the PCP model of schizophrenia, although it did not increase D-serine levels in the brain.

  8. Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway

    PubMed Central

    Wu, Dacheng; Wu, Keyan; Zhu, Qingtian; Xiao, Weiming; Shan, Qing; Yan, Zhigang; Wu, Jian; Deng, Bin; Xue, Yan; Gong, Weijuan

    2018-01-01

    Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF-α in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1β) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation. PMID:29507526

  9. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing.

    PubMed

    Modi, Meera E; Majchrzak, Mark J; Fonseca, Kari R; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L; Kablaoui, Natasha M

    2016-08-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non-brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. Copyright © 2016 The Author(s).

  10. Inhibition of osteolysis after local administration of osthole in a TCP particles-induced osteolysis model.

    PubMed

    Lv, Shumin; Zhang, Yun; Yan, Ming; Mao, Hongjiao; Pan, Cailing; Gan, Mingxiao; Fan, Jiawen; Wang, Guoxia

    2016-07-01

    Wear debris-induced osteolysis and aseptic loosening are the most frequent late complications of total joint arthroplasty leading to revision of the prosthesis. However, no effective measures for the prevention and treatment of particles-induced osteolysis currently exist. Here, we investigated the efficacy of local administration of osthole on tricalcium phosphate (TCP) particles-induced osteolysis in a murine calvarial model. TCP particles were implanted over the calvaria of ICR mice, and established TCP particles-induced osteolysis model. On days one, four, seven, ten and thirteen post-surgery, osthole (10 mg/kg) or phosphate buffer saline (PBS) were subcutaneously injected into the calvaria of TCP particles-implanted or sham-operated mice. Two weeks later, blood, the periosteum and the calvaria were collected and processed for bone turnover markers, pro-inflammatory cytokine, histomorphometric and molecular analysis. Osthole (10 mg/kg) markedly prevented TCP particles-induced osteoclastogenesis and bone resorption in a mouse calvarial model. Osthole also inhibited the decrease of serum osteocalcin level and calvarial alkaline phosphatase (ALP) activity, and prevented the increase in the activity of tartrate resistant acid phosphatase (TRAP) and cathepsin K in the mouse calvaria. Furthermore, osthole obviously reduced the release of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) into the periosteum. Western blotting demonstrated TCP particles caused a remarkable endoplasmic reticulum (ER) stress response in the mouse calvaria, which was obviously blocked by osthole treatment. These results suggest that local administration of osthole inhibits TCP particles-induced osteolysis in the mouse calvarial in vivo, which may be mediated by inhibition of the ER stress signaling pathway, and it will be developed as a new drug in the prevention and treatment of destructive diseases caused by prosthetic wear particles.

  11. Acute glucocorticoid effects on response inhibition in borderline personality disorder.

    PubMed

    Carvalho Fernando, Silvia; Beblo, Thomas; Schlosser, Nicole; Terfehr, Kirsten; Wolf, Oliver Tobias; Otte, Christian; Löwe, Bernd; Spitzer, Carsten; Driessen, Martin; Wingenfeld, Katja

    2013-11-01

    Growing evidence suggests inhibition dysfunctions in borderline personality disorder (BPD). Moreover, abnormalities in hypothalamic-pituitary-adrenal (HPA) axis functioning have also been found in BPD patients. In healthy individuals, response inhibition has been sensitive to acute stress, and previous research indicates that effects mediated by the HPA axis become particularly apparent when emotional stimuli are processed. This study aimed to explore the influence of acute hydrocortisone administration on response inhibition of emotional stimuli in BPD patients compared to healthy control participants. After a single administration of 10mg hydrocortisone or placebo, 32 female BPD patients and 32 healthy female participants performed an adapted emotional go/no-go paradigm to assess response inhibition for emotional face stimuli in a cross-over study. Acute cortisol elevations decreased the reaction times to target stimuli in both BPD patients and healthy controls. Patients and controls did not differ in task performance; however, BPD patients with comorbid posttraumatic stress disorder (PTSD) displayed longer reaction times than patients without PTSD. In contrast, the occurrence of comorbid eating disorder had no significant impact on go/no-go performance. No significant interaction effect between the treatment condition and the emotional valence of the face stimuli was found. Acute hydrocortisone administration enhances response inhibition of face stimuli in BPD patients and healthy controls, regardless of their emotional valence. Our results agree with the suggestion that moderate cortisol enhancement increases the inhibition of task-irrelevant distracters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Inhibition of nitric oxide production and the effects of arginine and Lactobacillus administration in an acute liver injury model.

    PubMed

    Adawi, D; Molin, G; Jeppsson, B

    1998-12-01

    To study the effect of inhibiting nitric oxide production and the effects of arginine and lactobacilli administration in an acute liver injury (LI) model. Infectious complications caused by enteric bacteria are common in patients with liver diseases and those who have undergone liver surgery. Increased bacterial translocation has been proposed as one underlying mechanism. Lactobacilli constitute an integral part of the normal gastrointestinal microecology; they are involved in host metabolism and have many beneficial properties. Arginine has numerous roles in cellular metabolism and may be metabolized by lactobacilli in some cases. We have previously shown that rectal administration of Lactobacillus plantarum DSM 9843 (strain 299v), with and without arginine, in an acute LI model significantly reduces the extent of the LI and reduces bacterial translocation. To clarify the pathogenetic mechanisms, we studied the role of nitric oxide in the effects of L. plantarum and arginine in acute LI, as determined by bacterial translocation, ileal, cecal, and colonic nucleotides, RNA, and DNA. Male Sprague-Dawley rats were used. L. plantarum, 2% arginine, and/or N-nitro-L-arginine methyl ester (L-NAME), as appropriate, were administered rectally once daily for 8 days. Acute LI was induced on the eighth day by intraperitoneal injection of D-galactosamine (1.1 g/kg body weight), and samples were collected after 24 hours. Bacterial translocation was evaluated by culture of portal and arterial blood, mesenteric lymph nodes, and liver tissue. Liver enzymes and bilirubin were assayed in the serum. The bacterial load in the cecum and colon was determined. Ileal, cecal, and colonic mucosal nucleotides, RNA, and DNA were evaluated. The levels of liver enzymes and bilirubin were lower in liver-injured rats supplemented with arginine and Lactobacillus, and this effect was abolished by the addition of L-NAME. Inhibition of nitric oxide production (by L-NAME) increased bacterial

  13. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats.

    PubMed

    He, Wan-You; Zhang, Bin; Xiong, Qing-Ming; Yang, Cheng-Xiang; Zhao, Wei-Cheng; He, Jian; Zhou, Jun; Wang, Han-Bing

    2016-04-21

    The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation and protein synthesis, and it is specifically inhibited by rapamycin. In chronic pain conditions, mTOR-mediated local protein synthesis is crucial for neuronal hyperexcitability and synaptic plasticity. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 plays a major role in action potential initiation and propagation and cellular excitability in DRG (dorsal root ganglion) neurons. In this study, we investigated if mTOR modulates the phosphorylation of Nav1.8 that is associated with neuronal hyperexcitability and behavioral hypersensitivity in STZ-induced diabetic rats. Painful diabetic neuropathy (PDN) was induced in Sprague-Dawley rats by intraperitoneal injection with streptozotocin (STZ) at 60mg/kg. After the onset of PDN, the rats received daily intrathecal administrations of rapamycin (1μg, 3μg, or 10μg/day) for 7 days; other diabetic rats received the same volumes of dimethyl sulfoxide (DMSO). Herein, we demonstrate a marked increase in protein expression of total mTOR and phospho-mTOR (p-mTOR) together with the up-regulation of phosphor-Nav1.8 (p-Nav1.8) prior to the mechanical withdrawal threshold reaching a significant reduction in dorsal root ganglions (DRGs). Furthermore, the intrathecal administration of rapamycin, inhibiting the activity of mTOR, suppressed the phosphorylation of DRG Nav1.8, reduced the TTX-R current density, heightened the voltage threshold for activation and lowered the voltage threshold for inactivation and relieved mechanical hypersensitivity in diabetic rats. An intrathecal injection (i.t.) of rapamycin inhibited the phosphorylation and enhanced the functional availability of DRG Nav1.8 attenuated STZ-induced hyperalgesia. These results suggest that rapamycin is a potential therapeutic intervention for clinical PDN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Systemic administration of erythropoietin inhibits retinopathy in RCS rats.

    PubMed

    Shen, Weiyong; Chung, Sook H; Irhimeh, Mohammad R; Li, Shiying; Lee, So-Ra; Gillies, Mark C

    2014-01-01

    Royal College of Surgeons (RCS) rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO) on retinopathy in RCS rats. Fluorescein angiography was used to monitor retinal vascular changes over time. Changes in retinal glia and vasculature were studied by immunostaining. To study the effects of EPO on retinal pathology, EPO (5000 IU/kg) was injected intraperitoneally in 14 week old normal and RCS rats twice a week for 4 weeks. Changes in the retinal vasculature, glia and microglia, photoreceptor apoptosis, differential expression of p75 neurotrophin receptor (p75NTR), pro-neurotrophin 3 (pro-NT3), tumour necrosis factor-α (TNFα), pigment epithelium derived factor (PEDF) and vascular endothelial growth factor-A (VEGF-A), the production of CD34(+) cells and mobilization of CD34(+)/VEGF-R2(+) cells as well as recruitment of CD34(+) cells into the retina were examined after EPO treatment. RCS rats developed progressive capillary dropout and subretinal neovascularization which were accompanied by retinal gliosis. Systemic administration of EPO stabilized the retinal vasculature and inhibited the development of focal vascular lesions. Further studies showed that EPO modulated retinal gliosis, attenuated photoreceptor apoptosis and p75NTR and pro-NT3 upregulation, promoted the infiltration of ramified microglia and stimulated VEGF-A expression but had little effect on TNFα and PEDF expression. EPO stimulated the production of red and white blood cells and CD34(+) cells along with effective mobilization of CD34(+)/VEGF-R2(+) cells. Immunofluorescence study demonstrated that EPO enhanced the recruitment of CD34+ cells into the retina. Our results suggest that EPO has therapeutic potentials in treatment of neuronal and vascular pathology in retinal disease. The protective effects of EPO on photoreceptors and the retinal vasculature may involve multiple mechanisms including regulation of retinal glia and

  15. Systemic Administration of Erythropoietin Inhibits Retinopathy in RCS Rats

    PubMed Central

    Shen, Weiyong; Chung, Sook H.; Irhimeh, Mohammad R.; Li, Shiying; Lee, So-Ra; Gillies, Mark C.

    2014-01-01

    Objective Royal College of Surgeons (RCS) rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO) on retinopathy in RCS rats. Methods Fluorescein angiography was used to monitor retinal vascular changes over time. Changes in retinal glia and vasculature were studied by immunostaining. To study the effects of EPO on retinal pathology, EPO (5000 IU/kg) was injected intraperitoneally in 14 week old normal and RCS rats twice a week for 4 weeks. Changes in the retinal vasculature, glia and microglia, photoreceptor apoptosis, differential expression of p75 neurotrophin receptor (p75NTR), pro-neurotrophin 3 (pro-NT3), tumour necrosis factor-α (TNFα), pigment epithelium derived factor (PEDF) and vascular endothelial growth factor-A (VEGF-A), the production of CD34+ cells and mobilization of CD34+/VEGF-R2+ cells as well as recruitment of CD34+ cells into the retina were examined after EPO treatment. Results RCS rats developed progressive capillary dropout and subretinal neovascularization which were accompanied by retinal gliosis. Systemic administration of EPO stabilized the retinal vasculature and inhibited the development of focal vascular lesions. Further studies showed that EPO modulated retinal gliosis, attenuated photoreceptor apoptosis and p75NTR and pro-NT3 upregulation, promoted the infiltration of ramified microglia and stimulated VEGF-A expression but had little effect on TNFα and PEDF expression. EPO stimulated the production of red and white blood cells and CD34+ cells along with effective mobilization of CD34+/VEGF-R2+ cells. Immunofluorescence study demonstrated that EPO enhanced the recruitment of CD34+ cells into the retina. Conclusions Our results suggest that EPO has therapeutic potentials in treatment of neuronal and vascular pathology in retinal disease. The protective effects of EPO on photoreceptors and the retinal vasculature may involve multiple mechanisms including

  16. Long-term administration of inulin-type fructans has no significant lipid-lowering effect in normolipidemic humans.

    PubMed

    Forcheron, Fabien; Beylot, Michel

    2007-08-01

    Short-term studies have shown that the addition to diet of inulin-type fructans, a nondigestible carbohydrate, may have a plasma lipid-lowering effect in humans. Whether this beneficial effect persists during long-term administration has not been determined. The study was aimed at determining whether a prolonged (6 months) administration of inulin-type fructans to healthy subjects has a lipid-lowering action. In a double-blind, randomized, placebo-controlled study, 17 healthy subjects were studied before and after 6 months of daily administration of placebo (8 subjects) or 10 g of a mix of inulin and oligofructose (9 subjects). During this 6-month period, they consumed their usual diet and did not modify their everyday way of life. We measured plasma lipid concentrations; cholesterol synthesis and hepatic lipogenesis; and adipose tissue and circulating mononuclear cell messenger RNA concentrations of key regulatory genes of cholesterol metabolism. Compared with the administration of placebo, the administration of inulin-type fructans had no effect on plasma triacylglycerol concentrations and hepatic lipogenesis and induced only a nonsignificant trend for decreased plasma total and low-density lipoprotein cholesterol levels and increased high-density lipoprotein cholesterol concentration. Cholesterol synthesis was not significantly modified. Of all the messenger RNA concentrations measured, none was significantly modified by the administration of inulin-type fructans. In conclusion, contrary to what was observed in short-term studies, we observed no significant beneficial effect of a long-term (6-month) administration of inulin-type fructans on plasma lipids in healthy human subjects.

  17. A chimeric peptide of intestinal trefoil factor containing cholesteryl ester transfer protein B cell epitope significantly inhibits atherosclerosis in rabbits after oral administration.

    PubMed

    Qi, Gaofu; Li, Jingjing; Wang, Shengying; Xin, Shanshan; Du, Peng; Zhang, Qingye; Zhao, Xiuyun

    2011-04-01

    Vaccination against cholesteryl ester transfer protein (CETP) is proven to be effective for inhibiting atherosclerosis in animal models. In this study, the proteases-resistant intestinal trefoil factor (TFF3) was used as a molecular vehicle to construct chimeric TFF3 (cTFF3) containing CETP B cell epitope and tetanus toxin helper T cell epitope. It was found that cTFF3 still preserved a trefoil structure, and can resist proteases digestion in vitro. After oral immunization with cTFF3, the CETP-specific IgA and IgG could be found in intestine lavage fluid and serum, and the anti-CETP antibodies could inhibit partial CETP activity to increase high-density lipoprotein cholesterol, decrease low-density lipoprotein cholesterol, and inhibit atherosclerosis in animals. Therefore, TFF3 is a potential molecular vehicle for developing oral peptide vaccines. Our research highlights a novel strategy for developing oral peptide vaccines in the future. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Endocrinological effects of single daily ketoconazole administration in male beagle dogs.

    PubMed

    De Coster, R; Beerens, D; Dom, J; Willemsens, G

    1984-10-01

    Some endocrinological effects of single daily oral administration of 150 mg ketoconazole for 15 days were investigated in 4 male beagle dogs. Plasma testosterone fell markedly within 3-4 h and then progressively returned to control concentrations by 10 h after drug administration. On the other hand, plasma 17 alpha-hydroxyprogesterone, progesterone and 17 alpha, 20 alpha-dihydroxyprogesterone increased within 3-10 h before returning to basal values after 24 h. Plasma LH did not rise significantly though some high individual levels were noted. Plasma cortisol and oestradiol-17 alpha levels were not significantly modified by the treatment. These results confirm that a high therapeutic dose of ketoconazole, given orally once a day, transiently inhibits in vivo the 17-20 lyase enzyme of the testis, without modifying basal cortisol and oestradiol-17 beta plasma concentrations and that enzymatic inhibition still occurs after daily treatment for up to 2 weeks but remains transient and parallels the resorption profile of the drug so that normal plasma testosterone levels are observed from 10 to 24 h after drug intake. However, permanent inhibition of androgen biosynthesis might be obtained by the administration of high doses of ketoconazole given several times a day.

  19. Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats: The role of cholecystokinin through CCK1 receptor-mediated pathway.

    PubMed

    Bülbül, Mehmet; Sinen, Osman; Birsen, İlknur; Nimet İzgüt-Uysal, V

    2017-06-01

    Apelin is the endogenous ligand of the G protein-coupled receptor APJ. The APJ receptor is widely expressed in gastrointestinal (GI) tissues including stomach and small intestine. Apelin administration was shown to induce the release of cholecystokinin (CCK) which is a well-known alimentary hormone with its inhibitory actions on GI motor functions through CCK 1 receptors on vagal afferent fibers. We investigated whether; (i) peripherally injected apelin-13 alters GI motor functions, (ii) apelin-induced changes are mediated by APJ receptor or CCK 1 receptor and (iii) vagal afferents are involved in inhibitory effects of apelin. Solid gastric emptying (GE) and colon transit (CT) were measured, whereas duodenal phase III-like contractions were recorded in rats administered with apelin-13 (300μg/kg, ip). CCK 1 receptor antagonist lorglumide (10mg/kg, ip) or APJ receptor antagonist F13A (300μg/kg, ip) was administered 30min prior to the apelin-13 injections. Vagal afferent denervation was achieved by systemic administration of vanilloid receptor agonist capsaicin (125mg/kg, sc). Apelin-13 administration significantly (p<0.01) increased the CCK level in portal venous plasma samples. Compared with vehicle-treated rats, apelin-13 significantly delayed both GE (p<0.001) and CT (p<0.01). Pretreatment of lorglumide or F13A completely abolished the apelin-13-induced inhibitory effects on GE and CT, moreover, apelin-13 was found ineffective in rats underwent afferent denervation. F13A administration alone significantly accelerated the basal CT. Apelin-13 noticeably disturbed the duodenal fasting motor pattern by impairing phase III-like contractions while increasing the amplitudes of phase II contractions which were prevented by pretreatment of lorglumide and capsaicin. Compared with vehicle-treated rats, lorglumide and capsaicin significantly (p<0.05) reduced the apelin-13-induced increases in phase II motility index. Peripherally administered apelin-13 inhibits GI motor

  20. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation.

    PubMed

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  1. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    PubMed Central

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2016-01-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies. PMID:26587712

  2. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  3. Brown adipose tissue thermogenesis does not explain the intra-administration hyperthermic sign-reversal induced by serial administrations of 60% nitrous oxide to rats.

    PubMed

    Al-Noori, Salwa; Ramsay, Douglas S; Cimpan, Andreas; Maltzer, Zoe; Zou, Jessie; Kaiyala, Karl J

    2016-08-01

    Initial administration of ≥60% nitrous oxide (N2O) to rats promotes hypothermia primarily by increasing whole-body heat loss. We hypothesized that the drug promotes heat loss via the tail and might initially inhibit thermogenesis via brown adipose tissue (BAT), major organs of thermoregulation in rodents. Following repeated administrations, N2O inhalation evokes hyperthermia underlain by increased whole-body heat production. We hypothesized that elevated BAT thermogenesis plays a role in this thermoregulatory sign reversal. Using dual probe telemetric temperature implants and infrared (IR) thermography, we assessed the effects of nine repeated 60% N2O administrations compared to control (con) administrations on core temperature, BAT temperature, lumbar back temperature and tail temperature. Telemetric core temperature, telemetric BAT temperature, and IR BAT temperature were reduced significantly during initial 60% N2O inhalation (p≤0.001 compared to con). IR thermography revealed that acute N2O administration unexpectedly reduced tail temperature (p=0.0001) and also inhibited IR lumbar temperature (p<0.0001). In the 9th session, N2O inhalation significantly increased telemetric core temperature (p=0.007) indicative of a hyperthermic sign reversal, yet compared to control administrations, telemetric BAT temperature (p=0.86), IR BAT temperature (p=0.85) and tail temperature (p=0.47) did not differ significantly. Thus, an initial administration of 60% N2O at 21°C may promote hypothermia via reduced BAT thermogenesis accompanied by tail vasoconstriction as a compensatory mechanism to limit body heat loss. Following repeated N2O administrations rats exhibit a hyperthermic core temperature but a normalized BAT temperature, suggesting induction of a hyperthermia-promoting thermogenic adaptation of unknown origin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2.

    PubMed

    Peulen, Olivier; Gonzalez, Arnaud; Peixoto, Paul; Turtoi, Andrei; Mottet, Denis; Delvenne, Philippe; Castronovo, Vincent

    2013-01-01

    Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.

  5. Spaced administration of PA32540 and clopidogrel results in greater platelet inhibition than synchronous administration of enteric-coated aspirin and enteric-coated omeprazole and clopidogrel.

    PubMed

    Gurbel, Paul A; Bliden, Kevin P; Fort, John G; Jeong, Young-Hoon; Shuldiner, Alan; Chai, Sumbul; Gesheff, Tania; Antonino, Mark; Gesheff, Martin; Zhang, Ying; Tantry, Udaya S

    2013-02-01

    A common regimen for patients requiring dual-antiplatelet therapy who are at risk for gastrointestinal complications is the synchronous administration of enteric-coated (EC) aspirin, a proton pump inhibitor, and clopidogrel, although proton pump inhibitors have the potential for pharmacodynamic interaction with clopidogrel. Spaced administration of a clopidogrel and a single-tablet formulation of aspirin and immediate-release omeprazole (PA32540) was considered as an alternative that might reduce this potential pharmacodynamic interaction. A randomized, open-label, crossover study was conducted in healthy subjects (n = 30). Two 7-day treatments were separated by 14-day washout periods: (a) PA32540 + clopidogrel (300 mg loading/75 mg maintenance) 10 hours later and (b) synchronous dosing of clopidogrel + EC aspirin (81 mg) + EC omeprazole (40 mg). The primary end point was the inhibition of platelet aggregation (20 μM adenosine diphosphate, maximal extent) after 7 days. CYP2C19 and ABCB1 genotypes were determined. Inhibition of platelet aggregation was greater with spaced PA32540 + clopidogrel therapy vs synchronous clopidogrel + EC aspirin + EC omeprazole therapy (P = .004). There was no difference in day 7 arachidonic acid-induced aggregation. The effect of spacing on pharmacodynamics was independent of genotype. PA32540 and clopidogrel spaced 10 hours apart had greater antiplatelet effects than did synchronously administered EC aspirin (81 mg), clopidogrel (75 mg), and EC omeprazole in healthy volunteers. These finding are directly relevant to the treatment for patients with high gastrointestinal risk who require dual-antiplatelet therapy and gastroprotection. Copyright © 2013 Mosby, Inc. All rights reserved.

  6. Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae.

    PubMed

    Zhao, Juan; Harada, Naoaki; Okajima, Kenji

    2011-10-01

    We demonstrated that insulin-like growth factor-I (IGF-I) production in dermal papillae was increased and hair growth was promoted after sensory neuron stimulation in mice. Although the androgen metabolite dihydrotestosterone (DHT) inhibits hair growth by negatively modulating growth-regulatory effects of dermal papillae, relationship between androgen metabolism and IGF-I production in dermal papillae is not fully understood. We examined whether DHT inhibits IGF-I production by inhibiting sensory neuron stimulation, thereby preventing hair growth in mice. Effect of DHT on sensory neuron stimulation was examined using cultured dorsal root ganglion (DRG) neurons isolated from mice. DHT inhibits calcitonin gene-related peptide (CGRP) release from cultured DRG neurons. The non-steroidal androgen-receptor antagonist flutamide reversed DHT-induced inhibition of CGRP release. Dermal levels of IGF-I and IGF-I mRNA, and the number of IGF-I-positive fibroblasts around hair follicles were increased at 6h after CGRP administration. DHT administration for 3weeks decreased dermal levels of CGRP, IGF-I, and IGF-I mRNA in mice. Immunohistochemical expression of IGF-I and the number of proliferating cells in hair follicles were decreased and hair re-growth was inhibited in animals administered DHT. Co-administration of flutamide and CGRP reversed these changes induced by DHT administration. These observations suggest that DHT may decrease IGF-I production in dermal papillae by inhibiting sensory neuron stimulation through interaction with the androgen receptor, thereby inhibiting hair growth in mice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Paroxetine decreased plasma exposure of glyburide partly via inhibiting intestinal absorption in rats.

    PubMed

    Jiang, Shuwen; Zhao, Weiman; Chen, Yang; Zhong, Zeyu; Zhang, Mian; Li, Feng; Xu, Ping; Zhao, Kaijing; Li, Ying; Liu, Li; Liu, Xiaodong

    2015-06-01

    Accumulating evidences have shown that diabetes is often accompanied with depression, thus it is possible that oral antidiabetic agent glyburide and antidepressive agent paroxetine are co-administered in diabetic patients. The aim of this study was to assess interactions between glyburide and paroxetine in rats. Effect of paroxetine on pharmacokinetics of orally administered glyburide was investigated. Effect of naringin (NAR), an inhibitor of rat intestinal organic anion transporting polypeptides 1a5 (Oatp1a5), on pharmacokinetics of glyburide was also studied. The results showed that co-administration of paroxetine markedly reduced plasma exposure and prolonged Tmax of glyburide, accompanied by significant increase in fecal excretion of glyburide. Co-administration of naringin also significantly decreased plasma exposure of glyburide. Data from intestinal perfusion experiments showed that both paroxetine and naringin significantly inhibited intestinal absorption of glyburide. Caco-2 cells were used to investigate whether paroxetine and naringin affected intestinal transport of glyburide and fexofenadine (a substrate of Oatp1a5). The results showed that both paroxetine and naringin greatly inhibited absorption of glyburide and fexofenadine. All results gave a conclusion that co-administration of paroxetine decreased plasma exposure of glyburide in rats via inhibiting intestinal absorption of glyburide, which may partly be attributed to the inhibition of intestinal Oatp1a5 activity. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  8. PKCδ inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment

    PubMed Central

    Nguyen, Xuan-Khanh Thi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F.; Kanthasamy, Anumantha G.; Cadet, Jean L.; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2014-01-01

    The present study was designed to evaluate the specific role of protein kinase C (PKC) δ in methamphetamine (MA)-induced dopaminergic toxicity. A multiple-dose administration regimen of MA significantly increases PKCδ expression, while rottlerin, a PKCδ inhibitor, significantly attenuates MA-induced hyperthermia and behavioural deficits. These behavioural effects were not significantly observed in PKCδ antisense oligonucleotide (ASO)-treated- or PKCδ knockout (−/−)-mice. There were no MA-induced significant decreases of dopamine (DA) content or tyrosine hydroxylase (TH) expression in the striatum in rottlerin-treated-, ASO-treated- or PKCδ (−/−)-mice. The administration of MA also results in a significant decrease of TH phosphorylation at ser 40, but not ser 31, while the inhibition of PKCδ consistently and significantly attenuates MA-induced reduction in the phosphorylation of TH at ser 40. Therefore, these results suggest that the MA-induced enhancement of PKCδ expression is a critical factor in the impairment of TH phosphorylation at ser 40 and that pharmacological or genetic inhibition of PKCδ may be protective against MA-induced dopaminergic neurotoxicity in vivo. PMID:21672585

  9. Bovine Lactoferrin and Lactoferricin, a Peptide Derived from Bovine Lactoferrin, Inhibit Tumor Metastasis in Mice

    PubMed Central

    Watanabe, Shikiko; Watanabe, Ryosuke; Hata, Katsusuke; Shimazaki, Kei–ichi; Azuma, Ichiro

    1997-01-01

    We investigated the effect of a bovine milk protein, lactoferrin (LF–B), and a pepsin–generated peptide of LF–B, lactoferricin (Lfcin–B), on inhibition of tumor metastasis produced by highly metastatic murine tumor cells, B16–BL6 melanoma and L5178Y–ML25 lymphoma cells, using experimental and spontaneous metastasis models in syngeneic mice. The subcutaneous (s.c.) administration of bovine apo–lactoferrin (apo–LF–B, 1 mg/mouse) and Lfcin–B (0.5 mg/monse) 1 day after tumor inoculation significantly inhibited liver and lung metastasis of L5178Y–ML25 cells. However, human apo–lactoferrin (apo–LF–H) and bovine holo–lactoferrin (holo–LF–B) at the dose of 1 mg/mouse failed to inhibit tumor metastasis of L5178Y–ML25 cells. Similarly, the s.c. administration of apo–LF–B as well as Lfcin–B, but not apo–LF–H and holo–LF–B, 1 day after tumor inoculation resulted in significant inhibition of lung metastasis of B16–BL6 cells in an experimental metastasis model. Furthermore, in in vivo analysis for tumor–induced angiogenesis, both apo–LF–B and Lfcin–B inhibited the number of tumor–induced blood vessels and suppressed tumor growth on day 8 after tumor inoculation. However, in a long–term analysis of tumor growth for up to 21 days after tumor inoculation, single administration of apo–LF–B significantly suppressed the growth of B16–BL6 cells throughout the examination period, whereas Lfcin–B showed inhibitory activity only during the early period (8 days). In spontaneous metastasis of B16–BL6 melanoma cells, multiple administration of both apo–LF–B and Lfcin–B into tumor–bearing mice significantly inhibited lung metastasis produced by B16–BL6 cells, though only apo–LF–B exhibited an inhibitory effect on tumor growth at the time of primary tumor amputation (on day 21) after tumor inoculation. These results suggest that apo–LF–B and Lfcin–B inhibit tumor metastasis through different

  10. Plant Food Delphinidin-3-Glucoside Significantly Inhibits Platelet Activation and Thrombosis: Novel Protective Roles against Cardiovascular Diseases

    PubMed Central

    Yang, Yan; Shi, Zhenyin; Reheman, Adili; Jin, Joseph W.; Li, Conglei; Wang, Yiming; Andrews, Marc C.; Chen, Pingguo; Zhu, Guangheng; Ling, Wenhua; Ni, Heyu

    2012-01-01

    Delphinidin-3-glucoside (Dp-3-g) is one of the predominant bioactive compounds of anthocyanins in many plant foods. Although several anthocyanin compounds have been reported to be protective against cardiovascular diseases (CVDs), the direct effect of anthocyanins on platelets, the key players in atherothrombosis, has not been studied. The roles of Dp-3-g in platelet function are completely unknown. The present study investigated the effects of Dp-3-g on platelet activation and several thrombosis models in vitro and in vivo. We found that Dp-3-g significantly inhibited human and murine platelet aggregation in both platelet-rich plasma and purified platelets. It also markedly reduced thrombus growth in human and murine blood in perfusion chambers at both low and high shear rates. Using intravital microscopy, we observed that Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for vessel occlusion. Dp-3-g also significantly inhibited thrombus growth in a carotid artery thrombosis model. To elucidate the mechanisms, we examined platelet activation markers via flow cytometry and found that Dp-3-g significantly inhibited the expression of P-selectin, CD63, CD40L, which reflect platelet α- and δ-granule release, and cytosol protein secretion, respectively. We further demonstrated that Dp-3-g downregulated the expression of active integrin αIIbβ3 on platelets, and attenuated fibrinogen binding to platelets following agonist treatment, without interfering with the direct interaction between fibrinogen and integrin αIIbβ3. We found that Dp-3-g reduced phosphorylation of adenosine monophosphate-activated protein kinase, which may contribute to the observed inhibitory effects on platelet activation. Thus, Dp-3-g significantly inhibits platelet activation and attenuates thrombus growth at both arterial and venous shear stresses, which likely contributes to its protective roles against thrombosis and CVDs. PMID:22624015

  11. Pediatricians' perceptions of vaccine effectiveness and safety are significant predictors of vaccine administration in India

    PubMed Central

    Gargano, Lisa M.; Thacker, Naveen; Choudhury, Panna; Weiss, Paul S.; Russ, Rebecca M.; Pazol, Karen; Arora, Manisha; Orenstein, Walter A.; Omer, Saad B.; Hughes, James M.

    2013-01-01

    Background New vaccine introduction is important to decrease morbidity and mortality in India. The goal of this study was to identify perceptions that are associated with administration of four selected vaccines for prevention of Japanese encephalitis (JE), typhoid fever, influenza and human papillomavirus (HPV) infection. Methods A random sample of 785 pediatricians from a national list of Indian Academy of Pediatrics members was selected for a survey to assess perceptions of vaccine effectiveness and safety, and vaccine administration practices. Logistic regression was used to assess factors associated with selective or routine use. Results Pediatricians reported administering typhoid (91.6%), influenza (60.1%), HPV (46.0%) and JE (41.9%) vaccines selectively or routinely. Pediatricians who perceived the vaccine to be safe were significantly more likely to report administration of JE (OR 2.6, 95% CI 1.3 to 5.3), influenza (OR 4.3, 95% CI 2.0 to 9.6) and HPV vaccine (OR 6.2, 95% CI 3.1 to 12.7). Pediatricians who perceived the vaccine to be effective were significantly more likely to report administration of JE (OR 3.3, 95% CI 1.6 to 6.5), influenza (OR 7.7, 95% CI 2.5 to 23.1) and HPV vaccine (OR 3.2, 95% CI 1.6 to 6.4) Conclusion Understanding the role perceptions play provides an opportunity to design strategies to build support for vaccine use. PMID:24030271

  12. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses

    PubMed Central

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-01-01

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. PMID:28775364

  13. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    PubMed

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  14. NOAA - National Oceanic and Atmospheric Administration - Significant Ozone

    Science.gov Websites

    RESEARCH COASTS CAREERS National Oceanic and Atmospheric Administration, United States Department of smallest since 1986. The record low of 89 DU was recorded on Oct. 6, 1993. The atmospheric ozone layer nearly completed a year-long assignment at South Pole Station where they collect atmospheric data and

  15. Combined treatment, based on lysomustine administration with mesenchymal stem cells expressing cytosine deaminase therapy, leads to pronounced murine Lewis lung carcinoma growth inhibition.

    PubMed

    Krassikova, Lyudmila S; Karshieva, Saida S; Cheglakov, Ivan B; Belyavsky, Alexander V

    2016-09-01

    The combination of stem cell-based gene therapy with chemotherapy comprises an advantageous strategy that results in a reduction of system toxicity effects and an improvement in the general efficacy of treatment. In the present study, we estimated the efficacy of adipose tissue-derived mesenchymal stem cells (AT-MSCs) expressing cytosine deaminase (CDA) combined with lysomustine chemotherapy in mice bearing late stage Lewis lung carcinoma (LLC). Adipose tissue-derived mesenchymal stem cells were transfected with non-insert plasmid construct transiently expressing fused cytosine deaminase-uracil phosphoribosyltransferase protein (CDA/UPRT) or the same construct fused with Herpes Simplex Virus Type1 tegument protein VP22 (CDA/UPRT/VP22). Systemic administration of 5-fluorocytosine (5FC) and lysomustine was implemented after a single intratumoral injection of transfected AT-MSCs. We demonstrated that direct intratumoral transplantation of AT-MSCs expressing CDA/UPRT or CDA/UPRT/VP22 followed by systemic administration of 5FC resulted in a significant tumor growth inhibition. There was a 56% reduction in tumor volume in mice treated by AT-MSCs-CDA/UPRT + 5FC or with AT-MSCs-CDA/UPRT/VP22 + 5FC compared to control animals grafted with lung carcinoma alone. Transplantation of AT-MSCs-CDA/UPRT + 5FC and AT-MSCs-CDA/UPRT/VP22 + 5FC prolonged the life span of mice bearing LLC by 27% and 31%, respectively. Co-administration of lysomustine and AT-MSCs-CDA/UPRT + 5FC led to tumor growth inhibition (by 86%) and life span extension (by 60%) compared to the control group. Our data indicate that a combination CDA/UPRT-expressing AT-MSCs with lysomustine has a superior antitumor effect in the murine lung carcinoma model compared to monotherapies with transfected AT-MSCs or lysomustine alone, possibly because of a synergistic effect of the combination therapy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Intrauterine administration of plant oils inhibits luteolysis in the mare.

    PubMed

    Wilsher, S; Allen, W R

    2011-01-01

    The maternal recognition of pregnancy (MRP) signal in the mare has not been determined, although oestrogens have been proposed as a potential candidate. To determine effects of intrauterine administration of oestrogen and various oils on cyclic luteolysis in the mare. Intrauterine oestradiol or fatty acids may suppress luteolysis in the cycling mare when administered during late dioestrus. A single 1 ml dose of slow-release oestradiol (10 mg/ml) in fractionated coconut oil was infused into the uterine lumen of cycling mares on Days 6, 8, 10, 12 or 14 post ovulation (n=12 in each group). Four further groups, each of 12 mares, received an intrauterine infusion of either 1 ml of fractionated coconut oil, peanut oil, mineral oil or a slow-release preparation of oestradiol (10 mg/ml) in mineral oil on Day 10 post ovulation. Serial blood samples were assayed for progesterone concentrations to monitor luteal function. Intrauterine administration of oestradiol in fractionated coconut oil showed peak efficacy at Day 10 when luteolysis was delayed in 11/12 (92%) mares. The ability of the treatment to delay luteolysis was not significantly different when administered on Days 8 (9/12; 75%), 12 (10/12; 83%) or 14 (6/12; 50%) of dioestrus, but declined significantly when given on Day 6 (3/12; 25%). Oestradiol was not needed to initiate luteostasis since fractionated coconut oil alone or peanut oil administered at Day 10 induced the same high rate of luteal persistence (11/12; 92% for both oils). In contrast, mineral oil did not prolong luteal lifespan, either when administered alone (2/12; 17%) or combined with oestradiol (3/12; 25%). These results do not unequivocally rule out a possible involvement of embryonic oestrogens in MRP in the mare but suggest it is unlikely. The results demonstrate that plant oils can postpone luteolysis, suggesting they may modulate synthesis or release of prostaglandins from the mare's endometrium. Administration of fractionated coconut or peanut

  17. Intraintestinal administration of ulinastatin protects against sepsis by relieving intestinal damage.

    PubMed

    Yang, Bingchang; Gao, Min; Wang, Kangkai; Jiang, Yu; Peng, Yue; Zhang, Huali; Yang, Mingshi; Xiao, Xianzhong

    2017-05-01

    Intravenous administration of ulinastatin (UTI), a broad spectral protease inhibitor, has been used on an experimental basis with severe sepsis patients in Asia. However, the effects of intraintestinal administration of UTI on intestinal and multiple organ damage in sepsis have not been reported. In this study, we established a sepsis model in rats using cecal ligation and puncture and compared the effects of intraintestinal administration of UTI through an artificial fistula of duodenum and intraperitoneal administration of UTI on the pathophysiological changes of sepsis. It was found that intraintestinal administration of UTI (1) significantly improved the survival of septic rats, (2) significantly reduced the serum levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 as well as intestinal injury biomarkers diamine oxidase, D-lactic acid, and fluorescein isothiocyanate-dextran 4, and (3) significantly reduced intestinal microscopic and ultrastructural damage of septic rats. In addition, the protective effects of intraintestinal administration of UTI were significantly better than those of intraperitoneal administration of UTI. Overall, the present study for the first time revealed that intraintestinal administration of protease inhibitor UTI could reduce systemic inflammatory responses and multiple organ dysfunction in rats with sepsis by inhibiting autodigestion of intestinal wall due to proteases and provided new research ideas and experimental evidences for treatment of sepsis by intraintestinal administration of UTI. Copyright © 2016. Published by Elsevier Inc.

  18. Oral administration of Uncariae rhynchophylla inhibits the development of DNFB-induced atopic dermatitis-like skin lesions via IFN-gamma down-regulation in NC/Nga mice.

    PubMed

    Kim, Dong-Young; Jung, Jung-A; Kim, Tae-Ho; Seo, Sang-Wan; Jung, Sung-Ki; Park, Cheung-Seog

    2009-04-21

    Uncariae rhynchophylla (UR) is an herb which has blood pressure lowering and anti-inflammatory effects and has been prescribed traditionally to treat stroke and vascular dementia. In the present study, we examined whether UR suppress Atopic dermatitis (AD)-like skin lesions in NC/Nga mice treated with 2, 4-dinitrofluorobenzene (DNFB) under SPF conditions. The effect of UR in DNFB- treated NC/Nga mice was determined by measuring the skin symptom severity, levels of serum IgE, and of the amounts of IL-4 and IFN-gamma secreted by activated T cells in draining lymph nodes. Oral administration of UR to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. IFN-gamma production by CD4+ T cells from the lymph nodes of DNFB-treated NC/Nga mice was significantly inhibited by UR treatment, although levels of IL-4 and total IgE in serum were not. UR may suppress the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing IFN-gamma production.

  19. Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency.

    PubMed

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Du, Tingting; Yi, Xiao; Li, Mingchun; Chen, Wei; Alvarez, Pedro J J

    Graphene oxide (GO)-based materials are increasingly being used in medical materials and consumer products. However, their sublethal effects on biological systems are poorly understood. Here, we report that GO (at 10 to 160 mg/L) induced significant inhibitory effects on the growth of different unicellular organisms, including eukaryotes (i.e. Saccharomyces cerevisiae, Candida albicans, and Komagataella pastoris) and prokaryotes (Pseudomonas fluorescens). Growth inhibition could not be explained by commonly reported cytotoxicity mechanisms such as plasma membrane damage or oxidative stress. Based on transcriptomic analysis and measurement of extra- and intracellular iron concentrations, we show that the inhibitory effect of GO was mainly attributable to iron deficiency caused by binding to the O-functional groups of GO, which sequestered iron and disrupted iron-related physiological and metabolic processes. This inhibitory mechanism was corroborated with supplementary experiments, where adding bathophenanthroline disulfonate-an iron chelating agent-to the culture medium exerted similar inhibition, whereas removing surface O-functional groups of GO decreased iron sequestration and significantly alleviated the inhibitory effect. These findings highlight a potential indirect detrimental effect of nanomaterials (i.e. scavenging of critical nutrients), and encourage research on potential biomedical applications of GO-based materials to sequester iron and enhance treatment of iron-dependent diseases such as cancer and some pathogenic infections.

  20. CENTRAL REINFORCING EFFECTS OF ETHANOL ARE BLOCKED BY CATALASE INHIBITION

    PubMed Central

    Nizhnikov, Michael Edward; Molina, Juan Carlos; Spear, Norman

    2007-01-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol’s positive reinforcing effects. Central administrations of ethanol (25–200 mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn’s response to a surrogate nipple scented with the CS. It has been shown that ethanol’s first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (i.c.) administrations of 100 mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with i.c. administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was employed as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats. PMID:17980789

  1. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota.

    PubMed

    Zhang, Lu; Huang, Ying; Zhou, Yang; Buckley, Timothy; Wang, Hua H

    2013-08-01

    This study examined the impact of oral exposure to antibiotic-resistant bacteria and antibiotic administration methods on antibiotic resistance (AR) gene pools and the profile of resistant bacteria in host gastrointestinal (GI) tracts using C57BL/6J mice with natural gut microbiota. Mice inoculated with a mixture of tet(M)-carrying Enterococcus spp. or blaCMY-2-carrying Escherichia coli were treated with different doses of tetracycline hydrochloride (Tet) or ampicillin sodium (Amp) and delivered via either feed or intravenous (i.v.) injection. Quantitative PCR assessment of mouse fecal samples revealed that (i) AR gene pools were below the detection limit in mice without prior inoculation of AR gene carriers regardless of subsequent exposure to corresponding antibiotics; (ii) oral exposure to high doses of Tet and Amp in mice inoculated with AR gene carriers led to rapid enrichment of corresponding AR gene pools in feces; (iii) significantly less or delayed development of AR in the GI tract of the AR carrier-inoculated mice was observed when the same doses of antibiotics were administered via i.v. injection rather than oral administration; and (iv) antibiotic dosage, and maybe the excretion route, affected AR in the GI tract. The shift of dominant AR bacterial populations in the gut microbiota was consistent with the dynamics of AR gene pools. The emergence of endogenous resistant bacteria in the gut microbiota corresponding to drug exposure was also observed. Together, these data suggest that oral administration of antibiotics has a prominent effect on AR amplification and development in gut microbiota, which may be minimized by alternative drug administration approaches, as illustrated by i.v. injection in this study and proper drug selection.

  2. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice.

    PubMed

    Ono, Tetsuo; Li, Chong; Mizutani, Eiji; Terashita, Yukari; Yamagata, Kazuo; Wakayama, Teruhiko

    2010-12-01

    Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.

  3. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vito, Stephen T., E-mail: stvito@ucdavis.edu; Austin, Adam T., E-mail: aaustin@ucdavis.edu; Banks, Christopher N., E-mail: Christopher.Banks@oehha.ca.gov

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizuresmore » and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide

  4. Antibiotic Administration Routes Significantly Influence the Levels of Antibiotic Resistance in Gut Microbiota

    PubMed Central

    Zhang, Lu; Huang, Ying; Zhou, Yang; Buckley, Timothy

    2013-01-01

    This study examined the impact of oral exposure to antibiotic-resistant bacteria and antibiotic administration methods on antibiotic resistance (AR) gene pools and the profile of resistant bacteria in host gastrointestinal (GI) tracts using C57BL/6J mice with natural gut microbiota. Mice inoculated with a mixture of tet(M)-carrying Enterococcus spp. or blaCMY-2-carrying Escherichia coli were treated with different doses of tetracycline hydrochloride (Tet) or ampicillin sodium (Amp) and delivered via either feed or intravenous (i.v.) injection. Quantitative PCR assessment of mouse fecal samples revealed that (i) AR gene pools were below the detection limit in mice without prior inoculation of AR gene carriers regardless of subsequent exposure to corresponding antibiotics; (ii) oral exposure to high doses of Tet and Amp in mice inoculated with AR gene carriers led to rapid enrichment of corresponding AR gene pools in feces; (iii) significantly less or delayed development of AR in the GI tract of the AR carrier-inoculated mice was observed when the same doses of antibiotics were administered via i.v. injection rather than oral administration; and (iv) antibiotic dosage, and maybe the excretion route, affected AR in the GI tract. The shift of dominant AR bacterial populations in the gut microbiota was consistent with the dynamics of AR gene pools. The emergence of endogenous resistant bacteria in the gut microbiota corresponding to drug exposure was also observed. Together, these data suggest that oral administration of antibiotics has a prominent effect on AR amplification and development in gut microbiota, which may be minimized by alternative drug administration approaches, as illustrated by i.v. injection in this study and proper drug selection. PMID:23689712

  5. Bilobalide, a unique constituent of Ginkgo biloba, inhibits inflammatory pain in rats.

    PubMed

    Goldie, Michelle; Dolan, Sharron

    2013-08-01

    Standardized Ginkgo biloba extract EGb 761 has been shown to inhibit inflammatory hyperalgesia in rats; however, the mechanism of action is not known. This study set out to investigate the anti-inflammatory and analgesic potential of bilobalide, a unique G. biloba constituent, in three well-characterized models of acute inflammatory pain. The effect of oral, intraplantar or intrathecal administration of bilobalide or drug-vehicle (0.25% agar; 10% ethanol in H2O) on responses to noxious thermal and mechanical stimulation of the hindpaw, and paw oedema were assessed in adult male Wistar rats before and after intradermal hindpaw injection of carrageenan (3%; 50 μl) or capsaicin (10 μg; 50 μl) or after hindpaw incision (n=6-8/group). Oral administration of bilobalide (10-30 mg/kg) significantly inhibited thermal hyperalgesia in response to carrageenan, capsaicin and paw incision, independent of dose, with an efficacy similar to that of diclofenac. In the carrageenan model, mechanical hypersensitivity and paw oedema were also significantly reduced after treatment with bilobalide (10-30 mg/kg). Intrathecal administration of bilobalide (0.5-1 μg) inhibited carrageenan-induced thermal hyperalgesia, but had no effect on mechanical hypersensitivity or paw oedema (application≥2 μg induced adverse effects, precluding testing of higher doses). Intraplantar administration of bilobalide (30-100 μg) had no effect. These data show that bilobalide is a potent anti-inflammatory and antihyperalgesic agent, the therapeutic effects of which are mediated in part through a central site of action, and may account for the therapeutic action of the whole extract G. biloba.

  6. Inhibition of B16-BL6 melanoma growth in mice by methionine-enkephalin.

    PubMed

    Murgo, A J

    1985-08-01

    The antitumor effect of methionine-enkephalin [( Met]enkephalin) was demonstrated in C57BL/6J mice inoculated with B16-BL6 melanoma cells. Local subcutaneous tumor growth was inhibited with a 50-micrograms dose daily for 7 or 14 days. The antitumor effect of [Met]enkephalin was inhibited by the administration of the opioid receptor antagonist naloxone. Naloxone alone had no significant effect on tumor growth.

  7. Distigmine Bromide Produces Sustained Potentiation of Guinea-Pig Urinary Bladder Motility by Inhibiting Cholinesterase Activity.

    PubMed

    Obara, Keisuke; Chino, Daisuke; Tanaka, Yoshio

    2017-01-01

    Distigmine is a cholinesterase (ChE) inhibitor used for the treatment of detrusor underactivity in Japan. Distigmine's pharmacological effects are known to be long-lasting, but the duration of its effect on urinary bladder contractile function has not been fully elucidated. The present study aimed to determine these effects in relation to the plasma concentrations of distigmine and its inhibition of ChE activities in blood, plasma, and bladder tissue. Intravesical pressures were recorded in anesthetized guinea-pigs for 12 h after the intravenous administration of saline or distigmine (0.01-0.1 mg/kg). Plasma distigmine concentrations were measured by liquid chromatograph-tandem mass spectrometry (LC-MS/MS), while ChE activities were assayed using 5,5'-dithiobis(2-nitrobenzoic acid). Distigmine (0.1 mg/kg) significantly increased the maximum intravesical pressure at micturition reflex for 12 h post-administration. In contrast, plasma distigmine was only detectable for 6 h post-administration in these animals and a one-compartment model calculated an elimination half-life of 0.7 h. However, bladder and blood acetylcholinesterase activities were significantly inhibited for 12 h after distigmine administration, although plasma ChE activities were not affected. The pharmacodynamic effects of distigmine thus persisted after its elimination from the circulation, indicating that it may bind to bladder acetylcholinesterase, producing sustained enzyme inhibition and enhancement of bladder contractility.

  8. Dietary administration of δ- and γ-tocopherol inhibits tumorigenesis in the animal model of estrogen receptor-positive, but not HER-2 breast cancer.

    PubMed

    Smolarek, Amanda K; So, Jae Young; Burgess, Brenda; Kong, Ah-Ng Tony; Reuhl, Kenneth; Lin, Yong; Shih, Weichung Joe; Li, Guangxun; Lee, Mao-Jung; Chen, Yu-Kuo; Yang, Chung S; Suh, Nanjoo

    2012-11-01

    Tocopherol, a member of the vitamin E family, consists of four forms designated as α, β, γ, and δ. Several large cancer prevention studies with α-tocopherol have reported no beneficial results, but recent laboratory studies have suggested that δ- and γ-tocopherol may be more effective. In two different animal models of breast cancer, the chemopreventive activities of individual tocopherols were assessed using diets containing 0.3% of tocopherol (α-, δ-, or γ-) or 0.3% of a γ-tocopherol rich mixture (γ-TmT). Although administration of tocopherols did not prevent human epidermal growth factor receptor 2 (HER2/neu)-driven tumorigenesis, δ- and γ-tocopherols inhibited hormone-dependent mammary tumorigenesis in N-methyl-N-nitrosourea (NMU)-treated female Sprague-Dawley rats. NMU-treated rats showed an average tumor burden of 10.6 ± 0.8 g in the control group at 11 weeks, whereas dietary administration of δ- and γ-tocopherols significantly decreased tumor burden to 7.2 ± 0.8 g (P < 0.01) and 7.1 ± 0.7 g (P < 0.01), respectively. Tumor multiplicity was also reduced in δ- and γ-tocopherol treatment groups by 42% (P < 0.001) and 32% (P < 0.01), respectively. In contrast, α-tocopherol did not decrease tumor burden or multiplicity. In mammary tumors, the protein levels of proapoptotic markers (BAX, cleaved caspase-9, cleaved caspase-3, cleaved PARP) were increased, whereas antiapoptotic markers (Bcl-2, XIAP) were inhibited by δ-tocopherol, γ-tocopherol, and γ-TmT. Furthermore, markers of cell proliferation (PCNA, PKCα), survival (PPAR-γ, PTEN, phospho-Akt), and cell cycle (p53, p21) were affected by δ- and γ-tocopherols. Both δ- and γ-tocopherols, but not α-tocopherol, seem to be promising agents for the prevention of hormone-dependent breast cancer.

  9. Dietary administration of δ- and γ-tocopherol inhibits tumorigenesis in the animal model of estrogen-receptor positive, but not HER-2 breast cancer

    PubMed Central

    Smolarek, Amanda K.; So, Jae Young; Burgess, Brenda; Kong, Ah-Ng Tony; Reuhl, Kenneth; Lin, Yong; Shih, Weichung Joe; Li, Guangxun; Lee, Mao-Jung; Chen, Yu-Kuo; Yang, Chung S.; Suh, Nanjoo

    2012-01-01

    Tocopherol, a member of the vitamin E family, consists of four forms designated as α, β, γ, and δ. Several large cancer prevention studies with α-tocopherol have reported no beneficial results, but recent laboratory studies have suggested that δ- and γ-tocopherol may be more effective. In two different animal models of breast cancer, the chemopreventive activities of individual tocopherols were assessed using diets containing 0.3% of tocopherol (α-, δ- or γ-) or 0.3% of a γ-tocopherol rich mixture (γ-TmT). While administration of tocopherols did not prevent human epidermal growth factor receptor 2 (HER2/neu)-driven tumorigenesis, δ- and γ-tocopherols inhibited hormone-dependent mammary tumorigenesis in N-methyl-N-nitrosourea (NMU)-treated female Sprague Dawley rats. NMU-treated rats showed an average tumor burden of 10.6 ± 0.8 g in the control group at 11 weeks, whereas dietary administration of δ- and γ-tocopherols significantly decreased tumor burden to 7.2 ± 0.8 g (p<0.01) and 7.1 ± 0.7 g (p<0.01), respectively. Tumor multiplicity was also reduced in δ- and γ-tocopherol treatment groups by 42% (p<0.001) and 32% (p<0.01), respectively. In contrast, α-tocopherol did not decrease tumor burden or multiplicity. In mammary tumors, the protein levels of pro-apoptotic markers (BAX, cleaved-caspase 9, cleaved-caspase 3, cleaved-PARP) were increased, while anti-apoptotic markers (Bcl2, XIAP) were inhibited by δ-tocopherol, γ-tocopherol and γ-TmT. Furthermore, markers of cell proliferation (PCNA, PKC α), survival (PPARγ, PTEN, phospho-Akt) and cell cycle (p53, p21) were affected by δ- and γ-tocopherols. Both δ- and γ-tocopherols, but not α-tocopherol, appear to be promising agents for the prevention of hormone-dependent breast cancer. PMID:22964476

  10. Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju

    2011-01-01

    Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156

  11. Short-term and long-term ethanol administration inhibits the placental uptake and transport of valine in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, R.V.; Schenker, S.; Henderson, G.I.

    1981-08-01

    Ethanol ingestion during pregnancy causes a pattern of fetal/neonatal dysfunction called the FAS. The effects of short- and long-term ethanol ingestion on the placental uptake and maternal-fetal transfer of valine were studied in rats. The in vivo placental uptake and fetal uptake were estimated after injection of 0.04 micromol of /sub 14/C-valine intravenously on day 20 of gestation in Sprague-Dawley rats. Short-term ethanol ingestion (4 gm/kg) caused a significant reduction in the placental uptake of /sub 14/C-valine by 33%, 60%, and 30%, and 31% at 2.5, 5, 10, and 15 min after valine administration, respectively (p less than 0.01), andmore » a similar significant reduction occurred in the fetal uptake of /sub 14/C-valine (p less than 0.01). Long-term ethanol ingestion prior to and throughout gestation resulted in a 47% reduction in placental valine uptake (p less than 0.01) and a 46% reduction in fetal valine uptake (p less than 0.01). Long-term ethanol feeding from day 4 to day 20 of gestation caused a 32% reduction in placental valine uptake (p less than 0.01) and a 26% reduction in fetal valine uptake (p less than 0.01). We conclude that both short- and long-term ingestion of ethanol inhibit the placental uptake and maternal-fetal transfer of an essential amino acid--valine. An alteration of placental function may contribute to the pathogenesis of the FAS.« less

  12. Activated mesenchymal stem cell administration inhibits chronic alcohol drinking and suppresses relapse-like drinking in high-alcohol drinker rats.

    PubMed

    Ezquer, Fernando; Quintanilla, María Elena; Morales, Paola; Ezquer, Marcelo; Lespay-Rebolledo, Carolyne; Herrera-Marschitz, Mario; Israel, Yedy

    2017-10-18

    Neuroinflammation has been reported to follow chronic ethanol intake and may perpetuate alcohol consumption. Present studies determined the effect of human mesenchymal stem cells (hMSCs), known for their anti-inflammatory action, on chronic ethanol intake and relapse-like ethanol intake in a post-deprivation condition. Rats were allowed 12-17 weeks of chronic voluntary ethanol (10% and 20% v/v) intake, after which a single dose of activated hMSCs (5 × 10 5 ) was injected into a brain lateral ventricle. Control animals were administered vehicle. After assessing the effect of hMSCs on chronic ethanol intake for 1 week, animals were deprived of ethanol for 2 weeks and thereafter an ethanol re-access of 60 min was allowed to determine relapse-like intake. A single administration of activated hMSCs inhibited chronic alcohol consumption by 70% (P < 0.001), an effect seen within the first 24 hours of hMSCs administration, and reduced relapse-like drinking by 80% (P < 0.001). In the relapse-like condition, control animals attain blood ethanol ('binge-like') levels >80 mg/dl. The single hMSC administration reduced relapse-like blood ethanol levels to 20 mg/dl. Chronic ethanol intake increased by 250% (P < 0.001) the levels of reactive oxygen species in hippocampus, which were markedly reduced by hMSC administration. Astrocyte glial acidic fibrillary protein immunoreactivity, a hallmark of neuroinflammation, was increased by 60-80% (P < 0.001) by chronic ethanol intake, an effect that was fully abolished by the administration of hMSCs. This study supports the neuroinflammation-chronic ethanol intake hypothesis and suggest that mesenchymal stem cell administration may be considered in the treatment of alcohol use disorders. © 2017 Society for the Study of Addiction.

  13. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.

    PubMed

    Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo

    2009-09-01

    We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.

  14. Naringin administration inhibits platelet aggregation and release by reducing blood cholesterol levels and the cytosolic free calcium concentration in hyperlipidemic rabbits

    PubMed Central

    XIAO, YANG; LI, LAI-LAI; WANG, YAN-YAN; GUO, JING-JING; XU, WEN-PING; WANG, YAN-YAN; WANG, YI

    2014-01-01

    This study investigated the effects of naringin on platelet aggregation and release in hyperlipidemic rabbits, and the underlying mechanisms. The safety of naringin was also investigated. The rabbits were orally administered 60, 30 or 15 mg/kg of naringin once a day for 14 days after being fed a high fat/cholesterol diet for four weeks. Following the two weeks of drug administration, the degree of platelet aggregation induced by arachidonic acid, adenosine diphosphate and collagen was significantly reduced by naringin at certain doses compared with those in the rabbits of the model group (P<0.01). The levels of P-selectin and platelet factor 4 (PF4) also decreased following treatment with naringin compared with those of the model group. Certain doses of naringin significantly reduced the total cholesterol (TC) levels and elevated the ratio of high-density lipoprotein cholesterol to TC compared with those in the model group, and significantly decreased the cytosolic free calcium concentration ([Ca2+]i). No significant difference in the coagulation function was observed between the control and drug-treatment groups. These results indicate that naringin improved platelet aggregation and inhibited the excessive release of P-selectin and PF4 in hyperlipidemic rabbits. This study suggests that the antiplatelet effect of naringin may be due to its ability to regulate the levels of blood cholesterol and [Ca2+]i in platelets. Naringin also did not cause bleeding in the hyperlipidemic rabbits. PMID:25120631

  15. Favipiravir inhibits acetaminophen sulfate formation but minimally affects systemic pharmacokinetics of acetaminophen

    PubMed Central

    Zhao, Yanli; Harmatz, Jerold S; Epstein, Carol R; Nakagawa, Yukako; Kurosaki, Chie; Nakamura, Tetsuro; Kadota, Takumi; Giesing, Dennis; Court, Michael H; Greenblatt, David J

    2015-01-01

    Aims The antiviral agent favipiravir is likely to be co-prescribed with acetaminophen (paracetamol). The present study evaluated the possiblility of a pharmacokinetic interaction between favipiravir and acetaminophen, in vitro and in vivo. Methods The effect of favipivir on the transformation of acetaminophen to its glucuronide and sulfate metabolites was studied using a pooled human hepatic S9 fraction in vitro. The effect of acute and extended adminstration of favipiravir on the pharmacokinetics of acetaminophen and metabolites was evaluated in human volunteers. Results Favipiravir inhibited the in vitro formation of acetaminophen sulfate, but not acetaminophen glucuronide. In human volunteers, both acute (1 day) and extended (6 days) administration of favipiravir slightly but significantly increased (by about 20 %) systemic exposure to acetaminophen (total AUC), whereas Cmax was not significantly changed. AUC for acetaminophen glucuronide was increased by 23 to 35 % above control by favipiravir, while AUC for acetaminophen sulfate was reduced by about 20 % compared to control. Urinary excretion of acetaminophen sulfate was likewise reduced to 44 to 65 % of control values during favipiravir co-administration, while excretion of acetaminophen glucuronide increased to 17 to 32 % above control. Conclusion Favipiravir inhibits acetaminophen sulfate formation in vitro and in vivo. However the increase in systemic exposure to acetaminophen due to favipiravir co-administration, though statistically significant, is small in magnitude and unlikely to be of clinical importance. PMID:25808818

  16. Oral Administration of Nano-Emulsion Curcumin in Mice Suppresses Inflammatory-Induced NFκB Signaling and Macrophage Migration

    PubMed Central

    Young, Nicholas A.; Bruss, Michael S.; Gardner, Mark; Willis, William L.; Mo, Xiaokui; Valiente, Giancarlo R.; Cao, Yu; Liu, Zhongfa; Jarjour, Wael N.; Wu, Lai-Chu

    2014-01-01

    Despite the widespread use of curcumin for centuries in Eastern medicine as an anti-inflammatory agent, its molecular actions and therapeutic viability have only recently been explored. While curcumin does have potential therapeutic efficacy, both solubility and bioavailability must be improved before it can be more successfully translated to clinical care. We have previously reported a novel formulation of nano-emulsion curcumin (NEC) that achieves significantly greater plasma concentrations in mice after oral administration. Here, we confirm the immunosuppressive effects of NEC in vivo and further examine its molecular mechanisms to better understand therapeutic potential. Using transgenic mice harboring an NFκB-luciferase reporter gene, we demonstrate a novel application of this in vivo inflammatory model to test the efficacy of NEC administration by bioluminescent imaging and show that LPS-induced NFκB activity was suppressed with NEC compared to an equivalent amount of curcumin in aqueous suspension. Administration of NEC by oral gavage resulted in a reduction of blood monocytes, decreased levels of both TLR4 and RAGE expression, and inhibited secretion of MCP-1. Mechanistically, curcumin blocked LPS-induced phosphorylation of the p65 subunit of NFκB and IκBα in murine macrophages. In a mouse model of peritonitis, NEC significantly reduced macrophage recruitment, but not T-cell or B-cell levels. In addition, curcumin treatment of monocyte derived cell lines and primary human macrophages in vitro significantly inhibited cell migration. These data demonstrate that curcumin can suppress inflammation by inhibiting macrophage migration via NFκB and MCP-1 inhibition and establish that NEC is an effective therapeutic formulation to increase the bioavailability of curcumin in order to facilitate this response. PMID:25369140

  17. In Vivo Administration of a JAK3 Inhibitor during Acute SIV Infection Leads to Significant Increases in Viral Load during Chronic Infection

    PubMed Central

    Takahashi, Yoshiaki; Byrareddy, Siddappa N.; Albrecht, Christina; Brameier, Markus; Walter, Lutz; Mayne, Ann E.; Dunbar, Paul; Russo, Robert; Little, Dawn M.; Villinger, Tara; Khowawisetsut, Ladawan; Pattanapanyasat, Kovit; Villinger, Francois; Ansari, Aftab A.

    2014-01-01

    The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8+ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4+ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a+ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses. PMID:24603870

  18. Genetic ablation or pharmacologic inhibition of autophagy mitigated NSAID-associated gastric damages.

    PubMed

    Ock, Chan Young; Park, Jong-Min; Han, Young-Min; Jeong, Migyeong; Kim, Mi-Young; Lee, Ho Jae; Hahm, Ki Baik

    2017-04-01

    Non-steroidal anti-inflammatory drug (NSAID)-associated endoplasmic reticulum (ER) stress (a cyclooxygenase-2-independent mechanism) and consequent autophagic cell death are responsible for NSAID-associated gastric damage. Therefore, alleviating cytotoxicity executed via ER stress and autophagy can be a strategy to prevent NSAID-associated gastric damage. Here, we explored whether genetic or pharmacologic inhibition of autophagy can mitigate NSAID-associated gastric damage in in vitro and in vivo models. To examine the effects of genetic inhibition of NSAID-associated autophagy, we administered indomethacin to RGM1 gastric mucosal cells transfected with shPERK, siLC3B, or shATG5 and microtubule-associated protein light chain 3B knock-out (LC3B -/- ) mice. 3-Methyladenine (3-MA) or chloroquine (CQ) was used for pharmacologic inhibition of autophagy in both models. Indomethacin administration increased the expression of ER stress proteins including GRP78, ATF6, and CHOP. Indomethacin provoked the appearance of autophagic vesicles with the increased expression of ATG5 and LC3B-II. Genetic ablation of various ER stress genes significantly attenuated indomethacin-induced autophagy and apoptosis (p < 0.01), whereas knock-down of either ATG5 or LC3B significantly reduced indomethacin-induced cytotoxicity (p < 0.01). Testing each of the genes implicated in ER stress and autophagy showed that indomethacin leads to gastric cell apoptosis through autophagy induction consequent to ER stress. Pharmacological inhibition of autophagy with either 3-MA or CQ in rats or genetic ablation of LC3B in mice all had a significant rescuing effect against indomethacin-associated gastric damage (p < 0.01) and a decrease in molecular markers of autophagic and apoptotic gastric cells. In conclusion, preemptive autophagy inhibition can be a potential strategy to mitigate NSAID-associated gastric damage. NSAID administration triggered ER stress and subsequent autophagy. Inhibition of

  19. Modificatory effect of vitamin C and vitamin B-complex on meiotic inhibition induced by organophosphorus pesticide in mice Mus musculus.

    PubMed

    Hoda, Q; Azfer, M A; Sinha, S P

    1993-01-01

    Administration of organophosphorous pesticide Malathion and Rogor (both @ 0.2 micrograms/kg body wt/day) upto ten days was found to decrease the division rate in the primary spermatocytes of mice. The concurrent administration of vitamin B-complex (0.3 ml of 1% polybion) or ascorbic acid (0.25 ml of 1% Redoxon) with the pesticide could nullify the meiotic inhibition caused by the pesticides. The vitamins were not found to produce any significant effect on the division rate. Possible mechanism(s) behind this vitamin mediated nullification of meiotic inhibition are discussed.

  20. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    PubMed

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms. Copyright © 2016. Published by Elsevier B.V.

  1. Acute Morphine Administration Reduces Cell-Mediated Immunity and Induces Reactivation of Latent Herpes Simplex Virus Type 1 in BALB/c Mice

    PubMed Central

    Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat

    2009-01-01

    Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060

  2. Cytochrome c oxidase inhibition by calcium at physiological ionic composition of the medium: Implications for physiological significance of the effect.

    PubMed

    Vygodina, Tatiana V; Mukhaleva, Elizaveta; Azarkina, Natalia V; Konstantinov, Alexander A

    2017-12-01

    Cytochrome c oxidase (CcO) from mammalian mitochondria binds Ca 2+ and Na + in a special cation binding site. Binding of Ca 2+ brings about partial inhibition of the enzyme while Na + competes with Ca 2+ for the binding site and protects the enzyme from the inhibition [Vygodina, T., Kirichenko, A. and Konstantinov, A.A. (2013). Direct Regulation of Cytochrome c oxidase by Calcium Ions. PLoS One 8(9): e74436]. In the original studies, the inhibition was found to depend significantly on the ionic composition of the buffer. Here we describe inhibition of CcO by Ca 2+ in media containing the main ionic components of cytoplasm (150mM KCl, 12mM NaCl and 1mM MgCl 2 ). Under these conditions, Ca 2+ inhibits CcO with effective K i of 20-26μM, that is an order of magnitude higher than determined earlier in the absence of Na + . At physiological value of ionic strength, the inhibition can be observed at any turnover number of CcO, rather than only at low TN (<10s -1 ) as found previously. The inhibition requires partially oxidized state of cytochrome c and is favored by high ionic strength with a sharp transition at 0.1-0.2M. The high K i =20-26μM found for CcO inhibition by calcium matches closely the known value of "K m " for Ca 2+ -induced activation of the mitochondrial calcium uniporter. The inhibition of CcO by Ca 2+ is proposed to modulate mitochondrial Ca 2+ -uptake via the mitochondrial calcium uniporter, promote permeability transition pore opening and induce reduction of Mia40 in the mitochondrial intermembrane space. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Suppression of Angiogenesis and Therapy of Human Colon Cancer Liver Metastasis by Systemic Administration of Interferon-α1

    PubMed Central

    Ozawa, Shutaro; Shinohara, Hisashi; Kanayama, Hiro-omi; Bruns, Christiane J; Bucana, Corazon D; Ellis, Lee M; Davis, Darren W; Fidler, Isaiah J

    2001-01-01

    Abstract The purpose of this study was to determine whether systemic administration of interferon-alpha (IFN-α) can inhibit liver metastasis produced in nude mice by human colon cancer cells. KM12L4 (IFN-α-sensitive) or KM12L4 IFNR (IFN-α-resistant) cells were injected into the spleen of nude mice. Seven days later, the mice were treated with subcutaneous (s.c.) injections of IFN-α (70,000 units/week) at different dosing schedules (1, 2, or 7 times/week). Significant inhibition of tumor growth, vascularization and expression of basic fibroblast growth factor (bFGF) or matrix metalloproteinase-9 (MMP-9) mRNA and protein occurred in mice given daily injections of IFN-α. Kinetic analysis of therapy showed that daily s.c. administrations of 10,000 units of IFN-α induced apoptosis in liver metastasis-associated endothelial cells, followed by inhibition of tumor cell division and apoptosis of tumor cells. These data suggest that the antiangiogenic activity of IFN-α-2a depends on frequent administration of the optimal biologic dose. PMID:11420751

  4. Galectin-3 Inhibition Is Associated with Neuropathic Pain Attenuation after Peripheral Nerve Injury

    PubMed Central

    Ai, Zisheng; Zheng, Yongjun

    2016-01-01

    Neuropathic pain remains a prevalent and persistent clinical problem because it is often poorly responsive to the currently used analgesics. It is very urgent to develop novel drugs to alleviate neuropathic pain. Galectin-3 (gal3) is a multifunctional protein belonging to the carbohydrate-ligand lectin family, which is expressed by different cells. Emerging studies showed that gal3 elicits a pro-inflammatory response by recruiting and activating lymphocytes, macrophages and microglia. In the study we investigated whether gal3 inhibition could suppress neuroinflammation and alleviate neuropathic pain following peripheral nerve injury. We found that L5 spinal nerve ligation (SNL) increases the expression of gal3 in dorsal root ganglions at the mRNA and protein level. Intrathecal administration of modified citrus pectin (MCP), a gal3 inhibitor, reduces gal3 expression in dorsal root ganglions. MCP treatment also inhibits SNL-induced gal3 expression in primary rat microglia. SNL results in an increased activation of autophagy that contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of MCP significantly suppresses SNL-induced autophagy activation. MCP also inhibits lipopolysaccharide (LPS)-induced autophagy in cultured microglia in vitro. MCP further decreases LPS-induced expression of proinflammatory mediators including IL-1β, TNF-α and IL-6 by regulating autophagy. Intrathecal administration of MCP results in adecreased mechanical and cold hypersensitivity following SNL. These results demonstrated that gal3 inhibition is associated with the suppression of SNL-induced inflammatory process andneurophathic pain attenuation. PMID:26872020

  5. The effects of co-administration of butter on the absorption, metabolism and excretion of catechins in rats after oral administration of tea polyphenols.

