Sample records for administrative code nac

  1. 75 FR 56654 - RTCA NextGen Advisory Committee (NAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration RTCA NextGen Advisory Committee (NAC) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA NextGen Advisory Committee (NAC) SUMMARY: The FAA published a Notice in the Federal Register on September 3, 2010 (75-FR-54221...

  2. 75 FR 54221 - RTCA NextGen Advisory Committee (NAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration RTCA NextGen Advisory Committee (NAC... (NAC). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA NextGen Advisory Committee (NAC). DATES: The meeting will be held September 23, 2010, from 8:30 a.m. to 11:30 a.m...

  3. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    PubMed

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  4. 76 FR 54526 - Fourth Meeting RTCA NextGen Advisory Committee (NAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Committee (NAC) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: RTCA NextGen Advisory Committee (NAC). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA NextGen Advisory Committee (NAC). DATES: The meeting will be held September 29, 2011 from 9 a.m. to 4 p.m...

  5. 76 FR 3931 - Second Meeting RTCA NextGen Advisory Committee (NAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... Committee (NAC) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: RTCA NextGen Advisory Committee (NAC). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA NextGen Advisory Committee (NAC). DATES: The meeting will be held February 11, 2011 from 8:30 a.m. to 1 p.m...

  6. 76 FR 22162 - Third Meeting RTCA NextGen Advisory Committee (NAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Committee (NAC) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: RTCA NextGen Advisory Committee (NAC). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA NextGen Advisory Committee (NAC). DATES: The meeting will be held May 19, 2011 from 9:30 a.m. to 2 p.m. ADDRESSES...

  7. Citrullus colocynthis NAC transcription factors CcNAC1 and CcNAC2 are involved in light and auxin signaling.

    PubMed

    Wang, Zhuoyu; Rashotte, Aaron M; Dane, Fenny

    2014-10-01

    Two novel NAC transcription factors from C itrullus colocynthis implicated in light and auxin signaling pathway. NAC transcription factors (NAM, ATAF1, 2, CUC2) have multiple functions in plant growth and development. Two NACs, CcNAC1 and CcNAC2, were recently identified in the highly drought-tolerant cucurbit species, Citrullus colocynthis. This study examines the functional role of these genes under different qualities of light based on the in silico analysis of the CcNAC1 and CcNAC2 promoters that revealed the presence of several light-associated motifs. The impact of both light and auxin on CcNAC1 and CcNAC2 expression was examined in C. colocynthis leaves, and using reporter (pCcNAC1, 2::GUS) lines in Arabidopsis. Furthermore, the effects of constitutive overexpression (OE-CcNAC1, 2) in Arabidopsis were also examined under a range of conditions to confirm reporter line linkages. White, blue, red, and far-red light treatments resulted in similar patterns of quantitative changes in CcNAC1and CcNAC2 expression in both species, with the highest transcript increases following red light. Photomorphogenic changes in Arabidopsis hypocotyls were correlated with gene transcript levels. In the absence of light, hypocotyls of OE-CcNAC1/CcNAC2 lines were significantly longer as compared to WT. The addition of exogenous auxin (+IAA) to growth medium also resulted in changes to the hypocotyl lengths of overexpression lines and spatiotemporal reporter line changes in seedlings. Our data suggest that CcNAC1, 2 might be functionally important in the light signaling pathway, and appear connected to the hormone auxin. This is the first study to indicate that NAC genes might play a role in both light and auxin signaling pathways.

  8. A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc (Galβ1-4GlcNAc) and LacdiNAc (GalNAcβ1-4GlcNAc) motifs found on vertebrate and insect cells.

    PubMed

    Frederiksen, Rikki F; Yoshimura, Yayoi; Storgaard, Birgit G; Paspaliari, Dafni K; Petersen, Bent O; Chen, Kowa; Larsen, Tanja; Duus, Jens Ø; Ingmer, Hanne; Bovin, Nicolai V; Westerlind, Ulrika; Blixt, Ola; Palcic, Monica M; Leisner, Jørgen J

    2015-02-27

    There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1-4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1-4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1-4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1-6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1-6 bond in LacNAcβ1-6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Tribal Green Building Administrative Code Example

    EPA Pesticide Factsheets

    This Tribal Green Building Administrative Code Example can be used as a template for technical code selection (i.e., building, electrical, plumbing, etc.) to be adopted as a comprehensive building code.

  10. New GlcNAc/GalNAc-specific lectin from the ascidian Didemnum ternatanum.

    PubMed

    Molchanova, Valentina; Chikalovets, Irina; Li, Wei; Kobelev, Stanislav; Kozyrevskaya, Svetlana; Bogdanovich, Raisa; Howard, Eric; Belogortseva, Natalia

    2005-05-25

    Previously we isolated GlcNAc-specific lectin (DTL) from the ascidian Didemnum ternatanum by affinity chromatography on cross-linked ovalbumin. Here we report the purification and characterization of new D-GlcNAc/D-GalNAc-specific lectin DTL-A from the same ascidian. This lectin was isolated from non-bound cross-linked ovalbumin fraction and further was purified by gel filtration on Sepharose CL-4B, affinity chromatography on GlcNAc-agarose and gel filtration on Superdex 200. SDS-polyacrylamide gel electrophoresis and gel filtration of purified lectin on Sepharose CL-4B indicates that it exists as large aggregates in the native state. Investigations of the carbohydrate specificity of DTL-A by enzyme-linked lectin assay suggest the multi-specificity of this lectin. DTL-A binds BSM, asialo-BSM as well as heparin and dextran sulfate. The binding of DTL-A to BSM was inhibited by monosaccharides D-GlcNAc and D-GalNAc, their alpha- but not beta-anomers. Among polysaccharides and glycoconjugates, DTL-A binding to BSM was effectively inhibited by BSM, asialo-BSM, pronase-treated BSM and synthetic alpha-D-GalNAc-PAA. Fetuin and asialofetuin showed a much lower inhibitory potency, heparin and dextran sulfate were noninhibitory. On the other hand, DTL-A binding to heparin was effectively inhibited by dextran sulfate, fucoidan, whereas BSM showed insignificantly inhibitory effect. DTL-A binding to heparin was not inhibited by D-GlcNAc and D-GalNAc.

  11. Synthesis of aryl azide derivatives of UDP-GlcNAc and UDP-GalNAc and their use for the affinity labeling of glycosyltransferases and the UDP-HexNAc pyrophosphorylase.

    PubMed

    Zeng, Y; Shabalin, Y; Szumilo, T; Pastuszak, I; Drake, R R; Elbein, A D

    1996-07-15

    The chemical synthesis and utilization of two photoaffinity analogs, 125I-labeled 5-[3-(p-azidosalicylamido)-1-propenyl]-UDP-GlcNAc and -UDP-GalNAc, is described. Starting with either UDP-GlcNAc or UDP-GalNAc, the synthesis involved the preparation of the 5-mercuri-UDP-HexNAc and then attachment of an allylamine to the 5 position to give 5-(3-amino)allyl-UDP-HexNAc. This was followed by acylation with N-hydroxysuccinimide p-aminosalicylic acid to form the final product, i.e., 5-[3-(p-azidosalicylamido)-1-propenyl]-UDP-GlcNAc or UDP-GalNAc. These products could then be iodinated with chloramine T to give the 125I-derivatives. Both the UDP-GlcNAc and the UDP-GalNAc derivatives reacted in a concentration-dependent manner with a highly purified UDP-HexNAc pyrophosphorylase, and both specifically labeled the subunit(s) of this protein. The labeling of the protein by the UDP-GlcNAc derivative was inhibited in dose-dependent fashion by either unlabeled UDP-GlcNAc or unlabeled UDP-GalNAc. Likewise, labeling with the UDP-GalNAc probe was blocked by either UDP-GlcNAc or UDP-GalNAc. The UDP-GlcNAc probe also specifically labeled a partially purified preparation of GlcNAc transferase I.

  12. [Cloning, subcellular localization, and heterologous expression of ApNAC1 gene from Andrographis paniculata].

    PubMed

    Wang, Jian; Qi, Meng-Die; Guo, Juan; Shen, Ye; Lin, Hui-Xin; Huang, Lu-Qi

    2017-03-01

    Andrographis paniculata is widely used as medicinal herb in China for a long time and andrographolide is its main medicinal constituent. To investigate the underlying andrographolide biosynthesis mechanisms, RNA-seq for A. paniculata leaves with MeJA treatment was performed. In A. paniculata transcriptomic data, the expression pattern of one member of NAC transcription factor family (ApNAC1) matched with andrographolide accumulation. The coding sequence of ApNAC1 was cloned by RT-PCR, and GenBank accession number was KY196416. The analysis of bioinformatics showed that the gene encodes a peptide of 323 amino acids, with a predicted relative molecular weight of 35.9 kDa and isoelectric point of 6.14. To confirm the subcellular localization, ApNAC1-GFP was transiently expressed in A. paniculata protoplast. The results indicated that ApNAC1 is a nucleus-localized protein. The analysis of real-time quantitative PCR revealed that ApNAC1 gene predominantly expresses in leaves. Compared with control sample, its expression abundance sharply increased with methyl jasmonate treatment. Based on its expression pattern, ApNAC1 gene might involve in andrographolide biosynthesis. ApNAC1 was heterologously expressed in Escherichia coli and recombinant protein was purified by Ni-NTA agarose. Further study will help us to understand the function of ApNAC1 in andrographolide biosynthesis. Copyright© by the Chinese Pharmaceutical Association.

  13. Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.).

    PubMed

    Peng, Hui; Yu, Xingwang; Cheng, Huiying; Shi, Qinghua; Zhang, Hua; Li, Jiangui; Ma, Hao

    2010-01-01

    The plant-specific NAC (for NAM, ATAF1,2 and CUC2) proteins have been found to play important roles in plant development and stress responses. In this study, a NAC gene CarNAC1 (for Cicer arietinum L. NAC gene 1) was isolated from a cDNA library constructed with chickpea seedling leaves treated by polyethylene glycol. CarNAC1 encoded a putative protein with 239 amino acids and contained 3 exons and 2 introns within genomic DNA sequence. CarNAC1 had a conserved NAC domain in the N-terminus and the CarNAC1:GFP (green fluorescent protein) fusion protein was localized in the nucleus of onion epidermal cells. Additionally, CarNAC1 exhibited the trans-activation activity which was mapped to the C-terminus. The CarNAC1 transcript was detected in many chickpea organs including seedling leaves, stems, roots, flowers, and young pods, but less accumulated in young seeds. CarNAC1 was induced by leaf age and showed changes in expression during seed development and germination. Furthermore, the expression of CarNAC1 was strongly induced by drought, salt, cold, wounding, H(2)O(2), ethephon, salicylic acid, indole-3-acetic acid, and gibberellin. Our results suggest that CarNAC1 encodes a novel NAC-domain protein and may be a transcriptional activator involved in plant development and various stress responses.

  14. Bisecting GlcNAc restricts conformations of branches in model N-glycans with GlcNAc termini.

    PubMed

    Hanashima, Shinya; Suga, Akitsugu; Yamaguchi, Yoshiki

    2018-02-01

    Bisected N-glycans play significant roles in tumor migration and Alzheimer's disease through modulating the action and localization of their carrier proteins. Such biological functions are often discussed in terms of the conformation of the attached N-glycans with or without bisecting GlcNAc. To obtain insights into the effects of bisecting GlcNAc on glycan conformation, a systematic NMR structural analysis was performed on two pairs of synthetic N-glycans, with and without bisecting GlcNAc. The analysis reveals that terminal GlcNAcs and bisecting GlcNAc cooperate to restrict the conformations of both the α1-3 and α1-6 branches of N-glycans. 1 H and 13 C chemical shift comparisons suggest that bisecting GlcNAc directly modulates local conformation. Unique NOE correlations between core-mannose and the α1-3 branch mannose as well as the 3 J C-H constant of the glycoside linkage indicate that bisecting GlcNAc restricts the conformation of the 1-3 branch. The angles of the glycosidic bonds between core-mannose and α1-6 branch mannose derived from 3 J C-H and 3 J H-H coupling constants show that terminal GlcNAcs restrict the distribution of the ψ angle to 180° and the bisecting GlcNAc increases the distribution of the ω angle +60° in the presence of terminal GlcNAcs. It is feasible that restriction of branch conformations by bisecting GlcNAc has important consequences for protein-glycan interplay and following biological events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. N-Acetylcysteine (NAC)-Induced Hyponatremia Caused by an Electronic Medical Record (EMR) Order Error.

    PubMed

    Furmaga, Jakub; Wax, Paul; Kleinschmidt, Kurt

    2015-09-01

    Intravenous N-acetylcysteine (NAC) causes few adverse drug events, with mild anaphylactoid reactions being the most common. Hyponatremia as a complication of hypoosmolar NAC solution has been reported. We describe how a locally constructed electronic medical record (EMR) order set for IV NAC resulted in a seizure from hyponatremia due to excess free water administration. A 13-month-old female with no past medical history presented to a hospital after ingesting an unknown number of acetaminophen 500 mg tablets. The 4-h acetaminophen concentration was 343 mcg/mL, and she was started on IV NAC. 8.2 h into her 21-h IV NAC protocol, she developed a tonic-clonic seizure. Repeat serum sodium was 124 mEq/L, a decrease from 142 mEq/L at the time of admission. She was treated with hypertonic saline, lorazepam, and levetiracetam and had no further seizures. A brain MRI and EEG were both normal. After the seizure was stabilized, the providers noticed that the patient had receive a total of 900 mL of D5W (112.5 mL/kg) in the first 9 h of hospitalization. This was caused by a poorly constructed, restrictive, EMR order set that did not allow customization of the IV NAC preparation. Because the 21-h IV NAC administration involves preparation of 3 different doses infused over 3 different time intervals, an order set was developed to reduce ordering errors. However, error in its construction caused the pharmacist to prepare a solution containing too much free water, decreasing patient's intravascular sodium and resulting in a seizure. The purposes of our case report were to highlight the dangers of overreliance on EMR order sets and to recognize hyponatremic seizures as an adverse reaction of an inappropriately prepared IV NAC.

  16. Novel NAC Transcription Factor TaNAC67 Confers Enhanced Multi-Abiotic Stress Tolerances in Arabidopsis

    PubMed Central

    Mao, Xinguo; Chen, Shuangshuang; Li, Ang; Zhai, Chaochao; Jing, Ruilian

    2014-01-01

    Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops. PMID:24427285

  17. The National Astronomy Consortium (NAC)

    NASA Astrophysics Data System (ADS)

    Von Schill, Lyndele; Ivory, Joyce

    2017-01-01

    The National Astronomy Consortium (NAC) program is designed to increase the number of underrepresented minority students into STEM and STEM careers by providing unique summer research experiences followed by long-term mentoring and cohort support. Hallmarks of the NAC program include: research or internship opportunities at one of the NAC partner sites, a framework to continue research over the academic year, peer and faculty mentoring, monthly virtual hangouts, and much more. NAC students also participate in two professional travel opportunities each year: the annual NAC conference at Howard University and poster presentation at the annual AAS winter meeting following their summer internship.The National Astronomy Consortium (NAC) is a program led by the National Radio Astronomy Consortium (NRAO) and Associated Universities, Inc. (AUI), in partnership with the National Society of Black Physicist (NSBP), along with a number of minority and majority universities.

  18. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis.

    PubMed

    Huang, Quanjun; Wang, Yan; Li, Bin; Chang, Junli; Chen, Mingjie; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-11-04

    NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and drought responses, expression of related marker genes analyses were conducted, and related physiological indices were also measured. Expressions of genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). A novel NAC transcription factor gene, designated TaNAC29, was isolated from bread wheat (Triticum aestivum). Sequence alignment suggested that TaNAC29 might be located on chromosome 2BS. TaNAC29 was localized to the nucleus in wheat protoplasts, and proved to have transcriptional activation activities in yeast. TaNAC29 was expressed at a higher level in the leaves, and expression levels were much higher in senescent leaves, indicating that TaNAC29 might be involved in the senescence process. TaNAC29 transcripts were increased following treatments with salt, PEG6000, H2O2, and abscisic acid (ABA). To examine TaNAC29 function, transgenic Arabidopsis plants overexpressing TaNAC29 were generated. Germination and root length assays of transgenic plants demonstrated that TaNAC29 overexpression plants had enhanced tolerances to high salinity and dehydration, and exhibited an ABA-hypersensitive response. When grown in the greenhouse, TaNAC29-overexpression plants showed the same tolerance response to salt and drought stresses at both the vegetative and reproductive period, and had delayed bolting and flowering in the reproductive period. Moreover, TaNAC29 overexpression plants accumulated lesser malondialdehyde (MDA), H2O2, while had higher superoxide dismutase (SOD) and

  19. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Cao, Haishun; Wang, Li; Nawaz, Muhammad A.; Niu, Mengliang; Sun, Jingyu; Xie, Junjun; Kong, Qiusheng; Huang, Yuan; Cheng, Fei; Bie, Zhilong

    2017-01-01

    Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA) treatment. Furthermore, the ectopic expression (EE) of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops. PMID:29234347

  20. O-GlcNAc site-mapping of liver X receptor-α and O-GlcNAc transferase.

    PubMed

    Fan, Qiong; Moen, Anders; Anonsen, Jan Haug; Bindesbøll, Christian; Sæther, Thomas; Carlson, Cathrine Rein; Grønning-Wang, Line M

    2018-05-05

    The Liver X Receptor α (LXRα) belongs to the nuclear receptor superfamily and plays an essential role in regulating cholesterol, lipid and glucose metabolism and inflammatory responses. We have previously shown that LXRα is post-translationally modified by O-linked β-N-acetyl-glucosamine (O-GlcNAc) with increased transcriptional activity. Moreover, we showed that LXRα associates with O-GlcNAc transferase (OGT) in vitro and in vivo in mouse liver. In this study, we report that human LXRα is O-GlcNAc modified in its N-terminal domain (NTD) by identifying a specific O-GlcNAc site S49 and a novel O-GlcNAc modified peptide 20 LWKPGAQDASSQAQGGSSCILRE 42 . However, O-GlcNAc site-mutations did not modulate LXRα transactivation of selected target gene promoters in vitro. Peptide array and co-immunoprecipitation assays demonstrate that LXRα interacts with OGT in its NTD and ligand-binding domain (LBD) in a ligand-independent fashion. Moreover, we map two new O-GlcNAc sites in the longest OGT isoform (ncOGT): S437 in the tetratricopeptide repeat (TPR) 13 domain and T1043 in the far C-terminus, and a new O-GlcNAc modified peptide (amino acids 826-832) in the intervening region (Int-D) within the catalytic domain. We also map four new O-GlcNAc sites in the short isoform sOGT: S391, T393, S399 and S437 in the TPRs 11-13 domain. Future studies will reveal the biological role of identified O-GlcNAc sites in LXRα and OGT. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. A novel wheat NAC transcription factor, TaNAC30, negatively regulates resistance of wheat to stripe rust.

    PubMed

    Wang, Bing; Wei, Jinping; Song, Na; Wang, Ning; Zhao, Jing; Kang, Zhensheng

    2018-05-01

    NAC transcription factors are widespread in the plant kingdom and play essential roles in the transcriptional regulation of defense responses. In this study, we isolated a novel NAC transcription factor gene, TaNAC30, from a cDNA library constructed from wheat (Triticum aestivum) plants inoculated with the stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst). TaNAC30 contains a typical NAM domain and localizes to the nucleus. Yeast one-hybrid assays revealed that TaNAC30 exhibits transcriptional activity and that its C-terminus is necessary for the activation of transcription. Expression of TaNAC30 increased when host plants were infected with a virulent race (CYR31) of the rust fungus Pst. Silencing of TaNAC30 by virus-induced gene silencing inhibited colonization of the virulent Pst isolate CYR31. Moreover, detailed histological analyses showed that silencing of TaNAC30 enhanced resistance to Pst by inducing a significant increase in the accumulation of H 2 O 2 . Finally, we overexpressed TaNAC30 in fission yeast and determined that cell viability was severely reduced in TaNAC30-transformed cells grown on medium containing H 2 O 2 . These results suggest that TaNAC30 negatively regulates plant resistance in a compatible wheat-Pst interaction. © 2017 Institute of Botany, Chinese Academy of Sciences.

  2. Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA Involves Three Easily Distinguished 4-Epimerase Enzymes, Gne, Gnu and GnaB

    PubMed Central

    Cunneen, Monica M.; Liu, Bin; Wang, Lei; Reeves, Peter R.

    2013-01-01

    We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation. PMID:23799153

  3. Nevada Administrative Code for Special Education Programs.

    ERIC Educational Resources Information Center

    Nevada State Dept. of Education, Carson City. Special Education Branch.

    This document presents excerpts from Chapter 388 of the Nevada Administrative Code, which concerns definitions, eligibility, and programs for students who are disabled or gifted/talented. The first section gathers together 36 relevant definitions from the Code for such concepts as "adaptive behavior,""autism,""gifted and…

  4. 40 CFR 147.1450 - State-administered program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Nevada Administrative Code [NAC], Underground Injection Control Regulations, Sections 1 through 96.1, Inclusive. July 22, 1987, revised September 3, 1987 (amending NAC Chapter 445). (5) Nevada Administrative Code [NAC], Regulations and Rules of Practice and Procedure adopted Pursuant to NRS 534A, Sections 1...

  5. 40 CFR 147.1450 - State-administered program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Nevada Administrative Code [NAC], Underground Injection Control Regulations, Sections 1 through 96.1, Inclusive. July 22, 1987, revised September 3, 1987 (amending NAC Chapter 445). (5) Nevada Administrative Code [NAC], Regulations and Rules of Practice and Procedure adopted Pursuant to NRS 534A, Sections 1...

  6. The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity.

    PubMed

    Cao, Lei; Yu, Yang; Ding, Xiaodong; Zhu, Dan; Yang, Fan; Liu, Beidong; Sun, Xiaoli; Duan, Xiangbo; Yin, Kuide; Zhu, Yanming

    2017-10-01

    Overexpression of Gshdz4 or GsNAC019 enhanced alkaline tolerance in transgenic Arabidopsis. We proved that Gshdz4 up-regulated both GsNAC019 and GsRD29B but GsNAC019 may repress the GsRD29B expression under alkaline stress. Wild soybean (Glycine soja) has a high tolerance to environmental challenges. It is a model species for dissecting the molecular mechanisms of salt-alkaline stresses. Although many NAC transcription factors play important roles in response to multiple abiotic stresses, such as salt, osmotic and cold, their mode of action in alkaline stress resistance is largely unknown. In our study, we identified a G. soja NAC gene, GsNAC019, which is a homolog of the Arabidopsis AtNAC019 gene. GsNAC019 was highly up-regulated by 50 mM NaHCO 3 treatment in the roots of wild soybean. Further investigation showed that a well-characterized transcription factor, Gshdz4 protein, bound the cis-acting element sequences (CAATA/TA), which are located in the promoter of the AtNAC019/GsNAC019 genes. Overexpression of Gshdz4 positively regulated AtNAC019 expression in transgenic Arabidopsis, implying that AtNAC019/GsNAC019 may be the target genes of Gshdz4. GsNAC019 was demonstrated to be a nuclear-localized protein in onion epidermal cells and possessed transactivation activity in yeast cells. Moreover, overexpression of GsNAC019 in Arabidopsis resulted in enhanced tolerance to alkaline stress at the seedling and mature stages, but reduced ABA sensitivity. The closest Arabidopsis homolog mutant plants of Gshdz4, GsNAC019 and GsRD29B containing athb40, atnac019 and atrd29b were sensitive to alkaline stress. Overexpression or the closest Arabidopsis homolog mutant plants of the GsNAC019 gene in Arabidopsis positively or negatively regulated the expression of stress-related genes, such as AHA2, RD29A/B and KIN1. Moreover, this mutation could phenotypically promoted or compromised plant growth under alkaline stress, implying that GsNAC019 may contribute to alkaline stress

  7. Electroconvulsive therapy: administrative codes, legislation, and professional recommendations.

    PubMed

    Harris, Victoria

    2006-01-01

    Government regulatory involvement in electroconvulsive therapy (ECT) is due to several factors, including patient advocate groups, prior abuse by psychiatrists, and a general trend of state authority to move into areas traditionally governed by medical authorities. Regardless of the specific reasons, ECT is both highly effective in the treatment of many psychiatric disorders and heavily regulated by state administrative codes and legislation. The purpose of this article is to conduct a systematic review of the state administrative codes and legislation for the 50 states, the District of Columbia, and Puerto Rico and to compare the findings with professional recommendations for the administration of ECT.

  8. Validation of Carotid Artery Revascularization Coding in Ontario Health Administrative Databases.

    PubMed

    Hussain, Mohamad A; Mamdani, Muhammad; Saposnik, Gustavo; Tu, Jack V; Turkel-Parrella, David; Spears, Julian; Al-Omran, Mohammed

    2016-04-02

    The positive predictive value (PPV) of carotid endarterectomy (CEA) and carotid artery stenting (CAS) procedure and post-operative complication coding were assessed in Ontario health administrative databases. Between 1 April 2002 and 31 March 2014, a random sample of 428 patients were identified using Canadian Classification of Health Intervention (CCI) procedure codes and Ontario Health Insurance Plan (OHIP) billing codes from administrative data. A blinded chart review was conducted at two high-volume vascular centers to assess the level of agreement between the administrative records and the corresponding patients' hospital charts. PPV was calculated with 95% confidence intervals (CIs) to estimate the validity of CEA and CAS coding, utilizing hospital charts as the gold standard. Sensitivity of CEA and CAS coding were also assessed by linking two independent databases of 540 CEA-treated patients (Ontario Stroke Registry) and 140 CAS-treated patients (single-center CAS database) to administrative records. PPV for CEA ranged from 99% to 100% and sensitivity ranged from 81.5% to 89.6% using CCI and OHIP codes. A CCI code with a PPV of 87% (95% CI, 78.8-92.9) and sensitivity of 92.9% (95% CI, 87.4-96.1) in identifying CAS was also identified. PPV for post-admission complication diagnosis coding was 71.4% (95% CI, 53.7-85.4) for stroke/transient ischemic attack, and 82.4% (95% CI, 56.6-96.2) for myocardial infarction. Our analysis demonstrated that the codes used in administrative databases accurately identify CEA and CAS-treated patients. Researchers can confidently use administrative data to conduct population-based studies of CEA and CAS.

  9. Validating abortion procedure coding in Canadian administrative databases.

    PubMed

    Samiedaluie, Saied; Peterson, Sandra; Brant, Rollin; Kaczorowski, Janusz; Norman, Wendy V

    2016-07-12

    The British Columbia (BC) Ministry of Health collects abortion procedure data in the Medical Services Plan (MSP) physician billings database and in the hospital information Discharge Abstracts Database (DAD). Our study seeks to validate abortion procedure coding in these databases. Two randomized controlled trials enrolled a cohort of 1031 women undergoing abortion. The researcher collected database includes both enrollment and follow up chart review data. The study cohort was linked to MSP and DAD data to identify all abortions events captured in the administrative databases. We compared clinical chart data on abortion procedures with health administrative data. We considered a match to occur if an abortion related code was found in administrative data within 30 days of the date of the same event documented in a clinical chart. Among 1158 abortion events performed during enrollment and follow-up period, 99.1 % were found in at least one of the administrative data sources. The sensitivities for the two databases, evaluated using a gold standard, were 97.7 % (95 % confidence interval (CI): 96.6-98.5) for the MSP database and 91.9 % (95 % CI: 90.0-93.4) for the DAD. Abortion events coded in the BC health administrative databases are highly accurate. Single-payer health administrative databases at the provincial level in Canada have the potential to offer valid data reflecting abortion events. ClinicalTrials.gov Identifier NCT01174225 , Current Controlled Trials ISRCTN19506752 .

  10. 47 CFR 52.15 - Central office code administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... functions. The NANPA shall perform its CO Code administration functions in accordance with the published... by telecommunications carriers to perform internal administrative or operational functions necessary... another telecommunications carrier or non-carrier entity for the purpose of providing telecommunications...

  11. Scanning for safety: an integrated approach to improved bar-code medication administration.

    PubMed

    Early, Cynde; Riha, Chris; Martin, Jennifer; Lowdon, Karen W; Harvey, Ellen M

    2011-03-01

    This is a review of lessons learned in the postimplementation evaluation of a bar-code medication administration technology implemented at a major tertiary-care hospital in 2001. In 2006, with a bar-code medication administration scan compliance rate of 82%, a near-miss sentinel event prompted review of this technology as part of an institutional recommitment to a "culture of safety." Multifaceted problems with bar-code medication administration created an environment of circumventing safeguards as demonstrated by an increase in manual overrides to ensure timely medication administration. A multiprofessional team composed of nursing, pharmacy, human resources, quality, and technical services formalized. Each step in the bar-code medication administration process was reviewed. Technology, process, and educational solutions were identified and implemented systematically. Overall compliance with bar-code medication administration rose from 82% to 97%, which resulted in a calculated cost avoidance of more than $2.8 million during this time frame of the project.

  12. Effect of bar-code technology on the safety of medication administration.

    PubMed

    Poon, Eric G; Keohane, Carol A; Yoon, Catherine S; Ditmore, Matthew; Bane, Anne; Levtzion-Korach, Osnat; Moniz, Thomas; Rothschild, Jeffrey M; Kachalia, Allen B; Hayes, Judy; Churchill, William W; Lipsitz, Stuart; Whittemore, Anthony D; Bates, David W; Gandhi, Tejal K

    2010-05-06

    Serious medication errors are common in hospitals and often occur during order transcription or administration of medication. To help prevent such errors, technology has been developed to verify medications by incorporating bar-code verification technology within an electronic medication-administration system (bar-code eMAR). We conducted a before-and-after, quasi-experimental study in an academic medical center that was implementing the bar-code eMAR. We assessed rates of errors in order transcription and medication administration on units before and after implementation of the bar-code eMAR. Errors that involved early or late administration of medications were classified as timing errors and all others as nontiming errors. Two clinicians reviewed the errors to determine their potential to harm patients and classified those that could be harmful as potential adverse drug events. We observed 14,041 medication administrations and reviewed 3082 order transcriptions. Observers noted 776 nontiming errors in medication administration on units that did not use the bar-code eMAR (an 11.5% error rate) versus 495 such errors on units that did use it (a 6.8% error rate)--a 41.4% relative reduction in errors (P<0.001). The rate of potential adverse drug events (other than those associated with timing errors) fell from 3.1% without the use of the bar-code eMAR to 1.6% with its use, representing a 50.8% relative reduction (P<0.001). The rate of timing errors in medication administration fell by 27.3% (P<0.001), but the rate of potential adverse drug events associated with timing errors did not change significantly. Transcription errors occurred at a rate of 6.1% on units that did not use the bar-code eMAR but were completely eliminated on units that did use it. Use of the bar-code eMAR substantially reduced the rate of errors in order transcription and in medication administration as well as potential adverse drug events, although it did not eliminate such errors. Our data show

  13. Nurses' attitudes toward the use of the bar-coding medication administration system.

    PubMed

    Marini, Sana Daya; Hasman, Arie; Huijer, Huda Abu-Saad; Dimassi, Hani

    2010-01-01

    This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the attitudinal basis for system adoption and use decisions in terms of subjective satisfaction. Only 67 nurses in the United States had the chance to respond to the e-questionnaire posted on the CARING list server for the months of June and July 2007. Participants rated their satisfaction with bar-coding medication administration system use based on system functionality, usability, and its positive/negative impact on the nursing practice. Results showed, to some extent, positive attitude, but the image profile draws attention to nurses' concerns for improving certain system characteristics. The high bar-coding medication administration system skills revealed a more negative perception of the system by the nursing staff. The reasons underlying dissatisfaction with bar-coding medication administration use by skillful users are an important source of knowledge that can be helpful for system development as well as system deployment. As a result, strengthening bar-coding medication administration system usability by magnifying its ability to eliminate medication errors and the contributing factors, maximizing system functionality by ascertaining its power as an extra eye in the medication administration process, and impacting the clinical nursing practice positively by being helpful to nurses, speeding up the medication administration process, and being user-friendly can offer a congenial settings for establishing positive attitude toward system use, which in turn leads to successful bar-coding medication administration system use.

  14. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    PubMed Central

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  15. Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv].

    PubMed

    Puranik, Swati; Bahadur, Ranjit Prasad; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The plant-specific NAC (NAM, ATAF, and CUC) transcription factors have diverse role in development and stress regulation. A transcript encoding NAC protein, termed SiNAC was identified from a salt stress subtractive cDNA library of S. italica seedling (Puranik et al., J Plant Physiol 168:280-287, 2011). This single/low copy gene containing four exons and four introns within the genomic-sequence encoded a protein of 462 amino acids. Structural analysis revealed that highly divergent C terminus contains a transmembrane domain. The NAC domain consisted of a twisted antiparallel beta-sheet packing against N terminal alpha helix on one side and a shorter helix on the other side. The domain was predicted to homodimerize and control DNA-binding specificity. The physicochemical features of the SiNAC homodimer interface justified the dimeric form of the predicted model. A 1539 bp fragment upstream to the start codon of SiNAC gene was cloned and in silico analysis revealed several putative cis-acting regulatory elements within the promoter sequence. Transactivation analysis indicated that SiNAC activated expression of reporter gene and the activation domain lied at the C terminal. The SiNAC:GFP was detected in the nucleus and cytoplasm while SiNAC ΔC(1-158):GFP was nuclear localized in onion epidermal cells. SiNAC transcripts mostly accumulated in young spikes and were strongly induced by dehydration, salinity, ethephon, and methyl jasmonate. These results suggest that SiNAC encodes a membrane associated NAC-domain protein that may function as a transcriptional activator in response to stress and developmental regulation in plants.

  16. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    PubMed

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  17. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    PubMed Central

    Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  18. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration

    PubMed Central

    Yu, Jun; Yan, Yijin; Li, King-Lun; Wang, Yao; Huang, Yanhua H.; Urban, Nathaniel N.; Nestler, Eric J.; Schlüter, Oliver M.; Dong, Yan

    2017-01-01

    The basolateral amygdala (BLA) sends excitatory projections to the nucleus accumbens (NAc) and regulates motivated behaviors partially by activating NAc medium spiny neurons (MSNs). Here, we characterized a feedforward inhibition circuit, through which BLA-evoked activation of NAc shell (NAcSh) MSNs was fine-tuned by GABAergic monosynaptic innervation from adjacent fast-spiking interneurons (FSIs). Specifically, BLA-to-NAcSh projections predominantly innervated NAcSh FSIs compared with MSNs and triggered action potentials in FSIs preceding BLA-mediated activation of MSNs. Due to these anatomical and temporal properties, activation of the BLA-to-NAcSh projection resulted in a rapid FSI-mediated inhibition of MSNs, timing-contingently dictating BLA-evoked activation of MSNs. Cocaine self-administration selectively and persistently up-regulated the presynaptic release probability of BLA-to-FSI synapses, entailing enhanced FSI-mediated feedforward inhibition of MSNs upon BLA activation. Experimentally enhancing the BLA-to-FSI transmission in vivo expedited the acquisition of cocaine self-administration. These results reveal a previously unidentified role of an FSI-embedded circuit in regulating NAc-based drug seeking and taking. PMID:28973852

  19. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    PubMed Central

    Christiansen, Michael W.; Matthewman, Colette; Podzimska-Sroka, Dagmara; O’Shea, Charlotte; Lindemose, Søren; Møllegaard, Niels Erik; Holme, Inger B.; Hebelstrup, Kim; Skriver, Karen; Gregersen, Per L.

    2016-01-01

    The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005 is associated with developmental senescence. It was significantly up-regulated following ABA treatment, supported by ABA-responsive elements in its promoter, but it was not up-regulated during dark-induced senescence. The C-termini of proteins closely related to HvNAC005 showed overall high divergence but also contained conserved short motifs. A serine- and leucine-containing central motif was essential for transcriptional activity of the HvNAC005 C-terminus in yeast. Over-expression of HvNAC005 in barley resulted in a strong phenotype with delayed development combined with precocious senescence. The over-expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein–DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence and so is an obvious target for the fine-tuning of gene expression in future attempts to improve nutrient remobilization related to the senescence process in barley. PMID:27436280

  20. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots.

    PubMed

    Cenci, Albero; Guignon, Valentin; Roux, Nicolas; Rouard, Mathieu

    2014-05-01

    Identifying the molecular mechanisms underlying tolerance to abiotic stresses is important in crop breeding. A comprehensive understanding of the gene families associated with drought tolerance is therefore highly relevant. NAC transcription factors form a large plant-specific gene family involved in the regulation of tissue development and responses to biotic and abiotic stresses. The main goal of this study was to set up a framework of orthologous groups determined by an expert sequence comparison of NAC genes from both monocots and dicots. In order to clarify the orthologous relationships among NAC genes of different species, we performed an in-depth comparative study of four divergent taxa, in dicots and monocots, whose genomes have already been completely sequenced: Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa. Due to independent evolution, NAC copy number is highly variable in these plant genomes. Based on an expert NAC sequence comparison, we propose forty orthologous groups of NAC sequences that were probably derived from an ancestor gene present in the most recent common ancestor of dicots and monocots. These orthologous groups provide a curated resource for large-scale protein sequence annotation of NAC transcription factors. The established orthology relationships also provide a useful reference for NAC function studies in newly sequenced genomes such as M. acuminata and other plant species.

  1. The accuracy of burn diagnosis codes in health administrative data: A validation study.

    PubMed

    Mason, Stephanie A; Nathens, Avery B; Byrne, James P; Fowler, Rob; Gonzalez, Alejandro; Karanicolas, Paul J; Moineddin, Rahim; Jeschke, Marc G

    2017-03-01

    Health administrative databases may provide rich sources of data for the study of outcomes following burn. We aimed to determine the accuracy of International Classification of Diseases diagnoses codes for burn in a population-based administrative database. Data from a regional burn center's clinical registry of patients admitted between 2006-2013 were linked to administrative databases. Burn total body surface area (TBSA), depth, mechanism, and inhalation injury were compared between the registry and administrative records. The sensitivity, specificity, and positive and negative predictive values were determined, and coding agreement was assessed with the kappa statistic. 1215 burn center patients were linked to administrative records. TBSA codes were highly sensitive and specific for ≥10 and ≥20% TBSA (89/93% sensitive and 95/97% specific), with excellent agreement (κ, 0.85/κ, 0.88). Codes were weakly sensitive (68%) in identifying ≥10% TBSA full-thickness burn, though highly specific (86%) with moderate agreement (κ, 0.46). Codes for inhalation injury had limited sensitivity (43%) but high specificity (99%) with moderate agreement (κ, 0.54). Burn mechanism had excellent coding agreement (κ, 0.84). Administrative data diagnosis codes accurately identify burn by burn size and mechanism, while identification of inhalation injury or full-thickness burns is less sensitive but highly specific. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  2. A Chemoenzymatic Histology Method for O-GlcNAc Detection.

    PubMed

    Aguilar, Aime Lopez; Hou, Xiaomeng; Wen, Liuqing; Wang, Peng G; Wu, Peng

    2017-12-14

    Modification of nuclear and cytoplasmic proteins by the addition or removal of O-GlcNAc dynamically impacts multiple biological processes. Here, we present the development of a chemoenzymatic histology method for the detection of O-GlcNAc in tissue specimens. We applied this method to screen murine organs, uncovering specific O-GlcNAc distribution patterns in different tissue structures. We then utilized our histology method for O-GlcNAc detection in human brain specimens from healthy donors and donors with Alzheimer's disease and found higher levels of O-GlcNAc in specimens from healthy donors. We also performed an analysis using a multiple cancer tissue array, uncovering different O-GlcNAc levels between healthy and cancerous tissues, as well as different O-GlcNAc cellular distributions within certain tissue specimens. This chemoenzymatic histology method therefore holds great potential for revealing the biology of O-GlcNAc in physiopathological processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Energy Efficiency Program Administrators and Building Energy Codes

    EPA Pesticide Factsheets

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  4. Reconciliation of international administrative coding systems for comparison of colorectal surgery outcome.

    PubMed

    Munasinghe, A; Chang, D; Mamidanna, R; Middleton, S; Joy, M; Penninckx, F; Darzi, A; Livingston, E; Faiz, O

    2014-07-01

    Significant variation in colorectal surgery outcomes exists between different countries. Better understanding of the sources of variable outcomes using administrative data requires alignment of differing clinical coding systems. We aimed to map similar diagnoses and procedures across administrative coding systems used in different countries. Administrative data were collected in a central database as part of the Global Comparators (GC) Project. In order to unify these data, a systematic translation of diagnostic and procedural codes was undertaken. Codes for colorectal diagnoses, resections, operative complications and reoperative interventions were mapped across the respective national healthcare administrative coding systems. Discharge data from January 2006 to June 2011 for patients who had undergone colorectal surgical resections were analysed to generate risk-adjusted models for mortality, length of stay, readmissions and reoperations. In all, 52 544 case records were collated from 31 institutions in five countries. Mapping of all the coding systems was achieved so that diagnosis and procedures from the participant countries could be compared. Using the aligned coding systems to develop risk-adjusted models, the 30-day mortality rate for colorectal surgery was 3.95% (95% CI 0.86-7.54), the 30-day readmission rate was 11.05% (5.67-17.61), the 28-day reoperation rate was 6.13% (3.68-9.66) and the mean length of stay was 14 (7.65-46.76) days. The linkage of international hospital administrative data that we developed enabled comparison of documented surgical outcomes between countries. This methodology may facilitate international benchmarking. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  5. The National Astronomy Consortium (NAC) - Overview

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Mills, Elisabeth A. C.; Hooper, Eric; National Astronomy Consortium

    2015-01-01

    The National Astronomy Consortium (NAC; see https://sites.google.com/site/nraonac/) is a growing national partnership between majority and minority universities and institutions with the goal of increasing the numbers of under-represented minorities and students who might otherwise be overlooked by the traditional academic pipeline into STEM, or related, careers. The NAC model is based on the successful 'Posse Foundation' model for undergraduate success and incorporates all its major components: pre-training of cohorts to prepare them for the research experience, joint weekly cohort activities throughout the research summer, peer- and multiple mentoring, weekly discussion of various aspects of professional and career development, continued engagement of students in science after return to home institution and lifelong mentoring. The mentors also form a cohort, exchanging information and learning from each other. With its partner institutions, the NAC aims to build a complete pipeline from undergraduate through career for the next generation of scientists and engineers. Our annual goal is to create two to three cohorts of four to five students at each site (currently NRAO-Charlottesville, NRAO-Socorro and U. Wisconsin - Madison). Recruitment occurs in the fall semester with seminars and colloquia in partnership with faculty at the minority serving institutions and the GRAD-MAP program at the University of Maryland. In this talk we describe in detail all the components of the NAC and report on our progress. We are keen to interact and partner with new universities and institutions and encourage them to contact the NAC at nac4stem@googlegroups.com.

  6. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield1[OPEN

    PubMed Central

    He, Xue; Qu, Baoyuan; Li, Wenjing; Zhao, Xueqiang; Teng, Wan; Ma, Wenying; Ren, Yongzhe; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root’s ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer. PMID:26371233

  7. Targeting Protein O-GlcNAc Modifications In Breast Cancer

    DTIC Science & Technology

    2010-09-30

    O-GlcNAcation and elevated expression of O-GlcNAc transferase (OGT), the enzyme catalyzing addition of O-GlcNAc to proteins. Reduction of O...regulatory switch mechanism analogous to phosphorylation (28). Cytosolic and nuclear enzymes dynamically catalyze addition (O-GlcNAc transferase or OGT) and...levels, through pharmacological inhibition or genetic knock-down of enzymes that add or remove O-GlcNAc, can inhibit ErbB2-mediated oncogenic

  8. Development of a MELCOR Sodium Chemistry (NAC) Package - FY17 Progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, David; Humphries, Larry L.

    This report describes the status of the development of MELCOR Sodium Chemistry (NAC) package. This development is based on the CONTAIN-LMR sodium physics and chemistry models to be implemented in MELCOR. In the past three years, the sodium equation of state as a working fluid from the nuclear fusion safety research and from the SIMMER code has been implemented into MELCOR. The chemistry models from the CONTAIN-LMR code, such as the spray and pool fire mode ls, have also been implemented into MELCOR. This report describes the implemented models and the issues encountered. Model descriptions and input descriptions are provided.more » Development testing of the spray and pool fire models is described, including the code-to-code comparison with CONTAIN-LMR. The report ends with an expected timeline for the remaining models to be implemented, such as the atmosphere chemistry, sodium-concrete interactions, and experimental validation tests .« less

  9. miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.).

    PubMed

    Li, Jing; Guo, Guanghui; Guo, Weiwei; Guo, Ganggang; Tong, Dan; Ni, Zhongfu; Sun, Qixin; Yao, Yingyin

    2012-11-21

    MicroRNAs are a class of small, non-coding RNAs that regulate gene expression by binding target mRNA, which leads to cleavage or translational inhibition. The NAC proteins, which include NAM, ATAF, and CUC, are a plant-specific transcription factor family with diverse roles in development and stress regulation. It has been reported that miR164 negatively regulates NAC1 expression, which in turn affects lateral root development in Arabidopsis; however, little is known about the involvement of the maize NAC family and miR164 in lateral root development. We collected 175 maize transcripts with NAC domains. Of these, 7 ZmNACs were putative targets for regulation by miR164. We isolated one gene, called TC258020 (designated ZmNAC1) from 2 maize inbred lines, 87-1 and Zong3. ZmNAC1 had a high expression level in roots and showed higher abundance (1.8 fold) in Zong3 relative to 87-1, which had less lateral roots than Zong3. There was a significant correlation between the expression level of ZmNAC1 and the lateral root density in the recombinant inbred line (RIL) population. Transgenic Arabidopsis that overexpressed ZmNAC1 had increased lateral roots in comparison to the wild type. These findings suggest that ZmNAC1 played a significant role in lateral root development. An allelic expression assay showed that trans-regulatory elements were the dominant mediators of ZmNAC1 differential expression in 87-1 and Zong3, and further analysis revealed that miR164 was a trans-element that guided the cleavage of endogenous ZmNAC1 mRNA. Both mature miR164 and miR164 precursors had higher expression in 87-1 than Zong3, which was the opposite of the expression pattern of ZmNAC1. Additionally, the allelic assay showed that the cis-regulatory element most likely affected Zm-miR164b's expression pattern. A β-glucuronidase (GUS) assay showed that the Zm-miR164b promoter had higher GUS activity in 87-1 than in Zong3. In addition, we detected miR164b expression in the RIL population, and the

  10. Sequential Desorption of Nitroaromatic Compounds (NAC) from Soils

    DTIC Science & Technology

    2005-03-01

    the soil solution . Weissmahr et al. [20] suggest an electron donor acceptor (EDA) complex between oxygens of the siloxane surface of the clays and the...release of NACs into the soil solution . At high pH values desorption is superimposed by NACs hydrolysis. Therefore, in- creasing pH values impedes the...presented demonstrate that both the cation present in the soil solution and its concentration may affect the desorption behavior of NACs in contaminated soils

  11. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration.

    PubMed

    Akan, Ilhan; Olivier-Van Stichelen, Stephanie; Bond, Michelle R; Hanover, John A

    2018-01-01

    Proteostasis is essential in the mammalian brain where post-mitotic cells must function for decades to maintain synaptic contacts and memory. The brain is dependent on glucose and other metabolites for proper function and is spared from metabolic deficits even during starvation. In this review, we outline how the nutrient-sensitive nucleocytoplasmic post-translational modification O-linked N-acetylglucosamine (O-GlcNAc) regulates protein homeostasis. The O-GlcNAc modification is highly abundant in the mammalian brain and has been linked to proteopathies, including neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. C. elegans, Drosophila, and mouse models harboring O-GlcNAc transferase- and O-GlcNAcase-knockout alleles have helped define the role O-GlcNAc plays in development as well as age-associated neurodegenerative disease. These enzymes add and remove the single monosaccharide from protein serine and threonine residues, respectively. Blocking O-GlcNAc cycling is detrimental to mammalian brain development and interferes with neurogenesis, neural migration, and proteostasis. Findings in C. elegans and Drosophila model systems indicate that the dynamic turnover of O-GlcNAc is critical for maintaining levels of key transcriptional regulators responsible for neurodevelopment cell fate decisions. In addition, pathways of autophagy and proteasomal degradation depend on a transcriptional network that is also reliant on O-GlcNAc cycling. Like the quality control system in the endoplasmic reticulum which uses a 'mannose timer' to monitor protein folding, we propose that cytoplasmic proteostasis relies on an 'O-GlcNAc timer' to help regulate the lifetime and fate of nuclear and cytoplasmic proteins. O-GlcNAc-dependent developmental alterations impact metabolism and growth of the developing mouse embryo and persist into adulthood. Brain-selective knockout mouse models will be an important tool for understanding the role of O-GlcNAc in the

  12. MRI to predict nipple-areola complex (NAC) involvement: An automatic method to compute the 3D distance between the NAC and tumor.

    PubMed

    Giannini, Valentina; Bianchi, Veronica; Carabalona, Silvia; Mazzetti, Simone; Maggiorotto, Furio; Kubatzki, Franziska; Regge, Daniele; Ponzone, Riccardo; Martincich, Laura

    2017-12-01

    To assess the role in predicting nipple-areola complex (NAC) involvement of a newly developed automatic method which computes the 3D tumor-NAC distance. Ninety-nine patients scheduled to nipple sparing mastectomy (NSM) underwent magnetic resonance (MR) examination at 1.5 T, including sagittal T2w and dynamic contrast enhanced (DCE)-MR imaging. An automatic method was developed to segment the NAC and the tumor and to compute the 3D distance between them. The automatic measurement was compared with manual axial and sagittal 2D measurements. NAC involvement was defined by the presence of invasive ductal or lobular carcinoma and/or ductal carcinoma in situ or ductal intraepithelial neoplasia (DIN1c - DIN3). Tumor-NAC distance was computed on 95/99 patients (25 NAC+), as three tumors were not correctly segmented (sensitivity = 97%), and 1 NAC was not detected (sensitivity = 99%). The automatic 3D distance reached the highest area under the receiver operating characteristic (ROC) curve (0.830) with respect to the manual axial (0.676), sagittal (0.664), and minimum distances (0.664). At the best cut-off point of 21 mm, the 3D distance obtained sensitivity = 72%, specificity = 80%, positive predictive value = 56%, and negative predictive value = 89%. This method could provide a reproducible biomarker to preoperatively select breast cancer patients candidates to NSM, thus helping surgical planning and intraoperative management of patients. © 2017 Wiley Periodicals, Inc.

  13. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal.

    PubMed

    Kim, Ronald; Sepulveda-Orengo, Marian T; Healey, Kati L; Williams, Emily A; Reissner, Kathryn J

    2018-01-01

    Downregulation of the astroglial glutamate transporter GLT-1 is observed in the nucleus accumbens (NAc) following administration of multiple drugs of abuse. The decrease in GLT-1 protein expression following cocaine self-administration is dependent on both the amount of cocaine self-administered and the length of withdrawal, with longer access to cocaine and longer withdrawal periods leading to greater decreases in GLT-1 protein. However, the mechanism(s) by which cocaine downregulates GLT-1 protein remains unknown. We used qRT-PCR to examine gene expression of GLT-1 splice isoforms (GLT-1A, GLT-1B) in the NAc, prelimbic cortex (PL) and basolateral amygdala (BLA) of rats, following two widely used models of cocaine self-administration: short-access (ShA) self-administration, and the long-access (LgA) self-administration/incubation model. While downregulation of GLT-1 protein is observed following ShA cocaine self-administration and extinction, this model did not lead to a change in GLT-1A or GLT-1B gene expression in any brain region examined. Forced abstinence following ShA cocaine self-administration also was without effect. In contrast, LgA cocaine self-administration and prolonged abstinence significantly decreased GLT-1A gene expression in the NAc and BLA, and significantly decreased GLT-1B gene expression in the PL. No change was observed in NAc GLT-1A gene expression one day after LgA cocaine self-administration, indicating withdrawal-induced decreases in GLT-1A mRNA. In addition, LgA cocaine self-administration and withdrawal induced hypermethylation of the GLT-1 gene in the NAc. These results indicate that a decrease in NAc GLT-1 mRNA is only observed after extended access to cocaine combined with protracted abstinence, and that epigenetic mechanisms likely contribute to this effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Isolation and Expression of NAC Genes during Persimmon Fruit Postharvest Astringency Removal

    PubMed Central

    Min, Ting; Wang, Miao-Miao; Wang, Hongxun; Liu, Xiaofen; Fang, Fang; Grierson, Donald; Yin, Xue-Ren; Chen, Kun-Song

    2015-01-01

    NAC genes have been characterized in numerous plants, where they are involved in responses to biotic and abiotic stress, including low oxygen stress. High concentration of CO2 is one of the most effective treatments to remove astringency of persimmon fruit owing to the action of the accumulated anoxia metabolite acetaldehyde. In model plants, NAC genes have been identified as being responsive to low oxygen. However, the possible relationship between NAC transcription factors and persimmon astringency removal remains unexplored. In the present research, treatment with a high concentration of CO2 (95%) effectively removed astringency of “Mopan” persimmon fruit by causing decreases in soluble tannin. Acetaldehyde content increased in response to CO2 treatment concomitantly with astringency removal. Using RNA-seq and Rapid amplification of cDNA ends (RACE), six DkNAC genes were isolated and studied. Transcriptional analysis indicated DkNAC genes responded differentially to CO2 treatment; DkNAC1, DkNAC3, DkNAC5 and DkNAC6 were transiently up-regulated, DkNAC2 was abundantly expressed 3 days after treatment, while the DkNAC4 was suppressed during astringency removal. It is proposed that DkNAC1/3/5/6 could be important candidates as regulators of persimmon astringency removal and the roles of other member are also discussed. PMID:25599529

  15. OGA inhibition by GlcNAc-selenazoline

    PubMed Central

    Kim, Eun Ju; Love, Dona C.; Darout, Etzer; Abdo, Mohannad; Rempel, Brian; Withers, Stephen G.; Rablen, Paul R.; Hanover, John A.; Knapp, Spencer

    2010-01-01

    The title compound, which differs from the powerful O-GlcNAcase (OGA) inhibitor GlcNAc-thiazoline only at the chalcogen atom (Se for S), is a much weaker inhibitor in a direct OGA assay. In human cells, however, the selenazoline shows comparable ability to induce hyper-O-GlcNAc-ylation, and the two show similar reduction of insulin-stimulated translocation of glucose transporter 4 in differentiated 3T3 adipocytes. PMID:20822912

  16. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.

    PubMed

    Zhu, Mingku; Chen, Guoping; Zhou, Shuang; Tu, Yun; Wang, Yi; Dong, Tingting; Hu, Zongli

    2014-01-01

    Fruit ripening in tomato (Solanum lycopersicum) is a complicated development process affected by both endogenous hormonal and genetic regulators and external signals. Although the role of NOR, a member of the NAC domain family, in mediating tomato fruit ripening has been established, its underlying molecular mechanisms remain unclear. To explore further the role of NAC transcription factors in fruit ripening, we characterized a new tomato NAC domain protein, named SlNAC4, which shows high accumulation in sepal and at the onset of fruit ripening. Various stress treatments including wounding, NaCl, dehydration and low temperature significantly increased the expression of SlNAC4. Reduced expression of SlNAC4 by RNA interference (RNAi) in tomato resulted in delayed fruit ripening, suppressed Chl breakdown and decreased ethylene synthesis mediated mainly through reduced expression of ethylene biosynthesis genes of system-2, and reduced carotenoids by alteration of the carotenoid pathway flux. Transgenic tomato fruits also displayed significant down-regulation of multiple ripening-associated genes, indicating that SlNAC4 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation. Moreover, we also noted that SlNAC4 could not be induced by ethylene and may function upstream of the ripening regulator RIN and positively regulate its expression. Yeast two-hybrid assay further revealed that SlNAC4 could interact with both RIN and NOR protein. These results suggested that ethylene-dependent and -independent processes are regulated by SlNAC4 in the fruit ripening regulatory network.

  17. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes

    PubMed Central

    Kapuria, Vaibhav; Röhrig, Ute F.; Bhuiyan, Tanja; Borodkin, Vladimir S.; van Aalten, Daan M.F.; Zoete, Vincent; Herr, Winship

    2016-01-01

    In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc), O-linked-GlcNAc transferase (OGT) catalyzes Ser/Thr O-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase–protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase–protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT. PMID:27056667

  18. O-GlcNAc: a novel regulator of immunometabolism.

    PubMed

    Machacek, Miranda; Slawson, Chad; Fields, Patrick E

    2018-06-01

    The rapidly expanding field of immunometabolism focuses on how metabolism controls the function of immune cells. CD4 + T cells are essential for the adaptive immune response leading to the eradication of specific pathogens. However, when T cells are inappropriately over-active, they can drive autoimmunity, allergic disease, and chronic inflammation. The mechanisms by which metabolic changes influence function in CD4 + T cells are not fully understood. The post-translational protein modification, O-GlcNAc (O-linked β-N-acetylglucosamine), dynamically cycles on and off of intracellular proteins as cells respond to their environment and flux through metabolic pathways changes. As the rate of O-GlcNAc cycling fluctuates, protein function, stability, and/or localization can be affected. Thus, O-GlcNAc is critically poised at the nexus of cellular metabolism and function. This review highlights the intra- and extracellular metabolic factors that influence CD4 + T cell activation and differentiation and how O-GlcNAc regulates these processes. We also propose areas of future research that may illuminate O-GlcNAc's role in the plasticity and pathogenicity of CD4 + T cells and uncover new potential therapeutic targets.

  19. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    PubMed

    Guo, Weiwei; Zhang, Jinxia; Zhang, Ning; Xin, Mingming; Peng, Huiru; Hu, Zhaorong; Ni, Zhongfu; Du, Jinkun

    2015-01-01

    Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  20. Validity of administrative coding in identifying patients with upper urinary tract calculi.

    PubMed

    Semins, Michelle J; Trock, Bruce J; Matlaga, Brian R

    2010-07-01

    Administrative databases are increasingly used for epidemiological investigations. We performed a study to assess the validity of ICD-9 codes for upper urinary tract stone disease in an administrative database. We retrieved the records of all inpatients and outpatients at Johns Hopkins Hospital between November 2007 and October 2008 with an ICD-9 code of 592, 592.0, 592.1 or 592.9 as one of the first 3 diagnosis codes. A random number generator selected 100 encounters for further review. We considered a patient to have a true diagnosis of an upper tract stone if the medical records specifically referenced a kidney stone event, or included current or past treatment for a kidney stone. Descriptive and comparative analyses were performed. A total of 8,245 encounters coded as upper tract calculus were identified and 100 were randomly selected for review. Two patients could not be identified within the electronic medical record and were excluded from the study. The positive predictive value of using all ICD-9 codes for an upper tract calculus (592, 592.0, 592.1) to identify subjects with renal or ureteral stones was 95.9%. For 592.0 only the positive predictive value was 85%. However, although the positive predictive value for 592.1 only was 100%, 26 subjects (76%) with a ureteral stone were not appropriately billed with this code. ICD-9 coding for urinary calculi is likely to be sufficiently valid to be useful in studies using administrative data to analyze stone disease. However, ICD-9 coding is not a reliable means to distinguish between subjects with renal and ureteral calculi. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. The NACS Education Program

    ERIC Educational Resources Information Center

    Thodt, Charles A.

    1978-01-01

    The National Association of College Stores has for 31 years offered intensive formal training in bookstore management. The NACS Management Survey/Management Seminar, Booksellers School, and Advanced Seminars on Personnel Supervision and Financial Management are described. (LBH)

  2. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    PubMed

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Overexpression of a Novel Apple NAC Transcription Factor Gene, MdNAC1, Confers the Dwarf Phenotype in Transgenic Apple (Malus domestica)

    PubMed Central

    Jia, Dongfeng; Gong, Xiaoqing; Li, Mingjun; Li, Chao; Sun, Tingting

    2018-01-01

    Plant height is an important trait for fruit trees. The dwarf characteristic is commonly associated with highly efficient fruit production, a major objective when breeding for apple (Malus domestica). We studied the function of MdNAC1, a novel NAC transcription factor (TF) gene in apple related to plant dwarfing. Localized primarily to the nucleus, MdNAC1 has transcriptional activity in yeast cells. Overexpression of the gene results in a dwarf phenotype in transgenic apple plants. Their reduction in size is manifested by shorter, thinner stems and roots, and a smaller leaf area. The transgenics also have shorter internodes and fewer cells in the stems. Levels of endogenous abscisic acid (ABA) and brassinosteroid (BR) are lower in the transgenic plants, and expression is decreased for genes involved in the biosynthesis of those phytohormones. All of these findings demonstrate that MdNAC1 has a role in plants dwarfism, probably by regulating ABA and BR production. PMID:29702625

  4. Gene transcripts selectively down-regulated in the shell of the nucleus accumbens long after heroin self-administration are up-regulated in the core independent of response contingency.

    PubMed

    Jacobs, Edwin H; de Vries, Taco J; Smit, August B; Schoffelmeer, Anton N M

    2004-01-01

    Long-term drug-induced alterations in neurotransmission within the nucleus accumbens (NAc) shell and core may underlie relapse to drug-seeking behavior and drug-taking upon re-exposure to drugs and drug-associated stimuli (cues) during abstinence. Using an open screening strategy, we recently identified 25 gene transcripts, encoding for proteins involved in neuronal functioning and structure that are down-regulated in rat NAc shell after contingent (active), but not after non-contingent (passive), heroin administration. Studying the expression of the same transcripts in the NAc core by means of quantitative PCR, we now demonstrate that most of these transcripts are up-regulated in that NAc subregion long (3 weeks) after heroin self-administration in rats. A similar up-regulation in gene expression was also apparent in the NAc core of animals with a history of non-contingent heroin administration (yoked controls). These data indicate that heroin self-administration differentially regulates genes in the NAc core as compared with the shell. Moreover, whereas cognitive processes involved in active drug self-administration (e.g., instrumental learning) seems to direct gene expression in the NAc shell, neuroplasticity in the NAc core may be due to the pharmacological effects of heroin (including Pavlovian conditioning), as expressed in rats upon contingent as well as non-contingent administration of heroin.

  5. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  6. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  7. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  8. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  9. Therapeutic effects of N-acetyl-L-cysteine on liver damage induced by long-term CCl4 administration.

    PubMed

    Otrubová, Oľga; Turecký, Ladislav; Uličná, Oľga; Janega, Pavol; Luha, Ján; Muchová, Jana

    2018-01-01

    N-acetyl-L-cysteine (NAC) is a drug routinely used in several health problems, e.g. liver damage. There is some information emerged on its negative effects in certain situations. The aim of our study was to examine its ability to influence liver damage induced by long-term burden. We induced liver damage by CCl4 (10 weeks) and monitored the impact of parallel NAC administration (daily 150 mg/kg of b.w.) on liver morphology and some biochemical parameters (triacylglycerols, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, bile acids, proteins, albumins and cholinesterase). NAC significantly decreased levels of bile acids and bilirubin in plasma and triacylglycerols in liver, all of them elevated by impairment with CCl4. Reduction of cholesterol induced by CCl4 was completely recovered in the presence of NAC as indicated by its elevation to control levels. NAC administration did not improve the histological parameters. Together with protective effects of NAC, we found also its deleterious properties: parallel administration of CCl4 and NAC increased triacylglycerols, ALT and AST activity and significantly increased plasma cholinesterase activity. We have observed nonsignificantly increased percentage of liver tissue fibrosis. Our results have shown that NAC administered simultaneously with liver damaging agent CCl4, exhibits not only protective, but also deleterious effects as indicated by several biochemical parameters.

  10. O-GlcNAc cycling in the developing, adult and geriatric brain.

    PubMed

    Lagerlöf, Olof

    2018-06-01

    Hundreds of proteins in the nervous system are modified by the monosaccharide O-GlcNAc. A single protein is often O-GlcNAcylated on several amino acids and the modification of a single site can play a crucial role for the function of the protein. Despite its complexity, only two enzymes add and remove O-GlcNAc from proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Global and local regulation of these enzymes make it possible for O-GlcNAc to coordinate multiple cellular functions at the same time as regulating specific pathways independently from each other. If O-GlcNAcylation is disrupted, metabolic disorder or intellectual disability may ensue, depending on what neurons are affected. O-GlcNAc's promise as a clinical target for developing drugs against neurodegenerative diseases has been recognized for many years. Recent literature puts O-GlcNAc in the forefront among mechanisms that can help us better understand how neuronal circuits integrate diverse incoming stimuli such as fluctuations in nutrient supply, metabolic hormones, neuronal activity and cellular stress. Here the functions of O-GlcNAc in the nervous system are reviewed.

  11. [A girl with self-harm treated with N-acetylcysteine (NAC)].

    PubMed

    Rus, C P

    Deliberate and recurrent self-harm could be regarded as addictive behaviour that can be treated with medication. In addiction, the dopaminergic mesolimbic reward system is activated. Pain caused by cutting stimulates the reward system through the opioid system. Glutamatergic neurotransmission follows the same pathway and plays a role in addiction as well. In this case-study a 17-year-old girl was successfully treated with N-acetylcysteine (nac) in order to reduce the frequency of self-cutting. In addition, in this case nac reduced the symptoms of attention deficit/hyperactivity disorder and depression. nac modulates the glutamatergic neurotransmission. This article provides possible explanations for the effect of nac in this case.

  12. 77 FR 18716 - Transportation Security Administration Postal Zip Code Change; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... organizational changes and it has no substantive effect on the public. DATES: Effective March 28, 2012. FOR... No. 1572-9] Transportation Security Administration Postal Zip Code Change; Technical Amendment AGENCY: Transportation Security Administration, DHS. ACTION: Final rule. SUMMARY: This rule is a technical change to...

  13. Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins.