    PubMed

    Zhang, Liang; Han, Yuhui; Xu, Liwei; Liang, Yuhong; Chen, Xin; Li, Junsong; Wan, Xiaochun

    2015-07-01

    In Southwest China, tea polyphenols are usually utilized by way of butter tea. Tea polyphenols inhibit the absorption and biosynthesis of fatty acids in vivo, but the effects of butter on the pharmacokinetics of tea polyphenols have drawn less concern. A rapid UHPLC-MS/MS method was used to quantitatively determine the catechins in the plasma, feces and bile of rats after the oral administration of tea polyphenol or its combination with butter. In comparison with the single tea polyphenol treatment, the maximum plasma concentrations (Cmax) of the free EGCG, EGC, EC, GCG, GC and ECG significantly decreased after the co-administration of butter. The mean residence times (MRT) of the free EGCG, EGC, EC, GC and ECG were also significantly prolonged. When the plasma samples were treated with β-glucuronidase and arylsulfatase, the pharmacokinetic parameters of the total catechins (free and conjugated forms) were not affected by the co-administration of butter. These results indicated that the total absorption of catechins was not affected by butter, but the metabolism of catechins had been changed. Furthermore, the fecal catechins were significantly increased by butter. The total fecal amount and excretion ratio of all catechins were increased highly. The biliary excretion of EGCG, EGC, EC, GCG and GC was significantly increased by the co-administration of butter. To sum up, the butter changed the metabolism of catechins in vivo by decreasing the plasma concentration of the free catechins but increasing the conjugated catechins.

  6. Equitunity in Vocational Education Administration: A Handbook for Women.

    ERIC Educational Resources Information Center

    Parker, James C.; And Others

    This handbook is designed to assist women in and aspiring to vocational education administration in planning for entry into and success in vocational education administration. It consists of five sections. Section 1 describes the following barriers inhibiting the progress of women in administration: self-concept, career choice, career preparation,…

  7. Long-term administration of pyridostigmine attenuates pressure overload-induced cardiac hypertrophy by inhibiting calcineurin signalling.

    PubMed

    Lu, Yi; Zhao, Ming; Liu, Jin-Jun; He, Xi; Yu, Xiao-Jiang; Liu, Long-Zhu; Sun, Lei; Chen, Li-Na; Zang, Wei-Jin

    2017-09-01

    Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear. Hence, this study aimed to determine whether pyridostigmine can ameliorate pressure overload-induced cardiac hypertrophy and identify the underlying mechanisms. Rats were subjected to either sham or constriction of abdominal aorta surgery and treated with or without pyridostigmine for 8 weeks. Vagal activity and cardiac function were determined using PowerLab. Cardiac hypertrophy was evaluated using various histological stains. Protein markers for cardiac hypertrophy were quantitated by Western blot and immunoprecipitation. Pressure overload resulted in a marked reduction in vagal discharge and a profound increase in cardiac hypertrophy index and cardiac dysfunction. Pyridostigmine increased the acetylcholine levels by inhibiting acetylcholinesterase in rats with pressure overload. Pyridostigmine significantly attenuated cardiac hypertrophy based on reduction in left ventricular weight/body weight, suppression of the levels of atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain, and a reduction in cardiac fibrosis. These effects were accompanied by marked improvement of cardiac function. Additionally, pyridostigmine inhibited the CaN/NFAT3/GATA4 pathway and suppressed Orai1/STIM1 complex formation. In conclusion, pressure overload resulted in cardiac hypertrophy, cardiac dysfunction and a significant reduction in vagal discharge. Pyridostigmine attenuated cardiac hypertrophy and improved cardiac function, which was related to improved cholinergic transmission efficiency (decreased acetylcholinesterase and increased acetylcholine), inhibition of the CaN/NFAT3/GATA4

  8. Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension.

    PubMed

    Zhuang, Yongliang; Sun, Liping; Zhang, Yufeng; Liu, Gaoxiang

    2012-02-01

    Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides (JCP) on renovascular hypertension rats (RVHs) was evaluated. The systolic blood pressure and diastolic blood pressure of the RVHs were significantly reduced with administration of JCP (p < 0.05), compared with model control group. However, the arterial blood pressure of normal rats showed no significant changes during long-term oral treatment with high dose JCP (p > 0.05). Furthermore, effect of JCP on angiotensin II (Ang II) concentration of plasma had no significance (p > 0.05), but JCP significantly inhibited the Ang II concentration in RVHs' kidney (p < 0.05). The kidney should be the target site of JCP.

  9. Antihypertensive Effect of Long-Term Oral Administration of Jellyfish (Rhopilema esculentum) Collagen Peptides on Renovascular Hypertension

    PubMed Central

    Zhuang, Yongliang; Sun, Liping; Zhang, Yufeng; Liu, Gaoxiang

    2012-01-01

    Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides (JCP) on renovascular hypertension rats (RVHs) was evaluated. The systolic blood pressure and diastolic blood pressure of the RVHs were significantly reduced with administration of JCP (p < 0.05), compared with model control group. However, the arterial blood pressure of normal rats showed no significant changes during long-term oral treatment with high dose JCP (p > 0.05). Furthermore, effect of JCP on angiotensin II (Ang II) concentration of plasma had no significance (p > 0.05), but JCP significantly inhibited the Ang II concentration in RVHs’ kidney (p < 0.05). The kidney should be the target site of JCP. PMID:22412809

  10. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice

    PubMed Central

    Agrawal, Vijayendra; Maharjan, Sony; Kim, Kyeojin; Kim, Nam-Jung; Son, Jimin; Lee, Keunho; Choi, Hyun-Jung; Rho, Seung-Sik; Ahn, Sunjoo; Won, Moo-Ho; Ha, Sang-Jun; Koh, Gou Young; Kim, Young-Myeong; Suh, Young-Ger; Kwon, Young-Guen

    2014-01-01

    Tumor blood vessels are leaky and immature, which causes inadequate blood supply to tumor tissues resulting in hypoxic microenvironment and promotes metastasis. Here we have explored tumor vessel modulating activity of Sac-1004, a recently developed molecule in our lab, which directly potentiates VE-cadherin-mediated endothelial cell junction. Sac-1004 could enhance vascular junction integrity in tumor vessels and thereby inhibit vascular leakage and enhance vascular perfusion. Improved perfusion enabled Sac-1004 to have synergistic anti-tumor effect on cisplatin-mediated apoptosis of tumor cells. Interestingly, characteristics of normalized blood vessels namely reduced hypoxia, improved pericyte coverage and decreased basement membrane thickness were readily observed in tumors treated with Sac-1004. Remarkably, Sac-1004 was also able to inhibit lung and lymph node metastasis in MMTV and B16BL6 tumor models. This was in correlation with a reduction in epithelial-to-mesenchymal transition of tumor cells with considerable diminution in expression of related transcription factors. Moreover, cancer stem cell population dropped substantially in Sac-1004 treated tumor tissues. Taken together, our results showed that direct restoration of vascular junction could be a significant strategy to induce normalization of tumor blood vessels and reduce metastasis. PMID:24811731

  11. Inhibition of starch digestion by the green tea polyphenol, (−)-epigallocatechin-3-gallate

    PubMed Central

    Forester, Sarah C.; Gu, Yeyi; Lambert, Joshua D.

    2013-01-01

    Scope Green tea has been shown to ameliorate symptoms of metabolic syndrome in vivo. The effects could be due, in part, to modulation of postprandial blood glucose levels. Methods and results We examined the effect of coadministration of (−)-epigallocatechin-3-gallate (EGCG, 100 mg/kg, i.g.) on blood glucose levels following oral administration of common corn starch (CCS), maltose, sucrose, or glucose to fasted CF-1 mice. We found that cotreatment with EGCG significantly reduced postprandial blood glucose levels after administration of CCS compared to control mice (50 and 20% reduction in peak blood glucose levels and blood glucose area under the curve, respectively). EGCG had no effect on postprandial blood glucose following administration of maltose or glucose, suggesting that EGCG may modulate amylase-mediated starch digestion. In vitro, EGCG noncompetitively inhibited pancreatic amylase activity by 34% at 20 μM. No significant change was induced in the expression of two small intestinal glucose transporters (GLUT2 and SGLT1). Conclusions Our results suggest that EGCG acutely reduces postprandial blood glucose levels in mice when coadministered with CCS and this may be due in part to inhibition of α-amylase. The relatively low effective dose of EGCG makes a compelling case for studies in human subjects. PMID:23038646

  12. Effects of nicotine on response inhibition and interference control.

    PubMed

    Ettinger, Ulrich; Faiola, Eliana; Kasparbauer, Anna-Maria; Petrovsky, Nadine; Chan, Raymond C K; Liepelt, Roman; Kumari, Veena

    2017-04-01

    Nicotine is a cholinergic agonist with known pro-cognitive effects in the domains of alerting and orienting attention. However, its effects on attentional top-down functions such as response inhibition and interference control are less well characterised. Here, we investigated the effects of 7 mg transdermal nicotine on performance on a battery of response inhibition and interference control tasks. A sample of N = 44 healthy adult non-smokers performed antisaccade, stop signal, Stroop, go/no-go, flanker, shape matching and Simon tasks, as well as the attentional network test (ANT) and a continuous performance task (CPT). Nicotine was administered in a within-subjects, double-blind, placebo-controlled design, with order of drug administration counterbalanced. Relative to placebo, nicotine led to significantly shorter reaction times on a prosaccade task and on CPT hits but did not significantly improve inhibitory or interference control performance on any task. Instead, nicotine had a negative influence in increasing the interference effect on the Simon task. Nicotine did not alter inter-individual associations between reaction times on congruent trials and error rates on incongruent trials on any task. Finally, there were effects involving order of drug administration, suggesting practice effects but also beneficial nicotine effects when the compound was administered first. Overall, our findings support previous studies showing positive effects of nicotine on basic attentional functions but do not provide direct evidence for an improvement of top-down cognitive control through acute administration of nicotine at this dose in healthy non-smokers.

  13. Time-specific androgen blockade with flutamide inhibits testicular descent in the rat.

    PubMed

    Husmann, D A; McPhaul, M J

    1991-09-01

    Inhibition of androgen action by flutamide, a nonsteroidal antiandrogen, blocked testicular descent in 40% of the testes exposed to this agent continuously from gestational day 13 through postpartal day 28. By contrast, only 11% of the testes failed to descend when blocked by 5 alpha-reductase inhibitors during the same period. Flutamide administration over narrower time intervals (gestational day 13-15, 16-17, or 18-19) revealed maximal interference with testicular descent after androgen inhibition during gestational days 16-17. No significant differences in testicular or epididymal weights were evident between descended and undescended testes; furthermore, no correlation was detected between the presence of epididymal abnormalities and testicular descent. These findings indicate that androgen inhibition during a brief period of embryonic development can block testicular descent. The mechanism through which this inhibition occurs remains to be elucidated.

  14. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling

    PubMed Central

    Zheng, Hongming; Zheng, Liang; Liu, Wenqin; Wu, Jinjun; Ou, Rilan; Zhang, Guiyu; Li, Fangyuan; Hu, Ming; Liu, Zhongqiu; Lu, Linlin

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is the most prevalent malignancy worldwide given its high incidence, considerable mortality, and poor prognosis. The anti-malaria compounds artemisinin (ART), dihydroartemisinin (DHA), and artesunate (ARTS) reportedly have anti-cancer potential, although the underlying mechanisms remain unclear. In this work, we used flow cytometry to show that ART, DHA, and ARTS could inhibit the proliferation of A549 and H1299 cells by arresting cell cycle in G1 phase. Meanwhile, tumor malignancy including migration, invasion, cancer stem cells, and epithelial–mesenchymal transition were also significantly suppressed by these compounds. Furthermore, ART, DHA, and ARTS remarkably decreased tumor growth in vivo. By using IWP-2, the inhibitor of Wnt/β-catenin pathway, and Wnt5a siRNA, we found that ART, DHA, and ARTS could render tumor inhibition partially dependent on Wnt/β-catenin inactivation. These compounds could strikingly decrease the protein level of Wnt5-a/b and simultaneously increase those of NKD2 and Axin2, ultimately resulting in β-catenin downregulation. In summary, our findings revealed that ART, DHA, and ARTS could suppress lung-tumor progression by inhibiting Wnt/β-catenin pathway, thereby suggesting a novel target for ART, DHA, and ARTS in cancer treatment. PMID:27119499

  15. NAD+ administration significantly attenuates synchrotron radiation X-ray-induced DNA damage and structural alterations of rodent testes

    PubMed Central

    Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Hong, Yunyi; Shao, Jiaxiang; He, Xin; Ma, Yingxin; Nie, Hui; Liu, Na; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has great potential for its applications in medical imaging and cancer treatment. In order to apply SR X-ray in clinical settings, it is necessary to elucidate the mechanisms underlying the damaging effects of SR X-ray on normal tissues, and to search for the strategies to reduce the detrimental effects of SR X-ray on normal tissues. However, so far there has been little information on these topics. In this study we used the testes of rats as a model to characterize SR X-ray-induced tissue damage, and to test our hypothesis that NAD+ administration can prevent SR X-ray-induced injury of the testes. We first determined the effects of SR X-ray at the doses of 0, 0.5, 1.3, 4 and 40 Gy on the biochemical and structural properties of the testes one day after SR X-ray exposures. We found that 40 Gy of SR X-ray induced a massive increase in double-strand DNA damage, as assessed by both immunostaining and Western blot of phosphorylated H2AX levels, which was significantly decreased by intraperitoneally (i.p.) administered NAD+ at doses of 125 and 625 mg/kg. Forty Gy of SR X-ray can also induce marked increases in abnormal cell nuclei as well as significant decreases in the cell layers of the seminiferous tubules one day after SR X-ray exposures, which were also ameliorated by the NAD+ administration. In summary, our study has shown that SR X-ray can produce both molecular and structural alterations of the testes, which can be significantly attenuated by NAD+ administration. These results have provided not only the first evidence that SR X-ray-induced tissue damage can be ameliorated by certain approaches, but also a valuable basis for elucidating the mechanisms underlying SR X-ray-induced tissue injury. PMID:22518270

  16. The relationship between the pharmacokinetics, cholinesterase inhibition and facilitation of twitch tension of the quaternary ammonium anticholinesterase drugs, neostigmine, pyridostigmine, edrophonium and 3-hydroxyphenyltrimethylammonium.

    PubMed Central

    Barber, H. E.; Calvey, T. N.; Muir, K. T.

    1979-01-01

    1 The relationship between the concentration of drug in plasma, the inhibition of erythrocyte acetylcholinesterase and the facilitation of neuromuscular transmission has been studied in the rat after the administration of neostigmine, pyridostigmine, edrophonium and 3-hydroxyphenyltrimethyl-ammonium (3-OH PTMA). 2 After the administration of neostigmine or pyridostigmine, acetylcholinesterase activity recovered only slowly due to the covalent nature of the inhibition. In contrast, recovery from the reversible inhibition caused by edrophonium or 3-OH PTMA was rapid and showed a direct relationship to the plasma concentration of these drugs. 3 There was a statistically significant linear correlation between the logarithm of the plasma concentration of the drugs and the increase in the tibialis twitch tension. 4 The relationship between the inhibition of acetylcholinesterase and the facilitation of neuromuscular transmission was complex. When the enzyme was less than 85% inhibited no facilitation occurred. Between 85% and 98% inhibition, facilitation was linearly related to enzyme inhibition. Above 98% inhibition, facilitation was unrelated to inhibition of the enzyme. PMID:223706

  17. Polysulfonate suramin inhibits Zika virus infection.

    PubMed

    Tan, Chee Wah; Sam, I-Ching; Chong, Wei Lim; Lee, Vannajan Sanghiran; Chan, Yoke Fun

    2017-07-01

    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log 10  PFU viral reduction with IC 50 value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Taxifolin inhibits rat and human 11β-hydroxysteroid dehydrogenase 2.

    PubMed

    Wu, Chengyun; Cao, Shuyan; Hong, Tingting; Dong, Yaoyao; Li, Chao; Wang, Qiufan; Sun, Jianliang; Ge, Ren-Shan

    2017-09-01

    Taxifolin is a flavonoid in food plants. Kidney 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) is an NAD + -dependent oxidase that inactivates glucocorticoid cortisol (human) or corticosterone (rodents) into biologically inert 11 keto glucocorticoids. The present study investigated the effects of taxifolin on rat and human kidney microsomal 11β-HSD2. Taxifolin noncompetitively inhibited rat and human 11β-HSD2 against steroid substrates, with IC 50 values of 33.08 and 13.14μM, respectively. Administration of 5 and 10mg/kg taxifolin for 30min ex vivo inhibited 11β-HSD2 significantly and also in vivo decreased cortisol metabolism, as shown in the significant increase of area under curve (AUC). This result shows that taxifolin is a potent 11β-HSD2 inhibitor, possibly causing side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cerebrovascular aspects of converting-enzyme inhibition II: Blood-brain barrier permeability and effect of intracerebroventricular administration of captopril.

    PubMed

    Jarden, J O; Barry, D I; Juhler, M; Graham, D I; Strandgaard, S; Paulson, O B

    1984-12-01

    The blood-brain barrier permeability to captopril, and the cerebrovascular effects of intracerebroventricular administration of captopril, were studied in normotensive Wistar rats. The blood-brain barrier permeability-surface area product (PS), determined by an integral-uptake method, was about 1 X 10(-5) cm3/g/s in all brain regions studied. This was three to four times lower than the simultaneously determined PS of Na+ and Cl-, both of which are known to have very low blood-brain barrier permeability. Cerebral blood flow, determined by the intra-arterial 133xenon injection method, was unaffected by intracerebroventricular administration of 100 micrograms captopril. Furthermore the lower limit of cerebral blood flow autoregulation during haemorrhagic hypotension was also unaffected, being in the mean arterial pressure range (50-69 mmHg) in both controls and captopril-treated rats. It was concluded that the blood-brain barrier permeability of captopril was negligible and that inhibition of the brain renin-angiotensin system has no effect on global cerebral blood flow. The cerebrovascular effects of intravenously administered captopril (a resetting to lower pressure of the limits and range of cerebral blood flow autoregulation) are probably exerted via converting enzyme on the luminal surface of cerebral vessels.

  20. ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis.

    PubMed

    Anderson, Joshua C; Grammer, J Robert; Wang, Wenquan; Nabors, L Burton; Henkin, Jack; Stewart, Jerry E; Gladson, Candece L

    2007-03-01

    Anti-angiogenic therapies would be particularly beneficial in the treatment of malignant gliomas. Peptides derived from the second type 1 repeat (TSR) of thrombospondin-1 (TSP-1) have been shown to inhibit angiogenesis in non-glioma tumor models and a modified TSR peptide, ABT-510, has now entered into Phase II clinical trials of its efficacy in non-glioma tumors. As microvascular endothelial cells (MvEC) exhibit heterogeneity, we evaluated the ability of the modified TSR peptide (NAcSarGlyValDallolleThrNvalleArgProNHE, ABT-510) to inhibit malignant glioma growth in vivo and to induce apoptosis of brain microvessel endothelial cells (MvEC) propagated in vitro. We found that daily administration of ABT-510 until euthanasia (days 7 to 19), significantly inhibited the growth of human malignant astrocytoma tumors established in the brain of athymic nude mice. The microvessel density was significantly lower and the number of apoptotic MvEC was significantly higher (3-fold) in the tumors of the ABT-510-treated animals. Similar results were found using a model in which the established tumor is an intracerebral malignant glioma propagated in a syngeneic mouse model. ABT-510 treatment of primary human brain MvEC propagated as a monolayer resulted in induction of apoptosis in a dose- and time-dependent manner through a caspase-8-dependent mechanism. It also inhibited tubular morphogenesis of MvEC propagated in collagen gels in a dose- and caspase-8 dependent manner through a mechanism that requires the TSP-1 receptor (CD36) on the MvEC. These findings indicate that ABT-510 should be evaluated as a therapeutic option for patients with malignant glioma.

  1. Inhibition of cyclooxygenase-independent platelet aggregation by sodium salicylate.

    PubMed

    Violi, F; Alessandri, C; Praticò, D; Guzzo, A; Ghiselli, A; Balsano, F

    1989-06-15

    The effect of acetylsalicylic acid (ASA) on platelet aggregation (PA) and thromboxane A2 (TxA2) formation was investigated in vitro and ex vivo after 1 g or 300 mg ASA administration to healthy subjects. 50-100 microM ASA inhibited PA by single aggregating agent such as platelet aggregating factor (PAF) or epinephrine and reduced to less than or equal to 5% of control platelet TxB2 formation, but did not influence PA by epinephrine plus PAF. The latter was inhibited by increasing ASA concentration. In samples incubated with 100 microM ASA and stimulated with epinephrine plus PAF, PA could be inhibited by the addition of 100-300 microM sodium salicylate. After 300 mg-1 g ASA administration to healthy subjects, the inhibition of PA by epinephrine plus PAF was more marked by highest doses of ASA. This study suggests that aspirin inhibits PA with a cyclooxygenase-independent mechanism; this effect is mediated, at least in vitro, by salicylic acid.

  2. Nonselective suppression of operant ethanol and sucrose self-administration by the mGluR7 positive allosteric modulator AMN082

    PubMed Central

    Salling, Michael C.; Faccidomo, Sara; Hodge, Clyde W.

    2008-01-01

    Emerging evidence indicates that specific metabotropic glutamate receptors (mGluRs) modulate ethanol self-administration. In general, inhibition of glutamate transmission through blockade of postsynaptic mGluRs, or activation of presynaptic mGluRs, inhibits ethanol self-administration. The goal of this preclinical study was to further characterize mGluR regulation of ethanol self-administration by examining effects of AMN082, an allosteric positive modulator of presynaptic mGluR7 activity. Separate groups of C57BL/6J male mice were trained to self-administer ethanol or sucrose on a fixed-ratio 4 schedule of reinforcement during 1 hour sessions. On test days, mice were pretreated with AMN082 (0, 1.0, 3.0, 5.6, or 10 mg/kg) 30 minutes prior to self-administration sessions. Functional specificity and activity was examined by testing the effects of AMN082 (0 – 10 mg/kg) on open-field locomotor activity and HPA axis function as measured by plasma corticosterone levels. AMN082 (10 mg/kg) produced a significant reduction in ethanol and sucrose reinforced responding, and inhibited locomotor activity. Plasma corticosterone levels were significantly increased following AMN082 (5.6 and 10 mg/kg) suggesting a dose-dependent dissociation between the behavioral and hormonal effects of the compound. These data suggest that activation of mGluR7 by AMNO82 produces non-specific reductions in motivated behavior that are associated with negative effects on motor activity. PMID:18593591

  3. Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction.

    PubMed

    Eid, Refaat A; Zaki, Mohamed Samir Ahmed; Al-Shraim, Mubarak; Eleawa, Samy M; El-Kott, Attalla Farag; Al-Hashem, Fahaid H; Eldeen, Muhammad Alaa; Ibrahim, Hoja; Aldera, Hussain; Alkhateeb, Mahmoud A

    2018-05-01

    This study investigated the effect of ghrelin on cardiomyocytes function, apoptosis and ultra-structural alterations of remote myocardium of the left ventricle (LV) of rats, 21 days post myocardial infarction (MI). Rats were divided into 4 groups as a control, a sham-operated rats, a sham-operated+ghrelin, an MI + vehicle and an MI + ghrelin-treated rats. MI was induced by LAD ligation and then rats were recievd a concomitant doe of either normal saline as a vehicle or treated with ghrelin (100 μg/kg S.C., 2x/day) for 21 consecutive days. Ghrelin enhanced myocardial contractility in control rats and reversed the decreases in myocardial contractility and the increases in the serum levels of CK-MB and LDH in MI-induced rats. Additionally, it inhibited the increases in levels of Bax and cleaved caspase 3 and increased those for Bcl-2 in the remote myocardium of rat's LV, post-MI. At ultra-structural level, while ghrelin has no adverse effects on LV myocardium obtained from control or sham-treated rats, ghrelin post-administration to MI-induced rats reduced vascular formation, restored normal microfilaments appearance and organization, preserved mitochondria structure, and prevented mitochondrial swelling, collagen deposition and number of ghost bodies in the remote areas of their LV. Concomitantly, in remote myocardium of MI-induced rats, ghrelin enhanced endoplasmic reticulum intracellular organelles count, decreased number of atrophied nuclei and phagocytes, diminished the irregularity in the nuclear membranes and inhibited chromatin condensation. In conclusion, in addition to the physiological, biochemical and molecular evidence provided, this is the first study that confirms the anti-apoptotic effect of ghrelin in the remote myocardium of the LV during late MI at the level of ultra-structural changes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling

    PubMed Central

    Zhang, Junfang; Cao, Hailong; Zhang, Bing; Cao, Hanwei; Xu, Xiuqin; Ruan, Hang; Yi, Tingting; Tan, Li; Qu, Rui; Song, Gang; Wang, Bangmao; Hu, Tianhui

    2013-01-01

    As a traditional anti-inflammatory Chinese herbal medicine, Alkaloid berberine has been recently reported to exhibit anti-tumour effects against a wide spectrum of cancer. However, the mechanism was largely unknown. Gene chip array reveals that with berberine treatment, c-Myc, the target gene of Wnt pathway, was down-regulated 5.3-folds, indicating that berberine might inhibit Wnt signalling. TOPflash analysis revealed that Wnt activity was significantly reduced after berberine treatment, and the mechanism of which might be that berberine disrupted β-catenin transfer to nucleus through up-regulating the expression of adenomatous polyposis coli (APC) gene and stabilized APC-β-catenin complex. Berberine administration in ApcMin/+ mice exhibited fewer and smaller polyps in intestine, along with reduction in cyclin D1 and c-Myc expression. In clinical practice, oral administration of berberine also significantly reduced the familial adenomatous polyposis patients' polyp size along with the inhibition of cyclin D1 expression in polyp samples. These observations indicate that berberine inhibits colon tumour formation through inhibition of Wnt/β-catenin signalling and berberine might be a promising drug for the prevention of colon cancer. PMID:24015932

  5. [Significance of vitamin K (VK) administration in patients under chemotherapy during postoperative fasting period].

    PubMed

    Ojiro, M; Takenoshita, M; Toshinaga, T; Shimazu, H

    1992-01-01

    Recently coagulopathy caused by vitamin K (VK) deficiency following antibiotic therapy in malnourished patients has been reported. We studied on the same problem particularly in patients under chemotherapy during postoperative fasting period. For this purpose, prothrombin time (PT), vitamin K-dependent coagulation factors (Factor II (F-II), VII (F-VII) and protein C), PIVKA-II (PK-II) and plasma level of VK in two groups of patients with or without VK administration were measured in esophageal cancer patients. In the group with VK, VK2 were given intravenously everyday. In the group without VK, PT prolonged and F-II decreased from the seventh postoperative day, especially on the 14th day significantly. Although F-VII and protein C decreased on the first day and returned subsequently on the seventh day, no significance was observed between two groups. PK-II increased clearly in the group without VK from the seventh day, whereas no significant changes were observed in the group with VK. The plasma level of VK1 decreased in both groups, but VK2, especially MK-4, was high in the group with VK.

  6. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    NASA Astrophysics Data System (ADS)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  7. Inhibition of riboflavin metabolism in rat tissues by chlorpromazine, imipramine, and amitriptyline.

    PubMed

    Pinto, J; Huang, Y P; Rivlin, R S

    1981-05-01

    Prompted by recognition of the similar structures of riboflavin (vitamin B(2)), phenothiazine drugs, and tricyclic antidepressants, our studies sought to determine effects of drugs of these two types upon the conversion of riboflavin into its active coenzyme derivative, flavin adenine dinucleotide (FAD) in rat tissues. Chlorpromazine, a phenothiazine derivative, and imipramine and amitriptyline, both tricyclic antidepressants, each inhibited the incorporation of [(14)C]riboflavin into [(14)C]FAD in liver, cerebrum, cerebellum, and heart. A variety of psychoactive drugs structurally unrelated to riboflavin were ineffective. Chlorpromazine, imipramine, and amitriptyline in vitro inhibited hepatic flavokinase, the first of two enzymes in the conversion of riboflavin to FAD. Evidence was obtained that chlorpromazine administration for a 3- or 7-wk period at doses comparable on a weight basis to those used clinically has significant effects upon riboflavin metabolism in the animal as a whole: (a) the activity coefficient of erythrocyte glutathione reductase, an FAD-containing enzyme used as an index of riboflavin status physiologically, was elevated, a finding compatible with a deficiency state, (b) the urinary excretion of riboflavin was more than twice that of age- and sex-matched pair-fed control rats, and (c) after administration of chlorpromazine for a 7-wk period, tissue levels of flavin mononucleotide and FAD were significantly lower than those of pair-fed littermates, despite consumption of a diet estimated to contain 30 times the recommended dietary allowance. The present study suggests that certain psychotropic drugs interfere with riboflavin metabolism at least in part by inhibiting the conversion of riboflavin to its coenzyme derivatives, and that as a consequence of such inhibition, the overall utilization of the vitamin is impaired.

  8. Preventive effect of oral administration of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (Wasabia japonica Matsum) against pulmonary metastasis of B16-BL6 mouse melanoma cells.

    PubMed

    Fuke, Yoko; Shinoda, Shoko; Nagata, Ikuko; Sawaki, Saeko; Murata, Mituyoshi; Ryoyama, Kazuo; Koizumi, Keiichi; Saiki, Ikuo; Nomura, Takahiro

    2006-01-01

    Effect of oral administration of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) or a 6-MITC-containing T-wasabi fraction from wasabi root (Wasabia japonica Matsum) to inhibit the macroscopic pulmonary metastasis was studied with a murine B16-BL6 melanoma model. Two administration routes, subcutaneous or intravenous, and two administration times, prior to or concomitant with tumor inoculation, of 6-MITC or T-wasabi against the metastatic foci formation in C57BL/6J mouse lungs were compared. The number of metastasized foci per lung in either subcutaneous or intravenous injection was significantly reduced by intake of 6-MITC or a T-wasabi fraction. The maximum reduction by a T-wasabi fraction reached to 82%. Fifty-six percent of foci formation was inhibited by a 2 week-prior administration of 6-MITC (200 microM), whereas only 27% inhibition was obtained by a concomitant administration with tumor inoculation. Neither 6-MITC nor T-wasabi at tested concentrations showed any toxic effects. Together with our previous results, a component of the Japanese pungent spice, wasabi appears to inhibit not only tumor cell growth but also tumor metastasis. Therefore, 6-MITC from wasabi is apparently a useful dietary candidate for controlling tumor progression.

  9. Effect of oral ketoconazole on first-pass effect of nifedipine after oral administration in dogs.

    PubMed

    Kuroha, Masanori; Kayaba, Hideki; Kishimoto, Shizuka; Khalil, Waleed F; Shimoda, Minoru; Kokue, Eiichi

    2002-03-01

    The long-term oral ketoconazole (KTZ) treatment extensively inhibits hepatic CYP3A activity. We investigated the effect of the KTZ treatment on hepatic and intestinal extraction of nifedipine (NIF) using beagle dogs. Four dogs were given orally KTZ for 20 days (200 mg, bid). NIF was administered either intravenously (0.5 mg/kg) or orally (20 mg) 10 and 20 days before the KTZ treatment and 10 and 20 days after start of KTZ treatment. CLtot of NIF after intravenous administration decreased to about 50% during the KTZ treatment. C(max) and AUC after oral administration increased to 2.5-fold and fourfold, respectively, by the KTZ treatment. The hepatic extraction ratio of NIF decreased to about a half by KTZ. A significant decrease in intestinal extraction ratio was not observed. In conclusion, the KTZ treatment inhibits hepatic extraction more profoundly than intestinal extraction of NIF. Therefore, inhibition of hepatic extraction of NIF by the KTZ treatment mainly results in substantial increase in systemic bioavailability in dogs. Because KTZ inhibits human CYP3A activities similar to canine CYP3A activities, the long-term oral KTZ treatment may dramatically increase bioavailability of NIF or other CYP3A substrates in humans. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.

  10. QUETIAPINE IMPROVES RESPONSE INHIBITION IN ALCOHOL DEPENDENT PATIENTS: A PLACEBO-CONTROLLED PILOT STUDY

    PubMed Central

    Moallem, Nathasha; Ray, Lara A.

    2013-01-01

    Rationale Quetiapine has been shown to be a promising medication for the treatment of alcoholism. As an atypical antipsychotic medication with antagonist activity at D1 and D2, 5-HT1A and 5-HT2A, H1 and α1 and α2 receptors, quetiapine has been found to decrease impulsivity in other psychiatric disorders but its effects on impulsivity have not been studied in alcohol dependent patients. Objective This study seeks to test the effects of quetiapine on a specific dimension of impulsivity, namely response inhibition. This pilot study seeks to further elucidate the mechanisms of action of quetiapine for alcohol use disorders. Method A total of 20 non-treatment seeking alcohol dependent individuals were randomized to one of the following conditions in a double-blind, placebo-controlled design: (1) quetiapine (400 mg/day); or (2) matched placebo. Participants completed two counterbalanced intravenous placebo-alcohol administration sessions as well as behavioral measure of response inhibition (i.e. stop signal task) pre and post placebo-alcohol administration sessions. Results Analyses revealed a significant effect of quetiapine in improving response inhibition as measured by the stop signal task. These results provide preliminary evidence suggesting that quetiapine improves response inhibition in alcohol dependent patients, as compared to placebo. Conclusion This pilot study contributes a novel putative mechanism of action of quetiapine in alcoholism, namely an improvement in response inhibition. PMID:22037407

  11. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential.

    PubMed

    Caltagirone, S; Rossi, C; Poggi, A; Ranelletti, F O; Natali, P G; Brunetti, M; Aiello, F B; Piantelli, M

    2000-08-15

    Flavonoids are a class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including chemoprevention and tumor growth inhibition. Our aim was to investigate the effects of several polyphenols on the growth and metastatic potential of B16-BL6 melanoma cells in vivo. Intraperitoneal administration of quercetin, apigenin, (-)-epigallocathechin-3-gallate (EGCG), resveratrol, and the anti-estrogen tamoxifen, at the time of i.m. injection of B16-BL6 cells into syngeneic mice, resulted in a significant, dose-dependent delay of tumor growth, without toxicity. The relative descending order of potency was EGCG > apigenin = quercetin = tamoxifen > resveratrol > control. Furthermore, polyphenols significantly potentiated the inhibitory effect of a non-toxic dose of cisplatin. When tested for the ability to inhibit lung colonization, quercetin, apigenin, and tamoxifen (but not EGCG or resveratrol) significantly decreased the number of B16-BL6 colonies in the lungs in a dose-dependent manner, with quercetin and apigenin being more effective than tamoxifen. Interestingly, quercetin, apigenin, and tamoxifen (but not EGCG or resveratrol) significantly decreased the invasion of B16-BL6 cells in vitro, with quercetin and apigenin being more effective than tamoxifen. This suggests that anti-invasive activity is one of the mechanisms underlying inhibition of lung colonization by quercetin and apigenin. In conclusion, quercetin and apigenin inhibit melanoma growth and invasive and metastatic potential; therefore, they may constitute a valuable tool in the combination therapy of metastatic melanoma. Copyright 2000 Wiley-Liss, Inc.

  12. Significance of Fractionated Administration of Thalidomide Combined With γ-Ray Irradiation in Terms of Local Tumor Response and Lung Metastasis

    PubMed Central

    Masunaga, Shin-ichiro; Sanada, Yu; Moriwaki, Takahiro; Tano, Keizo; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Watanabe, Tsubasa; Nakagawa, Yosuke; Maruhashi, Akira; Ono, Koji

    2014-01-01

    Background The aim of this study was to evaluate the significance of fractionated administration of thalidomide combined with γ-ray irradiation in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells. Methods B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumor-bearing mice then received γ-ray irradiation after thalidomide treatment through a single or two consecutive daily intraperitoneal administrations up to a total dose of 400 mg/kg in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Results Thalidomide raised the sensitivity of the total cell population more remarkably than Q cells in both single and daily administrations. Daily administration of thalidomide elevated the sensitivity of both the total and Q cell populations, but especially the total cell population, compared with single administration. Daily administration, especially combined with MTH, decreased the number of lung metastases. Conclusion Daily fractionated administration of thalidomide in combination with γ-ray irradiation was thought to be more promising than single administration because of its potential to enhance local tumor response and repress lung metastatic potential. PMID:29147396

  13. Local administration of mangiferin prevents experimental inflammatory mechanical hyperalgesia through CINC-1/epinephrine/PKA pathway and TNF-α inhibition.

    PubMed

    Rocha, Lilian Wünsch; Bonet, Ivan José Magayewski; Tambeli, Claudia Herrera; de-Faria, Felipe Meira; Parada, Carlos Amilcar

    2018-07-05

    Steroidal and non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to control inflammatory pain, but there is a risk of gastrointestinal bleeding and increased heart failure risk. The search for new drugs remains ongoing, and natural products are a source for potential new compounds. Mangiferin, a natural xanthone C-glucoside, has demonstrated biological activity, including anti-inflammatory and analgesic properties, but it's mechanisms are poorly understood. In this study, we investigated the mechanisms underlying the anti-inflammatory and analgesic effects of local administration of mangiferin. We employed an electronic von Frey apparatus to evaluate mechanical hyperalgesia induced by carrageenan in rats. Mangiferin (150-1200 µg/paw), administered locally into the hindpaw, prevented hyperalgesia in a dose-dependent - 150 µg (- 9%), 300 µg (- 27%, P < 0.01), 600 µg (- 77%, P < 0.001) and 1000 µg (- 93%, P < 0.001) - and local manner. Mangiferin showed decreased levels of TNF-α (P < 0.001) and CINC-1 (P < 0.001), but not IL-1β; it also prevented neutrophil migration (P < 0.01), but not the increased COX-2 expression in peripheral tissue challenged with carrageenan. To further explore the mechanisms of mangiferin actions, rats were injected with modulators of inflammation and nociception; mangiferin prevented hyperalgesia induced by IL-1β (P < 0.01), CINC-1 (P < 0.01), epinephrine (P < 0.01), 8-Br-cAMP (P < 0.01) or capsaicin (P < 0.01), but not that induced by PGE 2 or α,β-MeATP. Our study shows that mangiferin has anti-inflammatory and analgesic properties when locally administrated. The control of the inflammatory response and mechanical hyperalgesia by mangiferin depends on the inhibition of TNF-α production/release and the CINC1/epinephrine/PKA pathway, supporting its marked inhibition of inflammatory mechanical hyperalgesia. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Yi-Hua; Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu; Baker, Angela A.

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling,more » a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.« less

  15. Inhibition of Cocaine and 3,4-Methylenedioxypyrovalerone (MDPV) Self-Administration by Lorcaserin Is Mediated by 5-HT2C Receptors in Rats.

    PubMed

    Gannon, Brenda M; Sulima, Agnieszka; Rice, Kenner C; Collins, Gregory T

    2018-03-01

    Lorcaserin is a serotonin (5-HT) 2C receptor-preferring agonist approved by the US Food and Drug Administration to treat obesity. Lorcaserin decreases cocaine self-administration in rats and monkeys. Although this effect is partially inhibited by a 5-HT 2C receptor antagonist (SB242084), lorcaserin also has effects at 5-HT 2A and 5-HT 1A receptors, and the relative contribution of these receptors to its anti-cocaine effects has not been investigated. The goals of this study were to determine 1) the potency and effectiveness of lorcaserin to decrease self-administration of cocaine and 3,4-methylenedioxypyrovalerone (MDPV), a common "bath salts" constituent; and 2) the receptor(s) mediating the effects of lorcaserin on cocaine and MDPV self-administration. Male Sprague-Dawley rats ( n = 6) were trained to self-administer MDPV under a progressive ratio schedule of reinforcement and maintained under this schedule with daily access to 0.32 mg/kg per infusion of cocaine or 0.032 mg/kg per infusion of MDPV. Dose-response curves for the effects of lorcaserin on cocaine and MDPV self-administration were generated by administering lorcaserin (0.1-5.6 mg/kg) 25 minutes before the start of the session. To assess the effects of 5-HT 2C (SB242084, 0.1 mg/kg), 5-HT 2A (MDL100907, 0.1 mg/kg), and 5-HT 1A (WAY100635, 0.178 mg/kg) receptor antagonists, they were administered 15 minutes before lorcaserin. Lorcaserin decreased cocaine and MDPV self-administration with equal potency. Antagonism of 5-HT 2C (but not 5-HT 1A or 5-HT 2A ) receptors blocked the effects of lorcaserin on cocaine and MDPV self-administration. Taken together, these data provide additional support for further development of 5-HT 2C receptor agonists, such as lorcaserin, for the treatment of stimulant abuse. U.S. Government work not protected by U.S. copyright.

  16. Inhibition of Cocaine and 3,4-Methylenedioxypyrovalerone (MDPV) Self-Administration by Lorcaserin Is Mediated by 5-HT2C Receptors in Rats

    PubMed Central

    Gannon, Brenda M.; Sulima, Agnieszka; Rice, Kenner C.

    2018-01-01

    Lorcaserin is a serotonin (5-HT)2C receptor-preferring agonist approved by the US Food and Drug Administration to treat obesity. Lorcaserin decreases cocaine self-administration in rats and monkeys. Although this effect is partially inhibited by a 5-HT2C receptor antagonist (SB242084), lorcaserin also has effects at 5-HT2A and 5-HT1A receptors, and the relative contribution of these receptors to its anti-cocaine effects has not been investigated. The goals of this study were to determine 1) the potency and effectiveness of lorcaserin to decrease self-administration of cocaine and 3,4-methylenedioxypyrovalerone (MDPV), a common “bath salts” constituent; and 2) the receptor(s) mediating the effects of lorcaserin on cocaine and MDPV self-administration. Male Sprague-Dawley rats (n = 6) were trained to self-administer MDPV under a progressive ratio schedule of reinforcement and maintained under this schedule with daily access to 0.32 mg/kg per infusion of cocaine or 0.032 mg/kg per infusion of MDPV. Dose-response curves for the effects of lorcaserin on cocaine and MDPV self-administration were generated by administering lorcaserin (0.1–5.6 mg/kg) 25 minutes before the start of the session. To assess the effects of 5-HT2C (SB242084, 0.1 mg/kg), 5-HT2A (MDL100907, 0.1 mg/kg), and 5-HT1A (WAY100635, 0.178 mg/kg) receptor antagonists, they were administered 15 minutes before lorcaserin. Lorcaserin decreased cocaine and MDPV self-administration with equal potency. Antagonism of 5-HT2C (but not 5-HT1A or 5-HT2A) receptors blocked the effects of lorcaserin on cocaine and MDPV self-administration. Taken together, these data provide additional support for further development of 5-HT2C receptor agonists, such as lorcaserin, for the treatment of stimulant abuse. PMID:29217539

  17. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    PubMed

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  18. Inhibition of acetaminophen-induced hepatotoxicity in mice by exogenous thymosinβ4 treatment.

    PubMed

    Wang, Lei; Li, Xiankui; Chen, Cai

    2018-05-21

    To study the effects of exogenous thymosinβ4 (Tβ4) treatment in acetaminophen (APAP)-induced hepatotoxicity. Liver injury was induced in mice by a single intraperitoneal injection of APAP (500 mg/kg). Exogenous Tβ4 was intraperitoneally administrated at 0 h, 2 h and 4 h after APAP injection. Chloroquine (CQ) (60 mg/kg) was intraperitoneally injected 2 h before APAP administration to inhibit autophagy. Six hours after APAP injection liver injury was evaluated by histological examinations, biochemical measurements and enzyme linked immunosorbent assay (ELISAs). Western blots were performed to detect proteins expression. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were significantly increased 6 h after APAP administration, but were significantly reduced by co-administration of Tβ4. Histological examinations demonstrated that Tβ4 reduced necrosis and inflammation induced by APAP. Immunofluorescence showed that Tβ4 suppressed APAP-induced translocation of high mobility group box-1 protein (HMGB1) from the nucleus to cytosol and intercellular space. Hepatic glutathione (GSH) depletion, malondialdehyde (MDA) formation and decreased superoxide dismutase (SOD) activities induced by APAP were all attenuated by Tβ4. APAP-induced increases in hepatic nuclear factor-κB (NF-κB) p65 protein expression and inflammatory cytokines production including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were reduced by Tβ4 treatment. Increased LC3 and p62 proteins in the liver tissues of APAP-treated mice were decreased by Tβ4 treatment, which indicated the enhancement of autophagy flux by Tβ4. Furthermore, inhibiting autophagy by CQ abrogated the protective effects of Tβ4 against APAP hepatotoxicity. Exogenous Tβ4 treatment exerts protective effects against APAP-induced hepatotoxicity in mice. The underneath molecular mechanisms may involve autophagy enhancement and inhibition of oxidative stress by Tβ4

  19. Acute citalopram administration may disrupt contextual information processing in healthy males.

    PubMed

    Almeida, S; Glahn, D C; Argyropoulos, S V; Frangou, S

    2010-03-01

    Selective serotonin reuptake inhibitors (SSRI) are the most commonly prescribed antidepressants. It has been suggested however that SSRI administration may affect response inhibition and contextual processing but the available evidence is minimal. Therefore, the purpose of this study was to identify the effect size of acute (within 24 hours) and chronic (28 days) administration of the highly selective SSRI, Citalopram, compared to placebo on response inhibition (measured by the Degraded Symbol Continuous Performance Task [DS-CPT]) and contextual processing (assessed using a Delayed Non-Matching to Sample Task [DNMS]) in healthy males (n=20) using a randomised double-blind design. We found no effect of Citalopram on participants' performance on the DS-CPT which suggests either that SSRIs do not affect response inhibition or that this measure is insensitive to any potential disinhibition effects of SSRI. Acute, but not chronic, Citalopram administration was associated with a measurable decrement in the DNMS suggestive of a negative impact of SSRI administration on contextual processing at least during treatment initiation. These findings provide a useful guide for designing future studies in clinical populations. 2009. Published by Elsevier SAS.

  20. Executive and motivational inhibition: associations with self-report measures related to inhibition.

    PubMed

    Shuster, Jill; Toplak, Maggie E

    2009-06-01

    Inhibition involves the withholding or suppressing of attention or responses to irrelevant or distracting stimuli. We examined the relationship between five experimental tasks of inhibition, represented by two measures of executive, intentional control inhibition and three measures of motivational inhibition characterized by bottom-up interruption of affective and reward/punishment sensitive mechanisms. Associations between these experimental tasks with three self-report measures related to inhibition were also examined. Correlational analyses indicated a small but significant association between the measures in the executive domain (stop task and Stroop task), but a lack of associations between the measures in the motivational domain (emotional Stroop task, a card playing task involving rewards and punishments, and a gambling task). Both measures of executive and motivational inhibition entered as significant predictors on the self-report measures related to inhibition in simultaneous regression analyses, but not consistently in the expected direction. The results suggest that inhibition is not a unitary construct, and demonstrate an association between experimental measures of inhibition and self-report measures related to inhibition.

  1. Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine.

    PubMed

    Sagara, M; Satoh, J; Wada, R; Yagihashi, S; Takahashi, K; Fukuzawa, M; Muto, G; Muto, Y; Toyota, T

    1996-03-01

    N-acetylcysteine (NAC) is a precursor of glutathione (GSH) synthesis, a free radical scavenger and an inhibitor of tumour necrosis factor alpha (TNF). Because these functions might be beneficial in diabetic complications, in this study we examined whether NAC inhibits peripheral neuropathy. Motor nerve conduction velocity (MNCV) was significantly decreased in streptozotocin-induced-diabetic Wistar rats compared to control rats. Oral administration of NAC reduced the decline of MNCV in diabetic rats. Structural analysis of the sural nerve disclosed significant reduction of fibres undergoing myelin wrinkling and inhibition of myelinated fibre atrophy in NAC-treated diabetic rats. NAC treatment had no effect on blood glucose levels or on the nerve glucose, sorbitol and cAMP contents, whereas it corrected the decreased GSH levels in erythrocytes, the increased lipid peroxide levels in plasma and the increased lipopolysaccharide-induced TNF activity in sera of diabetic rats. Thus, NAC inhibited the development of functional and structural abnormalities of the peripheral nerve in streptozotocin-induced diabetic rats.

  2. Pharmacodynamic and pharmacokinetic studies of agmatine after spinal administration in the mouse.

    PubMed

    Roberts, John C; Grocholski, Brent M; Kitto, Kelley F; Fairbanks, Carolyn A

    2005-09-01

    Agmatine is an endogenous decarboxylation product of arginine that has been previously shown to antagonize the N-methyl-d-aspartate (NMDA) receptor and inhibit nitric-oxide synthase. Many neuropharmacological studies have shown that exogenous administration of agmatine prevents or reverses biological phenomena dependent on central nervous system glutamatergic systems, including opioid-induced tolerance, opioid self-administration, and chronic pain. However, the central nervous system (CNS) pharmacokinetic profile of agmatine remains minimally defined. The present study determined the spinal cord pharmacokinetics and acute pharmacodynamics of intrathecally administered agmatine in mice. After a single bolus intrathecal injection, agmatine concentrations in spinal cord (cervical, thoracic, and lumbosacral) tissue and serum were quantified by an isocratic high-performance liquid chromatography fluorescence detection system. Agmatine persisted at near maximum concentrations in all levels of the spinal cord for several hours with a half-life of approximately 12 h. Initial agmatine concentrations in serum were 10% those in CNS. However, the serum half-life was less than 10 min after intrathecal injection of agmatine, consistent with previous preliminary pharmacokinetic reports of systemically administered agmatine. The pharmacodynamic response to agmatine in the NMDA-nociceptive behavior and thermal hyperalgesia tests was assessed. Whereas MK-801 (dizocilpine maleate) inhibits these two responses with equal potency, agmatine inhibits the thermal hyperalgesia with significantly increased potency compared with the nociceptive behavior, suggesting two sites of action. In contrast to the pharmacokinetic results, the agmatine inhibition of both behaviors had a duration of only 10 to 30 min. Collectively, these results suggest the existence of a currently undefined agmatinergic extracellular clearance process in spinal cord.

  3. Lysophosphatidic Acid Inhibits Apoptosis Induced by Cisplatin in Cervical Cancer Cells

    PubMed Central

    Sui, Yanxia; Yang, Ya; Wang, Ji; Li, Yi; Ma, Hongbing; Cai, Hui; Liu, Xiaoping; Zhang, Yong; Wang, Shufeng; Li, Zongfang; Zhang, Xiaozhi; Wang, Jiansheng; Liu, Rui; Yan, Yanli; Xue, Chaofan; Shi, Xiaowei; Tan, Li; Ren, Juan

    2015-01-01

    Cervical cancer is the second most common cause of cancer death in women worldwide. Lysophosphatidic acid (LPA) level has been found significantly increased in the serum of patients with ovarian, cervical, and colon cancers. LPA level in cervical cancer patients is significantly higher than in healthy controls. LPA receptors were found highly expressed in cervical cancer cells, suggesting LPA may play a role in the development of cervical cancer. The aim of this study is to investigate the effect of LPA on the apoptosis induced by cisplatin (DDP) in cervical cancer cell line and the underlying changes in signaling pathways. Our study found that cisplatin induced apoptosis of Hela cell through inhibiting expression of Bcl-2, upregulating the expression of Bax, Fas-L, and the enzyme activity of caspase-3 (p < 0.05); LPA significantly provided protection against the apoptosis induced by cisplatin by inhibiting the above alterations in apoptotic factor caused by cisplatin (p < 0.05). Moreover, PI3K/AKT pathway was found to be important for the LPA antiapoptosis effect, and administration of PI3K/AKT partially reversed the LPA-mediated protection against cisplatin-induced apoptosis (p < 0.05). These findings have shed new lights on the LPA bioactivity in cervical cancer cells and pointed to a possible sensitization scheme through combined administration of PI3K inhibitor and cisplatin for better treatment of cervical cancer patients, especially those with elevated LPA levels. PMID:26366416

  4. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction

    PubMed Central

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen

    2015-01-01

    AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. RESULTS: DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS

  5. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction.

    PubMed

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen

    2015-10-14

    To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS group (65.1 ± 4.7 U/L vs

  6. Significant reduction of acute cardiac allograft rejection by selective janus kinase-1/3 inhibition using R507 and R545.

    PubMed

    Deuse, Tobias; Hua, Xiaoqin; Taylor, Vanessa; Stubbendorff, Mandy; Baluom, Muhammad; Chen, Yan; Park, Gary; Velden, Joachim; Streichert, Thomas; Reichenspurner, Hermann; Robbins, Robert C; Schrepfer, Sonja

    2012-10-15

    Selective inhibition of lymphocyte activation through abrogation of signal 3-cytokine transduction emerges as a new strategy for immunosuppression. This is the first report on the novel Janus kinase (JAK)1/3 inhibitors R507 and R545 for prevention of acute allograft rejection. Pharmacokinetic and in vitro enzyme inhibition assays were performed to characterize the drugs. Heterotopic Brown Norway-Lewis heart transplantations were performed to study acute cardiac allograft rejection, graft survival, suppression of cellular host responsiveness, and antibody production. Therapeutic and subtherapeutic doses of R507 (60 and 15 mg/kg 2 times per day) and R545 (20 and 5 mg/kg 2 times per day) were compared with those of tacrolimus (Tac; 4 and 1 mg/kg once per day). Plasma levels of R507 and R545 were sustained high for several hours. Cell-based enzyme assays showed selective inhibition of JAK1/3-dependent pathways with 20-fold or greater selectivity over JAK2 and Tyrosine kinase 2 kinases. After heart transplantation, both JAK1/3 inhibitors reduced early mononuclear graft infiltration, even significantly more potent than Tac. Intragraft interferon-γ release was significantly reduced by R507 and R545, and for interleukin-10 suppression, they were even significantly more potent than Tac. Both JAK1/3 inhibitors and Tac were similarly effective in reducing the host Th1 and Th2, but not Th17, responsiveness and similarly prevented donor-specific immunoglobulin M antibody production. Subtherapeutic and therapeutic R507 and R545 doses prolonged the mean graft survival and were similarly effective as 1 and 4 mg/kg Tac, respectively. In combination regimens, however, only R507 showed highly beneficial synergistic drug interactions with Tac. Both R507 and R545 are potent novel immunosuppressants with favorable pharmacokinetics and high JAK1/3 selectivity, but only R507 synergistically interacts with Tac.

  7. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2

    PubMed Central

    Yue, Wen; Zheng, Xi; Lin, Yong; Yang, Chung S.; Xu, Qing; Carpizo, Darren; Huang, Huarong; DiPaola, Robert S.; Tan, Xiang-Lin

    2015-01-01

    Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer. PMID:26056043

  8. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice

    PubMed Central

    Hanes, William M; Olofsson, Peder S; Kwan, Kevin; Hudson, LaQueta K; Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J

    2015-01-01

    Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic β-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach. PMID:26322849

  9. Isoflurane administration before ischemia and during reperfusion attenuates ischemia/reperfusion-induced injury of isolated rabbit lungs.

    PubMed

    Liu, R; Ishibe, Y; Ueda, M; Hang, Y

    1999-09-01

    To investigate the effects of isoflurane on ischemia/ reperfusion (IR)-induced lung injury, we administered isoflurane before ischemia or during reperfusion. Isolated rabbit lungs were divided into the following groups: control (n = 6), perfused and ventilated for 120 min without ischemia; ISO-control (n = 6), 1 minimum alveolar anesthetic concentration (MAC) isoflurane was administered for 30 min before 120 min continuous perfusion; IR (n = 6), ischemia for 60 min, followed by 60 min reperfusion; IR-ISO1 and IR-ISO2, ischemia followed by reperfusion and 1 MAC (n = 6) or 2 MAC (n = 6) isoflurane for 60 min; ISO-IR (n = 6), 1 MAC isoflurane was administered for 30 min before ischemia, followed by IR. During these maneuvers, we measured total pulmonary vascular resistance (Rt), coefficient of filtration (Kfc), and lung wet to dry ratio (W/D). The results indicated that administration of isoflurane during reperfusion inhibited an IR-induced increase in Kfc and W/D ratio. Furthermore, isoflurane at 2 MAC, but not 1 MAC, significantly inhibited an IR-induced increase in Rt. The administration of isoflurane before ischemia significantly attenuated the increase in IR-induced Kfc, W/D, and Rt. Our results suggest that the administration of isoflurane before ischemia and during reperfusion protects against ischemia-reperfusion-induced injury in isolated rabbit lungs.

  10. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking

    PubMed Central

    Scofield Michael, D.; Boger Heather, A.; Smith Rachel, J.; Li, Hao; Haydon Philip, G.; Kalivas Peter, W.

    2015-01-01

    Background Glial cells of the central nervous system directly influence neuronal activity by releasing neuroactive small molecules, including glutamate. Long-lasting cocaine-induced reductions in extracellular glutamate in the nucleus accumbens core (NAcore) affect synaptic plasticity responsible for relapse vulnerability. Methods We transduced NAcore astrocytes with an AAV viral vector expressing hM3Dq (Gq) DREADD under control of the glial fibrillary acidic protein (GFAP) promoter in 62 male Sprague Dawley rats, 4 dnSNARE mice and 4 wild type littermates. Using glutamate biosensors we measured NAcore glutamate levels following intracranial or systemic administration of clozapine-N-oxide (CNO), and tested the ability of systemic CNO to inhibit reinstated cocaine or sucrose seeking following self-administration (SA) and extinction training. Results Administration of CNO in GFAP-Gq-DREADD transfected animals increased NAcore extracellular glutamate levels in vivo. The glial origin of released glutamate was validated by an absence of CNO-mediated release in mice expressing a dominant-negative SNARE variant in glia. Also, CNO-mediated release was relatively insensitive to N-type calcium channel blockade. Systemic administration of CNO inhibited cue-induced reinstatement of cocaine seeking in rats extinguished from cocaine, but not sucrose SA. The capacity to inhibit reinstated cocaine-seeking was prevented by systemic administration of the group II metabotropic glutamate receptor (mGluR2/3) antagonist LY341495. Conclusions DREADD-mediated glutamate gliotransmission inhibited cue-induced reinstatement of cocaine seeking by stimulating release-regulating mGluR2/3 autoreceptors to inhibit cue-induced synaptic glutamate spillover. PMID:25861696

  11. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity.

    PubMed

    Zhong, Ze-Yu; Sun, Bin-Bin; Shu, Nan; Xie, Qiu-Shi; Tang, Xian-Ge; Ling, Zhao-Li; Wang, Fan; Zhao, Kai-Jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-Zhu; Liu, Xiao-Dong

    2016-07-01

    Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestineAdministration of ciprofloxac caused significant reduction of β-glucuronidase activity in distal small intestine, and particularly in ileal valve. Furthermore, ciprofloxacin (10-2000 μmol/L) dose-dependently inhibited β-glucuronidase activity in distal small intestine content or E coli incubated in vitro, but did not affect that in proximal small intestine content or bovine liver incubated in vitro. After receiving 6 oral doses or 15 intravenous doses of diclofenac, typical enteropathy was developed with severe enteropathy occurred in distal small intestine. Co-administration of ciprofloxacin significantly alleviated diclofenac-induced enteropathy. Co-administration of ciprofloxacin attenuated enterohepatic circulation of diclofenac and alleviated diclofenac-induced enteropathy in rats, partly via the inhibition of intestinal

  12. Enalapril and diltiazem co-administration and respiratory side effects of enalapril.

    PubMed

    Franová, S; Nosál'ová, G; Antosová, M; Nosál', S

    2005-01-01

    A persistent, chronic dry cough is the most common adverse effect of angiotensin converting enzyme (ACE) inhibitors therapy. The mechanism of this respiratory adverse effect is related to the inhibition of ACE and the accumulation of bradykinin, substance P, prostanoids and other inflammatory neuropeptides in the airways. The aim of this study was to follow the relationship between 15-day administration of enalapril and the defense reflexes (cough and bronchoconstriction) of the airways in experimental animals, as well as the possibility of their pharmacological restriction with simultaneous diltiazem administration. Cough reflex was investigated by the method of mechanical irritation of laryngopharyngeal and tracheobronchial area in non-anesthetized cats. The reactivity of tracheal smooth muscles of the airways to bronchoconstrictor mediators (histamine 10 nM - 1 mM, acetylcholine 10 nM - 1 mM and KCl 1 mM - 100 mM) was evaluated by an in vitro method in guinea pigs. Enalapril 5 mg/kg/day and diltiazem 30 mg/kg/day were administered perorally for 15 days. The results showed that long-lasting administration of enalapril resulted in a significant increase of measured cough parameters and increased reactivity of tracheal smooth muscle to histamine and KCl. Simultaneous administration of enalapril together with diltiazem significantly decreased the enalapril induced cough, and decreased enalapril induced hyperreactivity of tracheal smooth muscles to KCl. The results showed a partially protective effect of diltiazem and enalapril co-administration on the respiratory adverse effects induced by enalapril therapy.

  13. Respiratory reflexes in response to nasal administration of halothane to anesthetized, spontaneously breathing dogs.

    PubMed

    Mutoh, T; Kanamaru, A; Tsubone, H; Nishimura, R; Sasaki, N

    2000-03-01

    To characterize and determine the sensory innervation of respiratory reflexes elicited by nasal administration of halothane to dogs. 10 healthy Beagles. Dogs underwent permanent tracheostomy and, 2 to 3 weeks later, were anesthetized with thiopental and alpha-chloralose administered IV. The nasal passages were functionally isolated so that halothane could be administered to the nasal passages while dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of halothane at concentrations of 1.25, 1.75, and 2.5 times the minimum alveolar concentration (MAC), and 5% (administered in 100% O2 at a flow rate of 5 L/min) were recorded. Reflexes in response to administration of 5% halothane were also recorded following transection of the infraorbital nerve, transection of the caudal nasal nerve, and nasal administration of lidocaine. Nasal administration of halothane induced an inhibition of breathing characterized by a dose-dependent increase in expiratory time and a resultant decrease in expired volume per unit time. Effects were noticeable immediately after the onset of halothane administration and lasted until its cessation. Reflex responses to halothane administration were attenuated by transection of the caudal nasal nerve and by nasal administration of lidocaine, but transection of the infraorbital nerve had no effect. Nasal administration of halothane at concentrations generally used for mask induction of anesthesia induces reflex inhibition of breathing. Afferent fibers in the caudal nasal nerve appear to play an important role in the reflex inhibition of breathing induced by halothane administration.

  14. Post Chlorine gas exposure administration of nitrite prevents lung injury: effect of administration modality

    PubMed Central

    Samal, Andrey A.; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M.; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M.; Squadrito, Giuseppe L.; Fanucchi, Michelle V.; Matalon, Sadis; Patel, Rakesh P.

    2012-01-01

    Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent

  15. Eye drop propranolol administration promotes the recovery of oxygen-induced retinopathy in mice.

    PubMed

    Dal Monte, Massimo; Casini, Giovanni; la Marca, Giancarlo; Isacchi, Benedetta; Filippi, Luca; Bagnoli, Paola

    2013-06-01

    The mouse model of oxygen-induced retinopathy (OIR) is a well-established model of retinopathy of prematurity (ROP), characterized by the abnormal formation of new blood vessels, which is similar to ROP. In this model, we have recently shown that subcutaneous (sc) administration of the non-selective beta-adrenergic receptor (β-AR) blocker propranolol ameliorates angiogenic processes in the retina when its effects are evaluated at postnatal day (PD) 17. In the present study, we investigated whether propranolol application as collyrium can promote the recovery of OIR. After propranolol administration on the eye, mice were first tested for retinal concentrations of propranolol as compared with those measured after sc or per os administration. Subsequently, we determined the effects of propranolol ophthalmic solutions, at the optimal dose for delivery, on VEGF, IGF-1, hypoxia-inducible factor (HIF)-1α, signal transducer and activator of transcription 3 (STAT3) and retinal neovascularization as assessed in both the superficial and the deep vascular plexuses. The results showed that 2% topical propranolol has an efficiency (in terms of final propranolol concentration in the retina) comparable to that of 20 mg/kg propranolol sc or per os and significantly higher than those observed with doses and administration routes that are currently used with children. Propranolol ophthalmic solutions reduced VEGF and IGF-1 up-regulation in response to hypoxia and drastically inhibited HIF-1α accumulation and STAT3 phosphorylation. As a result of its inhibitory effects on hypoxia-induced proangiogenic factors, propranolol significantly reduced retinal neovascularization in the superficial but not in the deep vascular plexus. An evaluation of retinal neovascularization at PD21 showed that propranolol was still effective in inhibiting OIR. These findings strengthen the hypothesis that β-AR blockade can efficiently counteract OIR and suggest that topical eye application of

  16. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab.

    PubMed

    Sun, Chaonan; Han, Chuyang; Jiang, Yuanjun; Han, Ning; Zhang, Miao; Li, Guang; Qiao, Qiao

    2017-01-01

    The EGFR-specific mAb cetuximab is one of the most effective treatments for oropharyngeal carcinoma, while patient responses to EGFR inhibitors given alone are modest. Combination treatment with radiation can improve the efficacy of treatment through increasing radiosensitivity, while resistance to radiation after administration of cetuximab limits its efficiency. Radiation and drugs can damage the endoplasmic reticulum (ER) homeostatic state and result in ER stress (ERS), subsequently causing resistance to radiation and drugs. Whether the ERS pathway is involved in radioresistance after administration of cetuximab has not been reported. Herein, we show that cetuximab could increase the radiosensitivity of FaDu cells but not Detroit562 cells. In addition, cetuximab inhibited the radiation-induced activation of the ERS signalling pathway IRE1α/ATF6-GRP78 in FaDu cells, while this effect was absent in Detroit562 cells. Silencing GRP78 increased the radiosensitivity of oropharyngeal carcinoma cells and inhibited radiation-induced DNA double-strand-break (DSB) repair and autophagy. More interestingly, silencing GRP78 abrogated resistance to cetuximab and radiation in Detroit562 cells and had a synergistic effect with cetuximab in increasing the radiosensitivity of FaDu cells. Immunohistochemistry showed that overexpression of both GRP78 and EGFR was associated with a poor prognosis in oropharyngeal carcinoma patients (P<0.05). Overall, the results of this study show that radioresistance after EGFR inhibition by cetuximab is mediated by the ERS signalling pathway IRE1α/ATF6-GRP78. This suppression was consequently unable to inhibit radiation-induced DSB repair and autophagy in oropharyngeal carcinoma cells, which conferred resistance to radiotherapy and cetuximab. These results suggest that the cooperative effects of radiotherapy and cetuximab could be further improved by inhibiting GRP78 in non-responsive oropharyngeal carcinoma patients.

  17. Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats.

    PubMed

    Soto-Moyano, Rubén; Burgos, Héctor; Flores, Francisco; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Pérez, Hernán; Hernández, Paula; Hernández, Alejandro

    2006-10-01

    Melatonin has been shown to inhibit long-term potentiation (LTP) in hippocampal slices of rats. Since LTP may be one of the main mechanisms by which memory traces are encoded and stored in the central nervous system, it is possible that melatonin could modulate cognitive performance by interfering with the cellular and/or molecular mechanisms involved in LTP. We investigated in rats the effects of intraperitoneally-administered melatonin (0.1, 1 and 10 mg/kg), its saline-ethanol solvent, or saline alone, on the acquisition of visuo-spatial memory as well as on the ability of the cerebral cortex to develop LTP in vivo. Visuo-spatial performance was assessed daily in rats, for 10 days, in an 8-arm radial maze, 30 min after they received a single daily dose of melatonin. Visual cortex LTP was determined in sodium pentobarbital anesthetized rats (65 mg/kg i.p.), by potentiating transcallosal evoked responses with a tetanizing train (312 Hz, 500 ms duration) 30 min after administration of a single dose of melatonin. Results showed that melatonin impaired visuo-spatial performance in rats, as revealed by the greater number of errors committed and time spent to solve the task in the radial maze. Melatonin also prevented the induction of neocortical LTP. It is concluded that melatonin, at the doses utilized in this study, could alter some forms of neocortical plasticity involved in short- and long-term visuo-spatial memories in rats.

  18. Thromboelastographic evidence of inhibition of fibrinolysis after ε-aminocaproic acid administration in a dog with suspected acute traumatic coagulopathy.

    PubMed

    Yoo, Seung H; Venn, Emilee; Sullivan, Lauren A; Olver, Christine S

    2016-09-01

    To describe the thromboelastographic changes in fibrinolysis with ε-aminocaproic acid treatment in a dog with suspected acute traumatic coagulopathy. A 9-year-old female spayed Airedale Terrier was presented with multiple injuries consistent with motor vehicle trauma. After surgical repair of a diaphragmatic hernia and minor laceration of the right cranial lung lobe, the dog continued to produce copious volumes of hemorrhagic fluid from the thoracic cavity despite multiple plasma transfusions, autotransfusions, and failure to locate a definitive source of bleeding during 2 separate surgeries. ε-Aminocaproic acid treatment was initiated and was associated with rapid clinical improvement and diminished fibrinolysis based on a modified plasma-based thromboelastogram. This report describes thromboelastographic evidence of inhibition of fibrinolysis after ε-aminocaproic acid administration in a dog with suspected acute traumatic coagulopathy. Thromboelastrography may be useful in monitoring therapy with antifibrinolytic drugs. © Veterinary Emergency and Critical Care Society 2016.

  19. Inhibition of leukocyte-type 12-lipoxygenase by guava tea leaves prevents development of atherosclerosis.

    PubMed

    Takahashi, Yoshitaka; Otsuki, Akemi; Mori, Yoshiko; Kawakami, Yuki; Ito, Hideyuki

    2015-11-01

    Oxidation of low-density lipoprotein (LDL) is one of the crucial steps for atherosclerosis development, and an essential role of leukocyte-type 12-lipoxygenase expressed in macrophages in this process has been demonstrated. The biochemical mechanism of the oxidation of circulating LDL by leukocyte-type 12-lipoxygenase in macrophages has been proposed. The major ingredients in guava tea leaves which inhibited the catalytic activity of leukocyte-type 12-lipoxygenase were quercetin and ethyl gallate. Administration of extracts from guava tea leaves to apoE-deficient mice significantly attenuated atherogenic lesions in the aorta and aortic sinus. We recently showed that Qing Shan Lu Shui inhibited the catalytic activity of leukocyte-type 12-lipoxygenase. The major components inhibiting the enzyme contained in Qing Shan Lu Shui were identified to be novel monoterpene glycosides. The anti-atherogenic effect of the tea leaves might be attributed to the inhibition of leukocyte-type 12-lipoxygenase by these components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Preclinical Evaluation of Riluzole: Assessments of Ethanol Self-Administration and Ethanol Withdrawal Symptoms

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Hodge, Clyde W.

    2010-01-01

    Background Many of the neurobehavioral effects of ethanol are mediated by inhibition of excitatory N-methyl-d-aspartate (NMDA) and enhancement of inhibitory γ-amino-butyric-acid (GABA) receptor systems. There is growing interest in drugs that alter these systems as potential medications for problems associated with alcoholism. The drug riluzole, approved for treatment of amyotrophic lateral sclerosis (ALS), inhibits NMDA and enhances GABAA receptor system activity. This study was designed to determine the preclinical efficacy of riluzole to modulate ethanol self-administration and withdrawal. Methods Male C57BL/6J mice were trained to lever press on a concurrent fixed-ratio 1 schedule of ethanol (10% v/v) versus water reinforcement during daily 16-hour sessions. Riluzole (1 to 40 mg/kg, IP) was evaluated on ethanol self-administration after acute and chronic (2 week) treatment. To determine if riluzole influences ethanol withdrawal-associated seizures, mice were fed an ethanol-containing or control liquid diet for 18 days. The effects of a single injection of riluzole (30 mg/kg) were examined on handling-induced convulsions after ethanol withdrawal. Results Acute riluzole (30 and 40 mg/kg) reduced ethanol self-administration during the first 4 hours of the session, which corresponds to the known pharmacokinetics of this drug. Ethanol self-administration was also reduced by riluzole after chronic treatment. Riluzole (30 mg/kg) significantly decreased the severity of ethanol-induced convulsions 2 hours after ethanol withdrawal. Conclusions These results demonstrate that riluzole decreases ethanol self-administration and may reduce ethanol withdrawal severity in mice. Thus, riluzole may have utility in the treatment of problems associated with alcoholism. PMID:19426166

  1. Arginase Inhibition Improves Microvascular Endothelial Function in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Kövamees, Oskar; Shemyakin, Alexey; Checa, Antonio; Wheelock, Craig E; Lundberg, Jon O; Östenson, Claes-Göran; Pernow, John

    2016-11-01

    The development of microvascular complications in diabetes is a complex process in which endothelial dysfunction is important. Emerging evidence suggests that arginase is a key mediator of endothelial dysfunction in type 2 diabetes mellitus by reciprocally regulating nitric oxide bioavailability. The aim of this prospective intervention study was to test the hypothesis that arginase activity is increased and that arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Microvascular endothelium-dependent and -independent dilatation was determined in patients with type 2 diabetes (n = 12) and healthy age-matched control subjects (n = 12) with laser Doppler flowmetry during iontophoretic application of acetylcholine and sodium nitroprusside, respectively, before and after administration of the arginase inhibitor N ω -hydroxy-nor-L-arginine (120 min). Plasma ratios of amino acids involved in arginase and nitric oxide synthase activities were determined. The laser Doppler flowmetry data were the primary outcome variable. Microvascular endothelium-dependent dilatation was impaired in subjects with type 2 diabetes (P < .05). After administration of N ω -hydroxy-nor-L-arginine, microvascular endothelial function improved significantly in patients with type 2 diabetes to the level observed in healthy controls. Endothelium-independent vasodilatation did not change significantly. Subjects with type 2 diabetes had higher levels of ornithine and higher ratios of ornithine/citrulline and ornithine/arginine (P < .05), suggesting increased arginase activity. Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Arginase inhibition may represent a novel therapeutic strategy to improve microvascular endothelial function in patients with type 2 diabetes.

  2. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release.

    PubMed

    Yun, Jaesuk

    2014-05-15

    Methamphetamine is a psychomotor stimulant that produces hyperlocomotion in rodents. Limonene (a cyclic terpene from citrus essential oils) has been reported to induce sedative effects. In this study, we demonstrated that limonene administration significantly inhibited serotonin (5-hydroxytryptamine, 5-HT)-induced head twitch response in mice. In rats, pretreatment with limonene decreased hyperlocomotion induced by methamphetamine injection. In addition, limonene reversed the increase in dopamine levels in the nucleus accumbens of rats given methamphetamine. These results suggest that limonene may inhibit stimulant-induced behavioral changes via regulating dopamine levels and 5-HT receptor function. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Arborvitae (Thuja plicata) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts.

    PubMed

    Han, Xuesheng; Parker, Tory L

    2017-06-01

    Arborvitae ( Thuja plicata ) essential oil (AEO) is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1), intracellular cell adhesion molecule 1 (ICAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell chemoattractant (I-TAC), monokine induced by interferon gamma (MIG), and macrophage colony-stimulating factor (M-CSF). It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1), and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2). The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA) showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  4. Impact of an electronic medication administration record on medication administration efficiency and errors.

    PubMed

    McComas, Jeffery; Riingen, Michelle; Chae Kim, Son

    2014-12-01

    The study aims were to evaluate the impact of electronic medication administration record implementation on medication administration efficiency and occurrence of medication errors as well as to identify the predictors of medication administration efficiency in an acute care setting. A prospective, observational study utilizing time-and-motion technique was conducted before and after electronic medication administration record implementation in November 2011. A total of 156 cases of medication administration activities (78 pre- and 78 post-electronic medication administration record) involving 38 nurses were observed at the point of care. A separate retrospective review of the hospital Midas+ medication error database was also performed to collect the rates and origin of medication errors for 6 months before and after electronic medication administration record implementation. The mean medication administration time actually increased from 11.3 to 14.4 minutes post-electronic medication administration record (P = .039). In a multivariate analysis, electronic medication administration record was not a predictor of medication administration time, but the distractions/interruptions during medication administration process were significant predictors. The mean hospital-wide medication errors significantly decreased from 11.0 to 5.3 events per month post-electronic medication administration record (P = .034). Although no improvement in medication administration efficiency was observed, electronic medication administration record improved the quality of care with a significant decrease in medication errors.

  5. Acetyl-CoA Carboxylase Inhibition Reverses NAFLD and Hepatic Insulin Resistance but Promotes Hypertriglyceridemia in Rodents.

    PubMed

    Goedeke, Leigh; Bates, Jamie; Vatner, Daniel F; Perry, Rachel J; Wang, Ting; Ramirez, Ricardo; Li, Li; Ellis, Matthew W; Zhang, Dongyan; Wong, Kari E; Beysen, Carine; Cline, Gary W; Ray, Adrian S; Shulman, Gerald I

    2018-05-23

    Pharmacologic inhibition of acetyl-CoA carboxylase (ACC) enzymes, ACC1 and ACC2, offers an attractive therapeutic strategy for non-alcoholic fatty liver disease (NAFLD) via simultaneous inhibition of fatty acid synthesis and stimulation of fatty acid oxidation. However, the effects of ACC inhibition on hepatic mitochondrial oxidation, anaplerosis, and ketogenesis in vivo are unknown. Here, we evaluated the impact of a novel liver-directed allosteric inhibitor of ACC1 and ACC2 (Compound 1) on these parameters, as well as glucose and lipid metabolism, in control and diet-induced rodent models of NAFLD. Oral administration of Compound 1 preferentially inhibited ACC enzymatic activity in the liver, reduced hepatic malonyl-CoA levels and enhanced hepatic ketogenesis by 50%. Furthermore, administration for 6 days to high-fructose fed rats resulted in a 20% reduction in hepatic de novo lipogenesis. Importantly, long-term treatment (21 days) significantly reduced high-fat sucrose diet (HFSD)-induced hepatic steatosis, PKCε activation and hepatic insulin resistance. ACCi treatment was associated with a significant increase in plasma triglycerides (∼30 to 130%, depending on length of fasting). ACCi-mediated hypertriglyceridemia could be attributed to a ∼15% increase in hepatic VLDL production and ∼20% reduction in triglyceride clearance by lipoprotein lipase (LPL) (P ≤ 0.05). At the molecular level, these changes were associated with increases in LXR/SREBP1 and decreases in PPARα target activation and could be reversed with fenofibrate co-treatment in a high-fat diet mouse model. Collectively, these studies warrant further investigation into the therapeutic utility of liver-directed ACC inhibition for the treatment of NAFLD and hepatic insulin resistance. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  6. Low Level Chlorpyrifos Exposure Increases Anandamide Accumulation in Juvenile Rat Brain in the Absence of Brain Cholinesterase Inhibition

    PubMed Central

    Carr, Russell L.; Graves, Casey A.; Mangum, Lee C.; Nail, Carole A.; Ross, Matthew K.

    2014-01-01

    The prevailing dogma is that chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPF exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPF results in greater inhibition of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either forebrain ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonylglycerol (2-AG). This exposure resulted in the accumulation of 2-AG and AEA in the forebrain of juvenile rats; however, even at the lowest dosage level used (1.0 mg/kg), forebrain ChE inhibition was still present. Thus, it is not clear if FAAH activity would be inhibited at dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5 mg/kg CPF by oral gavage. At 4 and 12 h post-exposure on the last day of administration, the activities of serum ChE and carboxylesterase (CES) and forebrain ChE, MAGL, and FAAH were determined as well as the forebrain AEA and 2-AG levels. Significant inhibition of serum ChE and CES was present at both 4 and 12 h. There was no significant inhibition of the activities of forebrain ChE or MAGL and no significant change in the amount of 2-AG at either time point. On the other hand, while no statistically significant effects were observed at 4 h, FAAH activity was significantly inhibited at 12 h resulting in a significant accumulation of AEA. Although it is not clear if this level of accumulation impacts brain maturation, this study demonstrates that developmental CPF exposure at a level that does not inhibit brain ChE can alter components of

  7. Aggressive temperament predicts ethanol self-administration in late adolescent male and female rhesus macaques

    PubMed Central

    McClintick, Megan N.; Grant, Kathleen A.

    2017-01-01

    Rationale Anxiety and aggression are associated with ethanol self-administration, but these behaviors can serve as either risk factors for or consequences of heavy drinking in rodents and humans. Baseline levels of aggressive-like and anxious-like behavior in non-human primates have not yet been characterized in relation to future or prior ethanol intake. Objective To test the association between temperament at baseline with future ethanol self-administration in late adolescent male (n=21) and female (n=11) rhesus monkeys. Methods Shortly after entering the laboratory and before exposure to ethanol, the Human Intruder Test (HIT) and the Novel Object Test (NOT) were used to determine baseline anxious-like and aggressive-like behavior in age-matched male and female rhesus monkeys (Macaca mulatta). The monkeys were induced to drink ethanol 4% (w/v) using a schedule-induced polydipsia procedure, followed by “open-access” ethanol self-administration in which the monkeys were allowed a choice of water or 4% ethanol (w/v) for 22 hours/day (h/d) for 52 weeks. Results Aggressive monkeys self-administered more ethanol and attained higher Blood Ethanol Concentrations (BECs). No significant differences in ethanol intakes or BECs were found between anxious and non-anxious monkeys or between behaviorally inhibited and non-inhibited monkeys. Baseline aggressive behavior positively correlated with ethanol intake and intoxication. Conclusions Baseline reactive aggression was associated with higher future ethanol intake and intoxication. While significant sex differences in HIT reactivity were observed, the relationship between aggression and ethanol drinking was observed across sex and is not sex-specific. PMID:27627910

  8. Inhibition of 2-arachydonoylgycerol degradation attenuates orofacial neuropathic pain in trigeminal nerve-injured mice.

    PubMed

    Kamimura, Rantaro; Hossain, Mohammad Z; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Takahashi, Kojiro; Otake, Masanori; Saito, Isao; Kitagawa, Junichi

    2018-03-24

    Current therapeutics are not effective for orofacial neuropathic pain, and better options are needed. The present study used inferior orbital nerve (ION)-injured mice to investigate the effect of inhibiting monoacylglycerol lipase (MAGL), an enzyme that degrades the major endocannabinoid 2-arachydonoylgycerol (2-AG) in orofacial neuropathic pain. The head-withdrawal threshold to mechanical stimulation of the whisker pad was reduced on days 3, 5, and 7 after ION injury. Injection of JZL184, a selective inhibitor of MAGL, on day 7 after ION injury attenuated the reduction in head-withdrawal threshold at 2 h after administration. Moreover, the numbers of MAGL-immunoreactive neurons in the trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) were significantly greater in ION-injured mice than in sham-operated mice but were reduced after administration of JZL184. The increase in MAGL immunoreactivity suggests that increased 2-AG production is followed by rapid enzymatic degradation of 2-AG. JZL184 inhibited this degradation and thus increased 2-AG concentration in the brain, particularly in the Vc and C1-C2 regions, thus attenuating pain. Our findings suggest that inhibition of 2-AG degradation by MAGL inhibitors is a promising therapeutic option for treatment of orofacial neuropathic pain.

  9. Inhibition of protein synthesis by N-methyl-N-nitrosourea in vivo

    PubMed Central

    Kleihues, P.; Magee, P. N.

    1973-01-01

    1. The intraperitoneal injection of N-methyl-N-nitrosourea (100mg/kg) caused a partial inhibition of protein synthesis in several organs of the rat, the maximum effect occurring after 2–3h. 2. In the liver the inhibition of protein synthesis was paralleled by a marked disaggregation of polyribosomes and an increase in ribosome monomers and ribosomal subunits. No significant breakdown of polyribosomes was found in adult rat brains although N-methyl-N-nitrosourea inhibited cerebral and hepatic protein synthesis to a similar extent. In weanling rats N-methyl-N-nitrosourea caused a shift in the cerebral polyribosome profile similar to but less marked than that in rat liver. 3. Reaction of polyribosomal RNA with N-[14C]methyl-N-nitrosourea in vitro did not lead to a disaggregation of polyribosomes although the amounts of 7-methylguanine produced were up to twenty times higher than those found after administration of sublethal doses in vivo. 4. It was concluded that changes in the polyribosome profile induced by N-methyl-N-nitrosourea may reflect the mechanism of inhibition of protein synthesis rather than being a direct consequence of the methylation of polyribosomal mRNA. PMID:4774397

  10. Systemic inhibition of Janus kinase induces browning of white adipose tissue and ameliorates obesity-related metabolic disorders.

    PubMed

    Qurania, Kikid Rucira; Ikeda, Koji; Wardhana, Donytra Arby; Barinda, Agian Jeffilano; Nugroho, Dhite Bayu; Kuribayashi, Yuko; Rahardini, Elda Putri; Rinastiti, Pranindya; Ryanto, Gusty Rizky Teguh; Yagi, Keiko; Hirata, Ken-Ichi; Emoto, Noriaki

    2018-07-07

    Browning of white adipose tissue is a promising strategy to tackle obesity. Recently, Janus kinase (JAK) inhibition was shown to induce white-to-brown metabolic conversion of adipocytes in vitro; however effects of JAK inhibition on browning and systemic metabolic health in vivo remain to be elucidated. Here, we report that systemic administration of JAK inhibitor (JAKi) ameliorated obesity-related metabolic disorders. Administration of JAKi in mice fed a high-fat diet increased UCP-1 and PRDM16 expression in white adipose tissue, indicating the browning of white adipocyte. Food intake was increased in JAKi-treated mice, while the body weight and adiposity was similar between the JAKi- and vehicle-treated mice. In consistent with the browning, thermogenic capacity was enhanced in mice treated with JAKi. Chronic inflammation in white adipose tissue was not ameliorated by JAKi-treatment. Nevertheless, insulin sensitivity was well preserved in JAKi-treated mice comparing with that in vehicle-treated mice. Serum levels of triglyceride and free fatty acid were significantly reduced by JAKi-treatment, which is accompanied by ameliorated hepatosteatosis. Our data demonstrate that systemic administration of JAKi has beneficial effects in preserving metabolic health, and thus inhibition of JAK signaling has therapeutic potential for the treatment of obesity and its-related metabolic disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity

    PubMed Central

    Zhong, Ze-yu; Sun, Bin-bin; Shu, Nan; Xie, Qiu-shi; Tang, Xian-ge; Ling, Zhao-li; Wang, Fan; Zhao, Kai-jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-zhu; Liu, Xiao-dong

    2016-01-01

    Aim: Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. Methods: The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Results: Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestineAdministration of ciprofloxac caused significant reduction of β-glucuronidase activity in distal small intestine, and particularly in ileal valve. Furthermore, ciprofloxacin (10–2000 μmol/L) dose-dependently inhibited β-glucuronidase activity in distal small intestine content or E coli incubated in vitro, but did not affect that in proximal small intestine content or bovine liver incubated in vitro. After receiving 6 oral doses or 15 intravenous doses of diclofenac, typical enteropathy was developed with severe enteropathy occurred in distal small intestine. Co-administration of ciprofloxacin significantly alleviated diclofenac-induced enteropathy. Conclusion: Co-administration of ciprofloxacin attenuated enterohepatic circulation of diclofenac and alleviated diclofenac-induced enteropathy in rats, partly via

  12. Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis.

    PubMed

    Inomata, Minoru; Kamio, Koichiro; Azuma, Arata; Matsuda, Kuniko; Kokuho, Nariaki; Miura, Yukiko; Hayashi, Hiroki; Nei, Takahito; Fujita, Kazue; Saito, Yoshinobu; Gemma, Akihiko

    2014-02-08

    Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice. Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated. Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs was significantly

  13. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Tong, Chao; Peng, Chuan; Wang, Lianlian; Zhang, Li; Yang, Xiaotao; Xu, Ping; Li, Jinjin; Delplancke, Thibaut; Zhang, Hua; Qi, Hongbo

    2016-01-01

    Background: Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. Methods: In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Results: Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Conclusion: Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice. PMID:26950150

  14. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury.

    PubMed

    Tong, Chao; Peng, Chuan; Wang, Lianlian; Zhang, Li; Yang, Xiaotao; Xu, Ping; Li, Jinjin; Delplancke, Thibaut; Zhang, Hua; Qi, Hongbo

    2016-03-03

    Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice.

  15. Changes in plasma glucose in Otsuka Long-Evans Tokushima Fatty rats after oral administration of maple syrup.

    PubMed

    Nagai, Noriaki; Yamamoto, Tetsushi; Tanabe, Wataru; Ito, Yoshimasa; Kurabuchi, Satoshi; Mitamura, Kuniko; Taga, Atsushi

    2015-01-01

    We investigate whether maple syrup is a suitable sweetener in the management of type 2 diabetes using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The enhancement in plasma glucose (PG) and glucose absorption in the small intestine were lower after the oral administration of maple syrup than after sucrose administration in OLETF rats, and no significant differences were observed in insulin levels. These data suggested that maple syrup might inhibit the absorption of glucose from the small intestine and preventing the enhancement of PG in OLETF rats. Therefore, maple syrup might help in the prevention of type 2 diabetes.

  16. Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administration

    PubMed Central

    Wade, Carrie L.; Schuster, Daniel J.; Domingo, Kristine M.; Kitto, Kelley F.; Fairbanks, Carolyn A.

    2009-01-01

    The decarboxylation product of arginine, agmatine, has effectively reduced or prevented opioid-induced tolerance and dependence when given either systemically (intraperitoneally or subcutaneously) or centrally (intrathecally or intracerebroventricularly). Systemically administered agmatine also reduces the escalation phase of intravenous fentanyl self-administration in rats. The present study assessed whether centrally (intracerebroventricular, i.c.v.) delivered agmatine could prevent the development of fentanyl self-administration in mice. Mice were trained to respond under a fixed-ratio 1 (FR1) schedule for either fentanyl (0.7 μg/70 μl, p.o.) or food reinforcement. Agmatine (10 nmol/5 μl), injected i.c.v. 12-14h before the first session and every other evening (12-14h before session) for 2 weeks, completely attenuated oral fentanyl self-administration (but not food-maintained responding) compared to saline-injected controls. When agmatine was administered after fentanyl self-administration had been established (day 8) it had no attenuating effects on bar pressing. This dose of agmatine does not decrease locomotor activity as assessed by rotarod. The present findings significantly extend the previous observation that agmatine prevents opioid-maintained behavior to a chronic model of oral fentanyl self-administration as well as identifying a supraspinal site of action for agmatine inhibition of drug addiction. PMID:18495108

  17. Inhibition of sympathetic sprouting in CCD rats by lacosamide.

    PubMed

    Wang, Yuying; Huo, Fuquan

    2018-05-14

    Early hyperexcitability activity of injured nerve/neuron is critical for developing sympathetic nerve sprouting within dorsal root ganglia (DRG). Since lacosamide (LCM), an anticonvulsant, inhibits Na + channel. The present study tried to test the potential effect of LCM on inhibiting sympathetic sprouting in vivo. LCM (50 mg/kg) was daily injected intraperitoneally into rats subjected to chronic compression DRG (CCD), an animal model of neuropathic pain that exhibits sympathetic nerve sprouting, for the 1st 7 days after injury. Mechanical sensitivity was tested from day 3 to day 18 after injury, and then DRGs were removed off. Immunohistochemical staining for tyrosine hydroxylase (TH) was examined to observe sympathetic sprouting, and patch-clamp recording was performed to test the excitability and Na + current of DRG neurons. Early systemic LCM treatment significantly reduced TH immunoreactivity density in injured DRG, lowered the excitability level of injured DRG neurons, and increased paw withdrawal threshold (PWT). These effects on reducing sympathetic sprouting, inhibiting excitability and suppressing pain behavior were observed 10 days after the end of early LCM injection. In vitro 100 μM LCM instantly reduced the excitability of CCD neurons via inhibiting Na + current and reducing the amplitude of AP. All the findings suggest, for the first time, that early administration of LCM inhibited sympathetic sprouting and then alleviated neuropathic pain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Inhibition of neutrophil and monocyte recruitment by endogenous and exogenous lipocortin 1

    PubMed Central

    Getting, Stephen J; Flower, Roderick J; Perretti, Mauro

    1997-01-01

    administration. The inhibitory effect of Dex on monocyte recruitment was not significantly modified in vinblastine-treated mice, with 36% and 57% of inhibition calculated at the dose of 30 μg Dex, and 70% and 60% of inhibition at 100 μg Dex, in vehicle- and vinblastine-treated mice, respectively.Treatment of mice with peptide Ac2-26 dose-dependently attenuated PMN influx at 4 h post-zymosan with a significant effect at 100 μg per mouse (45% of inhibition, n=9, P<0.05) and a maximal effect of 61% inhibition at the highest dose tested of 200 μg s.c. (n=14, P<0.05). No effect of peptide Ac2-26 (200 μg s.c.) was seen on zymosan-induced 24 h monocyte recruitment. In contrast, administration of 200 μg peptide Ac2-26 every 6 h was effective in reducing the number of monocytes harvested from the inflamed peritoneal cavities at 24 h post-zymosan: 9.40±0.58×106 monocytes per mouse (n=13) and 5.74±0.34 monocytes per mouse (n=14) in vehicle- and peptide Ac2-26-treated mice, respectively (P<0.05).Finally, peptide Ac2-26 produced a concentration-dependent inhibition of the rate of phagocytosis of mouse resident peritoneal macrophages as measured by flow cytometry, with a maximal reduction of 34% at the highest concentration tested of 100 μg ml−1 (n=8 experiments performed in duplicate; P<0.05).In conclusion, this study suggests that in vivo monocyte recruitment during acute inflammation is, at least in part, under the negative modulatory control of endogenous lipocortin 1 (as seen after administration of Dex by using the specific antisera) and exogenous lipocortin 1 mimetics (as observed with peptide Ac2-26). In addition to the neutrophil, we can now propose that the monocyte also can be a target for the in vivo anti-inflammatory action of lipocortin 1. PMID:9134220

  19. Gremlin-1 inhibits macrophage migration inhibitory factor-dependent monocyte function and survival.

    PubMed

    Müller, Iris I; Chatterjee, Madhumita; Schneider, Martina; Borst, Oliver; Seizer, Peter; Schönberger, Tanja; Vogel, Sebastian; Müller, Karin A L; Geisler, Tobias; Lang, Florian; Langer, Harald; Gawaz, Meinrad

    2014-10-20

    Monocyte migration and their differentiation into macrophages critically regulate vascular inflammation and atherogenesis and are governed by macrophage migration inhibitory factor (MIF). Gremlin-1 binds to MIF. Current experimental evidences present Gremlin-1 as a potential physiological agent that might counter-regulate the inflammatory attributes of MIF. We found that Gremlin-1 inhibited MIF-dependent monocyte migration and adhesion to activated endothelial cells in flow chamber perfusion assay in vitro and to the injured carotid artery of WT and ApoE-/- mice in vivo as deciphered by intravital microscopy. Intravenous administration of Gremlin-1, but not of control protein, significantly reduced leukocyte recruitment towards the inflamed carotid artery of ApoE-/- mice. Besides, leukocytes from MIF-/- when administered into ApoE-/- mice showed lesser adhesion as compared to wild type. In the presence of Gremlin-1 however, adhesion of wild type, but not of MIF-/- leukocytes, to the carotid artery was significantly inhibited as compared to control. Gremlin-1 also inhibited the MIF-induced differentiation of monocytes into macrophages. Gremlin-1 substantially inhibited the anti-apoptotic impact of MIF on monocytes against BH3 mimetic ABT-737-induced apoptosis as verified by Annexin V-binding, caspase 3 activity, and mitochondrial depolarization. Therefore Gremlin-1 can modulate MIF dependent monocyte adhesion, migration, differentiation and survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Apigenin in Combination with Akt Inhibition Significantly Enhances Thyrotropin-Stimulated Radioiodide Accumulation in Thyroid Cells

    PubMed Central

    Lakshmanan, Aparna; Doseff, Andrea I.; Ringel, Matthew D.; Saji, Motoyasu; Rousset, Bernard; Zhang, Xiaoli

    2014-01-01

    Background: Selectively increased radioiodine accumulation in thyroid cells by thyrotropin (TSH) allows targeted treatment of thyroid cancer. However, the extent of TSH-stimulated radioiodine accumulation in some thyroid tumors is not sufficient to confer therapeutic efficacy. Hence, it is of clinical importance to identify novel strategies to selectively further enhance TSH-stimulated thyroidal radioiodine accumulation. Methods: PCCl3 rat thyroid cells, PCCl3 cells overexpressing BRAFV600E, or primary cultured tumor cells from a thyroid cancer mouse model, under TSH stimulation were treated with various reagents for 24 hours. Cells were then subjected to radioactive iodide uptake, kinetics, efflux assays, and protein extraction followed by Western blotting against selected antibodies. Results: We previously reported that Akt inhibition increased radioiodine accumulation in thyroid cells under chronic TSH stimulation. Here, we identified Apigenin, a plant-derived flavonoid, as a reagent to further enhance the iodide influx rate increased by Akt inhibition in thyroid cells under acute TSH stimulation. Akt inhibition is permissive for Apigenin's action, as Apigenin alone had little effect. This action of Apigenin requires p38 MAPK activity but not PKC-δ. The increase in radioiodide accumulation by Apigenin with Akt inhibition was also observed in thyroid cells expressing BRAFV600E and in primary cultured thyroid tumor cells from TRβPV/PV mice. Conclusion: Taken together, Apigenin may serve as a dietary supplement in combination with Akt inhibitors to enhance therapeutic efficacy of radioiodine for thyroid cancer. PMID:24400871

  1. Behavioral inhibition and obsessive-compulsive disorder.

    PubMed

    Coles, Meredith E; Schofield, Casey A; Pietrefesa, Ashley S

    2006-01-01

    Behavioral inhibition is frequently cited as a vulnerability factor for development of anxiety. However, few studies have examined the unique relationship between behavioral inhibition and obsessive-compulsive disorder (OCD). Therefore, the current study addressed the relationship between behavioral inhibition and OCD in a number of ways. In a large unselected student sample, frequency of current OC symptoms was significantly correlated with retrospective self-reports of total levels of childhood behavioral inhibition. In addition, frequency of current OC symptoms was also significantly correlated with both social and nonsocial components of behavioral inhibition. Further, there was evidence for a unique relationship between behavioral inhibition and OC symptoms beyond the relationship of behavioral inhibition and social anxiety. In addition, results showed that reports of childhood levels of behavioral inhibition significantly predicted levels of OCD symptoms in adulthood. Finally, preliminary evidence suggested that behavioral inhibition may be more strongly associated with some types of OC symptoms than others, and that overprotective parenting may moderate the impact of behavioral inhibition on OC symptoms. The current findings suggest the utility of additional research examining the role of behavioral inhibition in the etiology of OCD.

  2. Hypothermia Inhibits Endothelium-Independent Vascular Contractility via Rho-kinase Inhibition

    PubMed Central

    Chung, Yoon Hee; Oh, Keon Woong; Kim, Sung Tae; Park, Eon Sub; Je, Hyun Dong; Yoon, Hyuk-Jun; Sohn, Uy Dong; Jeong, Ji Hoon; La, Hyen-Oh

    2018-01-01

    The present study was undertaken to investigate the influence of hypothermia on endothelium-independent vascular smooth muscle contractility and to determine the mechanism underlying the relaxation. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Hypothermia significantly inhibited fluoride-, thromboxane A2-, phenylephrine-, and phorbol ester-induced vascular contractions regardless of endothelial nitric oxide synthesis, suggesting that another pathway had a direct effect on vascular smooth muscle. Hypothermia significantly inhibited the fluoride-induced increase in pMYPT1 level and phorbol ester-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxing effect of moderate hypothermia on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activities. PMID:28208012

  3. The spinal inhibition of N-type voltage-gated calcium channels selectively prevents scratching behavior in mice.

    PubMed

    Maciel, I S; Azevedo, V M; Pereira, T C; Bogo, M R; Souza, A H; Gomez, M V; Campos, M M

    2014-09-26

    The present study investigated the effects of pharmacological spinal inhibition of voltage-gated calcium channels (VGCC) in mouse pruritus. The epidural administration of P/Q-type MVIIC or PhTx3.3, L-type verapamil, T-type NNC 55-0396 or R-type SNX-482 VGCC blockers failed to alter the scratching behavior caused by the proteinase-activated receptor 2 (PAR-2) activator trypsin, injected into the mouse nape skin. Otherwise, trypsin-elicited pruritus was markedly reduced by the spinal administration of preferential N-type VGCC inhibitors MVIIA and Phα1β. Time-course experiments revealed that Conus magus-derived toxin MVIIA displayed significant effects when dosed from 1h to 4h before trypsin, while the anti-pruritic effects of Phα1β from Phoneutria nigriventer remained significant for up to 12h. In addition to reducing trypsin-evoked itching, MVIIA or Phα1β also prevented the itching elicited by intradermal (i.d.) injection of SLIGRL-NH2, compound 48/80 or chloroquine, although they did not affect H2O2-induced scratching behavior. Furthermore, the co-administration of MVIIA or Phα1β markedly inhibited the pruritus caused by the spinal injection of gastrin-releasing peptide (GRP), but not morphine. Notably, the epidural administration of MVIIA or Phα1β greatly prevented the chronic pruritus allied to dry skin model. However, either tested toxin failed to alter the edema formation or neutrophil influx caused by trypsin, whereas they significantly reduced the c-Fos activation in laminas I, II and III of the spinal cord. Our data bring novel evidence on itching transmission mechanisms, pointing out the therapeutic relevance of N-type VGCC inhibitors to control refractory pruritus. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. KF19514, a phosphodieterase 4 and 1 inhibitor, inhibits PAF-induced lung inflammatory responses by inhaled administration in guinea pigs.

    PubMed

    Manabe, H; Akuta, K; Okamura, K; Ohmori, K

    1997-12-01

    Phosphodiesterase (PDE) 4 inhibitors are well known for their inhibitory effect on bronchoconstriction and inflammation and may be promising anti-asthma drugs. Platelet-activating factor (PAF) has been proposed as an inflammatory mediator to be relevant to asthma. It causes bronchoconstriction, airway microvascular leakage, inflammatory cell accumulation in the lung and hyperresponsiveness. In this study, we therefore have investigated the anti-asthmatic effects of the inhaled KF19514 [5-phenyl-3'-(3-pyridyl)methyl-3H-imidazo(4,5-c)(1,8) naphthyridin-4(5H)-one], a PDE 4 and 1 inhibitor, on PAF-induced lung inflammatory responses in guinea pigs. The inhaled KF19514 (0.0001-0.01%) significantly inhibited PAF-induced eosinophil and neutrophil accumulation into the airway and hyperresponsiveness in guinea pigs. The IC50 value of KF19514 against eosinophil accumulation was 14.8 microM (0.00063%). Moreover, the effect of KF19514 on the electrical field stimulation-induced bronchial contraction was examined using the main bronchi of guinea pigs in vitro. KF19514 inhibited both cholinergic and tachykininergic contraction and, in particular, produced a potent inhibitory effect on tachykininergic contraction (IC50 = 0.49 microM). The mechanism by which KF19514 inhibited the PAF-induced hyperresponsiveness may in part be the suppression of the tachykinin release. Based on these results, it was demonstrated that the inhaled KF19514 might have a significant potential effect on the inflammatory cell accumulation and hyperresponsiveness induced by PAF.

  5. Inhibiting Autophagy During Interleukin 2 (IL-2) Immunotherapy Promotes Long Term Tumor Regression

    PubMed Central

    Liang, Xiaoyan; De Vera, Michael E.; Buchser, William J.; Romo de Vivar Chavez, Antonio; Loughran, Patricia; Stolz, Donna Beer; Basse, Per; Wang, Tao; Van Houten, Bennett; Zeh, Herbert J.; Lotze, Michael T.

    2012-01-01

    Administration of high dose interleukin 2 (HDIL-2) has durable antitumor effects in 5-10% patients with melanoma and renal cell carcinoma. However, treatment is often limited by side effects, including reversible, multi-organ dysfunction and characterized by a cytokine-induced ‘systemic autophagic syndrome’. Here we hypothesized that the autophagy inhibitor chloroquine (CQ) would enhance IL-2 immunotherapeutic efficacy and limit toxicity. In an advanced murine metastatic liver tumor model, IL-2 inhibited tumor growth in a dose-dependent fashion, and these anti-tumor effects were significantly enhanced upon addition of CQ. The combination of IL-2 with CQ increased long term survival, decreased toxicity associated with vascular leakage, and enhanced immune cell proliferation and infiltration in the liver and spleen. HDIL-2 alone increased serum levels of IFN-γ, IL-6 and IL-18 and also induced autophagy within the liver and translocation of HMGB1 from the nucleus to the cytosol in hepatocytes, effects that were inhibited by combined administration with CQ. In tumor cells, CQ increased autophagic vacuoles and LC3-II levels inhibited oxidative phosphorylation and ATP production and promoted apoptosis, which was associated with increased Annexin V+/PI- cells, cleaved-PARP, cleaved-caspase 3, and cytochrome C release from mitochondria. Taken together, our findings provide a novel clinical strategy to enhance the efficacy of HDIL-2 immunotherapy for cancer patients. PMID:22472122

  6. Dunye Guanxinning Improves Acute Myocardial Ischemia-Reperfusion Injury by Inhibiting Neutrophil Infiltration and Caspase-1 Activity

    PubMed Central

    Zhang, Q. G.; Wang, S. R.; Chen, X. M.; Guo, H. N.

    2018-01-01

    Acute myocardial infarction is the most serious manifestation of cardiovascular disease, and it is a life-threatening condition. Dunye Guanxinning (DG) is a protective traditional Chinese patent herbal medicine with high clinical efficacy and suitable for the treatment of myocardial infarction. However, the mechanism through which it is beneficial is unclear. In this study, we hypothesized that DG improves acute myocardial ischemia-reperfusion injury by inhibiting neutrophil infiltration and caspase-1 activity. We found that DG administration decreased infarct size and cardiomyocyte apoptosis and improved left ventricular ejection fraction, fractional shortening, end-systolic volume index, end-systolic diameter, and carotid arterial blood flow output in rats. DG administration also improved hemorheological parameters, myocardial damage biomarkers, and oxidative stress indexes. The findings showed that DG administration inhibited neutrophil infiltration and reduced the serum interleukin-1 beta (IL-1β) level and myocardial IL-1β maturation. Moreover, DG administration inhibited caspase-1 activity and activated adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in rat hearts. These results suggested that DG administration inhibits inflammasome activity and IL-1β release through the AMPK pathway. Our findings support the clinical efficacy of DG and partially reveal its mechanism, which is beneficial for understanding the therapeutic effects of this protective traditional Chinese patent drug. PMID:29674944

  7. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kaifeng, E-mail: kaifeng_wangdr@sina.com; Fan, Yaohua; Chen, Gongying

    The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway inmore » HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors. -- Highlights: •WAY-600 inhibits HCC cell survival and proliferation in vitro. •WAY-600 activates caspase-dependent apoptosis in HCC cells. •WAY-600 blocks mTORC1/2 activation, but activates MEK-ERK in HCC cells. •MEK-ERK inhibitors or MEK1/2 shRNA enhances WAY-600's cytotoxicity against HCC cells. •MEK-162 co-administration potentiates WAY-600-induced the anti-HepG2 tumor efficacy.« less

  8. Effects of Monoamine Oxidase Inhibition on the Reinforcing Properties of Low-Dose Nicotine.

    PubMed

    Smith, Tracy T; Rupprecht, Laura E; Cwalina, Samantha N; Onimus, Matthew J; Murphy, Sharon E; Donny, Eric C; Sved, Alan F

    2016-08-01

    The Food and Drug Administration (FDA) has the authority to regulate cigarette smoke constituents, and a reduction in nicotine content might benefit public health by reducing the prevalence of smoking. Research suggests that cigarette smoke constituents that inhibit monoamine oxidase (MAO) may increase the reinforcing value of low doses of nicotine. The aim of the present experiments was to further characterize the impact of MAO inhibition on the primary reinforcing and reinforcement enhancing effects of nicotine in rats. In a series of experiments, rats responded for intravenous nicotine infusions or a moderately-reinforcing visual stimulus in daily 1-h sessions. Rats received pre-session injections of known MAO inhibitors. The results show that (1) tranylcypromine (TCP), a known MAO inhibitor, increases sensitivity to the primary reinforcing effects of nicotine, shifting the dose-response curve for nicotine to the left, (2) inhibition of MAO-A, but not MAO-B, increases low-dose nicotine self-administration, (3) partial MAO-A inhibition, to the degree observed in chronic cigarette smokers, also increases low-dose nicotine self-administration, and (4) TCP decreases the threshold nicotine dose required for reinforcement enhancement. The results of the present experiments suggest cigarette smoke constituents that inhibit MAO-A, in the range seen in chronic smokers, are likely to increase the primary reinforcing and reinforcement enhancing effects of low doses of nicotine. If the FDA reduces the nicotine content of cigarettes, then variability in constituents that inhibit MAO-A could impact smoking.

  9. Effect of intraperitoneal and intravenous administration of cholecystokinin-8 and apolipoprotein AIV on intestinal lymphatic CCK-8 and apo AIV concentration

    PubMed Central

    Lo, Chun-Min; Xu, Min; Yang, Qing; Zheng, Shuqin; Carey, Katherine M.; Tubb, Matthew R.; Davidson, W. Sean; Liu, Min; Woods, Stephen C.; Tso, Patrick

    2009-01-01

    CCK and apolipoprotein AIV (apo AIV) are gastrointestinal satiety signals whose synthesis and secretion by the gut are stimulated by fat absorption. Intraperitoneally administered CCK-8 is more potent in suppressing food intake than a similar dose administered intravenously, but the reason for this disparity is unclear. In contrast, both intravenous and intraperitoneally administered apo AIV are equally as potent in inhibiting food intake. When we compared the lymphatic concentration of CCK-8 and apo AIV, we found that neither intraperitoneally nor intravenously administered CCK-8 or apo AIV altered lymphatic flow rate. Interestingly, intraperitoneal administration of CCK-8 produced a significantly higher lymphatic concentration at 15 min than did intravenous administration. Intraperitoneal injection of apo AIV also yielded a higher lymphatic concentration at 30 min than did intravenous administration. Intraperitoneal administration of CCK-8 and apo AIV also resulted in a much longer period of elevated CCK-8 and apo AIV peptide concentration in lymph than intravenous administration. Furthermore, enzymatic activity of dipeptidyl peptidase IV (DPPIV) and aminopeptidase was higher in plasma than in lymph during fasting, and so, satiation peptides, such as CCK-8 and apo AIV in the lymph, are protected from degradation by the significantly lower DPPIV and aminopeptidase activity levels in lymph than in plasma. Therefore, the higher potency of intraperitoneally administered CCK-8 compared with intravenously administered CCK-8 in inhibiting food intake may be explained by both its higher concentration in lymph and the prolonged duration of its presence in the lamina propria. PMID:19020287

  10. Effect of intraperitoneal and intravenous administration of cholecystokinin-8 and apolipoprotein AIV on intestinal lymphatic CCK-8 and apo AIV concentration.

    PubMed

    Lo, Chun-Min; Xu, Min; Yang, Qing; Zheng, Shuqin; Carey, Katherine M; Tubb, Matthew R; Davidson, W Sean; Liu, Min; Woods, Stephen C; Tso, Patrick

    2009-01-01

    CCK and apolipoprotein AIV (apo AIV) are gastrointestinal satiety signals whose synthesis and secretion by the gut are stimulated by fat absorption. Intraperitoneally administered CCK-8 is more potent in suppressing food intake than a similar dose administered intravenously, but the reason for this disparity is unclear. In contrast, both intravenous and intraperitoneally administered apo AIV are equally as potent in inhibiting food intake. When we compared the lymphatic concentration of CCK-8 and apo AIV, we found that neither intraperitoneally nor intravenously administered CCK-8 or apo AIV altered lymphatic flow rate. Interestingly, intraperitoneal administration of CCK-8 produced a significantly higher lymphatic concentration at 15 min than did intravenous administration. Intraperitoneal injection of apo AIV also yielded a higher lymphatic concentration at 30 min than did intravenous administration. Intraperitoneal administration of CCK-8 and apo AIV also resulted in a much longer period of elevated CCK-8 and apo AIV peptide concentration in lymph than intravenous administration. Furthermore, enzymatic activity of dipeptidyl peptidase IV (DPPIV) and aminopeptidase was higher in plasma than in lymph during fasting, and so, satiation peptides, such as CCK-8 and apo AIV in the lymph, are protected from degradation by the significantly lower DPPIV and aminopeptidase activity levels in lymph than in plasma. Therefore, the higher potency of intraperitoneally administered CCK-8 compared with intravenously administered CCK-8 in inhibiting food intake may be explained by both its higher concentration in lymph and the prolonged duration of its presence in the lamina propria.

  11. Inhibition of hemangioma growth using polymer-lipid hybrid nanoparticles for delivery of rapamycin.

    PubMed

    Li, Haitao; Teng, Yunfei; Sun, Jin; Liu, Jianyong

    2017-11-01

    Although infantile hemangiomas is benign, its rapid growth may induce serious complications. However, only one drug Hemangeol™ has been approved by US Food and Drug Administration (FDA) to treat infantile hemangiomas. Thus it is necessary to develop novel alternative drugs to treat infantile hemangiomas. Rapamycin is a well-know potent antiangiogenic agent, whereas the daily oral administration of rapamycin exerts undesired metabolic effects due to its inhibition of mechanistic target of rapamycin (mTOR) which is critical in cell metabolism. We hereby developed rapamycin-loaded polymer-lipid hybrid nanoparticles (Rapamycin-PLNPs) as a local controlled release system to realize local and sustained release of rapamycin, aiming to reduce the side effects and frequency of administration of rapamycin. Rapamycin-PLNPs are of a small size (129.1nm), desired drug encapsulation efficiency (63.7%), and sustained drug release for 5 days. Rapamycin-PLNPs were shown to be able to effectively bind to hemangioma endothelia cells (HemECs), induce significant proliferation inhibition and reduce expression of angiogenesis factors in HemECs. The therapeutic effect of Rapamycin-PLNPs against infantile hemangioma in vivo was superior to rapamycin, as reflected by reduced hemangioma volume, weight and microvessel density. Taken together, Rapamycin-PLNPs represent a very promising local approach in the treatment of infantile hemangiomas. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents

    PubMed Central

    Matsumoto, Misaki; Xie, Weijiao; Inoue, Makoto; Ueda, Hiroshi

    2007-01-01

    Background We have proposed that nerve injury-specific loss of spinal tonic cholinergic inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR) agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well characterized. Results Here, we show that choline acetyltransferase (ChAT) signals were localized not only in outer dorsal horn fibers (lamina I–III) and motor neurons in the spinal cord, but also in the vast majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-induced paw withdrawal (EPW) test, the thresholds for stimulation through C-, Aδ- and Aβ-fibers were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.) induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical, thermal and EPW tests. However, nicotine had no effects in control mice or treated with a mismatch scramble (MS)-ODN in all of these nociception tests. Conclusion These findings suggest that primary afferent cholinergic neurons produce tonic inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine rescues the loss of tonic cholinergic inhibition. PMID:18088441

  13. [Single and combining effects of Calculus Bovis and zolpidem on inhibitive neurotransmitter of rat striatum corpora].

    PubMed

    Liu, Ping; He, Xinrong; Guo, Mei

    2010-04-01

    To investigate the correlation effects between single or combined administration of Calculus Bovis or zolpidem and changes of inhibitive neurotransmitter in rat striatum corpora. Sampling from rat striatum corpora was carried out through microdialysis. The content of two inhibitive neurotransmitters in rat corpus striatum- glycine (Gly) and gama aminobutyric acid (GABA), was determined by HPLC, which involved pre-column derivation with orthophthaladehyde, reversed-phase gradient elution and fluorescence detection. GABA content of rat striatum corpora in Calculus Bovis group was significantly increased compared with saline group (P < 0.01). GABA content of zolpidem group and Calculus Boris plus zolpidem group were increased largely compared with saline group as well (P < 0.05). GABA content of Calculus Bovis group was higher than combination group (P < 0.05). GABA content of zolpidem group was not significantly different from combination group. Gly content of Calculus Bovis or zolpidem group was markedly increased compared with saline group or combination group (P < 0.05). Contents of two inhibitive neurotransmitters in rat striatum corpora were all significantly increased in Calculus Bovis group, zolpidem group and combination group. The magnitude of increase was lower in combination group than in Calculus Bovis group and Zolpidem group, suggesting that Calculus Bovis promoted encephalon inhibition is more powerful than zolpidem. The increase in two inhibitive neurotransmitters did not show reinforcing effect in combination group, suggesting that Calculus Bovis and zolpidem may compete the same receptors. Therefore, combination of Calculus Bovis containing drugs and zolpidem has no clinical significance. Calculus Bovis shouldn't as an aperture-opening drugs be used for resuscitation therapy.

  14. L-Cysteine Administration Attenuates Pancreatic Fibrosis Induced by TNBS in Rats by Inhibiting the Activation of Pancreatic Stellate Cell

    PubMed Central

    Hu, GuoYong; Shen, Jie; Wang, Feng; Xu, Ling; Dai, WeiQi; Xiong, Jie; Ni, JianBo; Guo, ChuanYong; Wan, Rong; Wang, XingPeng

    2012-01-01

    Background and Aims Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs. Methods CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR. Results The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group. Conclusion L

  15. Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    PubMed Central

    Yamada, Akiko; Ishimaru, Naozumi; Arakaki, Rieko; Katunuma, Nobuhiko; Hayashi, Yoshio

    2010-01-01

    Background Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes. PMID:20877570

  16. Bilirubin Inhibits Neointima Formation and Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Peyton, Kelly J.; Shebib, Ahmad R.; Azam, Mohammad A.; Liu, Xiao-ming; Tulis, David A.; Durante, William

    2012-01-01

    Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease. PMID:22470341

  17. Synthetic 8-hydroxydeoxyguanosine inhibited metastasis of pancreatic cancer through concerted inhibitions of ERM and Rho-GTPase.

    PubMed

    Park, Jong-Min; Han, Young-Min; Jeong, Migyeong; Chung, Myung Hee; Kwon, Chang Il; Ko, Kwang Hyun; Hahm, Ki Baik

    2017-09-01

    8-hydroxydeoxyguanosine (8-OHdG) is generated consequent to oxidative stress, but its paradoxical anti-oxidative, anti-inflammatory, and anti-mutagenic effects via Rho-GTPase inhibition were noted in various models of inflammation and cancer. Metastasis occurs through cell detachment, epithelial-mesenchymal transition (EMT), and cell migration; during these processes, changes in cell morphology are initiated through Rho-GTPase-dependent actin cytoskeleton polymerization. In this study, we explored the anti-metastatic mechanisms of 8-OHdG in Panc-1 pancreatic cancer cells. 8-OHdG inhibits cell migration by inactivating ERM and Rho-GTPase proteins, and inhibiting focal adhesion kinase (FAK) and matrix metalloproteinases (MMPs). At 15min, 8-OHdG significantly inactivated ERM (p < 0.05) and led to a significant retardation of wound healing; siERM and H1152 (ROCK inhibitor) had similar effects (p < 0.05). However, FAK inhibitor 14, DPI (NOX inhibitor), and NAC (antioxidant) significantly delayed wound healing without inhibiting ERM or CD44 (p < 0.05). In the experiments on cell migration, siERM, siCD44, DPI, and 8-OHdG significantly inhibited MMPs. 8-OHdG significantly decreased DCF-DA activation in Panc-1 pancreatic cancer cells and down-regulated NOXs (nox-1, nox-2, and nox-3). Finally, all of these anti-migration actions of 8-OHdG resulted in significant inhibition of EMT, as evidenced by the up-regulation of ZO-1 and claudin-1 and down-regulation of vimentin. We found significant inhibition of lung metastasis of Panc-1 cells by 8-OHdG. In conclusion, exogenous 8-OHdG had potent anti-metastasis effects mediated by either ERM or Rho GTPase inhibition in metastasis-prone pancreatic cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis

    PubMed Central

    Henning, Susanne M.; Wang, Piwen; Said, Jonathan; Magyar, Clara; Castor, Brandon; Doan, Ngan; Tosity, Carmen; Moro, Aune; Gao, Kun; Li, Luyi; Heber, David

    2011-01-01

    It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis, and DNA methylation, have not been tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is known to inhibit antioxidative enzymes such as glutathione S-transferase pi (GSTp1) to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor 5-cytosine DNA methyltransferase 1 (DNMT1) mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice. PMID:22405694

  19. [Quantitative Prediction of Drug-Drug Interaction Caused by CYP Inhibition and Induction from In Vivo Data and Its Application in Daily Clinical Practices-Proposal for the Pharmacokinetic Interaction Significance Classification System (PISCS)].

    PubMed

    Ohno, Yoshiyuki

    2018-01-01

     Drug-drug interactions (DDIs) can affect the clearance of various drugs from the body; however, these effects are difficult to sufficiently evaluate in clinical studies. This article outlines our approach to improving methods for evaluating and providing drug information relative to the effects of DDIs. In a previous study, total exposure changes to many substrate drugs of CYP caused by the co-administration of inhibitor or inducer drugs were successfully predicted using in vivo data. There are two parameters for the prediction: the contribution ratio of the enzyme to oral clearance for substrates (CR), and either the inhibition ratio for inhibitors (IR) or the increase in clearance of substrates produced by induction (IC). To apply these predictions in daily pharmacotherapy, the clinical significance of any pharmacokinetic changes must be carefully evaluated. We constructed a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered in a systematic manner, according to pharmacokinetic changes. The PISCS suggests that many current 'alert' classifications are potentially inappropriate, especially for drug combinations in which pharmacokinetics have not yet been evaluated. It is expected that PISCS would contribute to constructing a reliable system to alert pharmacists, physicians and consumers of a broad range of pharmacokinetic DDIs in order to more safely manage daily clinical practices.

  20. Fenobam Sulfate Inhibits Cocaine-Taking and Cocaine-Seeking Behavior in Rats: Implications for Addiction Treatment in Humans

    PubMed Central

    Keck, Thomas M.; Yang, Hong-Ju; Bi, Guo-Hua; Huang, Yong; Zhang, Hai-Ying; Srivastava, Ratika; Gardner, Eliot L.; Newman, Amy Hauck; Xi, Zheng-Xiong

    2014-01-01

    Rationale The metabotropic glutamate receptor subtype 5 (mGluR5) has been reported to be critically involved in drug reward and addiction. Because the mGluR5 negative allosteric modulators (NAMs) MPEP and MTEP significantly inhibit addictive-like behaviors of cocaine and other drugs of abuse in experimental animals, it has been suggested that mGluR5 NAMs may have translational potential for treatment of addiction in humans. However, neither MPEP nor MTEP have been evaluated in humans due to their off-target actions and rapid metabolism. Objectives Herein, we evaluate a potential candidate for translational addiction research: a new sulfate salt formulation of fenobam, a selective mGluR5 NAM that has been investigated in humans. Results In rats, fenobam sulfate had superior pharmacokinetics compared to the free base, with improved Cmax (maximal plasma concentration) and longer half life. Oral (p.o.) administration of fenobam sulfate (30 or 60 mg/kg) inhibited intravenous cocaine self-administration, cocaine-induced reinstatement of drug-seeking behavior and cocaine-associated cue-induced cocaine-seeking behavior in rats. Fenobam sulfate also inhibited oral sucrose self-administration and sucrose-induced reinstatement of sucrose-seeking behavior, but had no effect on locomotion. Conclusions This study provides additional support for the role of mGluR5 signaling in cocaine addiction and suggests that fenobam sulfate may have translational potential in medication development for the treatment of cocaine addiction in humans. PMID:23615919

  1. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer.

    PubMed

    Cedó, Lídia; García-León, Annabel; Baila-Rueda, Lucía; Santos, David; Grijalva, Victor; Martínez-Cignoni, Melanie Raquel; Carbó, José M; Metso, Jari; López-Vilaró, Laura; Zorzano, Antonio; Valledor, Annabel F; Cenarro, Ana; Jauhiainen, Matti; Lerma, Enrique; Fogelman, Alan M; Reddy, Srinivasa T; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-11-03

    Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification.

  2. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer

    PubMed Central

    Cedó, Lídia; García-León, Annabel; Baila-Rueda, Lucía; Santos, David; Grijalva, Victor; Martínez-Cignoni, Melanie Raquel; Carbó, José M.; Metso, Jari; López-Vilaró, Laura; Zorzano, Antonio; Valledor, Annabel F.; Cenarro, Ana; Jauhiainen, Matti; Lerma, Enrique; Fogelman, Alan M.; Reddy, Srinivasa T.; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-01-01

    Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification. PMID:27808249

  3. Methylphenidate and Cocaine Self-Administration Produce Distinct Dopamine Terminal Alterations

    PubMed Central

    Calipari, Erin S.; Ferris, Mark J.; Melchior, James R.; Bermejo, Kristel; Salahpour, Ali; Roberts, David C. S.; Jones, Sara R.

    2012-01-01

    Methylphenidate (MPH) is a commonly abused psychostimulant prescribed for the treatment of attention deficit hyperactivity disorder. MPH has a mechanism of action similar to cocaine (COC) and is commonly characterized as a dopamine transporter (DAT) blocker. While there has been extensive work aimed at understanding dopamine (DA) nerve terminal changes following COC self-administration, very little is known about the effects of MPH self-administration on the DA system. We used fast scan cyclic voltammetry in nucleus accumbens core slices from animals with a five-day self-administration history of 40 injections/day of either MPH (0.56 mg/kg) or COC (1.5 mg/kg) to explore alterations in baseline DA release and uptake kinetics as well as alterations in the interaction of each compound with the DAT. Although MPH and COC have similar behavioral effects, the consequences of self-administration on DA system parameters were found to be divergent. We show that COC self-administration reduced DAT levels and maximal rates of DA uptake, as well as reducing electrically stimulated release, suggesting decreased DA terminal function. In contrast, MPH self-administration increased DAT levels, DA uptake rates, and DA release, suggesting enhanced terminal function, which was supported by findings of increased metabolite/DA tissue content ratios. Tyrosine hydroxylase mRNA, protein and phosphorylation levels were also assessed in both groups. Additionally, COC self-administration reduced COC-induced DAT inhibition, while MPH self-administration increased MPH-induced DAT inhibition, suggesting opposite pharmacodynamic effects of these two drugs. These findings suggest that the factors governing DA system adaptations are more complicated than simple DA uptake blockade. PMID:22458761

  4. Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingwei; Li, Jie; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou

    Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) −5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNAmore » and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment. - Highlights: • Penh, airway remodeling and the gene expression and protein of TRPC3 are increased in OVA-sensitized mice. • Inhibition of TRPC3 suppresses the OVA-sensitized mice Penh and airway remodeling. • Inhibition of TRPC3 decreases OVA-sensitized mice ASMC proliferation and migration.« less

  5. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis

    PubMed Central

    Huang, Wei; Booth, David M; Cane, Matthew C; Chvanov, Michael; Javed, Muhammad A; Elliott, Victoria L; Armstrong, Jane A; Dingsdale, Hayley; Cash, Nicole; Li, Yan; Greenhalf, William; Mukherjee, Rajarshi; Kaphalia, Bhupendra S; Jaffar, Mohammed; Petersen, Ole H; Tepikin, Alexei V; Sutton, Robert; Criddle, David N

    2014-01-01

    Objective Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Design Intracellular calcium ([Ca2+]C), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Results Inhibition of OME with 4-MP converted predominantly transient [Ca2+]C rises induced by low ethanol/POA combination to sustained elevations, with concurrent mitochondrial depolarisation, fall of NAD(P)H and cellular necrosis in vitro. All effects were prevented by 3-benzyl-6-chloro-2-pyrone (3-BCP), a CEL inhibitor. 3-BCP also significantly inhibited rises of pancreatic FAEE in vivo and ameliorated acute pancreatic damage and inflammation induced by administration of ethanol and POA to mice. Conclusions A combination of low ethanol and fatty acid that did not exert deleterious effects per se became toxic when oxidative metabolism was inhibited. The in vitro and in vivo damage was markedly inhibited by blockade of CEL, indicating the potential for development of specific therapy for treatment of alcoholic AP via inhibition of FAEE generation. PMID:24162590

  6. Inhibition of Pro-inflammatory and Anti-apoptotic Biomarkers during Experimental Oral Cancer Chemoprevention by Dietary Black Raspberries.

    PubMed

    Oghumu, Steve; Casto, Bruce C; Ahn-Jarvis, Jennifer; Weghorst, Logan C; Maloney, Jim; Geuy, Paul; Horvath, Kyle Z; Bollinger, Claire E; Warner, Blake M; Summersgill, Kurt F; Weghorst, Christopher M; Knobloch, Thomas J

    2017-01-01

    Oral cancer continues to be a significant public health problem worldwide. Recently conducted clinical trials demonstrate the ability of black raspberries (BRBs) to modulate biomarkers of molecular efficacy that supports a chemopreventive strategy against oral cancer. However, it is essential that a preclinical animal model of black raspberry (BRB) chemoprevention which recapitulates human oral carcinogenesis be developed, so that we can validate biomarkers and evaluate potential mechanisms of action. We therefore established the ability of BRBs to inhibit oral lesion formation in a carcinogen-induced rat oral cancer model and examined potential mechanisms. F344 rats were administered 4-nitroquinoline 1-oxide (4NQO) (20 µg/ml) in drinking water for 14 weeks followed by regular drinking water for 6 weeks. At week 14, rats were fed a diet containing either 5 or 10% BRB, or 0.4% ellagic acid (EA), a BRB phytochemical. Dietary administration of 5 and 10% BRB reduced oral lesion incidence and multiplicity by 39.3 and 28.6%, respectively. Histopathological analyses demonstrate the ability of BRBs and, to a lesser extent EA, to inhibit the progression of oral cancer. Oral lesion inhibition by BRBs was associated with a reduction in the mRNA expression of pro-inflammatory biomarkers Cxcl1, Mif , and Nfe2l2 as well as the anti-apoptotic and cell cycle associated markers Birc5, Aurka, Ccna1 , and Ccna2 . Cellular proliferation (Ki-67 staining) in tongue lesions was inhibited by BRBs and EA. Our study demonstrates that, in the rat 4NQO oral cancer model, dietary administration of BRBs inhibits oral carcinogenesis via inhibition of pro-inflammatory and anti-apoptotic pathways.

  7. Apatinib inhibits VEGFR-2 and angiogenesis in an in vivo murine model of nasopharyngeal carcinoma.

    PubMed

    Peng, Qiu-Xia; Han, Yun-Wei; Zhang, Yan-Ling; Hu, Jie; Fan, Juan; Fu, Shao-Zhi; Xu, Shan; Wan, Qiang

    2017-08-08

    Angiogenesis is initiated by the activation of the vascular epidermal growth factor receptor-2 (VEGFR-2) by the vascular epidermal growth factor (VEGF) ligand. Overexpression of VEGFR-2 increases the growth of nasopharyngeal carcinomas (NPC). Apatinib (YN968D1) is a highly-selective inhibitor of VEGFR-2, but its effects on NPC have not been hitherto investigated. In the present study, CNE-2 NPC cells were xenografted into 132 nude mice, which were treated with one of 6 drug regimens of apatinib administered alone or in combination with cisplatin (DDP). The impact of treatment regimens on the growth, microvascularization, apoptosis, and metabolic response of tumors, as well as mouse survival was determined by histopathology, immunohistochemistry (VEGFR-2 and CD31), terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), micro 18F-FDG PET/CT imaging and survival curves. Administration of apatinib alone inhibited tumor growth, reduced microvascular density, and facilitated the apoptosis of tumors. Tumors treated simultaneously with apatinib and cisplatin exhibited significantly-increased inhibition of tumor growth, prolonged survival time, decreased expression of VEGFR-2, reduced microvascular density, and frequency of apoptosis over standalone and sequential administration therapy. Tumors treated simultaneously with apatinib and cisplatin had the lowest uptake of FDG. Taken together, the simultaneous administration of apatinib and cisplatin improves the therapeutic efficacy over standalone treatments, which also led to improved efficacy over sequential administration regimens. VEGFR-2 is an important predictive marker for efficacy of apatinib treatment of NPC.

  8. GPM Timeline Inhibits For IT Processing

    NASA Technical Reports Server (NTRS)

    Dion, Shirley K.

    2014-01-01

    The Safety Inhibit Timeline Tool was created as one approach to capturing and understanding inhibits and controls from IT through launch. Global Precipitation Measurement (GPM) Mission, which launched from Japan in March 2014, was a joint mission under a partnership between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM was one of the first NASA Goddard in-house programs that extensively used software controls. Using this tool during the GPM buildup allowed a thorough review of inhibit and safety critical software design for hazardous subsystems such as the high gain antenna boom, solar array, and instrument deployments, transmitter turn-on, propulsion system release, and instrument radar turn-on. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As a result of this process, a new tool safety inhibit timeline was created for management of inhibits and their controls during spacecraft buildup and testing during IT at GSFC and at the launch range in Japan. The Safety Inhibit Timeline Tool was a pathfinder approach for reviewing software that controls the electrical inhibits. The Safety Inhibit Timeline Tool strengthens the Safety Analysts understanding of the removal of inhibits during the IT process with safety critical software. With this tool, the Safety Analyst can confirm proper safe configuration of a spacecraft during each IT test, track inhibit and software configuration changes, and assess software criticality. In addition to understanding inhibits and controls during IT, the tool allows the Safety Analyst to better communicate to engineers and management the changes in inhibit states with each phase of hardware and software testing and the impact of safety risks. Lessons learned from participating in the GPM campaign at NASA and JAXA will be discussed during this session.

  9. Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma.

    PubMed

    Tatsumi, T; Takehara, T; Kanto, T; Miyagi, T; Kuzushita, N; Sugimoto, Y; Jinushi, M; Kasahara, A; Sasaki, Y; Hori, M; Hayashi, N

    2001-10-15

    Dendritic cells (DCs) are potent antigen-presenting cells that are capable of priming systemic antitumor immune response. Here, we evaluated the combined effectiveness of tumor lysate-pulsed DC immunization and interleukin (IL)-12 administration on the induction of antitumor immunity in a mouse hepatocellular carcinoma (HCC) model. Mouse DCs were pulsed with lysate of BNL 1ME A.7R.1 (BNL), a BALB/c-derived HCC cell line, and then injected into syngeneic mice in combination with systemic administration of IL-12. Lymphocytes from mice treated with BNL lysate-pulsed DCs and IL-12 showed stronger cytolytic activity and produced higher amounts of IFN-gamma than those from mice treated with BNL lysate-pulsed DCs alone. Although immunization with BNL lysate-pulsed DCs alone did not lead to complete regression of established tumors, it significantly inhibited tumor growth compared with vehicle injection. Importantly, the combined therapy of BNL lysate-pulsed DCs and IL-12 resulted in tumor rejection or significant inhibition of tumor growth compared with mice treated with BNL lysate-pulsed DCs alone. In vivo lymphocyte depletion experiments demonstrated that this combination was dependent on both CD8+ and CD4+ T cells, but not natural killer cells. These results demonstrated that IL-12 administration enhanced the therapeutic effect of immunization of tumor lysate-pulsed DCs against HCC in mice. This combination of IL-12 and DCs may be useful for suppressing the growth of residual tumor after primary therapy of human HCC.

  10. Vernonia cinerea Less. inhibits tumor cell invasion and pulmonary metastasis in C57BL/6 mice.

    PubMed

    Pratheeshkumar, Poyil; Kuttan, Girija

    2011-06-01

    The effect of Vernonia cinerea Less. extract on the inhibition of lung metastasis induced by B16F-10 melanoma cells was studied in C57BL/6 mice. V cinerea extract significantly (P < .001) inhibited lung tumor formation (78.8%) and significantly increased the life span (72.5%). Moreover, lung collagen hydroxyproline, uronic acid, and hexosamine and also serum sialic acid, γ-glutamyltransferase (GGT), and vascular endothelial growth factor (VEGF) levels were found to be significantly (P < .001) lower in treated animals compared with untreated controls. Histopathological analysis of the lung tissues also correlated with these findings. V cinerea treatment significantly inhibited the invasion of B16F-10 melanoma cells across the collagen matrix of the Boyden chamber. V cinerea also inhibited the migration of B16F-10 melanoma cells across a polycarbonate filter in vitro. It downregulated the production and expression of proinflammatory cytokines such as TNF (tumor necrosis factor)-α, IL (interleukin)-1β, IL-6, and GM-CSF (granulocyte monocyte colony-stimulating factor). V cinerea extract administration could suppress or downregulate the expression of matrix metalloproteinase (MMP)-2, MMP-9, lysyl oxidase, prolyl hydroxylase, K-ras, extracellular signal-regulated kinase (ERK)-1, ERK-2, and VEGF and also upregulate the expression of nm-23, tissue inhibitor of metalloproteinase (TIMP-1), and TIMP-2 in the lung tissue of metastasis-induced animals. It also inhibited the protein expression of MMP-2 and MMP-9 in gelatin zymographic analysis of B16F-10 cells. These results indicate that V cinerea could inhibit the metastatic progression of B16F-10 melanoma cells in C57BL/6 mice by regulating MMPs, VEGF, prolyl hydroxylase, lysyl oxidase, ERK-1, ERK-2, TIMPs, nm23, and proinflammatory cytokine gene expression in metastatic lung tissue.

  11. Effects of single cortisol administrations on human affect reviewed: Coping with stress through adaptive regulation of automatic cognitive processing.

    PubMed

    Putman, Peter; Roelofs, Karin

    2011-05-01

    The human stress hormone cortisol may facilitate effective coping after psychological stress. In apparent agreement, administration of cortisol has been demonstrated to reduce fear in response to stressors. For anxious patients with phobias or posttraumatic stress disorder this has been ascribed to hypothetical inhibition of retrieval of traumatic memories. However, such stress-protective effects may also work via adaptive regulation of early cognitive processing of threatening information from the environment. This paper selectively reviews the available literature on effects of single cortisol administrations on affect and early cognitive processing of affectively significant information. The concluded working hypothesis is that immediate effects of high concentration of cortisol may facilitate stress-coping via inhibition of automatic processing of goal-irrelevant threatening information and through increased automatic approach-avoidance responses in early emotional processing. Limitations in the existing literature and suggestions for future directions are briefly discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Continues administration of Nano-PSO significantly increased survival of genetic CJD mice.

    PubMed

    Binyamin, Orli; Keller, Guy; Frid, Kati; Larush, Liraz; Magdassi, Shlomo; Gabizon, Ruth

    2017-12-01

    We have shown previously that Nano-PSO, a nanodroplet formulation of pomegranate seed oil, delayed progression of neurodegeneration signs when administered for a designated period of time to TgMHu2ME199K mice, modeling for genetic prion disease. In the present work, we treated these mice with a self-emulsion formulation of Nano-PSO or a parallel Soybean oil formulation from their day of birth until a terminal disease stage. We found that long term Nano-PSO administration resulted in increased survival of TgMHu2ME199K lines by several months. Interestingly, initiation of treatment at day 1 had no clinical advantage over initiation at day 70, however cessation of treatment at 9months of age resulted in the rapid loss of the beneficial clinical effect. Pathological studies revealed that treatment with Nano-PSO resulted in the reduction of GAG accumulation and lipid oxidation, indicating a strong neuroprotective effect. Contrarily, the clinical effect of Nano-PSO did not correlate with reduction in the levels of disease related PrP, the main prion marker. We conclude that long term administration of Nano-PSO is safe and may be effective in the prevention/delay of onset of neurodegenerative conditions such as genetic CJD. Copyright © 2017. Published by Elsevier Inc.

  13. Inhibition of PDE4B suppresses inflammation by increasing expression of the deubiquitinase CYLD

    PubMed Central

    Komatsu, Kensei; Lee, Ji-Yun; Miyata, Masanori; Hyang Lim, Jae; Jono, Hirofumi; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Kai, Hirofumi; Li, Jian-Dong

    2013-01-01

    The deubiquitinase CYLD acts as a key negative regulator to tightly control overactive inflammation. Most anti-inflammatory strategies have focused on directly targeting the positive regulator, which often results in significant side effects such as suppression of the host defence response. Here, we show that inhibition of phosphodiesterase 4B (PDE4B) markedly enhances upregulation of CYLD expression in response to bacteria, thereby suggesting that PDE4B acts as a negative regulator for CYLD. Interestingly, in Cyld-deficient mice, inhibition of PDE4B no longer suppresses inflammation. Moreover, PDE4B negatively regulates CYLD via specific activation of JNK2 but not JNK1. Importantly, ototopical post-inoculation administration of a PDE4 inhibitor suppresses inflammation in this animal model, thus demonstrating the therapeutic potential of targeting PDE4. These studies provide insights into how inflammation is tightly regulated via the inhibition of its negative regulator and may also lead to the development of new anti-inflammatory therapeutics that upregulate CYLD expression. PMID:23575688

  14. PPARδ inhibits UVB-induced secretion of MMP-1 through MKP-7-mediated suppression of JNK signaling.

    PubMed

    Ham, Sun A; Kang, Eun S; Lee, Hanna; Hwang, Jung S; Yoo, Taesik; Paek, Kyung S; Park, Chankyu; Kim, Jin-Hoi; Lim, Dae-Seog; Seo, Han G

    2013-11-01

    In the present study, we investigated the role of peroxisome proliferator-activated receptor (PPAR) δ in modulating matrix-degrading metalloproteinases and other mechanisms underlying photoaging processes in the skin. In human dermal fibroblasts (HDFs), activation of PPARδ by its specific ligand GW501516 markedly attenuated UVB-induced secretion of matrix metalloproteinase (MMP)-1, concomitant with decreased generation of reactive oxygen species. These effects were significantly reduced in the presence of PPARδ small interfering RNA and GSK0660. Furthermore, c-Jun N-terminal kinase (JNK), but not p38 or extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-1 secretion in HDFs exposed to UVB. PPARδ-mediated messenger RNA stabilization of mitogen-activated protein kinase phosphatase (MKP)-7 was responsible for the GW501516-mediated inhibition of JNK signaling. Inhibition of UVB-induced secretion of MMP-1 by PPARδ was associated with the restoration of types I and III collagen to levels approaching those in cells not exposed to UVB. Finally, in HR-1 hairless mice exposed to UVB, administration of GW501516 significantly reduced wrinkle formation and skin thickness, downregulated MMP-1 and JNK phosphorylation, and restored the levels of MKP-7, types I and III collagen. These results suggest that PPARδ-mediated inhibition of MMP-1 secretion prevents some effects of photoaging and maintains the integrity of skin by inhibiting the degradation of the collagenous extracellular matrix.

  15. Local subcutaneous injection of chlorogenic acid inhibits the nociceptive trigeminal spinal nucleus caudalis neurons in rats.