    PubMed

    Toleman, Clifford A; Schumacher, Maria A; Yu, Seok-Ho; Zeng, Wenjie; Cox, Nathan J; Smith, Timothy J; Soderblom, Erik J; Wands, Amberlyn M; Kohler, Jennifer J; Boyce, Michael

    2018-06-05

    O-GlcNAc is an intracellular posttranslational modification that governs myriad cell biological processes and is dysregulated in human diseases. Despite this broad pathophysiological significance, the biochemical effects of most O-GlcNAcylation events remain uncharacterized. One prevalent hypothesis is that O-GlcNAc moieties may be recognized by "reader" proteins to effect downstream signaling. However, no general O-GlcNAc readers have been identified, leaving a considerable gap in the field. To elucidate O-GlcNAc signaling mechanisms, we devised a biochemical screen for candidate O-GlcNAc reader proteins. We identified several human proteins, including 14-3-3 isoforms, that bind O-GlcNAc directly and selectively. We demonstrate that 14-3-3 proteins bind O-GlcNAc moieties in human cells, and we present the structures of 14-3-3β/α and γ bound to glycopeptides, providing biophysical insights into O-GlcNAc-mediated protein-protein interactions. Because 14-3-3 proteins also bind to phospho-serine and phospho-threonine, they may integrate information from O-GlcNAc and O-phosphate signaling pathways to regulate numerous physiological functions.

  14. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean.

    PubMed

    Wu, Jing; Wang, Lanfen; Wang, Shumin

    2016-09-07

    Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized. In the present study, 86 putative NAC TF proteins were identified from the common bean genome database and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily. These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns of the 20 drought-related NAC genes. Based on the common bean genome sequence, we analyzed the structural characteristics, genome distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes. Our results provide useful information for the functional characterization of common bean NAC genes and rich resources and opportunities for understanding common bean drought stress tolerance mechanisms.

  15. NACS Store Planning Manual.

    ERIC Educational Resources Information Center

    College Store Journal, 1979

    1979-01-01

    Topics discussed by the NACS Store Planning/Renovation Committees in this updated version of the college store renovation manual include: short- and long-range planning, financial considerations, professional planning assistance, the store's image and business character, location considerations, building requirements, space requirements, fixtures,…

  16. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2018-02-01

    Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology

    PubMed Central

    Wells, Lance

    2016-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies. PMID:24524620

  18. Integrating Bar-Code Medication Administration Competencies in the Curriculum: Implications for Nursing Education and Interprofessional Collaboration.

    PubMed

    Angel, Vini M; Friedman, Marvin H; Friedman, Andrea L

    This article describes an innovative project involving the integration of bar-code medication administration technology competencies in the nursing curriculum through interprofessional collaboration among nursing, pharmacy, and computer science disciplines. A description of the bar-code medication administration technology project and lessons learned are presented.

  19. The Impact of Bar Code Medication Administration Technology on Reported Medication Errors

    ERIC Educational Resources Information Center

    Holecek, Andrea

    2011-01-01

    The use of bar-code medication administration technology is on the rise in acute care facilities in the United States. The technology is purported to decrease medication errors that occur at the point of administration. How significantly this technology affects actual rate and severity of error is unknown. This descriptive, longitudinal research…

  20. Revisiting the human polypeptide GalNAc-T1 and T13 paralogs

    PubMed Central

    Festari, María Florencia; Trajtenberg, Felipe; Berois, Nora; Pantano, Sergio; Revoredo, Leslie; Kong, Yun; Solari-Saquieres, Patricia; Narimatsu, Yoshiki; Freire, Teresa; Bay, Sylvie; Robello, Carlos; Bénard, Jean; Gerken, Thomas A; Clausen, Henrik; Osinaga, Eduardo

    2017-01-01

    Polypeptide GalNAc-transferases (GalNAc-Ts) constitute a family of 20 human glycosyltransferases (comprising 9 subfamilies), which initiate mucin-type O-glycosylation. The O-glycoproteome is thought to be differentially regulated via the different substrate specificities and expression patterns of each GalNAc-T isoforms. Here, we present a comprehensive in vitro analysis of the peptide substrate specificity of GalNAc-T13, showing that it essentially overlaps with the ubiquitous expressed GalNAc-T1 isoform found in the same subfamily as T13. We have also identified and partially characterized nine splice variants of GalNAc-T13, which add further complexity to the GalNAc-T family. Two variants with changes in their lectin domains were characterized by in vitro glycosylation assays, and one (Δ39Ex9) was inactive while the second one (Ex10b) had essentially unaltered activity. We used reverse transcription-polymerase chain reaction analysis of human neuroblastoma cell lines, normal brain and a small panel of neuroblastoma tumors to demonstrate that several splice variants (Ex10b, ΔEx9, ΔEx2-7 and ΔEx6/8-39bpEx9) were highly expressed in tumor cell lines compared with normal brain, although the functional implications remain to be unveiled. In summary, the GalNAc-T13 isoform is predicted to function similarly to GalNAc-T1 against peptide substrates in vivo, in contrast to a prior report, but is unique by being selectively expressed in the brain. PMID:27913570

  1. AMN082-a metabotropic glutamate receptor type 7 allosteric agonist in the NAc facilitates extinction and inhibits the reinstatement of morphine-induced conditioned place preference in male rats.

    PubMed

    Vatankhah, Mahsaneh; Sarihi, Abdolrahman; Komaki, Alireza; Shahidi, Siamak; Haghparast, Abbas

    2018-03-29

    Nucleus accumbens (NAc) plays a primary role in opioid reward. The actions of glutamate (which is the most extensive excitatory neurotransmitter in the mammalian central nervous system) are mediated through the activation of the ionotropic and metabotropic glutamate receptors (mGluRs). Previous studies have shown the extensive distributions of the different types of mGluRs, including mGluR7, in regions that are involved in opioid reward, such as NAc. In this study, CPP was used to investigate the effect of mGluR7 on the extinction period, and the reinstatement of morphine. The animals received bilaterally microinjections of AMN082, a selective mGluR 7 allosteric agonist, into the NAc. In Experiment 1, the rats received AMN082 (1 and 5 μg/0.5 μl) during the extinction period. In Experiment 2, the CPP morphine-extinguished rats received AMN082 (1, 3 and 5 μg/0.5 μl) five minutes prior to the administration of an ineffective dosage of morphine (1 mg/kg) in order to reinstate the extinguished morphine. The results of the recorded conditioning scores in this study showed that the intra-accumbal administration of AMN08 reduced the extinction period of morphine. Moreover, the administration of AMN082 into the NAc dose-dependently inhibited the reinstatement of morphine. The findings suggested that the mGluR7 in the NAc facilitates the extinction and inhibits the reinstatement of the morphine-induced CPP that could have been mediated by an increase in the release of extracellular glutamate. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Bivalent Carbohydrate Binding Is Required for Biological Activity of Clitocybe nebularis Lectin (CNL), the N,N′-Diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc)-specific Lectin from Basidiomycete C. nebularis*

    PubMed Central

    Pohleven, Jure; Renko, Miha; Magister, Špela; Smith, David F.; Künzler, Markus; Štrukelj, Borut; Turk, Dušan; Kos, Janko; Sabotič, Jerica

    2012-01-01

    Lectins are carbohydrate-binding proteins that exert their biological activity by binding to specific cell glycoreceptors. We have expressed CNL, a ricin B-like lectin from the basidiomycete Clitocybe nebularis in Escherichia coli. The recombinant lectin, rCNL, agglutinates human blood group A erythrocytes and is specific for the unique glycan N,N′-diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc) as demonstrated by glycan microarray analysis. We here describe the crystal structures of rCNL in complex with lactose and LacdiNAc, defining its interactions with the sugars. CNL is a homodimeric lectin, each of whose monomers consist of a single ricin B lectin domain with its β-trefoil fold and one carbohydrate-binding site. To study the mode of CNL action, a nonsugar-binding mutant and nondimerizing monovalent CNL mutants that retain carbohydrate-binding activity were prepared. rCNL and the mutants were examined for their biological activities against Jurkat human leukemic T cells and the hypersensitive nematode Caenorhabditis elegans mutant strain pmk-1. rCNL was toxic against both, although the mutants were inactive. Thus, the bivalent carbohydrate-binding property of homodimeric CNL is essential for its activity, providing one of the rare pieces of evidence that certain activities of lectins are associated with their multivalency. PMID:22298779

  3. O-GlcNAcase Expression is Sensitive to Changes in O-GlcNAc Homeostasis.

    PubMed

    Zhang, Zhen; Tan, Ee Phie; VandenHull, Nicole J; Peterson, Kenneth R; Slawson, Chad

    2014-01-01

    O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification involving an attachment of a single β-N-acetylglucosamine moiety to serine or threonine residues in nuclear and cytoplasmic proteins. Cellular O-GlcNAc levels are regulated by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove the modification, respectively. The levels of O-GlcNAc can rapidly change in response to fluctuations in the extracellular environment; however, O-GlcNAcylation returns to a baseline level quickly after stimulus removal. This process termed O-GlcNAc homeostasis appears to be critical to the regulation of many cellular functions including cell cycle progress, stress response, and gene transcription. Disruptions in O-GlcNAc homeostasis are proposed to lead to the development of diseases, such as cancer, diabetes, and Alzheimer's disease. O-GlcNAc homeostasis is correlated with the expression of OGT and OGA. We reason that alterations in O-GlcNAc levels affect OGA and OGT transcription. We treated several human cell lines with Thiamet-G (TMG, an OGA inhibitor) to increase overall O-GlcNAc levels resulting in decreased OGT protein expression and increased OGA protein expression. OGT transcript levels slightly declined with TMG treatment, but OGA transcript levels were significantly increased. Pretreating cells with protein translation inhibitor cycloheximide did not stabilize OGT or OGA protein expression in the presence of TMG; nor did TMG stabilize OGT and OGA mRNA levels when cells were treated with RNA transcription inhibitor actinomycin D. Finally, we performed RNA Polymerase II chromatin immunoprecipitation at the OGA promoter and found that RNA Pol II occupancy at the transcription start site was lower after prolonged TMG treatment. Together, these data suggest that OGA transcription was sensitive to changes in O-GlcNAc homeostasis and was potentially regulated by O-GlcNAc.

  4. O-GlcNAcase Expression is Sensitive to Changes in O-GlcNAc Homeostasis

    PubMed Central

    Zhang, Zhen; Tan, Ee Phie; VandenHull, Nicole J.; Peterson, Kenneth R.; Slawson, Chad

    2014-01-01

    O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification involving an attachment of a single β-N-acetylglucosamine moiety to serine or threonine residues in nuclear and cytoplasmic proteins. Cellular O-GlcNAc levels are regulated by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove the modification, respectively. The levels of O-GlcNAc can rapidly change in response to fluctuations in the extracellular environment; however, O-GlcNAcylation returns to a baseline level quickly after stimulus removal. This process termed O-GlcNAc homeostasis appears to be critical to the regulation of many cellular functions including cell cycle progress, stress response, and gene transcription. Disruptions in O-GlcNAc homeostasis are proposed to lead to the development of diseases, such as cancer, diabetes, and Alzheimer’s disease. O-GlcNAc homeostasis is correlated with the expression of OGT and OGA. We reason that alterations in O-GlcNAc levels affect OGA and OGT transcription. We treated several human cell lines with Thiamet-G (TMG, an OGA inhibitor) to increase overall O-GlcNAc levels resulting in decreased OGT protein expression and increased OGA protein expression. OGT transcript levels slightly declined with TMG treatment, but OGA transcript levels were significantly increased. Pretreating cells with protein translation inhibitor cycloheximide did not stabilize OGT or OGA protein expression in the presence of TMG; nor did TMG stabilize OGT and OGA mRNA levels when cells were treated with RNA transcription inhibitor actinomycin D. Finally, we performed RNA Polymerase II chromatin immunoprecipitation at the OGA promoter and found that RNA Pol II occupancy at the transcription start site was lower after prolonged TMG treatment. Together, these data suggest that OGA transcription was sensitive to changes in O-GlcNAc homeostasis and was potentially regulated by O-GlcNAc. PMID:25520704

  5. Catfish (Clarias batrachus) serum lectin recognizes polyvalent Tn [alpha-D-GalpNAc1-Ser/Thr], Talpha [beta-D-Galp-(1-->3)-alpha-D-GalpNAc1-Ser/Thr], and II [beta-D-Galp(1-->4)-beta-D-GlcpNAc1-] mammalian glycotopes.

    PubMed

    Singha, Biswajit; Adhya, Mausumi; Chatterjee, Bishnu P

    2008-09-22

    A new calcium dependent GalNAc/Gal specific lectin was isolated from the serum of Indian catfish, Clarias batrachus and designated as C. batrachus lectin (CBL). It is a disulfide-linked homodecameric lectin of 74.65kDa subunits and the oligomeric form is essential for its activity. Binding specificity of CBL was investigated by enzyme-linked lectin-sorbent assay using a series of simple sugars, polysaccharides, and glycoproteins. GalNAc was more potent inhibitor than Gal; and alpha glycosides of both were more inhibitory than their beta counterparts. CBL showed maximum affinity for human tumor-associated Tn-antigens (GalNAcalpha1-Ser/Thr) at the molecular level and was 3.5 times higher than GalNAc. CBL interacted strongly with polyvalent Tn and Talpha (Galbeta1,3GalNAcalpha1-) as well as multivalent-II (Galbeta1,4GlcNAcbeta1-) antigens containing glycoproteins and intensity of inhibition was 10(3)-10(5) times more than monovalent ones. The overall specificity of CBL lies in the order of polyvalent Tn, Talpha and II>monovalent Tn > or = Me-alphaGalNAc>monovalent Talpha> Me-betaGalNAc>Me-alphaGal>monovalent T>GalNAc>monovalent F>monovalent II>Me-betaGal>Gal.

  6. Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development.

    PubMed

    Dehennaut, Vanessa; Lefebvre, Tony; Leroy, Yves; Vilain, Jean-Pierre; Michalski, Jean-Claude; Bodart, Jean-François

    2009-04-01

    Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.

  7. Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.).

    PubMed

    Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2015-01-01

    The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut.

  8. Molecular Evolution and Expansion Analysis of the NAC Transcription Factor in Zea mays

    PubMed Central

    Fan, Kai; Wang, Ming; Miao, Ying; Ni, Mi; Bibi, Noreen; Yuan, Shuna; Li, Feng; Wang, Xuede

    2014-01-01

    NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants. PMID:25369196

  9. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities

    PubMed Central

    Bavarsad Shahripour, Reza; Harrigan, Mark R; Alexandrov, Andrei V

    2014-01-01

    Background There is an expanding field of research investigating the benefits of medicines with multiple mechanisms of action across neurological disorders. N-acetylcysteine (NAC), widely known as an antidote to acetaminophen overdose, is now emerging as treatment of vascular and nonvascular neurological disorders. NAC as a precursor to the antioxidant glutathione modulates glutamatergic, neurotrophic, and inflammatory pathways. Aim and discussion Most NAC studies up to date have been carried out in animal models of various neurological disorders with only a few studies completed in humans. In psychiatry, NAC has been tested in over 20 clinical trials as an adjunctive treatment; however, this topic is beyond the scope of this review. Herein, we discuss NAC molecular, intracellular, and systemic effects, focusing on its potential applications in neurodegenerative diseases including spinocerebellar ataxia, Parkinson's disease, tardive dyskinesia, myoclonus epilepsy of the Unverricht–Lundbor type as well as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Conclusion Finally, we review the potential applications of NAC to facilitate recovery after traumatic brain injury, cerebral ischemia, and in treatment of cerebrovascular vasospasm after subarachnoid hemorrhage. PMID:24683506

  10. O-GlcNAc modification of PPAR{gamma} reduces its transcriptional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Suena; Park, Sang Yoon; Roth, Juergen

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer We found that PPAR{gamma} is modified by O-GlcNAc in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The Thr54 of PPAR{gamma}1 is the major O-GlcNAc site. Black-Right-Pointing-Pointer Transcriptional activity of PPAR{gamma}1 was decreased on treatment with the OGA inhibitor. -- Abstract: The peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear receptor superfamily, is a key regulator of adipogenesis and is important for the homeostasis of the adipose tissue. The {beta}-O-linked N-acetylglucosamine (O-GlcNAc) modification, a posttranslational modification on various nuclear and cytoplasmic proteins, is involved in the regulation of protein function. Here, we report that PPAR{gamma} is modified by O-GlcNAc in 3T3-L1more » adipocytes. Mass spectrometric analysis and mutant studies revealed that the threonine 54 of the N-terminal AF-1 domain of PPAR{gamma} is the major O-GlcNAc site. Transcriptional activity of wild type PPAR{gamma} was decreased 30% by treatment with the specific O-GlcNAcase (OGA) inhibitor, but the T54A mutant of PPAR{gamma} did not respond to inhibitor treatment. In 3T3-L1 cells, an increase in O-GlcNAc modification by OGA inhibitor reduced PPAR{gamma} transcriptional activity and terminal adipocyte differentiation. Our results suggest that the O-GlcNAc state of PPAR{gamma} influences its transcriptional activity and is involved in adipocyte differentiation.« less

  11. Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.)

    PubMed Central

    Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2015-01-01

    The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut. PMID:26125188

  12. Using Modified-ISS Model to Evaluate Medication Administration Safety During Bar Code Medication Administration Implementation in Taiwan Regional Teaching Hospital.

    PubMed

    Ma, Pei-Luen; Jheng, Yan-Wun; Jheng, Bi-Wei; Hou, I-Ching

    2017-01-01

    Bar code medication administration (BCMA) could reduce medical errors and promote patient safety. This research uses modified information systems success model (M-ISS model) to evaluate nurses' acceptance to BCMA. The result showed moderate correlation between medication administration safety (MAS) to system quality, information quality, service quality, user satisfaction, and limited satisfaction.

  13. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end

    PubMed Central

    Baggenstoss, Bruce A; Washburn, Jennifer L

    2017-01-01

    Abstract Class I hyaluronan synthases (HAS) assemble [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP at the reducing end and also make chitin. Streptococcus equisimilis HAS (SeHAS) also synthesizes chitin-UDP oligosaccharides, (GlcNAc-β1,4)n-GlcNAc(α1→)UDP (Weigel et al. 2015). Here we determined if HAS uses chitin-UDPs as primers to initiate HA synthesis, leaving the non-HA primer at the nonreducing (NR) end. HA made by SeHAS membranes was purified, digested with streptomyces lyase, and hydrophobic oligomers were enriched by solid phase extraction and analyzed by MALDI-TOF MS. Jack bean hexosaminidase (JBH) and MS/MS were used to analyze 19 m/z species of possible GnHn ions with clustered GlcNAc (G) residues attached to disaccharide units (H): (GlcNAcβ1,4)2–5[GlcUA(β1,3)GlcNAc]2–6. JBH digestion sequentially removed GlcNAc from the NR-end of GnHn oligomers, producing successively smaller GnH2–3 series members. Since lyase releases dehydro-oligos (dHn; M−18), only the unique NR-end oligo lacks dehydro-GlcUA. Hn oligomers were undetectable in lyase digests, whereas JBH treatment created new H2–6m/z peaks (i.e. HA tetra- through dodeca-oligomers). MS/MS of larger GnHn species produced chitin (2–5 GlcNAcs), HA oligomers and multiple smaller series members with fewer GlcNAcs. All NR-ends (97%) started with GlcNAc, as a chitin trimer (three GlcNAcs), indicating that GlcNAc(β1,4)2GlcNAc(α1→)-UDP may be optimal for initiation of HA synthesis. Also, HA made by live S. pyogenes cells had G4Hn chitin-oligo NR-ends. We conclude that chitin-UDP functions in vitro and in live cells as a primer to initiate synthesis of all HA chains and these primers remain at the NR-ends of HA chains as residual chitin caps [(GlcNAc-β1,4)3–4]. PMID:28138013

  14. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end.

    PubMed

    Weigel, Paul H; Baggenstoss, Bruce A; Washburn, Jennifer L

    2017-06-01

    Class I hyaluronan synthases (HAS) assemble [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP at the reducing end and also make chitin. Streptococcus equisimilis HAS (SeHAS) also synthesizes chitin-UDP oligosaccharides, (GlcNAc-β1,4)n-GlcNAc(α1→)UDP (Weigel et al. 2015). Here we determined if HAS uses chitin-UDPs as primers to initiate HA synthesis, leaving the non-HA primer at the nonreducing (NR) end. HA made by SeHAS membranes was purified, digested with streptomyces lyase, and hydrophobic oligomers were enriched by solid phase extraction and analyzed by MALDI-TOF MS. Jack bean hexosaminidase (JBH) and MS/MS were used to analyze 19 m/z species of possible GnHn ions with clustered GlcNAc (G) residues attached to disaccharide units (H): (GlcNAcβ1,4)2-5[GlcUA(β1,3)GlcNAc]2-6. JBH digestion sequentially removed GlcNAc from the NR-end of GnHn oligomers, producing successively smaller GnH2-3 series members. Since lyase releases dehydro-oligos (dHn; M-18), only the unique NR-end oligo lacks dehydro-GlcUA. Hn oligomers were undetectable in lyase digests, whereas JBH treatment created new H2-6m/z peaks (i.e. HA tetra- through dodeca-oligomers). MS/MS of larger GnHn species produced chitin (2-5 GlcNAcs), HA oligomers and multiple smaller series members with fewer GlcNAcs. All NR-ends (97%) started with GlcNAc, as a chitin trimer (three GlcNAcs), indicating that GlcNAc(β1,4)2GlcNAc(α1→)-UDP may be optimal for initiation of HA synthesis. Also, HA made by live S. pyogenes cells had G4Hn chitin-oligo NR-ends. We conclude that chitin-UDP functions in vitro and in live cells as a primer to initiate synthesis of all HA chains and these primers remain at the NR-ends of HA chains as residual chitin caps [(GlcNAc-β1,4)3-4]. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Effects of Oral Glucosamine Hydrochloride Administration on Plasma Free Amino Acid Concentrations in Dogs

    PubMed Central

    Azuma, Kazuo; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Takamori, Yoshimori; Minami, Saburo

    2011-01-01

    We examined the effects of oral glucosamine hydrochloride (GlcN), N-acetyl-d-glucosamine (GlcNAc) and d-glucose (Glc) administration on plasma total free amino acid (PFAA) concentrations in dogs. The PFAA concentrations increased in the control group and the GlcNAc group at one hour after feeding, and each amino acid concentration increased. On the other hand, in the GlcN group and the Glc group PFAA concentrations decreased at one hour after feeding. A significant decrease in amino acid concentration was observed for glutamate, glycine and alanine. Our results suggest the existence of differences in PFAA dynamics after oral administration of GlcN and GlcNAc in dogs. PMID:21673884

  16. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.

    PubMed

    Shan, Wei; Kuang, Jian-fei; Chen, Lei; Xie, Hui; Peng, Huan-huan; Xiao, Yun-yi; Li, Xue-ping; Chen, Wei-xin; He, Quan-guang; Chen, Jian-ye; Lu, Wang-jin

    2012-09-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.

  17. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening

    PubMed Central

    Shan, Wei; Kuang, Jian-fei; Chen, Jian-ye; Lu, Wang-jin

    2012-01-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1–MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1–MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components. PMID:22888129

  18. The active site of O-GlcNAc transferase imposes constraints on substrate sequence

    PubMed Central

    Rafie, Karim; Blair, David E.; Borodkin, Vladimir S.; Albarbarawi, Osama; van Aalten, Daan M. F.

    2016-01-01

    O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoa. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay on a library of peptides. The sites of O-GlcNAc modification were mapped by ETD-mass spectrometry, and found to correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with human OGT suggest that a combination of size and conformational restriction defines sequence specificity in the −3 to +2 subsites. This work reveals that while the N-terminal TPR repeats of hOGT may play a role in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a significant contribution to O-GlcNAc site specificity. PMID:26237509

  19. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein.

    PubMed

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncations of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T][T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein.

  20. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein

    PubMed Central

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S

    2011-01-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncation of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T] [T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein. PMID:21918373

  1. The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens.

    PubMed

    Jang, Eun Young; Yang, Chae Ha; Hedges, David M; Kim, Soo Phil; Lee, Jun Yeon; Ekins, Tyler G; Garcia, Brandon T; Kim, Hee Young; Nelson, Ashley C; Kim, Nam Jun; Steffensen, Scott C

    2017-09-01

    Methamphetamine (METH) markedly increases dopamine (DA) release in the mesolimbic DA system, which plays an important role in mediating the reinforcing effects of METH. METH-induced DA release results in the formation of reactive oxygen species (ROS), leading to oxidative damage. We have recently reported that ROS are implicated in behavior changes and DA release in the nucleus accumbens (NAc) following cocaine administration. The aim of this study was to evaluate the involvement of ROS in METH-induced locomotor activity, self-administration and enhancement of DA release in the NAc. Systemic administration of a non-specific ROS scavenger, N-tert-butyl-α-phenylnitrone (PBN; 0, 50 and 75 mg/kg, IP) or a superoxide-selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; 0, 50 and 100 mg/kg, IP), attenuated METH-induced locomotor activity without affecting generalized behavior in METH-naïve rats. PBN and TEMPOL significantly attenuated METH self-administration without affecting food intake. Increased oxidative stress was found in neurons, but not astrocytes, microglia or oligodendrocytes, in the NAc of METH self-administering rats. In addition, TEMPOL significantly decreased METH enhancement of DA release in the NAc. Taken together, these results suggest that enhancement of ROS in the NAc contributes to the reinforcing effect of METH. © 2016 Society for the Study of Addiction.

  2. O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway.

    PubMed

    Jiang, Kuan; Bai, Bingyang; Ta, Yajie; Zhang, Tingling; Xiao, Zikang; Wang, Peng George; Zhang, Lianwen

    2016-03-18

    O-GlcNAc modification of cytosolic and nuclear proteins regulates essential cellular processes such as stress responses, transcription, translation, and protein degradation. Emerging evidence indicates O-GlcNAcylation has a dynamic interplay with ubiquitination in cellular regulation. Here, we report that O-GlcNAc indirectly targets a vital E3 ubiquitin ligase enzyme of NEDD4-1. The protein level of NEDD4-1 is accordingly decreased following an increase of overall O-GlcNAc level upon PUGNAc or glucosamine stimulation. O-GlcNAc transferase (OGT) knockdown, overexpression and mutation results confirm that the stability of NEDD4-1 is negatively regulated by cellular O-GlcNAc. Moreover, the NEDD4-1 degradation induced by PUGNAc or GlcN is significantly inhibited by the caspase inhibitor. Our study reveals a regulation mechanism of NEDD4-1 stability by O-GlcNAcylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinez, Celine; Mir, Anne-Marie; Leroy, Yves

    2007-09-21

    Numerous recent works strengthen the idea that the nuclear and cytosolic-specific O-GlcNAc glycosylation protects cells against injuries. We have first investigated O-GlcNAc level and Hsp70-GlcNAc-binding activity (HGBA) behaviour after exposure of HeLa and HepG{sub 2} cells to a wide variety of stresses. O-GlcNAc and HGBA responses were different according to the stress and according to the cell. HGBA was released for almost all stresses, while O-GlcNAc level was modified either upwards or downwards, depending to the stress. Against all expectations, we demonstrated that energy charge did not significantly vary with stress whereas UDP-GlcNAc pools were more dramatically affected even ifmore » differences in UDP-GlcNAc contents were not correlated with O-GlcNAc variations suggesting that O-GlcNAc transferase is itself finely regulated during cell injury. Finally, HGBA could be triggered by proteasome inhibition and by L-azetidine-2-carboxylic acid (a proline analogue) incorporation demonstrating that protein misfolding is one of the key-activator of this Hsp70 property.« less

  4. Suicidal inactivation of methemoglobin by generation of thiyl radical: insight into NAC mediated protection in RBC.

    PubMed

    Balaji, S N; Trivedi, V

    2013-07-01

    N-acetyl-L-cysteine (NAC) improves antioxidant potentials of RBCs to provide protection against oxidative stress induced hemolysis. The antioxidant mechanism of NAC to reduce oxidative stress in RBC, studied through inactivation of pro-oxidant MetHb. NAC causes irreversible inactivation of the MetHb in an H2O2 dependent manner, and the inactivation follows the pseudo- first- order kinetics. The kinetic constants are ki = 8.5μM, kinact = 0.706 min(-1) and t1/2 = 0.9 min. Spectroscopic studies indicate that MetHb accepts NAC as a substrate and oxidizes through a single electron transfer mechanism to the NACox. The single e- oxidation product of NAC has been identified as the 5, 5'- dimethyl-1- pyrroline N- oxide (DMPO) adduct of the sulfur centered radical (a(N) = 15.2 G and a(H)=16.78 G). Binding studies indicate that NACox interacts at the heme moiety and NAC oxidation through MetHb is essential for NAC binding. Heme-NAC adduct dissociated from MetHb and identified (m/z 1011.19) as 2:1 ratio of NAC/heme in the adduct. TEMPO and PBN treatment reduces NAC binding to MetHb and protects against inactivation confirms the role of thiyl radical in the inactivation process. Furthermore, scavenging thiyl radicals by TEMPO abolish the protective effect of NAC in hemolysis. Current work highlights antioxidant mechanism of NAC through NAC thiyl radical generation, and MetHb inactivation to exhibit protection in RBC against oxidative stress induced hemolysis.

  5. O-GlcNAc transferase regulates transcriptional activity of human Oct4.

    PubMed

    Constable, Sandii; Lim, Jae-Min; Vaidyanathan, Krithika; Wells, Lance

    2017-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Function of Hevea brasiliensis NAC1 in dehydration-induced laticifer differentiation and latex biosynthesis.

    PubMed

    Cao, Yuxin; Zhai, Jinling; Wang, Qichao; Yuan, Hongmei; Huang, Xi

    2017-01-01

    HbNAC1 is a transcription factor in rubber plants whose expression is induced by dehydration, leading to latex biosynthesis. Laticifer is a special tissue in Hevea brasiliensis where natural rubber is biosynthesized and accumulated. In young stems of epicormic shoots, the differentiation of secondary laticifers can be induced by wounding, which can be prevented when the wounding site is wrapped. Using this system, differentially expressed genes were screened by suppression subtractive hybridization (SSH) and macroarray analyses. This led to the identification of several dehydration-related genes that could be involved in laticifer differentiation and/or latex biosynthesis, including a NAC transcription factor (termed as HbNAC1). Tissue sections confirmed that local tissue dehydration was a key signal for laticifer differentiation. HbNAC1 was localized at the nucleus and showed strong transcriptional activity in yeast, suggesting that HbNAC1 is a transcription factor. Furthermore, HbNAC1 was found to bind to the cis-element CACG in the promoter region of the gene encoding the small rubber particle protein (SRPP). Transgenic experiments also confirmed that HbNAC1 interacted with the SRPP promoter when co-expressed, and enhanced expression of the reporter gene β-glucuronidase occurred in planta. In addition, overexpression of HbNAC1 in tobacco plants conferred drought tolerance. Together, the data suggest that HbNAC1 might be involved in dehydration-induced laticifer differentiation and latex biosynthesis.

  7. Structures of the Oligosaccharides of the Glycoprotein Coded by Early Region E3 of Adenovirus 2

    PubMed Central

    Kornfeld, Rosalind; Wold, William S. M.

    1981-01-01

    Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-3H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-β-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man9GlcNAc and Man8GlcNAc and small amounts of Man7GlcNAc and Man6GlcNAc. The pulse-chase sample had predominantly Man8GlcNAc and much less Man9GlcNAc, indicating that processing of the Man9GlcNAc to Man8GlcNAc had occurred during the chase period. Thus, Man8GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with α-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man9GlcNAc were identical to those of the lipid-linked Glc3Man9GlcNAc2 donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded glycoprotein. Images PMID:7321093

  8. Structures of the oligosaccharides of the glycoprotein coded by early region E3 of adenovirus 2.

    PubMed

    Kornfeld, R; Wold, W S

    1981-11-01

    Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-(3)H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-beta-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man(9)GlcNAc and Man(8)GlcNAc and small amounts of Man(7)GlcNAc and Man(6)GlcNAc. The pulse-chase sample had predominantly Man(8)GlcNAc and much less Man(9)GlcNAc, indicating that processing of the Man(9)GlcNAc to Man(8)GlcNAc had occurred during the chase period. Thus, Man(8)GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with alpha-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man(9)GlcNAc were identical to those of the lipid-linked Glc(3)Man(9)GlcNAc(2) donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded

  9. N-acetylcysteine administration does not improve patient outcome after liver resection

    PubMed Central

    Robinson, Stuart M; Saif, Rehan; Sen, Gourab; French, Jeremy J; Jaques, Bryon C; Charnley, Richard M; Manas, Derek M; White, Steven A

    2013-01-01

    Background Post-operative hepatic dysfunction is a major cause of concern when undertaking a liver resection. The generation of reactive oxygen species (ROS) as a result of hepatic ischaemia/reperfusion (I/R) injury can result in hepatocellular injury. Experimental evidence suggests that N-acetylcysteine may ameliorate ROS-mediated liver injury. Methods A cohort of 44 patients who had undergone a liver resection and receiving peri-operative N-acetylcysteine (NAC) were compared with a further cohort of 44 patients who did not. Liver function tests were compared on post-operative days 1, 3 and 5. Peri-operative outcome data were retrieved from a prospectively maintained database within our unit. ResultsAdministration of NAC was associated with a prolonged prothrombin time on the third post-operative day (18.4 versus 16.4 s; P = 0.002). The incidence of grades B and C liver failure was lower in the NAC group although this difference did not reach statistical significance (6.9% versus 14%; P = 0.287). The overall complication rate was similar between groups (32% versus 25%; P = ns). There were two peri-operative deaths in the NAC group and one in the control group (P = NS). ConclusionIn spite of promising experimental evidence, this study was not able to demonstrate any advantage in the routine administration of peri-operative NAC in patients undergoing a liver resection. PMID:23458723

  10. Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners

    PubMed Central

    Yu, Seok-Ho; Boyce, Michael; Wands, Amberlyn M.; Bond, Michelle R.; Bertozzi, Carolyn R.; Kohler, Jennifer J.