    PubMed

    Kakita, Kaede; Tsubouchi, Hirona; Adachi, Mayu; Takehana, Shiori; Shimazu, Yoshihito; Takeda, Mamoru

    2017-11-29

    Acute administration of chlorogenic acid (CGA) in vitro was recently shown to modulate potassium channel conductance and acid-sensing ion channels (ASICs) in the primary sensory neurons; however, in vivo peripheral effects of CGA on the nociceptive mechanical stimulation of trigeminal neuronal activity remains to be determined. The present study investigated whether local administration of CGA in vivo attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis neuronal (SpVc) activity in rats. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuronal activity elicited by non-noxious and noxious orofacial mechanical stimulation in pentobarbital anesthetized rats. The mean number of SpVc WDR neuronal firings responding to both non-noxious and noxious mechanical stimuli were significantly and dose-dependently inhibited by local subcutaneous administration of CGA (0.1-10mM), with the maximal inhibition of discharge frequency revealed within 10min and reversed after approximately 30min. The mean frequency of SpVc neuronal discharge inhibition by CGA was comparable to that by a local anesthetic, the sodium channel blocker, 1% lidocaine. These results suggest that local CGA injection into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via the activation of voltage-gated potassium channels and modulation of ASICs in the nociceptive nerve terminal of trigeminal ganglion neurons. Therefore, local injection of CGA could contribute to local anesthetic agents for the treatment of trigeminal nociceptive pain. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  16. Effects of nifedipine on the pharmacokinetics of repaglinide in rats: possible role of CYP3A4 and P-glycoprotein inhibition by nifedipine.

    PubMed

    Choi, Jin-Seok; Choi, In; Choi, Dong-Hyun

    2013-01-01

    The aim of this study was to investigate the effects of nifedipine on the bioavailability and pharmacokinetics of repaglinide in rats. The effect of nifedipine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was evaluated. The pharmacokinetic parameters of repaglinide and blood glucose concentrations were also determined in rats after oral (0.5 mg/kg) and intravenous (0.2 mg/kg) administration of repaglinide to rats in the presence and absence of nifedipine (1 and 3 mg/kg). Administration of nifedipine resulted in inhibition CYP3A4 activity with an IC50 value of 7.8 μM, and nifedipine significantly inhibited P-gp activity in a concentration-dependent manner. Compared to the oral control group, nifedipine significantly increased the area under the plasma concentration-time curve (AUC0-∞) and the peak plasma concentration (Cmax) of repaglinide by 49.3 and 25.5%, respectively. Nifedipine significantly decreased the total body clearance (CL/F) of repaglinide by 22.0% compared to the oral control group. Nifedipine also increased the absolute bioavailability (AB) of repaglinide by 50.0% compared to the oral control group (33.6%). In addition, the relative bioavailability (RB) of repaglinide was 1.16- to 1.49-fold greater than that of the control group. Compared to the intravenous control, nifedipine significantly increased AUC0-∞ of repaglinide. Blood glucose concentrations had significant differences compared to the oral control groups. Nifedipine enhanced the oral bioavailability of repaglinide, which may be mainly attributable to inhibition of CYP3A4-mediated metabolism of repaglinide in the small intestine and/or in the liver and to inhibition of the P-gp efflux transporter in the small intestine and/or reduction of total body clearance by nifedipine. The current study has raised awareness of potential drug interactions by concomitant use of repaglinide with nifedipine.

  17. Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis

    PubMed Central

    2014-01-01

    Background Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice. Methods Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated. Results Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs

  18. MGMT Inhibition Restores ERα Functional Sensitivity to Antiestrogen Therapy

    PubMed Central

    Bobustuc, George C; Smith, Joshua S; Maddipatla, Sreeram; Jeudy, Sheila; Limaye, Arati; Isley, Beth; Caparas, Maria-Lourdes M; Constantino, Susan M; Shah, Nikita; Baker, Cheryl H; Srivenugopal, Kalkunte S; Baidas, Said; Konduri, Santhi D

    2012-01-01

    Antiestrogen therapy resistance remains a huge stumbling block in the treatment of breast cancer. We have found significant elevation of O6 methylguanine DNA methyl transferase (MGMT) expression in a small sample of consecutive patients who have failed tamoxifen treatment. Here, we show that tamoxifen resistance is accompanied by upregulation of MGMT. Further we show that administration of the MGMT inhibitor, O6-benzylguanine (BG), at nontoxic doses, leads to restoration of a favorable estrogen receptor alpha (ERα) phosphorylation phenotype (high p-ERα Ser167/low p-ERα Ser118), which has been reported to correlate with sensitivity to endocrine therapy and improved survival. We also show BG to be a dual inhibitor of MGMT and ERα. In tamoxifen-resistant breast cancer cells, BG alone or in combination with antiestrogen (tamoxifen [TAM]/ICI 182,780 [fulvestrant, Faslodex]) therapy enhances p53 upregulated modulator of apoptosis (PUMA) expression, cytochrome C release and poly (ADP-ribose) polymerase (PARP) cleavage, all indicative of apoptosis. In addition, BG increases the expression of p21cip1/waf1. We also show that BG, alone or in combination therapy, curtails the growth of tamoxifen-resistant breast cancer in vitro and in vivo. In tamoxifen-resistant MCF7 breast cancer xenografts, BG alone or in combination treatment causes significant delay in tumor growth. Immunohistochemistry confirms that BG increases p21cip1/waf1 and p-ERα Ser167 expression and inhibits MGMT, ERα, p-ERα Ser118 and ki-67 expression. Collectively, our results suggest that MGMT inhibition leads to growth inhibition of tamoxifen-resistant breast cancer in vitro and in vivo and resensitizes tamoxifen-resistant breast cancer cells to antiestrogen therapy. These findings suggest that MGMT inhibition may provide a novel therapeutic strategy for overcoming antiestrogen resistance. PMID:22549111

  19. 4-Methoxylonchocarpin attenuates inflammation by inhibiting lipopolysaccharide binding to Toll-like receptor of macrophages and M1 macrophage polarization.

    PubMed

    Jang, Hyo-Min; Kang, Geum-Dan; Van Le, Thi Kim; Lim, Su-Min; Jang, Dae-Sik; Kim, Dong-Hyun

    2017-04-01

    The roots of Abrus precatorius (AP, Fabaceae) have traditionally been used in Vietnam and China for the treatment of inflammatory diseases such as stomatitis, asthma, bronchitis, and hepatitis. Therefore, in this study, we isolated 4-methoxylonchocarpin (ML), an anti-inflammatory compound present in AP, and studied its anti-inflammatory effects in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. In lipopolysaccharide (LPS)-stimulated macrophages, ML was found to inhibit nuclear factor (NF)-κB activation and tumor necrosis factor (TNF) and interleukin (IL)-6 expression by inhibiting LPS binding to Toll-like receptor 4 (TLR4) in vitro. Oral administration of ML in mice with TNBS-induced colitis suppressed colon shortening and colonic myeloperoxidase activity. ML treatment significantly inhibited the activation of nuclear factor (NF)-κB and phosphorylation of transforming growth factor β-activated kinase 1 in the colon. Treatment with ML also inhibited TNBS-induced expression of IL-1β, IL-17A, and TNF. While ML reduced the TNBS-induced expression of M1 macrophage markers such as arginase-2 and TNF, it was found to increase the expression of M2 macrophage markers such as arginase-1 and IL-10. In conclusion, oral administration of ML attenuated colitis in mice by inhibiting the binding of LPS to TLR4 on immune cells and increasing the polarization of M1 macrophages to M2 macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N{sup o}mega-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure andmore » would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to

  1. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis.

    PubMed

    Rankin, Andrew L; Seth, Nilufer; Keegan, Sean; Andreyeva, Tatyana; Cook, Tim A; Edmonds, Jason; Mathialagan, Nagappan; Benson, Micah J; Syed, Jameel; Zhan, Yutian; Benoit, Stephen E; Miyashiro, Joy S; Wood, Nancy; Mohan, Shashi; Peeva, Elena; Ramaiah, Shashi K; Messing, Dean; Homer, Bruce L; Dunussi-Joannopoulos, Kyri; Nickerson-Nutter, Cheryl L; Schnute, Mark E; Douhan, John

    2013-11-01

    Autoantibody production and immune complex deposition within the kidney promote renal disease in patients with lupus nephritis. Thus, therapeutics that inhibit these pathways may be efficacious in the treatment of systemic lupus erythematosus. Bruton's tyrosine kinase (BTK) is a critical signaling component of both BCR and FcR signaling. We sought to assess the efficacy of inhibiting BTK in the development of lupus-like disease, and in this article describe (R)-5-amino-1-(1-cyanopiperidin-3-yl)-3-(4-[2,4-difluorophenoxy]phenyl)-1H-pyrazole-4-carboxamide (PF-06250112), a novel highly selective and potent BTK inhibitor. We demonstrate in vitro that PF-06250112 inhibits both BCR-mediated signaling and proliferation, as well as FcR-mediated activation. To assess the therapeutic impact of BTK inhibition, we treated aged NZBxW_F1 mice with PF-06250112 and demonstrate that PF-06250112 significantly limits the spontaneous accumulation of splenic germinal center B cells and plasma cells. Correspondingly, anti-dsDNA and autoantibody levels were reduced in a dose-dependent manner. Moreover, administration of PF-06250112 prevented the development of proteinuria and improved glomerular pathology scores in all treatment groups. Strikingly, this therapeutic effect could occur with only a modest reduction observed in anti-dsDNA titers, implying a critical role for BTK signaling in disease pathogenesis beyond inhibition of autoantibody production. We subsequently demonstrate that PF-06250112 prevents proteinuria in an FcR-dependent, Ab-mediated model of glomerulonephritis. Importantly, these results highlight that BTK inhibition potently limits the development of glomerulonephritis by impacting both cell- and effector molecule-mediated pathways. These data provide support for evaluating the efficacy of BTK inhibition in systemic lupus erythematosus patients.

  2. Administration of riluzole to the basolateral amygdala facilitates fear extinction in rats.

    PubMed

    Sugiyama, Azusa; Yamada, Misa; Saitoh, Akiyoshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2018-01-15

    A general understanding exists that inhibition of glutamatergic neurotransmission in the basolateral amygdala (BLA) impairs fear extinction in rodents. Surprisingly, we recently found that systemic administration of riluzole, which has been shown to inhibit the glutamatergic system, facilitates extinction learning in rats with a preconditioned contextual fear response. However, the mechanisms underlying this paradoxical effect of riluzole remain unclear. In this study, adult male Wistar rats were bilaterally cannulated in the BLA to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine-binding region of the N-methyl-d-aspartate (NMDA) receptor. In this study, intra-BLA administration of either riluzole or d-cycloserine facilitated extinction learning of contextual fear in conditioned rats. In addition, both riluzole and d-cycloserine enhanced the acquisition of recognition memory in the same model. However, intra-BLA injections of riluzole, but not d-cycloserine, had a potent anxiolytic-like effect when investigated using an elevated plus-maze test. Our findings suggest that riluzole-induced facilitation of extinction learning in rats with a preconditioned contextual fear reflects an indirect effect, resulting from the intra-BLA administration of the drug, and might not be directly related to inhibition of glutamatergic signaling. Further research is needed to clarify the mechanisms underlying the paradoxical effect of riluzole on fear extinction learning observed in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat.

    PubMed

    Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao

    2017-10-01

    We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Chronic Administration of a Combination of Six Herbs Inhibits the Progression of Hyperglycemia and Decreases Serum Lipids and Aspartate Amino Transferase Activity in Diabetic Rats

    PubMed Central

    Shafiee-Nick, Reza; Vafaee Bagheri, Farzaneh; Rakhshandeh, Hassan

    2012-01-01

    The effects of a polyherbal compound, containing six plants (Allium sativum, Cinnamomum zeylanicum, Nigella sativa, Punica granatum, Salvia officinalis and Teucrium polium) were tested on biochemical parameters in streptozotocin-induced diabetic rats. Streptozotocin caused an approximately 3-fold increase in fasting blood sugar level after 2 days. The diabetic control rats showed further increase in blood glucose after 30 days (384 ± 25 mg/dl in day 30 versus 280 ± 12 mg/dl in day 2, P < 0.001). Administration of the compound blocked the increase of blood glucose (272 ± 7 and 269 ± 48 mg/dl at day 2 and day 30, respectively). Also, there was significant difference in the level of triglyceride (60 ± 9 versus 158 ± 37 mg/dl, P < 0.01), total cholesterol (55 ± 2 versus 97 ± 11 mg/dl, P < 0.01) and aspartate amino transferase activity (75 ± 12 versus 129 ± 18 U/L, P < 0.05) between treated rats and diabetic control group. In conclusion, the MSEC inhibited the progression of hyperglycemia and decreased serum lipids and hepatic enzyme activity in diabetic rats. Therefore, it has the potential to be used as a natural product for the management of diabetes. PMID:23304131

  5. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging.

    PubMed

    Kim, Hyun Mee; Lee, Dong Eun; Park, Soo Dong; Kim, Yong-Tae; Kim, Yu Jin; Jeong, Ji Woong; Jang, Sung Sik; Ahn, Young-Tae; Sim, Jae-Hun; Huh, Chul-Sung; Chung, Dae Kyun; Lee, Jung-Hee

    2014-11-28

    Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVBinduced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.

  6. Smad4 is required to inhibit osteoclastogenesis and maintain bone mass.

    PubMed

    Morita, Mayu; Yoshida, Shigeyuki; Iwasaki, Ryotaro; Yasui, Tetsuro; Sato, Yuiko; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Miyamoto, Kana; Takami, Masamichi; Ozato, Keiko; Deng, Chu-Xia; Aburatani, Hiroyuki; Tanaka, Sakae; Yoshimura, Akihiko; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi

    2016-10-12

    Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFβs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFβ1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFβ1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFβ1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFβ1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption.

  7. Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux

    PubMed Central

    Wang, Xin-Yu; Yang, Heng; Wang, Min-Ge; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2017-01-01

    Autophagy has an important renoprotective function and we recently found that autophagy inhibition is involved in cadmium (Cd)-induced nephrotoxicity. Here, we aimed to investigate the protective effect of trehalose (Tre), a novel autophagy activator, against Cd-induced cytotoxicity in primary rat proximal tubular (rPT) cells. First, data showed that Tre treatment significantly decreased Cd-induced apoptotic cell death of rPT cells via inhibiting caspase-dependent apoptotic pathway, evidenced by morphological analysis, flow cytometric and immunoblot assays. Also, administration with Tre protected rPT cells against Cd-induced lipid peroxidation. Inhibition of autophagic flux in Cd-exposed rPT cells was markedly restored by Tre administration, demonstrated by immunoblot analysis of autophagy marker proteins and GFP and RFP tandemly tagged LC3 method. Resultantly, Cd-induced autophagosome accumulation was obviously alleviated by Tre treatment. Meanwhile, blockage of autophagosome–lysosome fusion by Cd exposure was noticeably restored by Tre, which promoted the autophagic degradation in Cd-exposed rPT cells. Moreover, Tre treatment markedly recovered Cd-induced lysosomal alkalinization and impairment of lysosomal degradation capacity in rPT cells, demonstrating that Tre has the ability to restore Cd-impaired lysosomal function. Collectively, these findings demonstrate that Tre treatment alleviates Cd-induced cytotoxicity in rPT cells by inhibiting apoptosis and restoring autophagic flux. PMID:29022917

  8. Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Chee, O.; Rosella-Dampman, L. M.; Emmert, S.; Summy-Long, J. Y.

    1984-01-01

    The effect of intracerebroventricular (ICV) pretreatment with 100 ng/5 microliter leucine(5)-enkephalin (LE) on the increase in plasma oxytocin (OT) and vasopressin (VP) caused by ICV injection of 10, 50, or 100 ng/5 microliter of angiotensin II (AII) is investigated experimentally in conscious adult male Sprague-Dawley rats; the effects of water-deprivation dehydration and lactation/suckling (in female rats) are also studied. An OT radioimmunoassay (RIA) with a sensitivity of 800 fg/ml (described in detail) and the VP RIA technique of Keil and Severs (1977) are employed. Administration of AII or dehydration for 48 or 72 h cause a significant increase in OT and VP without affecting the ratio, while lactation and suckling increase OT only. LE pretreatment inhibits significantly but does not suppress the AII-stimulated OT-VP response.

  9. Reciprocal inhibition in writer's cramp.

    PubMed

    Chen, R S; Tsai, C H; Lu, C S

    1995-09-01

    We studied the inhibition of median H-reflexes by conditioning stimuli on the radial nerve in 13 patients with writer's cramp, eight of the simple type and five of the dystonic type, and in 14 normal volunteers. The patients and controls were right-handed, and their right arms were studied. Asymptomatic left arms were also studied in nine of 13 patients. In the control group we identified three periods of inhibition, with maximum peaks at conditioning-test intervals of 0 ms (41 +/- 17%), 20 ms (40 +/- 13%), and 100 ms (36 +/- 20%). In the patient group, the amplitudes of inhibition of these three periods in both arms were significantly less than those in the control group. However, there were no significant differences in the amplitudes of inhibition of these three periods between symptomatic and asymptomatic arms. There were also no significant differences between simple and dystonic writer's cramps. Our results indicate that the attenuation of reciprocal inhibition was present not only in symptomatic arms but also in asymptomatic arms of patients with writer's cramp. The defect of reciprocal inhibition in the asymptomatic hand has never been documented. We suggest that the preexistent electrophysiological abnormality may provide an explanation for the development of hand cramp after shifted writing.

  10. A MIV-150/zinc acetate gel inhibits SHIV-RT infection in macaque vaginal explants.

    PubMed

    Barnable, Patrick; Calenda, Giulia; Ouattara, Louise; Gettie, Agegnehu; Blanchard, James; Jean-Pierre, Ninochka; Kizima, Larisa; Rodríguez, Aixa; Abraham, Ciby; Menon, Radhika; Seidor, Samantha; Cooney, Michael L; Roberts, Kevin D; Sperling, Rhoda; Piatak, Michael; Lifson, Jeffrey D; Fernandez-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa; Teleshova, Natalia

    2014-01-01

    To extend our observations that single or repeated application of a gel containing the NNRTI MIV-150 (M) and zinc acetate dihydrate (ZA) in carrageenan (CG) (MZC) inhibits vaginal transmission of simian/human immunodeficiency virus (SHIV)-RT in macaques, we evaluated safety and anti-SHIV-RT activity of MZC and related gel formulations ex vivo in macaque mucosal explants. In addition, safety was further evaluated in human ectocervical explants. The gels did not induce mucosal toxicity. A single ex vivo exposure to diluted MZC (1∶30, 1∶100) and MC (1∶30, the only dilution tested), but not to ZC gel, up to 4 days prior to viral challenge, significantly inhibited SHIV-RT infection in macaque vaginal mucosa. MZC's activity was not affected by seminal plasma. The antiviral activity of unformulated MIV-150 was not enhanced in the presence of ZA, suggesting that the antiviral activity of MZC was mediated predominantly by MIV-150. In vivo administration of MZC and CG significantly inhibited ex vivo SHIV-RT infection (51-62% inhibition relative to baselines) of vaginal (but not cervical) mucosa collected 24 h post last gel exposure, indicating barrier effect of CG. Although the inhibitory effect of MZC (65-74%) did not significantly differ from CG (32-45%), it was within the range of protection (∼75%) against vaginal SHIV-RT challenge 24 h after gel dosing. Overall, the data suggest that evaluation of candidate microbicides in macaque explants can inform macaque efficacy and clinical studies design. The data support advancing MZC gel for clinical evaluation.

  11. OnabotulinumtoxinA significantly attenuates bladder afferent nerve firing and inhibits ATP release from the urothelium.

    PubMed

    Collins, Valerie M; Daly, Donna M; Liaskos, Marina; McKay, Neil G; Sellers, Donna; Chapple, Christopher; Grundy, David

    2013-11-01

    To investigate the direct effect of onabotulinumtoxinA (OnaBotA) on bladder afferent nerve activity and release of ATP and acetylcholine (ACh) from the urothelium. Bladder afferent nerve activity was recorded using an in vitro mouse preparation enabling simultaneous recordings of afferent nerve firing and intravesical pressure during bladder distension. Intraluminal and extraluminal ATP, ACh, and nitric oxide (NO) release were measured using the luciferin-luciferase and Amplex(®) Red assays (Molecular Probes, Carlsbad, CA, USA), and fluorometric assay kit, respectively. OnaBotA (2U), was applied intraluminally, during bladder distension, and its effect was monitored for 2 h after application. Whole-nerve activity was analysed to classify the single afferent units responding to physiological (low-threshold [LT] afferent <15 mmHg) and supra-physiological (high-threshold [HT] afferent >15 mmHg) distension pressures. Bladder distension evoked reproducible pressure-dependent increases in afferent nerve firing. After exposure to OnaBotA, both LT and HT afferent units were significantly attenuated. OnaBotA also significantly inhibited ATP release from the urothelium and increased NO release. These data indicate that OnaBotA attenuates the bladder afferent nerves involved in micturition and bladder sensation, suggesting that OnaBotA may exert its clinical effects on urinary urgency and the other symptoms of overactive bladder syndrome through its marked effect on afferent nerves. © 2013 The Authors. BJU International © 2013 BJU International.

  12. Antioxidants reverse the changes in energy metabolism of rat brain after chronic administration of L.-tyrosine.

    PubMed

    Teodorak, Brena P; Scaini, Giselli; Carvalho-Silva, Milena; Gomes, Lara M; Teixeira, Letícia J; Rebelo, Joyce; De Prá, Samira D T; Zeni, Neila; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-04-01

    Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.

  13. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis

    PubMed Central

    Wu, Wenman; Li, Hongbo; Navaneetham, Duraiswamy; Reichenbach, Zachary W.; Tuma, Ronald F.

    2012-01-01

    Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl3-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy. PMID:22674803

  14. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis.

    PubMed

    Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma

    2009-01-01

    Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.

  15. Significance of Ca-soap formation for calcium absorption in the rat.

    PubMed Central

    Gacs, G; Barltrop, D

    1977-01-01

    The significance of calcium soap formation in the inhibition of calcium absorption has been studied in rats. 47Ca labelled soaps of fatty acids were introduced into the duodenum and the absorption of calcium measured after four hours in a whole body counter. The absorption of calcium was inversely correlated with the chain length of the fatty acid varying from 1% for Ca-stearate to 60% for Ca-hexanoate. Increasing the degree of unsaturation of the fatty acid was accompanied by increased calcium absorption. The availability of calcium for absorption from the soaps was correlated with their solubility in 1% aqueous Na-tauroglycocholate. The percentages of calcium as soap in the small intestine and the faeces after intragastric administration of calcium and fats were similar, which suggests that the faecal content of calcium soaps is an index of intestinal soap formation. Soap formation was negligible when CaCl2 was given with tristearate, triolaeate, or tridecanoate and no depression of calcium absorption was observed. Calcium absorption was markedly impaired by the addition of phosphates at a Ca/P ratio of 1:1 irrespective of the presence of neutral fats. Stearic acid resulted in significant soap formation and reduced calcium absorption. The degree of Ca-soap formation and the inhibition of calcium absorption were well correlated. The results suggest that, although calcium soap formation may markedly depress calcium absorption in the rat, no significant soap formation takes place when fats are given in the form of triglycerides. PMID:838405

  16. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro-Filho, Jaime; Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba; Calheiros, Andrea Surrage

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effectsmore » of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness.

  17. Suppression of Hepatocellular Carcinoma by Inhibition of Overexpressed Ornithine Aminotransferase.

    PubMed

    Zigmond, Ehud; Ben Ya'acov, Ami; Lee, Hyunbeom; Lichtenstein, Yoav; Shalev, Zvi; Smith, Yoav; Zolotarov, Lidya; Ziv, Ehud; Kalman, Rony; Le, Hoang V; Lu, Hejun; Silverman, Richard B; Ilan, Yaron

    2015-08-13

    Hepatocellular carcinoma is the second leading cause of cancer death worldwide. DNA microarray analysis identified the ornithine aminotransferase (OAT) gene as a prominent gene overexpressed in hepatocellular carcinoma (HCC) from Psammomys obesus. In vitro studies demonstrated inactivation of OAT by gabaculine (1), a neurotoxic natural product, which suppressed in vitro proliferation of two HCC cell lines. Alpha-fetoprotein (AFP) secretion, a biomarker for HCC, was suppressed by gabaculine in both cell lines, but not significantly. Because of the active site similarity between GABA aminotransferase (GABA-AT) and OAT, a library of 24 GABA-AT inhibitors was screened to identify a more selective inhibitor of OAT. (1S,3S)-3-Amino-4-(hexafluoropropan-2-ylidene)cyclopentane-1-carboxylic acid (2) was found to be an inactivator of OAT that only weakly inhibits GABA-AT, l-aspartate aminotransferase, and l-alanine aminotransferase. In vitro administration of 2 significantly suppressed AFP secretion in both Hep3B and HepG2 HCC cells; in vivo, 2 significantly suppressed AFP serum levels and tumor growth in HCC-harboring mice, even at 0.1 mg/kg. Overexpression of the OAT gene in HCC and the ability to block the growth of HCC by OAT inhibitors support the role of OAT as a potential therapeutic target to inhibit HCC growth. This is the first demonstration of suppression of HCC by an OAT inactivator.

  18. Cerebral polyamine metabolism: inhibition of spermidine biosynthesis by dicyclohexylamine.

    PubMed

    Porta, R; Camardella, M; Gentile, V; De Santis, A

    1984-02-01

    Since a specific inhibition of cerebral spermidine (Spd) synthase activity by alicyclic amines was preliminarily observed in vitro, we examined the in vivo inhibitory effectiveness of dicyclohexylamine (DCHA) on Spd biosynthesis in 21-day-old rat brain. For this purpose a previously reported HPLC procedure (Porta et al., 1981a) was modified to analyze the cerebral levels of DCHA at the time of polyamine determinations. The intraperitoneally injected DCHA was shown to cross the blood-brain barrier easily, reaching high levels in the cerebral tissue (approximately 750 nmol/g brain) within 1 h of its administration. The effect of the drug on the polyamine metabolism resulted in a significant depletion of Spd biosynthesis from the sixth hour after the treatment and in an earlier and prolonged increase of the putrescine (Pt) steady-state levels. Conversely, the spermine (Spm) endogenous pools remained unchanged throughout the 24-h post-DCHA period. Moreover, following the intracerebral administration of [1,4-14C]Pt, significantly lower specific radioactivity (s.r.a.) values for labeled Pt and Spd were recorded in the brains of DCHA-treated animals. Conversely, after intracerebral [14C]Spd injection, the s.r.a. of newly formed [14C]Spm remained unchanged, confirming the specificity of the DCHA effect on the Spd biosynthesis.

  19. Studying the effects of dietary body weight-adjusted acute tryptophan depletion on punishment-related behavioral inhibition.

    PubMed

    Gaber, Tilman J; Dingerkus, Vita L S; Crockett, Molly J; Bubenzer-Busch, Sarah; Helmbold, Katrin; Sánchez, Cristina L; Dahmen, Brigitte; Herpertz-Dahlmann, Beate; Zepf, Florian D

    2015-01-01

    Alterations in serotonergic (5-HT) neurotransmission are thought to play a decisive role in affective disorders and impulse control. This study aims to reproduce and extend previous findings on the effects of acute tryptophan depletion (ATD) and subsequently diminished central 5-HT synthesis in a reinforced categorization task using a refined body weight-adjusted depletion protocol. Twenty-four young healthy adults (12 females, mean age [SD]=25.3 [2.1] years) were subjected to a double-blind within-subject crossover design. Each subject was administered both an ATD challenge and a balanced amino acid load (BAL) in two separate sessions in randomized order. Punishment-related behavioral inhibition was assessed using a forced choice go/no-go task that incorporated a variable payoff schedule. Administration of ATD resulted in significant reductions in TRP measured in peripheral blood samples, indicating reductions of TRP influx across the blood-brain barrier and related brain 5-HT synthesis. Overall accuracy and response time performance were improved after ATD administration. The ability to adjust behavioral responses to aversive outcome magnitudes and behavioral adjustments following error contingent punishment remained intact after decreased brain 5-HT synthesis. A previously observed dissociation effect of ATD on punishment-induced inhibition was not observed. Our results suggest that neurodietary challenges with ATD Moja-De have no detrimental effects on task performance and punishment-related inhibition in healthy adults.

  20. Growth regulators in connective tissue. Systemic administration of an aortic extract inhibits tumor growth in mice.

    PubMed Central

    Eisenstein, R.; Schumacher, B.; Meineke, C.; Matijevitch, B.; Kuettner, K. E.

    1978-01-01

    A low-molecular-weight fraction prepared from extracts of bovine aorta inhibits the growth of a transplantable mammary tumor and a fibrosarcoma in mice when injected systemically. It also inhibits the growth of the fibrosarcoma in cell culture. The effect on the fibrosarcoma is much more marked than on the mammary tumor. Since the extract is more effective against the fibrosarcoma and is known to inhibit the growth of endothelial cells, it appears that the enhanced effect on this tumor is due to its activity on the endothelial cells of the host and the tumor cells themselves. The material injected is enriched in an antiproteinase we have previously isolated, which has anticollagneolytic activity and is presumed to be the effector molecule. Images Figure 1 Figure 2 PMID:645813

  1. Esculeogenin A, a new tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in ApoE-deficient mice by inhibiting ACAT.

    PubMed

    Fujiwara, Yukio; Kiyota, Naoko; Hori, Masaharu; Matsushita, Sayaka; Iijima, Yoko; Aoki, Koh; Shibata, Daisuke; Takeya, Motohiro; Ikeda, Tsuyoshi; Nohara, Toshihiro; Nagai, Ryoji

    2007-11-01

    We recently identified esculeoside A, a new spirosolane-type glycoside, with a content in tomatoes that is 4-fold higher than that of lycopene. In the present study, we examined the effects of esculeoside A and esculeogenin A, a new aglycon of esculeoside A, on foam cell formation in vitro and atherogenesis in apoE-deficient mice. Esculeogenin A significantly inhibited the accumulation of cholesterol ester (CE) induced by acetylated low density lipoprotein (acetyl-LDL) in human monocyte-derived macrophages (HMDM) in a dose-dependent manner without inhibiting triglyceride accumulation, however, it did not inhibit the association of acetyl-LDL to the cells. Esculeogenin A also inhibited CE formation in Chinese hamster ovary cells overexpressing acyl-coenzymeA (CoA): cholesterol acyl-transferase (ACAT)-1 or ACAT-2, suggesting that esculeogenin A suppresses the activity of both ACAT-1 and ACAT-2. Furthermore, esculeogenin A prevented the expression of ACAT-1 protein, whereas that of SR-A and SR-BI was not suppressed. Oral administration of esculeoside A to apoE-deficient mice significantly reduced the levels of serum cholesterol, triglycerides, LDL-cholesterol, and the areas of atherosclerotic lesions without any detectable side effects. Our study provides the first evidence that purified esculeogenin A significantly suppresses the activity of ACAT protein and leads to reduction of atherogenesis.

  2. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chao-Feng

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At themore » concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.« less

  3. Acetazolamide-induced vasodilation does not inhibit the visually evoked flow response

    PubMed Central

    Yonai, Yaniv; Boms, Neta; Molnar, Sandor; Rosengarten, Bernhard; Bornstein, Natan M; Csiba, Laszlo; Olah, Laszlo

    2010-01-01

    Different methods are used to assess the vasodilator ability of cerebral blood vessels; however, the exact mechanism of cerebral vasodilation, induced by different stimuli, is not entirely known. Our aim was to investigate whether the potent vasodilator agent, acetazolamide (AZ), inhibits the neurovascular coupling, which also requires vasodilation. Therefore, visually evoked flow parameters were examined by transcranial Doppler in ten healthy subjects before and after AZ administration. Pulsatility index and peak systolic flow velocity changes, evoked by visual stimulus, were recorded in the posterior cerebral arteries before and after intravenous administration of 15 mg/kg AZ. Repeated-measures ANOVA did not show significant group main effect between the visually evoked relative flow velocity time courses before and after AZ provocation (P=0.43). Visual stimulation induced significant increase of relative flow velocity and decrease of pulsatility index not only before but also at the maximal effect of AZ. These results suggest that maximal cerebral vasodilation cannot be determined by the clinically accepted dose of AZ (15 mg/kg) and prove that neurovascular coupling remains preserved despite AZ-induced vasodilation. Our observation indicates independent regulation of vasodilation during neurovascular coupling, allowing the adaptation of cerebral blood flow according to neuronal activity even if other processes require significant vasodilation. PMID:19809468

  4. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2

    PubMed Central

    Huang, Ching-Wen; Lu, Chien-Yu; Miao, Zhi-Feng; Chang, Se-Fen; Juo, Suh-Hang Hank; Wang, Jaw-Yuan

    2016-01-01

    The high prevalence of type 2 diabetes mellitus in colorectal cancer patients is a crucial public health issue worldwide. The deregulation of microRNAs has been shown to be associated with the progression of CRC; however, the effects of high blood sugar levels on miR deregulation and, in turn, CRC remain unexplored. In this study, 520 CRC patients were classified into two groups according to their blood sugar levels (≧110 or <110 mg/dL). Clinicopathologic features, clinical outcomes, and serum miR-16 levels of the two groups were then analyzed, while cell cycles, cell proliferation, migration, and cellular miR-16 expression were investigated via D-(+)-glucose administration. Additionally, the target genes of miR-16 were identified. Through multivariate analysis, both the disease-free survival and overall survival of the CRC patients were found to be associated with the UICC stage, perineural invasion, and blood glucose levels (P < 0.05). Serum miR-16 levels were significantly lower in the high blood glucose patients than in the normal blood glucose patients (P = 0.0329). With D-(+)-glucose administration, the proliferation and migration of CRC cells in vitro increased remarkably (P < 0.05), while their accumulation in the G1 phase decreased significantly. Cellular miR-16 expression was suppressed by D-(+)-glucose administration. The expression levels of two target genes, Myb and VEGFR2, were affected significantly by miR-16, while glucose administration inhibited miR-16 expression and enhanced tumor cell proliferation and migration. Hyperglycemia can impact the clinical outcomes of CRC patients, likely by inhibiting miR-16 expression and the expression of its downstream genes Myb and VEGFR2. PMID:26934556

  5. Down-regulation of liver RNA breakdown by turpentine administration in the starved rat: autophagy and relevant factors.

    PubMed

    Saadane, A; Delautier, D; Lestriez, V; Feldmann, G; Lardeux, B; Bleiberg-Daniel, F

    1999-04-01

    To determine whether the inhibition of RNA breakdown observed in ad libitum fed rats 24 h after turpentine administration still occurs in inflamed rats fasted for 24 h and to examine the mechanism and factors involved. RNA breakdown was measured during cyclic in situ perfusion of livers by the accumulation of [14C] cytidine after in vivo RNA labelling. Autophagic activity was determined by the morphometric analysis of lysosomal structures. The decrease in RNA breakdown (53%) observed in the inflamed rats was accompanied by a 38% drop in the fractional cytoplasmic volume of initial and digestive autophagic vacuoles. Among amino acids, only the portal levels of glutamate were significantly enhanced by 83%. In vivo suppression of glucocorticoid activity using RU 38486 in inflamed rats did not affect the inhibition of RNA breakdown. The results show that turpentine-induced inflammation in fasted rats inhibits RNA degradation as well as autophagy and that glucocorticoids do not seem to be involved.

  6. Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex.

    PubMed

    Sheehan, J P; Lan, H C

    1998-09-01

    Systemic administration of ISIS 2302, a 20-mer antisense phosphorothioate oligonucleotide targeting human intercellular adhesion molecule-1 mRNA, causes prolongation of plasma clotting times in both monkey and human studies. The anticoagulant effects of ISIS 2302 were investigated with both in vitro coagulation assays in human plasma and purified enzyme systems. At high oligonucleotide plasma concentrations (>100 microgram/mL), prolongation of the prothrombin and thrombin times was observed. In a thrombin time assay using purified components, high concentrations of ISIS 2302 inhibited thrombin clotting activity both by stimulating inhibition by heparin cofactor II and directly competing with fibrinogen for binding to anion binding exosite I. In contrast, low concentrations of ISIS 2302 (<100 microgram/mL) showed a selective, linear prolongation of the activated partial thromboplastin time (PTT). The rate limiting effect of 50 microgram/mL ISIS 2302, which prolonged the PTT to 1.5 times control, was identified by sequential modification of the clotting assay. Delaying addition of oligonucleotide until after contact activation failed to correct prolongation of the PTT. The calcium-dependent steps of the intrinsic pathway were individually assessed by adding sufficient activated coagulation factor to correct the PTT in plasma deficient in that specific factor. Addition of factor XIa, IXa, VIIIa, or Va failed to correct the PTT in the presence of ISIS 2302. In contrast, 0.2 nmol/L factor Xa corrected prolongation of the PTT in factor X-deficient plasma with or without oligonucleotide present. ISIS 2302 (50 microgram/mL) did not prolong a modified Russel viper venom time, suggesting no significant inhibition of prothrombinase. Thus, 50 microgram/mL ISIS 2302 prolonged the PTT by selectively inhibiting intrinsic tenase activity. ISIS 2302 showed partial inhibition of intrinsic tenase activity (to approximately 35% of control) at clinically relevant oligonucleotide

  7. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  8. Developing Administrative Vision.

    ERIC Educational Resources Information Center

    Chance, Edward W.

    Visionary leadership has emerged as a significant characteristic of high performing school administrators. Vision provides a sense of direction for the school and facilitates accomplishment. Administrators must move from authoritarian and managerial modes of operation to proactive leadership, and maintain a focus on the vision through turmoil and…

  9. The Inhibition of P$sup 32$ Capture in the Ovaries and Uterus of White Rats Following the Administration of Pineal Hormone; L'INHIBITION DE LA CAPTATION DU PHOSPHORE P$sup 32$ CHEZ LES RATS ALBINOS AU NIVEAU DES OVARIES ET DE L'UTERUS APRES L'ADMINISTRATION DE L'EPIPHYSEHORMONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milcou, S.M.; Serban, Al.M.D. et al.

    A study was made in the rat of the modifications in the rate of P/sup 32/ uptake by the ovaries and uterus following the administration of pineal hormone. A dose of 10 mu c of P/sup 32/ was injected intraperitoneally in nubile and nonnubile female rats which had received pineal hormone for ten days. The animals were sacrificed after 4 and 24 hours. The results showed that the rate of P/sup 32/ uptake was reduced in the ovaries and uterus. Antuitrin S and pinea1 hormone were injected into non-nubile rats to study a possible inhibition of gonadotropin by this hormone.more » Gonadotropin causes an increase in P/sup 32/ uptake by the ovary and uterus with a progressive tendency for the first 24 hours. Pineal hormone causes a decrease in the degree of P/sup 32/ uptake produced by the gonadotropin. (J.S.R.)« less

  10. Enterocin CRL35 inhibits Listeria monocytogenes in a murine model.

    PubMed

    Salvucci, Emiliano; Saavedra, Lucila; Hebert, Elvira Maria; Haro, Cecilia; Sesma, Fernando

    2012-01-01

    Listeria monocytogenes is a foodborne pathogen causative of opportunistic infections. Listeriosis is associated with severe infections in pregnant women causing abortion or neonatal listeriosis. An alternative to antibiotics are safe novel bacteriocins peptides such as enterocin CRL35 with strong antilisterial activity produced by Enterococcus mundtii CRL35. In the present paper, our goal is to study the effectiveness of this peptide and the producer strain in a murine model of pregnancy-associated listeriosis. A single dose of 5×10(9) colony-forming unit of L. monocytogenes FBUNT (Faculty of Biochemistry-University of Tucumán) resulted in translocation of pathogen to liver and spleen of BALB/c pregnant mice. The maximum level of Listeria was observed on day 3 postinfection. Interestingly, the intragastric administration of enterocin CRL35 significantly reduced the translocation of the pathogen to vital organs. On the other hand, the preadministration of E. mundtii CRL35 slightly inhibited this translocation. Listeria infection caused a significant increase in polymorphonuclear leukocytes at day 3 postinfection compared to the noninfected group. This value was reduced after the administration of enterocin CRL35. No significant changes were observed in either white blood cells or lymphocytes counts. Based on the data presented in the present work enterocin CRL35 would be a promising alternative for the prevention of Listeria infections.

  11. Inhibitory effects of ginseng total saponin on up-regulation of cAMP pathway induced by repeated administration of morphine.

    PubMed

    Seo, Jeong-Ju; Lee, Jae-Woong; Lee, Wan-Kyu; Hong, Jin-Tae; Lee, Chong-Kil; Lee, Myung-Koo; Oh, Ki-Wan

    2008-02-01

    We have reported that ginseng total saponin (GTS) inhibited the development of physical and psychological dependence on morphine. However, the possible molecular mechanisms of GTS are unclear. Therefore, this study was undertaken to understand the possible molecular mechanism of GTS on the inhibitory effects of morphine-induced dependence. It has been reported that the up-regulated cAMP pathway in the LC of the mouse brain after repeated administration of morphine contributes to the feature of withdrawals. GTS inhibited up-regulation of cAMP pathway in the LC after repeated administration of morphine in this experiment. GTS inhibited cAMP levels and protein expression of protein kinase A (PKA). In addition, GTS inhibited the increase of cAMP response element binding protein (CREB) phosphorylation. Therefore, we conclude that the inhibitory effects of GTS on morphine-induced dependence might be mediated by the inhibition of cAMP pathway.

  12. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy.

    PubMed

    Zheng, Ling; Howell, Scott J; Hatala, Denise A; Huang, Kun; Kern, Timothy S

    2007-02-01

    It has been previously reported that aspirin inhibited the development of diabetic retinopathy in diabetic animals, raising the possibility that anti-inflammatory drugs may have beneficial effects on diabetic retinopathy. To further explore this, we compared effects of oral consumption of three different salicylate-based drugs (aspirin, sodium salicylate, and sulfasalazine) on the development of early stages of diabetic retinopathy in rats. These three drugs differ in their ability to inhibit cyclooxygenase but share an ability to inhibit nuclear factor-kappaB (NF-kappaB). Diabetes of 9-10 months duration significantly increased the number of TUNEL (transferase-mediated dUTP nick-end labeling)-positive capillary cells and acellular (degenerate) capillaries in the retinal vasculature, and all three salicylate-based drugs inhibited this cell death and formation of acellular capillaries without altering the severity of hyperglycemia. In short-term diabetes (2-4 months), all three salicylates inhibited the diabetes-induced loss of neuronal cells from the ganglion cell layer. Oral aspirin (as a representative of the salicylate family) inhibited diabetes-induced increase in NF-kappaB DNA-binding affinity in electrophoretic mobility shift assay and transcription factor array in nuclear extract isolated from whole retina. All three salicylates inhibited the diabetes-induced translocation of p50 (a subunit of NF-kappaB) into nuclei of retinal vascular endothelial cells of the isolated retinal vasculature, as well as of p50 and p65 into nuclei of cells in the ganglion cell layer and inner nuclear layer on whole-retinal sections. Sulfasalazine (also as a representative of the salicylates) inhibited the diabetes-induced upregulation of several inflammatory gene products, which are regulated by NF-kappaB, including vascular cell adhesion molecule, intracellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 in whole-retinal lysate. Salicylates, in

  13. Induction of specific T helper-9 cells to inhibit glioma cell growth

    PubMed Central

    Zheng, Haiyan; Yang, Baohua; Xu, Dedong; Wang, Wenbo; Tan, Jie; Sun, Liyuan; Li, Qinghua; Sun, Li; Xia, Xuewei

    2017-01-01

    The effects of Staphylococcal enterotoxin B (SEB) on regulation of immune response have been recognized; whether SEB can enhance the effects of immunotherapy on glioma remains to be investigated. This study tests a hypothesis that administration with SEB enhances the effects of specific immunotherapy on glioma growth in mice. In this study, a glioma-bearing mouse model was developed by adoptive transfer with GL261 cells (a mouse glioma cell line). The mice were treated with the GL261 cell extracts (used as an Ag) with or without administration of SEB. We observed that treating glioma-bearing mice with the glioma Ag and SEB induced glioma-specific Th9 cells in both glioma tissue and the spleen. Treating CD4+ CD25− T cells with SEB increased p300 phosphorylation, histone H3K4 acetylation at the interleukin (IL)-9 promoter locus, and increased the IL-9 transcriptional factor binding to the IL-9 promoter. Treating CD4+ CD25− T cells with both SEB and glioma Ag induced glioma-specific Th9 cells. The glioma-specific Th9 cells induced glioma cell apoptosis in the culture. Treating the glioma-bearing mice with SEB and glioma Ag significantly inhibited the glioma growth. In conclusion, SEB plus glioma Ag immunotherapy inhibits the experimental glioma growth, which may be a novel therapeutic remedy for the treatment of glioma. PMID:28002799

  14. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung-Dong; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749; Cheon, So Yeong

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did notmore » inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.« less

  15. The small-molecule IAP antagonist AT406 inhibits pancreatic cancer cells in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yongsheng; Meng, Qinghua; Chen, Bo

    In the present study, we tested the anti-pancreatic cancer activity by AT406, a small-molecule antagonist of IAP (inhibitor of apoptosis proteins). In established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells, treatment of AT406 significantly inhibited cell survival and proliferation. Yet, same AT406 treatment was non-cytotoxic to pancreatic epithelial HPDE6c7 cells. AT406 increased caspase-3/-9 activity and provoked apoptosis in the pancreatic cancer cells. Reversely, AT406′ cytotoxicity in these cells was largely attenuated with pre-treatment of caspase inhibitors. AT406 treatment caused degradation of IAP family proteins (cIAP1 and XIAP) and release of cytochrome C, leaving Bcl-2 unaffected in pancreaticmore » cancer cells. Bcl-2 inhibition (by ABT-737) or shRNA knockdown dramatically sensitized Panc-1 cells to AT406. In vivo, oral administration of AT406 at well-tolerated doses downregulated IAPs (cIAP1/XIAP) and inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) nude mice. Together, our preclinical results suggest that AT406 could be further evaluated as a promising anti-pancreatic cancer agent. - Highlights: • AT406 is cytotoxic to established/primary human pancreatic cancer cells. • AT406 provokes caspase-dependent apoptosis in pancreatic cancer cells. • AT406 causes degradation of key IAPs and promotes cytochrome C release. • Bcl-2 inhibition or knockdown dramatically sensitizes Panc-1 cells to AT406. • Oral administration of AT406 inhibits Panc-1 tumor growth in SCID nude mice.« less

  16. Epigallocatechin-3-gallate ameliorates intrahepatic cholestasis of pregnancy by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Zhang, Mei; Xu, Meimei

    2017-10-01

    Matrix metalloproteinase (MMP)-2 and matrix metalloproteinase-9 are involved in many illnesses affecting pregnant women, including intrahepatic cholestasis of pregnancy (ICP), a serious liver abnormality during pregnancy. Epigallocatechin-3-gallate (EGCG) has been widely reported to inhibit activities of MMP-2 and MMP-9. We aimed to investigate the role of EGCG in ameliorating ICP symptoms in a rat model. Using 17α-ethinylestradiol to induce ICP in pregnant rats, we investigated the efficacy of EGCG administration on ICP symptoms, including bile flow rate, total bile acids (TBA) and MMP-2 and MMP-9 activities. Correlation study was conducted among levels of the two MMPs with other ICP symptoms. In ICP rats, activities of both MMP-2 and MMP-9 were significantly elevated. EGCG administration could inhibit the upregulation of MMP-2 and MMP-9 post-transcriptionally. Furthermore, EGCG ameliorated ICP symptoms, as evidenced by restored bile flow rate and TBA, showing efficient treatment outcomes. At last, levels of TBA and the two MMPs were found to be strongly correlated. Our study demonstrates that, for the first time, the efficacy of EGCG in ameliorating ICP symptoms by inhibiting both MMP-2 and MMP-9, which supports its potential as a novel drug in ameliorating ICP. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  17. Coptis chinensis Polysaccharides Inhibit Advanced Glycation End Product Formation.

    PubMed

    Yang, Ye; Li, Yun; Yin, Dengke; Chen, Song; Gao, Xiangdong

    2016-06-01

    Coptis chinensis Franch (Huanglian) is commonly used to treat diabetes in China. In this study, the effects of the C. chinensis Franch polysaccharides (CCP) on advanced glycation end product (AGE) formation in vitro and in streptozotocin-induced diabetic mice were investigated. CCP significantly inhibited all the three periods of nonenzymatic protein glycation in vitro, including Amadori product, dicarbonyl compound, and AGE formation (P < .01). In diabetic mice, the administration of CCP not only improved both bodyweight and serum insulin and decreased fasting blood glucose and glycated serum protein concentrations but also decreased the AGE accumulations and morphological abnormalities in pancreas and liver. The inhibitory effects of CCP on AGE formation afford a potential therapeutic use in the prevention and treatment of diabetes.

  18. Daily Administration of Short-Acting Liothyronine Is Associated with Significant Triiodothyronine Excursions and Fails to Alter Thyroid-Responsive Parameters.

    PubMed

    Jonklaas, Jacqueline; Burman, Kenneth D

    2016-06-01

    Although most studies of levothyroxine-liothyronine combination therapy employ once-daily hormone administration, the kinetics of once-daily liothyronine have been studied infrequently. The aim of this study was to document both the peak and trough serum triiodothyronine (T3) levels that occur with once-daily liothyronine administration, along with changes in thyroid-responsive parameters. Participants with hypothyroidism were studied prospectively at an academic institution. Patients were switched from levothyroxine monotherapy to liothyronine monotherapy with 15 μg liothyronine for two weeks, and then continued liothyronine at doses of 30-45 μg for a further four weeks in an open-label, single-arm study. Weekly trough levels of T3 were documented. In addition, hourly T3 concentrations immediately following liothyronine tablet administration were documented for eight hours during the sixth week of therapy. Serum thyrotropin (TSH) and free thyroxine (fT4) concentrations were documented. Biochemical markers, markers of energy metabolism, anthropometric parameters, well-being, and hyperthyroid symptoms were also assessed. Mean serum TSH levels increased from 1.56 ± 0.81 mIU/L at baseline to 5.90 ± 5.74 mIU/L at two weeks and 3.84 ± 3.66 mIU/L at six weeks. Trough T3 levels decreased from 99.5 ± 22.9 to 91.9 ± 40.2 at two weeks and recovered to 96.1 ± 32.2 at six weeks. The peak T3 concentration after dosing of liothyronine during week 6 was 292.8 ± 152.3 ng/dL. fT4 levels fell once levothyroxine was discontinued and plateaued at 0.44 ng/dL at week 4. The sex hormone binding globulin (SHBG) concentration decreased at week 2 (p = 0.002). Hyperthyroid symptoms and SF36-PCS scores increased significantly at weeks 4-5 of liothyronine therapy (p = 0.04-0.005). Preference for liothyronine therapy increased from 6% to 39% over the study period. Once-daily dosing of liothyronine at doses of 30-45 μg did not return serum

  19. Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse.

    PubMed

    Wang, Lingwei; Li, Jie; Zhang, Jian; He, Qi; Weng, Xuanwen; Huang, Yanmei; Guan, Minjie; Qiu, Chen

    2017-02-26

    Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) -5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNA and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Inhibition of rat mammary carcinogenesis by short dietary exposure to retinyl acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.L.; Burns, F.J.; Albert, R.E.

    1980-04-01

    This study was designed to determine whether retinyl acetate was an effective inhibitor when given for short periods at the time of and after the administration of the carcinogen. Virgin female Lewis rats were given 20 mg 7,12-dimethylbenz(a)anthracene intragastrically at 50 days of age. The rats were fed Purina laboratory chow supplemented with 250 ppM retinyl acetate in groups of 20 for various lengths of time. At 30 weeks all groups receiving retinyl acetate except one showed a significant decrease in tumor multiplicity in comparison to non-retinyl acetate-treated controls. In the +1 to +12 group, the inhibition of tumor developmentmore » was temporary, inasmuch as tumor values returned to control levels by Week 30. These results indicate that retinyl acetate inhibition of mammary cancer is not limited to the late stage of the disease, because the retinoid was almost equally effective when given for a short period at the time of carcinogen availability.« less

  1. Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction.

    PubMed

    Choi, Hoon Young; Lee, Hyun Gyu; Kim, Beom Seok; Ahn, Sun Hee; Jung, Ara; Lee, Mirae; Lee, Jung Eun; Kim, Hyung Jong; Ha, Sung Kyu; Park, Hyeong Cheon

    2015-03-11

    Microparticles (MPs) derived from kidney-derived mesenchymal stem cells (KMSCs) have recently been reported to ameliorate rarefaction of peritubular capillaries (PTC) in ischemic kidneys via delivery of proangiogenic effectors. This study aimed to investigate whether KMSC-derived MPs show anti-fibrotic effects by ameliorating endothelial-to-mesenchymal transition (EndoMT) in human umbilical vein endothelial cells (HUVEC) in vitro and by preserving PTC in kidneys with unilateral ureteral obstruction (UUO) in vivo. MPs isolated from the supernatants of KMSC were co-cultured with HUVEC to assess their in vitro biologic effects on endothelial cells. Mice were treated with MPs via the tail vein after UUO injury to assess their anti-fibrotic and PTC sparing effects. Renal tubulointerstitial damage and inflammatory cell infiltration were examined with Masson's trichrome, F4/80 and α-smooth muscle actin (α-SMA) staining and PTC rarefaction index was determined by CD31 staining. KMSC-derived MPs significantly ameliorated EndoMT and improved in vitro proliferation of TGF-β1 treated HUVEC. In vivo administration of KMSC-derived MPs significantly inhibited EndoMT of PTC endothelial cells and improved PTC rarefaction in UUO kidneys. Furthermore, administration of KMSC-derived MPs inhibited inflammatory cell infiltration as well as tubulointerstitial fibrosis in UUO mice as demonstrated by decreased F4/80 and α-SMA-positive cells and Masson's trichrome staining, respectively. Our results suggest that KMSC-derived MPs ameliorate PTC rarefaction via inhibition of EndoMT and protect against progression of renal damage by inhibiting tubulointerstitial fibrosis.

  2. Inhibition of TYK2 and JAK1 Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis by Inhibiting IL-22 and the IL-23/IL-17 axis

    PubMed Central

    Works, Melissa G.; Yin, Fangfang; Yin, Catherine C.; Yiu, Ying; Shew, Kenneth; Tran, Thanh-Thuy; Dunlap, Nahoko; Lam, Jennifer; Mitchell, Tim; Reader, John; Stein, Paul L.; D’Andrea, Annalisa

    2014-01-01

    Psoriasis is a chronic autoimmune disease affecting the skin and characterized by aberrant keratinocyte proliferation and function. Immune cells infiltrate the skin and release proinflammatory cytokines that play important roles in psoriasis. The Th17 network, including IL-23 and IL-22, has recently emerged as a critical component in the pathogenesis of psoriasis. IL-22 and IL-23 signaling is dependent on the JAK family of protein tyrosine kinases, making Janus kinase (JAK) inhibition an appealing strategy for the treatment of psoriasis. Here we report the activity of SAR-20347, a small molecule inhibitor with specificity for JAK1 and Tyrosine Kinase 2 (TYK2) over other JAK family members. In cellular assays, SAR-20347 dose-dependently (1 nM-10 μM) inhibited JAK1 and/or TYK2 dependent signaling from the IL-12/IL-23, IL-22, and IFN-α receptors. In vivo, TYK2 mutant mice or treatment of wild type mice with SAR-20347 significantly reduced IL-12 induced IFN-γ production and IL-22-dependent Serum Amyloid A (SAA) to similar extents, indicating that in these models, SAR-20347 is probably acting through inhibition of TYK2. In an imiquimod-induced psoriasis model, the administration of SAR-20347 led to a striking decrease in disease pathology, including reduced activation of keratinocytes, and proinflammatory cytokine levels compared to both TYK2 mutant mice and wild type controls. Taken together, these data indicate that targeting both JAK1 and TYK2-mediated cytokine signaling is more effective than TYK2 inhibition alone in reducing psoriasis pathogenesis. PMID:25156366

  3. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qing; Institute of Clinical Pharmacology, Central South University, Hunan 410078; Guo, Dong

    2013-11-15

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate formore » OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT{sub 3}) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the

  4. Anorexigenic effects induced by RVD-hemopressin(α) administration.

    PubMed

    Ferrante, Claudio; Recinella, Lucia; Leone, Sheila; Chiavaroli, Annalisa; Di Nisio, Chiara; Martinotti, Sara; Mollica, Adriano; Macedonio, Giorgia; Stefanucci, Azzurra; Dvorácskó, Szabolcs; Tömböly, Csaba; De Petrocellis, Luciano; Vacca, Michele; Brunetti, Luigi; Orlando, Giustino

    2017-12-01

    Hemopressin, VD-hemopressin(α) and RVD-hemopressin(α) are hemoglobin α chain derived-peptides which have been found in mouse brain, and where they modulate cannabinoid (CB) receptor function. The nonapeptide hemopressin has been reported to inhibit feeding after both central and peripheral administration, possibly playing a role of antagonist/inverse agonist of CB1 receptors, and consequently blocking the orexigenic effects of endogenous cannabinoids. VD-hemopressin(α) and RVD- hemopressin(α), are N-terminal extended forms of hemopressin. VD-hemopressin(α) has CB1 agonist activity, and as such it has been shown to stimulate feeding. RVD-hemopressin(α) is reported to play a negative allosteric modulatory function on CB1 receptors, but there are no data on its possible effects on feeding and metabolic control. We have studied, in rats, the effects of 14 daily intraperitoneal (ip) injections of RVD-hemopressin(α) (10nmol). We found that RVD-hemopressin(α) treatment inhibited food intake while total body weight was not affected. The null effect on body weight despite diminished feeding could be related to decreased uncoupling protein 1 (UCP-1) gene expression in brown adipose tissue (BAT). We also investigated the underlying neuromodulatory effects of RVD-hemopressin(α) and found it to down regulate proopiomelanocortin (POMC) gene expression, together with norepinephrine (NE) levels, in the hypothalamus. In conclusion, RVD-hemopressin(α) administration has an anorectic effect, possibly related to inhibition of POMC and NE levels in the hypothalamus. Despite decreased food intake, body weight is not affected by RVD-hemopressin(α) treatment, possibly due to inhibition of UCP-1 gene expression in BAT. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation.

    PubMed

    Pan, Yinbing; Sun, Xiaodi; Jiang, Lai; Hu, Liang; Kong, Hong; Han, Yuan; Qian, Cheng; Song, Chao; Qian, Yanning; Liu, Wentao

    2016-11-17

    Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine

  6. Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma

    PubMed Central

    Qi, Xiang; Ng, Kevin Tak Pan; Lian, Qi Zhou; Liu, Xiao Bing; Li, Chang Xian; Geng, Wei; Ling, Chang Chun; Ma, Yuen Yuen; Yeung, Wai Ho; Tu, Wen Wei; Fan, Sheung Tat; Lo, Chung Mau; Man, Kwan

    2014-01-01

    Aims: We aimed to investigate the clinical significance of GPx3 in hepatocellular carcinoma (HCC) and to characterize its tumor suppressive role. Methods: HCC patients (113) who underwent hepatectomy were recruited to examine the clinical relevance of GPx3. The tumor suppressive role of GPx3 was studied by administration of recombinant GPx3 (rGPx3) or over-expression of GPx3 in HCC cells in vitro and in vivo. The therapeutic value of GPx3 for HCC was further investigated using human induced pluripotent stem cell derived mesenchymal stem cells (hiPSC-MSCs) as its delivery vehicle. Results: Down-regulation of GPx3 significantly correlated with advanced tumor stage (P = 0.024), venous infiltration (P = 0.043) and poor overall survival (P = 0.007) after hepatectomy. Lower plasma GPx3 in HCC patients was significantly associated with larger tumor size (P = 0.011), more tumor nodules (P = 0.032) and higher recurrence (P = 0.016). Over-expression of GPx3 or administration of rGPx3 significantly inhibited proliferation and invasiveness of HCC cells in vitro and in vivo. Tumor suppressive activity of GPx3 was mediated through Erk-NFκB-SIP1 pathway. GPx3 could be delivered by hiPSC-MSCs into the tumor and exhibited tumor suppressive activity in vivo. Conclusions: GPx3 is a tumor suppressor gene in HCC and may possess prognostic and therapeutic value for HCC patients. PMID:25333265

  7. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.).

    PubMed

    Poovitha, Sundar; Parani, Madasamy

    2016-07-18

    α-amylase and α-glucosidase digest the carbohydrates and increase the postprandial glucose level in diabetic patients. Inhibiting the activity of these two enzymes can control postprandial hyperglycemia, and reduce the risk of developing diabetes. Bitter gourd or balsam pear is one of the important medicinal plants used for controlling postprandial hyperglycemia in diabetes patients. However, there is limited information available on the presence of α-amylase and α-glucosidase inhibiting compounds. In the current study, the protein extracts from the fruits of M. charantia var. charantia (MCC) and M. charantia var. muricata (MCM) were tested for α-amylase and α-glucosidase inhibiting activities in vitro, and glucose lowering activity after oral administration in vivo. The protein extract from both MCC and MCM inhibited the activity of α-amylase and α-glucosidase through competitive inhibition, which was on par with Acarbose as indicated by in vitro percentage of inhibition (66 to 69 %) and IC50 (0.26 to 0.29 mg/ml). Both the protein extracts significantly reduced peak blood glucose and area under the curve in Streptozotocin-induced diabetic rats, which were orally challenged with starch and sucrose. Protein extracts from the fruits of the two varieties of bitter gourd inhibited α-amylase and α-glucosidase in vitro and lowered the blood glucose level in vivo on par with Acarbose when orally administrated to Streptozotocin-induced diabetic rats. Further studies on mechanism of action and methods of safe and biologically active delivery will help to develop an anti-diabetic oral protein drug from these plants.

  8. Cerebrospinal fluid and behavioral changes after methyltestosterone administration: preliminary findings.

    PubMed

    Daly, R C; Su, T P; Schmidt, P J; Pickar, D; Murphy, D L; Rubinow, D R

    2001-02-01

    Anabolic androgen steroid abuse is associated with multiple psychiatric symptoms and is a significant public health problem. The biological mechanisms underlying behavioral symptom development are poorly understood. We examined levels of monoamine metabolites, neurohormones, and neuropeptides in the cerebrospinal fluid (CSF) of 17 healthy men, at baseline and following 6 days of methyltestosterone (MT) administration (3 days of 40 mg/d, then 3 days of 240 mg/d). Subjects received MT or placebo in a fixed sequence, with neither subjects nor raters aware of the order. Potential relationships were examined between CSF measures, CSF MT levels, and behavioral changes measured on a visual analog scale. Following MT administration, levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) were significantly lower (mean +/- SD, 103.8 +/- 47 vs 122.0 +/- 50.7 pmol/mL; P<.01), and 5-hydroxyindoleacetic acid (5-HIAA) levels were significantly higher (mean +/- SD, 104.7 +/- 31.3 vs 86.9 +/- 23.6 pmol/mL; P<.01). No significant MT-related changes were observed in CSF levels of corticotropin, norepinephrine, cortisol, arginine vasopressin, prolactin, corticotropin-releasing hormone, beta-endorphin, and somatotropin release-inhibiting factor. Changes in CSF 5-HIAA significantly correlated with increases in "activation" symptoms (energy, sexual arousal, and diminished sleep) (r = 0.55; P =.02). No significant correlation was observed between changes in CSF and plasma MT, CSF MHPG, and behavioral symptoms. Short-term anabolic androgenic steroid use affects brain neurochemistry, increasing CSF 5-HIAA and decreasing MHPG. Changes in 5-HIAA levels caused by anabolic androgenic steroids are related to the behavioral changes we observed. In this small sample, we did not observe a significant relationship between behavioral measures and either dose of MT or CSF and plasma levels of MT.

  9. BH3 mimetics inhibit growth of chondrosarcoma--a novel targeted-therapy for candidate models.

    PubMed

    Morii, Takeshi; Ohtsuka, Kouki; Ohnishi, Hiroaki; Mochizuki, Kazuo; Yoshiyama, Akira; Aoyagi, Takayuki; Hornicek, Francis J; Ichimura, Shoichi

    2014-11-01

    Chondrosarcoma is refractory to conventional chemotherapy. BH-3 mimetics ABT-737 and ABT-263 are synthetic small-molecule inhibitors of anti-apoptotic proteins B-cell lymphoma-2 (Bcl2) and Bcl-xL, which play a critical role in survival of chondrosarcoma cells. Chondrosarcoma cell lines SW-1353 and CS-1 were used as the disease model. We used immunoblotting to assess the expression of target molecules Bcl2 and Bcl-xL, and the apoptotic inducers Bcl2-associated X (Bax) and Bcl2-antagonist/killer (Bak). In vitro growth inhibition by BH-3 mimetics was confirmed by photomicroscopic cell counting and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Apoptotic induction was confirmed by Enzyme-Linked ImmunoSorbent Assay (ELISA). In vivo growth inhibition was assessed in a non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse model. Expression of the target and effector molecules was confirmed in chondrosarcoma cell lines. BH3 mimetics significantly inhibited cell growth and induced apoptosis in vitro. Administration of ABT-263 inhibited chondrosarcoma growth and improved survival in a mouse model. BH3 mimetics represent a novel treatment modality for chondrosarcoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Vocational Schools in Turkey: An Administrative and Organizational Analysis

    NASA Astrophysics Data System (ADS)

    Simsek, Hasan; Yildirim, Ali

    2000-07-01

    The data used in this paper were derived from a larger project which had the aim of critically evaluating the Turkish vocational education system on a number of different levels. This article examines the administrative and organisational practices in a selected group of secondary vocational schools in Turkey from the point of view of school administrators, teachers and industrial managers. The results indicate that the Turkish vocational education system is characterised by a centralised, top-down bureaucracy, which inhibits innovative capacity. The authors argue that a degree of decentralisation is necessary at various levels of the system.

  11. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    PubMed

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  12. Intraarticularly-Injected Mesenchymal Stem Cells Stimulate Anti-Inflammatory Molecules and Inhibit Pain Related Protein and Chondrolytic Enzymes in a Monoiodoacetate-Induced Rat Arthritis Model

    PubMed Central

    Ichiseki, Toru; Shimasaki, Miyako; Ueda, Yoshimichi; Tsuchiya, Masanobu; Souma, Daisuke; Kaneuji, Ayumi; Kawahara, Norio

    2018-01-01

    Persistent inflammation is well known to promote the progression of arthropathy. mesenchymal stem cells (MSCs) have been shown to possess anti-inflammatory properties and tissue differentiation potency. Although the experience so far with the intraarticular administration of mesenchymal stem cell (MSC) to induce cartilage regeneration has been disappointing, MSC implantation is now being attempted using various surgical techniques. Meanwhile, prevention of osteoarthritis (OA) progression and pain control remain important components of the treatment of early-stage OA. We prepared a shoulder arthritis model by injecting monoiodoacetate (MIA) into a rat shoulder, and then investigated the intraarticular administration of MSC from the aspects of the cartilage protective effect associated with their anti-inflammatory property and inhibitory effect on central sensitization of pain. When MIA was administered in this rat shoulder arthritis model, anti-Calcitonin Gene Related Peptide (CGRP) was expressed in the joint and C5 spinal dorsal horn. Moreover, expression of A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), a marker of joint cartilage injury, was similarly elevated following MIA administration. When MSC were injected intraarticularly after MIA, the expression of CGRP in the spinal dorsal horn was significantly deceased, indicating suppression of the central sensitization of pain. The expression of ADAMTS 5 in joint cartilage was also significantly inhibited by MSC administration. In contrast, a significant increase in the expression of TNF-α stimulated gene/protein 6 (TSG-6), an anti-inflammatory and cartilage protective factor shown to be produced and secreted by MSC intraarticularly, was found to extend to the cartilage tissue following MSC administration. In this way, the intraarticular injection of MSC inhibited the central sensitization of pain and increased the expression of the anti-inflammatory and cartilage protective factor TSG

  13. Pharmacokinetic and pharmacodynamic interaction between nifedipine and metformin in rats: competitive inhibition for metabolism of nifedipine and metformin by each other via CYP isozymes.

    PubMed

    Choi, Young H; Lee, Myung G

    2012-05-01

    It has been reported that hypertension exponentially increases in the patients with type 2 diabetes mellitus. Thus, this study was performed to investigate the pharmacokinetic and pharmacodynamic interactions between nifedipine and metformin, since both drugs were commonly metabolized via hepatic CYP2C and 3A subfamilies in rats. Nifedipine (3 mg/kg) and metformin (100 mg/kg) were simultaneously administered intravenously or orally to rats. Concentrations (I) of each drug in the liver and intestine, maximum velocity (V(max)), Michaelis-Menten constant (K(m)), and intrinsic clearance (CL(int)) for the disappearance of each drug, apparent inhibition constant (K(i)) and [I]/K(i) ratios of each drug in liver and intestine were determined. Also the metabolism of each drug in rat and human CYPs and blood pressure were also measured. After the simultaneous single intravenous administration of both drugs together, the AUCs of each drug were significantly greater than that in each drug alone due to the competitive inhibition for the metabolism of nifedipine by metformin via hepatic CYP3A1/2 and of metformin by nifedipine via hepatic CYP2C6 and 3A1/2. After the simultaneous single oral administration of both drugs, the significantly greater AUCs of each drug than that in each drug alone could have mainly been due to the competitive inhibition for the metabolism of nifedipine and metformin by each other via intestinal CYP3A1/2 in addition to competitive inhibition for the hepatic metabolism of each drug as same as the intravenous study.

  14. 1,3-Bis(3,5-dichlorophenyl) urea compound 'COH-SR4' inhibits proliferation and activates apoptosis in melanoma.

    PubMed

    Singhal, Sharad S; Figarola, James; Singhal, Jyotsana; Leake, Kathryn; Nagaprashantha, Lokesh; Lincoln, Christopher; Gabriel Gugiu, B; Horne, David; Jove, Richard; Awasthi, Sanjay; Rahbar, Samuel

    2012-12-01

    The current clinical interventions in malignant melanomas are met with poor response to therapy due to dynamic regulation of multiple melanoma signaling pathways consequent to administration of single target agents. In this context of limited response to single target agents, novel candidate molecules capable of effectively inducing tumor inhibition along with targeting multiple critical nodes of melanoma signaling assume translational significance. In this regard, we investigated the anti-cancer effects of a novel dichlorophenyl urea compound called COH-SR4 in melanoma. The SR4 treatment decreased the survival and inhibited the clonogenic potential of melanomas along with inducing apoptosis in vitro cultures. SR4 treatments lead to inhibition of GST activity along with causing G2/M phase cell cycle arrest. Oral administration of 4 mg/kg SR4 leads to effective inhibition of tumor burdens in both syngeneic and nude mouse models of melanoma. The SR4 treatment was well tolerated and no overt toxicity was observed. The histopathological examination of resected tumor sections revealed decreased blood vessels, decrease in the levels of angiogenesis marker, CD31, and proliferation marker, Ki67, along with an increase in pAMPK levels. Western blot analyses of resected tumor lysates revealed increased PARP cleavage, Bim, pAMPK along with decreased pAkt, vimentin, fibronectin, CDK4 and cyclin B1. Thus, SR4 represents a novel candidate for the further development of mono and combinatorial therapies to effectively target aggressive and therapeutically refractory melanomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. CYP2C19*17 increases clopidogrel-mediated platelet inhibition but does not alter the pharmacokinetics of the active metabolite of clopidogrel.

    PubMed

    Pedersen, Rasmus Steen; Nielsen, Flemming; Stage, Tore Bjerregaard; Vinholt, Pernille Just; el Achwah, Alaa Bilal; Damkier, Per; Brosen, Kim

    2014-11-01

    The aim of the present study was to determine the impact of CYP2C19*17 on the pharmacokinetics and pharmacodynamics of the active metabolite of clopidogrel and the pharmacokinetics of proguanil. Thus, we conducted an open-label two-phase cross-over study in 31 healthy male volunteers (11 CYP2C19*1/*1, 11 CYP2C19*1/*17 and nine CYP2C19*17/*17). In Phase A, the pharmacokinetics of the derivatized active metabolite of clopidogrel (CAMD) and platelet function were determined after administration of a single oral dose of 600 mg clopidogrel (Plavix; Sanofi-Avensis, Horsholm, Denmark). In Phase B, the pharmacokinetics of proguanil and its metabolites cycloguanil and 4-chlorphenylbiguanide (4-CPB) were determined in 29 of 31 subjects after a single oral dose of 200 mg proguanil given as the combination drug Malarone (GlaxoSmithKline Pharma, Brondby, Denmark). Significant correlations were found between the area under the time-concentration curve (AUC0-∞ ) of CAMD and both the absolute ADP-induced P2Y12 receptor-activated platelet aggregation (r = -0.60, P = 0.0007) and the percentage inhibition of aggregation (r = 0.59, P = 0.0009). In addition, the CYP2C19*17/*17 and CYP2C19*1/*17 genotype groups had significantly higher percentage inhibition of platelet aggregation compared with the CYP2C19*1/*1 subjects (geometric mean percentage inhibition of 84%, 73% and 63%, respectively; P = 0.014). Neither the absolute ADP-induced P2Y12 receptor-activated platelet aggregation, exposure to CAMD nor the pharmacokinetic parameters of proguanil, cycloguanil and 4-CPB exhibited any significant differences among the genotype groups. In conclusion, carriers of CYP2C19*17 exhibit higher percentage inhibition of platelet aggregation, but do not have significantly lower absolute P2Y12 receptor-activated platelet aggregation or higher exposure to the active metabolite after a single oral administration of 600 mg clopidogrel. © 2014 Wiley Publishing Asia Pty Ltd.

  16. Multiple oral dosing of ketoconazole influences pharmacokinetics of quinidine after intravenous and oral administration in beagle dogs.

    PubMed

    Kuroha, M; Shirai, Y; Shimoda, M

    2004-10-01

    In this study, we investigated the effect of multiple oral dosing of ketoconazole (KTZ) on pharmacokinetics of quinidine (QN), a CYP3A substrate with low hepatic clearance, after i.v. and oral administration in beagle dogs. Four dogs were given p.o. KTZ for 20 days (200 mg, b.i.d.). QN was administered either i.v. (1 mg/kg) or p.o. (100 mg) 10 and 20 days before the KTZ treatment and 10 and 20 days after start of KTZ treatment. Multiple oral dosing of KTZ decreased significantly alpha and beta, whereas increased t(1/2beta), V(1), and k(a). The KTZ treatment also decreased significantly both total body clearance (Cl(tot)) and oral clearance (Cl(oral)). No significant change in bioavailability was observed in the presence of KTZ. Co-administration of KTZ increased C(max) of QN to about 1.5-fold. Mean resident time after i.v. administration (MRT(i.v.)), and after oral administration (MRT(p.o.)) of QN were prolonged to about twofold, whereas mean absorption time (MAT) was decreased to 50%. Volume of distribution at steady state (V(d(ss))) of QN was unchanged in the presence of KTZ. These alterations may be because of a decrease in metabolism of QN by inhibition of KTZ on hepatic CYP3A activity. In conclusion, multiple oral dosing of KTZ affected largely pharmacokinetics of QN after i.v. and oral administration in beagle dogs. Therefore, KTZ at a clinical dosing regimen may markedly change the pharmacokinetics of drugs primarily metabolized by CYP3A with low hepatic clearance in dogs. In clinical use, much attention should be paid to concomitant administration of KTZ with the drug when given either p.o. or i.v.

  17. Respiratory reflexes in spontaneously breathing anesthetized dogs in response to nasal administration of sevoflurane, isoflurane, or halothane.

    PubMed

    Mutoh, T; Kanamaru, A; Suzuki, H; Tsubone, H; Nishimura, R; Sasaki, N

    2001-03-01

    To characterize respiratory reflexes elicited by nasal administration of sevoflurane (Sevo), isoflurane (Iso), or halothane (Hal) in anesthetized dogs. 8 healthy Beagles. A permanent tracheostomy was created in each dog. Two to 3 weeks later, dogs were anesthetized by IV administration of thiopental and alpha-chloralose. Nasal passages were isolated such that inhalant anesthetics could be administered to the nasal passages while the dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of each anesthetic at 1.2 and 2.4 times the minimum alveolar concentration (MAC) and the full vaporizer setting (5%) were recorded. Reflexes in response to administration of 5% of each anesthetic also were recorded following administration of lidocaine to the nasal passages. Nasal administration of Sevo, Iso, and Hal induced an immediate ventilatory response characterized by a dose-dependent increase in expiratory time and a resulting decrease in expired volume per unit of time. All anesthetics had a significant effect, but for Sevo, the changes were smaller in magnitude. Responses to administration of each anesthetic were attenuated by administration of lidocaine to the nasal passages. Nasal administration of Sevo at concentrations generally used for mask induction of anesthesia induced milder reflex inhibition of breathing, presumably via afferent neurons in the nasal passages, than that of Iso or Hal. Respiratory reflexes attributable to stimulation of the nasal passages may contribute to speed of onset and could promote a smoother induction with Sevo, compared with Iso or Hal.

  18. Curcumin Inhibits STAT3 Signaling in the Colon of Dextran Sulfate Sodium-treated Mice

    PubMed Central

    Yang, Joon-Yeop; Zhong, Xiancai; Yum, Hye-Won; Lee, Hyung-Jun; Kundu, Joydeb Kumar; Na, Hye-Kyung; Surh, Young-Joon

    2013-01-01

    Turmeric (Curcuma longa L., Zingiberaceae) has a long history of use in medicine for the treatment of inflammatory conditions. One of the major constituents of turmeric is curcumin (diferuloylmethane), which is responsible for its characteristic yellow color. In the present study, we have examined the chemoprotective effects of curcuminon dextran sulfate sodium (DSS)-induced mouse colitis. For this purpose, we pre-treated male ICR mice with curcumin (0.1 or 0.25 mmol/kg in 0.05% carboxymethyl cellulose) by gavage for a week and then co-treated the animals with curcumin by gavage and 3% DSS in drinking water for another 7 days. Our study revealed that administration of curcumin significantly attenuated the severity of DSS-induced colitis and STAT3 signaling in mouse colon. The levels of the cell cycle regulators CDK4 and cylinD1 were significantly reduced by curcumin administration. Moreover, the expression of p53, which is an upstream regulator of the CDK4-cylinD1 complex, was inhibited by curcumin treatment. PMID:25337545

  19. D-sorbose inhibits disaccharidase activity and demonstrates suppressive action on postprandial blood levels of glucose and insulin in the rat.

    PubMed

    Oku, Tsuneyuki; Murata-Takenoshita, Yoko; Yamazaki, Yuko; Shimura, Fumio; Nakamura, Sadako

    2014-11-01

    In an attempt to develop D-sorbose as a new sweetener that could help in preventing lifestyle-related diseases, we investigated the inhibitory effect of D-sorbose on disaccharidase activity, using the brush border membrane vesicles of rat small intestines. The inhibitory effect was compared with that of L-sorbose and other rare sugars, and the small intestinal disaccharidases in rats was compared with that of humans as well. In humans and the small intestines of rats, d-sorbose strongly inhibited sucrase activity and weakly inhibited maltase activity. Inhibition by D-sorbose of sucrase activity was similar to that of L-arabinose, and the K(i) of D-sorbose was 7.5 mM. Inhibition by D-sorbose was very strong in comparison with that of L-sorbose (K(i), 60.8 mM), whereas inhibition of d-tagatose was between that of D-sorbose and L-sorbose. The inhibitory mode of D-sorbose for sucrose and maltase was uncompetitive, and that of L-sorbose was competitive. To determine a suppressive effect on postprandial blood levels of glucose and insulin via inhibition of sucrase activity, sucrose solution with or without D-sorbose was administered to rats. Increments in the blood levels of glucose and insulin were suppressed significantly after administration of sucrose solution with D-sorbose to rats, in comparison to administration of sucrose solution without D-sorbose. In contrast, the suppressive effect of L-sorbose on postprandial blood levels of glucose and insulin was very weak. These results suggest that D-sorbose may have an inhibitory effect on disaccharidase activity and could be used as a sweetener to suppress the postprandial elevation of blood levels of glucose and insulin. The use of D-sorbose as a sweetener may contribute to the prevention of lifestyle-related diseases, such as type 2 diabetes mellitus. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Relative contributions of pituitary-adrenal hormones to the ontogeny of behavioral inhibition in the rat.

    PubMed

    Takahashi, L K; Kim, H

    1995-04-01

    Recent investigations revealed that adrenalectomized (ADX) rat pups exhibit deficits in behavioral inhibition. Furthermore, administration of exogenous corticosterone (CORT) restores behavioral inhibition in ADX pups. Although these studies suggest that CORT has an important role in the development of behavioral inhibition, the relative behavioral effects of elevated pituitary hormone secretion induced by ADX are not known. Therefore, experiments were conducted to assess the potential behavioral effects of elevated adrenocorticotropin (ACTH) secretion induced by ADX and to further evaluate the contribution of endogenous CORT to the development of behavioral inhibition. In Experiment 1., we verified that 10-day-old ADX rats exhibit high levels of plasma ACTH throughout the preweaning period associated with the development of behavioral inhibition. In Experiment 2, 10-day-old pups were hypophysectomized (HYPOX) and ADX and were compared behaviorally to sham-operated controls on day 14. When tested in the presence of an anesthetized unfamiliar adult male rat, HYPOX + ADX pups exhibited low levels of freezing accompanied by ultrasonic vocalizations. These pups also had reduced concentrations of plasma ACTH and CORT. In Experiment 3, 10-day-old pups were HYPOX and tested for behavioral inhibition on day 14. In comparison to sham-operated controls, HYPOX rats exhibited significantly lower levels of freezing and had reduced plasma concentrations of ACTH and CORT. Results demonstrate clearly that deficits in freezing occur even in the presence of low plasma ACTH concentrations. Therefore, elevated secretion of pituitary hormones is not a major factor that contributes to the ADX-induced deficits in behavioral inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Local administration of a cannabinoid agonist alters norepinephrine efflux in the rat frontal cortex.

    PubMed

    Page, M E; Oropeza, V C; Van Bockstaele, E J

    2008-01-24

    Delta(9)-tetrahydrocannabinol, the main psychoactive ingredient in marijuana, activates specific cannabinoid (CB) receptors to exert complex actions on modulatory neurotransmitters involved in attention and cognition. Previous research has demonstrated that systemic administration of the synthetic cannabinoid agonist, WIN 55,212-2, increases norepinephrine efflux in the frontal cortex. The distribution of CB1 receptors on noradrenergic fibers in the frontal cortex suggests this may be one potential site for the regulation of norepinephrine release. In the present study, we first examined the ability of a CB1 antagonist, applied locally in the frontal cortex of adult male Sprague-Dawley rats, to block the actions of systemic WIN 55,212-2. Pretreatment with SR 141716A (300 microM) significantly attenuated the excitatory effects of WIN 55,212-2 (15 mg/kg, i.p.). Next, the impact of direct perfusion of WIN 55,212-2 into the frontal cortex on extracellular norepinephrine efflux was measured. Direct application of WIN 55,212-2 (100 microM) into the frontal cortex elicited a significant increase in extracellular norepinephrine efflux suggesting that activation of cortical cannabinoid receptors contributes to alterations in norepinephrine levels in this brain region. Finally, local administration of SR 141716A followed by local administration of WIN 55,212-2 revealed a paradoxical inhibition of norepinephrine efflux.

  2. Selective inhibition of phosphodiesterase 5 enhances glutamatergic synaptic plasticity and memory in mice.

    PubMed

    Uthayathas, Subramaniam; Parameshwaran, Kodeeswaran; Karuppagounder, Senthilkumar S; Ahuja, Manuj; Dhanasekaran, Muralikrishnan; Suppiramaniam, Vishnu

    2013-11-01

    Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  3. Daily Administration of Short-Acting Liothyronine Is Associated with Significant Triiodothyronine Excursions and Fails to Alter Thyroid-Responsive Parameters

    PubMed Central

    Burman, Kenneth D.

    2016-01-01

    Background: Although most studies of levothyroxine–liothyronine combination therapy employ once-daily hormone administration, the kinetics of once-daily liothyronine have been studied infrequently. The aim of this study was to document both the peak and trough serum triiodothyronine (T3) levels that occur with once-daily liothyronine administration, along with changes in thyroid-responsive parameters. Methods: Participants with hypothyroidism were studied prospectively at an academic institution. Patients were switched from levothyroxine monotherapy to liothyronine monotherapy with 15 μg liothyronine for two weeks, and then continued liothyronine at doses of 30–45 μg for a further four weeks in an open-label, single-arm study. Weekly trough levels of T3 were documented. In addition, hourly T3 concentrations immediately following liothyronine tablet administration were documented for eight hours during the sixth week of therapy. Serum thyrotropin (TSH) and free thyroxine (fT4) concentrations were documented. Biochemical markers, markers of energy metabolism, anthropometric parameters, well-being, and hyperthyroid symptoms were also assessed. Results: Mean serum TSH levels increased from 1.56 ± 0.81 mIU/L at baseline to 5.90 ± 5.74 mIU/L at two weeks and 3.84 ± 3.66 mIU/L at six weeks. Trough T3 levels decreased from 99.5 ± 22.9 to 91.9 ± 40.2 at two weeks and recovered to 96.1 ± 32.2 at six weeks. The peak T3 concentration after dosing of liothyronine during week 6 was 292.8 ± 152.3 ng/dL. fT4 levels fell once levothyroxine was discontinued and plateaued at 0.44 ng/dL at week 4. The sex hormone binding globulin (SHBG) concentration decreased at week 2 (p = 0.002). Hyperthyroid symptoms and SF36-PCS scores increased significantly at weeks 4–5 of liothyronine therapy (p = 0.04–0.005). Preference for liothyronine therapy increased from 6% to 39% over the study period. Conclusions: Once-daily dosing of

  4. Administrators' Perceptions of Factors Related to Student Retention at Colleges with a Significant Black Student Enrollment Affiliated with the Association for Biblical Higher Education

    ERIC Educational Resources Information Center

    Wilson, Wesley B.

    2013-01-01

    This study described and explored the factors perceived as relevant to student retention by administrators at colleges and universities with significant Black student populations. The sample was 31 institutions affiliated with the Association for Biblical Higher Education (ABHE) that had Black student enrollment of 20% or more. The study sought to…

  5. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo.

    PubMed

    Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-10-01

    We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.

  6. Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism

    PubMed Central

    Peng, Xiao-Qing; Li, Xia; Gilbert, Jeremy G.; Pak, Arlene C.; Ashby, Charles R.; Brodie, Jonathan D.; Dewey, Stephen L.; Gardner, Eliot L.; Xi, Zheng-Xiong

    2008-01-01

    Relapse to drug use is a core feature of addiction. Previous studies demonstrate that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, attenuates the acute rewarding effects of cocaine and other addictive drugs. We here report that systemic administration of GVG (25–300 mg/kg) dose-dependently inhibits cocaine- or sucrose-induced reinstatement of reward-seeking behavior in rats. In vivo microdialysis data indicated that the same doses of GVG dose-dependently elevate extracellular GABA levels in the nucleus accumbens (NAc). However, GVG, when administered systemically or locally into the NAc, failed to inhibit either basal or cocaine-priming enhanced NAc dopamine in either naïve rats or cocaine extinction rats. These data suggest that: (1) GVG significantly inhibits cocaine- or sucrose-triggered reinstatement of reward-seeking behavior; and (2) a GABAergic-, but not dopaminergic-, dependent mechanism may underlie the antagonism by GVG of cocaine-triggered reinstatement of drug-seeking behavior, at least with respect to GVG's action on the NAc. PMID:18063319

  7. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism.

    PubMed Central

    Shedlofsky, S I; Israel, B C; McClain, C J; Hill, D B; Blouin, R A

    1994-01-01

    In experimental animals, injection of gram-negative endotoxin (LPS) decreases hepatic cytochrome P450-mediated drug metabolism. To evaluate this phenomenon in a human model of gram-negative sepsis, LPS was administered on two consecutive days to healthy male volunteers during which time a cocktail of antipyrine (AP-250 mg), hexobarbital (HB-500 mg), and theophylline (TH-150 mg) was ingested and the apparent oral clearance of each drug determined. Each subject had a control drug clearance study with saline injections. In the first experiment, six subjects received the drug cocktail 0.5 h after the first dose of LPS. In the second experiment, another six subjects received the drug cocktail 0.5 h after the second dose of LPS. In both experiments, LPS caused the expected physiologic responses of inflammation including fever with increases in serum concentrations of TNF alpha, IL-1 beta, IL-6, and acute phase reactants. In the first experiment, only minor decreases in clearances of the probe drugs were observed (7-12%). However in the second experiment, marked decreases in the clearances of AP (35, 95% CI 18-48%), HB (27, 95% CI 14-34%), and TH (22, 95% CI 12-32%) were seen. The decreases in AP clearance correlated with initial peak values of TNF alpha (r = 0.82) and IL-6 (r = 0.86). These data show that in humans the inflammatory response to even a very low dose of LPS significantly decreases hepatic cytochrome P450-mediated drug metabolism and this effect evolves over a 24-h period. It is likely that septic patients with much higher exposures to LPS have more profound inhibition of drug metabolism. PMID:7989576

  8. Anti-inflammatory function of Withangulatin A by targeted inhibiting COX-2 expression via MAPK and NF-kappaB pathways.

    PubMed

    Sun, Lijuan; Liu, Jianwen; Cui, Daling; Li, Jiyu; Yu, Youjun; Ma, Lei; Hu, Lihong

    2010-02-15

    Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti-tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti-inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose- and time-dependent manner and inhibited pro-inflammation cytokines (IL-2, IFN-gamma, and IL-6) dramatically. Moreover, WA targeted inhibited COX-2 expression mediated by MAPKs and NF-kappaB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX-1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro-inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX-2 expression via MAPKs and NF-kappaB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti-inflammatory agent. (c) 2009 Wiley-Liss, Inc.

  9. Effects of long-term administration of carprofen on healing of a tibial osteotomy in dogs.

    PubMed

    Ochi, Hiroki; Hara, Yasushi; Asou, Yoshinori; Harada, Yasuji; Nezu, Yoshinori; Yogo, Takuya; Shinomiya, Kenichi; Tagawa, Masahiro

    2011-05-01

    To evaluate effects of long-term administration of carprofen on healing of a tibial osteotomy in dogs. 12 healthy female Beagles. A mid-diaphyseal transverse osteotomy (stabilized with an intramedullary pin) of the right tibia was performed in each dog. The carprofen group (n = 6 dogs) received carprofen (2.2 mg/kg, PO, q 12 h) for 120 days; the control group (6) received no treatment. Bone healing and change in callus area were assessed radiographically over time. Dogs were euthanized 120 days after surgery, and tibiae were evaluated biomechanically and histologically. The osteotomy line was not evident in the control group on radiographs obtained 120 days after surgery. In contrast, the osteotomy line was still evident in the carprofen group. Callus area was significantly less in the carprofen group, compared with the area in the control group, at 20, 30, and 60 days after surgery. At 120 days after surgery, stiffness, elastic modulus, and flexural rigidity in the carprofen group were significantly lower than corresponding values in the control group. Furthermore, histologic evaluation revealed that the cartilage area within the callus in the carprofen group was significantly greater than that in the control group. Long-term administration of carprofen appeared to inhibit bone healing in dogs that underwent tibial osteotomy. We recommend caution for carprofen administration when treating fractures that have delays in healing associated with a reduction in osteogenesis as well as fractures associated with diseases that predispose animals to delays of osseous repair.

  10. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma

    PubMed Central

    Alessandrini, Francesca; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Russkamp, Dennis; Chaker, Adam; Ollert, Markus; Gutermuth, Jan; Schmidt-Weber, Carsten B.

    2017-01-01

    Background Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Objective Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. Methods In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. Results AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. Conclusions This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis. PMID:28570653

  11. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma.

    PubMed

    Aguilar-Pimentel, Antonio; Graessel, Anke; Alessandrini, Francesca; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Russkamp, Dennis; Chaker, Adam; Ollert, Markus; Blank, Simon; Gutermuth, Jan; Schmidt-Weber, Carsten B

    2017-01-01

    Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis.

  12. Effects of efonidipine on the pharmacokinetics and pharmacodynamics of repaglinide: possible role of CYP3A4 and P-glycoprotein inhibition by efonidipine.

    PubMed

    Li, Cheng; Choi, Dong-Hyun; Choi, Jun-Shik

    2012-02-01

    The purpose of this study was to investigate the effects of efonidipine on the pharmacokinetics and pharmacodynamics of repaglinide in rats. The pharmacokinetic parameters of repaglinide and blood glucose concentrations were also determined in rats after oral (0.5 mg/kg) and intravenous (0.2 mg/kg) administration of repaglinide to rats in the presence and absence of efonidipine (1 and 3 mg/kg). Efonidipine inhibited CYP3A4 activity with an IC(50) value of 0.08 μM, and efonidipine significantly inhibited P-gp activity in a concentration-dependent manner. Compared to the oral control group, efonidipine significantly increased the area under the plasma concentration-time curve (AUC(0-∞)) (P < 0.01 for 3 mg/kg) and the peak plasma concentration (C (max)) (P < 0.05 for 3 mg/kg) of repaglinide by 51.3 and 28.6%, respectively. Efonidipine also significantly (P < 0.01 for 3 mg/kg) increased the absolute bioavailability (AB) of repaglinide by 51.5% compared to the oral control group (33.6%). Moreover, efonidipine significantly increased (P < 0.05 for 3 mg/kg) the AUC(0-∞) of intravenously administered repaglinide. Consistent with these kinetic alterations, the hypoglycemic effect in the concurrent administration group was more pronounced than that in the control group (i.e., repaglinide alone) when the drug was given orally. A pharmacokinetic/dynamic model involving 2-compartment open model with inhibition in absorption/elimination and an indirect response model was apparently sufficient in estimating the concentration-time and effect-time profiles of repaglinide with or without efonidipine. Present study has raised the awareness of potential drug interactions by concomitant use of efonidipine with repaglinide, since efonidipine may alter the absorption and/or elimination of repaglinide by the inhibition of CYP3A4 and P-gp efflux pump. Therefore, the concurrent use of efonidipine with repaglinide may require a close monitoring for potential drug interactions.

  13. Halloysite Nanotubes-Induced Al Accumulation and Fibrotic Response in Lung of Mice after 30-Day Repeated Oral Administration.

    PubMed

    Wang, Xue; Gong, Jiachun; Rong, Rui; Gui, Zongxiang; Hu, Tingting; Xu, Xiaolong

    2018-03-21

    Natural halloysite (Al 2 Si 2 O 5 (OH) 4 · nH 2 O) nanotubes (HNT) are clay materials with hollow tubular structure and are widely applied in many fields. Many in vitro studies indicate that HNTs exhibit a high level of biocompatibility; however, the in vivo toxicity of HNTs remains unclear. In this study, the biodistribution and pulmonary toxicity of the purified HNTs in mice were investigated after intragastric administration for 30 days. HNTs have high stability in biological conditions. Oral administration of HNTs caused significant Al accumulation predominantly in the lung with relative slight effects on Si biodistribution. Oral administration of HNTs stimulated the growth of the mice at low dose (5 mg/kg BW) with no pulmonary toxicity but inhibited the mouse growth and resulted in oxidative stress and inflammation in lung at high dose (50 mg/kg BW). In addition, oral HNTs at high dose could be absorbed from the gastrointestinal tract and deposited in lung and could also induce pulmonary fibrosis.

  14. Competitive inhibition of leptin signaling results in amelioration of liver fibrosis through modulation of stellate cell function.

    PubMed

    Elinav, Eran; Ali, Mohammad; Bruck, Rafi; Brazowski, Eli; Phillips, Adam; Shapira, Yami; Katz, Meirav; Solomon, Gila; Halpern, Zamir; Gertler, Arieh

    2009-01-01

    Leptin signaling is involved in T-cell polarization and is required for profibrotic function of hepatic stellate cells (HSCs). Leptin-deficient ob/ob mice do not develop liver fibrosis despite the presence of severe long-standing steatohepatitis. Here, we blocked leptin signaling with our recently generated mouse leptin antagonist (MLA), and examined the effects on chronic liver fibrosis in vivo using the chronic thioacetamide (TAA) fibrosis model, and in vitro using freshly-isolated primary HSCs. In the chronic TAA fibrosis model, leptin administration was associated with significantly enhanced liver disease and a 100% 5-week to 8-week mortality rate, while administration or coadministration of MLA markedly improved survival, attenuated liver fibrosis, and reduced interferon gamma (IFN-gamma) levels. No significant changes in weight, serum cholesterol, or triglycerides were noted. In vitro administration of rat leptin antagonist (RLA), either alone or with leptin, to rat primary HSCs reduced leptin-stimulated effects such as increased expression of alpha-smooth muscle actin (alpha-SMA), and activation of alpha1 procollagen promoter. Inhibition of leptin-enhanced hepatic fibrosis may hold promise as a future antifibrotic therapeutic modality.

  15. Ganoderma lucidum (Reishi) suppresses proliferation and migration of breast cancer cells via inhibiting Wnt/β-catenin signaling.

    PubMed

    Zhang, Yu

    2017-07-08

    The medical mushroom Ganoderma lucidum (Reishi), a traditional Chinese medicine, has exhibited a promising anti-cancer effect. However, the molecular mechanism of its action on cancer cells remains unclear. Aberrant activation of Wnt/β-catenin signaling pathway is the cause of many types of cancer, including breast cancer. Here we investigated the effect of Reishi on Wnt/β-catenin signaling pathway and elucidated the molecular mechanism of its function in inhibiting breast cancer cells. We found that Reishi blocked Wnt/β-catenin signaling through inhibiting the phosphorylation of Wnt co-receptor LRP6. In human (MDA-MB-231) and mouse (4T1) breast cancer cell lines, Reishi significantly decreased the phosphorylation of LRP6 and suppressed Wnt3a-activated Wnt target gene Axin2 expression. Administration of Reishi inhibited Wnt-induced hyper-proliferation of breast cancer cells and MDA-MB-231 cell migration. Our results provide evidence that Reishi suppresses breast cancer cell growth and migration through inhibiting Wnt/β-catenin signaling, indicating that Reishi may be a potential natural inhibitor for breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Oral administration of Lactococcus chungangensis inhibits 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in NC/Nga mice.

    PubMed

    Choi, Woo Jin; Konkit, Maytiya; Kim, Yena; Kim, Mi-Kyung; Kim, Wonyong

    2016-09-01

    Interest is increasing in the potentially beneficial role of probiotics in the prevention and treatment of atopic diseases. In this study, we investigated the protective effects of Lactococcus chungangensis CAU 28(T) against atopic dermatitis using murine macrophage RAW 264.7 cells, human keratinocyte HaCaT cells, human mast cell line HMC-1 cells, and a 2,4-dinitrochlorobenzene-induced atopic dermatitis model (NC/Nga mice). The results showed that L. chungangensis CAU 28(T) exhibited potent antiinflammatory activity by inhibiting the production of the proinflammatory mediators nitric oxide and prostaglandin E2 in lipopolysaccharide-stimulated RAW 264.7 cells. Treatment with L. chungangensis CAU 28(T) reduced the release of β-hexosaminidase and histamine in HMC-1 cells stimulated with mast cell activator compound 48/80. In addition, the back skin and ears of NC/Nga mice exhibited reduced histological manifestations of atopic skin lesions such as erosion, hyperplasia of the epidermis and dermis, and inflammatory cell infiltration. Oral administration of L. chungangensis CAU 28(T) suppressed the production of IL-4, IL-5, IL-12, IFN-γ, tumor necrosis factor-α, and thymus- and activation-regulated chemokine (TARC) in skin lesions, indicating that it strongly drives the local immune system with efficacy comparable to that of tacrolimus, a topical immunomodulatory drug used for the treatment of atopic dermatitis. The findings indicate that L. chungangensis CAU 28(T) could be a novel probiotic candidate for controlling the symptoms of atopic dermatitis. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Co-administration of water containing magnesium ion prevents loxoprofen-induced lesions in gastric mucosa of adjuvant-induced arthritis rat.

    PubMed

    Nagai, Noriaki; Takeda, Atsushi; Itanami, Yuri; Ito, Yoshimasa

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) comprise one of the most frequently used classes of medicines in the world; however, NSAIDs have significant side effects, such as gastroenteropathy, and rheumatoid arthritis patients taking NSAIDs are more susceptible to NSAID-induced gastric lesions as compared to patients with other diseases. In Asian countries, loxoprofen has been used clinically for many years as a standard NSAID. We demonstrate the preventive effect of the co-administration of water containing magnesium ion (magnesium water, 1-200 µg/kg) on the ulcerogenic response to loxoprofen in adjuvant-induced arthritis (AA) rats. Oral administration of loxoprofen (100 mg/kg) caused hemorrhagic lesions in the gastric mucosa of AA rats 14 d after adjuvant injection, and, following loxoprofen administration, the lesion score of AA rats was significantly higher than that of normal rats. The expression of inducible nitric oxide synthase (iNOS) mRNA and nitric oxide (NO) production in the gastric mucosa of AA rats were also increased by the administration of loxoprofen, and the increase in lesions and NO were prevented by the administration of aminoguanidine, an iNOS inhibitor. The co-administration of magnesium water decreased the ulcerogenic response to loxoprofen in AA rats. In addition, the co-administration of magnesium water attenuated the increase in iNOS mRNA expression and NO production in AA rats receiving loxoprofen. These results suggest that the oral co-administration of magnesium water to AA rats has a potent preventive effect on the ulcerogenic response to loxoprofen, probably by inhibiting the rise in iNOS and NO levels in the gastric mucosa.

  18. 75 FR 18014 - Federal Highway Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of Availability regarding a Finding of No Significant Impact (FONSI): U.S.... FOR FURTHER INFORMATION CONTACT: Federal Highway Administration, Kentucky Division: Mr. Greg Rawlings...

  19. Acute LSD effects on response inhibition neural networks.

    PubMed

    Schmidt, A; Müller, F; Lenz, C; Dolder, P C; Schmid, Y; Zanchi, D; Lang, U E; Liechti, M E; Borgwardt, S

    2017-10-02

    Recent evidence shows that the serotonin 2A receptor (5-hydroxytryptamine2A receptor, 5-HT2AR) is critically involved in the formation of visual hallucinations and cognitive impairments in lysergic acid diethylamide (LSD)-induced states and neuropsychiatric diseases. However, the interaction between 5-HT2AR activation, cognitive impairments and visual hallucinations is still poorly understood. This study explored the effect of 5-HT2AR activation on response inhibition neural networks in healthy subjects by using LSD and further tested whether brain activation during response inhibition under LSD exposure was related to LSD-induced visual hallucinations. In a double-blind, randomized, placebo-controlled, cross-over study, LSD (100 µg) and placebo were administered to 18 healthy subjects. Response inhibition was assessed using a functional magnetic resonance imaging Go/No-Go task. LSD-induced visual hallucinations were measured using the 5 Dimensions of Altered States of Consciousness (5D-ASC) questionnaire. Relative to placebo, LSD administration impaired inhibitory performance and reduced brain activation in the right middle temporal gyrus, superior/middle/inferior frontal gyrus and anterior cingulate cortex and in the left superior frontal and postcentral gyrus and cerebellum. Parahippocampal activation during response inhibition was differently related to inhibitory performance after placebo and LSD administration. Finally, activation in the left superior frontal gyrus under LSD exposure was negatively related to LSD-induced cognitive impairments and visual imagery. Our findings show that 5-HT2AR activation by LSD leads to a hippocampal-prefrontal cortex-mediated breakdown of inhibitory processing, which might subsequently promote the formation of LSD-induced visual imageries. These findings help to better understand the neuropsychopharmacological mechanisms of visual hallucinations in LSD-induced states and neuropsychiatric disorders.

  20. Establishment of a schizophrenic animal model through chronic administration of MK-801 in infancy and social isolation in childhood.

    PubMed

    Liu, Weiqing; Wang, Xiuyan; Hong, Wenjuan; Wang, Dong; Chen, Xiaogang

    2017-02-01

    Although an increasing amount of evidence supports a "two-hit" hypothesis for the neurodevelopmental model of schizophrenia, there has been no development in animal models to test this hypothesis. An animal model was established by chronic administration of 0.1, 0.3, and 0.5mg/kg MK-801 in P7-P21 rats followed by four weeks of social isolation in childhood and then five days of social housing. Animal behaviors were measured by the open field (OF) test, the novel object recognition (NOR) test, the prepulse inhibition (PPI) test, and the elevated plus maze (EPM) test. We found a significant decrease in the NOR index in adolescent rats compared to saline control rats when administering 0.5mg/kg of MK-801 (P=0.02). We found that social isolation had no significant effect on NOR index, though social isolation significantly increased the total distance traveled and significantly decreased the resting time in adolescent rats in the OF test (P<0.001 and P=0.003, respectively). In contrast, we observed that MK-801 administration showed no significant effects on either total distance traveled or resting time. Both MK-801 administration and social isolation had no significant effect on the percent of PPI and startle amplitudes in adolescent rats. Social isolation significantly reduced the open arm entries in adolescent rats in the EPM test (P=0.023), but it did not reduce the ratio to enter the open arms and the stay time in open arm. Administration of MK-801 showed no significant effect on the indexes of entering the open arms in the EPM test on adolescent rats. MK-801 intervention in infancy is associated with the damage of long-term visual memory, whereas social isolation in childhood is associated with the increased spontaneous activity and anxiety levels. Administration of MK-801 in infancy and social isolation in childhood are two independent factors on the neurodevelopmental defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain.

    PubMed

    Makino, Hiroto; Seki, Shoji; Yahara, Yasuhito; Shiozawa, Shunichi; Aikawa, Yukihiko; Motomura, Hiraku; Nogami, Makiko; Watanabe, Kenta; Sainoh, Takeshi; Ito, Hisakatsu; Tsumaki, Noriyuki; Kawaguchi, Yoshiharu; Yamazaki, Mitsuaki; Kimura, Tomoatsu

    2017-12-05

    Intervertebral disc (IVD) degeneration is a major cause of low back pain. The transcription factor c-Fos/Activator Protein-1 (AP-1) controls the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) that contribute to the pathogenesis IVD degeneration. We investigated the effects of inhibition of c-Fos/AP-1 on IVD degeneration and associated pain. A selective inhibitor, T-5224, significantly suppressed the interleukin-1β-induced up-regulation of Mmp-3, Mmp-13 and Adamts-5 transcription in human nucleus pulposus cells and in a mouse explant culture model of IVD degeneration. We used a tail disc percutaneous needle puncture method to further assess the effects of oral administration of T-5224 on IVD degeneration. Analysis of disc height, T2-magnetic resonance imaging (MRI) findings, and histology revealed that IVD degeneration was significantly mitigated by T-5224. Further, oral administration of T-5224 ameliorated pain as indicated by the extended tail-flick latency in response to heat stimulation of rats with needle-puncture-induced IVD degeneration. These findings suggest that the inhibition of c-Fos/AP-1 prevents disc degeneration and its associated pain and that T-5224 may serve as a drug for the prevention of IVD degeneration.

  2. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells

    PubMed Central

    Kósa, János P; Horváth, Péter; Wölfling, János; Kovács, Dóra; Balla, Bernadett; Mátyus, Péter; Horváth, Evelin; Speer, Gábor; Takács, István; Nagy, Zsolt; Horváth, Henrik; Lakatos, Péter

    2013-01-01

    AIM: The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological half-life of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS: We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by real-time reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS: In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by co-administration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION: These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC. PMID

  3. Stimulatory effect of oral administration of tea, coffee or caffeine on UVB-induced apoptosis in the epidermis of SKH-1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conney, Allan H.; Zhou, Sherry; Lee Maojung

    Oral administration of green tea or a caffeine solution, but not decaffeinated green tea, inhibits UVB-induced complete carcinogenesis in SKH-1 mice. Oral administration of green tea, coffee or a caffeine solution for 2 weeks enhanced UVB-induced increases in apoptosis in the epidermis, but these treatments had no effect in non-UVB treated normal epidermis. Our results suggest that administration of green tea, coffee and caffeine may inhibit UVB-induced carcinogenesis - at least in part - by enhancing UVB-induced apoptosis. Plasma levels of caffeine observed after its oral administration at cancer-preventive dose levels were within the range observed in moderate coffee drinkers.more » Topical applications of caffeine to mice previously treated with UVB for 20 weeks (high risk mice without tumors) inhibited the formation of tumors and stimulated apoptosis in the tumors but not in areas of the epidermis away from tumors. The selective effects of caffeine administration to stimulate UVB-induced apoptosis or apoptosis in tumors but not in normal epidermis or in areas of the epidermis away from tumors is of considerable interest, but the reasons for the selective effects of caffeine on apoptosis in DNA damaged tissues are unknown. Further studies are needed to determine mechanisms of these effects of caffeine and to determine the effects of caffeine administration on sunlight-induced actinic keratoses and squamous cell carcinomas in humans.« less

  4. Mining the nucleus accumbens proteome for novel targets of alcohol self-administration in male C57BL/6J mice.

    PubMed

    Faccidomo, Sara; Swaim, Katarina S; Saunders, Briana L; Santanam, Taruni S; Taylor, Seth M; Kim, Michelle; Reid, Grant T; Eastman, Vallari R; Hodge, Clyde W

    2018-06-01

    There is a clear need for discovery of effective medications to treat behavioral pathologies associated with alcohol addiction, such as chronic drinking. The goal of this preclinical study was to assess effects of chronic alcohol drinking on the nucleus accumbens (NAcb) proteome to identify and validate novel targets for medications development. Two-dimensional difference in-gel electrophoresis (2D-DIGE) with matrix-assisted laser desorption ionization tandem time-of-flight (MALDI-TOF/TOF) was used to assess effects of chronic voluntary home-cage (24-h access) alcohol drinking on the NAcb proteome of C57BL/6J mice. To extend these findings to a model of alcohol self-administration and reinforcement, we investigated potential regulation of the positive reinforcing effects of alcohol by the target protein glutathione S-transferase Pi 1 (GSTP1) using a pharmacological inhibition strategy in mice trained to self-administer alcohol or sucrose. Expression of 52 unique proteins in the NAcb was changed by chronic alcohol drinking relative to water control (23 upregulated, 29 downregulated). Ingenuity Pathway Analysis showed that alcohol drinking altered an array of protein networks associated with neurological and psychological disorders, molecular and cellular functions, and physiological systems and development. DAVID functional annotation analysis identified 9 proteins (SNCA, GSTP1, PRDX3, PPP3R1, EIF5A, PHB, PEBP1/RKIP, GAPDH, AND SOD1) that were significantly overrepresented in a functional cluster that included the Gene Ontology categories "response to alcohol" and "aging." Immunoblots confirmed changes in Pebp1 (RKIP) and GSTP1 in NAcb with no change in amygdala or frontal cortex, suggesting anatomical specificity. Systemic inhibition of GSTP1 with Ezatiostat (0-30 mg/kg, i.p.) dose-dependently reduced the reinforcing effects of alcohol as measured by operant self-administration, in the absence of motor effects. Sucrose self-administration was also reduced but in a

  5. Inhibition of deprivation-induced food intake by GABAA antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms

    PubMed Central

    Kamatchi, Ganesan L.; Rathanaswami, Palaniswami

    2012-01-01

    The role of gamma amino butyric acid A receptors/neurons of the hypothalamic, endocrine and alimentary systems in the food intake seen in hunger was studied in 20 h food-deprived rats. Food deprivation decreased blood glucose, serum insulin and produced hyperphagia. The hyperphagia was inhibited by subcutaneous or ventromedial hypothalamic administration of gamma amino butyric acid A antagonists picrotoxin or bicuculline. Although results of blood glucose was variable, insulin level was increased by picrotoxin or bicuculline. In contrast, lateral hypothalamic administration of these agents failed to reproduce the above changes. Subcutaneous administration of picrotoxin or bicuculline increased gastric content, decreased gastric motility and small bowel transit. In contrast, ventromedial or lateral hypothalamic administration of picrotoxin or bicuculline failed to alter the gastric content but decreased the small bowel transit. The results of alimentary studies suggest that gamma amino butyric acid neurons of both ventromedial and lateral hypothalamus selectively regulate small bowel transit but not the gastric content. It may be concluded that ventromedial hypothalamus plays a dominant role in the regulation of food intake and that picrotoxin or bicuculline inhibited food intake by inhibiting gamma amino butyric acid receptors of the ventromedial hypothalamus, increasing insulin level and decreasing the gut motility. PMID:22798708

  6. Finasteride inhibited brain dopaminergic system and open-field behaviors in adolescent male rats.

    PubMed

    Li, Li; Kang, Yun-Xiao; Ji, Xiao-Ming; Li, Ying-Kun; Li, Shuang-Cheng; Zhang, Xiang-Jian; Cui, Hui-Xian; Shi, Ge-Ming

    2018-02-01

    Finasteride inhibits the conversion of testosterone to dihydrotestosterone. Because androgen regulates dopaminergic system in the brain, it could be hypothesized that finasteride may inhibit dopaminergic system. The present study therefore investigates the effects of finasteride in adolescent and early developmental rats on dopaminergic system, including contents of dopamine and its metabolites (dihydroxy phenyl acetic acid and homovanillic acid) and tyrosine hydroxylase expressions both at gene and protein levels. Meanwhile, open-field behaviors of the rats are examined because of the regulatory effect of dopaminergic system on the behaviors. Open-field behaviors were evaluated by exploratory and motor behaviors. Dopamine and its metabolites were assayed by liquid chromatography-mass spectrometry. Tyrosine hydroxylase mRNA and protein expressions were determined by real-time qRT-PCR and western blot, respectively. It was found that in adolescent male rats, administration of finasteride at doses of 25 and 50 mg/kg for 14 days dose dependently inhibited open-field behaviors, reduced contents of dopamine and its metabolites in frontal cortex, hippocampus, caudate putamen, nucleus accumbens, and down-regulated tyrosine hydroxylase mRNA and protein expressions in substantia nigra and ventral tegmental area. However, there was no significant change of these parameters in early developmental rats after finasteride treatment. These results suggest that finasteride inhibits dopaminergic system and open-field behaviors in adolescent male rats by inhibiting the conversion of testosterone to dihydrotestosterone, and imply finasteride as a potential therapeutic option for neuropsychiatric disorders associated with hyperactivities of dopaminergic system and androgen. © 2017 John Wiley & Sons Ltd.

  7. Level of Inhibition in Trained Secondary School Teachers: Evidence from Pakistan

    ERIC Educational Resources Information Center

    Rafiq, Fauzia; Sharjeel, Yousuf

    2014-01-01

    The study found that the inhibition amongst trained secondary school teachers in using learned teaching methodologies is caused due to the lack of content knowledge, insufficient support from the administration, scarce continuous professional development opportunities, unsupportive environment, large class size, inefficiency to integrate…

  8. The Selective PI3K Inhibitor XL147 (SAR245408) Inhibits Tumor Growth and Survival and Potentiates the Activity of Chemotherapeutic Agents in Preclinical Tumor Models.

    PubMed

    Foster, Paul; Yamaguchi, Kyoko; Hsu, Pin P; Qian, Fawn; Du, Xiangnan; Wu, Jianming; Won, Kwang-Ai; Yu, Peiwen; Jaeger, Christopher T; Zhang, Wentao; Marlowe, Charles K; Keast, Paul; Abulafia, Wendy; Chen, Jason; Young, Jenny; Plonowski, Artur; Yakes, F Michael; Chu, Felix; Engell, Kelly; Bentzien, Frauke; Lam, Sanh T; Dale, Stephanie; Yturralde, Olivia; Matthews, David J; Lamb, Peter; Laird, A Douglas

    2015-04-01

    Dysregulation of PI3K/PTEN pathway components, resulting in hyperactivated PI3K signaling, is frequently observed in various cancers and correlates with tumor growth and survival. Resistance to a variety of anticancer therapies, including receptor tyrosine kinase (RTK) inhibitors and chemotherapeutic agents, has been attributed to the absence or attenuation of downregulating signals along the PI3K/PTEN pathway. Thus, PI3K inhibitors have therapeutic potential as single agents and in combination with other therapies for a variety of cancer indications. XL147 (SAR245408) is a potent and highly selective inhibitor of class I PI3Ks (α, β, γ, and δ). Moreover, broad kinase selectivity profiling of >130 protein kinases revealed that XL147 is highly selective for class I PI3Ks over other kinases. In cellular assays, XL147 inhibits the formation of PIP3 in the membrane, and inhibits phosphorylation of AKT, p70S6K, and S6 in multiple tumor cell lines with diverse genetic alterations affecting the PI3K pathway. In a panel of tumor cell lines, XL147 inhibits proliferation with a wide range of potencies, with evidence of an impact of genotype on sensitivity. In mouse xenograft models, oral administration of XL147 results in dose-dependent inhibition of phosphorylation of AKT, p70S6K, and S6 with a duration of action of at least 24 hours. Repeat-dose administration of XL147 results in significant tumor growth inhibition in multiple human xenograft models in nude mice. Administration of XL147 in combination with chemotherapeutic agents results in antitumor activity in xenograft models that is enhanced over that observed with the corresponding single agents. ©2015 American Association for Cancer Research.

  9. Aristolochia Manshuriensis Kom Inhibits Adipocyte Differentiation by Regulation of ERK1/2 and Akt Pathway

    PubMed Central

    Kwak, Dong Hoon; Lee, Ji-Hye; Kim, Taesoo; Ahn, Hyo Sun; Cho, Won-Kyung; Ha, Hyunil; Hwang, Youn-Hwan; Ma, Jin Yeul

    2012-01-01

    Aristolochia manshuriensis Kom (AMK) is a traditional medicinal herb used for the treatment of arthritis, rheumatism, hepatitis, and anti-obesity. Because of nephrotoxicity and carcinogenicity of AMK, there are no pharmacological reports on anti-obesity potential of AMK. Here, we showed AMK has an inhibitory effect on adipocyte differentiation of 3T3-L1 cells along with significantly decrease in the lipid accumulation by downregulating several adipocyte-specific transcription factors including peroxisome proliferation-activity receptor γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBP-α) and C/EBP-β, which are critical for adipogenesis in vitro. AMK also markedly activated the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathway including Ras, Raf1, and mitogen-activated protein kinase kinase 1 (MEK1), and significantly suppressed Akt pathway by inhibition of phosphoinositide-dependent kinase 1 (PDK1). Aristolochic acid (AA) and ethyl acetate (EtOAc) fraction of AMK with AA were significantly inhibited TG accumulation, and regulated two pathway (ERK1/2 and Akt) during adipocyte differentiation, and was not due to its cytotoxicity. These two pathways were upstream of PPAR-γ and C/EBPα in the adipogenesis. In addition, gene expressions of secreting factors such as fatty acid synthase (FAS), adiponectin, lipopreotein lipase (LPL), and aP2 were significantly inhibited by treatment of AMK during adipogenesis. We used the high-fat diet (HFD)-induced obesity mouse model to determine the inhibitory effects of AMK on obesity. Oral administration of AMK (62.5 mg/kg/day) significantly decreased the fat tissue weight, total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C) concentration in the blood. The results of this study suggested that AMK inhibited lipid accumulation by the down-regulation of the major transcription factors of the adipogensis pathway including PPAR-γ and C/EBP-α through regulation of Akt pathway and ERK 1

  10. Intra-gastric pH following single oral administrations of rabeprazole and esomeprazole: double-blind cross-over comparison.

    PubMed

    Furuta, Kenji; Kohata, Yukie; Fujiwara, Yasuhiro; Sugimoto, Mitsushige; Uotani, Takahiro; Yamade, Mihoko; Sahara, Shu; Ichikawa, Hitomi; Furuta, Takahisa; Nio, Kenta; Iwakiri, Ryuichi; Inamori, Masahiko; Kawamura, Osamu; Kusano, Motoyasu; Kato, Mototsugu; Kawami, Noriyuki; Iwakiri, Katsuhiko; Takeuchi, Toshihisa; Higuchi, Kazuhide; Aimi, Masahito; Naora, Kohji; Fujimoto, Kazuma; Arakawa, Tetsuo; Kinoshita, Yoshikazu

    2014-11-01

    Comparisons between the acid inhibitory effects of rabeprazole and esomeprazole after single oral administration with standard doses have not been previously presented. We examined intra-gastric pH after oral administrations of these two proton pump inhibitors using 24-h pH monitoring. Fifty-four normal volunteers not infected by Helicobacter pylori were investigated. Using a cross-over design, we administered 10 mg of rabeprazole or 20 mg of esomeprazole in 27 at 30 min after supper and in the remaining 27 subjects at 15 min before supper, and performed 24-h pH monitoring. Intra-gastric pH data were nearly identical when the proton pump inhibitors were taken after meals. Even if the data were compared in different CYP2C19 genotypes, rabeprazole and esomeprazole did not show the difference. In poor metabolizer, both of the drugs showed stronger acid inhibition. When taken before meals, intra-gastric pH after esomeprazole administration was slightly but not significantly higher than that observed after rabeprazole administration not only in daytime but also in nighttime period. In conclusion, rabeprazole and esomeprazole were similarly effective when administered after a meal.

  11. Anxiolytic Effect of Exogenous Ketone Supplementation Is Abolished by Adenosine A1 Receptor Inhibition in Wistar Albino Glaxo/Rijswijk Rats.

    PubMed

    Kovács, Zsolt; D'Agostino, Dominic P; Ari, Csilla

    2018-01-01

    Anxiety disorders are one of the most common mental health problems worldwide, but the exact pathophysiology remains largely unknown. It has been demonstrated previously that administration of exogenous ketone supplement KSMCT (ketone salt/KS + medium chain triglyceride/MCT oil) by intragastric gavage for 7 days decreased the anxiety level in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. To investigate the potential role of the adenosinergic system in the pathomechanism of anxiety we tested whether the inhibition of adenosine A 1 receptors (A 1 Rs) influence the anxiolytic effect of the exogenous ketone supplement. As A 1 Rs may mediate such an effect, in the present study we used a specific A 1 R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine) to test whether it modulates the anxiolytic effect of sub-chronically (7 days) applied KSMCT in the previously tested animal model by using elevated plus maze (EPM) test. We administered KSMCT (2.5 g/kg/day) alone by intragastric gavage and in combination with intraperitoneally (i.p.) injected of DPCPX in two doses (lower: 0.15 mg/kg, higher: 0.25 mg/kg). Control groups represented i.p saline and water gavage with or without i.p. DPCPX administration (2.5 g/kg/day). After treatments, the level of blood glucose and beta-hydroxybutyrate (βHB), as well as body weight were recorded. KSMCT alone significantly increased the time spent in the open arms and decreased the time spent in the closed arms, supporting our previous results. Injection of lower dose of DPCPX decreased, while higher dose of DPCPX abolished the effect of KSMCT administration on EPM. Blood βHB levels were significantly increased after administration of KSMCT, while DPCPX did not change the KSMCT induced increase in blood βHB levels. These results demonstrate that A 1 R inhibition modified (decreased) the anti-anxiety effect of KSMCT administration implying that the adenosinergic system, likely via A 1 Rs, may modulate the

  12. Antioxidant supplement inhibits skeletal muscle constitutive autophagy rather than fasting-induced autophagy in mice.

    PubMed

    Qi, Zhengtang; He, Qiang; Ji, Liu; Ding, Shuzhe

    2014-01-01

    In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD) and TP53-induced glycolysis and apoptosis regulator (TIGAR), both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity.

  13. Antioxidant Supplement Inhibits Skeletal Muscle Constitutive Autophagy rather than Fasting-Induced Autophagy in Mice

    PubMed Central

    Qi, Zhengtang; He, Qiang; Ji, Liu; Ding, Shuzhe

    2014-01-01

    In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD) and TP53-induced glycolysis and apoptosis regulator (TIGAR), both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity. PMID:25028602

  14. Inhibition of Chlorine-Induced Lung Injury by the Type 4 Phosphodiesterase Inhibitor Rolipram

    PubMed Central

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-01-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. PMID:22763362

  15. Neurokinin B administration induces hot flushes in women.

    PubMed

    Jayasena, Channa N; Comninos, Alexander N; Stefanopoulou, Evgenia; Buckley, Adam; Narayanaswamy, Shakunthala; Izzi-Engbeaya, Chioma; Abbara, Ali; Ratnasabapathy, Risheka; Mogford, Julianne; Ng, Noel; Sarang, Zubair; Ghatei, Mohammad A; Bloom, Stephen R; Hunter, Myra S; Dhillo, Waljit S

    2015-02-16

    Neurokinin B (NKB) is a hypothalamic neuropeptide binding preferentially to the neurokinin 3 receptor. Expression of the gene encoding NKB is elevated in postmenopausal women. Furthermore, rodent studies suggest that NKB signalling may mediate menopausal hot flushes. However, the effects of NKB administration on hot flushes have not been investigated in humans. To address this, we performed a randomised, double-blinded, placebo-controlled, 2-way cross-over study. Ten healthy women were admitted to a temperature and humidity-controlled research unit. Participants received 30 minute intravenous infusions of NKB and vehicle in random order. Symptoms, heart rate, blood pressure, sweating and skin temperature were compared between NKB and vehicle in a double-blinded manner. Eight of ten participants experienced flushing during NKB infusion with none experiencing flushing during vehicle infusion (P = 0.0007). Significant elevations in heart rate (P = 0.0106 vs. pre-symptoms), and skin temperature measured using skin probe (P = 0.0258 vs. pre-symptoms) and thermal imaging (P = 0.0491 vs. pre-symptoms) characteristic of menopausal flushing were observed during hot flush episodes. Our findings provide evidence that NKB administration can cause hot flushes in women. Further studies are required to determine if pharmacological blockade of NKB signalling could inhibit hot flushes during the menopause and during treatment for sex-steroid dependent cancers.

  16. QUINIDINE AND DOMPERIDONE INTERACTIONS IN THE RAT EXPERIMENTAL MODEL OF REPEATED ADMINISTRATION.

    PubMed

    Bamburowicz-Klimkowska, Magdalena; Szost, Tadeusz; Małkowska, Anna; Szutowski, Mirosław

    2016-07-01

    This study has investigated domperidone (DOM) and quinidine (QD) interaction in the Wistar rat experimental model of repeated administration. We used nonconventional administration model consistent with occasional administration method. Difference in administration was related to sequence of domperidone alone or with quinidine dosage. Expected domperidone-quinidine interactions could have its origin both in the ability of quinidine to inhibit P-glycoprotein (P-gp) activity as well as cytochrome P450-mediated metabolism of both compounds. There also were examined kinetics of acetaminophen (PAM) administered (30 mg/kg) with domperidone as an indicator of gastric emptying, showing domperidone prokinetic activity, as well as quinidine anticholinergic activity. Domperidone (30 mg/kg) with PAM and with/without quinidine (25 mg/kg) was administered orally according to the disposition regiment different for six examined rat groups. DOM and PAM concentrations in plasma were assayed by HPLC method. Following changes were observed: domperidone did not modify the duration of the uptake phase of acetaminophen; quinidine prolongs gastric emptying time (as a result of anticholinergic action); quinidine given as the fourth or fifth dose with domperidone promotes growth of its concentration in plasma; analysis of changes in the value of AUC(0-2) at the initial three weeks of experiment suggests intensity of domperidone absorption processes, the following week increase in the value AUC(4-6) suggests inhibition of domperidone hepatic biotransformation and the mechanism of induction of absorption during domperidone administration is different from the absorption - inducing effects of quinidine. Both effects are superimposed and produce large, 2, 3-fold change in domperidone's AUC(0-6).

  17. Inhibition of CD26/dipeptidyl peptidase IV enhances CCL11/eotaxin-mediated recruitment of eosinophils in vivo.

    PubMed

    Forssmann, Ulf; Stoetzer, Carsten; Stephan, Michael; Kruschinski, Carsten; Skripuletz, Thomas; Schade, Jutta; Schmiedl, Andreas; Pabst, Reinhard; Wagner, Leona; Hoffmann, Torsten; Kehlen, Astrid; Escher, Sylvia E; Forssmann, Wolf-Georg; Elsner, Jörn; von Hörsten, Stephan

    2008-07-15

    Chemokines mediate the recruitment of leukocytes to the sites of inflammation. N-terminal truncation of chemokines by the protease dipeptidyl peptidase IV (DPPIV) potentially restricts their activity during inflammatory processes such as allergic reactions, but direct evidence in vivo is very rare. After demonstrating that N-terminal truncation of the chemokine CCL11/eotaxin by DPPIV results in a loss of CCR3-mediated intracellular calcium mobilization and CCR3 internalization in human eosinophils, we focused on the in vivo role of CCL11 and provide direct evidence for specific kinetic and rate-determining effects by DPPIV-like enzymatic activity on CCL11-mediated responses of eosinophils. Namely, it is demonstrated that i.v. administration of CCL11 in wild-type F344 rats leads to mobilization of eosinophils into the blood, peaking at 30 min. This mobilization is significantly increased in DPPIV-deficient F344 rats. Intradermal administration of CCL11 is followed by a dose-dependent recruitment of eosinophils into the skin and is significantly more effective in DPPIV-deficient F344 mutants as well as after pharmacological inhibition of DPPIV. Interestingly, CCL11 application leads to an up-regulation of DPPIV, which is not associated with negative feedback inhibition via DPPIV-cleaved CCL11((3-74)). These findings demonstrate regulatory effects of DPPIV for the recruitment of eosinophils. Furthermore, they illustrate that inhibitors of DPPIV have the potential to interfere with chemokine-mediated effects in vivo including but not limited to allergy.

  18. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition.

    PubMed

    Gersner, R; Ekstein, D; Dhamne, S C; Schachter, S C; Rotenberg, A

    2015-11-01

    Huperzine A (HupA) is a naturally occurring compound found in the firmoss Huperzia serrata. While HupA is a potent acetylcholinesterase inhibitor, its full pharmacologic profile is incompletely described. Since previous works suggested a capacity for HupA to prophylax against seizures, we tested the HupA antiepileptic potential in pentylenetetrazole (PTZ) rat epilepsy model and explored its mechanism of action by spectral EEG analysis and by paired-pulse transcranial magnetic stimulation (ppTMS), a measure of GABA-mediated intracortical inhibition. We tested whether HupA suppresses seizures in the rat PTZ acute seizure model, and quantified latency to first myoclonus and to generalized tonic-clonic seizure, and spike frequency on EEG. Additionally, we measured power in the EEG gamma frequency band which is associated with GABAergic cortical interneuron activation. Then, as a step toward further examining the HupA antiepileptic mechanism of action, we tested long-interval intracortical inhibition (LICI) using ppTMS coupled with electromyography to assess whether HupA augments GABA-mediated paired-pulse inhibition of the motor evoked potential. We also tested whether the HupA effect on paired-pulse inhibition was central or peripheral by comparison of outcomes following administration of HupA or the peripheral acetylcholinesterase inhibitor pyridostigmine. We also tested whether the HupA effect was dependent on central muscarinic or GABAA receptors by co-administration of HupA and atropine or PTZ, respectively. In tests of antiepileptic potential, HupA suppressed seizures and epileptic spikes on EEG. Spectral EEG analysis also revealed enhanced gamma frequency band power with HupA treatment. By ppTMS we found that HupA increases intracortical inhibition and blocks PTZ-induced cortical excitation. Atropine co-administration with HupA did not alter HupA-induced intracortical inhibition suggesting independent of muscarinic acetylcholine receptors mechanism in this model

  19. Casticin, a flavonoid isolated from Vitex rotundifolia, inhibits prolactin release in vivo and in vitro

    PubMed Central

    Ye, Qi; Zhang, Qiao-yan; Zheng, Cheng-jian; Wang, Yang; Qin, Lu-ping

    2010-01-01

    Aim: To investigate the anti-hyperprolactinemia activity of casticin, a flavonoid isolated from Vitex rotundifolia, and elucidate its molecular mechanism. Methods: Hyperprolactinemia (MIHP) was induced by administration of metoclopramide dihydrochloride (50 mg/kg, tid, ip, for 10 d) in SD rats and the primary pituitary cells were prepared from the pituitary glands of the SD rats. Prolactin concentrations were measured using a radioimmunoassay. Cell viability was measured using an MTT assay. The mRNA expression of estrogen receptor alpha and beta in rat pituitary cells was measured using semi-quantitative RT-PCR analysis. Results: The level of serum prolactin in the MIHP model group was 2.1 fold higher than that in the untreated control group (P<0.01). Casticin (10, 20, and 40 mg/kg, ip, for 7 d) reduced serum prolactin levels by 33.9%, 54.3%, and 64.7%, respectively (P<0.01). The positive control drug bromocriptine 1 mg/kg decreased the serum prolactin concentration in MIHP rats by 44.9%. 17β-Estradiol (E2) significantly increased the proliferation of pituitary cells and casticin (1 and 10 μmol/L) markedly inhibited E2-induced pituitary cell proliferation by 27.7% and 42.1%, respectively. Stimulation of pituitary cells with E2 increased prolactin secretion into the cell culture supernatants, and casticin (0.1, 1, and 10 μmol/L) significantly inhibited the prolactin release stimulated by E2 in a concentration-dependent manner. Casticin (1 and 10 μmol/L) significantly inhibited ERα mRNA expression in pituitary cells stimulated with E2 (P<0.01) but increased ERβ mRNA expression at a concentration of 10 μmol/L (P<0.01). However, casticin had no effects on proliferation and prolectin release of the unstimulated primary pituitary cells in vitro. Conclusion: Casticin inhibited the release of prolactin from pituitary cells of SD rats stimulated with E2 in vivo and in vitro. These effects might be related with inhibiting the ERα mRNA expression and increasing the

  20. Immunological changes in the intestines and skin after senna administration.

    PubMed

    Yamate, Yurika; Hiramoto, Keiichi; Yokoyama, Satoshi; Ooi, Kazuya

    2015-06-01

    It has been reported that chronic sennoside use is associated with the development of melanosis coli, colonic adenoma, and/or carcinomas. In this study, we investigated the immunological changes in the colon and skin after the administration of senna. In this study, we investigated the colon and epidermis of C57/BL6j mice after a single administration of 10 mg/kg of senna [Cassia angustifolia (Caesalpiniaceae); 3, 6, 12, and 24 h after administration] and after repeated once per week administrations (on days 3, 5, 7, 14, and 21 of administration). The LD50 and ED50 of senna used in this experiment were 165 mg/kg and 13 g/kg, respectively. We demonstrated that the DOPA-positive cells in the colon increased at 12 h after single administration and were further increased from at 5-28 d after repeated administration. We also studied the physiological changes of the small intestine using the charcoal meal test. We found that there was a tendency for peristalsis to be inhibited after repeated senna administration. In the epidermis, we investigated the number of Langerhans cells, because they are important immune cells of the skin. The number of these cells decreased, especially after repeated administration. The present findings suggested that it is necessary to pay attention to not only the intestine but also the skin, during long-term senna treatment.

  1. Enhancement of doxorubicin cytotoxicity of human cancer cells by tyrosine kinase inhibition of insulin receptor and type I IGF receptor

    PubMed Central

    Zeng, Xianke; Zhang, Hua; Oh, Annabell; Zhang, Yan; Yee, Douglas

    2015-01-01

    The type I insulin-like growth factor receptor (IGF1R) contributes to cancer cell biology. Disruption of IGF1R signaling alone or in combination with cytotoxic agents has emerged as a new therapeutic strategy. Our laboratory has shown that sequential treatment with doxorubicin (DOX) and anti-IGF1R antibodies significantly enhanced the response to chemotherapy. In this study, we examined whether inhibition of the tyrosine kinase activity of this receptor family would also enhance chemotherapy response. Cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1,5-a]pyrazin-8-ylamine (PQIP) inhibited IGF1R and insulin receptor (InsR) kinase activity and downstream activation of ERK1/2 and Akt in MCF-7 and LCC6 cancer cells. PQIP inhibited both monolayer growth and anchorage-independent growth in a dose-dependent manner. PQIP did not induce apoptosis, but rather, PQIP treatment was associated with an increase in autophagy. We examined whether sequential or combination therapy of PQIP with DOX could enhance growth inhibition. PQIP treatment together with DOX or DOX followed by PQIP significantly inhibited anchorage-independent growth in MCF-7 and LCC6 cells compared to single agent alone. In contrast, pre-treatment with PQIP followed by DOX did not enhance the cytotoxicity of DOX in vitro. Furthermore, OSI-906, a PQIP derivative, inhibited IGF-I signaling in LCC6 xenograft tumors in vivo. When given once a week, simultaneous administration of OSI-906 and DOX significantly enhanced the anti-tumor effect of DOX. In summary, these results suggest that timing and duration of the IGF1R/InsR tyrosine kinase inhibitors with chemotherapeutic agents should be evaluated in clinical trials. Long-term disruption of IGF1R/InsR may not be necessary when combined with cytotoxic chemotherapy. PMID:21850397

  2. Parenting Predictors of Delay Inhibition in Socioeconomically Disadvantaged Preschoolers

    PubMed Central

    Merz, Emily C.; Landry, Susan H.; Zucker, Tricia A.; Barnes, Marcia A.; Assel, Michael; Taylor, Heather B.; Lonigan, Christopher J.; Phillips, Beth M.; Clancy-Menchetti, Jeanine; Eisenberg, Nancy; Spinrad, Tracy L.; Valiente, Carlos; de Villiers, Jill; Consortium, the School Readiness Research

    2016-01-01

    This study examined longitudinal associations between specific parenting factors and delay inhibition in socioeconomically disadvantaged preschoolers. At Time 1, parents and 2- to 4-year-old children (mean age = 3.21 years; N = 247) participated in a videotaped parent-child free play session, and children completed delay inhibition tasks (gift delay-wrap, gift delay-bow, and snack delay tasks). Three months later, at Time 2, children completed the same set of tasks. Parental responsiveness was coded from the parent-child free play sessions, and parental directive language was coded from transcripts of a subset of 127 of these sessions. Structural equation modeling was used, and covariates included age, gender, language skills, parental education, and Time 1 delay inhibition. Results indicated that in separate models, Time 1 parental directive language was significantly negatively associated with Time 2 delay inhibition, and Time 1 parental responsiveness was significantly positively associated with Time 2 delay inhibition. When these parenting factors were entered simultaneously, Time 1 parental directive language significantly predicted Time 2 delay inhibition whereas Time 1 parental responsiveness was no longer significant. Findings suggest that parental language that modulates the amount of autonomy allotted the child may be an important predictor of early delay inhibition skills. PMID:27833461

  3. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  4. 3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway.

    PubMed

    Chen, Junli; Chang, Hui; Peng, Xiaoli; Gu, Yeyun; Yi, Long; Zhang, Qianyong; Zhu, Jundong; Mi, Mantian

    2016-06-27

    The epithelial to mesenchymal transition (EMT) is a critical developmental program in cancer stem cell (CSC) maintenance and in cancer metastasis. Here, our study found that 3,6-DHF could effectively inhibit EMT in BC cells in vitro and in vivo. 3,6-DHF effectively inhibits the formation and proliferation of BCSCs, and consequently reduces the tumor-initiating capacity of tumor cells in NOD/SCID mice. Optical in vivo imaging of cancer metastasis showed that 3,6-DHF administration suppresses the lung metastasis of BC cells in vivo. Further studies indicated that 3,6-DHF down-regulates Notch1, NICD, Hes-1 and c-Myc, consequently decreasing the formation of the functional transcriptional unit of NICD-CSL-MAML, causing Notch signaling inactivation in BC cells. Over-expression of Notch1 or inhibition of miR-34a significantly reduced the inhibitory effects of 3,6-DHF on EMT, CSCs, as well as cells migration and invasion in BC cells. These data indicated that 3,6-DHF effectively inhibits EMT and CSCs, as well as cells migration and invasion in BC cells, in which miR-34a-mediated Notch1 down-regulation plays a crucial role.

  5. Procaine Inhibits Osteo/Odontogenesis through Wnt/β-Catenin Inactivation

    PubMed Central

    Herencia, Carmen; Diaz-Tocados, Juan Miguel; Jurado, Lidia; Montes de Oca, Addy; Rodríguez-Ortiz, Maria Encarnación; Martín-Alonso, Carmen; Martínez-Moreno, Julio M.; Vergara, Noemi; Rodríguez, Mariano; Almadén, Yolanda; Muñoz-Castañeda, Juan R.

    2016-01-01

    Introduction Periodontitis is a complex pathology characterized by the loss of alveolar bone. The causes and the mechanisms that promote this bone resorption still remain unknown. The knowledge of the critical regulators involved in the alteration of alveolar bone homeostasis is of great importance for developing molecular therapies. Procaine is an anesthetic drug with demethylant properties, mainly used by dentists in oral surgeries. The inhibitor role of Wnt signaling of procaine was described in vitro in colon cancer cells. Methods In this work we evaluated the role of procaine (1 uM) in osteo/odontogenesis of rat bone marrow mesenchymal stem cells. Similarly, the mechanisms whereby procaine achieves these effects were also studied. Results Procaine administration led to a drastic decrease of calcium content, alkaline phosphatase activity, alizarin red staining and an increase in the expression of Matrix Gla Protein. With respect to osteo/odontogenic markers, procaine decreased early and mature osteo/odontogenic markers. In parallel, procaine inhibited canonical Wnt/β-catenin pathway, observing a loss of nuclear β-catenin, a decrease in Lrp5 and Frizzled 3, a significant increase of sclerostin and Gsk3β and an increase of phosphorylated β-catenin. The combination of osteo/odontogenic stimuli and Lithium Chloride decreased mRNA expression of Gsk3β, recovered by Procaine. Furthermore it was proved that Procaine alone dose dependently increases the expression of Gsk3β and β-catenin phosphorylation. These effects of procaine were also observed on mature osteoblast. Interestingly, at this concentration of procaine no demethylant effects were observed. Conclusions Our results demonstrated that procaine administration drastically reduced the mineralization and osteo/odontogenesis of bone marrow mesenchymal stem cells inhibiting Wnt/β-catenin pathway through the increase of Gsk3β expression and β-catenin phosphorylation. PMID:27257912

  6. Noribogaine reduces nicotine self-administration in rats

    PubMed Central

    Chang, Qing; Hanania, Taleen; Mash, Deborah C

    2015-01-01

    Noribogaine, a polypharmacological drug with activities at opioid receptors, ionotropic nicotinic receptors, and serotonin reuptake transporters, has been investigated for treatment of substance abuse-related disorders. Smoking cessation has major benefits for both individuals and society, therefore the aim of this study was to evaluate the potential of noribogaine for use as a treatment for nicotine dependence. Adult male Sprague-Dawley rats were trained to self-administer nicotine intravenous. After initial food pellet training, followed by 26 sessions of nicotine self-administration training, the rats were administered noribogaine (12.5, 25 or 50 mg/kg orally), noribogaine vehicle, varenicline or saline using a within-subject design with a Latin square test schedule. Noribogaine dose-dependently decreased nicotine self-administration by up to 64% of saline-treated rats’ levels and was equi-effective to 1.7 mg/kg intraperitoneal varenicline. Noribogaine was less efficient at reducing food pellets self-administration than at nicotine self-administration, inhibiting the nondrug reinforcing effects of palatable pellets by 23% at the highest dose. These results suggest that noribogaine dose-dependently attenuates drug-taking behavior for nicotine, attenuates the reinforcing effects of nicotine and is comparable to varenicline power in that regard. The findings from the present study hold promise for a new therapy to aid smoking cessation. PMID:25995321

  7. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity.

    PubMed

    Maes, Michaël; McGill, Mitchell R; da Silva, Tereza Cristina; Abels, Chloé; Lebofsky, Margitta; Weemhoff, James L; Tiburcio, Taynã; Veloso Alves Pereira, Isabel; Willebrords, Joost; Crespo Yanguas, Sara; Farhood, Anwar; Beschin, Alain; Van Ginderachter, Jo A; Penuela, Silvia; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2017-05-01

    Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia-reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10 Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10 Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.