    2012-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification found on hundreds of nuclear and cytoplasmic proteins in higher eukaryotes. Despite its ubiquity and essentiality in mammals, functional roles for the O-GlcNAc modification remain poorly defined. Here we develop a combined genetic and chemical approach that enables introduction of the diazirine photocrosslinker onto the O-GlcNAc modification in cells. We engineered mammalian cells to produce diazirine-modified O-GlcNAc by expressing a mutant form of UDP-GlcNAc pyrophosphorylase and subsequently culturing these cells with a cell-permeable, diazirine-modified form of GlcNAc-1-phosphate. Irradiation of cells with UV light activated the crosslinker, resulting in formation of covalent bonds between O-GlcNAc-modified proteins and neighboring molecules, which could be identified by mass spectrometry. We used this method to identify interaction partners for the O-GlcNAc-modified FG-repeat nucleoporins. We observed crosslinking between FG-repeat nucleoporins and nuclear transport factors, suggesting that O-GlcNAc residues are intimately associated with essential recognition events in nuclear transport. Further, we propose that the method reported here could find widespread use in investigating the functional consequences of O-GlcNAcylation. PMID:22411826

  11. The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport

    PubMed Central

    Fisi, Viktória; Miseta, Attila

    2017-01-01

    O-linked N-acetylglucosamine (O-GlcNAc) is a posttranslational modification that is increasingly recognized as a signal transduction mechanism. Unlike other glycans, O-GlcNAc is a highly dynamic and reversible process that involves the addition and removal of a single N-acetylglucosamine molecule to Ser/Thr residues of proteins. UDP-GlcNAc—the direct substrate for O-GlcNAc modification—is controlled by the rate of cellular metabolism, and thus O-GlcNAc is dependent on substrate availability. Serving as a feedback mechanism, O-GlcNAc influences the regulation of insulin signaling and glucose transport. Besides nutrient sensing, O-GlcNAc was also implicated in the regulation of various physiological and pathophysiological processes. Due to improvements of mass spectrometry techniques, more than one thousand proteins were detected to carry the O-GlcNAc moiety; many of them are known to participate in the regulation of metabolites, ions, or protein transport across biological membranes. Recent studies also indicated that O-GlcNAc is involved in stress adaptation; overwhelming evidences suggest that O-GlcNAc levels increase upon stress. O-GlcNAc elevation is generally considered to be beneficial during stress, although the exact nature of its protective effect is not understood. In this review, we summarize the current data regarding the oxidative stress-related changes of O-GlcNAc levels and discuss the implications related to membrane trafficking. PMID:29456783

  12. Improved accuracy of co-morbidity coding over time after the introduction of ICD-10 administrative data

    PubMed Central

    2011-01-01

    Background Co-morbidity information derived from administrative data needs to be validated to allow its regular use. We assessed evolution in the accuracy of coding for Charlson and Elixhauser co-morbidities at three time points over a 5-year period, following the introduction of the International Classification of Diseases, 10th Revision (ICD-10), coding of hospital discharges. Methods Cross-sectional time trend evaluation study of coding accuracy using hospital chart data of 3'499 randomly selected patients who were discharged in 1999, 2001 and 2003, from two teaching and one non-teaching hospital in Switzerland. We measured sensitivity, positive predictive and Kappa values for agreement between administrative data coded with ICD-10 and chart data as the 'reference standard' for recording 36 co-morbidities. Results For the 17 the Charlson co-morbidities, the sensitivity - median (min-max) - was 36.5% (17.4-64.1) in 1999, 42.5% (22.2-64.6) in 2001 and 42.8% (8.4-75.6) in 2003. For the 29 Elixhauser co-morbidities, the sensitivity was 34.2% (1.9-64.1) in 1999, 38.6% (10.5-66.5) in 2001 and 41.6% (5.1-76.5) in 2003. Between 1999 and 2003, sensitivity estimates increased for 30 co-morbidities and decreased for 6 co-morbidities. The increase in sensitivities was statistically significant for six conditions and the decrease significant for one. Kappa values were increased for 29 co-morbidities and decreased for seven. Conclusions Accuracy of administrative data in recording clinical conditions improved slightly between 1999 and 2003. These findings are of relevance to all jurisdictions introducing new coding systems, because they demonstrate a phenomenon of improved administrative data accuracy that may relate to a coding 'learning curve' with the new coding system. PMID:21849089

  13. Improved accuracy of co-morbidity coding over time after the introduction of ICD-10 administrative data.

    PubMed

    Januel, Jean-Marie; Luthi, Jean-Christophe; Quan, Hude; Borst, François; Taffé, Patrick; Ghali, William A; Burnand, Bernard

    2011-08-18

    Co-morbidity information derived from administrative data needs to be validated to allow its regular use. We assessed evolution in the accuracy of coding for Charlson and Elixhauser co-morbidities at three time points over a 5-year period, following the introduction of the International Classification of Diseases, 10th Revision (ICD-10), coding of hospital discharges. Cross-sectional time trend evaluation study of coding accuracy using hospital chart data of 3'499 randomly selected patients who were discharged in 1999, 2001 and 2003, from two teaching and one non-teaching hospital in Switzerland. We measured sensitivity, positive predictive and Kappa values for agreement between administrative data coded with ICD-10 and chart data as the 'reference standard' for recording 36 co-morbidities. For the 17 the Charlson co-morbidities, the sensitivity - median (min-max) - was 36.5% (17.4-64.1) in 1999, 42.5% (22.2-64.6) in 2001 and 42.8% (8.4-75.6) in 2003. For the 29 Elixhauser co-morbidities, the sensitivity was 34.2% (1.9-64.1) in 1999, 38.6% (10.5-66.5) in 2001 and 41.6% (5.1-76.5) in 2003. Between 1999 and 2003, sensitivity estimates increased for 30 co-morbidities and decreased for 6 co-morbidities. The increase in sensitivities was statistically significant for six conditions and the decrease significant for one. Kappa values were increased for 29 co-morbidities and decreased for seven. Accuracy of administrative data in recording clinical conditions improved slightly between 1999 and 2003. These findings are of relevance to all jurisdictions introducing new coding systems, because they demonstrate a phenomenon of improved administrative data accuracy that may relate to a coding 'learning curve' with the new coding system.

  14. Analysis of the technology acceptance model in examining hospital nurses' behavioral intentions toward the use of bar code medication administration.

    PubMed

    Song, Lunar; Park, Byeonghwa; Oh, Kyeung Mi

    2015-04-01

    Serious medication errors continue to exist in hospitals, even though there is technology that could potentially eliminate them such as bar code medication administration. Little is known about the degree to which the culture of patient safety is associated with behavioral intention to use bar code medication administration. Based on the Technology Acceptance Model, this study evaluated the relationships among patient safety culture and perceived usefulness and perceived ease of use, and behavioral intention to use bar code medication administration technology among nurses in hospitals. Cross-sectional surveys with a convenience sample of 163 nurses using bar code medication administration were conducted. Feedback and communication about errors had a positive impact in predicting perceived usefulness (β=.26, P<.01) and perceived ease of use (β=.22, P<.05). In a multiple regression model predicting for behavioral intention, age had a negative impact (β=-.17, P<.05); however, teamwork within hospital units (β=.20, P<.05) and perceived usefulness (β=.35, P<.01) both had a positive impact on behavioral intention. The overall bar code medication administration behavioral intention model explained 24% (P<.001) of the variance. Identified factors influencing bar code medication administration behavioral intention can help inform hospitals to develop tailored interventions for RNs to reduce medication administration errors and increase patient safety by using this technology.

  15. Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.

    PubMed

    Furuta, Kaori Miyashima; Yadav, Shri Ram; Lehesranta, Satu; Belevich, Ilya; Miyashima, Shunsuke; Heo, Jung-ok; Vatén, Anne; Lindgren, Ove; De Rybel, Bert; Van Isterdael, Gert; Somervuo, Panu; Lichtenberger, Raffael; Rocha, Raquel; Thitamadee, Siripong; Tähtiharju, Sari; Auvinen, Petri; Beeckman, Tom; Jokitalo, Eija; Helariutta, Ykä

    2014-08-22

    Photoassimilates such as sugars are transported through phloem sieve element cells in plants. Adapted for effective transport, sieve elements develop as enucleated living cells. We used electron microscope imaging and three-dimensional reconstruction to follow sieve element morphogenesis in Arabidopsis. We show that sieve element differentiation involves enucleation, in which the nuclear contents are released and degraded in the cytoplasm at the same time as other organelles are rearranged and the cytosol is degraded. These cellular reorganizations are orchestrated by the genetically redundant NAC domain-containing transcription factors, NAC45 and NAC86 (NAC45/86). Among the NAC45/86 targets, we identified a family of genes required for enucleation that encode proteins with nuclease domains. Thus, sieve elements differentiate through a specialized autolysis mechanism. Copyright © 2014, American Association for the Advancement of Science.

  16. Coding of obesity in administrative hospital discharge abstract data: accuracy and impact for future research studies.

    PubMed

    Martin, Billie-Jean; Chen, Guanmin; Graham, Michelle; Quan, Hude

    2014-02-13

    Obesity is a pervasive problem and a popular subject of academic assessment. The ability to take advantage of existing data, such as administrative databases, to study obesity is appealing. The objective of our study was to assess the validity of obesity coding in an administrative database and compare the association between obesity and outcomes in an administrative database versus registry. This study was conducted using a coronary catheterization registry and an administrative database (Discharge Abstract Database (DAD)). A Body Mass Index (BMI) ≥30 kg/m2 within the registry defined obesity. In the DAD obesity was defined by diagnosis codes E65-E68 (ICD-10). The sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) of an obesity diagnosis in the DAD was determined using obesity diagnosis in the registry as the referent. The association between obesity and outcomes was assessed. The study population of 17380 subjects was largely male (68.8%) with a mean BMI of 27.0 kg/m2. Obesity prevalence was lower in the DAD than registry (2.4% vs. 20.3%). A diagnosis of obesity in the DAD had a sensitivity 7.75%, specificity 98.98%, NPV 80.84% and PPV 65.94%. Obesity was associated with decreased risk of death or re-hospitalization, though non-significantly within the DAD. Obesity was significantly associated with an increased risk of cardiac procedure in both databases. Overall, obesity was poorly coded in the DAD. However, when coded, it was coded accurately. Administrative databases are not an optimal datasource for obesity prevalence and incidence surveillance but could be used to define obese cohorts for follow-up.

  17. Cloning and expression of a novel UDP-GlcNAc:alpha-D-mannoside beta1,2-N-acetylglucosaminyltransferase homologous to UDP-GlcNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I.

    PubMed Central

    Zhang, Wenli; Betel, Doron; Schachter, Harry

    2002-01-01

    A TBLASTN search with human UDP-GlcNAc:alpha-3-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I; EC 2.4.1.101) as a probe identified human and mouse Unigenes encoding a protein similar to human GnT I (34% identity over 340 amino acids). The recombinant protein converted Man(alpha1-6)[Man(alpha1-3)]Man(beta1-)O-octyl to Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-)O-octyl, the reaction catalysed by GnT I. The enzyme also added GlcNAc to Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-)O-octyl (the substrate for beta-1,2-N-acetylglucosaminyltransferase II), Man(alpha1-)O-benzyl [with K(m) values of approximately 0.3 and >30 mM for UDP-GlcNAc and Man(alpha1-)O-benzyl respectively] and the glycopeptide CYA[Man(alpha1-)O-T]AV (K(m) approximately 12 mM). The product formed with Man(alpha1-)O-benzyl was identified as GlcNAc(beta1-2)Man(alpha1-)O-benzyl by proton NMR spectroscopy. The enzyme was named UDP-GlcNAc:alpha-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I.2 (GnT I.2). The human gene mapped to chromosome 1. Northern-blot analysis showed a 3.3 kb message with a wide tissue distribution. The cDNA has a 1980 bp open reading frame encoding a 660 amino acid protein with a type-2 domain structure typical of glycosyltransferases. Man(beta1-)O-octyl, Man(beta1-)O-p-nitrophenyl and GlcNAc(beta1-2)Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-4)GlcNAc(beta1-4)GlcNAc(beta1-)O-Asn were not acceptors, indicating that GnT I.2 is specific for alpha-linked terminal Man and does not have N-acetylglucosaminyltransferase III, IV, V, VII or VIII activities. CYA[Man(alpha1-)O-T]AV was between three and seven times more effective as an acceptor than the other substrates, suggesting that GnT I.2 may be responsible for the synthesis of the GlcNAc(beta1-2)Man(alpha1-)O-Ser/Thr moiety on alpha-dystroglycan and other O-mannosylated proteins. PMID:11742540

  18. Antioxidants reverse the changes in energy metabolism of rat brain after chronic administration of L.-tyrosine.

    PubMed

    Teodorak, Brena P; Scaini, Giselli; Carvalho-Silva, Milena; Gomes, Lara M; Teixeira, Letícia J; Rebelo, Joyce; De Prá, Samira D T; Zeni, Neila; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-04-01

    Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.

  19. GhNAC12, a neutral candidate gene, leads to early aging in cotton (Gossypium hirsutum L).

    PubMed

    Zhao, Fengli; Ma, Jianhui; Li, Libei; Fan, Shuli; Guo, Yaning; Song, Meizhen; Wei, Hengling; Pang, Chaoyou; Yu, Shuxun

    2016-01-15

    NAC (NAM, ATAF, and CUC) is one of the largest transcription factor families in plants, and its members play various roles in plant growth, development, and the response to biotic and abiotic stresses. Currently, 77 NAC genes have been reported in cotton (Gossypium hirsutum L.). And GhNAC12 showed up-regulation during leaf senescence, but its role in this process is poorly understood. In the present study, a preliminary function analysis of GhNAC12 was performed during leaf senescence. qRT-PCR analysis indicated that GhNAC12 expression increased during the early-aging process and the aging of cotyledons. Additionally, we observed that overexpression of GhNAC12 in Arabidopsis led to early senescence (early aging). Our findings suggest that GhNAC12 is a candidate gene for early aging in upland cotton cultivars. Neutrality tests suggested that there was no selection pressure imposed on GhNAC12 during the domestication of upland cotton. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analysis of Sulfate Patterns in Glycosaminoglycan Oligosaccharides by MSn Coupled to Infrared Ion Spectroscopy: the Case of GalNAc4S and GalNAc6S

    NASA Astrophysics Data System (ADS)

    Renois-Predelus, G.; Schindler, B.; Compagnon, I.

    2018-04-01

    We report distinctive spectroscopic fingerprints of the monosaccharide standards GalNAc4S and GalNAc6S by coupling mass spectrometry and ion spectroscopy in the 3-μm range. The disaccharide standards CSA and CSC are used to demonstrate the applicability of a novel approach for the analysis of sulfate position in GalNAc-containing glycosaminoglycans. This approach was then used for the analysis of a sample containing CSA and CSC disaccharides. Finally, we discuss the generalization of the coupling of mass spectrometry with ion spectroscopy for the structural analysis of glycosaminoglycans on a tetrasaccharide from dermatan sulfate source. [Figure not available: see fulltext.

  1. Accuracy of Administrative Codes for Distinguishing Positive Pressure Ventilation from High-Flow Nasal Cannula.

    PubMed

    Good, Ryan J; Leroue, Matthew K; Czaja, Angela S

    2018-06-07

    Noninvasive positive pressure ventilation (NIPPV) is increasingly used in critically ill pediatric patients, despite limited data on safety and efficacy. Administrative data may be a good resource for observational studies. Therefore, we sought to assess the performance of the International Classification of Diseases, Ninth Revision procedure code for NIPPV. Patients admitted to the PICU requiring NIPPV or heated high-flow nasal cannula (HHFNC) over the 11-month study period were identified from the Virtual PICU System database. The gold standard was manual review of the electronic health record to verify the use of NIPPV or HHFNC among the cohort. The presence or absence of a NIPPV procedure code was determined by using administrative data. Test characteristics with 95% confidence intervals (CIs) were generated, comparing administrative data with the gold standard. Among the cohort ( n = 562), the majority were younger than 5 years, and the most common primary diagnosis was bronchiolitis. Most (82%) required NIPPV, whereas 18% required only HHFNC. The NIPPV code had a sensitivity of 91.1% (95% CI: 88.2%-93.6%) and a specificity of 57.6% (95% CI: 47.2%-67.5%), with a positive likelihood ratio of 2.15 (95% CI: 1.70-2.71) and negative likelihood ratio of 0.15 (95% CI: 0.11-0.22). Among our critically ill pediatric cohort, NIPPV procedure codes had high sensitivity but only moderate specificity. On the basis of our study results, there is a risk of misclassification, specifically failure to identify children who require NIPPV, when using administrative data to study the use of NIPPV in this population. Copyright © 2018 by the American Academy of Pediatrics.

  2. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement.

    PubMed

    Tsukimura, Naoki; Yamada, Masahiro; Aita, Hideki; Hori, Norio; Yoshino, Fumihiko; Chang-Il Lee, Masaichi; Kimoto, Katsuhiko; Jewett, Anahid; Ogawa, Takahiro

    2009-07-01

    Currently used poly(methyl methacrylate) (PMMA)-based bone cement lacks osteoconductivity and induces osteolysis and implant loosening due to its cellular and tissue-toxicity. A high percentage of revision surgery following the use of bone cement has become a significant universal problem. This study determined whether incorporation of the amino acid derivative N-acetyl cysteine (NAC) in bone cement reduces its cytotoxicity and adds osteoconductivity to the material. Biocompatibility and bioactivity of PMMA-based bone cement with or without 25mm NAC incorporation was examined using rat bone marrow-derived osteoblastic cells. Osteoconductive potential of NAC-incorporated bone cement was determined by microCT bone morphometry and implant biomechanical test in the rat model. Generation of free radicals within the polymerizing bone cement was examined using electron spin resonance spectroscopy. Severely compromised viability and completely suppressed phenotypes of osteoblasts on untreated bone cement were restored to the normal level by NAC incorporation. Bone volume formed around 25mm NAC-incorporated bone cement was threefold greater than that around control bone cement. The strength of bone-bone cement integration was 2.2 times greater for NAC-incorporated bone cement. For NAC-incorporated bone cement, the spike of free radical generation ended within 12h, whereas for control bone cement, a peak level lasted for 6 days and a level greater than half the level of the peak was sustained for 20 days. NAC also increased the level of antioxidant glutathione in osteoblasts. These results suggest that incorporation of NAC in PMMA bone cement detoxifies the material by immediate and effective in situ scavenging of free radicals and increasing intracellular antioxidant reserves, and consequently adds osteoconductivity to the material.

  3. Patient safety with blood products administration using wireless and bar-code technology.

    PubMed

    Porcella, Aleta; Walker, Kristy

    2005-01-01

    Supported by a grant from the Agency for Healthcare Research and Quality, a University of Iowa Hospitals and Clinics interdisciplinary research team created an online data-capture-response tool utilizing wireless mobile devices and bar code technology to track and improve blood products administration process. The tool captures 1) sample collection, 2) sample arrival in the blood bank, 3) blood product dispense from blood bank, and 4) administration. At each step, the scanned patient wristband ID bar code is automatically compared to scanned identification barcode on requisition, sample, and/or product, and the system presents either a confirmation or an error message to the user. Following an eight-month, 5 unit, staged pilot, a 'big bang,' hospital-wide implementation occurred on February 7, 2005. Preliminary results from pilot data indicate that the new barcode process captures errors 3 to 10 times better than the old manual process.

  4. Functional significance of O-GlcNAc modification in regulating neuronal properties.

    PubMed

    Hwang, Hongik; Rhim, Hyewhon

    2018-03-01

    Post-translational modifications (PTMs) covalently modify proteins and diversify protein functions. Along with protein phosphorylation, another common PTM is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and/or threonine residues. O-GlcNAc modification is similar to phosphorylation in that it occurs to serine and threonine residues and cycles on and off with a similar time scale. However, a striking difference is that the addition and removal of the O-GlcNAc moiety on all substrates are mediated by the two enzymes regardless of proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation can interact or potentially compete with phosphorylation on serine and threonine residues, and thus serves as an important molecular mechanism to modulate protein functions and activation. However, it has been challenging to address the role of O-GlcNAc modification in regulating protein functions at the molecular level due to the lack of convenient tools to determine the sites and degrees of O-GlcNAcylation. Studies in this field have only begun to expand significantly thanks to the recent advances in detection and manipulation methods such as quantitative proteomics and highly selective small-molecule inhibitors for OGT and OGA. Interestingly, multiple brain regions, especially hippocampus, express high levels of both OGT and OGA, and a number of neuron-specific proteins have been reported to undergo O-GlcNAcylation. This review aims to discuss the recent updates concerning the impacts of O-GlcNAc modification on neuronal functions at multiple levels ranging from intrinsic neuronal properties to synaptic plasticity and animal behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation

    NASA Astrophysics Data System (ADS)

    Lira-Navarrete, Erandi; de Las Rivas, Matilde; Compañón, Ismael; Pallarés, María Carmen; Kong, Yun; Iglesias-Fernández, Javier; Bernardes, Gonçalo J. L.; Peregrina, Jesús M.; Rovira, Carme; Bernadó, Pau; Bruscolini, Pierpaolo; Clausen, Henrik; Lostao, Anabel; Corzana, Francisco; Hurtado-Guerrero, Ramon

    2015-05-01

    Protein O-glycosylation is controlled by polypeptide GalNAc-transferases (GalNAc-Ts) that uniquely feature both a catalytic and lectin domain. The underlying molecular basis of how the lectin domains of GalNAc-Ts contribute to glycopeptide specificity and catalysis remains unclear. Here we present the first crystal structures of complexes of GalNAc-T2 with glycopeptides that together with enhanced sampling molecular dynamics simulations demonstrate a cooperative mechanism by which the lectin domain enables free acceptor sites binding of glycopeptides into the catalytic domain. Atomic force microscopy and small-angle X-ray scattering experiments further reveal a dynamic conformational landscape of GalNAc-T2 and a prominent role of compact structures that are both required for efficient catalysis. Our model indicates that the activity profile of GalNAc-T2 is dictated by conformational heterogeneity and relies on a flexible linker located between the catalytic and the lectin domains. Our results also shed light on how GalNAc-Ts generate dense decoration of proteins with O-glycans.

  6. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis.

    PubMed

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-05-22

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.

  7. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis

    PubMed Central

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-01-01

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710

  8. The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants

    PubMed Central

    Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2016-01-01

    NAC transcription factors play diverse roles in plant development and responses to abiotic stresses. However, the biological roles of NAC family members in wheat are not well understood. Here, we reported the isolation and functional characterization of a novel wheat TaNAC47 gene. TaNAC47 encoded protein, localizing in the nucleus, is able to bind to the ABRE cis-element and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional activator. We also showed that TaNAC47 is differentially expressed in different tissues, and its expression was induced by the stress treatments of salt, cold, polyethylene glycol and exogenous abscisic acid. Furthermore, overexpression of TaNAC47 in Arabidopsis resulted in ABA hypersensitivity and enhancing tolerance of transgenic plants to drought, salt, and freezing stresses. Strikingly, overexpression of TaNAC47 was found to activate the expression of downstream genes and change several physiological indices that may enable transgenic plants to overcome unfavorable environments. Taken together, these results uncovered an important role of wheat TaNAC47 gene in response to ABA and abiotic stresses. PMID:26834757

  9. The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants.

    PubMed

    Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2015-01-01

    NAC transcription factors play diverse roles in plant development and responses to abiotic stresses. However, the biological roles of NAC family members in wheat are not well understood. Here, we reported the isolation and functional characterization of a novel wheat TaNAC47 gene. TaNAC47 encoded protein, localizing in the nucleus, is able to bind to the ABRE cis-element and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional activator. We also showed that TaNAC47 is differentially expressed in different tissues, and its expression was induced by the stress treatments of salt, cold, polyethylene glycol and exogenous abscisic acid. Furthermore, overexpression of TaNAC47 in Arabidopsis resulted in ABA hypersensitivity and enhancing tolerance of transgenic plants to drought, salt, and freezing stresses. Strikingly, overexpression of TaNAC47 was found to activate the expression of downstream genes and change several physiological indices that may enable transgenic plants to overcome unfavorable environments. Taken together, these results uncovered an important role of wheat TaNAC47 gene in response to ABA and abiotic stresses.

  10. A little sugar goes a long way: The cell biology of O-GlcNAc

    PubMed Central

    2015-01-01

    Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate–GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport. PMID:25825515

  11. Expression patterns and promoter analyses of aluminum-responsive NAC genes suggest a possible growth regulation of rice mediated by aluminum, hormones and NAC transcription factors.

    PubMed

    Escobar-Sepúlveda, Hugo Fernando; Trejo-Téllez, Libia Iris; García-Morales, Soledad; Gómez-Merino, Fernando Carlos

    2017-01-01

    In acid soils, the solubilized form of aluminum, Al+3, decreases root growth and affects the development of most crops. However, like other toxic elements, Al can have hormetic effects on plant metabolism. Rice (Oryza sativa) is one of the most tolerant species to Al toxicity, and when this element is supplied at low doses, growth stimulation has been observed, which could be due to combined mechanisms that are partly triggered by NAC transcription factors. This protein family can regulate vital processes in plants, including growth, development, and response to environmental stimuli, whether biotic or abiotic. Under our experimental conditions, 200 μM Al stimulated root growth and the formation of tillers; it also caused differential expression of a set of NAC genes. The promoter regions of the genes regulated by Al were analyzed and the cis-acting elements that are potentially involved in the responses to different stimuli, including environmental stress, were identified. Through the Genevestigator platform, data on the expression of NAC genes were obtained by experimental condition, tissue, and vegetative stage. This is the first study on NAC genes where in vivo and in silico data are complementarily analyzed, relating the hormetic effect of Al on plant growth and gene expression with a possible interaction in the response to phytohormones in rice. These findings could help to elucidate the possible convergence between the signaling pathways mediated by phytohormones and the role of the NAC transcription factors in the regulation of growth mediated by low Al doses.

  12. Expression patterns and promoter analyses of aluminum-responsive NAC genes suggest a possible growth regulation of rice mediated by aluminum, hormones and NAC transcription factors

    PubMed Central

    2017-01-01

    In acid soils, the solubilized form of aluminum, Al+3, decreases root growth and affects the development of most crops. However, like other toxic elements, Al can have hormetic effects on plant metabolism. Rice (Oryza sativa) is one of the most tolerant species to Al toxicity, and when this element is supplied at low doses, growth stimulation has been observed, which could be due to combined mechanisms that are partly triggered by NAC transcription factors. This protein family can regulate vital processes in plants, including growth, development, and response to environmental stimuli, whether biotic or abiotic. Under our experimental conditions, 200 μM Al stimulated root growth and the formation of tillers; it also caused differential expression of a set of NAC genes. The promoter regions of the genes regulated by Al were analyzed and the cis-acting elements that are potentially involved in the responses to different stimuli, including environmental stress, were identified. Through the Genevestigator platform, data on the expression of NAC genes were obtained by experimental condition, tissue, and vegetative stage. This is the first study on NAC genes where in vivo and in silico data are complementarily analyzed, relating the hormetic effect of Al on plant growth and gene expression with a possible interaction in the response to phytohormones in rice. These findings could help to elucidate the possible convergence between the signaling pathways mediated by phytohormones and the role of the NAC transcription factors in the regulation of growth mediated by low Al doses. PMID:29023561

  13. Disease-Specific Trends of Comorbidity Coding and Implications for Risk Adjustment in Hospital Administrative Data.

    PubMed

    Nimptsch, Ulrike

    2016-06-01

    To investigate changes in comorbidity coding after the introduction of diagnosis related groups (DRGs) based prospective payment and whether trends differ regarding specific comorbidities. Nationwide administrative data (DRG statistics) from German acute care hospitals from 2005 to 2012. Observational study to analyze trends in comorbidity coding in patients hospitalized for common primary diseases and the effects on comorbidity-related risk of in-hospital death. Comorbidity coding was operationalized by Elixhauser diagnosis groups. The analyses focused on adult patients hospitalized for the primary diseases of heart failure, stroke, and pneumonia, as well as hip fracture. When focusing the total frequency of diagnosis groups per record, an increase in depth of coding was observed. Between-hospital variations in depth of coding were present throughout the observation period. Specific comorbidity increases were observed in 15 of the 31 diagnosis groups, and decreases in comorbidity were observed for 11 groups. In patients hospitalized for heart failure, shifts of comorbidity-related risk of in-hospital death occurred in nine diagnosis groups, in which eight groups were directed toward the null. Comorbidity-adjusted outcomes in longitudinal administrative data analyses may be biased by nonconstant risk over time, changes in completeness of coding, and between-hospital variations in coding. Accounting for such issues is important when the respective observation period coincides with changes in the reimbursement system or other conditions that are likely to alter clinical coding practice. © Health Research and Educational Trust.

  14. O-GlcNAc profiling: from proteins to proteomes

    PubMed Central

    2014-01-01

    O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) onto serine and threonine residues of proteins is an important post-translational modification (PTM), which is involved in many crucial biological processes including transcription, translation, proteasomal degradation, and signal transduction. Aberrant protein O-GlcNAcylation is directly linked to the pathological progression of chronic diseases including diabetes, cancer, and neurodegenerative disorders. Identification, site mapping, and quantification of O-GlcNAc proteins are a prerequisite to decipher their functions. In this review, we mainly focus on technological developments regarding O-GlcNAc protein profiling. Specifically, on one hand, we show how these techniques are being used for the comprehensive characterization of certain targeted proteins in which biologists are most interested. On the other hand, we present several newly developed approaches for O-GlcNAcomic profiling as well as how they provide us with a systems perspective to crosstalk amongst different PTMs and complicated biological events. Promising technical trends are also highlighted to evoke more efforts by diverse laboratories, which would further expand our understanding of the physiological and pathological roles of protein O-GlcNAcylation in chronic diseases. PMID:24593906

  15. Validity of Diagnostic Codes for Acute Stroke in Administrative Databases: A Systematic Review

    PubMed Central

    McCormick, Natalie; Bhole, Vidula; Lacaille, Diane; Avina-Zubieta, J. Antonio

    2015-01-01

    Objective To conduct a systematic review of studies reporting on the validity of International Classification of Diseases (ICD) codes for identifying stroke in administrative data. Methods MEDLINE and EMBASE were searched (inception to February 2015) for studies: (a) Using administrative data to identify stroke; or (b) Evaluating the validity of stroke codes in administrative data; and (c) Reporting validation statistics (sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), or Kappa scores) for stroke, or data sufficient for their calculation. Additional articles were located by hand search (up to February 2015) of original papers. Studies solely evaluating codes for transient ischaemic attack were excluded. Data were extracted by two independent reviewers; article quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. Results Seventy-seven studies published from 1976–2015 were included. The sensitivity of ICD-9 430-438/ICD-10 I60-I69 for any cerebrovascular disease was ≥ 82% in most [≥ 50%] studies, and specificity and NPV were both ≥ 95%. The PPV of these codes for any cerebrovascular disease was ≥ 81% in most studies, while the PPV specifically for acute stroke was ≤ 68%. In at least 50% of studies, PPVs were ≥ 93% for subarachnoid haemorrhage (ICD-9 430/ICD-10 I60), 89% for intracerebral haemorrhage (ICD-9 431/ICD-10 I61), and 82% for ischaemic stroke (ICD-9 434/ICD-10 I63 or ICD-9 434&436). For in-hospital deaths, sensitivity was 55%. For cerebrovascular disease or acute stroke as a cause-of-death on death certificates, sensitivity was ≤ 71% in most studies while PPV was ≥ 87%. Conclusions While most cases of prevalent cerebrovascular disease can be detected using 430-438/I60-I69 collectively, acute stroke must be defined using more specific codes. Most in-hospital deaths and death certificates with stroke as a cause-of-death correspond to true stroke deaths. Linking vital

  16. O-GlcNAc cycling: Emerging Roles in Development and Epigenetics

    PubMed Central

    Love, Dona C.; Krause, Michael W.; Hanover, John A.