  8. Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition

    PubMed Central

    Arnould, Stéphanie; Rodier, Geneviève; Matar, Gisèle; Vincent, Charles; Pirot, Nelly; Delorme, Yoann; Berthet, Charlène; Buscail, Yoan; Noël, Jean Yohan; Lachambre, Simon; Jarlier, Marta; Bernex, Florence; Delpech, Hélène; Vidalain, Pierre Olivier; Janin, Yves L.; Theillet, Charles; Sardet, Claude

    2017-01-01

    Reduction in nucleotide pools through the inhibition of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) has been demonstrated to effectively reduce cancer cell proliferation and tumour growth. The current study sought to investigate whether this antiproliferative effect could be enhanced by combining Chk1 kinase inhibition. The pharmacological activity of DHODH inhibitor teriflunomide was more selective towards transformed mouse embryonic fibroblasts than their primary or immortalised counterparts, and this effect was amplified when cells were subsequently exposed to PF477736 Chk1 inhibitor. Flow cytometry analyses revealed substantial accumulations of cells in S and G2/M phases, followed by increased cytotoxicity which was characterised by caspase 3-dependent induction of cell death. Associating PF477736 with teriflunomide also significantly sensitised SUM159 and HCC1937 human triple negative breast cancer cell lines to dihydroorotate dehydrogenase inhibition. The main characteristic of this effect was the sustained accumulation of teriflunomide-induced DNA damage as cells displayed increased phospho serine 139 H2AX (γH2AX) levels and concentration-dependent phosphorylation of Chk1 on serine 345 upon exposure to the combination as compared with either inhibitor alone. Importantly a similar significant increase in cell death was observed upon dual siRNA mediated depletion of Chk1 and DHODH in both murine and human cancer cell models. Altogether these results suggest that combining DHODH and Chk1 inhibitions may be a strategy worth considering as a potential alternative to conventional chemotherapies. PMID:29221122

  9. Pathogenesis of NSAID-induced gastric damage: Importance of cyclooxygenase inhibition and gastric hypermotility

    PubMed Central

    Takeuchi, Koji

    2012-01-01

    This article reviews the pathogenic mechanism of non-steroidal anti-inflammatory drug (NSAID)-induced gastric damage, focusing on the relation between cyclooxygenase (COX) inhibition and various functional events. NSAIDs, such as indomethacin, at a dose that inhibits prostaglandin (PG) production, enhance gastric motility, resulting in an increase in mucosal permeability, neutrophil infiltration and oxyradical production, and eventually producing gastric lesions. These lesions are prevented by pretreatment with PGE2 and antisecretory drugs, and also via an atropine-sensitive mechanism, not related to antisecretory action. Although neither rofecoxib (a selective COX-2 inhibitor) nor SC-560 (a selective COX-1 inhibitor) alone damages the stomach, the combined administration of these drugs provokes gastric lesions. SC-560, but not rofecoxib, decreases prostaglandin E2 (PGE2) production and causes gastric hypermotility and an increase in mucosal permeability. COX-2 mRNA is expressed in the stomach after administration of indomethacin and SC-560 but not rofecoxib. The up-regulation of indomethacin-induced COX-2 expression is prevented by atropine at a dose that inhibits gastric hypermotility. In addition, selective COX-2 inhibitors have deleterious influences on the stomach when COX-2 is overexpressed under various conditions, including adrenalectomy, arthritis, and Helicobacter pylori-infection. In summary, gastric hypermotility plays a primary role in the pathogenesis of NSAID-induced gastric damage, and the response, causally related with PG deficiency due to COX-1 inhibition, occurs prior to other pathogenic events such as increased mucosal permeability; and the ulcerogenic properties of NSAIDs require the inhibition of both COX-1 and COX-2, the inhibition of COX-1 upregulates COX-2 expression in association with gastric hypermotility, and PGs produced by COX-2 counteract the deleterious effect of COX-1 inhibition. PMID:22611307

  10. Studies on cadmium-induced inhibition of hepatic microsomal drug biotransformation in the rat.

    PubMed Central

    Schnell, R C; Means, J R; Roberts, S A; Pence, D H

    1979-01-01

    Cadmium is a potent inhibitor of hepatic microsomal drug biotransformation in the rat. Male rats receiving a single intraperitoneal dose of cadmium exhibit significant decreases in hepatic microsomal metabolism of a variety of substrates. The threshold cadmium dose is 0.84 mg Cd/kg, and the effect lasts at least 28 days. Mechanistically, the inhibitory effect results from decreased cytochrome P-450 content since cadmium does not alter NADPH cytochrome c reductase activity. This effect is also observed following acute oral administration of cadmium in doses greater than 80 mg Cd/kg but is not observed following chronic administration of the metal via drinking water in concentrations of 5-200 ppm for periods ranging from 2 to 50 weeks. A tolerance to the inhibitory cadmium effect is observed if male rats are pretreated with subthreshold doses of the metal prior to the challenge cadmium dose. The degree of tolerance can be overcome by increasing the challenge dose of cadmium. Characterization of the tolerance phenomenon in terms of onset, duration, and intensity reveals a good correlation with the kinetics of metallothionein production, suggesting that the underlying basis for the tolerance phenomenon is likely the induction of metallothionein. A sex-related difference in the inhibitory effect of cadmium was observed. Cadmium did not inhibit the metabolism of hexobarbital or ethylmorphine in female rats but did inhibit that of aniline or zoxazolamine. Cadmium did not lower cytochrome P-450 content in female rats. PMID:488042

  11. Inhibition of deprivation-induced food intake by GABA(A) antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms.

    PubMed

    Kamatchi, Ganesan L; Rathanaswami, Palaniswami

    2012-07-01

    The role of gamma amino butyric acid A receptors/neurons of the hypothalamic, endocrine and alimentary systems in the food intake seen in hunger was studied in 20 h food-deprived rats. Food deprivation decreased blood glucose, serum insulin and produced hyperphagia. The hyperphagia was inhibited by subcutaneous or ventromedial hypothalamic administration of gamma amino butyric acid A antagonists picrotoxin or bicuculline. Although results of blood glucose was variable, insulin level was increased by picrotoxin or bicuculline. In contrast, lateral hypothalamic administration of these agents failed to reproduce the above changes. Subcutaneous administration of picrotoxin or bicuculline increased gastric content, decreased gastric motility and small bowel transit. In contrast, ventromedial or lateral hypothalamic administration of picrotoxin or bicuculline failed to alter the gastric content but decreased the small bowel transit. The results of alimentary studies suggest that gamma amino butyric acid neurons of both ventromedial and lateral hypothalamus selectively regulate small bowel transit but not the gastric content. It may be concluded that ventromedial hypothalamus plays a dominant role in the regulation of food intake and that picrotoxin or bicuculline inhibited food intake by inhibiting gamma amino butyric acid receptors of the ventromedial hypothalamus, increasing insulin level and decreasing the gut motility.

  12. Sambulin A and B, non-glycosidic iridoids from Sambucus ebulus, exert significant in vitro anti-inflammatory activity in LPS-induced RAW 264.7 macrophages via inhibition of MAPKs's phosphorylation.

    PubMed

    Balkan, İrem Atay; İlter Akülke, Ayca Zeynep; Bağatur, Yeşim; Telci, Dilek; Gören, Ahmet Ceyhan; Kırmızıbekmez, Hasan; Yesilada, Erdem

    2017-07-12

    The leaves of Sambucus ebulus L. (Adoxaceae) are widely used in Turkish folk medicine particularly against inflammatory disorders. The fresh leaves after wilted over fire or the poultices prepared are directly applied externally to heal burns, edema, eczema, urticarial and abscess. Two iridoids were recently isolated (sambulin A, sambulin B) from the leaves of S. ebulus. This study aims to investigate the in vitro anti-inflammatory activities of these iridoids on LPS-induced RAW 264.7 macrophages. Raw 264.7 macrophages were treated with 12.5, 25 and 50µg/ml Sambulin A and 6.25, 12.5 and 25µg/ml Sambulin B and induced with 1µg/ml lipopolysaccaharides (LPS). Effect of the compounds on nitric oxide (NO) production and cytokines (TNFα, IL-6) were determined by Griess and ELISA assays respectively. iNOS and the phosphorylation levels of MAPKs (ERK, JNK) were examined by Western Blot. Sambulin A and sambulin B inhibited 52.82% and 72.88% of NO production at 50 and 25µg/ml concentrations respectively. The levels of iNOS were significantly decreased by both molecules, sambulin B at 25µg/ml almost completely decreased iNOS levels (97.53%). Both molecules significantly inhibited TNFα productions. However, only sambulin B inhibited IL-6 production. Consequently, it was shown that sambulin B exerted its effect through the inhibition of ERK and JNK phosphorylations. The prominent bioactivities exerted by two iridoids will contribute to explanation of the usage of S. ebulus in traditional medicine against rheumatoid diseases. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Is catalase involved in the effects of systemic and pVTA administration of 4-methylpyrazole on ethanol self-administration?

    PubMed

    Peana, Alessandra T; Pintus, Francesca A; Bennardini, Federico; Rocchitta, Gaia; Bazzu, Gianfranco; Serra, Pier Andrea; Porru, Simona; Rosas, Michela; Acquas, Elio

    2017-09-01

    The oxidative metabolism of ethanol into acetaldehyde involves several enzymes, including alcohol dehydrogenase (ADH) and catalase-hydrogen peroxide (H 2 O 2 ). In this regard, while it is well known that 4-methylpyrazole (4-MP) acts by inhibiting ADH in the liver, little attention has been placed on its ability to interfere with fatty acid oxidation-mediated generation of H 2 O 2 , a mechanism that may indirectly affect catalase whose enzymatic activity requires H 2 O 2 . The aim of our investigation was twofold: 1) to evaluate the effect of systemic (i.p. [intraperitoneal]) and local (into the posterior ventral tegmental area, pVTA) administration of 4-MP on oral ethanol self-administration, and 2) to assess ex vivo whether or not systemic 4-MP affects liver and brain H 2 O 2 availability. The results show that systemic 4-MP reduced ethanol but not acetaldehyde or saccharin self-administration, and decreased the ethanol deprivation effect. Moreover, local intra-pVTA administration of 4-MP reduced ethanol but not saccharin self-administration. In addition, although unable to affect basal catalase activity, systemic administration of 4-MP decreased H 2 O 2 availability both in liver and in brain. Overall, these results indicate that 4-MP interferes with ethanol self-administration and suggest that its behavioral effects could be due to a decline in catalase-H 2 O 2 system activity as a result of a reduction of H 2 O 2 availability, thus highlighting the role of central catalase-mediated metabolism of ethanol and further supporting the key role of acetaldehyde in the reinforcing properties of ethanol. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Glaucocalyxin A Inhibits Platelet Activation and Thrombus Formation Preferentially via GPVI Signaling Pathway

    PubMed Central

    Li, Qiang; Ren, Lijie; Liu, Xiaohui; Chu, Chunjun; Ozaki, Yukio; Zhang, Jian; Zhu, Li

    2013-01-01

    Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA), an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01μg/ml, 0.1μg/ml) significantly inhibited platelet aggregation induced by collagen (P<0.001) and CRP (P<0.01), a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent. PMID:24386454

  15. Inhibition of autoimmune diabetes in NOD mice with serum from streptococcal preparation (OK-432)-injected mice.

    PubMed Central

    Seino, H; Satoh, J; Shintani, S; Takahashi, K; Zhu, X P; Masuda, T; Nobunaga, T; Saito, M; Terano, Y; Toyota, T

    1991-01-01

    We have recently reported that systemic and chronic administration of recombinant tumour necrosis factor alpha (TNF-alpha), as well as streptococcal preparation (OK-432), inhibits development of insulin-dependent diabetes mellitus (IDDM) in NOD mice and BB rats, models of IDDM. In this study we examined whether serum containing endogenous TNF induced by OK-432 injection could inhibit IDDM in NOD mice. Treatment twice a week from 4 weeks of age with OK-432-injected mouse serum, which contained endogenous TNF (75U), but not IL-1, IL-2 and interferon-gamma (IFN-gamma) activity, reduced the intensity of insulitis and significantly inhibited the cumulative incidence of diabetes by 28 weeks of age in NOD mice, as compared with the incidence in non-treated mice (P less than 0.01) and in mice treated with control serum (P less than 0.02). This inhibitory effect of the serum was diminished, although not significantly, by neutralization of serum TNF activity with anti-mouse TNF antibody. In the mice treated with the serum from OK-432-injected mice, Thy-1.2+ or CD8+ spleen cells decreased (P less than 0.01) and surface-Ig+ (S-Ig+) cells increased (P less than 0.05), whereas the proliferative response of spleen cells to concanavalin A (P less than 0.01) and lipopolysaccharide (P less than 0.05) increased. The results indicate that the inhibition by OK-432 treatment of IDDM in NOD mice was partially mediated by serum factors including endogenous TNF. PMID:1747949

  16. Vinpocetine Inhibits Streptococcus pneumoniae–Induced Upregulation of Mucin MUC5AC Expression via Induction of MKP-1 Phosphatase in the Pathogenesis of Otitis Media

    PubMed Central

    Lee, Ji-Yun; Komatsu, Kensei; Lee, Byung-Cheol; Miyata, Masanori; O’Neill Bohn, Ashley; Xu, Haidong

    2015-01-01

    Mucin overproduction is a hallmark of otitis media (OM). Streptococcus pneumoniae is one of the most common bacterial pathogens causing OM. Mucin MUC5AC plays an important role in mucociliary clearance of bacterial pathogens. However, if uncontrolled, excessive mucus contributes significantly to conductive hearing loss. Currently, there is a lack of effective therapeutic agents that suppress mucus overproduction. In this study, we show that a currently existing antistroke drug, vinpocetine, a derivative of the alkaloid vincamine, inhibited S. pneumoniae–induced mucin MUC5AC upregulation in cultured middle ear epithelial cells and in the middle ear of mice. Moreover, vinpocetine inhibited MUC5AC upregulation by inhibiting the MAPK ERK pathway in an MKP-1–dependent manner. Importantly, ototopical administration of vinpocetine postinfection inhibited MUC5AC expression and middle ear inflammation induced by S. pneumoniae and reduced hearing loss and pneumococcal loads in a well-established mouse model of OM. Thus, these studies identified vinpocetine as a potential therapeutic agent for inhibiting mucus production in the pathogenesis of OM. PMID:25972475

  17. Vinpocetine inhibits Streptococcus pneumoniae-induced upregulation of mucin MUC5AC expression via induction of MKP-1 phosphatase in the pathogenesis of otitis media.

    PubMed

    Lee, Ji-Yun; Komatsu, Kensei; Lee, Byung-Cheol; Miyata, Masanori; O'Neill Bohn, Ashley; Xu, Haidong; Yan, Chen; Li, Jian-Dong

    2015-06-15

    Mucin overproduction is a hallmark of otitis media (OM). Streptococcus pneumoniae is one of the most common bacterial pathogens causing OM. Mucin MUC5AC plays an important role in mucociliary clearance of bacterial pathogens. However, if uncontrolled, excessive mucus contributes significantly to conductive hearing loss. Currently, there is a lack of effective therapeutic agents that suppress mucus overproduction. In this study, we show that a currently existing antistroke drug, vinpocetine, a derivative of the alkaloid vincamine, inhibited S. pneumoniae-induced mucin MUC5AC upregulation in cultured middle ear epithelial cells and in the middle ear of mice. Moreover, vinpocetine inhibited MUC5AC upregulation by inhibiting the MAPK ERK pathway in an MKP-1-dependent manner. Importantly, ototopical administration of vinpocetine postinfection inhibited MUC5AC expression and middle ear inflammation induced by S. pneumoniae and reduced hearing loss and pneumococcal loads in a well-established mouse model of OM. Thus, these studies identified vinpocetine as a potential therapeutic agent for inhibiting mucus production in the pathogenesis of OM. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. Lactobacillus brevis G101 inhibits the absorption of monosodium glutamate in mice.

    PubMed

    Jang, Se-Eun; Han, Myung Joo; Kim, Se-Young; Kim, Dong-Hyun

    2014-11-28

    To evaluate the effect of Lactobacillus brevis G-101 on absorption of monosodium glutamate (MSG), we orally administered MSG with or without G-101 in mice and measured the maximum concentration (Cmax) and blood concentration curve (AUC) of MSG and γ- aminobutyric acid (GABA). Oral administration of G-101 (1 × 10(9) CFU/mouse) potently inhibited Cmax and AUC of MSG by 97.8% and 94.3%, respectively (p < 0.05), but increased those of GABA by 32.1% and 67.7%, respectively (p < 0.05). G-101 inhibited the absorption of MSG. These results suggest that G-101 may reduce the side effect of MSG by inhibiting the absorption of MSG.

  19. Is pre-emptive administration of ketamine a significant adjunction to intravenous morphine analgesia for controlling postoperative pain? A randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Fiorelli, Alfonso; Mazzella, Antonio; Passavanti, Beatrice; Sansone, Pasquale; Chiodini, Paolo; Iannotti, Mario; Aurilio, Caterina; Santini, Mario; Pace, Maria Caterina

    2015-09-01

    To evaluate if the pre-emptive administration of ketamine would potentiate the effect of intravenous morphine analgesia in the management of post-thoracotomy pain. This was a unicentre, double-blind, placebo-controlled, parallel-group, prospective study. Patients were randomly assigned to receive 1 mg/kg ketamine (ketamine group) or an equivalent dose of normal saline (placebo group) before thoracotomy in 1:1 ratio. All patients received postoperatively intravenous morphine administration as additional analgesic regimen. Primary end-point was the pain relief measured with Visual Analogue Scale at rest. The secondary end-points were the reduction of inflammatory response expressed by plasma C-reactive protein levels, the morphine consumption and the rate of side effects. The measurements were carried out 6, 12, 24, 36 and 48 hours postoperatively. A total of 75 patients were randomized of whom 38 were allocated to ketamine group and 37 to placebo group. Baseline characteristics were comparable. Ketamine compared with placebo group showed a significant reduction of pain scores (P = 0.01), C-reactive protein (P < 0.001) and morphine consumption (P < 0.001). No acute psychological side effects related to the use of ketamine were registered. The administration of ketamine before surgery may be an effective adjunct to intravenous morphine analgesia in acute post-thoracotomy pain management. In ketamine group, satisfaction of pain relief was significantly higher with a significant reduction of inflammatory response and morphine consumption compared with placebo group. Our results, if confirmed by larger studies, may be of clinical relevance in situations where epidural analgesia or other analgesic procedures different from systemic opioid analgesia are unavailable or contraindicated. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Oral administration of arginine enhances the growth hormone response to growth hormone releasing hormone in short children.

    PubMed

    Loche, S; Carta, D; Muntoni, A C; Corda, R; Pintor, C

    1993-10-01

    We have evaluated the effect of oral administration of arginine chlorhydrate on the growth hormone response to growth hormone releasing hormone in a group of nine short prepubertal children (six boys and four girls). Arginine chlorhydrate 10 g, administered orally 60 min before an i.v. bolus injection of growth hormone releasing hormone 1-29, 1 microgram/kg, significantly enhanced the growth hormone response to the neuropeptide, confirming the results of previous studies which used the i.v. route. Furthermore, our data strengthen the view that the effects of arginine chlorhydrate on growth hormone secretion are mediated by inhibition of endogenous somatostatin release.

  1. Bidirectional effects of inhibiting or activating NMDA receptors on extinction after cocaine self-administration in rats

    PubMed Central

    Hafenbreidel, Madalyn; Todd, Carolynn Rafa; Twining, Robert C.; Tuscher, Jennifer J.; Mueller, Devin

    2014-01-01

    Rationale Extinction of drug seeking is facilitated by NMDA receptor (NMDAr) agonists, but it remains unclear whether extinction is dependent on NMDAr activity. Objectives We investigated the necessity of NMDArs for extinction of cocaine seeking, and whether extinction altered NMDAr expression within extinction-related neuroanatomical loci. Methods Rats were trained to lever press for i.v. infusions of cocaine or sucrose reinforcement prior to extinction training or withdrawal. Results Administration of the NMDAr competitive antagonist CPP prior to four brief extinction sessions impaired subsequent extinction retention. In contrast, post-extinction administration of the NMDAr coagonist D-serine attenuated lever pressing across days as compared to saline administration, indicative of facilitated consolidation of extinction. Furthermore, expression of the NMDAr subunits, GluN2A and GluN2B, was not altered in the ventromedial prefrontal cortex. However, both GluN2A and GluN2B subunit expression in the nucleus accumbens was increased following cocaine self-administration, and this increased expression was relatively resistant to modulation by extinction. Conclusions Our findings demonstrate that extinction of cocaine seeking is bidirectionally mediated by NMDArs and suggest that selective modulation of NMDAr activity could facilitate extinction-based therapies for treatment of cocaine abuse. PMID:24847958

  2. Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

    PubMed Central

    Hwang, Tsong-Long; Shen, Hsin-I; Liu, Fu-Chao; Tsai, Hsin-I; Wu, Yang-Chang; Chang, Fang-Rong; Yu, Huang-Ping

    2014-01-01

    Neutrophil activation is associated with the development of organ injury after trauma–hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma–hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma–hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma–hemorrhagic shock-induced organ injury in rats. PMID:25360589

  3. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis.

    PubMed

    Huang, Jiangrong; Yang, Xiaoyu; Peng, Xiaochun; Huang, Wei

    2017-11-18

    Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Reproductive performance of male mice after hypothalamic ghrelin administration.

    PubMed

    Poretti, Maria Belen; Frautschi, Camila; Luque, Eugenia Mercedes; Bianconi, Santiago; Martini, Ana Carolina; Stutz, Graciela; Vincenti, Laura Maria; Santillán, María Emilia; Ponzio, Marina Flavia; Schiöth, Helgi; Fiol De Cuneo, Marta Haydee; Carlini, Valeria Paola

    2018-05-23

    It has been demonstrated that food intake and reproductive physiology are both simultaneously modulated to optimize reproductive success under fluctuating metabolic conditions. Ghrelin (Ghr) is an orexigenic peptide identified as the endogenous ligand of the growth hormone secretagogue receptor that is being investigated for its potential role on reproduction. Considering that data available so far are still limited and characterization of Ghr action mechanism on the reproductive system has not been fully elucidated, we studied the hypothalamus participation in Ghr effects on sperm functional activity, plasma levels of gonodotropins and histological morphology in mice testes after hypothalamic infusion of 0.3 or 3.0 nmol/day Ghr or artificial cerebrospinal fluid (ACSF) at different treatment periods. We found that Ghr 3.0 nmol/day administration for 42 days significantly reduced sperm concentration (Ghr 3.0 nmol/day=14.05±2.44 x106/ml vs. ACSF=20.33±1.35 x106/ml, p< 0.05) and motility (Ghr 3.0 nmol/day=59.40±4.20% vs. ACSF=75.80±1.40%, p< 0.05). In addition, histological studies showed a significant decrease percentage of spermatogonia (Ghr 3.0 nmol/day=6,76±0,68% vs. ACSF=9,56±0,41%, p< 0.05) and sperm (Ghr 3.0 nmol/day=24,24±1,92% vs. ACSF=31,20±3,06%, p< 0.05). These results were associated with a significant reduction in luteinizing hormone and testosterone plasma levels (p<0.05). As Ghr is an orexigenic peptide, body weight and food intake were measured. Results showed that Ghr increases both parameters; however, the effect did not last beyond the first week of treatment. Results presented in this work confirm that central Ghr administration impairs spermatogenesis and suggest that this effect is mediated by inhibition of hypothalamic-pituitary-gonadal axis.

  5. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury

    PubMed Central

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang

    2017-01-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. PMID:28052874

  6. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.

    PubMed

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na

    2017-03-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. Copyright © 2017 the American Physiological Society.

  7. Deanol acetamidobenzoate inhibits the blood-brain barrier transport of choline.

    PubMed

    Millington, W R; McCall, A L; Wurtman, R J

    1978-10-01

    Competition by deanol (dimethylaminoethanol) with choline for uptake from the bloodstream into the brain was demonstrated by simultaneous intracarotid administration of carbon 14-labeled choline with deanol (plus tritiated water and indium 113m, to calculate a brain uptake index) and by measuring the brain uptake of 14C-labeled choline mixed with sera from rats pretreated with deanol (300 or 500 mg/kg 8 or 30 minutes earlier). The inhibition constant for inhibition of choline uptake by deanol (159 micrograms) was actually lower than the Michaelis constant for choline itself (442 micrograms); hence, the affinity of the carrier mechanism for deanol is at least as great as it is for choline. Deanol administration also elevated blood choline levels; thus, the effect of the drug on brain choline (and acetylcholine) levels is the result of the increase it produces in blood choline and the suppression it causes in choline uptake. These findings may explain discrepant results from laboratories seeking increases in brain acetylcholine or clinical improvement in patients with tardive dyskinesia after deanol treatment.

  8. Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and σ receptors.

    PubMed

    Hiranita, Takato; Soto, Paul L; Kohut, Stephen J; Kopajtic, Theresa; Cao, Jianjing; Newman, Amy H; Tanda, Gianluigi; Katz, Jonathan L

    2011-11-01

    Sigma receptor (σR) antagonists attenuate many behavioral effects of cocaine but typically not its reinforcing effects in self-administration procedures. However, the σR antagonist rimcazole and its N-propylphenyl analogs, [3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]diphenylamine hydrochloride (SH 3-24) and 9-[3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]carbazole hydrobromide (SH 3-28), dose-dependently decreased the maximal rates of cocaine self-administration without affecting comparable responding maintained by food reinforcement. In contrast, a variety of σR antagonists [N-phenethylpiperidine oxalate (AC927), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine dihydrobromide (BD 1047), N-[2-(3,4-dichlorophenyl) ethyl]-4-methylpiperazine dihydrochloride (BD 1063), and N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100)] had no effect on cocaine self-administration across the range of doses that decreased rates of food-maintained responding. Rimcazole analogs differed from selective σR antagonists in their dual affinities for σRs and the dopamine transporter (DAT) assessed with radioligand binding. Selective DAT inhibitors and σR antagonists were studied alone and in combination on cocaine self-administration to determine whether actions at both σRs and the DAT were sufficient to reproduce the effects of rimcazole analogs. Typical DAT inhibitors [2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), methylphenidate, and nomifensine] dose-dependently shifted the cocaine dose-effect curve leftward. Combinations of DAT inhibitor and σR antagonist doses that were behaviorally inactive alone decreased cocaine self-administration without effects on food-maintained responding. In addition, whereas the DAT inhibitors were self-administered at rates similar to those of

  9. Decreases in Cocaine Self-Administration with Dual Inhibition of the Dopamine Transporter and σ Receptors

    PubMed Central

    Hiranita, Takato; Soto, Paul L.; Kohut, Stephen J.; Kopajtic, Theresa; Cao, Jianjing; Newman, Amy H.; Tanda, Gianluigi

    2011-01-01

    Sigma receptor (σR) antagonists attenuate many behavioral effects of cocaine but typically not its reinforcing effects in self-administration procedures. However, the σR antagonist rimcazole and its N-propylphenyl analogs, [3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]diphenylamine hydrochloride (SH 3-24) and 9-[3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]carbazole hydrobromide (SH 3-28), dose-dependently decreased the maximal rates of cocaine self-administration without affecting comparable responding maintained by food reinforcement. In contrast, a variety of σR antagonists [N-phenethylpiperidine oxalate (AC927), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine dihydrobromide (BD 1047), N-[2-(3,4-dichlorophenyl) ethyl]-4-methylpiperazine dihydrochloride (BD 1063), and N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100)] had no effect on cocaine self-administration across the range of doses that decreased rates of food-maintained responding. Rimcazole analogs differed from selective σR antagonists in their dual affinities for σRs and the dopamine transporter (DAT) assessed with radioligand binding. Selective DAT inhibitors and σR antagonists were studied alone and in combination on cocaine self-administration to determine whether actions at both σRs and the DAT were sufficient to reproduce the effects of rimcazole analogs. Typical DAT inhibitors [2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), methylphenidate, and nomifensine] dose-dependently shifted the cocaine dose-effect curve leftward. Combinations of DAT inhibitor and σR antagonist doses that were behaviorally inactive alone decreased cocaine self-administration without effects on food-maintained responding. In addition, whereas the DAT inhibitors were self-administered at rates similar to those of

  10. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram.

    PubMed

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F; Rando, Roy J; Pathak, Yashwant V; Hoyle, Gary W

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228-270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Inhibitory effect of ezetimibe can be prevented by an administration interval of 4 h between α-tocopherol and ezetimibe.

    PubMed

    Nashimoto, Shunsuke; Sato, Yuki; Takekuma, Yoh; Sugawara, Mitsuru

    2017-05-01

    Tocopherol is used not only as an ethical drug but also as a supplement. In 2008, it was reported that α-tocopherol is partly transported via an intestinal cholesterol transporter, Niemann-Pick C1-Like 1 (NPC1L1). Ezetimibe, a selective inhibitor of NPC1L1, is administered for a long time to inhibit cholesterol absorption and there is a possibility that the absorption of α-tocopherol is also inhibited by ezetimibe. This study investigated the influence of ezetimibe on the absorption of α-tocopherol with single administration and long-term administration. An approach to avoid its undesirable consequence was also examined. α-Tocopherol (10 mg/kg) and ezetimibe (0.1 mg/kg) were administered to rats, and the plasma concentration profiles of α-tocopherol and tissue concentrations were investigated. The plasma concentration of α-tocopherol was decreased by the combination use of ezetimibe in the case of concurrent single administration. On the other hand, inhibition of the absorption of α-tocopherol was prevented by an administration interval of 4 h. In a group of rats administered for 2 months with a 4 h interval, not only the plasma concentration but also the liver concentration was increased compared with those in a group with concurrent combination intake of α-tocopherol and ezetimibe. The absorption of α-tocopherol was inhibited by ezetimibe. The inhibitory effect of ezetimibe can be prevented by an administration interval of 4 h, although ezetimibe is a medicine of enterohepatic circulation. Attention should be paid to the use of ezetimibe and components of NPC1L1 substrates such as α-tocopherol. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. 23 CFR 771.121 - Findings of no significant impact.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Findings of no significant impact. 771.121 Section 771.121 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT ENVIRONMENTAL IMPACT AND RELATED PROCEDURES § 771.121 Findings of no significant impact. (a) The Administration...

  13. 23 CFR 771.121 - Findings of no significant impact.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Findings of no significant impact. 771.121 Section 771.121 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT ENVIRONMENTAL IMPACT AND RELATED PROCEDURES § 771.121 Findings of no significant impact. (a) The Administration...

  14. INHIBITION OF THE DEVELOPMENT OF HEPATIC MICROSOMAL DETOXIFICATION ENZYMES BY X-IRRADIATION.

    DTIC Science & Technology

    of young, male rats, on the activity of these enzymes in the livers of adult animals, and on induced enzyme synthesis by phenobarbital . Exposure of 23...caused by phenobarbital administration. The results of these studies indicate that radiation specifically inhibits the synthesis of increased microsomal

  15. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells

    PubMed Central

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-il; Kim, Eung Kweon

    2016-01-01

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors. PMID:26857144

  16. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response.

    PubMed

    Mori, Tetsuya; Nakamura, Tatsuro; Okazaki, Naoto; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi

    2012-01-01

    The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.

  17. Inhibition of cortiocosteroidogenesis by delta-9-tetrahydrocannabinol.

    PubMed

    Warner, W; Harris, L S; Carchman, R A

    1977-12-01

    ACTH, cholera toxin, cyclic AMP but not pregnenolone-induced steroidogenesis in Y-1 functional mouse adrenal tumor cells was significantly inhibited by delta-9-tetrahydrocannabinol, cannabidiol, and cannabinol. The inhibition of steroidogenesis could not be correlated with a general depression in cell function or viability. The data suggest that cannabinoids inhibit corticosteroidogenesis at a site between the synthesis of cAMP and of pregnenolone.

  18. Inhibition of myostatin reverses muscle fibrosis through apoptosis.

    PubMed

    Bo Li, Zhao; Zhang, Jiangyang; Wagner, Kathryn R

    2012-09-01

    Skeletal muscle fibrosis is a defining feature of the muscular dystrophies in which contractile myofibers are replaced by fibroblasts, adipocytes and extracellular matrix. This maladaptive response of muscle to repetitive injury is progressive, self-perpetuating and thus far, has been considered irreversible. We have previously shown that myostatin, a known endogenous modulator of muscle growth, stimulates normal muscle fibroblasts to proliferate. Here, we demonstrate that myostatin also regulates the proliferation of dystrophic muscle fibroblasts, and increases resistance of fibroblasts to apoptosis through Smad and MAPK signaling. Inhibition of myostatin signaling pathways with a soluble activin IIB receptor (ActRIIB.Fc) reduces resistance of muscle fibroblasts to apoptosis in vitro. Systemic administration of ActRIIB.Fc in senescent mdx mice, a model of muscular dystrophy, significantly increases the number of muscle fibroblasts undergoing apoptosis. This leads to the reversal of pre-existing muscle fibrosis as determined by histological, biochemical and radiographical criteria. These results demonstrate that skeletal muscle fibrosis can be pharmacologically reversed through induction of fibroblast apoptosis.

  19. Effect of racemic ibuprofen dose on the magnitude and duration of platelet cyclo-oxygenase inhibition: relationship between inhibition of thromboxane production and the plasma unbound concentration of S(+)-ibuprofen.

    PubMed

    Evans, A M; Nation, R L; Sansom, L N; Bochner, F; Somogyi, A A

    1991-02-01

    1. Four healthy male subjects received racemic ibuprofen (200, 400, 800 and 1200 mg), orally, on four occasions, 2 weeks apart, according to a four-way Latin-square design, in order to investigate the influence of increasing dose of ibuprofen on the magnitude and duration of its antiplatelet effect as well as on the relationship between such effect and drug concentration. 2. The antiplatelet effect of ibuprofen was assessed by measuring the inhibition of platelet thromboxane B2 (TXB2) generation during the controlled clotting of whole blood. The plasma unbound concentration of S(+)-ibuprofen, the enantiomer shown in an in vitro study to be responsible for the inhibitory effect of platelet TXB2 generation, was measured using an enantioselective method. 3. The maximum percentage inhibition of TXB2 generation increased significantly with dose from a mean +/- s.d. of 93.4 +/- 1.2% after the 200 mg dose to 98.8 +/- 0.3% after the 1200 mg dose, and there was an increase with dose in the duration of inhibition of TXB2 generation. The effect of ibuprofen on platelet TXB2 generation was transient and mirrored the time-course of unbound S(+)-ibuprofen in plasma; on all but one of the 16 occasions, serum TXB2 concentrations returned to at least within 10% of the pretreatment concentrations within 24 h of ibuprofen administration. 4. For each subject, the relationship between the percentage inhibition of TXB2 generation and the unbound concentration of S(+)-ibuprofen in plasma was modelled according to a sigmoidal Emax equation. The mean plasma unbound concentration of S(+)-ibuprofen required to inhibit platelet TXB2 generation by 50% (EC50) was 9.8 +/- 1.0 micrograms l-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The effects of sildenafil after chronic L-NAME administration in male rat sexual behavior.

    PubMed

    Ferraz, Marcia M D; Quintella, Suelen L; Parcial, André L N; Ferraz, Marcos R

    2016-01-01

    Ferraz MMD, Quintella SL, Parcial ALN, Ferraz MR. The effects of sildenafil citrate and L-NAME on male rat sexual behaviour. PHARMACOL BIOCHEM BEHAV. Erectile dysfunction (ED) affects up to 50% of men between 40 and 70years of age. Significant advances in the pharmacological treatment of ED occurred in recent years, most notably the introduction of the first oral selective phosphodiesterase type-5 inhibitor, sildenafil. This study investigated the effectiveness of chronic oral treatment with L-NAME in rats as an experimental model of erectile dysfunction to evaluate new pharmacological agents that affect the sexual response. The effects of chronic oral L-NAME treatment, separately or in combination with sildenafil, on the sexual behaviour of male rats were evaluated. Filtered water was used as a control. Acute administration of L-NAME did not alter the sexual response compared with control, but sildenafil administration facilitated sexual behaviour after acute and chronic administration. Chronic L-NAME treatment inhibited motivational and consummatory measures of male rat sexual behaviour. Sildenafil prevented the inhibitory effects of L-NAME. The present results confirm that chronic oral treatment with a nitric oxide synthase inhibitor may be a relevant peripheral ED model to evaluate the effects of drugs on erectile function of male rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effect of inhibition of glycogen synthase kinase-3 on cardiac hypertrophy during acute pressure overload.

    PubMed

    Tateishi, Atsushi; Matsushita, Masayuki; Asai, Tomohiro; Masuda, Zenichi; Kuriyama, Mitsuhito; Kanki, Kazushige; Ishino, Kozo; Kawada, Masaaki; Sano, Shunji; Matsui, Hideki

    2010-06-01

    A large number of diverse signaling molecules in cell and animal models participate in the stimulus-response pathway through which the hypertrophic growth of the myocardium is controlled. However, the mechanisms of signaling pathway including the influence of lithium, which is known as an inhibitor of glycogen synthase kinase-3beta, in pressure overload hypertrophy remain unclear. The aim of our study was to determine whether glycogen synthase kinase-3beta inhibition by lithium has acute effects on the myocyte growth mechanism in a pressure overload rat model. First, we created a rat model of acute pressure overload cardiac hypertrophy by abdominal aortic banding. Protein expression time courses for beta-catenin, glycogen synthase kinase-3beta, and phosphoserine9-glycogen synthase kinase-3beta were then examined. The rats were divided into four groups: normal rats with or without lithium administration and pressure-overloaded rats with or without lithium administration. Two days after surgery, Western blot analysis of beta-catenin, echo-cardiographic evaluation, left ventricular (LV) weight, and LV atrial natriuretic peptide mRNA levels were evaluated. We observed an increase in the level of glycogen synthase kinase-3beta phosphorylation on Ser 9. A significant enhancement of LV heart weight (P < 0.05) and interventricular septum and posterior wall thickness (P < 0.05) with pressure-overloaded hypertrophy in animals treated with lithium were also observed. Atrial natriuretic peptide mRNA levels were significantly increased with pressure overload hypertrophy in animals treated with lithium. We have shown in an animal model that inhibition of glycogen synthase kinase-3beta by lithium has an additive effect on pressure overload cardiac hypertrophy.

  2. Rapid screening of commercially available herbal products for the inhibition of major human hepatic cytochrome P450 enzymes using the N-in-one cocktail.

    PubMed

    Sevior, D K; Hokkanen, J; Tolonen, A; Abass, K; Tursas, L; Pelkonen, O; Ahokas, J T

    2010-04-01

    Self-administration of complementary products concurrently with conventional medication is increasingly common. The potential for cytochrome P450 (CYP) inhibition requires investigation. The N-in-one assay with ten probe substrates for nine CYPs was used with human liver microsomes to investigate ten products. CYP inhibition was measured in a single liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis. Estimated IC(50)-values were determined for the extracts that produced significant inhibition (less than 100 microg ml(-1)). Inhibition of CYP2C19 by dong quai (IC(50) = 13.7-14.3 microg ml(-1) for the methanolic extract) and CYP2D6 by goldenseal (IC(50) = 6.7 and 6.3 microg ml(-1) for the aqueous and methanolic extracts, respectively), are of particular concern as the potential for adverse interactions is high. The inhibition of CYP2C8 by horsetail (IC(50) = 93 microg ml(-1) for the aqueous extract) requires further investigation, as the potential for concurrent use with products that require CYP2C8 for metabolism is significant. CYP3A4 inhibition varied depending on the probe reaction being monitored. The earlier reported findings of inhibition by black cohosh, goldenseal and gotu kola were confirmed. The present work has shown that the N-in-one cocktail is a rapid and reliable method that can be used as an initial screen to help prioritize products that require more detailed investigations and it can also be applied to monitor product variability.

  3. Aminoguanidine inhibits albuminuria, but not the formation of advanced glycation end-products in skin collagen of diabetic rats.

    PubMed

    Degenhardt, T P; Fu, M X; Voss, E; Reiff, K; Neidlein, R; Strein, K; Thorpe, S R; Baynes, J W; Reiter, R

    1999-02-01

    Aminoguanidine, an inhibitor of advanced glycation reactions in vitro, inhibits the development of diabetic complications in animal models of diabetes, suggesting that it acts by inhibition of advanced glycation reactions in vivo. However, effects of aminoguanidine on the formation of specific advanced glycation end-products (AGEs) in vivo have not been rigorously examined. Therefore, we studied the effects of aminoguanidine on the formation of pentosidine and N(epsilon)-(carboxymethyl)lysine (CML), measured by analytical chemical methods, in collagen of streptozotocin-diabetic Lewis rats at doses which ameliorated urinary albumin excretion, an index of diabetic nephropathy. At 12 weeks, diabetic animals had fivefold higher blood glucose, threefold higher glycated hemoglobin and fivefold higher collagen glycation, compared to metabolically healthy controls; pentosidine and CML in skin collagen were increased by approximately 30 and 150%, respectively. Administration of aminoguanidine, 50 mg/kg by daily intraperitoneal injection, significantly inhibited the development of albuminuria (approximately 60%, P < 0.01) in diabetic rats, without an effect on blood glucose or glycation of hemoglobin or collagen. Surprisingly, aminoguanidine failed to inhibit the increase in pentosidine and CML in diabetic rat skin collagen. Similar results were obtained in an independent experiment in which aminoguanidine was administered in drinking water at a dose of 0.5 g/l. We conclude that the therapeutic benefits of aminoguanidine on albuminuria may not be the result of inhibition of AGE formation.

  4. Systemic Administration of the Potential Countermeasure Huperzine Reversibly Inhibits Central and Peripheral Acetylcholinesterase Activity Without Adverse Cognitive-Behavioral Effects

    DTIC Science & Technology

    2010-01-01

    reversibly inhibits 5a. CONTRACT NUMBER central and peripheral acetylcholinesterase activity without adverse cognitive–behavioral effects 5b. GRANT...huperzine reversibly inhibits central and peripheral acetylcholinesterase activity without adverse cognitive–behavioral effects Todd M. Myers a,⁎, Wei Sun b...HUP to enter the brain is also evidenced by studies that use well-documented centrally active anticholinergics to induce cognitive impairments that are

  5. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition.

    PubMed

    Wang, Yi-Chun; Dong, Jing; Nie, Jing; Zhu, Ji-Xiang; Wang, Hui; Chen, Qiong; Chen, Jun-Yi; Xia, Jia-Mei; Shuai, Wei

    2017-09-01

    To investigate the inhibitory effects of chlorogenic acid on pulmonary fibrosis and the internal mechanisms in vivo and in vitro. 30 male BALB/C mice were randomized into 5 groups: control group, pulmonary fibrosis model group, low, middle and high dose of chlorogenic acid groups. Mice in pulmonary fibrosis model group were administered 5.0 mg/kg bleomycin with intracheal instillation and mice in 3 chlorogenic acid groups were treated with chlorogenic acid every day for 28 days after bleomycin administration. Lung tissue histology was observed using HE staining. Primary pulmonary fibroblasts were isolated and cultured. The expressions of fibrosis related factors (α-SMA and collagen I), as well as ER stress markers (CHOP and GRP78) were determined by both real-time PCR assay and Western blotting, while the expressions of other ER stress signaling pathway factors PERK, IRE-1, ATF-6 and protein levels of caspase-12, caspase-9, caspase-3, PARP were determined by Western blotting. RLE-6TN cell line induced by TGF-β1 was also used to verify the amelioration effects in vitro study. In both in vivo and in vitro studies, TUNEL staining was used to evaluate cell apoptosis. Expressions of collagen I, α-SMA, GRP78, and CHOP were significantly inhibited by chlorogenic acid in dose-dependent manner. Similarly, decreasing levels of cleaved caspase-12, caspase-9, caspase-3 and increasing level of uncleaved PARP were observed in chlorogenic acid groups compared with those in the fibrosis group both in vivo and in vitro. Chlorogenic acid could also significantly down-regulate the level of phosphorylation of PERK and cleaved ATF-6 in vivo study. Moreover, MTT assay demonstrated chlorogenic acid could enhance proliferation of RLE-6TN cells induced by TGFβ1 in vitro. And the apoptosis assays indicated that chlorogenic acid could significantly inhibit cell apoptosis both in vivo and in vitro studies. Chlorogenic acid could inhibit the pulmonary fibrosis through endoplasmic

  6. Thiamine Deficiency Induces Anorexia by Inhibiting Hypothalamic AMPK

    PubMed Central

    Liu, Mei; Alimov, Alexander; Wang, Haiping; Frank, Jacqueline A.; Katz, Wendy; Xu, Mei; Ke, Zun-Ji; Luo, Jia

    2014-01-01

    Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16 days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by 9 folds in TD group. The loss of body weight (17–24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic AMPK is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight. PMID:24607345

  7. Tryptophan Metabolism in Rat Liver After Administration of Tryptophan, Kynurenine Metabolites, and Kynureninase Inhibitors.

    PubMed

    Badawy, Abdulla A-B; Bano, Samina

    2016-01-01

    Rat liver tryptophan (Trp), kynurenine pathway metabolites, and enzymes deduced from product/substrate ratios were assessed following acute and/or chronic administration of kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), Trp, and the kynureni-nase inhibitors benserazide (BSZ) and carbidopa (CBD). KA activated Trp 2,3-dioxygenase (TDO), possibly by increasing liver 3-HAA, but inhibited kynurenine aminotransferase (KAT) and kynureninase activities with 3-HK as substrate. 3-HK inhibited kynureninase activity from 3-HK. 3-HAA stimulated TDO, but inhibited kynureninase activity from K and 3-HK. Trp (50 mg/kg) increased kynurenine metabolite concentrations and KAT from K, and exerted a temporary stimulation of TDO. The kynureninase inhibitors BSZ and CBD also inhibited KAT, but stimulated TDO. BSZ abolished or strongly inhibited the Trp-induced increases in liver Trp and kynurenine metabolites. The potential effects of these changes in conditions of immune activation, schizophrenia, and other disease states are discussed.

  8. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats.

    PubMed

    He, Xiao-Tao; Zhou, Kai-Xiang; Zhao, Wen-Jun; Zhang, Chen; Deng, Jian-Ping; Chen, Fa-Ming; Gu, Ze-Xu; Li, Yun-Qing; Dong, Yu-Lin

    2018-01-01

    The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.

  9. Extended Access Cocaine Self-Administration Results in Tolerance to the Dopamine-Elevating and Locomotor-Stimulating Effects of Cocaine

    PubMed Central

    Calipari, Erin S.; Ferris, Mark J.; Jones, Sara R.

    2013-01-01

    Tolerance to the neurochemical and psychoactive effects of cocaine after repeated use is a hallmark of cocaine addiction in humans. However, comprehensive studies on tolerance to the behavioral, psychoactive, and neurochemical effects of cocaine following contingent administration in rodents are lacking. We outlined the consequences of extended access cocaine self-administration as it related to tolerance to the psychomotor activating, dopamine (DA) elevating, and DA transporter (DAT) inhibiting effects of cocaine. Cocaine self-administration (1.5 mg/kg/inj; 40 inj; 5 days), which resulted in escalation of first hour intake, caused reductions in evoked DA release and reduced maximal rates of uptake through the DAT as measured by slice voltammetry in the nucleus accumbens core. Further, we report reductions in cocaine-induced uptake inhibition as measured by fast scan cyclic voltammetry, and a corresponding increase in the dose of cocaine required for 50% inhibition of DA uptake (Ki) at the DAT. Cocaine tolerance at the DAT translated to reductions in cocaine-induced DA overflow as measured by microdialysis. Additionally, cocaine-induced elevations in locomotor activity and stereotypy were reduced, while rearing behavior was enhanced in animals with a history of cocaine self-administration. Here we demonstrate both neurochemical and behavioral cocaine tolerance in an extended-access rodent model of cocaine abuse, which allows for a better understanding of the neurochemical and psychomotor tolerance that develops to cocaine in human addicts. PMID:24102293

  10. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK

    PubMed Central

    Wang, Jieqiong; Hu, Kewen; Guo, Jiawei; Cheng, Feixiong; Lv, Jing; Jiang, Wenhao; Lu, Weiqiang; Liu, Jinsong; Pang, Xiufeng; Liu, Mingyao

    2016-01-01

    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21WAF1/CIP1, leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21WAF1/CIP1, either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21WAF1/CIP1. Co-administration of BI-2536 and fasudil either in the LSL-KRASG12D mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers. PMID:27193833

  11. Treatment with pyrophosphate inhibits uremic vascular calcification

    PubMed Central

    O’Neill, W. Charles; Lomashvili, Koba A.; Malluche, Hartmut H.; Faugere, Marie-Claude; Riser, Bruce L.

    2011-01-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone. PMID:21124302

  12. Treatment with pyrophosphate inhibits uremic vascular calcification.

    PubMed

    O'Neill, W Charles; Lomashvili, Koba A; Malluche, Hartmut H; Faugere, Marie-Claude; Riser, Bruce L

    2011-03-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone.

  13. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. α-Mangostin: a dietary antioxidant derived from the pericarp of Garcinia mangostana L. inhibits pancreatic tumor growth in xenograft mouse model.

    PubMed

    Hafeez, Bilal Bin; Mustafa, Ala; Fischer, Joseph W; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-08-10

    Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. These results suggest the potential therapeutic efficacy of α-mangostin against human PC.

  15. Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo.

    PubMed

    He, Wen-Bin; Abe, Kazuho; Akaishi, Tatsuhiro

    2018-01-01

    To explore memory enhancing effect of the flavonoid fisetin, we investigated the effect of oral administration of flavonoids on the induction of long-term potentiation (LTP) at hippocampal CA1 synapses of anesthetized rats. Among four flavonoids (fisetin, quercetin, luteolin and myricetin) tested, only fisetin significantly facilitated the induction of hippocampal LTP. The effect of oral fisetin was abolished by intracerebroventricular injection of U0126, an agent that was previously found to inhibit its effect in hippocampal slices in vitro. These results suggest that orally administered fisetin crosses the blood-brain barrier and promotes synaptic functions in the hippocampus. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Protease Activated Receptor-2 Mediates Activated Protein C–Induced Cutaneous Wound Healing via Inhibition of p38

    PubMed Central

    Julovi, Sohel M.; Xue, Meilang; Dervish, Suat; Sambrook, Philip N.; March, Lyn; Jackson, Christopher John

    2011-01-01

    Activated protein C (APC) is a natural anticoagulant that exerts anti-inflammatory and cytoprotective properties mediated through the protease activated receptor (PAR)-1. APC can also proteolytically cleave PAR-2, although subsequent function is unknown. On the basis of recent evidence that APC promotes wound healing, the aim of this study was to determine whether APC acts through PARs to heal murine excisional wounds or to regulate human cultured keratinocyte function and to determine the signaling mechanisms. Topical administration of APC accelerated wound healing in wild-type mice and, unexpectedly, in PAR-1 knockout mice. PAR-2 knockout mice healed significantly slower than wild-type mice, and healing was not altered by adding APC, indicating that APC acts through PAR-2 to heal wounds. In cultured human primary keratinocytes, APC enhanced PAR-2, stimulated proliferation, activated phosphatidylinositol 3-kinase/Src/Akt, and inhibited phosphorylated (P)-p38. Inhibiting PAR-1 or PAR-2, by small-interfering RNA or blocking antibody, reversed APC-induced keratinocyte proliferation and Akt activation. Blocking PAR-2, but not PAR-1, reversed the inhibition of P-p38 by APC. Furthermore, inhibition of P-p38 accelerated wound healing in wild-type mice. In summary, although APC acts through both PAR-1 and PAR-2 to activate Akt and to increase keratinocyte proliferation, APC-induced murine wound healing depends on PAR-2 activity and inhibition of P-p38. PMID:21907694

  17. Administration of the peroxisomal proliferator-activated receptor {gamma} agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Weiling; Payne, Valerie; Tommasi, Ellen

    2007-01-01

    Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration ofmore » Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.« less

  18. Disposition, Metabolism and Histone Deacetylase and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids

    PubMed Central

    Novaes, Júlia T.; Sayre, Casey L.; Majeed, Muhammed; Ho, Emmanuel A.; Oliveira, Ana Luísa de P.; Martinez, Stephanie E.; Davies, Neal M.; Lakowski, Ted M.

    2017-01-01

    Tetrahydrocurcumin (THC), curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa). Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism. PMID:29023392

  19. Complex-learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance.

    PubMed

    Reuveni, Iris; Lin, Longnian; Barkai, Edi

    2018-06-15

    Following training in a difficult olfactory-discrimination (OD) task rats acquire the capability to perform the task easily, with little effort. This new acquired skill, of 'learning how to learn' is termed 'rule learning'. At the single-cell level, rule learning is manifested in long-term enhancement of intrinsic neuronal excitability of piriform cortex (PC) pyramidal neurons, and in excitatory synaptic connections between these neurons to maintain cortical stability, such long-lasting increase in excitability must be accompanied by paralleled increase in inhibitory processes that would prevent hyper-excitable activation. In this review we describe the cellular and molecular mechanisms underlying complex-learning-induced long-lasting modifications in GABA A -receptors and GABA B -receptor-mediated synaptic inhibition. Subsequently we discuss how such modifications support the induction and preservation of long-term memories in the in the mammalian brain. Based on experimental results, computational analysis and modeling, we propose that rule learning is maintained by doubling the strength of synaptic inputs, excitatory as well as inhibitory, in a sub-group of neurons. This enhanced synaptic transmission, which occurs in all (or almost all) synaptic inputs onto these neurons, activates specific stored memories. At the molecular level, such rule-learning-relevant synaptic strengthening is mediated by doubling the conductance of synaptic channels, but not their numbers. This post synaptic process is controlled by a whole-cell mechanism via particular second messenger systems. This whole-cell mechanism enables memory amplification when required and memory extinction when not relevant. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin.

    PubMed

    Lee, Chong-Ki; Choi, Jun-Shik; Bang, Joon Seok

    2013-06-01

    The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration(IC50) of 4.1 µM and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the AUC0-∞ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions.

  1. Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin

    PubMed Central

    Lee, Chong-Ki; Choi, Jun-Shik

    2013-01-01

    The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration(IC50) of 4.1 µM and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the AUC0-∞ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions. PMID:23776402

  2. Plumbagin, a vitamin K3 analogue ameliorate malaria pathogenesis by inhibiting oxidative stress and inflammation.

    PubMed

    Gupta, Amit Chand; Mohanty, Shilpa; Saxena, Archana; Maurya, Anil Kumar; Bawankule, Dnyaneshwar U

    2018-03-22

    Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.

  3. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway.

    PubMed

    Xue, Hongxia; Gan, Fang; Zhang, Zheqian; Hu, Junfa; Chen, Xingxiang; Huang, Kehe

    2015-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Astragalus polysaccharide (APS), as one kind of biological macromolecule extracted from Astragalus, has antiviral activities. This study was undertaken to explore the effect of APS on PCV2 replication in vitro and the underlying mechanisms. Our results showed that adding APS before PCV2 infection decreased significantly PCV2 DNA copies, the number of infected cells, MDA level, ROS level and NF-κB activation in PK15 cells and increased significantly GSH contents and SOD activity compared to control without APS. Oxidative stress induced by BSO could eliminate the effect of PCV2 replication inhibition by APS. LPS, as a NF-κB activator, could attenuate the effect of PCV2 replication inhibition by APS. BAY 11-7082, as a NF-κB inhibitor, could increase the effect of PCV2 replication inhibition by APS. In conclusion, APS inhibits PCV2 replication by decreasing oxidative stress and the activation of NF-κB signaling pathway, which suggests that APS might be employed for the prevention of PCV2 infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake.

    PubMed

    Li, Kaikai; Yao, Fen; Du, Jing; Deng, Xiangyi; Li, Chunmei

    2018-02-21

    Regulation of postprandial blood glucose levels is an effective therapeutic proposal for type 2 diabetes treatment. In this study, the effect of persimmon tannin on starch digestion with different amylose levels was investigated both in vitro and in vivo. Oral administration of persimmon tannin-starch complexes significantly suppressed the increase of blood glucose levels and the area under the curve (AUC) in a dose-dependent manner compared with starch treatment alone in an in vivo rat model. Further study proved that persimmon tannin could not only interact with starch directly but also inhibit α-amylase and α-glucosidase strongly, with IC 50 values of 0.35 and 0.24 mg/mL, separately. In addition, 20 μg/mL of persimmon tannin significantly decreased glucose uptake and transport in Caco-2 cells model. Overall, our data suggested that persimmon tannin may alleviate postprandial hyperglycemia through limiting the digestion of starch as well as inhibiting the uptake and transport of glucose.

  5. Sub-chronic administration of the 11beta-HSD1 inhibitor, carbenoxolone, improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity.

    PubMed

    Taylor, Ashley; Irwin, Nigel; McKillop, Aine M; Flatt, Peter R; Gault, Victor A

    2008-04-01

    We have examined the metabolic effects of daily administration of carbenoxolone (CBX), a naturally occurring 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) inhibitor, in mice with high fat diet-induced insulin resistance and obesity. Eight-week-old male Swiss TO mice placed on a synthetic high fat diet received daily intraperitoneal injections of either saline vehicle or CBX over a 16-day period. Daily administration of CBX had no effect on food intake, but significantly lowered body weight (1.1- to 1.2-fold) compared to saline-treated controls. Non-fasting plasma glucose levels were significantly decreased (1.6-fold) by CBX treatment on day 4 and remained lower throughout the treatment period. Circulating plasma corticosterone levels were not significantly altered by CBX treatment. Plasma glucose concentrations of CBX-treated mice were significantly reduced (1.4-fold) following an intraperitoneal glucose load compared with saline controls. Similarly, after 16-day treatment with CBX, exogenous insulin evoked a significantly greater reduction in glucose concentrations (1.4- to 1.8-fold). 11beta-HSD1 gene expression was significantly down-regulated in liver, whereas glucocorticoid receptor gene expression was increased in both liver and adipose tissue following CBX treatment. The reduced body weight and improved metabolic control in mice with high fat diet-induced obesity upon daily CBX administration highlights the potential value of selective 11beta-HSD1 inhibition as a new route for the treatment of type 2 diabetes and obesity.

  6. Boric acid inhibits LPS-induced TNF-alpha formation through a thiol-dependent mechanism in THP-1 cells.

    PubMed

    Cao, Jun; Jiang, Liping; Zhang, Xiaomei; Yao, Xiaofeng; Geng, Chengyan; Xue, Xiangxin; Zhong, Laifu

    2008-01-01

    Oxidative stress plays an important role during inflammatory diseases and antioxidant administration to diminish oxidative stress may arrest inflammatory processes. Boron has been implicated to modulate certain inflammatory mediators and regulate inflammatory processes. Here we investigated the role of the tripeptide glutathione (GSH) in modulating the effects of boric acid (BA) on lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha) formation in THP-1 monocytes. Interestingly, we found that BA had no significant effects on both TNF-alpha production and intracellular GSH contents, whereas it could inhibit LPS-induced TNF-alpha formation and ameliorated the d,l-buthionine-S,R-sulfoximine (BSO)-induced GSH depletion. Twenty-four hour incubation with BSO induced a decrease of the intracellular GSH and an increase of TNF-alpha. Treatment with N-acetyl-l-cysteine (NAC) did not significantly increase intracellular content of GSH but significantly reduced the secretion of TNF-alpha. BSO-pretreatment for 24h enhanced the LPS-induced secretion and mRNA expression of TNF-alpha further. BA inhibited LPS-stimulated TNF-alpha formation was also seen after GSH depletion by BSO. These results indicate that BA may have anti-inflammatory effect in the LPS-stimulated inflammation and the effect of BA on TNF-alpha secretion may be induced via a thiol-dependent mechanism.

  7. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole bodymore » exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.« less

  8. Comparison of the effects of acute fluvoxamine and desipramine administration on melatonin and cortisol production in humans.

    PubMed Central

    Skene, D J; Bojkowski, C J; Arendt, J

    1994-01-01

    1. Acute administration of the specific serotonin uptake inhibitor, fluvoxamine (100 mg at 16.00 h), markedly increased nocturnal plasma melatonin concentrations, with high levels extending into the morning hours. 2. Acute administration of the noradrenaline uptake inhibitor, desipramine (DMI) (100 mg at 16.00 h), increased evening plasma melatonin concentrations. 3. Both drug treatments increased the duration of melatonin secretion, fluvoxamine significantly delaying the offset time and DMI significantly advancing the onset time. 4. The stimulatory effect of DMI on plasma melatonin was mirrored by increased urinary 6-sulphatoxymelatonin (aMT6s) excretion. 5. On the contrary, there was no correlation between plasma melatonin and urinary aMT6s concentrations following fluvoxamine treatment, suggesting that fluvoxamine may inhibit the metabolism of melatonin. 6. Treatment with DMI increased plasma cortisol concentrations in the evening and early morning, treatment with fluvoxamine increased plasma cortisol at 03.00 h, 10.00 h and 11.00 h. 7. The drug treatments affected different aspects of the nocturnal plasma melatonin profile suggesting that the amplitude of the melatonin rhythm may depend upon serotonin availability and/or melatonin metabolism whilst the onset of melatonin production depends upon noradrenaline availability. PMID:8186063

  9. Shikonin induces apoptosis and inhibits migration of ovarian carcinoma cells by inhibiting the phosphorylation of Src and FAK

    PubMed Central

    HAO, ZHENFENG; QIAN, JING; YANG, JISHI

    2015-01-01

    The present study identified that shikonin, a naphthoquinone extracted from the roots of Lithospermum erythrorhizon, inhibits the migration of ovarian cancer cells and induces their apoptosis by impairing the phosphorylation of two kinases, proto-oncogene tyrosine protein kinase Src (Src) and focal adhesion kinase (FAK). Ovarian carcinoma SKOV-3 cells were treated with various concentrations of shikonin and analyzed for the effects on cell migration, invasion and apoptosis via Transwell assays and flow cytometry. In addition, the effects of shikonin administration on the expression and phosphorylation of Src and FAK in the SKOV-3 cells were analyzed by western blotting. Shikonin appeared to induce apoptosis and decrease cell migration in the SKOV-3 ovarian cells. Furthermore, the present study provides evidence that shikonin may exert these effects on human ovarian carcinoma cells via the inhibition of the protein tyrosine kinases, Src and FAK. Thus, shikonin should be considered for additional investigation as a candidate agent for the prevention and treatment of human ovarian cancer. PMID:25621031

  10. Metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of oral-administrated berberine

    PubMed Central

    Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Hylemon, Phillip B.; Zhou, Huiping; Aa, Jiye; Wang, Guangji

    2014-01-01

    Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-administered berberine was poorly absorbed into circulation and most berberine accumulated in gut content. Although the bioavailability for intragastric-administered berberine was much lower than that of intraperitoneal-administered berberine, it had stronger lipid-lowing effect, indicating gastrointestinal is a potential target for hypolipidemic effect of berberine. Metabolomic study on both serum and gut content showed that oral-administrated berberine significantly regulated molecules involved in lipid metabolism, and increased the generation of bile acids in the hyperlipidemic model. DNA analysis revealed that the oral-administered berberine modulated the gut microbiota, and BBR showed a significant inhibition on the 7α-dehydroxylation conversion of cholic acid to deoxycholic acid, indicating a decreased elimination of bile acids in the gut. However, in model hamsters, elevated bile acids failed to down-regulate the expression and function of CYP7A1 in a negative feed-back way. It was suggested that the hypocholesterolemic effect for oral-administrated berberine is involved in its effect on modulating the turnover of bile acids and farnesoid X receptor signal pathway. PMID:25411028

  11. Mangiferin Inhibits Renal Urate Reabsorption by Modulating Urate Transporters in Experimental Hyperuricemia.

    PubMed

    Yang, Hua; Gao, Lihui; Niu, Yanfen; Zhou, Yuanfang; Lin, Hua; Jiang, Jing; Kong, Xiangfu; Liu, Xu; Li, Ling

    2015-01-01

    Mangiferin, a natural glucosyl xanthone from the leaves of Mangifera indica L., was previously shown to exert potent hypouricemic effects associated with inhibition of the activity of xanthine dehydrogenase/oxidase. The present study aimed to evaluate its uricosuric effect and possible molecular mechanisms underlying the renal urate transporters responsible for urate reabsorption in vivo. Mangiferin (1.5-24.0 mg/kg) was administered intragastrically to hyperuricemic mice and rats induced by the intraperitoneal injection of uric acid and potassium oxonate, respectively. The uricosuric effect was evaluated by determining the serum and urinary urate levels as well as fractional excretion of uric acid (FEUA). The mRNA and protein levels of renal urate-anion transporter 1 (URAT1), organic anion transporter 10 (OAT10), glucose transporter 9 (GLUT9), and PDZ domain-containing protein (PDZK1) were analyzed. The administration of mangiferin significantly decreased the serum urate levels in hyperuricemic mice in a dose- and time-dependent manner. In hyperuricemic rats, mangiferin also reduced the serum urate levels and increased the urinary urate levels and FEUA. These results indicate that mangiferin has uricosuric effects. Further examination showed that mangiferin markedly inhibited the mRNA and protein expression of renal URAT1, OAT10, and GLUT9 in hyperuricemic rats, but did not interfere with PDZK1 expression. Taken together, these findings suggest that mangiferin promotes urate excretion by the kidney, which may be related to the inhibition of urate reabsorption via downregulation of renal urate transporters.

  12. Acute versus chronic administration of phosphodiesterase inhibitors on allergen-induced pulmonary cell influx in sensitized guinea-pigs.

    PubMed Central

    Banner, K H; Page, C P

    1995-01-01

    1. The aims of this study were to determine which phosphodiesterase (PDE) isoenzymes are involved in the control of eosinophil accumulation in the airways of ovalbumin (OVA)-immunized guinea-pigs by the use of isoenzyme selective inhibitors and to compare the effects of acute versus chronic administration of PDE isozyme inhibitors on pulmonary cell influx in ovalbumin-immunized guinea-pigs. 2. Guinea-pigs were sensitized and subsequently challenged with aerosolized OVA. Twenty four hours later bronchoalveolar lavage (BAL) was performed to permit assessment of inflammatory cell accumulation. A significant increase in the number of eosinophils was observed in the lavage fluid from OVA-immunized (13.6 +/- 1.4 x 10(4) ml-1 in acute experiments and 10.1 +/- 1.4 x 10(4) ml-1 in chronic experiments) animals compared with sham-treated controls (5.6 +/- 0.6 x 10(4) ml-1 in acute experiments and 5.1 +/- 0.6 x 10(4) ml-1 in chronic experiments). There was no difference in neutrophil, mononuclear cell or total cell numbers between the two groups. 3. Acute administration of a high dose of selective and non-selective PDE inhibitors by the i.p. route had no significant effect on eosinophil accumulation in the airways. 4. Chronic administration of a low dose (3 mg kg-1, i.p., twice daily for 7 days) of the type IV PDE inhibitor, RO 20-1724, and the PDE III/IV inhibitor, zardaverine, produced a significant inhibition of eosinophil accumulation (46% and 59% respectively).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7536098

  13. Reactivation of VX-inhibited cholinesterase by 2-PAM and HS-6 in rats.

    PubMed

    Harris, L W; Stitcher, D L

    1983-01-01

    Atropinized rats intoxicated with ethyl-S-2-diisopropyl aminoethyl methyl phosphonothioate (VX), 15 mg/kg iv, were divided into three groups and were treated with normal saline, iv, 30 mg/kg of 2-PAM C1, iv, and 30 mg/kg of HS-6, iv. One hr after administration of therapy they were decapitated and cholinesterase (ChE) activity was determined on blood, brain and diaphragm tissue. Both 2-PAM C1 and HS-6 markedly reactivated VX-inhibited blood and diaphragm ChE. Brain ChE activity was not significantly reactivated by either oxime. The effectiveness of these oximes in restoration of VX-inactivated ChE in vivo offers an explanation as to why conventional atropine/oxime therapy is so effective against VX intoxication.

  14. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature

    PubMed Central

    Geng, Ling; Rachakonda, Girish; Morré, D. James; Morré, Dorothy M.; Crooks, Peter A.; Sonar, Vijayakumar N.; Roti, Joseph L. Roti; Rogers, Buck E.; Greco, Suellen; Ye, Fei; Salleng, Kenneth J.; Sasi, Soumya; Freeman, Michael L.; Sekhar, Konjeti R.

    2009-01-01

    There is a need for novel strategies that target tumor vasculature, specifically those that synergize with cytotoxic therapy, in order to overcome resistance that can develop with current therapeutics. A chemistry-driven drug discovery screen was employed to identify novel compounds that inhibit endothelial cell tubule formation. Cell-based phenotypic screening revealed that noncytotoxic concentrations of (Z)-(±)-2-(1-benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2. 2.2]octan-3-ol (analog I) and (Z)-(±)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (analog II) inhibited endothelial cell migration and the ability to form capillary-like structures in Matrigel by ≥70%. The ability to undergo neoangiogenesis, as measured in a window-chamber model, was also inhibited by 70%. Screening of biochemical pathways revealed that analog II inhibited the enzyme ENOX1 (EC50 = 10 μM). Retroviral-mediated shRNA suppression of endothelial ENOX1 expression inhibited cell migration and tubule formation, recapitulating the effects observed with the small-molecule analogs. Genetic or chemical suppression of ENOX1 significantly increased radiation-mediated Caspase3-activated apoptosis, coincident with suppression of p70S6K1 phosphorylation. Administration of analog II prior to fractionated X-irradiation significantly diminished the number and density of tumor microvessels, as well as delayed syngeneic and xenograft tumor growth compared to results obtained with radiation alone. Analysis of necropsies suggests that the analog was well tolerated. These results suggest that targeting ENOX1 activity represents a novel therapeutic strategy for enhancing the radiation response of tumors.—Geng, L., Rachakonda, G., Morré, D. J., Morré, D. M., Crooks, P. A., Sonar, V. N., Roti Roti, J. L., Rogers, B. E., Greco, S., Ye, F., Salleng, K. J., Sasi, S., Freeman, M. L., Sekhar, K. R. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while

  15. Metabonomics-based analysis of Brachyspira pilosicoli's response to tiamulin reveals metabolic activity despite significant growth inhibition.

    PubMed

    Le Roy, Caroline Ivanne; Passey, Jade Louise; Woodward, Martin John; La Ragione, Roberto Marcello; Claus, Sandrine Paule

    2017-06-01

    Pathogenic anaerobes Brachyspira spp. are responsible for an increasing number of Intestinal Spirochaetosis (IS) cases in livestock against which few approved treatments are available. Tiamulin is used to treat swine dysentery caused by Brachyspira spp. and recently has been used to handle avian intestinal spirochaetosis (AIS). The therapeutic dose used in chickens requires further evaluation since cases of bacterial resistance to tiamulin have been reported. In this study, we evaluated the impact of tiamulin at varying concentrations on the metabolism of B. pilosicoli using a 1 H-NMR-based metabonomics approach allowing the capture of the overall bacterial metabolic response to antibiotic treatment. Based on growth curve studies, tiamulin impacted bacterial growth even at very low concentration (0.008 μg/mL) although its metabolic activity was barely affected 72 h post exposure to antibiotic treatment. Only the highest dose of tiamulin tested (0.250 μg/mL) caused a major metabolic shift. Results showed that below this concentration, bacteria could maintain a normal metabolic trajectory despite significant growth inhibition by the antibiotic, which may contribute to disease reemergence post antibiotic treatment. Indeed, we confirmed that B. pilosicoli remained viable even after exposition to the highest antibiotic dose. This paper stresses the need to ensure new evaluation of bacterial viability post bacteriostatic exposure such as tiamulin to guarantee treatment efficacy and decrease antibiotic resistance development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    PubMed

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  17. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature

    PubMed Central

    Mohamedali, Khalid A.; Li, Zhi Gang; Starbuck, Michael W.; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G.; Navone, Nora M.