    2010-01-01

    The nutrient-sensing hexosamine signaling pathway modulates the levels of O-linked N-acetylglucosamine (O-GlcNAc) on key targets impacting cellular signaling, protein turnover and gene expression. O-GlcNAc cycling may be deregulated in neurodegenerative disease, cancer, and diabetes. Studies in model organisms demonstrate that the O-GlcNAc transferase (OGT/Sxc) is essential for Polycomb group (PcG) repression of the homeotic genes, clusters of genes responsible for the adult body plan. Surprisingly, from flies to man, the O-GlcNAcase (OGA, MGEA5) gene is embedded within the NK cluster, the most evolutionarily ancient of three homeobox gene clusters regulated by PcG repression. PcG repression also plays a key role in maintaining stem cell identity, recruiting the DNA methyltransferase machinery for imprinting, and in X-chromosome inactivation. Intriguingly, the Ogt gene resides near the Xist locus in vertebrates and is subject to regulation by PcG-dependent X-inactivation. OGT is also an enzymatic component of the human dosage compensation complex. These ‘evo-devo’ relationships linking O-GlcNAc cycling to higher order chromatin structure provide insights into how nutrient availability may influence the epigenetic regulation of gene expression. O-GlcNAc cycling at promoters and PcG repression represent concrete mechanisms by which nutritional information may be transmitted across generations in the intra-uterine environment. Thus, the nutrient-sensing hexosamine signaling pathway may be a key contributor to the metabolic deregulation resulting from prenatal exposure to famine, or the ‘vicious cycle’ observed in children of mothers with type-2 diabetes and metabolic disease. PMID:20488252

  17. Understanding the Role of O-GlcNAc Modifications in Plant Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Neil, E.

    2011-06-16

    This project has contributed towards understanding the role of O-GlcNAc (O-linked N-acetylglucosamine) transferases (OGTs) in plants. Through analyses of single and double mutants, we have investigated the unique and overlapping functions of SECRET AGENT (SEC) and SPINDLY (SPY), the arabidopsis OGTs. This work showed that SEC functions as negative regulators of the long-day flowering pathway. SEC also has a positive role in regulation of rosette. An E. coli co-expression system that allows potential substrates to be co-expressed with and O-GlcNAc modified by SEC was developed. We showed that SEC is a bona fide OGT that modifies itself with single O-linkedmore » GlcNAc(s). Using this system, we tested a number of proteins that were hypothesized to be substrates of SEC and identified a number of substrates include GIGANTEA (GI), a component of the long day flowering pathway. The hypothesis that O-GlcNAc modification controls GI activity was tested by first mapping where E. coli-expressed SEC modifies GI and then assessing the activity of a non-modifiable mutant form of GI. The activity of the mutant form of GI was indistinguishable from that of wild type suggesting that either O-GlcNAc does not regulate GI activity or that additional modification sites exist on GI. In collaboration with Dr. Juan Antonio Garcia at Universidad Autónoma de Madrid the role of O-GlcNAc modification of the plum pox virus coat protein (PPV-CP) was investigated. SEC was shown to O-GlcNAc modify PPV-CP and the modification was shown to facilitate the infection process. E. coli-expressed SEC was shown to modify the same PPV-CP sites that are modified in plants. SEC has a large protein interaction domain called the TPR domain that has been hypothesized to have a role in determining the substrate specificity of the enzyme and/or to regulate its activity. A mutational analysis of the TPR domain did not find evidence for a role in substrate specificity but did obtain evidence that the domain

  18. Divergent and convergent synthesis of GalNAc-conjugated dendrimers using dual orthogonal ligations.

    PubMed

    Thomas, Baptiste; Pifferi, Carlo; Daskhan, Gour Chand; Fiore, Michele; Berthet, Nathalie; Renaudet, Olivier

    2015-12-21

    The synthesis of glycodendrimers remains a challenging task. In this paper we propose a protocol based on both oxime ligation (OL) to combine cyclopeptide repeating units as the dendritic core and the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) to conjugate peripheral α and β propargylated GalNAc. By contrast with the oxime-based iterative protocol reported in our group, our current strategy can be used in both divergent and convergent routes with similar efficiency and the resulting hexadecavalent glycodendrimers can be easily characterized compared to oxime-linked analogues. A series of glycoconjugates displaying four or sixteen copies of both α and β GalNAc have been prepared and their ability to inhibit the adhesion of the soybean agglutinin (SBA) lectin to polymeric-GalNAc immobilized on microtiter plates has been evaluated. As was anticipated, the higher inhibitory effect (IC50 = 0.46 μM) was measured with the structure displaying αGalNAc with the higher valency (compound 13), which demonstrates that the binding properties of these glycoconjugates are strongly dependent on the orientation and distribution of the GalNAc units.

  19. Resistance exercise decreases heroin self-administration and alters gene expression in the nucleus accumbens of heroin-exposed rats.

    PubMed

    Smith, Mark A; Fronk, Gaylen E; Abel, Jean M; Lacy, Ryan T; Bills, Sarah E; Lynch, Wendy J

    2018-04-01

    Preclinical studies consistently report that aerobic exercise decreases drug self-administration and other forms of drug-seeking behavior; however, relatively few studies have examined other types of physical activity. The purpose of the present study was to examine the effects of resistance exercise (i.e., strength training) on heroin self-administration and mRNA expression of genes known to mediate opioid reinforcement and addictive behavior in the nucleus accumbens (NAc) of heroin-exposed rats. Female rats were obtained during late adolescence and divided into two groups. Resistance exercise rats were trained to climb a vertical ladder wearing a weighted vest; sedentary control rats were placed repeatedly on the ladder oriented horizontally on its side. All rats were implanted with intravenous catheters and trained to self-administer heroin on a fixed ratio (FR1) schedule of reinforcement. mRNA expression in the NAc core and shell was examined following behavioral testing. Resistance exercise significantly decreased heroin self-administration, resulting in a downward shift in the dose-effect curve. Resistance exercise also reduced mRNA expression for mu opioid receptors and dopamine D1, D2, and D3 receptors in the NAc core. Resistance exercise increased mRNA expression of dopamine D5 receptors in the NAc shell and increased mRNA expression of brain-derived neurotrophic factor (exons I, IIB, IIC, IV, VI, IX) in the NAc core. These data indicate that resistance exercise decreases the positive reinforcing effects of heroin and produces changes in opioid and dopamine systems in the NAc of heroin-exposed rats.

  20. Validity of administrative database code algorithms to identify vascular access placement, surgical revisions, and secondary patency.

    PubMed

    Al-Jaishi, Ahmed A; Moist, Louise M; Oliver, Matthew J; Nash, Danielle M; Fleet, Jamie L; Garg, Amit X; Lok, Charmaine E

    2018-03-01

    We assessed the validity of physician billing codes and hospital admission using International Classification of Diseases 10th revision codes to identify vascular access placement, secondary patency, and surgical revisions in administrative data. We included adults (≥18 years) with a vascular access placed between 1 April 2004 and 31 March 2013 at the University Health Network, Toronto. Our reference standard was a prospective vascular access database (VASPRO) that contains information on vascular access type and dates of placement, dates for failure, and any revisions. We used VASPRO to assess the validity of different administrative coding algorithms by calculating the sensitivity, specificity, and positive predictive values of vascular access events. The sensitivity (95% confidence interval) of the best performing algorithm to identify arteriovenous access placement was 86% (83%, 89%) and specificity was 92% (89%, 93%). The corresponding numbers to identify catheter insertion were 84% (82%, 86%) and 84% (80%, 87%), respectively. The sensitivity of the best performing coding algorithm to identify arteriovenous access surgical revisions was 81% (67%, 90%) and specificity was 89% (87%, 90%). The algorithm capturing arteriovenous access placement and catheter insertion had a positive predictive value greater than 90% and arteriovenous access surgical revisions had a positive predictive value of 20%. The duration of arteriovenous access secondary patency was on average 578 (553, 603) days in VASPRO and 555 (530, 580) days in administrative databases. Administrative data algorithms have fair to good operating characteristics to identify vascular access placement and arteriovenous access secondary patency. Low positive predictive values for surgical revisions algorithm suggest that administrative data should only be used to rule out the occurrence of an event.

  1. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).

    PubMed

    Singh, Anil Kumar; Sharma, Vishal; Pal, Awadhesh Kumar; Acharya, Vishal; Ahuja, Paramvir Singh

    2013-08-01

    NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.

  2. ICD-10 codes used to identify adverse drug events in administrative data: a systematic review.

    PubMed

    Hohl, Corinne M; Karpov, Andrei; Reddekopp, Lisa; Doyle-Waters, Mimi; Stausberg, Jürgen

    2014-01-01

    Adverse drug events, the unintended and harmful effects of medications, are important outcome measures in health services research. Yet no universally accepted set of International Classification of Diseases (ICD) revision 10 codes or coding algorithms exists to ensure their consistent identification in administrative data. Our objective was to synthesize a comprehensive set of ICD-10 codes used to identify adverse drug events. We developed a systematic search strategy and applied it to five electronic reference databases. We searched relevant medical journals, conference proceedings, electronic grey literature and bibliographies of relevant studies, and contacted content experts for unpublished studies. One author reviewed the titles and abstracts for inclusion and exclusion criteria. Two authors reviewed eligible full-text articles and abstracted data in duplicate. Data were synthesized in a qualitative manner. Of 4241 titles identified, 41 were included. We found a total of 827 ICD-10 codes that have been used in the medical literature to identify adverse drug events. The median number of codes used to search for adverse drug events was 190 (IQR 156-289) with a large degree of variability between studies in the numbers and types of codes used. Authors commonly used external injury (Y40.0-59.9) and disease manifestation codes. Only two papers reported on the sensitivity of their code set. Substantial variability exists in the methods used to identify adverse drug events in administrative data. Our work may serve as a point of reference for future research and consensus building in this area.

  3. ICD-10 codes used to identify adverse drug events in administrative data: a systematic review

    PubMed Central

    Hohl, Corinne M; Karpov, Andrei; Reddekopp, Lisa; Stausberg, Jürgen

    2014-01-01

    Background Adverse drug events, the unintended and harmful effects of medications, are important outcome measures in health services research. Yet no universally accepted set of International Classification of Diseases (ICD) revision 10 codes or coding algorithms exists to ensure their consistent identification in administrative data. Our objective was to synthesize a comprehensive set of ICD-10 codes used to identify adverse drug events. Methods We developed a systematic search strategy and applied it to five electronic reference databases. We searched relevant medical journals, conference proceedings, electronic grey literature and bibliographies of relevant studies, and contacted content experts for unpublished studies. One author reviewed the titles and abstracts for inclusion and exclusion criteria. Two authors reviewed eligible full-text articles and abstracted data in duplicate. Data were synthesized in a qualitative manner. Results Of 4241 titles identified, 41 were included. We found a total of 827 ICD-10 codes that have been used in the medical literature to identify adverse drug events. The median number of codes used to search for adverse drug events was 190 (IQR 156–289) with a large degree of variability between studies in the numbers and types of codes used. Authors commonly used external injury (Y40.0–59.9) and disease manifestation codes. Only two papers reported on the sensitivity of their code set. Conclusions Substantial variability exists in the methods used to identify adverse drug events in administrative data. Our work may serve as a point of reference for future research and consensus building in this area. PMID:24222671

  4. Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm

    PubMed Central

    Jin, Xiaoli; Ren, Jing; Nevo, Eviatar; Yin, Xuegui; Sun, Dongfa; Peng, Junhua

    2017-01-01

    NAC (NAM/ATAF/CUC) proteins constitute one of the biggest plant-specific transcription factor (TF) families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be divergent evolutionary patterns of NAC TFs both between dicots and monocots, and among NAC subfamilies. In this study, we compared the gene duplication and loss, evolutionary rate, and selective pattern among non-lineage specific NAC subfamilies, as well as those between dicots and monocots, through genome-wide analyses of sequence and functional data in six dicot and five grass lineages. The number of genes gained in the dicot lineages was much larger than that in the grass lineages, while fewer gene losses were observed in the grass than that in the dicots. We revealed (1) uneven constitution of Clusters of Orthologous Groups (COGs) and contrasting birth/death rates among subfamilies, and (2) two distinct evolutionary scenarios of NAC TFs between dicots and grasses. Our results demonstrated that relaxed selection, resulting from concerted gene duplications, may have permitted substitutions responsible for functional divergence of NAC genes into new lineages. The underlying mechanism of distinct evolutionary fates of NAC TFs shed lights on how evolutionary divergence contributes to differences in establishing NAC gene subfamilies and thus impacts the distinct features between dicots and grasses. PMID:28713414

  5. Incidence and trends of central line associated pneumothorax using radiograph report text search versus administrative database codes.

    PubMed

    Reeson, Marc; Forster, Alan; van Walraven, Carl

    2018-05-25

    Central line associated pneumothorax (CLAP) could be a good quality of care indicator because they are objectively measured, clearly undesirable and possibly avoidable. We measured the incidence and trends of CLAP using radiograph report text search with manual review and compared them with measures using routinely collected health administrative data. For each hospitalisation to a tertiary care teaching hospital between 2002 and 2015, we searched all chest radiography reports for a central line with a sensitive computer algorithm. Screen positive reports were manually reviewed to confirm central lines. The index and subsequent chest radiography reports were screened for pneumothorax followed by manual confirmation. Diagnostic and procedural codes were used to identify CLAP in administrative data. In 685 044 hospitalisations, 10 819 underwent central line insertion (1.6%) with CLAP occurring 181 times (1.7%). CLAP risk did not change over time. Codes for CLAP were inaccurate (sensitivity 13.8%, positive predictive value 6.6%). However, overall code-based CLAP risk (1.8%) was almost identical to actual values possibly because patient strata with inflated CLAP risk were balanced by more common strata having underestimated CLAP risk. Code-based methods inflated central line incidence 2.2 times and erroneously concluded that CLAP risk decreased significantly over time. Using valid methods, CLAP incidence was similar to those in the literature but has not changed over time. Although administrative database codes for CLAP were very inaccurate, they generated CLAP risks very similar to actual values because of offsetting errors. In contrast to those from radiograph report text search with manual review, CLAP trends decreased significantly using administrative data. Hospital CLAP risk should not be measured using administrative data. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial

  6. O-GlcNAc and the Cardiovascular System

    PubMed Central

    Dassanayaka, Sujith; Jones, Steven P.

    2014-01-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. PMID:24287310

  7. Coding algorithms for identifying patients with cirrhosis and hepatitis B or C virus using administrative data.

    PubMed

    Niu, Bolin; Forde, Kimberly A; Goldberg, David S

    2015-01-01

    Despite the use of administrative data to perform epidemiological and cost-effectiveness research on patients with hepatitis B or C virus (HBV, HCV), there are no data outside of the Veterans Health Administration validating whether International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) codes can accurately identify cirrhotic patients with HBV or HCV. The validation of such algorithms is necessary for future epidemiological studies. We evaluated the positive predictive value (PPV) of ICD-9-CM codes for identifying chronic HBV or HCV among cirrhotic patients within the University of Pennsylvania Health System, a large network that includes a tertiary care referral center, a community-based hospital, and multiple outpatient practices across southeastern Pennsylvania and southern New Jersey. We reviewed a random sample of 200 cirrhotic patients with ICD-9-CM codes for HCV and 150 cirrhotic patients with ICD-9-CM codes for HBV. The PPV of 1 inpatient or 2 outpatient HCV codes was 88.0% (168/191, 95% CI: 82.5-92.2%), while the PPV of 1 inpatient or 2 outpatient HBV codes was 81.3% (113/139, 95% CI: 73.8-87.4%). Several variations of the primary coding algorithm were evaluated to determine if different combinations of inpatient and/or outpatient ICD-9-CM codes could increase the PPV of the coding algorithm. ICD-9-CM codes can identify chronic HBV or HCV in cirrhotic patients with a high PPV and can be used in future epidemiologic studies to examine disease burden and the proper allocation of resources. Copyright © 2014 John Wiley & Sons, Ltd.

  8. In Vitro Biosynthesis and Chemical Identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc)*

    PubMed Central

    Li, Tiezheng; Simonds, Laurie; Kovrigin, Evgenii L.; Noel, K. Dale

    2014-01-01

    N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro. PMID:24817117

  9. Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration

    PubMed Central

    Chong, Samuel L; Claussen, Catherine M; Dafny, Nachum

    2012-01-01

    Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal’s neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effects of MPD on the firing rates of NAc neuronal units in freely behaving rats. On experimental day 1 (ED1), following a saline injection (control), a 30 minute baseline neuronal recording was obtained immediately followed by a 2.5 mg/kg i.p. MPD injection and subsequent 60 min neuronal recording. Daily 2.5 mg/kg MPD injections were given on ED2 through ED6 followed by 3 washout days (ED7 to 9). On ED10, neuronal recordings were resumed from the same animal after a saline and MPD (rechallenge) injection exactly as obtained on ED1. Sixty-seven NAc neuronal units exhibited similar wave shape, form and amplitude on ED1 and ED10 and their firing rates were used for analysis. MPD administration on ED1 elicited firing rate increases and decreases in 54% of NAc units when compared to their baselines. Six consecutive MPD administrations altered the neuronal baseline firing rates of 85% of NAc units. MPD rechallenge on ED10 elicited significant changes in 63% of NAc units. These alterations in firing rates are hypothesized to be through mechanisms that include D1 and D2-like DA receptor induced cellular adaptation and homeostatic adaptations/deregulation caused by acute and chronic MPD administration. PMID:22248440

  10. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro.

    PubMed

    Qi, Jieqiong; Wang, Ruihong; Zeng, Yazhen; Yu, Wengong; Gu, Yuchao

    2017-08-09

    O-GlcNAcylation is a dynamic, reversible, post-translational modification that regulates many cellular processes. O-GlcNAc transferase (OGT) is the sole enzyme transferring N-acetylglucosamine from uridine diphosphate (UDP)-GlcNAc to selected serine/threonine residues of cytoplasm and nucleus proteins. Aberrant of OGT activity is associated with several diseases, suggesting OGT as a novel therapeutic target. In this study, we created a new enzyme linked immunosorbent assays (ELISA)-based method for detection of OGT activity. First, casein kinase II (CKII), a well-known OGT substrate, was coated onto ELISA plate. Second, the GlcNAc transferred by OGT from UDP-GlcNAc to CKII was detected using an antibody to O-GlcNAc and then the horseradish peroxidase (HRP)-labeled secondary antibody. At last, 3,3',5,5'-tetramethylbenzidine (TMB), the substrate of HRP, was used to detect the O-GlcNAcylation level of CKII which reflected the activity of OGT. Based on a series of optimization experiments, the RL2 antibody was selected for O-GlcNAc detection and the concentrations of CKII, OGT, and UDP-GlcNAc were determined in this study. ST045849, a commercial OGT inhibitor, was used to verify the functionality of the system. Altogether, this study showed a method that could be applied to detect OGT activity and screen OGT inhibitors.

  11. Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing.

    PubMed

    Byrd, J C; Tarentino, A L; Maley, F; Atkinson, P H; Trimble, R B

    1982-12-25

    Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1

  12. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize [Phosphorylation of a NAC Transcription Factor by ZmCCaMK Regulates Abscisic Acid-Induced Antioxidant Defense in Maize

    DOE PAGES

    Zhu, Yuan; Yan, Jingwei; Liu, Weijuan; ...

    2016-05-10

    Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize, which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 display a partially overlapping expression pattern with ZmCCaMK after ABA treatment and H 2O 2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates S113 of ZmNAC84 inmore » vitro, and S113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco can improve drought tolerance, and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H 2O 2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK, and subsequently the activated ZmCCaMK phosphorylates ZmNAC84 at S113, thereby inducing antioxidant defense by activating downstream genes.« less

  13. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize [Phosphorylation of a NAC Transcription Factor by ZmCCaMK Regulates Abscisic Acid-Induced Antioxidant Defense in Maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuan; Yan, Jingwei; Liu, Weijuan

    Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize, which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 display a partially overlapping expression pattern with ZmCCaMK after ABA treatment and H 2O 2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates S113 of ZmNAC84 inmore » vitro, and S113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco can improve drought tolerance, and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H 2O 2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK, and subsequently the activated ZmCCaMK phosphorylates ZmNAC84 at S113, thereby inducing antioxidant defense by activating downstream genes.« less

  14. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER...

  15. O-GlcNAc transferase inhibitors: current tools and future challenges.

    PubMed

    Trapannone, Riccardo; Rafie, Karim; van Aalten, Daan M F

    2016-02-01

    The O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (O-GlcNAcylation) is the dynamic and reversible attachment of N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic target proteins. It is abundant in metazoa, involving hundreds of proteins linked to a plethora of biological functions with implications in human diseases. The process is catalysed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that add and remove sugar moieties respectively. OGT knockout is embryonic lethal in a range of animal models, hampering the study of the biological role of O-GlcNAc and the dissection of catalytic compared with non-catalytic roles of OGT. Therefore, selective and potent chemical tools are necessary to inhibit OGT activity in the context of biological systems. The present review focuses on the available OGT inhibitors and summarizes advantages, limitations and future challenges. © 2016 Authors; published by Portland Press Limited.

  16. An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells.

    PubMed

    Li, Jing; Wang, Jiajia; Wen, Liuqing; Zhu, He; Li, Shanshan; Huang, Kenneth; Jiang, Kuan; Li, Xu; Ma, Cheng; Qu, Jingyao; Parameswaran, Aishwarya; Song, Jing; Zhao, Wei; Wang, Peng George

    2016-11-18

    O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification. We report here the development of a novel probe, 1,3,6-tri-O-acetyl-2-azidoacetamido-2,4-dideoxy-d-glucopyranose (Ac 3 4dGlcNAz), that can be processed by the GalNAc salvage pathway and transferred by O-GlcNAc transferase (OGT) to O-GlcNAc proteins. Due to the absence of a hydroxyl group at C4, this probe is less incorporated into α/β 4-GlcNAc or GalNAc containing glycoconjugates. Furthermore, the O-4dGlcNAz modification was resistant to the hydrolysis of O-GlcNAcase (OGA), which greatly enhanced the efficiency of incorporation for O-GlcNAcylation. Combined with a click reaction, Ac 3 4dGlcNAz allowed the selective visualization of O-GlcNAc in cells and accurate identification of O-GlcNAc-modified proteins with LC-MS/MS. This probe represents a more potent and selective tool in tracking, capturing, and identifying O-GlcNAc-modified proteins in cells and cell lysates.

  17. Administrative database code accuracy did not vary notably with changes in disease prevalence.

    PubMed

    van Walraven, Carl; English, Shane; Austin, Peter C

    2016-11-01

    Previous mathematical analyses of diagnostic tests based on the categorization of a continuous measure have found that test sensitivity and specificity varies significantly by disease prevalence. This study determined if the accuracy of diagnostic codes varied by disease prevalence. We used data from two previous studies in which the true status of renal disease and primary subarachnoid hemorrhage, respectively, had been determined. In multiple stratified random samples from the two previous studies having varying disease prevalence, we measured the accuracy of diagnostic codes for each disease using sensitivity, specificity, and positive and negative predictive value. Diagnostic code sensitivity and specificity did not change notably within clinically sensible disease prevalence. In contrast, positive and negative predictive values changed significantly with disease prevalence. Disease prevalence had no important influence on the sensitivity and specificity of diagnostic codes in administrative databases. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Barriers to data quality resulting from the process of coding health information to administrative data: a qualitative study.

    PubMed

    Lucyk, Kelsey; Tang, Karen; Quan, Hude

    2017-11-22

    Administrative health data are increasingly used for research and surveillance to inform decision-making because of its large sample sizes, geographic coverage, comprehensivity, and possibility for longitudinal follow-up. Within Canadian provinces, individuals are assigned unique personal health numbers that allow for linkage of administrative health records in that jurisdiction. It is therefore necessary to ensure that these data are of high quality, and that chart information is accurately coded to meet this end. Our objective is to explore the potential barriers that exist for high quality data coding through qualitative inquiry into the roles and responsibilities of medical chart coders. We conducted semi-structured interviews with 28 medical chart coders from Alberta, Canada. We used thematic analysis and open-coded each transcript to understand the process of administrative health data generation and identify barriers to its quality. The process of generating administrative health data is highly complex and involves a diverse workforce. As such, there are multiple points in this process that introduce challenges for high quality data. For coders, the main barriers to data quality occurred around chart documentation, variability in the interpretation of chart information, and high quota expectations. This study illustrates the complex nature of barriers to high quality coding, in the context of administrative data generation. The findings from this study may be of use to data users, researchers, and decision-makers who wish to better understand the limitations of their data or pursue interventions to improve data quality.

  19. Coding algorithms for identifying patients with cirrhosis and hepatitis B or C virus using administrative data

    PubMed Central

    Niu, Bolin; Forde, Kimberly A; Goldberg, David S.

    2014-01-01

    Background & Aims Despite the use of administrative data to perform epidemiological and cost-effectiveness research on patients with hepatitis B or C virus (HBV, HCV), there are no data outside of the Veterans Health Administration validating whether International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) codes can accurately identify cirrhotic patients with HBV or HCV. The validation of such algorithms is necessary for future epidemiological studies. Methods We evaluated the positive predictive value (PPV) of ICD-9-CM codes for identifying chronic HBV or HCV among cirrhotic patients within the University of Pennsylvania Health System, a large network that includes a tertiary care referral center, a community-based hospital, and multiple outpatient practices across southeastern Pennsylvania and southern New Jersey. We reviewed a random sample of 200 cirrhotic patients with ICD-9-CM codes for HCV and 150 cirrhotic patients with ICD-9-CM codes for HBV. Results The PPV of 1 inpatient or 2 outpatient HCV codes was 88.0% (168/191, 95% CI: 82.5–92.2%), while the PPV of 1 inpatient or 2 outpatient HBV codes was 81.3% (113/139, 95% CI: 73.8–87.4%). Several variations of the primary coding algorithm were evaluated to determine if different combinations of inpatient and/or outpatient ICD-9-CM codes could increase the PPV of the coding algorithm. Conclusions ICD-9-CM codes can identify chronic HBV or HCV in cirrhotic patients with a high PPV, and can be used in future epidemiologic studies to examine disease burden and the proper allocation of resources. PMID:25335773

  20. Effect of N-acetylcysteine administration on homocysteine level, oxidative damage to proteins, and levels of iron (Fe) and Fe-related proteins in lead-exposed workers.

    PubMed

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Aleksandra; Romuk, Ewa; Rykaczewska-Czerwińska, Monika; Pawlas, Natalia; Birkner, Ewa

    2016-09-01

    N-Acetylcysteine (NAC) could be included in protocols designed for the treatment of lead toxicity. Therefore, in this study, we decided to investigate the influence of NAC administration on homocysteine (Hcy) levels, oxidative damage to proteins, and the levels of iron (Fe), transferrin (TRF), and haptoglobin (HPG) in lead (Pb)-exposed workers. The examined population (n = 171) was composed of male employees who worked with Pb. They were randomized into four groups. Workers who were not administered any antioxidants, drugs, vitamins, or dietary supplements were classified as the reference group (n = 49). The remaining three groups consisted of workers who were treated orally with NAC at three different doses (1 × 200, 2 × 200, or 2 × 400 mg) for 12 weeks. After the treatment, blood Pb levels significantly decreased in the groups receiving NAC compared with the reference group. The protein concentration was not affected by NAC administration. In contrast, Hcy levels significantly decreased or showed a strong tendency toward lower values depending on the NAC dose. Levels of the protein carbonyl groups were significantly decreased in all of the groups receiving NAC. Conversely, glutamate dehydrogenase activity was significantly elevated in all of the groups receiving NAC, while the level of protein thiol groups was significantly elevated only in the group receiving 200 mg of NAC. Treatment with NAC did not significantly affect Fe and TRF levels, whereas HPG levels showed a tendency toward lower values. Treatment with NAC normalized the level of Hcy and decreased oxidative stress as measured by the protein carbonyl content; this effect occurred in a dose-dependent manner. Moreover, small doses of NAC elevated the levels of protein thiol groups. Therefore, NAC could be introduced as an alternative therapy for chronic Pb toxicity in humans. © The Author(s) 2015.

  1. O-GlcNAc and the cardiovascular system.

    PubMed

    Dassanayaka, Sujith; Jones, Steven P

    2014-04-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The role of O-GlcNAc signaling in the pathogenesis of diabetic retinopathy.

    PubMed

    Semba, Richard D; Huang, Hu; Lutty, Gerard A; Van Eyk, Jennifer E; Hart, Gerald W

    2014-04-01

    Diabetic retinopathy is a leading cause of blindness worldwide. Despite laser and surgical treatments, antiangiogenic and other therapies, and strict metabolic control, many patients progress to visual impairment and blindness. New insights are needed into the pathophysiology of diabetic retinopathy in order to develop new methods to improve the detection and treatment of disease and the prevention of blindness. Hyperglycemia and diabetes result in increased flux through the hexosamine biosynthetic pathway, which, in turn, results in increased PTM of Ser/Thr residues of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is involved in regulation of many nuclear and cytoplasmic proteins in a manner similar to protein phosphorylation. Altered O-GlcNAc signaling has been implicated in the pathogenesis of diabetes and may play an important role in the pathogenesis of diabetic retinopathy. The goal of this review is to summarize the biology of the hexosamine biosynthesis pathway and O-GlcNAc signaling, to present the current evidence for the role of O-GlcNAc signaling in diabetes and diabetic retinopathy, and to discuss future directions for research on O-GlcNAc in the pathogenesis of diabetic retinopathy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc.

    PubMed

    Ruan, Yan; He, Jianrong; Wu, Wei; He, Ping; Tian, Yanping; Xiao, Lan; Liu, Gaoke; Wang, Jiali; Cheng, Yuda; Zhang, Shuo; Yang, Yi; Xiong, Jiaxiang; Zhao, Ke; Wan, Ying; Huang, He; Zhang, Junlei; Jian, Rui

    2017-07-18

    The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network. However, previous studies have predominantly focused on the role of Nac1 in psychomotor stimulant response and cancer pathogenesis. In this study, we report that Nac1 is a self-renewal promoting factor, but is not required for maintaining pluripotency of ESCs. Loss of function of Nac1 in ESCs results in a reduced proliferation rate and an enhanced differentiation propensity. Nac1 overexpression promotes ESC proliferation and delays ESC differentiation in the absence of leukemia inhibitory factor (LIF). Furthermore, we demonstrated that Nac1 directly binds to the c-Myc promoter and regulates c-Myc transcription. The study also revealed that the function of Nac1 in promoting ESC self-renewal appears to be partially mediated by c-Myc. These findings establish a functional link between the core and c-Myc-centered networks and provide new insights into mechanisms of stemness regulation in ESCs and cancer.

  4. The effect of N-acetyl-l-cysteine (NAC) on liver toxicity and clinical outcome after hematopoietic stem cell transplantation.

    PubMed

    El-Serafi, Ibrahim; Remberger, Mats; El-Serafi, Ahmed; Benkessou, Fadwa; Zheng, Wenyi; Martell, Eva; Ljungman, Per; Mattsson, Jonas; Hassan, Moustapha

    2018-05-29

    Busulphan (Bu) is a myeloablative drug used for conditioning prior to hematopoietic stem cell transplantation. Bu is predominantly metabolized through glutathione conjugation, a reaction that consumes the hepatic glutathione. N-acetyl-l-cysteine (NAC) is a glutathione precursor used in the treatment of acetaminophen hepatotoxicity. NAC does not interfere with the busulphan myeloablative effect. We investigated the effect of NAC concomitant treatment during busulphan conditioning on the liver enzymes as well as the clinical outcome. Prophylactic NAC treatment was given to 54 patients upon the start of busulphan conditioning. These patients were compared with 54 historical matched controls who did not receive NAC treatment. In patients treated with NAC, aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were significantly (P < 0.05) decreased after conditioning compared to their start values. Within the NAC-group, liver enzymes were normalized in those patients (30%) who had significantly high start values. No significant decrease in enzyme levels was observed in the control group. Furthermore, NAC affected neither Bu kinetics nor clinical outcome (sinusoidal obstruction syndrome incidence, graft-versus-host disease and/or graft failure). NAC is a potential prophylactic treatment for hepatotoxicity during busulphan conditioning. NAC therapy did not alter busulphan kinetics or affect clinical outcome.

  5. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings

    PubMed Central

    Mao, Hude; Wang, Hongwei; Liu, Shengxue; Li, Zhigang; Yang, Xiaohong; Yan, Jianbing; Li, Jiansheng; Tran, Lam-Son Phan; Qin, Feng

    2015-01-01

    Drought represents a major constraint on maize production worldwide. Understanding the genetic basis for natural variation in drought tolerance of maize may facilitate efforts to improve this trait in cultivated germplasm. Here, using a genome-wide association study, we show that a miniature inverted-repeat transposable element (MITE) inserted in the promoter of a NAC gene (ZmNAC111) is significantly associated with natural variation in maize drought tolerance. The 82-bp MITE represses ZmNAC111 expression via RNA-directed DNA methylation and H3K9 dimethylation when heterologously expressed in Arabidopsis. Increasing ZmNAC111 expression in transgenic maize enhances drought tolerance at the seedling stage, improves water-use efficiency and induces upregulation of drought-responsive genes under water stress. The MITE insertion in the ZmNAC111 promoter appears to have occurred after maize domestication and spread among temperate germplasm. The identification of this MITE insertion provides insight into the genetic basis for natural variation in maize drought tolerance. PMID:26387805

  6. Poly-LacNAc as an Age-Specific Ligand for Rotavirus P[11] in Neonates and Infants

    PubMed Central

    Liu, Yang; Huang, Pengwei; Jiang, Baoming; Tan, Ming; Morrow, Ardythe L.; Jiang, Xi

    2013-01-01

    Rotavirus (RV) P[11] is an unique genotype that infects neonates. The mechanism of such age-specific host restriction remains unknown. In this study, we explored host mucosal glycans as a potential age-specific factor for attachment of P[11] RVs. Using in vitro binding assays, we demonstrated that VP8* of a P[11] RV (N155) could bind saliva of infants (60.3%, N = 151) but not of adults (0%, N = 48), with a significantly negative correlation between binding of VP8* and ages of infants (P<0.01). Recognition to the infant saliva did not correlate with the ABO, secretor and Lewis histo-blood group antigens (HBGAs) but with the binding of the lectin Lycopersicon esculentum (LEA) that is known to recognize the oligomers of N-acetyllactosamine (LacNAc), a precursor of human HBGAs. Direct evidence of LacNAc involvement in P[11] binding was obtained from specific binding of VP8* with homopolymers of LacNAc in variable lengths through a glycan array analysis of 611 glycans. These results were confirmed by strong binding of VP8* to the Lec2 cell line that expresses LacNAc oligomers but not to the Lec8 cell line lacking the LacNAc. In addition, N155 VP8* and authentic P[11] RVs (human 116E and bovine B223) hemagglutinated human red blood cells that are known to express poly-LacNAc. The potential role of poly-LacNAc in host attachment and infection of RVs has been obtained by abrogation of 116E replication by the PAA-conjugated poly-LacNAc, human milk, and LEA positive infant saliva. Overall, our results suggested that the poly-LacNAc could serve as an age-specific receptor for P[11] RVs and well explained the epidemiology that P[11] RVs mainly infect neonates and young children. PMID:24244290

  7. Protein O-GlcNAc Modification Increases in White Blood Cells After a Single Bout of Physical Exercise.

    PubMed

    Nagy, Tamás; Kátai, Emese; Fisi, Viktória; Takács, Tamás Tibor; Stréda, Antal; Wittmann, István; Miseta, Attila

    2018-01-01

    Protein O-linked N -acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification influencing the function of many intracellular proteins. Recently it was revealed that O-GlcNAc regulation is modified under various stress states, including ischemia and oxidative stress. Aside from a few contradictory studies based on animal models, the effect of exercise on O-GlcNAc is unexplored. To evaluate O-GlcNAc levels in white blood cells (WBC) of human volunteers following physical exercise. Young (age 30 ± 5.2), healthy male volunteers ( n  = 6) were enlisted for the study. Blood parameters including metabolites, ions, "necro"-enzymes, and cell counts were measured before and after a single bout of exercise (2-mile run). From WBC samples, we performed western blots to detect O-GlcNAc modified proteins. The distribution of O-GlcNAc in WBC subpopulations was assessed by flow cytometry. Elevation of serum lactic acid (increased from 1.3 ± 0.4 to 6.9 ± 1.7 mM), creatinine (from 77.5 ± 6.3 U/L to 102.2 ± 7.0 μM), and lactate dehydrogenase (from 318.5 ± 26.2 to 380.5 ± 33.2 U/L) confirmed the effect of exercise. WBC count also significantly increased (from 6.6 ± 1.0 to 8.4 ± 1.4 G/L). The level of O-GlcNAc modified proteins in WBCs showed significant elevation after exercise (85 ± 51%, p  < 0.05). Flow cytometry revealed that most of this change could be attributed to lymphocytes and monocytes. Our results indicate that short-term exercise impacts the O-GlcNAc status of WBCs. O-GlcNAc modification could be a natural process by which physical activity modulates the immune system. Further research could elucidate the role of O-GlcNAc during exercise and validate O-GlcNAc as a biomarker for fitness assessment.

  8. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death.

    PubMed

    Wang, Boya; Guo, Xiaohua; Wang, Chen; Ma, Jieyu; Niu, Fangfang; Zhang, Hanfeng; Yang, Bo; Liang, Wanwan; Han, Feng; Jiang, Yuan-Qing

    2015-03-01

    NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola.

  9. Minimum Standards for Student Conduct and Discipline, Including Suggested Guidelines and Model Codes. Oregon Administrative Rules 21-050 -- 21-085.

    ERIC Educational Resources Information Center

    Parnell, Dale

    The guidelines and codes in this booklet were written to assist teachers and administrators strengthen their positions in times of legal and social confusion and in the face of challenges to administrative and staff authority. Model codes are provided for student (1) assembly, (2) dress and grooming, (3) motor vehicles, (4) search and seizure, (5)…

  10. PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine.

    PubMed

    Pascual, María Belén; Llebrés, María-Teresa; Craven-Bartle, Blanca; Cañas, Rafael A; Cánovas, Francisco M; Ávila, Concepción

    2018-05-01

    The transcriptional regulation of phenylalanine metabolism is particularly important in conifers, long-lived species that use large amounts of carbon in wood. Here, we show that the Pinus pinaster transcription factor, PpNAC1, is a main regulator of phenylalanine biosynthesis and utilization. A phylogenetic analysis classified PpNAC1 in the NST proteins group and was selected for functional characterization. PpNAC1 is predominantly expressed in the secondary xylem and compression wood of adult trees. Silencing of PpNAC1 in P. pinaster results in the alteration of stem vascular radial patterning and the down-regulation of several genes associated with cell wall biogenesis and secondary metabolism. Furthermore, transactivation and EMSA analyses showed that PpNAC1 is able to activate its own expression and PpMyb4 promoter, while PpMyb4 is able to activate PpMyb8, a transcriptional regulator of phenylalanine and lignin biosynthesis in maritime pine. Together, these results suggest that PpNAC1 is a functional ortholog of the ArabidopsisSND1 and NST1 genes and support the idea that key regulators governing secondary cell wall formation could be conserved between gymnosperms and angiosperms. Understanding the molecular switches controlling wood formation is of paramount importance for fundamental tree biology and paves the way for applications in conifer biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Results from the Veterans Health Administration ICD-10-CM/PCS Coding Pilot Study.

    PubMed

    Weems, Shelley; Heller, Pamela; Fenton, Susan H

    2015-01-01

    The Veterans Health Administration (VHA) of the US Department of Veterans Affairs has been preparing for the October 1, 2015, conversion to the International Classification of Diseases, Tenth Revision, Clinical Modification and Procedural Coding System (ICD-10-CM/PCS) for more than four years. The VHA's Office of Informatics and Analytics ICD-10 Program Management Office established an ICD-10 Learning Lab to explore expected operational challenges. This study was conducted to determine the effects of the classification system conversion on coding productivity. ICD codes are integral to VHA business processes and are used for purposes such as clinical studies, performance measurement, workload capture, cost determination, Veterans Equitable Resource Allocation (VERA) determination, morbidity and mortality classification, indexing of hospital records by disease and operations, data storage and retrieval, research purposes, and reimbursement. The data collection for this study occurred in multiple VHA sites across several months using standardized methods. It is commonly accepted that coding productivity will decrease with the implementation of ICD-10-CM/PCS. The findings of this study suggest that the decrease will be more significant for inpatient coding productivity (64.5 percent productivity decrease) than for ambulatory care coding productivity (6.7 percent productivity decrease). This study reveals the following important points regarding ICD-10-CM/PCS coding productivity: 1. Ambulatory care ICD-10-CM coding productivity is not expected to decrease as significantly as inpatient ICD-10-CM/PCS coding productivity. 2. Coder training and type of record (inpatient versus outpatient) affect coding productivity. 3. Inpatient coding productivity is decreased when a procedure requiring ICD-10-PCS coding is present. It is highly recommended that organizations perform their own analyses to determine the effects of ICD-10-CM/PCS implementation on coding productivity.

  12. Results from the Veterans Health Administration ICD-10-CM/PCS Coding Pilot Study

    PubMed Central

    Weems, Shelley; Heller, Pamela; Fenton, Susan H.

    2015-01-01

    The Veterans Health Administration (VHA) of the US Department of Veterans Affairs has been preparing for the October 1, 2015, conversion to the International Classification of Diseases, Tenth Revision, Clinical Modification and Procedural Coding System (ICD-10-CM/PCS) for more than four years. The VHA's Office of Informatics and Analytics ICD-10 Program Management Office established an ICD-10 Learning Lab to explore expected operational challenges. This study was conducted to determine the effects of the classification system conversion on coding productivity. ICD codes are integral to VHA business processes and are used for purposes such as clinical studies, performance measurement, workload capture, cost determination, Veterans Equitable Resource Allocation (VERA) determination, morbidity and mortality classification, indexing of hospital records by disease and operations, data storage and retrieval, research purposes, and reimbursement. The data collection for this study occurred in multiple VHA sites across several months using standardized methods. It is commonly accepted that coding productivity will decrease with the implementation of ICD-10-CM/PCS. The findings of this study suggest that the decrease will be more significant for inpatient coding productivity (64.5 percent productivity decrease) than for ambulatory care coding productivity (6.7 percent productivity decrease). This study reveals the following important points regarding ICD-10-CM/PCS coding productivity: Ambulatory care ICD-10-CM coding productivity is not expected to decrease as significantly as inpatient ICD-10-CM/PCS coding productivity.Coder training and type of record (inpatient versus outpatient) affect coding productivity.Inpatient coding productivity is decreased when a procedure requiring ICD-10-PCS coding is present. It is highly recommended that organizations perform their own analyses to determine the effects of ICD-10-CM/PCS implementation on coding productivity. PMID:26396553

  13. Impact of combined C1 esterase inhibitor/coagulation factor XIII or N-acetylcysteine/tirilazad mesylate administration on leucocyte adherence and cytokine release in experimental endotoxaemia.

    PubMed

    Birnbaum, J; Klotz, E; Spies, C D; Mueller, J; Vargas Hein, O; Feller, J; Lehmann, C

    2008-01-01

    We determined the effects of combinations of C1 esterase inhibitor (C1-INH) with factor XIII and of N-acetylcysteine (NAC) with tirilazad mesylate (TM) during lipo-polysaccharide (LPS)-induced endotoxaemia in rats. Forty Wistar rats were divided into four groups: the control (CON) group received no LPS; the LPS, C1-INH + factor XIII and NAC + TM groups received endotoxin infusions (5 mg/kg per h). After 30 min of endotoxaemia, 100 U/kg C1-INH + 50 U/kg factor XIII was administered to the C1-INH + factor XIII group, and 150 mg/kg NAC + 10 mg/kg TM was administered in the NAC + TM group. Administration of C1-INH + factor XIII and NAC + TM both resulted in reduced leucocyte adherence and reduced levels of interleukin-1beta (IL-1beta). The LPS-induced increase in IL-6 levels was amplified by both drug combinations. There was no significant effect on mesenteric plasma extravasation. In conclusion, the administration of C1-INH + factor XIII and NAC + TM reduced endothelial leucocyte adherence and IL-1beta plasma levels, but increased IL-6 levels.

  14. Overexpression of TaNAC2D Displays Opposite Responses to Abiotic Stresses between Seedling and Mature Stage of Transgenic Arabidopsis

    PubMed Central

    Huang, Quanjun; Wang, Yan

    2016-01-01

    Environmental stresses frequently affect plant growth and development, and many genes have been found to be induced by unfavorable environmental conditions. Here, we reported the biological functions of TaNAC2D, a stress-related NAC (NAM, ATAF, and CUC) gene from wheat. TaNAC2D showed transcriptional activator activity in yeast. TaNAC2D-GFP fusion protein was localized in the nucleus of wheat mesophyll protoplasts. TaNAC2D transcript abundance was significantly induced by NaCl, PEG6000, and abscisic acid (ABA) at seedling stage, and repressed by NaCl and PEG6000 at mature plant stage. When TaNAC2D was introduced into Arabidopsis, the 35-day-old soil-grown TaNAC2D-overexpression (TaNAC2D-OX) plants displayed slower stomatal closure, higher water loss rate, and more sensitivity to salt and drought stresses compared with WT plants. In contrast, TaNAC2D-OX seedlings, grown on 1/2 MS medium supplemented with different concentrations of NaCl, Mannitol, and MV, had enhanced tolerances to salt, osmotic and oxidative stresses during seed germination and post-germination periods. The opposite stress-responsive phenotypes of transgenic Arabidopsis were consistent with the expression patterns of TaNAC2D in wheat. Moreover, under high salinity and dehydration conditions, three marker genes, including NCED3, RD29A, and RD29B, were down-regulated in 35-day-old TaNAC2D-OX plants grown in soil and up-regulated in 14-day-old TaNAC2D-OX seedlings grown on 1/2 MS medium. Our results suggest that the change in growth stages and environmental conditions may regulate TaNAC2D’s function. PMID:27933076

  15. Administrative database concerns: accuracy of International Classification of Diseases, Ninth Revision coding is poor for preoperative anemia in patients undergoing spinal fusion.

    PubMed

    Golinvaux, Nicholas S; Bohl, Daniel D; Basques, Bryce A; Grauer, Jonathan N

    2014-11-15

    Cross-sectional study. To objectively evaluate the ability of International Classification of Diseases, Ninth Revision (ICD-9) codes, which are used as the foundation for administratively coded national databases, to identify preoperative anemia in patients undergoing spinal fusion. National database research in spine surgery continues to rise. However, the validity of studies based on administratively coded data, such as the Nationwide Inpatient Sample, are dependent on the accuracy of ICD-9 coding. Such coding has previously been found to have poor sensitivity to conditions such as obesity and infection. A cross-sectional study was performed at an academic medical center. Hospital-reported anemia ICD-9 codes (those used for administratively coded databases) were directly compared with the chart-documented preoperative hematocrits (true laboratory values). A patient was deemed to have preoperative anemia if the preoperative hematocrit was less than the lower end of the normal range (36.0% for females and 41.0% for males). The study included 260 patients. Of these, 37 patients (14.2%) were anemic; however, only 10 patients (3.8%) received an "anemia" ICD-9 code. Of the 10 patients coded as anemic, 7 were anemic by definition, whereas 3 were not, and thus were miscoded. This equates to an ICD-9 code sensitivity of 0.19, with a specificity of 0.99, and positive and negative predictive values of 0.70 and 0.88, respectively. This study uses preoperative anemia to demonstrate the potential inaccuracies of ICD-9 coding. These results have implications for publications using databases that are compiled from ICD-9 coding data. Furthermore, the findings of the current investigation raise concerns regarding the accuracy of additional comorbidities. Although administrative databases are powerful resources that provide large sample sizes, it is crucial that we further consider the quality of the data source relative to its intended purpose.

  16. Epigenetic activation of MGAT3 and corresponding bisecting GlcNAc shortens the survival of cancer patients.

    PubMed

    Kohler, Reto S; Anugraham, Merrina; López, Mónica Núñez; Xiao, Christina; Schoetzau, Andreas; Hettich, Timm; Schlotterbeck, Goetz; Fedier, André; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-08-09

    Bisecting GlcNAc on N-glycoproteins is described in E-cadherin-, EGF-, Wnt- and integrin- cancer-associated signaling pathways. However, the mechanisms regulating bisecting GlcNAc expression are not clear. Bisecting GlcNAc is attached to N-glycans through beta 1-4 N-acetylglucosaminyl transferase III (MGAT3), which is encoded by two exons flanked by high-density CpG islands. Despite a recently described correlation of MGAT3 and bisecting GlcNAc in ovarian cancer cells, it remains unknown whether DNA methylation is causative for the presence of bisecting GlcNAc. Here, we narrow down the regulatory genomic region and show that reconstitution of MGAT3 expression with 5-Aza coincides with reduced DNA methylation at the MGAT3 transcription start site. The presence of bisecting GlcNAc on released N-glycans was detected by mass spectrometry (LC-ESI-qTOF-MS/MS) in serous ovarian cancer cells upon DNA methyltransferase inhibition. The regulatory impact of DNA methylation on MGAT3 was further evaluated in 18 TCGA cancer types (n = 6118 samples) and the results indicate an improved overall survival in patients with reduced MGAT3 expression, thereby identifying long-term survivors of high-grade serous ovarian cancers (HGSOC). Epigenetic activation of MGAT3 was also confirmed in basal-like breast cancers sharing similar molecular and genetic features with HGSOC. These results provide novel insights into the epigenetic regulation of MGAT3/bisecting GlcNAc and demonstrate the importance of N-glycosylation in cancer progression.

  17. O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain.

    PubMed

    Farach, Andrew M; Galileo, Deni S

    2008-12-01

    We examined the post-translational modification of intracellular proteins by beta-O-linked N-acetylglucosamine (O-GlcNAc) with regard to neurofilament phosphorylation in the developing chick optic tectum. A regulated developmental pattern of O-GlcNAcylation was discovered in the developing brain. Most notably, discernible staining occurs along radial glial filaments but not along neuronal filaments in vivo. Immunohistochemical analyses in sections of progressive stages of development suggest upregulation of O-GlcNAc in the ependyma, tectofugal neuron bodies, and radial glial processes, but not in axons. In contrast, double-label immunostaining of monolayer cultures made from dissociated embryonic day (E) 7 optic tecta revealed O-GlcNAcylation of most axons. Labeling of brain sections together with Western blot analyses showed O-GlcNAc modification of a few discrete proteins throughout development, and suggested vimentin as the protein in radial glia. Immunoprecipitation of vimentin from E9 whole brain lysates confirmed O-GlcNAcylation of vimentin in development. These results indicate a regulated pattern of O-GlcNAc modification of vimentin filaments, which in turn suggests a role for O-GlcNAc-modified intermediate filaments in radial glia, but not in neurons during brain development. The control mechanisms that regulate this pattern in vivo, however, are disrupted when cells are placed in vitro.

  18. Differential Expression Analysis of a Subset of Drought-Responsive GmNAC Genes in Two Soybean Cultivars Differing in Drought Tolerance

    PubMed Central

    Thao, Nguyen Phuong; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Van Ha, Chien; Tran, Lam-Son Phan

    2013-01-01

    The plant-specific NAC transcription factors play important roles in plant response to drought stress. Here, we have compared the expression levels of a subset of GmNAC genes in drought-tolerant DT51 and drought-sensitive MTD720 under both normal and drought stress conditions aimed at identifying correlation between GmNAC expression levels and drought tolerance degree, as well as potential GmNAC candidates for genetic engineering. The expression of 23 selected dehydration-responsive GmNACs was assessed in both stressed and unstressed root tissues of DT51 and MTD720 using real-time quantitative PCR. The results indicated that expression of GmNACs was genotype-dependent. Seven and 13 of 23 tested GmNACs showed higher expression levels in roots of DT51 in comparison with MTD720 under normal and drought stress conditions, respectively, whereas none of them displayed lower transcript levels under any conditions. This finding suggests that the higher drought tolerance of DT51 might be positively correlated with the higher induction of the GmNAC genes during water deficit. The drought-inducible GmNAC011 needs to be mentioned as its transcript accumulation was more than 76-fold higher in drought-stressed DT51 roots relative to MTD720 roots. Additionally, among the GmNAC genes examined, GmNAC085, 092, 095, 101 and 109 were not only drought-inducible but also more highly up-regulated in DT51 roots than in that of MTD720 under both treatment conditions. These data together suggest that GmNAC011, 085, 092, 095, 101 and 109 might be promising candidates for improvement of drought tolerance in soybean by biotechnological approaches. PMID:24322442

  19. Genome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish (Raphanus sativus L.)

    PubMed Central

    Muleke, Everlyne M’mbone; Jabir, Bashir Mohammed; Xie, Yang; Zhu, Xianwen; Cheng, Wanwan

    2017-01-01

    NAC (NAM, no apical meristem; ATAF, Arabidopsis transcription activation factor and CUC, cup-shaped cotyledon) proteins are among the largest transcription factor (TF) families playing fundamental biological processes, including cell expansion and differentiation, and hormone signaling in response to biotic and abiotic stresses. In this study, 172 RsNACs comprising 17 membrane-bound members were identified from the whole radish genome. In total, 98 RsNAC genes were non-uniformly distributed across the nine radish chromosomes. In silico analysis revealed that expression patterns of several NAC genes were tissue-specific such as a preferential expression in roots and leaves. In addition, 21 representative NAC genes were selected to investigate their responses to heavy metals (HMs), salt, heat, drought and abscisic acid (ABA) stresses using real-time polymerase chain reaction (RT-qPCR). As a result, differential expressions among these genes were identified where RsNAC023 and RsNAC080 genes responded positively to all stresses except ABA, while RsNAC145 responded more actively to salt, heat and drought stresses compared with other genes. The results provides more valuable information and robust candidate genes for future functional analysis for improving abiotic stress tolerances in radish. PMID:29259849

  20. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  1. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants

    PubMed Central

    Pereira-Santana, Alejandro; Alcaraz, Luis David; Castaño, Enrique; Sanchez-Calderon, Lenin; Sanchez-Teyer, Felipe; Rodriguez-Zapata, Luis

    2015-01-01

    NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families. PMID:26569117

  2. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants.

    PubMed

    Pereira-Santana, Alejandro; Alcaraz, Luis David; Castaño, Enrique; Sanchez-Calderon, Lenin; Sanchez-Teyer, Felipe; Rodriguez-Zapata, Luis

    2015-01-01

    NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.

  3. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat

    PubMed Central

    Ruan, Hai-Bin; Dietrich, Marcelo O.; Liu, Zhong-Wu; Zimmer, Marcelo R.; Li, Min-Dian; Singh, Jay Prakash; Zhang, Kaisi; Yin, Ruonan; Wu, Jing; Horvath, Tamas L.; Yang, Xiaoyong

    2014-01-01

    SUMMARY Induction of beige cells causes the browning of white fat and improves energy metabolism. However, the central mechanism that controls adipose tissue browning and its physiological relevance are largely unknown. Here we demonstrate that fasting and chemical-genetic activation of orexigenic AgRP neurons in the hypothalamus suppress the browning of white fat. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins regulates fundamental cellular processes. The levels of O-GlcNAc transferase (OGT) and O-GlcNAc modification are enriched in AgRP neurons and are elevated by fasting. Genetic ablation of OGT in AgRP neurons inhibits neuronal excitability through the voltage-dependent potassium channel, promotes white adipose tissue browning, and protects mice against diet-induced obesity and insulin resistance. These data reveal adipose tissue browning as a highly dynamic physiological process under central control, in which O-GlcNAc signaling in AgRP neurons is essential for suppressing thermogenesis to conserve energy in response to fasting. PMID:25303527

  4. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses.

    PubMed

    Pascual, Ma Belén; Cánovas, Francisco M; Ávila, Concepción

    2015-10-24

    NAC transcription factors comprise a large plant-specific gene family involved in the regulation of diverse biological processes. Despite the growing number of studies on NAC transcription factors in various species, little information is available about this family in conifers. The goal of this study was to identify the NAC transcription family in maritime pine (Pinus pinaster), to characterize ATAF-like genes in response to various stresses and to study their molecular regulation. We have isolated two maritime pine NAC genes and using a transient expression assay in N. benthamiana leaves estudied the promoter jasmonate response. In this study, we identified 37 NAC genes from maritime pine and classified them into six main subfamilies. The largest group includes 12 sequences corresponding to stress-related genes. Two of these NAC genes, PpNAC2 and PpNAC3, were isolated and their expression profiles were examined at various developmental stages and in response to various types of stress. The expression of both genes was strongly induced by methyl jasmonate (MeJA), mechanical wounding, and high salinity. The promoter regions of these genes were shown to contain cis-elements involved in the stress response and plant hormonal regulation, including E-boxes, which are commonly found in the promoters of genes that respond to jasmonate, and binding sites for bHLH proteins. Using a transient expression assay in N. benthamiana leaves, we found that the promoter of PpNAC3 was rapidly induced upon MeJA treatment, while this response disappeared in plants in which the transcription factor NbbHLH2 was silenced. Our results suggest that PpNAC2 and PpNAC3 encode stress-responsive NAC transcription factors involved in the jasmonate response in pine. Furthermore, these data also suggest that the jasmonate signaling pathway is conserved between angiosperms and gymnosperms. These findings may be useful for engineering stress tolerance in pine via biotechnological approaches.

  5. Accuracy of diagnosis codes to identify febrile young infants using administrative data.

    PubMed

    Aronson, Paul L; Williams, Derek J; Thurm, Cary; Tieder, Joel S; Alpern, Elizabeth R; Nigrovic, Lise E; Schondelmeyer, Amanda C; Balamuth, Fran; Myers, Angela L; McCulloh, Russell J; Alessandrini, Evaline A; Shah, Samir S; Browning, Whitney L; Hayes, Katie L; Feldman, Elana A; Neuman, Mark I

    2015-12-01

    Administrative data can be used to determine optimal management of febrile infants and aid clinical practice guideline development. Determine the most accurate International Classification of Diseases, Ninth Revision (ICD-9) diagnosis coding strategies for identification of febrile infants. Retrospective cross-sectional study. Eight emergency departments in the Pediatric Health Information System. Infants aged <90 days evaluated between July 1, 2012 and June 30, 2013 were randomly selected for medical record review from 1 of 4 ICD-9 diagnosis code groups: (1) discharge diagnosis of fever, (2) admission diagnosis of fever without discharge diagnosis of fever, (3) discharge diagnosis of serious infection without diagnosis of fever, and (4) no diagnosis of fever or serious infection. The ICD-9 diagnosis code groups were compared in 4 case-identification algorithms to a reference standard of fever ≥100.4°F documented in the medical record. Algorithm predictive accuracy was measured using sensitivity, specificity, and negative and positive predictive values. Among 1790 medical records reviewed, 766 (42.8%) infants had fever. Discharge diagnosis of fever demonstrated high specificity (98.2%, 95% confidence interval [CI]: 97.8-98.6) but low sensitivity (53.2%, 95% CI: 50.0-56.4). A case-identification algorithm of admission or discharge diagnosis of fever exhibited higher sensitivity (71.1%, 95% CI: 68.2-74.0), similar specificity (97.7%, 95% CI: 97.3-98.1), and the highest positive predictive value (86.9%, 95% CI: 84.5-89.3). A case-identification strategy that includes admission or discharge diagnosis of fever should be considered for febrile infant studies using administrative data, though underclassification of patients is a potential limitation. © 2015 Society of Hospital Medicine.

  6. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses.

    PubMed

    Shah, Syed Tariq; Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Arain, Saima; Yu, Shuxun

    2013-12-01

    NAC (NAM, ATAF, and CUC) is a plant-specific transcription factor family with diverse roles in plant development and stress regulation. In this report, stress-responsive NAC genes (GhNAC8-GhNAC17) isolated from cotton (Gossypium hirsutum L.) were characterised in the context of leaf senescence and stress tolerance. The characterisation of NAC genes during leaf senescence has not yet been reported for cotton. Based on the sequence characterisation, these GhNACs could be classified into three groups belonging to three known NAC sub-families. Their predicted amino acid sequences exhibited similarities to NAC genes from other plant species. Senescent leaves were the sites of maximum expression for all GhNAC genes except GhNAC10 and GhNAC13, which showed maximum expression in fibres, collected from 25 days post anthesis (DPA) plants. The ten GhNAC genes displayed differential expression patterns and levels during natural and induced leaf senescence. Quantitative RT-PCR and promoter analyses suggest that these genes are induced by ABA, ethylene, drought, salinity, cold, heat, and other hormonal treatments. These results support a role for cotton GhNAC genes in transcriptional regulation of leaf senescence, stress tolerance and other developmental stages of cotton. © 2013.

  7. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    PubMed

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Using Procedure Codes to Define Radiation Toxicity in Administrative Data: The Devil is in the Details.

    PubMed

    Meyer, Anne-Marie; Kuo, Tzy-Mey; Chang, YunKyung; Carpenter, William R; Chen, Ronald C; Sturmer, Til

    2017-05-01

    Systematic coding systems are used to define clinically meaningful outcomes when leveraging administrative claims data for research. How and when these codes are applied within a research study can have implications for the study validity and their specificity can vary significantly depending on treatment received. Data are from the Surveillance, Epidemiology, and End Results-Medicare linked dataset. We use propensity score methods in a retrospective cohort of prostate cancer patients first examined in a recently published radiation oncology comparative effectiveness study. With the narrowly defined outcome definition, the toxicity event outcome rate ratio was 0.88 per 100 person-years (95% confidence interval, 0.71-1.08). With the broadly defined outcome, the rate ratio was comparable, with 0.89 per 100 person-years (95% confidence interval, 0.76-1.04), although individual event rates were doubled. Some evidence of surveillance bias was suggested by a higher rate of endoscopic procedures the first year of follow-up in patients who received proton therapy compared with those receiving intensity-modulated radiation treatment (11.15 vs. 8.90, respectively). This study demonstrates the risk of introducing bias through subjective application of procedure codes. Careful consideration is required when using procedure codes to define outcomes in administrative data.

  9. Synthesis of the 3-sulfates of N-acetylcysteine conjugated bile acids (BA-NACs) and their transient formation from BA-NACs and subsequent hydrolysis by a rat liver cytosolic fraction as shown by liquid chromatography/electrospray ionization-mass spectrometry.

    PubMed

    Mitamura, Kuniko; Sakai, Toshihiro; Nakai, Risa; Wakamiya, Tateaki; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo

    2011-06-01

    Previous work from this laboratory has reported the chemical synthesis of N-acetylcysteine (NAC) conjugates of natural bile acids (BAs) and shown that such novel conjugates can be formed in vivo in rats to which NAC has been administered. The subsequent fate of such novel conjugates is not known. One possible biotransformation is sulfation, a major pathway for BAs N-acylamidates in patients with cholestatic liver disease. Here, we report the chemical synthesis of the 3-sulfates of the S-acyl NAC conjugates of five natural BAs (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic). We also measured the sulfation of N-acetylcysteine-natural bile acid (BA-NAC) conjugates when they were incubated with a rat liver cytosolic fraction. The chemical structures of the BA-NAC 3-sulfates were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation of singly and doubly charged deprotonated molecules, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. When BA-NACs were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate was added, sulfation occurred, but the dominant reaction was hydrolysis of the S-acyl linkage to form the unconjugated BAs. Subsequent sulfation occurred at C-3 on the unconjugated BAs that had been formed from the BA-NACs. Such sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus, NAC conjugates of BAs as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.

  10. F44. AN ADD-ON TRIAL WITH N-ACETYL-CYSTEINE (NAC) IN EARLY PSYCHOSIS PATIENTS: TOWARDS BIOMARKER GUIDED TREATMENT

    PubMed Central

    Conus, Philippe; Fournier, Margot; Xin, Lijing; Cleusix, Martine; Baumann, Philipp S; Ferrari, Carina; Cousins, Ann; Alameda, Luis; Gholam-Razaee, Mehdi; Golay, Philippe; Jenni, Raoul; Woo, Tsung-Ung Wilson; Keshavan, Matcheri; Eap, Chin B; Wojcik, Joanne; Cuenod, Michel; Buclin, Thierry; Gruetter, Rolf; Seidman, Larry; Do, Kim

    2018-01-01

    Abstract Background Oxidative stress, coupled with dysregulation of inflammation, NMDAR and dopamine, is involved in schizophrenia (SZ) pathophysiology. Earlier add-on clinical trials showed in chronic SZ patients that NAC, a precursor of glutathione (GSH), an important cerebral antioxidant, improved negative symptoms, mismatch negativity and local synchronization. We hypothesized that NAC at an earlier stage of illness would have a greater impact. Methods Early psychosis patients (EP, less than 5 years of illness, N=63; NAC=32, placebo=31) were supplemented with NAC (2.7g/day, 6 months) in a double-blind randomized placebo-controlled trial. Outcome measures: PANSS and neurocognition (MATRICS Consensus Cognitive Battery; n=36); quantification of medial prefronfal cortex glutathione (GSHmPFC) by 1H-magnetic-resonance-spectroscopy, of white matter diffusion properties estimated by generalized fractional anisotropy (gFA) computed from diffusion spectrum imaging (DSI), of blood cells GSH (GSHBC) and GSH peroxidase activity (GPxBC) at start and end of trial Results While PANSS negative and positive were not affected by NAC, NAC improved Processing Speed (NAC > Placebo; F(1, 30)=5.849, p=.022), favoring 2 of 3 processing speed tasks (Trail Making A, F(1, 30)=4.279, p=.048 & Verbal Fluency, F(1, 30)=5.749, p=.023). GSHmPFC (+23%, p=0.005) and GSHBC (+19%, p=0.05) were increased following NAC treatment. In patients with high-baseline GPxBC (>22.3U/gHb), subgroup explorations revealed an improvement of PANSS positive compared to placebo (p=0.02). The change of PANSS positive correlated negatively with that of GPxBC activity, showing that the improvement paralleled the restoration of redox status. NAC group showed 11% increase in fornix white matter integrity as measured by gFA, correlating with an increase in GSHmPFC over the 6-months period. Discussion This is the first clinical trial assessing the impact of NAC treatment in a sample of EP and the potential predictive role

  11. Identifying Falls Risk Screenings Not Documented with Administrative Codes Using Natural Language Processing

    PubMed Central

    Zhu, Vivienne J; Walker, Tina D; Warren, Robert W; Jenny, Peggy B; Meystre, Stephane; Lenert, Leslie A

    2017-01-01

    Quality reporting that relies on coded administrative data alone may not completely and accurately depict providers’ performance. To assess this concern with a test case, we developed and evaluated a natural language processing (NLP) approach to identify falls risk screenings documented in clinical notes of patients without coded falls risk screening data. Extracting information from 1,558 clinical notes (mainly progress notes) from 144 eligible patients, we generated a lexicon of 38 keywords relevant to falls risk screening, 26 terms for pre-negation, and 35 terms for post-negation. The NLP algorithm identified 62 (out of the 144) patients who falls risk screening documented only in clinical notes and not coded. Manual review confirmed 59 patients as true positives and 77 patients as true negatives. Our NLP approach scored 0.92 for precision, 0.95 for recall, and 0.93 for F-measure. These results support the concept of utilizing NLP to enhance healthcare quality reporting. PMID:29854264

  12. Defining the carbohydrate specificities of Abrus precatorius agglutinin as T (Gal beta 1----3GalNAc) greater than I/II (Gal beta 1----3/4GlcNAc).