    2011-01-01

    Purpose A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF121/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting non-tumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Experimental Design Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF121/rGel. Results VEGF121/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF121/rGel internalization into osteoblasts was VEGF121 receptor driven. Furthermore, VEGF121/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF121/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomography analysis revealed that VEGF121/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non–tumor bearing) femurs. VEGF121/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF121/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF121/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Conclusions Targeting VEGFR-1 – or VEGFR-2–expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. PMID:21343372

  18. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature.

    PubMed

    Mohamedali, Khalid A; Li, Zhi Gang; Starbuck, Michael W; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G; Navone, Nora M

    2011-04-15

    A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF(121)/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting nontumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF(121)/rGel. VEGF(121)/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF(121)/rGel internalization into osteoblasts was VEGF(121) receptor driven. Furthermore, VEGF(121)/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF(121)/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomographic analysis revealed that VEGF(121)/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non-tumor-bearing) femurs. VEGF(121)/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF(121)/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF(121)/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Targeting VEGF receptor (VEGFR)-1- or VEGFR-2-expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. ©2011 AACR.

  19. Impact of Intravenous Lysine Acetylsalicylate Versus Oral Aspirin on Prasugrel-Inhibited Platelets: Results of a Prospective, Randomized, Crossover Study (the ECCLIPSE Trial).

    PubMed

    Vivas, David; Martín, Agustín; Bernardo, Esther; Ortega-Pozzi, María Aranzazu; Tirado, Gabriela; Fernández, Cristina; Vilacosta, Isidre; Núñez-Gil, Iván; Macaya, Carlos; Fernández-Ortiz, Antonio

    2015-05-01

    Prasugrel and ticagrelor, new P2Y12-adenosine diphosphate receptor antagonists, are associated with greater pharmacodynamic inhibition and reduction of cardiovascular events compared with clopidogrel in patients with an acute coronary syndrome. However, evidence is lacking about the effects of achieving faster and stronger cyclooxygenase inhibition with intravenous lysine acetylsalicylate (LA) compared with oral aspirin on prasugrel-inhibited platelets. This was a prospective, randomized, single-center, open, 2-period crossover platelet function study conducted in 30 healthy volunteers. Subjects were randomly assigned to receive a loading dose of intravenous LA 450 mg plus oral prasugrel 60 mg or loading dose of aspirin 300 mg plus prasugrel 60 mg orally in a crossover fashion after a 2-week washout period between treatments. Platelet function was evaluated at baseline, 30 minutes, 1 h, 4 h, and 24 h using light transmission aggregometry and vasodilator-stimulated phosphoprotein phosphorylation. The primary end point of the study, inhibition of platelet aggregation after arachidonic acid 1.5 mmol/L at 30 minutes, was significantly higher in subjects treated with LA compared with aspirin: 85.3% versus 44.3%, respectively, P=0.003. This differential effect was observed at 1 hour (P=0.002) and 4 hours (P=0.048), but not at 24 hours. Subjects treated with LA presented less variability and faster and greater inhibition of platelet aggregation with arachidonic acid compared with aspirin. The administration of intravenous LA resulted in a significant reduction of platelet reactivity compared with oral aspirin on prasugrel-inhibited platelets. Loading dose of LA achieves an earlier platelet inhibition and with less variability than aspirin. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02243137. © 2015 American Heart Association, Inc.

  20. Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma

    PubMed Central

    Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.

    2011-01-01

    Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177

  1. Inhibition of Methylglyoxal-Induced AGEs/RAGE Expression Contributes to Dermal Protection by N-Acetyl-L-Cysteine.

    PubMed

    Yang, Chun-Tao; Meng, Fu-Hui; Chen, Li; Li, Xiang; Cen, Lai-Jian; Wen, Yu-Hua; Li, Cai-Chen; Zhang, Hui

    2017-01-01

    Accumulation of advanced glycation end products (AGEs) is a major cause of diabetes mellitus (DM) skin complications. Methylglyoxal (MGO), a reactive dicarbonyl compound, is a crucial intermediate of AGEs generation. N-acetyl-L-cysteine (NAC), an active ingredient of some medicines, can induce endogenous GSH and hydrogen sulfide generation, and set off a condensation reaction with MGO. However, there is rare evidence to show NAC can alleviate DM-induced skin injury through inhibition of AGEs generation or toxicity. The present study aimed to observe the effects of NAC on MGO-induced inflammatory injury and investigate the roles of AGEs and its receptor (RAGE) in NAC's dermal protection in human HaCaT keratinocytes. The cells were exposed to MGO to simulate a high MGO status in diabetic blood or tissues. The content of AGEs in serum or cell medium was measured with ELISA. The protective effects of NAC against MGO-induce injury were evaluated by administration before MGO one hour, in virtue of cell viability, mitochondrial membrane potential, inflammation reaction, nuclear factor (NF)-κB activation, matrix metalloproteinase (MMP)-9 expression, as well as cellular behavioral function. We found the AGEs levels of patients with DM were elevated comparing with healthy volunteers. The in vitro AGEs generation was also able to be enhanced by the exposure of HaCaT cells to MGO, which reduced dose-dependently cellular viability, damaged mitochondrial function, triggered secretion of interleukin (IL)-6 and IL-8, activated NF-κB and upregulated MMP-9 expression. Furthermore, the exposure caused cellular adhesion and migration dysfunction, as well as collagen type I inhibition. Importantly, before the exposure to MGO, the preconditioning with NAC significantly attenuated MGO-induced AGEs generation, improved cellular viability and mitochondrial function, partially reversed the overexpression of proinflammatory factors and MMP-9, as well as the activation of NF-κB. Lastly

  2. Intrahippocampal glutamine administration inhibits mTORC1 signaling and impairs long-term memory

    PubMed Central

    Rozas, Natalia S.; Redell, John B.; Pita-Almenar, Juan D.; Mckenna, James; Moore, Anthony N.; Gambello, Michael J.

    2015-01-01

    The mechanistic Target of Rapamycin Complex 1 (mTORC1), a key regulator of protein synthesis and cellular growth, is also required for long-term memory formation. Stimulation of mTORC1 signaling is known to be dependent on the availability of energy and growth factors, as well as the presence of amino acids. In vitro studies using serum- and amino acid-starved cells have reported that glutamine addition can either stimulate or repress mTORC1 activity, depending on the particular experimental system that was used. However, these experiments do not directly address the effect of glutamine on mTORC1 activity under physiological conditions in nondeprived cells in vivo. We present experimental results indicating that intrahippocampal administration of glutamine to rats reduces mTORC1 activity. Moreover, post-training administration of glutamine impairs long-term spatial memory formation, while coadministration of glutamine with leucine had no influence on memory. Intracellular recordings in hippocampal slices showed that glutamine did not alter either excitatory or inhibitory synaptic activity, suggesting that the observed memory impairments may not result from conversion of glutamine to either glutamate or GABA. Taken together, these findings indicate that glutamine can decrease mTORC1 activity in the brain and may have implications for treatments of neurological diseases associated with high mTORC1 signaling. PMID:25878136

  3. Response inhibition in motor conversion disorder.

    PubMed

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P < .001) compared with healthy volunteers, which remained significant after Bonferroni correction for multiple comparisons and after controlling for attention, sustained attention, depression, and anxiety. There were no significant differences in other cognitive measures. We highlight a specific deficit in motor response inhibition that may play a role in impaired inhibition of unwanted movement such as the excessive and aberrant movements seen in motor conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  4. Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient.

    PubMed

    Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C

    2016-04-01

    Postinjury fibrinolysis can manifest as three distinguishable phenotypes: 1) hyperfibrinolysis, 2) physiologic, and 3) hypofibrinolysis (shutdown). Hyperfibrinolysis is associated with uncontrolled bleeding due to clot dissolution; whereas, fibrinolysis shutdown is associated with organ dysfunction due to microvascular occlusion. The incidence of fibrinolysis phenotypes at hospital arrival in severely injured patients is: 1) hyperfibrinolysis 18%, physiologic 18%, and shutdown 64%. The mechanisms responsible for dysregulated fibrinolysis following injury remain uncertain. Animal work suggests hypoperfusion promotes fibrinolysis, while tissue injury inhibits fibrinolysis. Clinical experience is consistent with these observations. The predominant mediator of postinjury hyperfibrinolysis appears to be tissue plasminogen activator (tPA) released from ischemic endothelium. The effects of tPA are accentuated by impaired hepatic clearance. Fibrinolysis shutdown, on the other hand, may occur from inhibition of circulating tPA, enhanced clot strength impairing the binding of tPA and plasminogen to fibrin, or the inhibition of plasmin. Plasminogen activator inhibitor -1 (PAI-1) binding of circulating tPA appears to be a major mechanism for postinjury shutdown. The sources of PAI-1 include endothelium, platelets, and organ parenchyma. The laboratory identification of fibrinolysis phenotype, at this moment, is best determined with viscoelastic hemostatic assays (TEG, ROTEM). While D-dimer and plasmin antiplasmin (PAP) levels corroborate fibrinolysis, they do not provide real-time assessment of the circulating blood capacity. Our clinical studies indicate that fibrinolysis is a very dynamic process and our experimental work suggests plasma first resuscitation reverses hyperfibrinolysis. Collectively, we believe recent clinical and experimental work suggest antifibrinolytic therapy should be employed selectively in the acutely injured patient, and optimally guided by TEG or

  5. Specific inhibition of c-Jun N-terminal kinase delays preterm labour and reduces mortality

    PubMed Central

    Pirianov, Grisha; MacIntyre, David A; Lee, Yun; Waddington, Simon N; Terzidou, Vasso; Mehmet, Huseyin; Bennett, Phillip R

    2015-01-01

    Preterm labour (PTL) is commonly associated with infection and/or inflammation. Lipopolysaccharide (LPS) from different bacteria can be used to independently or mutually activate Jun N-terminal kinase (JNK)/AP1- or NF-κB-driven inflammatory pathways that lead to PTL. Previous studies using Salmonella abortus LPS, which activates both JNK/AP-1 and NF-κB, showed that selective inhibition of NF-κB delays labour and improves pup outcome. Where labour is induced using Escherichia coli LPS (O111), which upregulates JNK/AP-1 but not NF-κB, inhibition of JNK/AP-1 activation also delays labour. In this study, to determine the potential role of JNK as a therapeutic target in PTL, we investigated the specific contribution of JNK signalling to S. Abortus LPS-induced PTL in mice. Intrauterine administration of S. Abortus LPS to pregnant mice resulted in the activation of JNK in the maternal uterus and fetal brain, upregulation of pro-inflammatory proteins COX-2, CXCL1, and CCL2, phosphorylation of cPLA2 in myometrium, and induction of PTL. Specific inhibition of JNK by co-administration of specific D-JNK inhibitory peptide (D-JNKI) delayed LPS-induced preterm delivery and reduced fetal mortality. This is associated with inhibition of myometrial cPLA2 phosphorylation and proinflammatory proteins synthesis. In addition, we report that D-JNKI inhibits the activation of JNK/JNK3 and caspase-3, which are important mediators of neural cell death in the neonatal brain. Our data demonstrate that specific inhibition of TLR4-activated JNK signalling pathways has potential as a therapeutic approach in the management of infection/inflammation-associated PTL and prevention of the associated detrimental effects to the neonatal brain. PMID:26183892

  6. Assessment of central dopaminergic function using plasma-free homovanillic acid after debrisoquin administration.

    PubMed

    Riddle, M A; Leckman, J F; Cohen, D J; Anderson, M; Ort, S I; Caruso, K A; Shaywitz, B A

    1986-01-01

    Central dopaminergic (DA) function in children and adults was assessed by monitoring plasma-free levels of the dopamine metabolite homovanillic acid (pHVA) before and after a single oral dose and chronic oral administration of debrisoquin. Debrisoquin inhibits peripheral metabolism of dopamine to HVA and does not cross the blood-brain barrier. By reducing peripheral formation of HVA through the use of debrisoquin, the remaining HVA in plasma more accurately reflects central DA activity. Debrisoquin administration resulted in marked reductions of pHVA in each of 12 patients studied. Eleven of the 12 subjects tolerated debrisoquin without physical or behavioral side effects. The debrisoquin administration method appears to be a safe and potentially valid technique for evaluating aspects of central dopaminergic function in children and adults.

  7. Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy

    PubMed Central

    Sápi, Johanna; Kovács, Levente; Drexler, Dániel András; Kocsis, Pál; Gajári, Dávid; Sápi, Zoltán

    2015-01-01

    Background Bevacizumab is an exogenous inhibitor which inhibits the biological activity of human VEGF. Several studies have investigated the effectiveness of bevacizumab therapy according to different cancer types but these days there is an intense debate on its utility. We have investigated different methods to find the best tumor volume estimation since it creates the possibility for precise and effective drug administration with a much lower dose than in the protocol. Materials and Methods We have examined C38 mouse colon adenocarcinoma and HT-29 human colorectal adenocarcinoma. In both cases, three groups were compared in the experiments. The first group did not receive therapy, the second group received one 200 μg bevacizumab dose for a treatment period (protocol-based therapy), and the third group received 1.1 μg bevacizumab every day (quasi-continuous therapy). Tumor volume measurement was performed by digital caliper and small animal MRI. The mathematical relationship between MRI-measured tumor volume and mass was investigated to estimate accurate tumor volume using caliper-measured data. A two-dimensional mathematical model was applied for tumor volume evaluation, and tumor- and therapy-specific constants were calculated for the three different groups. The effectiveness of bevacizumab administration was examined by statistical analysis. Results In the case of C38 adenocarcinoma, protocol-based treatment did not result in significantly smaller tumor volume compared to the no treatment group; however, there was a significant difference between untreated mice and mice who received quasi-continuous therapy (p = 0.002). In the case of HT-29 adenocarcinoma, the daily treatment with one-twelfth total dose resulted in significantly smaller tumors than the protocol-based treatment (p = 0.038). When the tumor has a symmetrical, solid closed shape (typically without treatment), volume can be evaluated accurately from caliper-measured data with the applied two

  8. Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy.

    PubMed

    Sápi, Johanna; Kovács, Levente; Drexler, Dániel András; Kocsis, Pál; Gajári, Dávid; Sápi, Zoltán

    2015-01-01

    Bevacizumab is an exogenous inhibitor which inhibits the biological activity of human VEGF. Several studies have investigated the effectiveness of bevacizumab therapy according to different cancer types but these days there is an intense debate on its utility. We have investigated different methods to find the best tumor volume estimation since it creates the possibility for precise and effective drug administration with a much lower dose than in the protocol. We have examined C38 mouse colon adenocarcinoma and HT-29 human colorectal adenocarcinoma. In both cases, three groups were compared in the experiments. The first group did not receive therapy, the second group received one 200 μg bevacizumab dose for a treatment period (protocol-based therapy), and the third group received 1.1 μg bevacizumab every day (quasi-continuous therapy). Tumor volume measurement was performed by digital caliper and small animal MRI. The mathematical relationship between MRI-measured tumor volume and mass was investigated to estimate accurate tumor volume using caliper-measured data. A two-dimensional mathematical model was applied for tumor volume evaluation, and tumor- and therapy-specific constants were calculated for the three different groups. The effectiveness of bevacizumab administration was examined by statistical analysis. In the case of C38 adenocarcinoma, protocol-based treatment did not result in significantly smaller tumor volume compared to the no treatment group; however, there was a significant difference between untreated mice and mice who received quasi-continuous therapy (p = 0.002). In the case of HT-29 adenocarcinoma, the daily treatment with one-twelfth total dose resulted in significantly smaller tumors than the protocol-based treatment (p = 0.038). When the tumor has a symmetrical, solid closed shape (typically without treatment), volume can be evaluated accurately from caliper-measured data with the applied two-dimensional mathematical model. Our results

  9. Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration.

    PubMed

    Bannenberg, Gerard; Moussignac, Rose-Laure; Gronert, Karsten; Devchand, Pallavi R; Schmidt, Birgitta A; Guilford, William J; Bauman, John G; Subramanyam, Babu; Perez, H Daniel; Parkinson, John F; Serhan, Charles N

    2004-09-01

    1. Lipoxins (LX) and aspirin-triggered 15-epi-lipoxins (ATL) exert potent anti-inflammatory actions. In the present study, we determined the anti-inflammatory efficacy of endogenous LXA(4) and LXB(4), the stable ATL analog ATLa2, and a series of novel 3-oxa-ATL analogs (ZK-996, ZK-990, ZK-994, and ZK-142) after intravenous, oral, and topical administration in mice. 2. LXA(4), LXB(4), ATLa2, and ZK-994 were orally active, exhibiting potent systemic inhibition of zymosan A-induced peritonitis at very low doses (50 ng kg(-1)-50 microg kg(-1)). 3. Intravenous ZK-994 and ZK-142 (500 microg kg(-1)) potently attenuated hind limb ischemia/reperfusion-induced lung injury, with 32+/-12 and 53+/-5% inhibition (P<0.05), respectively, of neutrophil accumulation in lungs. The same dose of ATLa2 had no significant protective action. 4. Topical application of ATLa2, ZK-994, and ZK-142 ( approximately 20 microg cm(-2)) prevented vascular leakage and neutrophil infiltration in LTB(4)/PGE(2)-stimulated ear skin inflammation. While ATLa2 and ZK-142 displayed approximately equal anti-inflammatory efficacy in this model, ZK-994 displayed a slower onset of action. 5. In summary, native LXA(4) and LXB(4), and analogs ATLa2, ZK-142, and ZK-994 retain broad anti-inflammatory effects after intravenous, oral, and topical administration. The 3-oxa-ATL analogs, which have enhanced metabolic and chemical stability and a superior pharmacokinetic profile, provide new opportunities to explore the actions and therapeutic potential for LX and ATL.

  10. Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition.

    PubMed

    Tie, Chunmiao; Gao, Kanglu; Zhang, Na; Zhang, Songzhao; Shen, Jiali; Xie, Xiaojie; Wang, Jian-An

    2015-01-01

    Ezetimibe, as a cholesterol absorption inhibitor, has been shown protecting against atherosclerosis when combined with statin. However, side by side comparison has not been made to evaluate the beneficial effects of ezetimibe alone versus statin. Herein, the study aimed to test whether ezetimibe alone would exhibit similar effects as statin and the combination therapy would be necessary in a moderate lesion size. ApoE-/- male mice that were fed a saturated-fat supplemented diet were randomly assigned to different therapeutic regimens: vehicle, ezetimibe alone (10 mg/kg/day), atorvastatin (20 mg/kg/day) or combination of ezetimibe and atorvastatin through the drinking water. On 28 days, mice were sacrificed and aorta and sera were collected to analyze the atherosclerotic lesion and blood lipid and cholesterol levels. As a result, ezetimibe alone exerted similar protective effects on atherosclerotic lesion sizes as atorvastatin, which was mediated by lowering serum cholesterol concentrations, inhibiting macrophage accumulation in the lesions and reducing circulatory inflammatory cytokines, such as monocyte chemoattractant protein (MCP-1) and tumor necrosis factor (TNF-α). In contrast to ezetimibe administration, atorvastatin alone attenuated atherosclerotic lesion which is dependent on its anti-inflammation effects. There were no significance differences in lesion areas and serum concentrations of cholesterol, oxidized LDL and inflammatory cytokines between combination therapy and monotherapy (either ezetimibe or atorvastatin). There were significant correlations between the lesion areas and serum concentrations of cholesterol, MCP-1 and TNF-α, respectively. However, there were no significant correlations between the lesion areas and serum concentrations of TGF-β1 and oxLDL. Ezetimibe alone played the same protection against a moderate atherosclerotic lesion as atorvastatin, which was associated with lowering serum cholesterol, decreasing circulating inflammatory

  11. Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition

    PubMed Central

    Tie, Chunmiao; Gao, Kanglu; Zhang, Na; Zhang, Songzhao; Shen, Jiali; Xie, Xiaojie; Wang, Jian-an

    2015-01-01

    Background Ezetimibe, as a cholesterol absorption inhibitor, has been shown protecting against atherosclerosis when combined with statin. However, side by side comparison has not been made to evaluate the beneficial effects of ezetimibe alone versus statin. Herein, the study aimed to test whether ezetimibe alone would exhibit similar effects as statin and the combination therapy would be necessary in a moderate lesion size. Methods and Results ApoE-/- male mice that were fed a saturated-fat supplemented diet were randomly assigned to different therapeutic regimens: vehicle, ezetimibe alone (10 mg/kg/day), atorvastatin (20 mg/kg/day) or combination of ezetimibe and atorvastatin through the drinking water. On 28 days, mice were sacrificed and aorta and sera were collected to analyze the atherosclerotic lesion and blood lipid and cholesterol levels. As a result, ezetimibe alone exerted similar protective effects on atherosclerotic lesion sizes as atorvastatin, which was mediated by lowering serum cholesterol concentrations, inhibiting macrophage accumulation in the lesions and reducing circulatory inflammatory cytokines, such as monocyte chemoattractant protein (MCP-1) and tumor necrosis factor (TNF-α). In contrast to ezetimibe administration, atorvastatin alone attenuated atherosclerotic lesion which is dependent on its anti-inflammation effects. There were no significance differences in lesion areas and serum concentrations of cholesterol, oxidized LDL and inflammatory cytokines between combination therapy and monotherapy (either ezetimibe or atorvastatin). There were significant correlations between the lesion areas and serum concentrations of cholesterol, MCP-1 and TNF-α, respectively. However, there were no significant correlations between the lesion areas and serum concentrations of TGF-β1 and oxLDL. Conclusions Ezetimibe alone played the same protection against a moderate atherosclerotic lesion as atorvastatin, which was associated with lowering serum

  12. Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-β1 signaling.

    PubMed

    Luan, Yun; Zhang, Luan; Chao, Sun; Liu, Xiaoli; Li, Kaili; Wang, Yibiao; Zhang, Zhaohua

    2016-07-26

    The aim of the present study is to investigate the protection effects of bone marrow mesenchymal stem cells (MSCs) in combination with EPO against hyperoxia-induced bronchopulmonary dysplasia (BPD) injury in neonatal mice. BPD model was prepared by continuous high oxygen exposure, 1×106 bone marrow MSCs and 5000U/kg recombinant human erythropoietin (EPO) were injected respectively. Results showed that administration of MSCs, EPO especially MSCs+EPO significant attenuated hyperoxia-induced lung damage with a decrease of fibrosis, radical alveolar counts and inhibition of the occurrence of epithelial-mesenchymal transition (EMT). Furthermore, MSCs+EPO co-treatment more significantly suppressed the levels of transforming growth factor-β1(TGF-β1) than MSCs or EPO alone. Collectively, these results suggested that MSCs, EPO in particular MSCs+EPO co-treatment could promote lung repair in hyperoxia-induced alveoli dysplasia injury via inhibition of TGF-β1 signaling pathway to further suppress EMT process and may be a promising therapeutic strategy.

  13. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens.

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2012-08-01

    Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit Clostridium difficile, Escherichia coli and S. typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p < 0.05 or less) greater inhibition of pathogens in 12 out of 24 cases. Despite evidence that probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Inhibition of MMPs by alcohols

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  15. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway.

    PubMed

    Lakhan, Ram; Said, Hamid M

    2017-04-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.

  16. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway

    PubMed Central

    Lakhan, Ram

    2017-01-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr78Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway. PMID:28052864

  17. Subcutaneous Administration of Tramadol after Elective Surgery Is as Effective as Intravenous Administration in Relieving Acute Pain and Inflammation in Dogs

    PubMed Central

    Buhari, Salisu; Hashim, Kalthum; Yong Meng, Goh; Mustapha, Noordin Mohamed; Gan, Siew Hua

    2012-01-01

    Subcutaneous (SC) administration of tramadol was compared with intravenous (IV) administration to evaluate analgesia following canine ovariohysterectomy (OHE). Healthy female dogs (n = 12) between 1 and 3 years of age (1.95 ± 0.65 years), weighing between 10.5 and 17.1 kg (13.12 ± 1.95 kg), were used. Pain was assessed at baseline before surgery and then hourly for 8 hr after surgery. Tramadol was administered both SC and IV at a dose of 3 mg/kg and provided significant postoperative analgesia, as indicated by analgesiometry, β-endorphin levels, and interleukin 6 (IL-6) levels. The respiratory rates and rectal temperatures remained normal and were not significantly different between or within the groups. A significant increase in heart rate was observed at 4 hr for dogs in both groups relative to the baseline, but there was no significant difference in heart rates between the groups at any time point. A significant decrease in mechanical pain threshold was observed within each group after surgery, but both groups responded similarly, suggesting that SC administration of tramadol is as effective as IV administration. Increased serum levels of both IL-6 and β-endorphin 3 hr postoperatively further indicate that both routes of administration achieve similar pain control. Thus, the relative analgesic efficacy of SC tramadol is comparable to that of IV administration and can be used to achieve similar effects for postsurgical pain management in dogs undergoing OHE. PMID:22778699

  18. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan; Lenkov, Olga; Mahmoudi, Morteza; Shaw, Aubie; Pajarinen, Jukka Sakari; Nejadnik, Hossein; Goodman, Stuart; Moseley, Michael; Coussens, Lisa Marie; Daldrup-Link, Heike Elisabeth

    2016-11-01

    Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies.

  19. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    PubMed

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Myostatin inhibition prevents skeletal muscle pathophysiology in Huntington's disease mice.

    PubMed

    Bondulich, Marie K; Jolinon, Nelly; Osborne, Georgina F; Smith, Edward J; Rattray, Ivan; Neueder, Andreas; Sathasivam, Kirupa; Ahmed, Mhoriam; Ali, Nadira; Benjamin, Agnesska C; Chang, Xiaoli; Dick, James R T; Ellis, Matthew; Franklin, Sophie A; Goodwin, Daniel; Inuabasi, Linda; Lazell, Hayley; Lehar, Adam; Richard-Londt, Angela; Rosinski, Jim; Smith, Donna L; Wood, Tobias; Tabrizi, Sarah J; Brandner, Sebastian; Greensmith, Linda; Howland, David; Munoz-Sanjuan, Ignacio; Lee, Se-Jin; Bates, Gillian P

    2017-10-27

    Huntington's disease (HD) is an inherited neurodegenerative disorder of which skeletal muscle atrophy is a common feature, and multiple lines of evidence support a muscle-based pathophysiology in HD mouse models. Inhibition of myostatin signaling increases muscle mass, and therapeutic approaches based on this are in clinical development. We have used a soluble ActRIIB decoy receptor (ACVR2B/Fc) to test the effects of myostatin/activin A inhibition in the R6/2 mouse model of HD. Weekly administration from 5 to 11 weeks of age prevented body weight loss, skeletal muscle atrophy, muscle weakness, contractile abnormalities, the loss of functional motor units in EDL muscles and delayed end-stage disease. Inhibition of myostatin/activin A signaling activated transcriptional profiles to increase muscle mass in wild type and R6/2 mice but did little to modulate the extensive Huntington's disease-associated transcriptional dysregulation, consistent with treatment having little impact on HTT aggregation levels. Modalities that inhibit myostatin signaling are currently in clinical trials for a variety of indications, the outcomes of which will present the opportunity to assess the potential benefits of targeting this pathway in HD patients.

  1. Chronic fluoxetine inhibits sexual behavior in the male rat: reversal with oxytocin.

    PubMed

    Cantor, J M; Binik, Y M; Pfaus, J G

    1999-06-01

    Selective serotonin reuptake inhibitors, used widely in the treatment of depression, progressively inhibit sexual orgasm in many patients and induce a transient inhibition of sexual desire. We attempted to model the effects of these drugs in sexually experienced male rats during tests of copulation in bilevel chambers. These chambers allow the study of both appetitive and consummatory sexual responses of male rats. Males were treated daily with fluoxetine hydrochloride (0, 1, 5, or 10 mg/kg) and tested for sexual behavior with receptive females at 4-day intervals. Rats were treated with oxytocin (200 ng/kg) or saline after ejaculations had decreased. Fluoxetine decreased ejaculatory responses of male rats in a dose- and time-dependent fashion, but left the copulatory efficiency of the males intact. In contrast, conditioned level changing, a measure of appetitive sexual excitement, was inhibited following acute and chronic treatment with 10 mg/kg, although tolerance may have developed to the effect of 5 mg/kg. Subsequent administration of oxytocin restored the ejaculatory response but not the measure of sexual excitement to baseline levels. The reversal by oxytocin of the fluoxetine-induced deficit in ejaculations is consistent with the hypothesis that serotonin suppresses ejaculatory mechanisms by interrupting the action of oxytocin, which normally accompanies sexual behavior. Co-administration of oxytocin may help to alleviate the predominant sexual side effect of serotonin reuptake blockers.

  2. The inhibition capacities of children with mathematical disabilities.

    PubMed

    Censabella, Sandrine; Noël, Marie-Pascale

    2008-01-01

    Several authors have argued that mathematical disabilities might result from difficulties in inhibiting irrelevant information. The present study addresses this issue by assessing three inhibition functions in 40 ten-year-old children: suppression of irrelevant information from working memory, inhibition of prepotent responses, and interference control. We found no significant differences between children with math disabilities and typically achieving controls, or between children with arithmetic facts disabilities and children with above-average arithmetic facts skills. These findings, along with other empirical evidence and with theoretical considerations, cast doubt on the inhibition deficit hypothesis.

  3. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation.

    PubMed

    Wang, Neng; Wang, Zhiyu; Wang, Yu; Xie, Xiaoming; Shen, Jiangang; Peng, Cheng; You, Jieshu; Peng, Fu; Tang, Hailin; Guan, Xinyuan; Chen, Jianping

    2015-01-01

    Breast cancer stem cells (CSCs) are considered as the root of mammary tumorigenesis. Previous studies have demonstrated that ISL efficiently limited the activities of breast CSCs. However, the cancer prevention activities of ISL and its precise molecular mechanisms remain largely unknown. Here, we report a novel function of ISL as a natural demethylation agent targeting WIF1 to prevent breast cancer. ISL administration suppressed in vivo breast cancer initiation and progression, accompanied by reduced CSC-like populations. A global gene expression profile assay further identified WIF1 as the main response gene of ISL treatment, accompanied by the simultaneous downregulation of β-catenin signaling and G0/G1 phase arrest in breast CSCs. In addition, WIF1 inhibition significantly relieved the CSC-limiting effects of ISL and methylation analysis further revealed that ISL enhanced WIF1 gene expression via promoting the demethylation of its promoter, which was closely correlated with the inhibition of DNMT1 methyltransferase. Molecular docking analysis finally revealed that ISL could stably dock into the catalytic domain of DNMT1. Taken together, our findings not only provide preclinical evidence to demonstrate the use of ISL as a dietary supplement to inhibit mammary carcinogenesis but also shed novel light on WIF1 as an epigenetic target for breast cancer prevention.

  4. Parsley extract inhibits in vitro and ex vivo platelet aggregation and prolongs bleeding time in rats.

    PubMed

    Gadi, Dounia; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Legrand, Chantal; Lafeve, Françoise Fauvel; Mekhfi, Hassane

    2009-08-17

    Many cardiovascular diseases are associated with an increase in blood platelet activity. In Morocco, parsley (Petroselinum crispum, Apiaceae) is one of the medicinal herbs used to treat cardiovascular diseases such as arterial hypertension. In this study, crude aqueous extract (CAE) of parsley was evaluated for its anti-platelet activity in experimental animals on platelet aggregation in vitro and ex vivo; and on bleeding time in vivo. The in vitro aggregation was monitored after pre-incubation of platelets with CAE. The bleeding time and ex vivo aggregation were performed after oral treatment. CAE inhibited dose dependently platelet aggregation in vitro induced by thrombin, ADP, collagen and epinephrine. The oral administration of CAE (3g/kg) inhibited significantly (p<0.001) platelet aggregation ex vivo and prolonged bleeding time (p<0.001) without changes in the platelet amount. The prolongation of bleeding time by CAE may be attributed to the observed inhibition of platelet aggregation. These effects could be related in part to the polyphenolic compounds present in the extract. These results support the hypothesis that the dietary intake of parsley may be benefit in the normalization of platelet hyperactivation, in the nutritional prevention of cardiovascular diseases and are potentially interesting in the development of new prevention strategies.

  5. Intrathecal administration of AYX2 DNA decoy produces a long-term pain treatment in rat models of chronic pain by inhibiting the KLF6, KLF9, and KLF15 transcription factors

    PubMed Central

    Klukinov, Michael; Harris, Scott; Manning, Donald C; Xie, Simon; Pascual, Conrado; Taylor, Bradley K; Donahue, Renee R; Yeomans, David C

    2017-01-01

    Background Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive von Frey testing. Results Results demonstrated that a one-time administration of decoys binding to the Kruppel-like transcription factors (KLFs) 6, 9, and 15 produces a significant and weeks–month long reduction in mechanical hypersensitivity compared to controls. In the spared nerve injury model, decoy efficacy was correlated to its capacity to bind KLF15 and KLF9 at a specific ratio, while in the chronic constriction injury model, efficacy was correlated to the combined binding capacity to KLF6 and KLF9. AYX2, an 18-bp DNA decoy binding KLF6, KLF9, and KLF15, was optimized for clinical development, and it demonstrated significant efficacy in these models. Conclusions These data highlight KLF6, KLF9, and KLF15 as transcription factors required for the maintenance of chronic pain and illustrate the potential therapeutic benefits of AYX2 for the treatment of chronic pain. PMID:28814144

  6. Pharmacological activation of AMPK inhibits incision-evoked mechanical hypersensitivity and the development of hyperalgesic priming in mice.

    PubMed

    Burton, Michael D; Tillu, Dipti V; Mazhar, Khadijah; Mejia, Galo L; Asiedu, Marina N; Inyang, Kufreobong; Hughes, Travis; Lian, Bo; Dussor, Gregory; Price, Theodore J

    2017-09-17

    New therapeutics to manage post-surgical pain are needed to mitigate the liabilities of opioid and other analgesics. Our previous work shows that key modulators of excitability in peripheral nociceptors, such as extracellular signal-regulated kinases (ERK) are inhibited by activation of adenosine monophosphate activated protein kinase (AMPK). We hypothesized that AMPK activation would attenuate acute incision-evoked mechanical hypersensitivity and the development of hyperalgesic priming caused by surgery in mice. Here we have used a variety of administration routes and combinations of AMPK activators to test this hypothesis. Topical administration of a resveratrol-based cream inhibited acute mechanical hypersensitivity evoked by incision and blocked the development of hyperalgesic priming. We also observed that systemic administration of metformin dose-dependently inhibited incision-evoked mechanical hypersensitivity and hyperalgesic priming. Interestingly, low doses of systemic metformin and local resveratrol that had no acute effect were able to mitigate development of hyperalgesic priming. Combined treatment with doses of systemic metformin and local resveratrol that were not effective on their own enhanced the acute efficacy of the individual AMPK activators for post-surgical mechanical pain alleviation and blocked the development of hyperalgesic priming. Finally, we used dorsal root ganglion (DRG) neurons in culture to show that resveratrol and metformin given in combination shift the concentration-response curve for AMPK activation to the left and increase the magnitude of AMPK activation. Therefore, we find that topical administration is an effective treatment route of administration and combining systemic and local treatments led to anti-nociceptive efficacy in acute mechanical hypersensitivity at doses that were not effective alone. Collectively our work demonstrates a specific effect of AMPK activators on post-surgical pain and points to novel therapeutic

  7. Resveratrol protects against early polymicrobial sepsis-induced acute kidney injury through inhibiting endoplasmic reticulum stress-activated NF-κB pathway

    PubMed Central

    Wang, Nian; Mao, Li; Yang, Liu; Zou, Jiang; Liu, Ke; Liu, Meidong; Zhang, Huali; Xiao, Xianzhong; Wang, Kangkai

    2017-01-01

    Resveratrol, a polyphenol compound derived from various edible plants, protects against sepsis-induced acute kidney injury (AKI) via its anti-inflammatory activity, but the underlying mechanisms remain largely unknown. In this study, a rat model of sepsis was established by cecal ligation and puncture (CLP), 30 mg/kg resveratrol was intraperitoneally administrated immediately after the CLP operation. HK-2 cells treated by 1 μg/ml lipopolysaccharide, 0.2 μM tunicamycin, 2.5 mM irestatin 9389 and 20 μM resveratrol were used for in vitro study. The results demonstrated that resveratrol significantly improved the renal function and tubular epithelial cell injury and enhanced the survival rate of CLP-induced rat model of sepsis, which was accompanied by a substantial decrease of the serum content and renal mRNA expressions of TNF-α, IL-1β and IL-6. In addition, resveratrol obviously relieved the endoplasmic reticulum stress, inhibited the phosphorylation of inositol-requiring enzyme 1(IRE1) and nuclear factor-κB (NF-κB) in the kidney. In vitro studies showed that resveratrol enhanced the cell viability, reduced the phosphorylation of NF-κB and production of inflammatory factors in lipopolysaccharide and tunicamycin-induced HK-2 cells through inhibiting IRE1 activation. Taken together, administration of resveratrol as soon as possible after the onset of sepsis could protect against septic AKI mainly through inhibiting IRE1-NF-κB pathway-triggered inflammatory response in the kidney. Resveratrol might be a readily translatable option to improve the prognosis of sepsis. PMID:28430592

  8. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor.

    PubMed

    Chirivi, R G; Garofalo, A; Crimmin, M J; Bawden, L J; Stoppacciaro, A; Brown, P D; Giavazzi, R

    1994-08-01

    The synthetic matrix metalloproteinase inhibitor batimastat was tested for its ability to inhibit growth and metastatic spread of the B16-BL6 murine melanoma in syngeneic C57BL/6N mice. Intraperitoneal administration of batimastat resulted in a significant inhibition in the number of lung colonies produced by B16-BL6 cells injected i.v. The effect of batimastat on spontaneous metastases was examined in mice inoculated in the hind footpad with B16-BL6 melanoma. The primary tumor was removed surgically after 26-28 days. Batimastat was administered twice a day from day 14 to day 28 (pre-surgery) or from day 26 to day 44 (post-surgery). With both protocols, the median number of lung metastases was not significantly affected, but there was a significant reduction in the weight of the metastases. Finally, the effect of batimastat was examined on s.c. growth of B16-BL6 melanoma. Batimastat administered daily, starting at day of tumor transplantation, resulted in a significant growth delay, whereas treatment starting at advanced stage tumor only reduced tumor growth marginally. Our results indicate that a matrix metalloproteinase inhibitor can not only prevent the colonization of secondary organs by B16-BL6 cells but also limit the growth of solid tumors.

  9. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy.

    PubMed

    Madan, Babita; McDonald, Mitchell J; Foxa, Gabrielle E; Diegel, Cassandra R; Williams, Bart O; Virshup, David M

    2018-01-01

    Dysregulated Wnt signaling is associated with the pathogenesis of cancers, fibrosis, and vascular diseases. Inhibition of Wnt signaling has shown efficacy in various pre-clinical models of these disorders. One of the key challenges in developing targeted anti-cancer drugs is to balance efficacy with on-target toxicity. Given the crucial role Wnts play in the differentiation of osteoblasts and osteoclasts, acute inhibition of Wnt signaling is likely to affect bone homeostasis. In this study, we evaluated the skeletal effect of small molecule inhibitor of an o-acyl transferase porcupine (PORCN) that prevents Wnt signaling by blocking the secretion of all Wnts. Micro-computed tomography and histomorphometric evaluation revealed that the bones of mice treated with two structurally distinct PORCN inhibitors LGK974 and ETC-1922159 (ETC-159) had loss-of-bone volume and density within 4 weeks of exposure. This decreased bone mass was associated with a significant increase in adipocytes within the bone marrow. Notably, simultaneous administration of a clinically approved anti-resorptive, alendronate, a member of the bisphosphonate family, mitigated loss-of-bone mass seen upon ETC-159 treatment by regulating activity of osteoclasts and blocking accumulation of bone marrow adipocytes. Our results support the addition of bone protective agents when treating patients with PORCN inhibitors. Mitigation of bone toxicity can extend the therapeutic utility of Wnt pathway inhibitors.

  10. Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33.

    PubMed

    Carter, Alun; Adams, Martin; La Ragione, Roberto M; Woodward, Martin J

    2017-02-01

    Salmonella Enteritidis remains a significant issue within the poultry industry and one potential solution is to use probiotic bacteria to prevent Salmonella colonisation through competitive exclusion (CE). We demonstrate that combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN33 were effective competitive excluders of Salmonella Enteritidis S1400 in poultry. Two models were developed to evaluate the efficacy of probiotic where birds received Salmonella Enteritidis S1400 by a) oral gavage and b) sentinel bird to bird transmission. A statistically significant (p<0.001) 2 log reduction of Salmonella Enteritidis S1400 colonisation was observed in the ileum, caecum and colon at day 43 using combined administration of the two probiotic bacteria. However, no Salmonella Enteritidis S1400 colonisation reduction was observed when either probiotic was administered individually. In the sentinel bird model the combined probiotic administered at days 12 and 20 was more effective than one-off or double administrations at age 1 and 12days. In vitro cell free culture supernatant studies suggest the mechanism of Salmonella Enteritidis S1400 inhibition was due to a reduction in pH by the probiotic bacteria. Our current study provides further evidence that probiotics can significantly reduce pathogenic bacterial colonisation in poultry and that mixed preparation of probiotics provide superior performance when compared to individual bacterial preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The nociceptin/orphanin FQ receptor agonist Ro 64-6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking.

    PubMed

    Kuzmin, Alexander; Kreek, Mary Jeanne; Bakalkin, Georgy; Liljequist, Sture

    2007-04-01

    Effects of the opioid receptor like-1 (ORL-1) receptor agonist Ro 64-6198 (0.1, 0.3, and 1.0 mg/kg intraperitoneally (i.p.)) on operant ethanol self-administration and activation of self-administration by ethanol deprivation were studied in male Wistar rats. Acute administration of Ro 64-6198 caused a dose-dependent reduction of ethanol self-administration. In comparison, the opioid antagonist naltrexone (0.1, 0.3, and 1.0 mg/kg i.p.) inhibited ethanol self-administration at all doses tested. Ethanol deprivation for 10 days significantly increased ethanol self-administration during the first 2 days after deprivation. Daily pretreatment with Ro 64-6198 (0.3 mg/kg) or naltrexone (0.3 mg/kg) during the last 3 days of ethanol deprivation abolished the deprivation-induced increase in ethanol intake. Thus, stimulation of the ORL-1 receptors by Ro 64-6198 reduced the acute reinforcing effects of ethanol and prevented relapse-like behavior in the ethanol-deprivation model in a similar manner as a blockade of opioid receptors by naltrexone. Ro 64-6198 at 0.1 and 0.3 mg/kg doses did not alter self-administration of 0.2% saccharin solution, indicating an apparent selectivity of this compound in modification of ethanol reward. These findings add further support to the idea that Ro 64-6198 and potentially other synthetic ORL-1 receptor agonists are as effective as naltrexone in blocking the actions of ethanol important for its addictive potential in animal experiments, and therefore may have therapeutic value in the treatment of alcoholism.

  12. Polyphyllin I inhibits gastric cancer cell proliferation by downregulating the expression of fibroblast activation protein alpha (FAP) and hepatocyte growth factor (HGF) in cancer-associated fibroblasts.

    PubMed

    Dong, Ruizeng; Guo, Jianmin; Zhang, Zewei; Zhou, Yimin; Hua, Yonghong

    2018-03-18

    The aim of this study was to identify the anti-cancer mechanism of Polyphyllin I (PPI) on gastric cancer cells via its activity on cancer-associated fibroblasts (CAFs). We cultured purified gastric CAFs obtained from fresh human gastric cancer tissue and examined the effect of Polyphyllin I on CAF proliferation using a colorimetric viability assay. In addition, we established a nude mouse xenograft model to examine the effect of Polyphyllin I administration on tumorigenesis. Using Western analysis, we quantified protein expression of the CAF-derived cytokines fibroblast activation protein alpha (FAP), secreted protein acidic and cysteine rich (SPARC), stromal cell-derived factor 1 (SDF-1), hepatocyte growth factor tenascin-C (TNC), and hepatocyte growth factor (HGF) in both in vitro and in vivo models. We found that Polyphyllin I inhibits the proliferation of CAFs in a concentration-dependent manner. Following treatment with 2 μg/ml PPI for 24 h in vitro, the expression of FAP, SDF-1 and HGF protein in CAFs was significantly lower than that in the control group, but there was no significant difference in SPARC and TNC protein expression between the two groups. In the nude mouse xenograft model, the tumor inhibition rate was 45.5% when PPI was administered early and 29.4% with administration in the third week. The expression of FAP and HGF in the xenografts was significantly decreased, while the expression of SPARC, SDF-1, and TNC was largely unaltered. Altogether, these data suggest that Polyphyllin I can inhibit the proliferation of gastric cancer cells by downregulating the expression of FAP and HGF in CAFs in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    PubMed

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  14. Bone mesenchymal stem cells attenuate radicular pain by inhibiting microglial activation in a rat noncompressive disk herniation model.

    PubMed

    Huang, Xiaodong; Wang, Weiheng; Liu, Xilin; Xi, Yanhai; Yu, Jiangming; Yang, Xiangqun; Ye, Xiaojian

    2018-06-01

    Spinal disk herniation can induce radicular pain through chemical irritation caused by proinflammatory and immune responses. Bone marrow mesenchymal stem cells (BMSCs) are a unique type of adult stem cell with the functions of suppressing inflammation and modulating immune responses. This study was undertaken to observe the effect of intrathecal BMSCs on the treatment of mechanical allodynia and the suppression of microglial activation in a rat noncompressive disk herniation model. The model was induced by the application of nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). The study found that the use of NP in the DRG can induce abnormal mechanical pain, increase the contents of the proinflammatory factors TNF-α and IL-1β, decrease the content of the anti-inflammatory cytokine TGF-β1 and activate microglia in the spinal dorsal horns (L5) (P < 0.05). BMSC administration could increase the mechanical withdrawal thresholds dramatically, decrease the contents of IL-1β and TNF-α, increase the content of TGF-β1 significantly (P < 0.05) and inhibit microglial activation in the bilateral spinal dorsal horn. Our results indicate that BMSC administration can reduce mechanical allodynia and downregulate the expression of proinflammatory cytokines by inhibiting microglial activation in the spinal dorsal horn in a rat noncompressive disk herniation model.

  15. AT13148, a first-in-class multi-AGC kinase inhibitor, potently inhibits gastric cancer cells both in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Yu; Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008; Niu, Jianhua

    The AGC kinase family is important cell proliferation and survival. Dysregulation of this family contributes to gastric cancer progression. Here, we evaluated the potential activity of AT13148, a first-in-class multi-AGC kinase inhibitor, against gastric cancer cells. Our results showed that AT13148 exerted potent cytotoxic and anti-proliferative activities against a panel human gastric cancer cell lines (HGC-27, AGS, SNU-601, N87 and MKN-28), possibly via inducing cancer cell apoptotic death. Apoptosis inhibition by the Caspase blockers dramatically attenuated AT13148-caused cytotoxicity against gastric cancer cells. Intriguingly, same AT13148 treatment was not cytotoxic/pro-apoptotic to the non-cancerous human gastric epithelial GEC-1 cells. At the signaling level,more » AT13148 treatment in gastric cancer cells dramatically suppressed activation of multiple AGC kinases, including Akt (at p-Thr-308), p70S6 kinase (p70S6K), glycogen synthase kinase 3β (GSK-3β) and p90 ribosomal S6 kinase (RSK). Our in vivo studies demonstrated that daily oral gavage of AT13148 at well-tolerated doses significantly inhibited HGC27 xenograft tumor growth in nude mice. AGC activity was also dramatically decreased in AT13148-administrated HGC27 tumors. Therefore, targeting AGC kinases by AT13148 demonstrates superior anti-gastric cancer activity both in vitro and in vivo. The preclinical results of this study support the progression of this molecule into future evaluation as a valuable anti-gastric cancer candidate. - Highlights: • AT13148 is cytotoxic and anti-proliferative to human gastric cancer cells. • AT13148 induces gastric cancer cell apoptotic death, inhibited by Caspase inhibitors. • AT13148 inactivates multiple AGC kinases in human gastric cancer cells. • AT13148 oral administration suppresses HGC27 xenograft growth in nude mice. • AT13148 oral administration inhibits multiple AGC kinases in HGC27 xenograft tumors.« less

  16. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive

  17. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    PubMed

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through

  18. Vinpocetine inhibits breast cancer cells growth in vitro and in vivo.

    PubMed

    Huang, Er-Wen; Xue, Sheng-Jiang; Zhang, Zheng; Zhou, Jia-Guo; Guan, Yong-Yuan; Tang, Yong-Bo

    2012-10-01

    Vinpocetine is a clinically used drug for cerebrovascular disorders as well as age-related memory impairment. Of note, vinpocetine has been recently identified as a novel anti-inflammatory agent; however, its effects on cancer cells remain to be investigated. In the present study, we found that vinpocetine potently inhibited proliferation of multiple types of human breast cancer cells by arresting cell cycle at G(0)/G(1) phase. It was also revealed that vinpocetine induced cell apoptosis via mitochondria-dependent pathway. Moreover, vinpocetine impaired the migration of the strongly metastatic cell MDA-MB-231. In xenograft model of human breast cancer in nude mice, both systemic and local administration of vinpocetine significantly suppressed the tumor growth without observed toxicity. Interestingly, vinpocetine markedly attenuated the activation of Akt and signal transducer and activator of transcription factor 3 (STAT3), but had no effects on MAP kinases pathways. Collectively, the data suggest that vinpocetine possesses significant yet previously unknown antitumor properties that may be utilized for the treatment of breast cancer.

  19. Inhibiting glycogen synthase kinase-3 mitigates the hematopoietic acute radiation syndrome in mice.

    PubMed

    Lee, Chang-Lung; Lento, William E; Castle, Katherine D; Chao, Nelson J; Kirsch, David G

    2014-05-01

    Exposure to a nuclear accident or radiological attack can cause death from acute radiation syndrome (ARS), which results from radiation injury to vital organs such as the hematopoietic system. However, the U.S. Food and Drug Administration (FDA) has not approved any medical countermeasures for this specific purpose. With growing concern over nuclear terrorism, there is an urgent need to develop small molecule deliverables that mitigate mortality from ARS. One emerging modulator of hematopoietic stem/progenitor cell (HSPC) activity is glycogen synthase kinase-3 (GSK-3). The inhibition of GSK-3 has been shown to augment hematopoietic repopulation in mouse models of bone marrow transplantation. In this study, we performed an in vitro screen using irradiated bone marrow mononuclear cells (BM-MNCs) to test the effects of four GSK-3 inhibitors: CHIR99021; 6-Bromoindirubin-3'-oxime (BIO); SB415286; and SB216763. This screen showed that SB216763 significantly increased the frequency of c-Kit(+) Lin(-) Sca1(+) (KLS) cells and hematopoietic colony-forming cells in irradiated BM-MNCs. Importantly, administration of a single dose of SB216763 to C57BL/6J mice by subcutaneous injection 24 h after total-body irradiation significantly improved hematopoietic recovery and mitigated hematopoietic ARS. Collectively, our results demonstrate that the GSK-3 inhibitor SB216763 is an effective medical countermeasure against acute radiation injury of the hematopoietic system.

  20. α2 Adrenergic receptor-mediated inhibition of thermogenesis.

    PubMed

    Madden, Christopher J; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F

    2013-01-30

    α2 adrenergic receptor (α2-AR) agonists have been used as antihypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist clonidine (1.2 nmol) into the rostral raphe pallidus area (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist idazoxan (6 nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists dexmedetomidine (25 μg/kg, i.v.) and clonidine (100 μg/kg, i.v.) inhibited shivering EMGs, BAT SNA, and BAT thermogenesis, effects that were reversed by nanoinjection of idazoxan (6 nmol) into the rRPa. Dexmedetomidine (100 μg/kg, i.p.) prevented and reversed lipopolysaccharide-evoked (10 μg/kg, i.p.) thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of ventrolateral medulla neurons expressing the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially lethal elevations in body temperature during excessive fever.

  1. Alpha-2 adrenergic receptor-mediated inhibition of thermogenesis

    PubMed Central

    Madden, Christopher J.; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F.

    2013-01-01

    Alpha2-adrenergic receptor (α2-AR) agonists have been use as anti-hypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist, clonidine (1.2 nmol), into the rostral raphe pallidus (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist, idazoxan (6nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists, dexmedetomidine (25ug/kg, iv) or clonidine (100ug/kg, iv) inhibited shivering EMGs, BAT SNA and BAT thermogenesis effects that were reversed by nanoinjection of idazoxan (6nmol) into the rRPa. Dexmedetomidine (100µg/kg, ip) prevented and reversed lipopolysaccharide (10µg/kg ip)-evoked thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of VLM neurons expressing of the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially-lethal elevations in body temperature during excessive fever. PMID:23365239

  2. Lactobacillus salivarius REN inhibits rat oral cancer induced by 4-nitroquioline 1-oxide.

    PubMed

    Zhang, Ming; Wang, Fang; Jiang, Lu; Liu, Ruihai; Zhang, Lian; Lei, Xingen; Li, Jiyou; Jiang, Jingli; Guo, Huiyuan; Fang, Bing; Zhao, Liang; Ren, Fazheng

    2013-07-01

    Despite significant advances in cancer therapy, cancer-related mobility and mortality are still rising. Alternative strategies such as cancer prevention thus become essential. Probiotics represent an emerging option for cancer prevention, but studies are limited to colon cancers. The efficiency of probiotics in the prevention of other cancers and the correlative mechanism remains to be explored. A novel probiotics Lactobacillus salivarius REN (L. salivarius REN) was isolated from centenarians at Bama of China, which showed highly potent antigenotoxicity in an initial assay. 4-nitroquioline 1-oxide (4NQO)-induced oral cancer model was introduced to study the anticancer activity of L. salivarius REN in vivo. The results indicated that oral administration of probiotic L. salivarius REN or its secretions could effectively suppress 4NQO-induced oral carcinogenesis in the initial and postinitial stage, and the inhibition was in a dose-dependent manner. A significant decrease of neoplasm incidence (65%-0%) was detected in rats fed with the high dose of L. salivarius REN [5 × 10(10) CFU/kg body weight (bw)/d]. In vivo evidences indicated that the probiotics inhibited 4NQO-induced oral cancer by protecting DNA against oxidative damage and downregulating COX-2 expression. L. salivarius REN treatment significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and induced apoptosis in a dose-dependent manner. Our findings suggest that probiotics may act as potential agents for oral cancer prevention. This is the first report showing the inhibitory effect of the probiotics on oral carcinogenesis. ©2013 AACR.

  3. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Babao Dan attenuates hepatic fibrosis by inhibiting hepatic stellate cells activation and proliferation via TLR4 signaling pathway.

    PubMed

    Liang, Lei; Yang, Xue; Yu, Yang; Li, Xiaoyong; Wu, Yechen; Shi, Rongyu; Jiang, Jinghua; Gao, Lu; Ye, Fei; Zhao, Qiudong; Li, Rong; Wei, Lixin; Han, Zhipeng

    2016-12-13

    Babao Dan (BBD), a traditional Chinese medicine, has been widely used as a complementary and alternative medicine to treat chronic liver diseases. In this study, we aimed to observe the protective effect of BBD on rat hepatic fibrosis induced by diethylnitrosamine (DEN) and explore it possible mechanism. BBD was administrated while DEN was given. After eight weeks, values of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) indicated that BBD significantly protected liver from damaging by DEN and had no obvious side effect on normal rat livers. Meanwhile, BBD attenuated hepatic inflammation and fibrosis in DEN-induced rat livers through histopathological examination and hepatic hydroxyproline content. Furthermore, we found that BBD inhibited hepatic stellate cells activation and proliferation without altering the concentration of lipopolysaccharide (LPS) in portal vein. In vitro study, serum from BBD treated rats (BBD-serum) could also significantly suppress LPS-induced HSCs activation through TLR4/NF-κB pathway. In addition, BBD-serum also inhibited the proliferation of HSCs by regulating TLR4/ERK pathway. Our study demonstrated that BBD may provide a new therapy strategy of hepatic injury and hepatic fibrosis.

  5. In Vitro Activity and Fecal Concentration of Rifaximin after Oral Administration

    PubMed Central

    Jiang, Zhi-Dong; Ke, Shi; Palazzini, Ernesto; Riopel, Lise; Dupont, Herbert

    2000-01-01

    Rifaximin showed moderately high MICs (the MIC at which 90% of the isolates tested were inhibited = 50 μg/ml) for 145 bacterial enteropathogens from patients with traveler's diarrhea acquired in Mexico during the summers of 1997 and 1998. Rifaximin concentrations in stool the day after oral administration (800 mg daily for 3 days) were high (average, 7,961 μg/g), proving the value of the drug. PMID:10898704

  6. Black Administrators and Administrative Law

    ERIC Educational Resources Information Center

    Harper, Robert

    1975-01-01

    The stated objective of this paper is to keep the Black administrator out of court by creating an awareness of legal pitfalls: the discussion is divided into four sections--a brief overview of some of the functions of administrators and administrative agencies, sharing information with the public, the use of discretion, and limitations of the…

  7. The Ablation or Reduction of Intraoperative Tourniquet Pain with Preoperative Administration of IV Ketorolac Tromethamine

    DTIC Science & Technology

    1994-08-01

    non - steroidal anti - inflammatory drug . Anticipated conclusions of...tromethamine is a nonsteroidal, anti - inflammatory drug (NSAID) that does not have CNS activity. It is a potent analgesic with less anti - inflammatory ...nonsteroidal, anti - inflammatory drug that inhibits prostaglandin production. Administration of ketorolac tromethamine prior to tourniquet inflation

  8. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  9. Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome.

    PubMed

    Bertolaccini, Maria Laura; Contento, Gregorio; Lennen, Ross; Sanna, Giovanni; Blower, Philip J; Ma, Michelle T; Sunassee, Kavitha; Girardi, Guillermina

    2016-12-01

    Placental ischemic disease and adverse pregnancy outcomes are frequently observed in patients with antiphospholipid syndrome (APS). Despite the administration of conventional antithrombotic treatment a significant number of women continue to experience adverse pregnancy outcomes, with uncertain prevention and management. Efforts to develop effective pharmacological strategies for refractory obstetric APS cases will be of significant clinical benefit for both mothers and fetuses. Although the antimalarial drug, hydroxychloroquine (HCQ) is increasingly used to treat pregnant women with APS, little is known about its efficacy and mechanism of action of HCQ. Because complement activation plays a crucial and causative role in placental ischemia and abnormal fetal brain development in APS we hypothesised that HCQ prevents these pregnancy complications through inhibition of complement activation. Using a mouse model of obstetric APS that closely resembles the clinical condition, we found that HCQ prevented fetal death and the placental metabolic changes -measured by proton magnetic resonance spectroscopy in APS-mice. Using 111 In labelled antiphospholipid antibodies (aPL) we identified the placenta and the fetal brain as the main organ targets in APS-mice. Using this same method, we found that HCQ does not inhibit aPL binding to tissues as was previously suggested from in vitro studies. While HCQ did not affect aPL binding to fetal brain it prevented fetal brain abnormal cortical development. HCQ prevented complement activation in vivo and in vitro. Complement C5a levels in serum samples from APS patients and APS-mice were lower after treatment with HCQ while the antibodies titres remained unchanged. HCQ prevented not only placental insufficiency but also abnormal fetal brain development in APS. By inhibiting complement activation, HCQ might also be an effective antithrombotic therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enhancement of oral bioavailability of rivastigmine with quercetin nanoparticles by inhibiting CYP3A4 and esterases.

    PubMed

    Palle, Suresh; Neerati, Prasad

    2017-04-01

    Quercetin is a well-known flavonoid, has pharmacokinetic interaction with ester drugs due to its capability of esterase inhibition in the gut and liver. However, the interaction between quercetin nanoparticles (NQC) and rivastigmine has not been reported. Hence, the present study was performed to evaluate the effect of quercetin alone and its nanoparticles on the pharmacokinetics of rivastigmine in rats. NQC prepared by antisolvent precipitation method. The influence of quercetin on the pharmacokinetics of rivastigmine was evaluated by following methods i.e. in vitro inhibitory effect on esterase enzyme in rat liver microsomes and in vitro assessment of CYP3A activity using erythromycin-N-demethylase (EMD) assay. To confirm these findings, an in vivo pharmacokinetic study of orally administered rivastigmine in rats with quercetin and NQC pretreatments was performed. The size of NQC was observed below 300nm. Quercetin significantly (p<0.05) inhibited the esterase-mediated metabolism of rivastigmine. In in vitro assessment of CYP3A activity model the erythromycin-N-demethylation (EMD) levels in quercetin treated group were significantly reduced (p<0.05). C max , AUC 0-t and AUC 0- ∞ of rivastigmine were found to be increased in quercetin and NQC pretreated groups. Further, the CL/F and Vd/F of rivastigmine were significantly decreased. The results revealed that enhanced bioavailability of rivastigmine might be caused by the combination of their effects due to CYP3A and esterase inhibition, Therefore, concomitant administration of NQC influences the bioavailability of rivastigmine and also has synergetic effect in the treatment of Alzheimer's disease. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Ruxolitinib-conjugated gold nanoparticles for topical administration: An alternative for treating alopecia?

    PubMed

    Boca, Sanda; Berce, Cristian; Jurj, Ancuta; Petrushev, Bobe; Pop, Laura; Gafencu, Grigore-Aristide; Selicean, Sonia; Moisoiu, Vlad; Temian, Daiana; Micu, Wilhelm-Thomas; Astilean, Simion; Braicu, Cornelia; Tomuleasa, Ciprian; Berindan-Neagoe, Ioana

    2017-11-01

    Alopecia is a dermatological condition for which Janus kinase (JAK) inhibitors have recently emerged as potential therapy options, but with limited practical use because of the systemic side effects. The topical use of Ruxolitinib in alopecia universalis has been demonstrated, but little is known about the pharmacodynamics and pharmacokinetics of this way of administration. Nanomedicine provides improved therapeutics. In the current paper we present preliminary data regarding the potential use of Ruxolitinib-conjugated gold nanoparticles (GNPs) in dermatological conditions, as GNPs have been proven to have a reduced absorption rate into the systemic blood flow for cutaneous administration. Internalization of the newly formed bioconjugate was assessed by electron microscopy and the functional effects of the drug were investigated by cell counting, flow cytometry and western blotting. Our data show that gold nanoparticles conjugated with Ruxolitinib inhibit the proliferation of fibroblasts by inhibiting JAK2 protein. Ruxolitinib carried by gold nanoparticles alters the proliferation of human fibroblasts, which is of great clinical importance as it can be readily administered on the skin with minimal risk of systemic side effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Scolopendra subspinipes mutilans protected the cerulein-induced acute pancreatitis by inhibiting high-mobility group box protein-1.

    PubMed

    Jo, Il-Joo; Bae, Gi-Sang; Park, Kyoung-Chel; Choi, Sun Bok; Jung, Won-Seok; Jung, Su-Young; Cho, Jung-Hee; Choi, Mee-Ok; Song, Ho-Joon; Park, Sung-Joo

    2013-03-14

    To evaluate the inhibitory effects of Scolopendra subspinipes mutilans (SSM) on cerulein-induced acute pancreatitis (AP) in a mouse model. SSM water extract (0.1, 0.5, or 1 g/kg) was administrated intraperitoneally 1 h prior to the first injection of cerulein. Once AP developed, the stable cholecystokinin analogue, cerulein was injected hourly, over a 6 h period. Blood samples were taken 6 h later to determine serum amylase, lipase, and cytokine levels. The pancreas and lungs were rapidly removed for morphological examination, myeloperoxidase assay, and real-time reverse transcription polymerase chain reaction. To specify the role of SSM in pancreatitis, the pancreatic acinar cells were isolated using collagenase method. Then the cells were pre-treated with SSM, then stimulated with cerulein. The cell viability, cytokine productions and high-mobility group box protein-1 (HMGB-1) were measured. Furthermore, the regulating mechanisms of SSM action were evaluated. The administration of SSM significantly attenuated the severity of pancreatitis and pancreatitis associated lung injury, as was shown by the reduction in pancreatic edema, neutrophil infiltration, vacuolization and necrosis. SSM treatment also reduced pancreatic weight/body weight ratio, serum amylase, lipase and cytokine levels, and mRNA expression of multiple inflammatory mediators such as tumor necrosis factor-α and interleukin-1β. In addition, treatment with SSM inhibited HMGB-1 expression in the pancreas during AP. In accordance with in vivo data, SSM inhibited the cerulein-induced acinar cell death, cytokine, and HMGB-1 release. SSM also inhibited the activation of c-Jun NH2-terminal kinase, p38 and nuclear factor (NF)-κB. These results suggest that SSM plays a protective role during the development of AP and pancreatitis associated lung injury via deactivating c-Jun NH2-terminal kinase, p38 and NF-κB.

  13. Scolopendra subspinipes mutilans protected the cerulein-induced acute pancreatitis by inhibiting high-mobility group box protein-1

    PubMed Central

    Jo, Il-Joo; Bae, Gi-Sang; Park, Kyoung-Chel; Choi, Sun Bok; Jung, Won-Seok; Jung, Su-Young; Cho, Jung-Hee; Choi, Mee-Ok; Song, Ho-Joon; Park, Sung-Joo

    2013-01-01

    AIM: To evaluate the inhibitory effects of Scolopendra subspinipes mutilans (SSM) on cerulein-induced acute pancreatitis (AP) in a mouse model. METHODS: SSM water extract (0.1, 0.5, or 1 g/kg) was administrated intraperitoneally 1 h prior to the first injection of cerulein. Once AP developed, the stable cholecystokinin analogue, cerulein was injected hourly, over a 6 h period. Blood samples were taken 6 h later to determine serum amylase, lipase, and cytokine levels. The pancreas and lungs were rapidly removed for morphological examination, myeloperoxidase assay, and real-time reverse transcription polymerase chain reaction. To specify the role of SSM in pancreatitis, the pancreatic acinar cells were isolated using collagenase method. Then the cells were pre-treated with SSM, then stimulated with cerulein. The cell viability, cytokine productions and high-mobility group box protein-1 (HMGB-1) were measured. Furthermore, the regulating mechanisms of SSM action were evaluated. RESULTS: The administration of SSM significantly attenuated the severity of pancreatitis and pancreatitis associated lung injury, as was shown by the reduction in pancreatic edema, neutrophil infiltration, vacuolization and necrosis. SSM treatment also reduced pancreatic weight/body weight ratio, serum amylase, lipase and cytokine levels, and mRNA expression of multiple inflammatory mediators such as tumor necrosis factor-α and interleukin-1β. In addition, treatment with SSM inhibited HMGB-1 expression in the pancreas during AP. In accordance with in vivo data, SSM inhibited the cerulein-induced acinar cell death, cytokine, and HMGB-1 release. SSM also inhibited the activation of c-Jun NH2-terminal kinase, p38 and nuclear factor (NF)-κB. CONCLUSION: These results suggest that SSM plays a protective role during the development of AP and pancreatitis associated lung injury via deactivating c-Jun NH2-terminal kinase, p38 and NF-κB. PMID:23539679

  14. Global Precipitation Measurement (GPM) Safety Inhibit Timeline Tool

    NASA Technical Reports Server (NTRS)

    Dion, Shirley

    2012-01-01

    The Global Precipitation Measurement (GPM) Observatory is a joint mission under the partnership by National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), Japan. The NASA Goddard Space Flight Center (GSFC) has the lead management responsibility for NASA on GPM. The GPM program will measure precipitation on a global basis with sufficient quality, Earth coverage, and sampling to improve prediction of the Earth's climate, weather, and specific components of the global water cycle. As part of the development process, NASA built the spacecraft (built in-house at GSFC) and provided one instrument (GPM Microwave Imager (GMI) developed by Ball Aerospace) JAXA provided the launch vehicle (H2-A by MHI) and provided one instrument (Dual-Frequency Precipitation Radar (DPR) developed by NTSpace). Each instrument developer provided a safety assessment which was incorporated into the NASA GPM Safety Hazard Assessment. Inhibit design was reviewed for hazardous subsystems which included the High Gain Antenna System (HGAS) deployment, solar array deployment, transmitter turn on, propulsion system release, GMI deployment, and DPR radar turn on. The safety inhibits for these listed hazards are controlled by software. GPM developed a "pathfinder" approach for reviewing software that controls the electrical inhibits. This is one of the first GSFC in-house programs that extensively used software controls. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As part of this process a new tool "safety inhibit time line" was created for management of inhibits and their controls during spacecraft buildup and testing during 1& Tat GSFC and at the Range in Japan. In addition to understanding inhibits and controls during 1& T the tool allows the safety analyst to better communicate with others the changes in inhibit states with each phase of hardware and software testing. The tool was very

  15. 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice.

    PubMed

    Sengupta, T; Mohanakumar, K P

    2010-11-01

    Behavioral and neurochemical effects of chronic administration of high doses of 2-phenylethylamine (PEA; 25-75 mg/kg, i.p. for up to 7 days) have been investigated in Balb/c mice. Depression and anxiety, as demonstrated respectively by increased floating time in forced swim test, and reduction in number of entries and the time spent in the open arms in an elevated plus maze were observed in these animals. General motor disabilities in terms of akinesia, catalepsy and decreased swimming ability were also observed in these animals. Acute and sub-acute administration of PEA caused significant, dose-dependent depletion of striatal dopamine, and its metabolites levels. PEA caused dose-dependent generation of hydroxyl radicals in vitro in Fenton's reaction in test tubes, in isolated mitochondrial fraction, and in vivo in the striatum of mice. A significant inhibition of NADH-ubiquinone oxidoreductase (complex-I; EC: 1.6.5.3) activity suggests the inhibition in oxidative phosphorylation in the mitochondria resulting in hydroxyl radical generation. Nissl staining and TH immnunohistochemistry in brain sections failed to show any morphological aberrations in dopaminergic neurons or nerve terminals. Long-term over-consumption of PEA containing food items could be a neurological risk factor having significant pathological relevance to disease conditions such as depression or motor dysfunction. However, per-oral administration of higher doses of PEA (75-125 mg/kg; 7 days) failed to cause such overt neurochemical effects in rats, which suggested safe consumption of food items rich in this trace amine by normal population. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. The effects of combined exposure to the pyrethroids deltamethrin and S-bioallethrin on hippocampal inhibition and skeletal muscle hyperexcitability in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, David E.; Burr, Steven A.; Lister, Timothy

    2006-10-15

    The default assumption that different pyrethroid insecticides, sharing a common mode of action, will show additivity of toxicity has not always been supported by in vitro measures, some of which have indicated antagonism. Our intention was to see whether the antagonism between pyrethroids of different classes seen in vitro could be reproduced in vivo. We therefore investigated the effects of single and combined exposures to two commonly used pyrethroids, deltamethrin (type II) and S-bioallethrin (type I) given intravenously to anaesthetised rats. We used two quantitative measures that are responsive to pyrethroids: the duration of prolongation of hippocampal dentate granule cellmore » inhibition and the amplitude of the abnormal electromyogram discharge. At equi-toxic doses, S-bioallethrin extended the inter-stimulus interval evoking 50% inhibition in the hippocampus by 30 {+-} 2.2 ms, and deltamethrin extended it by 199 {+-} 21 ms. Combined administration of the same doses of deltamethrin and S-bioallethrin extended hippocampal inhibition by 164 {+-} 14 ms, which did not differ significantly from the effect of deltamethrin alone. S-bioallethrin was without any effect on the electromyogram, and produced no significant change in the amplitude of the abnormal muscle discharges evoked by deltamethrin. The increase in arterial blood pressure evoked by the combination was significantly less than that evoked by either pyrethroid alone (p < 0.001). In summary, although our electrophysiological indices provide no support for functional antagonism between these two pyrethroids, they also fail to indicate any summation of effect.« less

  17. Long-term administration of a Niemann-Pick C1-like 1 inhibitor, ezetimibe, does not worsen bile lithogenicity in dyslipidemic patients with hepatobiliary diseases.