    PubMed

    Wu, A M; Lin, S R; Chin, L K; Chow, L P; Lin, J Y

    1992-09-25

    The combining site of the nontoxic carbohydrate binding protein (Abrus precatorius agglutinin, APA) purified from the needs of Abrus precatorius (Jequirity bean), was studied by quantitative precipitin and precipitin-inhibition assays. Of 26 glycoproteins and polysaccharides tested, all, except sialic acid-containing glycoproteins and desialized ovine salivary glycoproteins, reacted strongly with the lectin, and precipitated over 70% of the lectin added, indicating that APA has a broad range of affinity and recognizes (internal) Gal beta 1----sequences of carbohydrate chains. The strong reaction with desialized porcine and rat salivary glycoproteins as well as pneumococcus type XIV polysaccharide suggests that APA has affinity for one or more of the following carbohydrate sequences: Thomsen-Friedenreich (T, Gal beta 1----3GalNAc), blood group precursor type I and/or type II (Gal beta 1----3/4GlcNAc) disaccharide determinants of complex carbohydrates. Among the oligosaccharides tested, the T structure was the best inhibitor; it was 2.4 and 3.2 times more active than type II and type I sequences, respectively. The blood group I Ma-active trisaccharide, Gal beta 1----4GlcNAc beta 1----6Gal, was about as active as the corresponding disaccharide (II). From the above results, we conclude that the size of the combining site of the A. precatorius agglutinin is probably as large as a disaccharide and most strongly complementary to the Gal beta 1----3GalNAc (T determinant) sequence. The carbohydrate specificities of this lectin will be further investigated once the related oligosaccharide structures become available.

  13. Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli.

    PubMed

    Lauber, Jennifer; Handrick, René; Leptihn, Sebastian; Dürre, Peter; Gaisser, Sabine

    2015-01-13

    Recombinant protein-based therapeutics have become indispensable for the treatment of many diseases. They are produced using well-established expression systems based on bacteria, yeast, insect and mammalian cells. The majority of therapeutic proteins are glycoproteins and therefore the post-translational attachment of sugar residues is required. The development of an engineered Escherichia coli-based expression system for production of human glycoproteins could potentially lead to increased yields, as well as significant decreases in processing time and costs. This work describes the expression of functional human-derived glycosyltransferase UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAcT2) in a recombinant E. coli strain. For expression, a codon-optimised gene encoding amino acids 52-571 of GalNAcT2 lacking the transmembrane N-terminal domain was inserted into a pET-23 derived vector encoding a polyhistidine-tag which was translationally fused to the N-terminus of the glycosyltransferase (HisDapGalNAcT2). The glycosyltransferase was produced in E. coli using a recently published expression system. Soluble HisDapGalNAcT2 produced in SHuffle® T7 host cells was purified using nickel affinity chromatography and was subsequently analysed by size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) and circular dichroism spectroscopy to determine molecular mass, folding state and thermal transitions of the protein. The activity of purified HisDapGalNAcT2 was monitored using a colorimetric assay based on the release of phosphate during transfer of glycosyl residues to a model acceptor peptide or, alternatively, to the granulocyte-colony stimulating growth factor (G-CSF). Modifications were assessed by Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry analysis (MALDI-TOF-MS) and Electrospray Mass Spectrometry analysis (ESI-MS). The results clearly indicate the glycosylation of the acceptor peptide and

  14. Bar Code Medication Administration Technology: Characterization of High-Alert Medication Triggers and Clinician Workarounds.

    PubMed

    Miller, Daniel F; Fortier, Christopher R; Garrison, Kelli L

    2011-02-01

    Bar code medication administration (BCMA) technology is gaining acceptance for its ability to prevent medication administration errors. However, studies suggest that improper use of BCMA technology can yield unsatisfactory error prevention and introduction of new potential medication errors. To evaluate the incidence of high-alert medication BCMA triggers and alert types and discuss the type of nursing and pharmacy workarounds occurring with the use of BCMA technology and the electronic medication administration record (eMAR). Medication scanning and override reports from January 1, 2008, through November 30, 2008, for all adult medical/surgical units were retrospectively evaluated for high-alert medication system triggers, alert types, and override reason documentation. An observational study of nursing workarounds on an adult medicine step-down unit was performed and an analysis of potential pharmacy workarounds affecting BCMA and the eMAR was also conducted. Seventeen percent of scanned medications triggered an error alert of which 55% were for high-alert medications. Insulin aspart, NPH insulin, hydromorphone, potassium chloride, and morphine were the top 5 high-alert medications that generated alert messages. Clinician override reasons for alerts were documented in only 23% of administrations. Observational studies assessing for nursing workarounds revealed a median of 3 clinician workarounds per administration. Specific nursing workarounds included a failure to scan medications/patient armband and scanning the bar code once the dosage has been removed from the unit-dose packaging. Analysis of pharmacy order entry process workarounds revealed the potential for missed doses, duplicate doses, and doses being scheduled at the wrong time. BCMA has the potential to prevent high-alert medication errors by alerting clinicians through alert messages. Nursing and pharmacy workarounds can limit the recognition of optimal safety outcomes and therefore workflow processes

  15. Accuracy of Diagnosis Codes to Identify Febrile Young Infants Using Administrative Data

    PubMed Central

    Aronson, Paul L.; Williams, Derek J.; Thurm, Cary; Tieder, Joel S.; Alpern, Elizabeth R.; Nigrovic, Lise E.; Schondelmeyer, Amanda C.; Balamuth, Fran; Myers, Angela L.; McCulloh, Russell J.; Alessandrini, Evaline A.; Shah, Samir S.; Browning, Whitney L.; Hayes, Katie L.; Feldman, Elana A.; Neuman, Mark I.

    2015-01-01

    Background Administrative data can be used to determine optimal management of febrile infants and aid clinical practice guideline development. Objective Determine the most accurate International Classification of Diseases, 9th revision (ICD-9) diagnosis coding strategies for identification of febrile infants. Design Retrospective cross-sectional study. Setting Eight emergency departments in the Pediatric Health Information System. Patients Infants age < 90 days evaluated between July 1, 2012 and June 30, 2013 were randomly selected for medical record review from one of four ICD-9 diagnosis code groups: 1) discharge diagnosis of fever, 2) admission diagnosis of fever without discharge diagnosis of fever, 3) discharge diagnosis of serious infection without diagnosis of fever, and 4) no diagnosis of fever or serious infection. Exposure The ICD-9 diagnosis code groups were compared in four case-identification algorithms to a reference standard of fever ≥ 100.4°F documented in the medical record. Measurements Algorithm predictive accuracy was measured using sensitivity, specificity, negative and positive predictive values. Results Among 1790 medical records reviewed, 766 (42.8%) infants had fever. Discharge diagnosis of fever demonstrated high specificity (98.2%, 95% confidence interval [CI]: 97.8-98.6) but low sensitivity (53.2%, 95% CI: 50.0-56.4). A case-identification algorithm of admission or discharge diagnosis of fever exhibited higher sensitivity (71.1%, 95% CI: 68.2-74.0), similar specificity (97.7%, 95% CI: 97.3-98.1), and the highest positive predictive value (86.9%, 95% CI: 84.5-89.3). Conclusions A case-identification strategy that includes admission or discharge diagnosis of fever should be considered for febrile infant studies using administrative data, though under-classification of patients is a potential limitation. PMID:26248691

  16. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  17. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-08-05

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.

  18. Precision 3d Surface Reconstruction from Lro Nac Images Using Semi-Global Matching with Coupled Epipolar Rectification

    NASA Astrophysics Data System (ADS)

    Hu, H.; Wu, B.

    2017-07-01

    The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity

  19. Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation.

    PubMed

    Thompson, John W; Griffin, Matthew E; Hsieh-Wilson, Linda C

    2018-01-01

    The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine/threonine residues of proteins is a ubiquitous posttranslational modification found in all multicellular organisms. Like phosphorylation, O-GlcNAc glycosylation (O-GlcNAcylation) is inducible and regulates a myriad of physiological and pathological processes. However, understanding the diverse functions of O-GlcNAcylation is often challenging due to the difficulty of detecting and quantifying the modification. Thus, robust methods to study O-GlcNAcylation are essential to elucidate its key roles in the regulation of individual proteins, complex cellular processes, and disease. In this chapter, we describe a set of chemoenzymatic labeling methods to (1) detect O-GlcNAcylation on proteins of interest, (2) monitor changes in both the total levels of O-GlcNAcylation and its stoichiometry on proteins of interest, and (3) enable mapping of O-GlcNAc to specific serine/threonine residues within proteins to facilitate functional studies. First, we outline a procedure for the expression and purification of a multiuse mutant galactosyltransferase enzyme (Y289L GalT). We then describe the use of Y289L GalT to modify O-GlcNAc residues with a functional handle, N-azidoacetylgalactosamine (GalNAz). Finally, we discuss several applications of the copper-catalyzed azide-alkyne cycloaddition "click" reaction to attach various alkyne-containing chemical probes to GalNAz and demonstrate how this functionalization of O-GlcNAc-modified proteins can be used to realize (1)-(3) above. Overall, these methods, which utilize commercially available reagents and standard protein analytical tools, will serve to advance our understanding of the diverse and important functions of O-GlcNAcylation. © 2018 Elsevier Inc. All rights reserved.

  20. O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development.

    PubMed

    Radermacher, Pablo T; Myachina, Faina; Bosshardt, Fritz; Pandey, Rahul; Mariappa, Daniel; Müller, H-Arno J; Lehner, Christian F

    2014-04-15

    Effects of temperature on biological processes are complex. Diffusion is less affected than the diverse enzymatic reactions that have distinct individual temperature profiles. Hence thermal fluctuations pose a formidable challenge to ectothermic organisms in which body temperature is largely dictated by the ambient temperature. How cells in ectotherms cope with the myriad disruptive effects of temperature variation is poorly understood at the molecular level. Here we show that nucleocytoplasmic posttranslational modification of proteins with O-linked GlcNAc (O-GlcNAc) is closely correlated with ambient temperature during development of distantly related ectotherms ranging from the insect Drosophila melanogaster to the nematode Caenorhabditis elegans to the fish Danio rerio. Regulation seems to occur at the level of activity of the only two enzymes, O-GlcNAc transferase and O-GlcNAcase, that add and remove, respectively, this posttranslational modification in nucleus and cytoplasm. With genetic approaches in D. melanogaster and C. elegans, we demonstrate the importance of high levels of this posttranslational modification for successful development at elevated temperatures. Because many cytoplasmic and nuclear proteins in diverse pathways are O-GlcNAc targets, temperature-dependent regulation of this modification might contribute to an efficient coordinate adjustment of cellular processes in response to thermal change.

  1. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea (Cajanus cajan (L.) Millsp.).

    PubMed

    Satheesh, Viswanathan; Jagannadham, P Tej Kumar; Chidambaranathan, Parameswaran; Jain, P K; Srinivasan, R

    2014-12-01

    The NAC (NAM, ATAF and CUC) proteins are plant-specific transcription factors implicated in development and stress responses. In the present study 88 pigeonpea NAC genes were identified from the recently published draft genome of pigeonpea by using homology based and de novo prediction programmes. These sequences were further subjected to phylogenetic, motif and promoter analyses. In motif analysis, highly conserved motifs were identified in the NAC domain and also in the C-terminal region of the NAC proteins. A phylogenetic reconstruction using pigeonpea, Arabidopsis and soybean NAC genes revealed 33 putative stress-responsive pigeonpea NAC genes. Several stress-responsive cis-elements were identified through in silico analysis of the promoters of these putative stress-responsive genes. This analysis is the first report of NAC gene family in pigeonpea and will be useful for the identification and selection of candidate genes associated with stress tolerance.

  2. Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry

    PubMed Central

    Qi, Yanxiang; Liu, Xiaomei; Pu, Jinji

    2018-01-01

    The NAC transcription factors involved plant development and response to various stress stimuli. However, little information is available concerning the NAC family in the woodland strawberry. Herein, 37 NAC genes were identified from the woodland strawberry genome and were classified into 13 groups based on phylogenetic analysis. And further analyses of gene structure and conserved motifs showed closer relationship of them in every subgroup. Quantitative real-time PCR evaluation different tissues revealed distinct spatial expression profiles of the FvNAC genes. The comprehensive expression of FvNAC genes revealed under abiotic stress (cold, heat, drought, salt), signal molecule treatments (H2O2, ABA, melatonin, rapamycin), biotic stress (Colletotrichum gloeosporioides and Ralstonia solanacearum). Expression profiles derived from quantitative real-time PCR suggested that 5 FvNAC genes responded dramatically to the various abiotic and biotic stresses, indicating their contribution to abiotic and biotic stresses resistance in woodland strawberry. Interestingly, FvNAC genes showed greater extent responded to the cold treatment than other abiotic stress, and H2O2 exhibited a greater response than ABA, melatonin, and rapamycin. For biotic stresses, 3 FvNAC genes were up-regulated during infection with C. gloeosporioides, while 6 FvNAC genes were down-regulated during infection with R. solanacearum. In conclusion, this study identified candidate FvNAC genes to be used for the genetic improvement of abiotic and biotic stress tolerance in woodland strawberry. PMID:29897926

  3. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igκ in insect cells.

    PubMed

    Horynová, Milada; Takahashi, Kazuo; Hall, Stacy; Renfrow, Matthew B; Novak, Jan; Raška, Milan

    2012-02-01

    The human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) is one of the key enzymes that initiate synthesis of hinge-region O-linked glycans of human immunoglobulin A1 (IgA1). We designed secreted soluble form of human GalNAc-T2 as a fusion protein containing mouse immunoglobulin light chain kappa secretory signal and expressed it using baculovirus and mammalian expression vectors. The recombinant protein was secreted by insect cells Sf9 and human HEK 293T cells in the culture medium. The protein was purified from the media using affinity Ni-NTA chromatography followed by stabilization of purified protein in 50mM Tris-HCl buffer at pH 7.4. Although the purity of recombinant GalNAc-T2 was comparable in both expression systems, the yield was higher in Sf9 insect expression system (2.5mg of GalNAc-T2 protein per 1L culture medium). The purified soluble recombinant GalNAc-T2 had an estimated molecular mass of 65.8kDa and its amino-acid sequence was confirmed by mass-spectrometric analysis. The enzymatic activity of Sf9-produced recombinant GalNAc-T2 was determined by the quantification of enzyme-mediated attachment of GalNAc to synthetic IgA1 hinge-region peptide as the acceptor and UDP-GalNAc as the donor. In conclusion, murine immunoglobulin kappa secretory signal was used for production of secreted enzymatically active GalNAc-T2 in insect baculovirus expression system. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Oxidative stress induces transient O-GlcNAc elevation and tau dephosphorylation in SH-SY5Y cells.

    PubMed

    Kátai, Emese; Pál, József; Poór, Viktor Soma; Purewal, Rupeena; Miseta, Attila; Nagy, Tamás

    2016-12-01

    O-linked β-N-acetlyglucosamine or O-GlcNAc modification is a dynamic post-translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O-GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O-GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH-SY5Y we investigated the dynamic nature of O-GlcNAc after treatment with 0.5 mM H 2 O 2 for 30 min. to induce oxidative stress. We found that overall O-GlcNAc quickly increased and reached peak level at around 2 hrs post-stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O-Glycosylation. In conclusion, our results show that temporary elevation in O-GlcNAc modification after H 2 O 2 -induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O-GlcNAc and phosphorylation on tau proteins. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence.

    PubMed

    Balazadeh, Salma; Siddiqui, Hamad; Allu, Annapurna D; Matallana-Ramirez, Lilian P; Caldana, Camila; Mehrnia, Mohammad; Zanor, Maria-Inés; Köhler, Barbara; Mueller-Roeber, Bernd

    2010-04-01

    The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets.

  6. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    PubMed

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  7. Cocaine self-administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine.

    PubMed

    Siciliano, Cody A; Ferris, Mark J; Jones, Sara R

    2015-08-01

    Dopaminergic projections from the ventral midbrain to the nucleus accumbens (NAc) have long been implicated in encoding associations between reward availability and environmental stimuli. As such, this circuit is instrumental in guiding behaviors towards obtaining maximal rewards based on previous experience. Cocaine acts on the dopamine system to exert its reinforcing effects and it is thought that cocaine-induced dysregulation of dopamine neurotransmission contributes to the difficulty that cocaine addicts exhibit in selecting environmentally appropriate behaviors. Here we used cocaine self-administration combined with in vivo fast scan cyclic voltammetry in anesthetised rats to examine the function of the ventral tegmental area to NAc projection neurons. Over 5 days of cocaine self-administration (fixed-ratio 1; 1.5 mg/kg/injection; 40 injections/day), animals increased their rate of intake. Following cocaine self-administration, there was a marked reduction in ventral tegmental area-stimulated NAc dopamine release. Additionally, there was a decreased augmentation of stimulated dopamine overflow in response to a cocaine challenge. These findings demonstrate that cocaine induces a hypodopaminergic state, which may contribute to the inflexible drug-taking and drug-seeking behaviors observed in cocaine abusers. Additionally, tolerance to the ability of cocaine to elevate dopamine may lead to increased cocaine intake in order to overcome decreased effects, another hallmark of cocaine abuse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice.

    PubMed

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-06-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. © 2015 American Society of Plant Biologists. All rights reserved.

  9. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muguercia, I.; Yang, G.; Ebadian, M.A.

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  10. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica.

    PubMed

    Lu, Xin; Dun, Hui; Lian, Conglong; Zhang, Xiaofei; Yin, Weilun; Xia, Xinli

    2017-06-01

    Plant miR164 family is highly conserved and miR164 members regulate conserved targets belonging to NAC transcription factors. Our previous studies have revealed that peu-miR164a-e and its target gene POPTR_0007s08420 participate in abiotic stress response in Populus euphratica according to deep sequencing and degradome sequencing. In this study, miR164 family comprises six members that generate two mature products (miR164a-e and miR164f) and target seven NAC genes in P. euphratica. Co-expression in Nicotiana benthamiana and 5' RACE confirmed that peu-miR164 directs PeNAC070, PeNAC012 and PeNAC028 mRNAs cleavage. Expression profiles of primary peu-miR164 a/b/c/d/e bear similarity to those of peu-miR164a-e, whereas PeNAC070 and PeNAC081 showed inverse expression patterns with peu-miR164a-e under abiotic stresses. Existence of cis-acting elements in PeNAC070 promoter (ABRE,MBs, Box-W1, GC-motif, and W-box) and in peu-MIR164b promoter (HSE) further confirmed different responses of peu-miR164 and PeNAC070 to abiotic stresses. Histochemical β-glucuronidase (GUS) staining revealed that GUS activities increased when Pro PeNAC070 ::GUS transgenic Arabidopsis plants were exposed to NaCl, mannitol and abscisic acid (ABA), whereas GUS activity of Pro peu-MIR164b ::GUS plants decreased under ABA treatment. Subcellular localization and transactivation assays showed that PeNAC070 protein was localized to the nucleus and exhibited transactivation activity at the C-terminal. Overexpression of PeNAC070 in Arabidopsis promoted lateral root development, delayed stem elongation, and increased sensitivity of transgenic plants to drought and salt stresses. This study aids in understanding the adaptability of P. euphratica to extreme drought and salt environment by analysing tissue-specific expression patterns of miR164-regulated and specific promoter-regulated PeNAC genes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Accuracy of ICD-10 Coding System for Identifying Comorbidities and Infectious Conditions Using Data from a Thai University Hospital Administrative Database.

    PubMed

    Rattanaumpawan, Pinyo; Wongkamhla, Thanyarak; Thamlikitkul, Visanu

    2016-04-01

    To determine the accuracy of International Statistical Classification of Disease and Related Health Problems, 10th Revision (ICD-10) coding system in identifying comorbidities and infectious conditions using data from a Thai university hospital administrative database. A retrospective cross-sectional study was conducted among patients hospitalized in six general medicine wards at Siriraj Hospital. ICD-10 code data was identified and retrieved directly from the hospital administrative database. Patient comorbidities were captured using the ICD-10 coding algorithm for the Charlson comorbidity index. Infectious conditions were captured using the groups of ICD-10 diagnostic codes that were carefully prepared by two independent infectious disease specialists. Accuracy of ICD-10 codes combined with microbiological dataf or diagnosis of urinary tract infection (UTI) and bloodstream infection (BSI) was evaluated. Clinical data gathered from chart review was considered the gold standard in this study. Between February 1 and May 31, 2013, a chart review of 546 hospitalization records was conducted. The mean age of hospitalized patients was 62.8 ± 17.8 years and 65.9% of patients were female. Median length of stay [range] was 10.0 [1.0-353.0] days and hospital mortality was 21.8%. Conditions with ICD-10 codes that had good sensitivity (90% or higher) were diabetes mellitus and HIV infection. Conditions with ICD-10 codes that had good specificity (90% or higher) were cerebrovascular disease, chronic lung disease, diabetes mellitus, cancer HIV infection, and all infectious conditions. By combining ICD-10 codes with microbiological results, sensitivity increased from 49.5 to 66%for UTI and from 78.3 to 92.8%for BS. The ICD-10 coding algorithm is reliable only in some selected conditions, including underlying diabetes mellitus and HIV infection. Combining microbiological results with ICD-10 codes increased sensitivity of ICD-10 codes for identifying BSI. Future research is

  12. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation

    PubMed Central

    Ercan, Utku K.; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D.; Joshi, Suresh G.

    2016-01-01

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation. PMID:26832829

  13. Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z▿§

    PubMed Central

    Gunasekera, Angelo; Alvarez, Francisco J.; Douglas, Lois M.; Wang, Hong X.; Rosebrock, Adam P.; Konopka, James B.

    2010-01-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism. PMID:20675577

  14. Biosynthesis of the Common Polysaccharide Antigen of Pseudomonas aeruginosa PAO1: Characterization and Role of GDP-D-Rhamnose:GlcNAc/GalNAc-Diphosphate-Lipid α1,3-D-Rhamnosyltransferase WbpZ.

    PubMed

    Wang, Shuo; Hao, Youai; Lam, Joseph S; Vlahakis, Jason Z; Szarek, Walter A; Vinnikova, Anna; Veselovsky, Vladimir V; Brockhausen, Inka

    2015-06-15

    The opportunistic pathogen Pseudomonas aeruginosa produces two major cell surface lipopolysaccharides, characterized by distinct O antigens, called common polysaccharide antigen (CPA) and O-specific antigen (OSA). CPA contains a polymer of D-rhamnose (D-Rha) in α1-2 and α1-3 linkages. Three putative glycosyltransferase genes, wbpX, wbpY, and wbpZ, are part of the CPA biosynthesis cluster. To characterize the enzymatic function of the wbpZ gene product, we chemically synthesized the donor substrate GDP-D-Rha and enzymatically synthesized GDP-D-[(3)H]Rha. Using nuclear magnetic resonance (NMR) spectroscopy, we showed that WbpZ transferred one D-Rha residue from GDP-D-Rha in α1-3 linkage to both GlcNAc- and GalNAc-diphosphate-lipid acceptor substrates. WbpZ is also capable of transferring D-mannose (D-Man) to these acceptors. Therefore, WbpZ has a relaxed specificity with respect to both acceptor and donor substrates. The diphosphate group of the acceptor, however, is required for activity. WbpZ does not require divalent metal ion for activity and exhibits an unusually high pH optimum of 9. WbpZ from PAO1 is therefore a GDP-D-Rha:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-rhamnosyltransferase that has significant activity of GDP-D-Man:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-mannosyltransferase. We used site-directed mutagenesis to replace the Asp residues of the two DXD motifs with Ala. Neither of the mutant constructs of wbpZ (D172A or D254A) could be used to rescue CPA biosynthesis in the ΔwbpZ knockout mutant in a complementation assay. This suggested that D172 and D254 are essential for WbpZ function. This work is the first detailed characterization study of a D-Rha-transferase and a critical step in the development of CPA synthesis inhibitors. This is the first characterization of a D-rhamnosyltransferase and shows that it is essential in Pseudomonas aeruginosa for the synthesis of the common polysaccharide antigen. Copyright © 2015, American Society for

  15. O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle.

    PubMed

    Hanover, John A; Chen, Weiping; Bond, Michelle R

    2018-06-01

    Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.

  16. Characterization of ppGalNAc-T18, a member of the vertebrate-specific Y subfamily of UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases.

    PubMed

    Li, Xing; Wang, Jing; Li, Wei; Xu, Yingjiao; Shao, Dong; Xie, Yinyin; Xie, Wenxian; Kubota, Tomomi; Narimatsu, Hisashi; Zhang, Yan

    2012-05-01

    The first step of mucin-type O-glycosylation is catalyzed by members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (ppGalNAc-T; EC 2.4.1.41) family. Each member of this family has unique substrate specificity and expression profiles. In this report, we describe a new subfamily of ppGalNAc-Ts, designated the Y subfamily. The Y subfamily consists of four members, ppGalNAc-T8, -T9, -T17 and -T18, in which the conserved YDX(5)WGGENXE sequence in the Gal/GalNAc-T motif of ppGalNAc-Ts is mutated to LDX(5)YGGENXE. Phylogenetic analysis revealed that the Y subfamily members only exist in vertebrates. All four Y subfamily members lack in vitro GalNAc-transferase activity toward classical substrates possibly because of the UDP-GalNAc-binding pocket mutants. However, ppGalNAc-T18, the newly identified defining member, was localized in the endoplasmic reticulum rather than the Golgi apparatus in lung carcinoma cells. The knockdown of ppGalNAc-T18 altered cell morphology, proliferation potential and changed cell O-glycosylation. ppGalNAc-T18 can also modulate the in vitro GalNAc-transferase activity of ppGalNAc-T2 and -T10, suggesting that it may be a chaperone-like protein. These findings suggest that the new Y subfamily of ppGalNAc-Ts plays an important role in protein glycosylation; characterizing their functions will provide new insight into the role of ppGalNAc-Ts.

  17. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    PubMed Central

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  18. Constitutive Knockout of Kalirin-7 Leads to Increased Rates of Cocaine Self-Administration

    PubMed Central

    Kiraly, Drew D.; Nemirovsky, Natali E.; LaRese, Taylor P.; Tomek, Seven E.; Yahn, Stephanie L.; Olive, M. Foster; Eipper, Betty A.

    2013-01-01

    Kalirin-7 (Kal7) is a Rho-guanine nucleotide exchange factor that is localized in neuronal postsynaptic densities. Kal7 interacts with the NR2B subunit of the NMDA receptor and regulates aspects of dendritic spine dynamics both in vitro and in vivo. Chronic treatment with cocaine increases dendritic spine density in the nucleus accumbens (NAc) of rodents and primates. Kal7 mRNA and protein are upregulated in the NAc following cocaine treatment, and the presence of Kal7 is necessary for the normal proliferation of dendritic spines following cocaine use. Mice that constitutively lack Kal7 [Kalirin-7 knockout mice (Kal7KO)] demonstrate increased locomotor sensitization to cocaine and a decreased place preference for cocaine. Here, using an intravenous cocaine self-administration paradigm, Kal7KO mice exhibit increased administration of cocaine at lower doses as compared with wild-type (Wt) mice. Analyses of mRNA transcript levels from the NAc of mice that self-administered saline or cocaine reveal that larger splice variants of the Kalrn gene are increased by cocaine more dramatically in Kal7KO mice than in Wt mice. Additionally, transcripts encoding the NR2B subunit of the NMDA receptor increased in Wt mice that self-administered cocaine but were unchanged in similarly experienced Kal7KO mice. These findings suggest that Kal7 participates in the reinforcing effects of cocaine, and that Kal7 and cocaine interact to alter the expression of genes related to critical glutamatergic signaling pathways in the NAc. PMID:23894151

  19. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks.

    PubMed

    Slawson, Chad; Housley, Michael P; Hart, Gerald W

    2006-01-01

    O-GlcNAc is an ubiquitous post-translational protein modification consisting of a single N-acetlyglucosamine moiety linked to serine or threonine residues on nuclear and cytoplasmic proteins. Recent work has begun to uncover the functional roles of O-GlcNAc in cellular processes. O-GlcNAc modified proteins are involved in sensing the nutrient status of the surrounding cellular environment and adjusting the activity of cellular proteins accordingly. O-GlcNAc regulates cellular responses to hormones such as insulin, initiates a protective response to stress, modulates a cell's capacity to grow and divide, and regulates gene transcription. This review will focus on recent work involving O-GlcNAc in sensing the environment and regulating signaling cascades. (c) 2005 Wiley-Liss, Inc.

  20. Deriving ICD-10 Codes for Patient Safety Indicators for Large-scale Surveillance Using Administrative Hospital Data.

    PubMed

    Southern, Danielle A; Burnand, Bernard; Droesler, Saskia E; Flemons, Ward; Forster, Alan J; Gurevich, Yana; Harrison, James; Quan, Hude; Pincus, Harold A; Romano, Patrick S; Sundararajan, Vijaya; Kostanjsek, Nenad; Ghali, William A

    2017-03-01

    Existing administrative data patient safety indicators (PSIs) have been limited by uncertainty around the timing of onset of included diagnoses. We undertook de novo PSI development through a data-driven approach that drew upon "diagnosis timing" information available in some countries' administrative hospital data. Administrative database analysis and modified Delphi rating process. All hospitalized adults in Canada in 2009. We queried all hospitalizations for ICD-10-CA diagnosis codes arising during hospital stay. We then undertook a modified Delphi panel process to rate the extent to which each of the identified diagnoses has a potential link to suboptimal quality of care. We grouped the identified quality/safety-related diagnoses into relevant clinical categories. Lastly, we queried Alberta hospital discharge data to assess the frequency of the newly defined PSI events. Among 2,416,413 national hospitalizations, we found 2590 unique ICD-10-CA codes flagged as having arisen after admission. Seven panelists evaluated these in a 2-round review process, and identified a listing of 640 ICD-10-CA diagnosis codes judged to be linked to suboptimal quality of care and thus appropriate for inclusion in PSIs. These were then grouped by patient safety experts into 18 clinically relevant PSI categories. We then analyzed data on 2,381,652 Alberta hospital discharges from 2005 through 2012, and found that 134,299 (5.2%) hospitalizations had at least 1 PSI diagnosis. The resulting work creates a foundation for a new set of PSIs for routine large-scale surveillance of hospital and health system performance.

  1. Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation.

    PubMed

    Baldini, Steffi F; Steenackers, Agata; Olivier-Van Stichelen, Stéphanie; Mir, Anne-Marie; Mortuaire, Marlène; Lefebvre, Tony; Guinez, Céline

    2016-09-16

    Blood glucose fluctuates with the fasting-feeding cycle. One of the liver's functions is to maintain blood glucose concentrations within a physiological range. Glucokinase (GCK) or hexokinase IV, is the main enzyme that regulates the flux and the use of glucose in the liver leading to a compensation of hyperglycemia. In hepatocytes, GCK catalyzes the phosphorylation of glucose into glucose-6-phosphate. This critical enzymatic reaction is determinant for the metabolism of glucose in the liver which includes glycogen synthesis, glycolysis, lipogenesis and gluconeogenesis. In liver, simultaneous increase of glucose and insulin enhances GCK activity and gene expression, changes its subcellular location and interaction with regulatory proteins. The post-translational O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) acts as a glucose-sensitive modification and is believed to take part in hepatic glucose sensing by modifying key regulatory proteins. Therefore, we aimed to determine whether GCK is modified by O-GlcNAcylation in the liver of mice and investigated the role that this modification plays in regulating GCK protein expression. We demonstrated that endogenous GCK expression correlated with O-GlcNAc levels in the pathophysiological model ob/ob mice. More specifically, in response to the pharmacological inhibition of O-GlcNAcase (OGA) contents of GCK increased. Using the GlcNAc specific lectin succinylated-WGA and click chemistry labeling approaches, we demonstrated that GCK is modified by O-GlcNAcylation. Further, we demonstrated that siRNA-mediated Ogt knock-down not only decreases O-GlcNAc content but also GCK protein level. Altogether, our in vivo and in vitro results demonstrate that GCK expression is regulated by nutrient-sensing O-GlcNAc cycling in liver. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Wu, Dandan; Sun, Yinghao; Wang, Hongfei; Shi, He; Su, Mingxing; Shan, Hongyan; Li, Tongtong; Li, Qiuli

    2018-07-01

    NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SlNAC8 from Suaeda liaotungensis K. was characterized. SlNAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that it contains an activation domain in its C-terminus and functions as a transcriptional activator. Gene expression analysis revealed that it is induced by drought and salt stress. Arabidopsis plants overexpressing SlNAC8 demonstrated enhanced tolerance to drought and salt stress, showing significant advantages in seed germination, root growth, shoot growth, and survival rate compared with controls. Moreover, transgenic plants had a significantly higher proline concentration, antioxidant enzyme activity (superoxide dismutase, peroxidase, and catalase), and level of chlorophyll fluorescence than wild-type, and a significantly lower malondialdehyde concentration and electrolyte leakage under drought and salt stress. The overexpression of SlNAC8 in transgenic plants also enhanced the expression of stress-responsive genes such as RD20, GSTF6, COR47, RD29A, RD29B, and NYC1. In summary, SlNAC8, as a transcription factor, may change the physiological-biochemical characteristic of plants by regulating the expression of stress-responsive genes and enhance the drought and salt stress tolerance of plants. SlNAC8 can be utilized for developing drought and salinity tolerance in crop plants through genetic engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Evaluation of in vitro storage characteristics of cold stored platelet concentrates with N acetylcysteine (NAC).