    PubMed

    Kishikawa, Nobusuke; Kanno, Keishi; Sugiyama, Akiko; Yokobayashi, Kenichi; Mizooka, Masafumi; Tazuma, Susumu

    2016-02-01

    Certain lipid-lowering drugs increase bile lithogenicity. Here we investigated whether long-term administration of ezetimibe, a new class of hypocholesterolemic agents designed to inhibit intestinal cholesterol absorption by inhibiting Niemann-Pick C1-like 1, alters bile lithogenicity in patients with hepatobiliary diseases. Eleven dyslipidemic patients with gallstones and/or fatty liver diseases were treated with ezetimibe (10 mg/day) for 12 months. Bile samples were collected by nasal endoscopy before and after 3 and 12 months of treatment. Serum and bile lipids and serum metabolic parameters were analyzed. Serum levels of campesterol, total cholesterol, and low-density lipoprotein cholesterol were significantly decreased after 3 and 12 months of treatment. In contrast, serum lathosterol levels increased gradually. The lithogenic index of bile was unsaturated and unchanged in patients who were previously and concomitantly receiving ursodeoxycholic acid (UDCA). In patients who were not receiving UDCA, bile was initially supersaturated, but eventually was unsaturated. However, ezetimibe tended to elevate bile lithogenicity in cholecystectomy patients. Long-term treatment with ezetimibe improves lipid metabolism without significantly altering the bile lithogenicity. Therefore, inhibiting intestinal cholesterol absorption in dyslipidemic patients with hepatobiliary diseases is a safe therapeutic strategy without worsening biliary physiology. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  18. Swertisin ameliorates pre-pulse inhibition deficits and cognitive impairment induced by MK-801 in mice.

    PubMed

    Oh, Hee Kyong; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Eunji; Park, Se Jin; Kim, Ha Neul; Jung, Won Yong; Cheong, Jae Hoon; Jang, Dae Sik; Ryu, Jong Hoon

    2017-02-01

    Swertisin, a plant-derived C-glucosylflavone, is known to have antidiabetic, anti-inflammatory and antioxidant effects. In the present study, we investigated in mice the effects of swertisin on glutamatergic dysfunction induced by dizocilpine (MK-801), a non-competitive N-methyl-D-aspartate receptor antagonist. In the Acoustic Startle Response test, their MK-801-induced (given 0.2 mg/kg i.p.) pre-pulse inhibition deficit was significantly attenuated by the administration of swertisin (30 mg/kg p.o.). In the Novel Object Recognition Test, the recognition memory impairments that were induced by MK-801 (0.2 mg/kg, given i.p.) were also reversed by administration of swertisin (30 mg/kg p.o.). In addition, swertisin normalized the MK-801-induced elevation of phosphorylation levels of Akt and GSK-3β signaling molecules in the prefrontal cortex. These results indicated that swertisin may be useful in managing the symptoms of schizophrenia, including sensorimotor gating disruption and cognitive impairment, and that these behavioral outcomes may be related to Akt-GSK-3β signaling in the prefrontal cortex.

  19. Ghrelin inhibits proinflammatory responses and prevents cognitive impairment in septic rats.

    PubMed

    Wei, Hua; Cao, Xiaohua; Zeng, Qingwen; Zhang, Fujun; Xue, Qingsheng; Luo, Yan; Lee, Jae-Woo; Yu, Buwei; Feng, Xiaomei

    2015-05-01

    A novel stomach-derived peptide, ghrelin, is down-regulated in sepsis and its IV administration decreases proinflammatory cytokines and mitigates organ injury. In this study, we wanted to investigate the effects of ghrelin on proinflammatory responses and cognitive impairment in septic rats. Prospective, randomized, controlled experiment. Animal basic science laboratory. Sprague-Dawley rats, weighing 250-300 g. Sepsis was induced by cecal ligation and puncture. Animals were randomly divided into four groups: sham, sham + ghrelin, cecal ligation and puncture, and cecal ligation and puncture + ghrelin. Saline was given subcutaneously (30 mL/kg) at 4 and 16 hours after surgery for all rats. Septic rats were treated with ceftriaxone (30 mg/kg) and clindamycin (25 mg/kg) subcutaneously at 4 and 16 hours after surgery. Ghrelin (80 μg/kg) was administrated intraperitoneally 4 and 16 hours after surgery in sham + ghrelin group and cecal ligation and puncture + ghrelin group. The levels of proinflammatory cytokines in hippocampus were measured by enzyme-linked immunosorbent assay, and cleaved caspase-3 was detected by Western blot 24 hours after surgery. Neuronal apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining 48 hours after surgery. Additional animals were monitored to record survival and body weight changes for 10 days after surgery. Survival animals underwent behavioral tasks 10 days after surgery: open-field, novel object recognition, and continuous multiple-trial step-down inhibitory avoidance task. Ghrelin significantly decreased the levels of proinflammatory cytokines and inhibited the activation of caspase-3 in the hippocampus after cecal ligation and puncture. The density of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive apoptotic neurons was significantly lowered by ghrelin. In addition, ghrelin improved the survival rates after cecal ligation and puncture. There were no differences in the

  20. Sodium alginate ameliorates indomethacin-induced gastrointestinal mucosal injury via inhibiting translocation in rats

    PubMed Central

    Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Nishida, Ryuichi

    2014-01-01

    AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats. METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured. RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine. CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation. PMID:24627600

  1. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    PubMed

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  2. Behavioral inhibition and childhood stuttering

    PubMed Central

    Choi, Dahye; Conture, Edward G.; Walden, Tedra A.; Lambert, Warren E.; Tumanova, Victoria

    2013-01-01

    Purpose The purpose of this study was to assess the relation of behavioral inhibition to stuttering and speech/language output in preschool-age children who do (CWS) and do not stutter (CWNS). Method Participants were preschool-age (ages 36 to 68 months), including 26 CWS (22 males) and 28 CWNS (13 males). Participants’ behavioral inhibition (BI) was assessed by measuring the latency to their sixth spontaneous comment during conversation with an unfamiliar experimenter, using methodology developed by Kagan, Reznick, and Gibbons (1989). In addition to these measures of BI, each participant’s stuttered and non-stuttered disfluencies and mean length of utterance (in morphemes) were assessed. Results Among the more salient findings, it was found that (1) there was no significant difference in BI between preschool-age CWS and CWNS as a group, (2) when extremely high versus low inhibited children were selected, there were more CWS with higher BI and fewer CWS with lower BI when compared to their CWNS peers, and (3) more behaviorally inhibited CWS, when compared to less behaviorally inhibited CWS, exhibited more stuttering. Conclusions Findings are taken to suggest that one aspect of temperament (i.e., behavioral inhibition) is exhibited by some preschool-age CWS and that these children stutter more than CWS with lower behavioral inhibition. The present results seem to support continued study of the association between young children’s temperamental characteristics and stuttering, the diagnostic entity (i.e., CWS versus CWNS), as well as stuttering, the behavior (e.g., frequency of stuttered disfluencies). PMID:23773669

  3. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.

    PubMed

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; Walzem, Rosemary L; Pendergast, Julie S; Printz, Richard L; Morris, Lindsey C; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P; Niswender, Kevin D; Davies, Sean S

    2014-08-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.

  4. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine productionmore » was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.« less

  5. Evaluation of topical application and systemic administration of rosuvastatin in preventing epidural fibrosis in rats.

    PubMed

    Gürer, Bora; Kahveci, Ramazan; Gökçe, Emre Cemal; Ozevren, Huseyin; Turkoglu, Erhan; Gökçe, Aysun

    2015-03-01

    Epidural fibrosis is a major challenge in spine surgery, with some patients having recurrent symptoms secondary to excessive formation of scar tissue resulting in neurologic compression. One of the most important factors initiating the epidural fibrosis is assumed to be the transforming growth factor-1β (TGF-1β). Rosuvastatin (ROS) has shown to demonstrate preventive effects over fibrosis via inhibiting the TGF-1β. We hypothesized that ROS might have preventive effects over epidural fibrosis through the inhibition of TGF-1β pathways. Experimental animal study. Forty-eight adult male Wistar Albino rats were equally and randomly divided into four groups (laminectomy, spongostan, topical ROS, and systemic ROS). Laminectomy was performed at the L3 level in all rats. Four weeks later, the extent of epidural fibrosis was assessed both macroscopically and histopathologically. Our data revealed that topical application and systemic administration of ROS both were effective in reducing epidural fibrosis formation. Furthermore, the systemic administration of ROS yielded better results than topical application. Both topical application and systemic administration of ROS show meaningful preventive effects over epidural fibrosis through multiple mechanisms. The results of our study provide the first experimental evidence of the preventive effects of ROS over epidural fibrosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Studies of drug delivery systems for a therapeutic agent used in osteoporosis. I. Pharmacodynamics (hypocalcemic effect) of elcatonin in rabbits following rectal administration of hollow-type suppositories containing elcatonin.

    PubMed

    Watanabe, Y; Mizufune, Y; Kubomura, A; Kiriyama, M; Utoguchi, N; Matsumoto, M

    1998-11-01

    In this study, we developed a new hollow-type suppository containing elcatonin ((Asu1,7)-eel calcitonin, ECT), a synthetic derivative of eel calcitonin, which produces hypocalcemia, as a pharmaceutical preparation for self administration, to be used instead of parenteral injections for patients with osteoporosis. The absorption of ECT from the rectal mucous membrane was evaluated by observation of the decrease in serum calcium (Ca) concentrations following rectal administration in rabbits. ECT was efficiently absorbed from the rectum and effectively decreased serum Ca concentrations. The data of the area under the percent decrease in serum Ca concentration (deltaCa%)-time curve (deltaCa%-AUC), assumed to be an index of the pharmacodynamics (pharmacological effect) of ECT, indicated that similar hypocalcemic effects were obtained following rectal and intravenous administrations of ECT. In regard to the effect of coadministration of other compounds on rectal absorption of ECT, no significant difference in the deltaCa%-AUC between rectal ECT administration with or without nafamostat mesilate (a protease inhibitor) was observed. However, the coadministration of ECT with cytochalasin B or monensin (endocytosis inhibitors) significantly decreased the deltaCa%-AUC, indicating that rectal ECT absorption is probably inhibited by endocytosis inhibitors. On the other hand, it was found that sodium decanoate, a medium-chain fatty acid (sodium salt), significantly enhanced the rectal absorption of ECT. We conclude that this ECT hollow-type suppository offers promise as a new method for the administration of ECT.

  7. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely.more » The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.« less

  8. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia.

    PubMed

    Benny Klimek, Margaret E; Aydogdu, Tufan; Link, Majik J; Pons, Marianne; Koniaris, Leonidas G; Zimmers, Teresa A

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia. Copyright 2009 Elsevier Inc. All rights reserved.

  9. α-Mangostin: A Dietary Antioxidant Derived from the Pericarp of Garcinia mangostana L. Inhibits Pancreatic Tumor Growth in Xenograft Mouse Model

    PubMed Central

    Mustafa, Ala; Fischer, Joseph W.; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-01-01

    Abstract Aims: Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. Results: The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. Innovation: We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. Conclusion: These results suggest the potential therapeutic efficacy of α-mangostin against human PC. Antioxid. Redox Signal. 21, 682–699. PMID:24295217

  10. Repeated chlorpromazine administration increases a behavioural response of rats to 5-hydroxytryptamine receptor stimulation.

    PubMed Central

    Green, A R

    1977-01-01

    1 The hyperactivity syndrome produced in rats by administration of tranylcypromine (20 mg/kg i.p.) followed 30 min later by L-tryptophan (50 mg/kg i.p.) is generally considered to be due to increased 5-hydroxytryptamine (5-HT) functional activity. It is inhibited by chlorpromazine (30 mg/kg i.p.) injected 60 min before the tranylcypromine. However, chlorpromazine injection for 4 days either at a dose of 30 mg/kg once daily or 5 mg/kg twice daily results in an enhanced hyperactivity response to tranylcypromine and L-tryptophan administration 24 h after the final dose of chlorpromazine. 2 One injection of chlorpromazine (30 mg/kg) did not produce enhancement 24 h later and the inhibition of the tranylcypromine/L-tryptophan hyperactivity observed after acute chlorpromazine injection was seen if the rats were given tranylcypromine and L-tryptophan 1 h after the fourth chlorpromazine (30 mg/kg) dose. 3 Chlorpromazine (30 mg/kg) once daily or 5 mg/kg twice daily for 4 days resulted in rats displaying enhanced behavioral responses to the suggested 5-HT agonist 5-methoxy N,N-dimethyltryptamine (2 mg/kg) on day 5. 4 Chlorpromazine (30 mg/kg) once daily for 4 days produces a slight increase in brain 5-hydroxytryptamine (5-HT) concentration on day 5, but no difference in the rate of brain 5-HT synthesis or the rate of 5-HT accumulation after tranylcypromine and L-tryptophan administration. 5. There is some evidence that chlorpromazine blocks 5-HT receptors. It has also been observed that several other neuroleptic drugs do not produce enhanced 5-HT responses after repeated administration. It is suggested therefore that the enhanced behavioural response to 5-HT receptor stimulation following repeated chlorpromazine administration may be because this drug blocks 5-HT receptors. PMID:264797

  11. Do imipramine and dihydroergosine possess two components - one stimulating 5-HT sub 1 and the other inhibiting 5-HT sub 2 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pericic, D.; Mueck-Seler, D.

    1990-01-01

    The mechanisms by which imipramine and dihydroergosine stimulate the 5-HT syndrome in rats and inhibit the head-twitch response in rats and mice were studied. Imipramine- and dihydroergosine-included stimulation of the 5-HT syndrome was inhibited stereoselectively by propranolol, a high affinity ligand for 5-HT{sub 1} receptor sites, but not by ritanserin, a specific 5-HT{sub 2} receptor antagonist. (-) -Propranolol potentiated the inhibitory effect of imipramine, but not of dihydroergosine on the head-twitch response, while ritanserin was without effect. As expected, 8-OH-DPAT, a selective 5-HT{sub 1A} receptor agonist, stimulated, and 5-HT{sub 1B} agonists CGS 12066B and 1-(trifluoromethylphenyl) piperazine (TFMPP) failed to stimulatemore » the 5-HT syndrome induced in rats by pargyline and 5-HTP administration. A higher dose of ritanserin inhibited the syndrome. While 8-OH-DPAT alone produced all behavioral components of the 5-HT syndrome, dihydroergosine or imipramine alone even at very high doses never produced tremor or a more intensive forepaw padding as seen when these drugs were given in combination with pargyline and 5-HTP. A single administration of (-)-propranolol also inhibited the head-twitch response. This effect lasted in mice longer that after ritanserin administration. In in vitro experiments dihydroergosine expressed approximately twenty-fold higher affinity for {sup 3}H-ketanserin binding sites than imipramine.« less

  12. Cerebrolysin and aquaporin 4 inhibition improve pathological and motor recovery after ischemic stroke.

    PubMed

    Catalin, Bogdan; Rogoveanu, O C; Pirici, Ionica; Balseanu, Tudor Adrian; Stan, Adina; Tudorica, Valerica; Balea, Maria; Mindrila, Ion; Albu, Carmen Valeria; Mohamed, Guleed; Pirici, Daniel; Muresanu, Dafin Fior

    2018-04-25

    Edema represents one of the earliest negative markers of survival and consecutive neurological deficit following stroke. The mixture of cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema, which leaves parenteral administration of a hypertonic solution as the only non-surgical alternative. New insights into water metabolism in the brain have opened the way for molecular targeted treatment, with aquaporin 4 channels (AQP4) taking center stage. We aimed here to assess the effect of inhibiting AQP4 together with the administration of a neurotropic factor (Cerebrolysin) in ischemic stroke. Using a permanent medial cerebral artery occlusion rat model, we administrated a single dose of the AQP4 inhibitor TGN-020 (100 mg/kg) at 15 minutes after ischemia followed by daily Cerebrolysin dosing (5ml/kg) for seven days. Rotarod motor testing and neuropathology examinations were next performed. We showed first that the combination treatment animals have a better motor function preservation at seven days after permanent ischemia. We have also identified distinct cellular contributions that represent the bases of behavior testing, such as less astrocyte scarring and a larger neuronal-survival phenotype rate in animals treated with both compounds than in animals treated with Cerebrolysin alone or untreated animals. Our data shows that water diffusion inhibition and Cerebrolysin administration after focal ischemic stroke reduces infarct size, leading to a higher neuronal survival in the peri-core glial scar region. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis.

    PubMed

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D; Aneja, Ritu

    2014-10-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    PubMed Central

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D.; Aneja, Ritu

    2015-01-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. PMID:25064160

  15. Oxytocin in the regulation of social behaviours in medial amygdala-lesioned mice via the inhibition of the extracellular signal-regulated kinase signalling pathway.

    PubMed

    Wang, Yu; Zhao, Shanshan; Wu, Zhe; Feng, Yu; Zhao, Chuansheng; Zhang, Chaodong

    2015-05-01

    The neuropeptide oxytocin (OXT) has been implicated in the pathophysiology of behavioural deficits among patients with autism spectrum disorder (ASD). However, the molecular mechanisms underlying its role in ASD remain unclear. In the present study, a murine model with ASD-like phenotypes was induced by intra-medial amygdala injection of N-methyl-d-aspartate, and it was used to investigate the role of OXT in behaviour regulation. Behavioural tests were performed to verify the ASD-like phenotypes of N-methyl-d-aspartate-treated mice, and the results showed that mice with bilateral medial amygdala lesions presented significant behavioural deficits, including impaired learning and memory and increased anxiety and depression. We also observed a notably decreased level of OXT in both the plasma and the hypothalamus of medial amygdala-lesioned mice, and the extracellular signal-regulated kinase (ERK) was activated. Further studies demonstrated that the administration of OXT alleviated ASD-like symptoms and significantly inhibited phosphorylation of ERK; the inhibitory effect was similar to that of U0126, an ERK signalling inhibitor. In addition, OXT administration modulated the expression of downstream proteins of the ERK signalling pathway, such as cyclic adenosine monophosphate response element binding and c-fos. Taken together, our data indicate that OXT plays an important role in ameliorating behavioural deficits in an ASD-like mouse model, which was mediated by inhibiting the ERK signalling pathway and its downstream proteins. © 2015 Wiley Publishing Asia Pty Ltd.

  16. Overcoming PCR Inhibition During DNA-Based Gut Content Analysis of Ants.

    PubMed

    Penn, Hannah J; Chapman, Eric G; Harwood, James D

    2016-10-01

    Generalist predators play an important role in many terrestrial systems, especially within agricultural settings, and ants (Hymenoptera: Formicidae) often constitute important linkages of these food webs, as they are abundant and influential in these ecosystems. Molecular gut content analysis provides a means of delineating food web linkages of ants based on the presence of prey DNA within their guts. Although this method can provide insight, its use on ants has been limited, potentially due to inhibition when amplifying gut content DNA. We designed a series of experiments to determine those ant organs responsible for inhibition and identified variation in inhibition among three species (Tetramorium caespitum (L.), Solenopsis invicta Buren, and Camponotus floridanus (Buckley)). No body segment, other than the gaster, caused significant inhibition. Following dissection, we determined that within the gaster, the digestive tract and crop cause significant levels of inhibition. We found significant differences in the frequency of inhibition between the three species tested, with inhibition most evident in T. caespitum The most effective method to prevent inhibition before DNA extraction was to exude crop contents and crop structures onto UV-sterilized tissue. However, if extracted samples exhibit inhibition, addition of bovine serum albumin to PCR reagents will overcome this problem. These methods will circumvent gut content inhibition within selected species of ants, thereby allowing more detailed and reliable studies of ant food webs. As little is known about the prevalence of this inhibition in other species, it is recommended that the protocols in this study are used until otherwise shown to be unnecessary. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Potency and selectivity of carprofen enantiomers for inhibition of bovine cyclooxygenase in whole blood assays.

    PubMed

    Brentnall, Claire; Cheng, Zhangrui; McKellar, Quintin A; Lees, Peter

    2012-12-01

    Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Kindergarteners’ Self-Reported Social Inhibition and Observed Social Reticence: Moderation by Adult-Reported Social Inhibition and Social Anxiety Disorder Symptoms

    PubMed Central

    Kiel, Elizabeth J.; Buss, Kristin A.; Molitor, Joseph G.

    2014-01-01

    Prevention of later anxiety problems would best be accomplished by identifying at-risk children early in development. For example, children who develop Social Anxiety Disorder (SAD) may show social withdrawal in the form of social inhibition (i.e., shyness with unfamiliar adults and peers) at school entry. Although the use of children’s perceptions of their own social inhibition would provide insight into early risk, the utility of young children’s self-reports remains unclear. The current study examined whether children deemed more extreme on social inhibition or social anxiety by adult report provided self-report of social inhibition that related to observed social reticence in the laboratory. Participants included 85 kindergarten children (36 female, 49 male), their parents, and their teachers. Moderation analyses revealed that children’s self-reported social inhibition related significantly to observed social reticence under the conditions of high parent-reported social inhibition, high teacher-reported social inhibition, and high SAD symptoms. These results suggest that the most inhibited children are aware of their behavior and can report it in a meaningfully way as young as kindergarten age. PMID:25113397

  19. Partial protection from organophosphate-induced cholinesterase inhibition by metyrapone treatment.

    PubMed

    Swiercz, Radosław; Lutz, Piotr; Gralewicz, Sławomir; Grzelińska, Zofia; Piasecka-Zelga, Joanna; Wąsowicz, Wojciech

    2013-08-01

    Organophosphates are cholinesterase (ChE) inhibitors with worldwide use as insecticides. Stress response, evidenced by a dramatic and relatively long-lasting (several hours) rise in the plasma glucocorticoid concentration is an integral element of the organophosphate (OP) poisoning symptomatology. In rodents, corticosterone (CORT) is the main glucocorticoid. There are several reports suggesting a relationship between the stressor-induced rise in CORT concentration (the CORT response) and the activity of the cerebral and peripheral ChE. Thus, it seems reasonable to presume that, in OP intoxication, the rise in plasma CORT concentration may somehow affect the magnitude of the OP-induced ChE inhibition. Metyrapone (MET) [2-methyl-1,2-di(pyridin-3-yl)propan-1-one] blocks CORT synthesis by inhibiting steroid 11β-hydroxylase, thereby preventing the CORT response. Chlorfenvinphos (CVP) [2-chloro-1-(2,4-dichlorophenyl) ethenyl diethyl phosphate] is an organophosphate insecticide still in use in some countries. The purpose of the present work was to compare the CVP-induced effects - the rise of the plasma CORT concentration and the reduction in ChE activity - in MET-treated and MET-untreated rats. Chlorfenvinphos was administered once at 0.0, 0.5, 1.0 and 3.0 mg/kg i.p. Metyrapone, at 100 mg/kg i.p., was administered five times, at 24-h intervals. The first MET dose was given two hours before CVP. The following was observed in the MET-treated rats: i) no rise in plasma CORT concentration after the CVP administration, ii) a reduced inhibition and a faster restitution of blood and brain ChE activities. The results suggest that MET treatment may confer significant protection against at least some effects of OP poisoning. The likely mechanism of the protective MET action has been discussed.

  20. Administration of Brevibacillus laterosporus spores as a poultry feed additive to inhibit house fly development in feces: a new eco-sustainable concept.

    PubMed

    Ruiu, L; Satta, A; Floris, I

    2014-03-01

    The success of a microbial pesticide application against house flies developing in manure should accomplish the uniform mixing of active ingredients with this breeding medium, thus enhancing residual effects. The oral administration of the entomopathogenic bacterium Brevibacillus laterosporus to caged poultry species allows the homogeneous incorporation of its active ingredients with fly breeding media. Feces from treated broilers or hens show toxicity against exposed fly adults and larvae. Insecticidal effects are concentration-dependent with a lethal median concentration (LC50) value of 1.34 × 10(8) and 0.61 × 10(8) spores/g of feces for adults and larvae, respectively. Manure toxicity against flies was maintained as long as chickens were fed a diet containing adequate concentrations of B. laterosporus spores. Toxicity significantly decreased after spore administration to birds was interrupted. When poultry diet contained 10(10) spores/g, mortality of flies reared on feces exceeded 80%. The use of B. lateroporus spores as a feed additive in poultry production systems fostering a more integrated approach to farming is discussed.

  1. Inhibition of gluconeogenesis by Malmea depressa root.

    PubMed

    Andrade-Cetto, Adolfo

    2011-09-01

    Malmea depressa is traditionally used in the Mayan communities of southeastern Mexico to treat type 2 diabetes. A root bark infusion is being taken throughout the day, between meals. The aim of this study was to determine whether an ethanolic extract of Malmea depressa would reduce hepatic glucose production by targeting gluconeogenesis. The effects of the plant extract on gluconeogenesis (in vivo) and the activity of GL-6-P (in vitro) were examined. The plant extract was analyzed by HPLC to confirm its phytochemical composition. The inhibition of gluconeogenesis was tested in vivo by performing a pyruvate tolerance test in n5-STZ after an 18-h fasting period. The extracts effect on glucose-6-phosphatase activity were assayed in vitro with intact rat liver microsomes. Using HPLC-DAD we confirmed that the phytochemical compositions of the tested extract were similar to those previously reported. We proved that the ethanolic extract of the root bark of Malmea depressa dose-dependently inhibits a glucose peak. Furthermore, the gluconeogenesis inhibition was confirmed in vitro using a pyruvate test. The results suggest that administration of Malmea depressa can improve glycemic control by blocking hepatic glucose production, especially in the fasting state. These data support its traditional use as an infusion consumed continually throughout the day. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Oral administration of glucosylceramide ameliorates inflammatory dry-skin condition in chronic oxazolone-induced irritant contact dermatitis in the mouse ear.

    PubMed

    Yeom, Mijung; Kim, Sung-Hun; Lee, Bombi; Han, Jeong-Jun; Chung, Guk Hoon; Choi, Hee-Don; Lee, Hyejung; Hahm, Dae-Hyun

    2012-08-01

    Irritant contact dermatitis (ICD) is an inflammatory skin disease triggered by exposure to a chemical that is toxic or irritating to the skin. A major characteristic of chronic ICD is an inflammatory dry-skin condition with associated itching. Although glucosylceramide (GlcCer) is known to improve the skin barrier function, its mechanism of action is unknown. Using a mouse model of oxazolone-induced chronic ICD, this study investigated the effects of oral administration of GlcCer on inflammatory dry skin. Chronic ICD was induced by repeated application of oxazolone in mice. GlcCer was orally administered once daily throughout the elicitation phase. The beneficial efficacy of GlcCer on cutaneous inflammation was evaluated by assessing ear thickness, lymph node weight, histological findings, and mRNA expression of pro-inflammatory cytokines such as IL-1β and IL-6. Additionally, parameters of the itch-associated response, including scratching behavior, water content of the skin, and aquaporin-3 levels in the lesional ear, were measured. Oral GlcCer administration significantly suppressed mRNA expression of the pro-inflammatory cytokines IL-1β and IL-6. GlcCer also suppressed ear swelling, lymph node weight gains, and infiltration of leukocytes and mast cells in ICD mice. In oxazolone-induced ICD mice, GlcCer significantly inhibited irritant-related scratching behavior and dehydration of the stratum corneum, and decreased aquaporin-3 expression. Our results indicate that GlcCer suppressed inflammation not only by inhibiting cytokine production but also by repairing the skin barrier function, suggesting a potential beneficial role for GlcCer in the improvement of chronic ICD. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Preclinical investigation of the topical administration of phenserine: transdermal flux, cholinesterase inhibition, and cognitive efficacy.

    PubMed

    Utsuki, Tadanobu; Uchimura, Nao; Irikura, Mitsuru; Moriuchi, Hiroshi; Holloway, Harold W; Yu, Qian-Sheng; Spangler, Edward L; Mamczarz, Jacek; Ingram, Donald K; Irie, Tetsumi; Greig, Nigel H

    2007-04-01

    Phenserine (PS) was designed as a selective acetylcholinesterase (AChE) inhibitor, with a tartrate form (PST) for oral administration in mild to moderate Alzheimer's disease (AD). Recent phase 3 trials of PST in Europe indicate that any clinically relevant activity of PST may be limited by its duration of action. Like many oral drugs, bioavailability and plasma concentrations of PST are regulated by hepatic and gastrointestinal first-pass effects. To minimize the kinetic limitations of first-pass metabolism, transdermal formulations of PS and PST (ointment/patch) were developed and characterized in vitro and in vivo. Initial in vitro kinetic characterization of PS or PST formulations used a diffusion cell chamber and skin samples isolated from hairless mice. Liquid paraffin and fatty alcohol/propylene glycol (FAPG) were found to be suitable vehicles for ointment formulation. Addition of a penetration enhancer, 1-[2-(decylthio)ethyl]-azacyclopentane-2-one (HPE-101), improved stratum corneum permeability. Application of the optimal formulation of PS/HPE-101/FAPG to the shaved back of rats resulted in significantly lowered plasma and brain AChE activities and improved cognitive performance in animals with scopolamine-induced cognitive impairment. These results suggest that the transdermal application of AChE inhibitors may represent an effective therapeutic strategy for AD. Particular benefits over oral therapies might include avoiding first-pass metabolic effects and improved dosing compliance.

  4. Long-Term Treatment of Thalidomide Ameliorates Amyloid-Like Pathology through Inhibition of β-Secretase in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    He, Ping; Cheng, Xin; Staufenbiel, Matthias; Li, Rena; Shen, Yong

    2013-01-01

    Thalidomide is a tumor necrosis factor alpha (TNFα) inhibitor which has been found to have abilities against tumor growth, angiogenesis and inflammation. Recently, it has been applied in clinic for the treatment of multiple myeloma as well as some inflammatory diseases. However, whether thalidomide has any therapeutic effects on neurodegenerative disorders, i.e. Alzheimer’s disease (AD) is not clear. AD is characterized by excessive amount of amyloid β peptides (Aβ), which results in a significant release of inflammatory factors, including TNFα in the brain. Studies have shown that inhibition of TNFα reduces amyloid-associated pathology, prevents neuron loss and improves cognition. Our recent report showed that genetic inhibition of TNFα/TNF receptor signal transduction down-regulates β amyloid cleavage enzyme 1 (BACE1) activity, reduces Aβ generation and improves learning and memory deficits. However, the mechanism of thalidomide involving in the mitigation of AD neuropathological features remains unclear. Here, we chronically administrated thalidomide on human APPswedish mutation transgenic (APP23) mice from 9 months old (an onset of Aβ deposits and early stage of AD-like changes) to 12 months old. We found that, in addition of dramatic decrease in the activation of both astrocytes and microglia, thalidomide significantly reduces Aβ load and plaque formation. Furthermore, we found a significant decrease in BACE1 level and activity with long-term thalidomide application. Interestingly, these findings cannot be observed in the brains of 12-month-old APP23 mice with short-term treatment of thalidomide (3 days). These results suggest that chronic thalidomide administration is an alternative approach for AD prevention and therapeutics. PMID:23405115

  5. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans.

    PubMed

    Marney, Annis; Kunchakarra, Siri; Byrne, Loretta; Brown, Nancy J

    2010-10-01

    Dipeptidyl peptidase-IV inhibitors improve glucose homeostasis in type 2 diabetics by inhibiting degradation of the incretin hormones. Dipeptidyl peptidase-IV inhibition also prevents the breakdown of the vasoconstrictor neuropeptide Y and, when angiotensin-converting enzyme (ACE) is inhibited, substance P. This study tested the hypothesis that dipeptidyl peptidase-IV inhibition would enhance the blood pressure response to acute ACE inhibition. Subjects with the metabolic syndrome were treated with 0 mg of enalapril (n=9), 5 mg of enalapril (n=8), or 10 mg enalapril (n=7) after treatment with sitagliptin (100 mg/day for 5 days and matching placebo for 5 days) in a randomized, cross-over fashion. Sitagliptin decreased serum dipeptidyl peptidase-IV activity (13.08±1.45 versus 30.28±1.76 nmol/mL/min during placebo; P≤0.001) and fasting blood glucose. Enalapril decreased ACE activity in a dose-dependent manner (P<0.001). Sitagliptin lowered blood pressure during enalapril (0 mg; P=0.02) and augmented the hypotensive response to 5 mg of enalapril (P=0.05). In contrast, sitagliptin attenuated the hypotensive response to 10 mg of enalapril (P=0.02). During sitagliptin, but not during placebo, 10 mg of enalapril significantly increased heart rate and plasma norepinephrine concentrations. There was no effect of 0 or 5 mg of enalapril on heart rate or norepinephrine after treatment with either sitagliptin or placebo. Sitagliptin enhanced the dose-dependent effect of enalapril on renal blood flow. In summary, sitagliptin lowers blood pressure during placebo or submaximal ACE inhibition; sitagliptin activates the sympathetic nervous system to diminish hypotension when ACE is maximally inhibited. This study provides the first evidence for an interactive hemodynamic effect of dipeptidyl peptidase-IV and ACE inhibition in humans.

  6. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration.

    PubMed

    Lin, Ko-Jo; Loi, Mei-Xue; Lien, Gi-Shih; Cheng, Chieh-Feng; Pao, Hsiang-Yin; Chang, Yun-Chuang; Ji, Andrea Tung-Qian; Ho, Jennifer Hui-Chun

    2013-06-14

    Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 10(5)) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The therapeutic effect of the

  7. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration

    PubMed Central

    2013-01-01

    Introduction Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Methods Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 105) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Results Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The

  8. Nonspecific Inhibition of the Motor System during Response Preparation

    PubMed Central

    Sias, Ana; Labruna, Ludovica; Ivry, Richard B.

    2015-01-01

    Motor system excitability is transiently inhibited during the preparation of responses. Previous studies have attributed this inhibition to the operation of two mechanisms, one hypothesized to help resolve competition between alternative response options, and the other to prevent premature response initiation. By this view, inhibition should be restricted to task-relevant muscles. Although this prediction is supported in one previous study (Duque et al., 2010), studies of stopping ongoing actions suggest that some forms of motor inhibition may be widespread (Badry et al., 2009). This motivated us to conduct a series of transcranial magnetic stimulation (TMS) experiments to examine in detail the specificity of preparatory inhibition in humans. Motor-evoked potentials were inhibited in task-irrelevant muscles during response preparation, even when the muscles were contralateral and not homologous to the responding effector. Inhibition was also observed in both choice and simple response task conditions, with and without a preparatory interval. Control experiments ruled out that this inhibition is due to expectancy of TMS or a possible need to cancel the prepared response. These findings suggest that motor inhibition during response preparation broadly influences the motor system and likely reflects a process that occurs whenever a response is selected. We propose a reinterpretation of the functional significance of preparatory inhibition, one by which inhibition reduces noise to enhance signal processing and modulates the gain of a selected response. SIGNIFICANCE STATEMENT Motor preparation entails the recruitment of excitatory and inhibitory neural mechanisms. The current experiments address the specificity of inhibitory mechanisms, asking whether preparatory inhibition affects task-irrelevant muscles. Participants prepared a finger movement to be executed at the end of a short delay period. Transcranial magnetic stimulation over primary motor cortex provided an

  9. Rat striatal monoamine oxidase-B inhibition by l-deprenyl and rasagiline: its relationship to 2-phenylethylamine-induced stereotypy and Parkinson's disease.

    PubMed

    Youdim, M B H; Tipton, K F

    2002-03-01

    Rats were injected intraperitoneally with varying doses of l-deprenyl (selegiline) followed 2h later by 30 mg kg(-1) 2-phenylethylamine (PEA), administered in the same way, and the stereotypic behavioural response elicited was assessed. l-Deprenyl alone at doses of up to 5 mg kg(-1) caused no significant behavioural response. Administration of PEA without prior l-deprenyl treatment resulted in only a modest increase in stereotypic behaviour and this was not significantly enhanced by the prior administration 1 mg kg(-1) l-deprenyl. When the administered dose of l-deprenyl was increased to 2.5 or 5 mgkg(-1), however, the stereotypic behavioural response to PEA was greatly potentiated and in the latter case persisted for 60 min. A dose of 2.5 mg kg(-1) l-deprenyl and 1 mg kg(-1) rasagiline was shown to result in over 90% inhibition of the monoamine oxidase (MAO)-B from rat liver and striatum, whereas the inhibition of MAO-A was about 60 and 40% in liver and striatum, respectively. The recovery of MAO-B activity in rat striatum and liver following a single i.p. injection of 5 mg kg(-1) l-deprenyl gave first-order rate constants of 1.80 and 7.15 h(-1), respectively, which corresponded to half-lives of 9.23 and 2.33 days. Similar results were obtained with rasagiline. The corresponding indices of stereotypic response to PEA (30 mg kg(-1); i.p.) during recovery from the single dose of l-deprenyl were initially high, but had started to decline by the third day after l-deprenyl treatment and was not significant after day 4. At that time, less than 20% of the striatal monoamine oxidase-B activity had been regained, whereas the recovery of the liver enzyme was about 65%. These data are discussed in terms of the suggested involvement of PEA potentiation in the anti-parkinsonian actions of l-deprenyl and rasagiline and the duration of the 'wash-out' period used in studies on the effects of l-deprenyl on patients with Parkinson's disease. The longer duration of the recovery of

  10. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    PubMed Central

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  11. Estrogen Represses Hepatocellular Carcinoma (HCC) Growth via Inhibiting Alternative Activation of Tumor-associated Macrophages (TAMs)*

    PubMed Central

    Yang, Weiwei; Lu, Yan; Xu, Yichen; Xu, Lizhi; Zheng, Wei; Wu, Yuanyuan; Li, Long; Shen, Pingping

    2012-01-01

    Hepatocarcinoma cancer (HCC), one of the most malignant cancers, occurs significantly more often in men than in women; however, little is known about its underlying molecular mechanisms. Here we identified that 17β-estradiol (E2) could suppress tumor growth via regulating the polarization of macrophages. We showed that E2 re-administration reduced tumor growth in orthotopic and ectopic mice HCC models. E2 functioned as a suppressor for macrophage alternative activation and tumor progression by keeping estrogen receptor β (ERβ) away from interacting with ATP5J (also known as ATPase-coupling factor 6), a part of ATPase, thus inhibiting the JAK1-STAT6 signaling pathway. These studies introduce a novel mechanism for suppressing male-predominant HCC. PMID:22908233

  12. Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity.

    PubMed

    Banerjee, R K

    1990-06-20

    The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.

  13. Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model

    PubMed Central

    Sato, Satoru M; Woolley, Catherine S

    2016-01-01

    Status epilepticus (SE) is a common neurological emergency for which new treatments are needed. In vitro studies suggest a novel approach to controlling seizures in SE: acute inhibition of estrogen synthesis in the brain. Here, we show in rats that systemic administration of an aromatase (estrogen synthase) inhibitor after seizure onset strongly suppresses both electrographic and behavioral seizures induced by kainic acid (KA). We found that KA-induced SE stimulates synthesis of estradiol (E2) in the hippocampus, a brain region commonly involved in seizures and where E2 is known to acutely promote neural activity. Hippocampal E2 levels were higher in rats experiencing more severe seizures. Consistent with a seizure-promoting effect of hippocampal estrogen synthesis, intra-hippocampal aromatase inhibition also suppressed seizures. These results reveal neurosteroid estrogen synthesis as a previously unknown factor in the escalation of seizures and suggest that acute administration of aromatase inhibitors may be an effective treatment for SE. DOI: http://dx.doi.org/10.7554/eLife.12917.001 PMID:27083045

  14. AZD8055 Exerts Antitumor Effects on Colon Cancer Cells by Inhibiting mTOR and Cell-cycle Progression.

    PubMed

    Chen, Yun; Lee, Cheng-Hung; Tseng, Bor-Yuan; Tsai, Ya-Hui; Tsai, Huang-Wen; Yao, Chao-Ling; Tseng, Sheng-Hong

    2018-03-01

    AZD8055 is an inhibitor of mammalian target of rapamycin (mTOR) that can suppress both mTOR complex 1 (mTORC1) and mTORC2. This study investigated the antitumor effects of AZD8055 on colon cancer. The effects of AZD8055 on proliferation, apoptosis, and cell cycle of colon cancer cells, and tumor growth in a mouse colon cancer model were studied. AZD8055 significantly inhibited proliferation and induced apoptosis of colon cancer cells (p<0.05). The phosphorylation of both AKT and S6 kinase 1 (S6K1) was suppressed by AZD8055. AZD8055 also induced G 0 /G 1 cell-cycle arrest, reduced cyclin D1 and increased p27 expression, and suppressed the levels of phospho-cyclin-dependent kinase 2 and phospho-retinoblastoma. Compared to the control, oral administration of AZD8055 significantly suppressed tumor growth in mice (p<0.05). AZD8055 induces cytotoxicity, apoptosis, and cell-cycle arrest of colon cancer cells, and exerts an antitumor effect in mice. It also inhibits the mTOR signaling pathway and mTOR-dependent cell-cycle progression. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction.

    PubMed

    Mavrommatis, Evangelos; Shioura, Krystyna M; Los, Tamara; Goldspink, Paul H

    2013-09-01

    Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.

  16. Tone-Inhibiting Insoles Enhance the Reciprocal Inhibition of Ankle Plantarflexors of Subjects With Hemiparesis After Stroke: An Electromyographic Study.

    PubMed

    Takahashi, Nobushige; Takahashi, Hidetoshi; Takahashi, Osamu; Ushijima, Ryosuke; Umebayashi, Rie; Nishikawa, Junji; Okajima, Yasutomo

    2018-02-01

    Spasticity is a common sequela of upper motor neuron pathology, such as cerebrovascular diseases and cerebral palsy. Intervention for spasticity of the ankle plantarflexors in physical therapy may include tone-inhibiting casting and/or orthoses for the ankle and foot. However, the physiological mechanism of tone reduction by such orthoses remains unclarified. To investigate the electrophysiologic effects of tone-inhibiting insoles in stroke subjects with hemiparesis by measuring changes in reciprocal Ia inhibition (RI) in the ankle plantarflexor. An interventional before-after study. Acute stroke unit or ambulatory rehabilitation clinic of a university hospital in Japan. Ten subjects (47-84 years) with hemiparesis and 10 healthy male control subjects (31-59 years) were recruited. RI of the spastic soleus in response to the electrical stimulation of the deep peroneal nerve was evaluated by stimulus-locked averaging of rectified electromyography (EMG) of the soleus while subjects were standing. The magnitude of RI, defined as the ratio of the lowest to the baseline amplitude of the rectified EMG at approximately 40 milliseconds after stimulation, was measured while subjects were standing with and without the tone-inhibiting insole on the hemiparesis side. Enhancement of EMG reduction with the tone-inhibiting insole was significant (P < .05) in the subjects with hemiparesis, whereas no significant changes were found in controls. Tone-inhibiting insoles enhanced RI of the soleus in subjects after stroke, which might enhance standing stability by reducing unfavorable ankle plantarflexion tone. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings.

    PubMed

    Feng, Dayun; Wang, Bao; Wang, Lei; Abraham, Neeta; Tao, Kai; Huang, Lu; Shi, Wei; Dong, Yushu; Qu, Yan

    2017-04-01

    Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre-ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)-related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre-ischemia melatonin treatment was able to attenuate IR-induced ER stress and autophagy. In addition, with tandem RFP-GFP-LC3 adeno-associated virus, we demonstrated pre-ischemic melatonin significantly alleviated IR-induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR-induced autophagy was significantly blocked by ER stress inhibitor (4-PBA), as well as ER-related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5-dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre-ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress-dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Ocular Applications of Dipyridamole: A Review of Indications and Routes of Administration

    PubMed Central

    Isakov, Itzhak; Wlassoff, Wjatschesslaw; Ingram, April; Barishak, Y. Robert

    2016-01-01

    Abstract Dipyridamole was introduced decades ago as a treatment for angina, subsequently found to inhibit platelet aggregation. It is most commonly used, and approved for use in thromboembolism prevention, following surgery. Some of its recognized effects such as adenosine uptake inhibition, elevation of cAMP and cGMP levels, vasodilation, and tissue perfusion are important in various ocular disorders. For this reason, dipyridamole represents an interesting candidate as a therapeutic target for the treatment of eye disorders affecting different ocular structures. The aim of this article is to review the evidence and current understanding of the mechanisms by which dipyridamole exerts its effects on different ocular tissues, discuss the role of dipyridamole in clinical practice, and highlight areas of use and routes of administration. PMID:26696547

  19. Adenosine A(2B) receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells.

    PubMed

    Kaji, Wakako; Tanaka, Satomi; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2014-04-01

    Regulatory T cells (Treg) play a role in suppression of immune response, including anti-tumor immunity. We have recently reported that treatment of naïve CD4 T cells with adenosine A(2B) receptor antagonist PSB603 under Treg-skewing conditions inhibits expression of Foxp3, a marker of differentiation to Treg, without blocking IL-2 production or CD25 expression, which are activation markers, in CD4 T cells. We hypothesized that PSB603 suppresses cancer growth and metastasis by inhibiting induction of Treg, thereby facilitating anti-tumor immunity. In this study, we first examined the effect of PSB603 on tumor growth in B16 melanoma-bearing C57BL/6 mice. Administration of PSB603 significantly suppressed the increase of tumor volume as well as the increase of Treg population in these mice. The populations of CD4 and CD8 T cells were higher and splenic lymphocyte-mediated cytotoxicity towards B16 melanoma was significantly increased in PSB603-treated mice. We confirmed that PSB603 did not reduce the viability of B16 melanoma cells in vitro. Moreover, we also examined the effect of PSB603 on tumor metastasis in pulmonary metastasis model mice intravenously injected with B16 melanoma cells. The metastasis was also suppressed in PSB603-treated mice, in which the population of Treg was significantly lower. Overall, our results suggest that A(2B) receptor antagonist PSB603 enhances anti-tumor immunity by inhibiting differentiation to Treg, resulting in a delay of tumor growth and a suppression of metastasis.

  20. Effect of losartan, an angiotensin II type 1 receptor antagonist on cardiac autonomic functions of rats during acute and chronic inhibition of nitric oxide synthesis.

    PubMed

    Chaswal, M; Das, S; Prasad, J; Katyal, A; Mishra, A K; Fahim, M

    2012-01-01

    We studied the effect of losartan on baroreflex sensitivity (BRS) and heart rate variability (HRV) of adult Wistar rats during acute and chronic inhibition of nitric oxide synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME). Chronic L-NAME administration (50 mg/kg per day for 7 days, orally through gavage) increased mean arterial pressure (MAP), heart rate but significantly decreased BRS. In addition, a significant fall of standard deviation of normal RR intervals, total spectral power, high frequency spectral power and a rise of low frequency to high frequency (LF: HF) ratio was seen. Acute L-NAME administration (30 mg/kg, i.v. bolus dose) also raised MAP and impaired HRV but it was associated with augmented BRS for bradycardia reflex. Losartan treatment (10 mg/kg, i.v.) in both acute and chronic L-NAME treated rats, decreased MAP but the difference was not significant. On the other hand, losartan administration normalized depressed BRS for bradycardia reflex and significantly reduced LF to HF ratio in chronic L-NAME treated rats. But this improvement was not observed in acute L-NAME group. These results indicate importance of mechanisms other than renin-angiotensin system in the pressor response of both acute as well as chronic L-NAME. However, autonomic dysregulation especially following chronic L-NAME appears to be partly angiotensin dependent.

  1. [Case report: a recurrent gastric cancer in the terminal stage, associated with obstructive jaundice which responded significantly to oral administration of TS-1].

    PubMed

    Tasaka, K; Tomofuzi, Y; Sugihara, Z; Fukuda, H

    2001-10-01

    TS-1, a novel oral formation of 5-fluorouracil that consists of 1M tegafur (5-FU), 0.4M CDHP and 1M Oxo, is reported to achieve a higher response rate of 49% in patients with advanced gastric cancer in a late phase II study. We report a case of recurrent gastric cancer that responded significantly to the short-term administration of TS-1. A 73-year-old man, who had undergone a curative distal gastrectomy with D2 lymphadenectomy 2 years earlier, had presented with obstructive jaundice resulting from cancerous lymphadenopathy. PTCD was performed for drainage, but cholestasis disappeared completely through the two courses of oral administration of TS-1. The serum level of transaminase and bilirubin remained within normal limits, even with PTCD unequipped, until the patient died of the original disease. The adverse effects observed with the drug were anemia (grade 1) and skin pigmentation (grade 2), both of which improved soon after discontinuing the medication. In conclusion, TS-1 may be well-tolerable and effective in some cases of terminal-stage and/or recurrent gastric cancer, especially those associated with obstructive jaundice arising from the cancerous lymphadenopathy, in that patient QOL can be maintained to a much greater extent.

  2. Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease.

    PubMed

    Garrido-Gil, Pablo; Joglar, Belen; Rodriguez-Perez, Ana I; Guerra, Maria J; Labandeira-Garcia, Jose L

    2012-02-22

    Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR γ). PPAR-γ activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions. We have investigated whether oral treatment with telmisartan (the most potent PPAR-γ activator among AT1 blockers) provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-γ activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and co-administration of the PPAR-γ antagonist GW9662 to study the role of PPAR-γ activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-γ activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-γ antagonist GW9662. We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co-administration of GW9662. The results suggest that

  3. Piracetam inhibits ethanol (EtOH)-induced memory deficit by mediating multiple pathways.

    PubMed

    Yang, Yifan; Feng, Jian; Xu, Fangyuan; Wang, Jianglin

    2017-12-01

    Excessive ethanol (EtOH) intake, especially to prenatal exposure, can significantly affect cognitive function and cause permanent learning and memory injures in children. As a result, how to protect children from EtOH neurotoxicity has gained increasing attention in recent years. Piracetam (Pir) is a nootropic drug derived from c-aminobutyric acid and can manage cognition impairments in multiple neurological disorders. Studies have shown that Pir can exert therapeutic effects on EtOH-induced memory impairments, but the underlying mechanism is still unknown. In this study, we found that Pir inhibited ethanol-induced memory deficit by mediating multiple pathways. Treatment with EtOH could cause cognitive deficit in juvenile rats, and triggered the alteration of synaptic plasticity. Administration with Pir significantly increased long-term potentiation and protected hippocampus neurons from EtOH neurotoxicity. Pir intervention ameliorated EtOH-induced cell apoptosis and inhibited the activation of Caspase-3 in vitro, suggesting that Pir protected neurons by anti-apoptotic effects. Pir could decrease the expression of LC3-II and Beclin-1 induced by EtOH, and increase the phosphorylation of mTOR and reduce the phosphorylation of Akt, which suggested that the protective effect of Pir was involved in regulation of autophagic process and mTOR/Akt pathways. In conclusion, we speculate that Pir reduces EtOH-induced neuronal damage by regulation of apoptotic action and autophagic action, and our research offers preclinical evidence for the application of Pir in ethanol toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults.

    PubMed

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Ushiroyama, Kosuke; Naoi, Yuki; Motoya, Ikuo; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2017-03-01

    This study investigated the influence of stimulus conditions of transcutaneous electrical nerve stimulation (TENS) on disynaptic reciprocal Ia inhibition (RI) and presynaptic inhibition (D1 inhibition) in healthy adults. Eight healthy participants received TENS (stimulus frequencies of 50, 100, and 200 Hz) over the deep peroneal nerve and tibialis anterior (TA) muscle in the resting condition for 30 min. At pre- and post-intervention, the RI from the TA to the soleus (SOL) and D1 inhibition of the SOL alpha motor neuron were assessed by evoked electromyography. The results showed that RI was not changed by TENS at any stimulus frequency condition. Conversely, D1 inhibition was significantly changed by TENS regardless of the stimulus frequency. The present results and previous studies pertaining to RI suggest that the resting condition might strongly influence the lack of pre- vs. post-intervention change in the RI. Regarding the D1 inhibition, the present results suggest that the effect of TENS might be caused by post-tetanic potentiation. The knowledge gained from the present study might contribute to a better understanding of fundamental studies of TENS in healthy adults and its clinical application for stroke survivors.

  5. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling.

    PubMed

    Medicherla, Kanakaraju; Sahu, Bidya Dhar; Kuncha, Madhusudana; Kumar, Jerald Mahesh; Sudhakar, Godi; Sistla, Ramakrishna

    2015-09-01

    Ulcerative colitis is associated with a considerable reduction in the quality of life of patients. The use of phyto-ingredients is becoming an increasingly attractive approach for the management of colitis. Geraniol is a monoterpene with anti-inflammatory and antioxidative properties. In this study, we investigated the therapeutic potential of geraniol as a complementary and alternative medicine against dextran sulphate sodium (DSS)-induced ulcerative colitis in mice. Disease activity indices (DAI) comprising body weight loss, presence of occult blood and stool consistency were assessed for evaluation of colitis symptoms. Intestinal damage was assessed by evaluating colon length and its histology. Pre-treatment with geraniol significantly reduced the DAI score, improved stool consistency (without occult blood) and increased the colon length. The amount of pro-inflammatory cytokines, specifically TNF-α, IL-1β and IL-6 and the activity of myeloperoxidase in colon tissue were significantly decreased in geraniol pre-treated mice. Western blot analyses revealed that geraniol interfered with NF-κB signaling by inhibiting NF-κB (p65)-DNA binding, and IκBα phosphorylation, degradation and subsequent increase in nuclear translocation. Moreover, the expressions of downstream target pro-inflammatory enzymes such as iNOS and COX-2 were significantly reduced by geraniol. Pre-treatment with geraniol also restored the DSS-induced decline in antioxidant parameters such as reduced glutathione and superoxide dismutase activity and attenuated the increase in lipid peroxidation marker, thiobarbituric acid reactive substances and nitrative stress marker, nitrites in colon tissue. Thus, our results suggest that geraniol is a potential therapeutic agent for inflammatory bowel disease.

  6. Adipose tissue-derived stem cells inhibit neointimal formation in a paracrine fashion in rat femoral artery.

    PubMed

    Takahashi, Masao; Suzuki, Etsu; Oba, Shigeyoshi; Nishimatsu, Hiroaki; Kimura, Kenjiro; Nagano, Tetsuo; Nagai, Ryozo; Hirata, Yasunobu

    2010-02-01

    Subcutaneous adipose tissue contains a lot of stem cells [adipose-derived stem cells (ASCs)] that can differentiate into a variety of cell lineages. In this study, we isolated ASCs from Wistar rats and examined whether ASCs would efficiently differentiate into vascular endothelial cells (ECs) in vitro. We also administered ASCs in a wire injury model of rat femoral artery and examined their effects. ASCs expressed CD29 and CD90, but not CD34, suggesting that ASCs resemble bone marrow-derived mesenchymal stem cells. When induced to differentiate into ECs with endothelial growth medium (EGM), ASCs expressed Flt-1, but not Flk-1 or mature EC markers such as CD31 and vascular endothelial cadherin. ASCs produced angiopoietin-1 when they were cultured in EGM. ASCs stimulated the migration of EC, as assessed by chemotaxis assay. When ASCs that were cultured in EGM were injected in the femoral artery, the ASCs potently and significantly inhibited neointimal formation without being integrated in the endothelial layer. EGM-treated ASCs significantly suppressed neointimal formation even when they were administered from the adventitial side. ASC administration significantly promoted endothelial repair. These results suggested that although ASCs appear to have little capacity to differentiate into mature ECs, ASCs have the potential to secrete paracrine factors that stimulate endothelial repair. Our results also suggested that ASCs inhibited neointimal formation via their paracrine effect of stimulation of EC migration in situ rather than the direct integration into the endothelial layer.

  7. Chamomile decoction extract inhibits human neutrophils ROS production and attenuates alcohol-induced haematological parameters changes and erythrocytes oxidative stress in rat.

    PubMed

    Jabri, Mohamed-Amine; Sani, Mamane; Rtibi, Kais; Marzouki, Lamjed; El-Benna, Jamel; Sakly, Mohsen; Sebai, Hichem

    2016-03-31

    The aim of this study was to evaluate the protective effects of subacute pre-treatment with chamomile (Matricaria recutita L.) decoction extract (CDE) against stimulated neutrophils ROS production as well as ethanol (EtOH)-induced haematological changes and erythrocytes oxidative stress in rat. Neutrophils were isolated and ROS generation was measured by luminol-amplified chemiluminescence. Superoxide anion generation was detected by the cytochrome c reduction assay. Adult male wistar rats were used and divided into six groups of ten each: control, EtOH, EtOH + various doses of CDE (25, 50, and 100 mg/kg, b.w.), and EtOH+ ascorbic acid (AA). Animals were pre-treated with CDE extract during 10 days. We found that CDE inhibited (P ≤ 0.0003) luminol-amplified chemiluminescence of resting neutrophils and N-formyl methionylleucyl-phenylalanine (fMLF) or phorbolmyristate acetate (PMA) stimulated neutrophils, in a dose-dependent manner. CDE had no effect on superoxide anion, but it inhibited (P ≤ 0.0004) H2O2 production in cell free system. In vivo, CDE counteracted (P ≤ 0.0034) the effect of single EtOH administration which induced (P < 0.0001) an increase of white blood cells (WBC) and platelets (PLT) counts. Our results also demonstrated that alcohol administration significantly (P < 0.0001) induced erythrocytes lipoperoxidation increase and depletion of sulfhydryl groups (-SH) content as well as antioxidant enzyme activities as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). More importantly, we found that acute alcohol administration increased (P < 0.0001) erythrocytes and plasma hydrogen peroxide (H2O2), free iron, and calcium levels while the CDE pre-treatment reversed increased (P ≤ 0.0051) all these intracellular disturbances. These findings suggest that CDE inhibits neutrophil ROS production and protects against EtOH-induced haematologiacal parameters changes and erythrocytes oxidative stress. The haematoprotection offered

  8. Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Arctiin and Arctigenin.

    PubMed

    Zhang, Hui; Zhao, Zhenying; Wang, Tao; Wang, Yijia; Cui, Xiao; Zhang, Huijuan; Fang, Zhong-Ze

    2016-07-01

    Arctiin is the major pharmacological ingredient of Fructus Arctii, and arctigenin is the metabolite of arctiin formed via the catalysis of human intestinal bacteria. The present study aims to investigate the inhibition profile of arctiin and arctigenin on important phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs), indicating the possible herb-drug interaction. In vitro screening experiment showed that 100 μM of arctiin and arctigenin inhibited the activity of UGT1A3, 1A9, 2B7, and 2B15. Homology modeling-based in silico docking of arctiin and arctigenin into the activity cavity of UGT2B15 showed that hydrogen bonds and hydrophobic interactions contributed to the strong binding free energy of arctiin (-8.14 kcal/mol) and arctigenin (-8.43 kcal/mol) with UGT2B15. Inhibition kinetics study showed that arctiin and arctigenin exerted competitive and noncompetitive inhibition toward UGT2B15, respectively. The inhibition kinetic parameters (Ki ) were calculated to be 16.0 and 76.7 μM for the inhibition of UGT2B15 by arctiin and arctigenin, respectively. Based on the plasma concentration of arctiin and arctigenin after administration of 100 mg/kg of arctiin, the [I]/Ki values were calculated to be 0.3 and 0.007 for arctiin and arctigenin, respectively. Based on the inhibition evaluation standard ([I]/Ki  < 0.1, low possibility; 0.1 < [I]/Ki  < 1, medium possibility; [I]/Ki  > 1, high possibility), arctiin might induce drug-drug interaction with medium possibility. Based on these results, clinical monitoring the utilization of Fructus Arctii is very important and necessary. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type1) diabetic rats

    PubMed Central

    Nagai, Ryoji; Nagai, Mime; Shimasaki, Satoko; Baynes, John W.; Fujiwara, Yukio

    2010-01-01

    Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end products (AGEs) such as Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis . We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes. PMID:20117096

  10. Curine inhibits mast cell-dependent responses in mice.

    PubMed

    Ribeiro-Filho, Jaime; Leite, Fagner Carvalho; Costa, Hermann Ferreira; Calheiros, Andrea Surrage; Torres, Rafael Carvalho; de Azevedo, Carolina Trindade; Martins, Marco Aurélio; Dias, Celidarque da Silva; Bozza, Patrícia T; Piuvezam, Márcia Regina

    2014-09-11

    Curine is a bisbenzylisoquinoline alkaloid and the major constituent isolated from Chondrodendron platyphyllum, a plant that is used to treat inflammatory diseases in Brazilian folk medicine. This study investigates the effectiveness of curine on mast cell-dependent responses in mice. To induce mast cell-dependent responses, Swiss mice were subcutaneously sensitized with ovalbumin (OVA-12 μg/mouse) and Al(OH)3 in a 0.9% NaCl solution. Fifteen days later, the animals were challenged with OVA through different pathways. Alternatively, the animals were injected with compound 48/80 or histamine, and several parameters, including anaphylaxis, itching, edema and inflammatory mediator production, were analyzed. Promethazine, cromoglycate, and verapamil were used as control drugs, and all of the treatments were performed 1h before the challenges. Curine pre-treatment significantly inhibited the scratching behavior and the paw edema induced by either compound 48/80 or OVA, and this protective effect was comparable in magnitude with those associated with treatment with either cromoglycate or verapamil. In contrast, curine was a weak inhibitor of histamine-induced paw edema, which was completely inhibited by promethazine. Curine and verapamil significantly inhibited pleural protein extravasations and prostaglandin D2 (PGD2) and cysteinyl leukotrienes (CysLTs) production following allergen-induced pleurisy. Furthermore, like verapamil, curine inhibited the anaphylactic shock caused by either compound 48/80 or an allergen. In in vitro settings, these treatments also inhibited degranulation as well as PGD2 and CysLT production through IgE-dependent activation of the mast cell lineage RBL-2H3. Curine significantly inhibited immediate allergic reactions through mechanisms more related to mast cell stabilization and activation inhibition than interference with the pro-inflammatory effects of mast cell products. These findings are in line with the hypothesis that the alkaloid

  11. Inhibition of ongoing responses in patients with Parkinson's disease

    PubMed Central

    Gauggel, S; Rieger, M; Feghoff, T

    2004-01-01

    Objectives: We investigated the involvement of the basal ganglia in inhibiting ongoing responses in patients with Parkinson's disease (PD). Methods: Thirty two patients with PD and 31 orthopaedic controls performed the stop signal task, which allows an estimation of the time it takes to inhibit an ongoing reaction (stop signal reaction time, SSRT). Results: Patients with PD showed significantly longer SSRTs than the controls. This effect seemed to be independent of global cognitive impairment and severity of PD. Furthermore, in the PD patients, there was no significant relation between general slowing and inhibitory efficiency. Conclusions: Our results provide evidence for involvement of the basal ganglia in the inhibition of ongoing responses. PMID:15026491

  12. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increasedmore » expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to

  13. The root barks of Morus alba and the flavonoid constituents inhibit airway inflammation.

    PubMed

    Lim, Hun Jai; Jin, Hong-Guang; Woo, Eun-Rhan; Lee, Sang Kook; Kim, Hyun Pyo

    2013-08-26

    The root barks of Morus alba have been used in traditional medicine as an anti-inflammatory drug, especially for treating lung inflammatory disorders. To find new alternative agents against airway inflammation and to establish the scientific rationale of the herbal medicine in clinical use, the root barks of Morus alba and its flavonoid constituents were examined for the first time for their pharmacological activity against lung inflammation. For in vivo evaluation, an animal model of lipopolysaccharide-induced airway inflammation in mice was used. An inhibitory action against the production of proinflammatory molecules in lung epithelial cells and lung macrophages was examined. Against lipopolysaccharide-induced airway inflammation, the ethanol extract of the root barks of Morus alba clearly inhibited bronchitis-like symptoms, as determined by TNF-α production, inflammatory cells infiltration and histological observation at 200-400mg/kg/day by oral administration. In addition, Morus alba and their major flavonoid constituents including kuwanone E, kuwanone G and norartocarpanone significantly inhibited IL-6 production in lung epithelial cells (A549) and NO production in lung macrophages (MH-S). Taken together, it is concluded that Morus alba and the major prenylated flavonoid constituents have a potential for new agents to control lung inflammation including bronchitis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Inhibition of Spinal Interlukin-33/ST2 Signaling and Downstream ERK and JNK Pathways in Electroacupuncture Analgesia in Formalin Mice.

    PubMed

    Han, Ping; Liu, Shenbin; Zhang, Mengting; Zhao, Jing; Wang, Yanqing; Wu, Gencheng; Mi, Wenli

    2015-01-01

    Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL)-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA) on formalin-induced inflammatory pain. The results showed that 1) EA stimulation of ipsilateral Zusanli (ST 36) and Yanglingquan (GB 34) acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2) subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33) significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3) EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4) the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways.

  15. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model

    PubMed Central

    HOSSAIN, MOHAMMAD AKBAR; KIM, DONG HWAN; JANG, JUNG YOON; KANG, YONG JUNG; YOON, JEONG-HYUN; MOON, JEON-OK; CHUNG, HAE YOUNG; KIM, GI-YOUNG; CHOI, YUNG HYUN; COPPLE, BRYAN L.; KIM, NAM DEUK

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer. PMID:22179060

  16. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  17. A speculated cause of respiratory inhibition in infants.

    PubMed

    Minowa, Hideki; Arai, Ikuyo; Yasuhara, Hajime; Ebisu, Reiko; Ohgitani, Ayako

    2018-10-01

    In our previous studies, we documented that threatened premature labor and asymmetrical intrauterine growth restriction were risk factors for respiratory inhibition. The goal of this study was to determine the cause of respiratory inhibition by considering perinatal risk factors. We examined 1497 infants with a gestational age of 36 weeks or greater. All infants were monitored using pulse oximetry and examined via cranial sonography. Respiratory inhibition was defined as severe hypoxemia caused by respiratory inhibition immediately after crying or gastroesophageal reflux or as a respiratory pause during feeding. We examined the relationships between respiratory inhibition and perinatal factors and speculated on the cause of respiratory inhibition. The median gestational age, birth weight, Apgar score at 1 min, and Apgar score at 5 min of the subjects were 38.9 weeks, 2930 g, 8.0 points, and 9.0 points, respectively. Respiratory inhibition was observed in 422 infants. Lateral ventricle enlargement and increased echogenicity in the ganglionic eminence were observed in 417 and 516 infants, respectively. Respiratory inhibition was significantly correlated with shorter gestational periods, twin pregnancies, lateral ventricle enlargement, and increased echogenicity in the ganglionic eminence. We speculate that umbilical cord compression is a major cause of respiratory inhibition.

  18. Sulforaphane improves outcomes and slows cerebral ischemic/reperfusion injury via inhibition of NLRP3 inflammasome activation in rats.

    PubMed

    Yu, Chang; He, Qi; Zheng, Jing; Li, Ling Yu; Hou, Yang Hao; Song, Fang Zhou

    2017-04-01

    Ischemia/reperfusion (I/R) injury has been correlated with systemic inflammatory response. In addition, NLRP3 has been suggested as a cause in many inflammatory processes. Sulforaphane (SFN) is a naturally occurring isothiocyanate found in cruciferous vegetables, such as broccoli and cabbage. While recent studies have demonstrated that Sulforaphane has protective effects against cerebral ischemia/reperfusion injury, little is known about how those protective effects work. In this study, we focus our investigation on the role and process of Sulforaphane in the inhibition of NLRP3 inflammasome activation, as well as its effect on brain ischemia/reperfusion injury. Adult male Sprague-Dawley rats were injected with Sulforaphane (5 or 10mg/kg) intraperitoneally at the beginning of reperfusion, after a 60min period of occlusion. A neurological score and infarct volume were assessed at 24h after the administration of Sulforaphane. Myeloperoxidase (MPO) activity was measured at 24h to assess neutrophil infiltration in brain tissue. ELISA, RT-PCR and Western blot analyses were used to measure any inflammatory reaction. Sulforaphane treatment significantly reduced infarct volume and improved neurological scores when compared to a vehicle-treated group. Neutrophil infiltration was significantly higher in the vehicle-treated group than in the Sulforaphane treatment group. Sulforaphane treatment inhibits NLRP3 inflammasome activation and the downregulation of cleaved caspase-1, while reducing IL-1β and IL-18 expression. The inhibition of inflammatory response with Sulforaphane treatment improves outcomes after focal cerebral ischemia. This neuroprotective effect is likely exerted by Sulforaphane inhibited NLRP3 inflammasome activation caused by the downregulation of NLRP3, the induction of cleaved caspase-1, and thus the reduction of IL-1β and IL-18. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: inhibited intestinal hydrolysis and enhanced lymphatic absorption.

    PubMed

    Wang, Tao; Shen, Liao; Zhang, Zhen; Li, Haiyan; Huang, Ri; Zhang, Yadan; Quan, Dongqin

    2017-11-01

    The oral administration of water-soluble chemotherapeutical agents is limited by their serious gastrointestinal side effects, instability at intestinal pH, and poor absorption. Aiming to solve these problems, we chose topotecan (TPT) as a model drug and developed a novel lipid formulation containing core-shell lipid nanoparticle (CLN) that makes the water-soluble drug to 'dissolve' in oil. TPT molecules can be encapsulated into nanoparticles surrounded by oil barrier while avoiding the direct contact with intestinal environment, thus easing the intestinal hydrolytic degradation and gastrointestinal (GI) irritation. Microstructure and mean particle size of TPT-CLN were characterized by Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS), respectively. The average size of nanoparticles was approximately 60 nm with a homogeneous distribution in shapes of spheres or ellipsoid. According to in vitro stability studies, more initial form of TPT was observed in presence of lipid nanoparticle compared with free topotecan solution in artificial intestinal juice (pH 6.5). After oral administration of TPT-CLN in rats, AUC and C max of TPT were all increased compared with free TPT, indicating significant enhancement of oral absorption. Intestinal lymphatic transport was confirmed as the major way for CLN to enhance oral absorption of TPT by the treatment of blocking chylomicron flow. Lower GI irritation of TPT-CLN was observed in the gastrointestinal damage studies. The in vivo antitumor activity of TPT-CLN showed an improved antitumor efficacy by oral treatment of TPT-CLN compared to free TPT. From the obtained data, the systems appear an attractive progress in oral administration of topotecan.

  20. Modulation of morphine antinociceptive tolerance and physical dependence by co-administration of simvastatin.

    PubMed

    Mansouri, Mohammad Taghi; Khodayar, Mohammad Javad; Tabatabaee, Amirhossein; Ghorbanzadeh, Behnam; Naghizadeh, Bahareh

    2015-10-01

    Statins, 3-hydroxy-3-methylglutaryl co-enzyme A (HMG-CoA) reductase inhibitors, are widely used in the management of different diseases beyond their primary indication for lowering cholesterol. Previous studies have demonstrated the neuroprotective effects of simvastatin in different animal models. In the present study, we examined the effects of simvastatin (30, 60, 100 and 300mg/kg, p.o.) on the development and expression of morphine-induced tolerance and dependence in mice. For the induction of morphine tolerance and dependence, mice were twice daily treated with morphine (10mg/kg, s.c.) for 5 consecutive days. Tolerance was evaluated by the hot-plate test and physical dependence by naloxone challenge, on the sixth day. The results showed that oral administration of simvastatin produced antinociceptive activity in a dose-dependent way. Co-administration of simvastatin with morphine did not affect the acute morphine-induced analgesia (10mg/kg, s.c.). However, repeated co-administration of simvastatin with morphine significantly attenuated the development of tolerance to the analgesic effect of morphine and inhibited the naloxone (5mg/kg, s.c.)-precipitated withdrawal signs (jumping and body weight loss). Also, simvastatin at doses of 100 and 300mg/kg attenuated the expression of morphine-induced tolerance and dependence. These data indicated that, while simvastatin can alleviate both development and expression of morphine-induced tolerance, it cannot enhance morphine-induced antinociception. Taken together, simvastatin may be used as an adjutant therapeutic agent in combination with morphine and or other opioids in patients with severe chronic pain. Copyright © 2015 Elsevier Inc. All rights reserved.