    PubMed

    Handigund, Mallikarjun; Bae, Tae Won; Lee, Jaehyeon; Cho, Yong Gon

    2016-02-01

    Platelets play a vital role in hemostasis and thrombosis, and their demand and usage has multiplied many folds over the years. However, due to the short life span and storage constraints on platelets, it is allowed to store them for up to 7 days at room temperature (RT); thus, there is a need for an alternative storage strategy for extension of shelf life. Current investigation involves the addition of 50 mM N acetylcysteine (NAC) in refrigerated concentrates. Investigation results revealed that addition of NAC to refrigerated concentrates prevented platelet activation and reduced the sialidase activity upon rewarming as well as on prolonged storage. Refrigerated concentrates with 50 mM NAC expressed a 23.91 ± 6.23% of CD62P (P-Selectin) and 22.33 ± 3.42% of phosphotidylserine (PS), whereas RT-stored platelets showed a 46.87 ± 5.23% of CD62P and 25.9 ± 6.48% of phosphotidylserine (PS) after 5 days of storage. Further, key metabolic parameters such as glucose and lactate accumulation indicated reduced metabolic activity. Taken together, investigation and observations indicate that addition of NAC potentially protects refrigerated concentrates by preventing platelet activation, stabilizing sialidase activity, and further reducing the metabolic activity. Hence, we believe that NAC can be a good candidate for an additive solution to retain platelet characteristics during cold storage and may pave the way for extension of storage shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration.

    PubMed

    Park, Chong Yon; Pierce, Stephanie A; von Drehle, Morgan; Ivey, Kathryn N; Morgan, Jayson A; Blau, Helen M; Srivastava, Deepak

    2010-11-30

    Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.

  5. Effect of N-acetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers.

    PubMed

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Aleksandra; Machnik, Grzegorz; Birkner, Ewa

    2014-03-01

    We investigated whether treatment with N-acetylcysteine (NAC) reduces oxidative stress intensity and restores the expression and activities of superoxide dismutase (Sod1, SOD), catalase (Cat, CAT) and glutathione peroxidase (Gpx1, GPx) in lead-exposed workers. The exposed population was divided randomly into two groups. Workers in the first group (reference group, n=49) were not administered any drugs, while workers in the second group (n=122) were treated with NAC at three doses for 12 weeks (200 mg, 400 mg, 800 mg/day). NAC administered orally to lead-exposed workers normalized antioxidant enzyme activities in blood cells. Oxidative stress intensity measured as malondialdehyde (MDA) levels in serum, leukocytes and erythrocytes significantly decreased after NAC administration. NAC may be an alternative therapy for chronic lead intoxication. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The influences of N-acetyl cysteine (NAC) on the cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA)-based dental resin

    PubMed Central

    Jiao, Yang; Ma, Sai; Li, Jing; Shan, Lequn; Yang, Yanwei; Li, Meng

    2015-01-01

    Objectives. This study aimed to investigate the influences of N-acetyl cysteine (NAC) on cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA) dental resins. Methods. Experimental PMMA resin was prepared by incorporating various concentrations of NAC (0, 0.15, 0.3, 0.6 and 0.9 wt.%). MTT assay was performed to investigate viability of human dental pulp cells after exposure to extract of PMMA resin with or without NAC. Cell adhesion on resin specimens was examined with scanning electron microscopy. Degree of conversion was studied with Fourier Transform Infrared Spectroscopy (FTIR). Flexural strength, microhardness and surface roughness was evaluated using a universal testing machine, microhardness tester and optical profilometer, respectively. Results. Incorporation of NAC into PMMA resin significantly reduced its cytotoxicity and enhanced cell adhesion on its surface. NAC induced negative influences on the mechanical and physical properties of PMMA resin in a dose-dependent manner. The degree of conversion for all experimental PMMA resins reached as high as 72% after 24 h of polymerization. All the tested properties were maintained when the concentration of incorporated NAC was 0.15 wt.%. Conclusion. The addition of 0.15 wt.% NAC remarkably improved biocompatibility of PMMA resin without exerting significant negative influence on its mechanical and physical properties. PMID:25922788

  7. Coding in Muscle Disease.

    PubMed

    Jones, Lyell K; Ney, John P

    2016-12-01

    Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.

  8. Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in Arabidopsis.

    PubMed

    Xu, Shou-Ling; Chalkley, Robert J; Maynard, Jason C; Wang, Wenfei; Ni, Weimin; Jiang, Xiaoyue; Shin, Kihye; Cheng, Ling; Savage, Dasha; Hühmer, Andreas F R; Burlingame, Alma L; Wang, Zhi-Yong

    2017-02-21

    Genetic studies have shown essential functions of O-linked N -acetylglucosamine (O-GlcNAc) modification in plants. However, the proteins and sites subject to this posttranslational modification are largely unknown. Here, we report a large-scale proteomic identification of O-GlcNAc-modified proteins and sites in the model plant Arabidopsis thaliana Using lectin weak affinity chromatography to enrich modified peptides, followed by mass spectrometry, we identified 971 O-GlcNAc-modified peptides belonging to 262 proteins. The modified proteins are involved in cellular regulatory processes, including transcription, translation, epigenetic gene regulation, and signal transduction. Many proteins have functions in developmental and physiological processes specific to plants, such as hormone responses and flower development. Mass spectrometric analysis of phosphopeptides from the same samples showed that a large number of peptides could be modified by either O-GlcNAcylation or phosphorylation, but cooccurrence of the two modifications in the same peptide molecule was rare. Our study generates a snapshot of the O-GlcNAc modification landscape in plants, indicating functions in many cellular regulation pathways and providing a powerful resource for further dissecting these functions at the molecular level.

  9. The effect of N-acetyl cysteine (NAC) on aluminum phosphide poisoning inducing cardiovascular toxicity: a case-control study.

    PubMed

    Taghaddosinejad, Fakhreddin; Farzaneh, Esmaeil; Ghazanfari-Nasrabad, Mahdi; Eizadi-Mood, Nastaran; Hajihosseini, Morteza; Mehrpour, Omid

    2016-01-01

    Aluminum phosphide (AlP) is a very effective indoor and outdoor pesticide. We investigated the effects of N-acetyl cysteine (NAC) on the survival time, hemodynamics, and cardiac biochemical parameters at various time intervals in some cases of AlP poisoning. This research was a case-control study to evaluate 63 AlP poisoned patients during 2010-2012. Patients with cardiovascular complications of AlP to be treated with intravenous NAC plus conventional treatment were considered as the case group and compared with patients who did not receive NAC. NAC infusion was administered to the case group at 300 mg/kg for 20 h. The data gathered included age, sex, heart rate, Systolic blood pressure (SBP), creatine phosphokinase (CPK), creatine kinase MB (CK-MB), and ECG at the admission time and 12, 18, and 24 h after admission. Analysis of repeated measures was performed to check the variability of parameters over time. The mean ages in the case and control groups were 26.65 ± 1.06 (19-37 years) and 28.39 ± 1.11 (18-37 years), respectively (P = 0.266). Most of the patients were female (56.5%). CK-MB means were significantly different between the two groups, but no differences between the other variables were observed. Also, CK-MB, CPK, heart rate, and systolic blood pressure means became significantly different over time (0, 12, 18, and 24 h) in both groups (P < 0.001). NAC prevented sharp heart rate fluctuations in AlP patients in the case group. Regarding the outcomes, 17 patients died (10 patients in the control and 7 patients in the case groups). No side-effects of NAC were observed. Our patients could be managed by the positive role of NAC as the biochemical index of cardiotoxicity was found to elevate in both the case and control groups. Therefore, for the management protocol optimization, NAC evaluation should be done in further cases.

  10. OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A.

    PubMed

    Simon, Dan N; Wriston, Amanda; Fan, Qiong; Shabanowitz, Jeffrey; Florwick, Alyssa; Dharmaraj, Tejas; Peterson, Sherket B; Gruenbaum, Yosef; Carlson, Cathrine R; Grønning-Wang, Line M; Hunt, Donald F; Wilson, Katherine L

    2018-05-17

    The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β- O -linked N -acetylglucosamine- (O -GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O -GlcNAc transferase (OGT) enzyme showed robust O -GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O -GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O -GlcNAc-modified at seven sites. By contrast, O -GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O -GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.

  11. Controlling High-Resolution LROC NAC Polar Mosaics to LOLA Track Data

    NASA Astrophysics Data System (ADS)

    Archinal, B.; Lee, E.; Weller, L.; Richie, J.; Edmundson, K.; Laura, J.; Robinson, M.; Speyerer, E.; Boyd, A.; Bowman-Cisneros, E.; Wagner, R.; Nefian, A.

    2016-11-01

    We describe our progress on completing 1 m resolution geodetically controlled LROC NAC illumination mosaics of both lunar poles out to 85 degrees latitude, constrained using matching to LOLA track data.

  12. Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity.

    PubMed

    Tomita, Tadakimi; Sugi, Tatsuki; Yakubu, Rama; Tu, Vincent; Ma, Yanfen; Weiss, Louis M

    2017-01-10

    The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism. Toxoplasma gondii is an obligate intracellular parasite that infects a third of the world's population. It can cause severe congenital disease and devastating encephalitis in immunocompromised individuals. We identified two glycosyltransferases, ppGalNAc-T2 and -T3, which are responsible for glycosylating cyst wall proteins in a hierarchical fashion. This glycosylation confers structural rigidity on the brain cyst. Our studies provide new

  13. Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity

    PubMed Central

    Tomita, Tadakimi; Sugi, Tatsuki; Yakubu, Rama; Tu, Vincent; Ma, Yanfen

    2017-01-01

    ABSTRACT The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism. PMID:28074022

  14. Mouse Na+/K+-ATPase β1-subunit has a K+-dependent cell adhesion activity for β-GlcNAc-terminating glycans

    PubMed Central

    Kitamura, Noriaki; Ikekita, Masahiko; Sato, Takeshi; Akimoto, Yoshihiro; Hatanaka, Yasumaru; Kawakami, Hayato; Inomata, Mitsushi; Furukawa, Kiyoshi

    2005-01-01

    A 48-kDa β-N-acetylglucosamine (GlcNAc)-binding protein was isolated from mouse brain by GlcNAc-agarose column chromatography. The N-terminal amino acid residues showed the protein to be a mouse Na+/K+-ATPase β1-subunit. When the recombinant FLAG-β1-subunit expressed in Sf-9 cells was applied to a GlcNAc-agarose column, only the glycosylated 38- and 40-kDa proteins bound to the column. In the absence of KCl, little of the proteins bound to a GlcNAc-agarose column, but the 38- and 40-kDa proteins bound in the presence of KCl at concentrations above 1 mM. Immunohistochemical study showed that the β1-subunit and GlcNAc-terminating oligosaccharides are at the cell contact sites. Inclusion of anti-β1-subunit antibody or chitobiose in cell aggregation assays using mouse neural cells resulted in inhibition of cell aggregation. These results indicate that the Na+/K+-ATPase β1-subunit is a potassium-dependent lectin that binds to GlcNAc-terminating oligosaccharides: it may be involved in neural cell interactions. PMID:15705719

  15. Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehennaut, Vanessa; EA 4020, Laboratoire de Regulation des Signaux de Division, USTL, IFR147, Villeneuve d'Ascq; Hanoulle, Xavier

    2008-05-02

    In order to understand the importance of the cytosolic and nuclear-specific O-linked N-acetylglucosaminylation (O-GlcNAc) on cell cycle regulation, we recently reported that inhibition of O-GlcNAc transferase (OGT) delayed or blocked Xenopus laevis oocyte germinal vesicle breakdown (GVBD). Here, we show that increased levels of the long OGT isoform (ncOGT) accelerate X. laevis oocyte GVBD. A N-terminally truncated isoform (sOGT) with a similar in vitro catalytic activity towards a synthetic CKII-derived peptide had no effect, illustrating the important role played by the N-terminal tetratrico-peptide repeats. ncOGT microinjection in the oocytes increases both the speed and extent of O-GlcNAc addition, leads tomore » a quicker activation of the MPF and MAPK pathways and finally results in a faster GVBD. Microinjection of anti-OGT antibodies leads to a delay of the GVBD kinetics. Our results hence demonstrate that OGT is a key molecule for the timely progression of the cell cycle.« less

  16. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy.

    PubMed

    Gurel, Zafer; Sheibani, Nader

    2018-01-31

    The incidence of diabetes continues to rise among all ages and ethnic groups worldwide. Diabetic retinopathy (DR) is a complication of diabetes that affects the retinal neurovasculature causing serious vision problems, including blindness. Its pathogenesis and severity is directly linked to the chronic exposure to high glucose conditions. No treatments are currently available to stop the development and progression of DR. To develop new and effective therapeutic approaches, it is critical to better understand how hyperglycemia contributes to the pathogenesis of DR at the cellular and molecular levels. We propose alterations in O-GlcNAc modification of target proteins during diabetes contribute to the development and progression of DR. The O-GlcNAc modification is regulated through hexosamine biosynthetic pathway. We showed this pathway is differentially activated in various retinal vascular cells under high glucose conditions perhaps due to their selective metabolic activity. O-GlcNAc modification can alter protein stability, activity, interactions, and localization. By targeting the same amino acid residues (serine and threonine) as phosphorylation, O-GlcNAc modification can either compete or cooperate with phosphorylation. Here we will summarize the effects of hyperglycemia-induced O-GlcNAc modification on the retinal neurovasculature in a cell-specific manner, providing new insight into the role of O-GlcNAc modification in early loss of retinal pericytes and the pathogenesis of DR. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Using Administrative Mental Health Indicators in Heart Failure Outcomes Research: Comparison of Clinical Records and International Classification of Disease Coding.

    PubMed

    Bender, Miriam; Smith, Tyler C

    2016-01-01

    Use of mental indication in health outcomes research is of growing interest to researchers. This study, as part of a larger research program, quantified agreement between administrative International Classification of Disease (ICD-9) coding for, and "gold standard" clinician documentation of, mental health issues (MHIs) in hospitalized heart failure (HF) patients to determine the validity of mental health administrative data for use in HF outcomes research. A 13% random sample (n = 504) was selected from all unique patients (n = 3,769) hospitalized with a primary HF diagnosis at 4 San Diego County community hospitals during 2009-2012. MHI was defined as ICD-9 discharge diagnostic coding 290-319. Records were audited for clinician documentation of MHI. A total of 43% (n = 216) had mental health clinician documentation; 33% (n = 164) had ICD-9 coding for MHI. ICD-9 code bundle 290-319 had 0.70 sensitivity, 0.97 specificity, and kappa 0.69 (95% confidence interval 0.61-0.79). More specific ICD-9 MHI code bundles had kappas ranging from 0.44 to 0.82 and sensitivities ranging from 42% to 82%. Agreement between ICD-9 coding and clinician documentation for a broadly defined MHI is substantial, and can validly "rule in" MHI for hospitalized patients with heart failure. More specific MHI code bundles had fair to almost perfect agreement, with a wide range of sensitivities for identifying patients with an MHI. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3)

    PubMed Central

    van Wijk, Xander M.; Lawrence, Roger; Thijssen, Victor L.; van den Broek, Sebastiaan A.; Troost, Ran; van Scherpenzeel, Monique; Naidu, Natasha; Oosterhof, Arie; Griffioen, Arjan W.; Lefeber, Dirk J.; van Delft, Floris L.; van Kuppevelt, Toin H.

    2015-01-01

    Glycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect. Treatment of human ovarian carcinoma cells with 50 μM 6F-GalNAc (Ac3) inhibited biosynthesis of GAGs (chondroitin/dermatan sulfate by ∼50–60%, heparan sulfate by ∼35%), N-acetyl-d-glucosamine (GlcNAc)/GalNAc containing glycans recognized by the lectins Datura stramonium and peanut agglutinin (by ∼74 and ∼43%, respectively), and O-GlcNAc protein modification. With respect to function, 6F-GalNAc (Ac3) treatment inhibited growth factor signaling and reduced in vivo angiogenesis by ∼33%. Although the analog was readily transformed in cells into the uridine 5′-diphosphate (UDP)-activated form, it was not incorporated into GAGs. Rather, it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools. Together with data from the literature, these findings indicate that nucleotide sugar depletion without incorporation is a common mechanism of sugar analogs for inhibiting GAG/glycan biosynthesis.—Van Wijk, X. M., Lawrence, R., Thijssen, V. L., van den Broek, S. A., Troost, R., van Scherpenzeel, M., Naidu, N., Oosterhof, A., Griffioen, A. W., Lefeber, D. J., van Delft, F. L., van Kuppevelt, T. H. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3). PMID:25868729

  19. Co-Administration of Metformin and N-Acetyl Cysteine Fails to Improve Clinical Manifestations in PCOS Individual Undergoing ICSI

    PubMed Central

    Cheraghi, Ebrahim; Soleimani Mehranjani, Malek; Shariatzadeh, Mohammad Ali; Nasr Esfahani, Mohammad Hossein; Ebrahimi, Zahra

    2014-01-01

    Background Studies have demonstrated the efficacy of metformin (MTF ) in reducing insulin resistance and N-acetyl cysteine (NAC) in inhibiting oxidative stress which are involved in the pathogenesis of polycystic ovarian syndrome (PCOS). We aimed to compare the effects of MTF and NAC combination on serum metabolite and hormonal levels during the course of ovulation induction in PCOS individual candidates of intracytoplasmic sperm injection (ICSI). Materials and Methods In this prospective randomized clinical trial, placebo con- trolled pilot study, 80 patients of polycystic ovarian syndrome at the age of 25-35 years were divided into 4 groups (n=20): i. NAC=treated with N-acetyl cysteine (600 mg three times daily), ii. MTF=treated with metformin (500 mg three times daily), iii. MTF+NAC=treated with N-acetyl cysteine plus metformin (the offered doses) and iv. placebo (PLA). A total number of 20 patients (6 from MTF group, 4 from NAC group, 6 from MTF+NAC group and 4 from PLA group) were dropped of the study. The drugs were administrated from day 3 of menses of previous cycle until ovum pick-up. Results Serum levels of luteinizing hormone (LH), total testosterone, cholester- ol and triglyceride, insulin and leptin significantly reduced in the MTF and NAC groups compared to the placebo (p<0.01). But levels of LH, total testosterone, cholesterol and triglyceride had no significant reduction in the MTF+NAC groups compared to the placebo. The serum levels of malonyldialdehyde (MDA), insulin and leptin reduced significantly after treatment in the MTF+NAC group compared to the placebo (p<0.05). Conclusion Considering the adverse effect of combination therapy, we proposed the conadministration might have no beneficial effect for PCOS patient during course of ovulation induction of ICSI (Registration Number: IRCT201204159476N1). PMID:25083175

  20. [ManNAc, a new therapeutic agent to reduce Angptl4-induced proteinuria in MCD].

    PubMed

    Clément, Lionel; Macé, Camille

    2016-01-01

    Current therapies used in minimal change disease (MCD) were originally designed to cure other diseases. They are only partially efficient, and present inconvenient side effects. Therefore, understanding the molecular mechanisms implicated in the pathogenesis of proteinuria in MCD could lead to new therapeutic strategies. A new experimental transgenic rat model of human MCD was generated. These NPHS2-Angptl4 transgenic rats over-express two different forms of the glycoprotein Angptl4 from the podocyte. The majority of the protein shows a lack of sialylation that is implicated in the pathogenesis of proteinuria. Supplementation of ManNAc, a precursor of sialic acid, significantly reduces albuminuria in those rats by increasing sialylation of the hyposialylated form of Angptl4. After treatment of the first episode of MCD with glucocorticoids in patients, ManNAc could be used as a maintenance drug, especially to reduce the frequency and intensity of relapse. ManNAc is a promising therapeutic agent for patients with MCD. © 2016 médecine/sciences – Inserm.

  1. Biases in detection of apparent "weekend effect" on outcome with administrative coding data: population based study of stroke.

    PubMed

    Li, Linxin; Rothwell, Peter M

    2016-05-16

     To determine the accuracy of coding of admissions for stroke on weekdays versus weekends and any impact on apparent outcome.  Prospective population based stroke incidence study and a scoping review of previous studies of weekend effects in stroke.  Primary and secondary care of all individuals registered with nine general practices in Oxfordshire, United Kingdom (OXVASC, the Oxford Vascular Study).  All patients with clinically confirmed acute stroke in OXVASC identified with multiple overlapping methods of ascertainment in 2002-14 versus all acute stroke admissions identified by hospital diagnostic and mortality coding alone during the same period.  Accuracy of administrative coding data for all patients with confirmed stroke admitted to hospital in OXVASC. Difference between rates of "false positive" or "false negative" coding for weekday and weekend admissions. Impact of inaccurate coding on apparent case fatality at 30 days in weekday versus weekend admissions. Weekend effects on outcomes in patients with confirmed stroke admitted to hospital in OXVASC and impacts of other potential biases compared with those in the scoping review.  Among 92 728 study population, 2373 episodes of acute stroke were ascertained in OXVASC, of which 826 (34.8%) mainly minor events were managed without hospital admission, 60 (2.5%) occurred out of the area or abroad, and 195 (8.2%) occurred in hospital during an admission for a different reason. Of 1292 local hospital admissions for acute stroke, 973 (75.3%) were correctly identified by administrative coding. There was no bias in distribution of weekend versus weekday admission of the 319 strokes missed by coding. Of 1693 admissions for stroke identified by coding, 1055 (62.3%) were confirmed to be acute strokes after case adjudication. Among the 638 false positive coded cases, patients were more likely to be admitted on weekdays than at weekends (536 (41.0%) v 102 (26.5%); P<0.001), partly because of weekday elective

  2. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death.

    PubMed

    Niu, Fangfang; Wang, Chen; Yan, Jingli; Guo, Xiaohua; Wu, Feifei; Yang, Bo; Deyholos, Michael K; Jiang, Yuan-Qing

    2016-09-01

    NAC transcription factors (TFs) are plant-specific and play important roles in development, responses to biotic and abiotic cues and hormone signaling. So far, only a few NAC genes have been reported to regulate cell death. In this study, we identified and characterized a NAC55 gene isolated from oilseed rape (Brassica napus L.). BnaNAC55 responds to multiple stresses, including cold, heat, abscisic acid (ABA), jasmonic acid (JA) and a necrotrophic fungal pathogen Sclerotinia sclerotiorum. BnaNAC55 has transactivation activity and is located in the nucleus. BnaNAC55 is able to form homodimers in planta. Unlike ANAC055, full-length BnaNAC55, but not either the N-terminal NAC domain or C-terminal regulatory domain, induces ROS accumulation and hypersensitive response (HR)-like cell death when expressed both in oilseed rape protoplasts and Nicotiana benthamiana. Furthermore, BnaNAC55 expression causes obvious nuclear DNA fragmentation. Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis identified that the expression levels of multiple genes regulating ROS production and scavenging, defense response as well as senescence are significantly induced. Using a dual luciferase reporter assay, we further confirm that BnaNAC55 could activate the expression of a few ROS and defense-related gene expression. Taken together, our work has identified a novel NAC TF from oilseed rape that modulates ROS accumulation and cell death.

  3. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc).

    PubMed

    Whiting, Lynda; McCutcheon, James E; Boyle, Christina N; Roitman, Mitchell F; Lutz, Thomas A

    2017-07-01

    The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes.

    PubMed

    Schlepper-Schäfer, J; Springer, G F

    1989-10-09

    We studied interactions of isolated Thomsen-Friedenreich (T)- and Tn-specific glycoproteins with the Gal/GalNAc-specific receptors on rat Kupffer cells and compared them to those with rat hepatocytes. Immunoreactive T and Tn are specific pancarcinoma epitopes. Electron microscopy of gold-labelled T and Tn antigens revealed their specific binding to Kupffer cells, followed by their uptake via the coated pit/vesicle pathway of receptor-mediated endocytosis. Preincubation of Kupffer cells with GalNAc and GalNAc-BSA, but not GlcNAc or GlcNAc-BSA specifically inhibited binding of the T and Tn glycoproteins. Desialylated, isologous erythrocytes (T RBC) are known to bind to the Gal/GalNAc receptors of rat Kupffer cells and hepatocytes. This attachment was specifically inhibited by T and Tn in a concentration-dependent manner: 50% T RBC-Kupffer cell contacts were inhibited at 8.5.10(-6) mM T and 8.5.10(-5) mM Tn antigen concentrations, respectively. The corresponding figures for hepatocytes were 6.10(-6) mM T and 1.2.10(-6) mM Tn antigen. Amino-terminal cleavage products of the T glycoprotein, possessing clusters terminating in non-reducing Gal/GalNAc, inhibited T RBC binding to Kupffer cells and hepatocytes usually at 10(-2) to 10(-5) mM concentrations, whereas GalNAc, galactose and galactose glycosides inhibited at millimolar concentrations. Galactose-unrelated carbohydrates were inactive at concentrations greater than or equal to 50 mM.

  5. N-acetylcysteine-pretreated human embryonic mesenchymal stem cell administration protects against bleomycin-induced lung injury.

    PubMed

    Wang, Qiao; Zhu, Hong; Zhou, Wu-Gang; Guo, Xiao-Can; Wu, Min-Juan; Xu, Zhen-Yu; Jiang, Jun-feng; Shen, Ce; Liu, Hou-Qi

    2013-08-01

    The transplantation of mesenchymal stem cells (MSCs) has been reported to be a promising approach in the treatment of acute lung injury. However, the poor efficacy of transplanted MSCs is one of the serious handicaps in the progress of MSC-based therapy. Therefore, the purpose of this study was to investigate whether the pretreatment of human embryonic MSCs (hMSCs) with an antioxidant, namely N-acetylcysteine (NAC), can improve the efficacy of hMSC transplantation in lung injury. In vitro, the antioxidant capacity of NAC-pretreated hMSCs was assessed using intracellular reactive oxygen species (ROS) and glutathione assays and cell adhesion and spreading assays. In vivo, the therapeutic potential of NAC-pretreated hMSCs was assessed in a bleomycin-induced model of lung injury in nude mice. The pretreatment of hMSCs with NAC improved antioxidant capacity to defend against redox imbalances through the elimination of cellular ROS, increasing cellular glutathione levels, and the enhancement of cell adhesion and spreading when exposed to oxidative stresses in vitro. In addition, the administration of NAC-pretreated hMSCs to nude mice with bleomycin-induced lung injury decreased the pathological grade of lung inflammation and fibrosis, hydroxyproline content and numbers of neutrophils and inflammatory cytokines in bronchoalveolar lavage fluid and apoptotic cells, while enhancing the retention and proliferation of hMSCs in injured lung tissue and improving the survival rate of mice compared with results from untreated hMSCs. The pretreatment of hMSCs with NAC could be a promising therapeutic approach to improving cell transplantation and, therefore, the treatment of lung injury.

  6. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.

    PubMed

    Oh, Hye Ji; Moon, Hye Yun; Cheon, Seon Ah; Hahn, Yoonsoo; Kang, Hyun Ah

    2016-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated.

  7. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice.

    PubMed

    Rahman, Hifzur; Ramanathan, Valarmathi; Nallathambi, Jagedeeshselvam; Duraialagaraja, Sudhakar; Muthurajan, Raveendran

    2016-05-11

    NAC proteins (NAM (No apical meristem), ATAF (Arabidopsis transcription activation factor) and CUC (cup-shaped cotyledon)) are plant-specific transcription factors reported to be involved in regulating growth, development and stress responses. Salinity responsive transcriptome profiling in a set of contrasting finger millet genotypes through RNA-sequencing resulted in the identification of a NAC homolog (EcNAC 67) exhibiting differential salinity responsive expression pattern. Full length cDNA of EcNAC67 was isolated, characterized and validated for its role in abiotic stress tolerance through agrobacterium mediated genetic transformation in a rice cultivar ASD16. Bioinformatics analysis of putative NAC transcription factor (TF) isolated from a salinity tolerant finger millet showed its genetic relatedness to NAC67 family TFs in related cereals. Putative transgenic lines of rice over-expressing EcNAC67 were generated through Agrobacterium mediated transformation and presence/integration of transgene was confirmed through PCR and southern hybridization analysis. Transgenic rice plants harboring EcNAC67 showed enhanced tolerance against drought and salinity under greenhouse conditions. Transgenic rice plants were found to possess higher root and shoot biomass during stress and showed better revival ability upon relief from salinity stress. Upon drought stress, transgenic lines were found to maintain higher relative water content and lesser reduction in grain yield when compared to non-transgenic ASD16 plants. Drought induced spikelet sterility was found to be much lower in the transgenic lines than the non-transgenic ASD16. Results revealed the significant role of EcNAC67 in modulating responses against dehydration stress in rice. No detectable abnormalities in the phenotypic traits were observed in the transgenic plants under normal growth conditions. Results indicate that EcNAC67 can be used as a novel source for engineering tolerance against drought and salinity

  8. The Rewarding and Locomotor-Sensitizing Effects of Repeated Cocaine Administration are Distinct and Separable in Mice

    PubMed Central

    Riday, Thorfinn T.; Kosofsky, Barry E.; Malanga, C.J.

    2011-01-01

    Repeated psychostimulant exposure progressively increases their potency to stimulate motor activity in rodents. This behavioral or locomotor sensitization is considered a model for some aspects of drug addiction in humans, particularly drug craving during abstinence. However, the role of increased motor behavior in drug reward remains incompletely understood. Intracranial self-stimulation (ICSS) was measured concurrently with locomotor activity to determine if acute intermittent cocaine administration had distinguishable effects on motor behavior and perception of brain stimulation-reward (BSR) in the same mice. Sensitization is associated with changes in neuronal activity and glutamatergic neurotransmission in brain reward circuitry. Expression of AMPA receptor subunits (GluR1 and GluR2) and CRE binding protein (CREB) was measured in the ventral tegmental area (VTA), dorsolateral striatum (STR) and nucleus accumbens (NAc) before and after a sensitizing regimen of cocaine, with and without ICSS. Repeated cocaine administration sensitized mice to its locomotor stimulating effects but not its ability to potentiate BSR. ICSS increased GluR1 in the VTA but not NAc or STR, demonstrating selective changes in protein expression with electrical stimulation of discrete brain structures. Repeated cocaine reduced GluR1, GluR2 and CREB expression in the NAc, and reductions of GluR1 and GluR2 but not CREB were further enhanced by ICSS. These data suggest that the effects of repeated cocaine exposure on reward and motor processes are dissociable in mice, and that reduction of excitatory neurotransmission in the NAc may predict altered motor function independently from changes in reward perception. PMID:22197517

  9. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits

    PubMed Central

    Matas-Arroyo, Antonio J.; Caballero, José Luis; Muñoz-Blanco, Juan

    2018-01-01

    NAC proteins are a family of transcription factors which have a variety of important regulatory roles in plants. They present a very well conserved group of NAC subdomains in the N-terminal region and a highly variable domain at the C-terminus. Currently, knowledge concerning NAC family in the strawberry plant remains very limited. In this work, we analyzed the NAC family of Fragaria vesca, and a total of 112 NAC proteins were identified after we curated the annotations from the version 4.0.a1 genome. They were placed into the ligation groups (pseudo-chromosomes) and described its physicochemical and genetic features. A microarray transcriptomic analysis showed six of them expressed during the development and ripening of the Fragaria x ananassa fruit. Their expression patterns were studied in fruit (receptacle and achenes) in different stages of development and in vegetative tissues. Also, the expression level under different hormonal treatments (auxins, ABA) and drought stress was investigated. In addition, they were clustered with other NAC transcription factor with known function related to growth and development, senescence, fruit ripening, stress response, and secondary cell wall and vascular development. Our results indicate that these six strawberry NAC proteins could play different important regulatory roles in the process of development and ripening of the fruit, providing the basis for further functional studies and the selection for NAC candidates suitable for biotechnological applications. PMID:29723301

  10. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    PubMed

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American

  11. Validation and optimisation of an ICD-10-coded case definition for sepsis using administrative health data

    PubMed Central

    Jolley, Rachel J; Jetté, Nathalie; Sawka, Keri Jo; Diep, Lucy; Goliath, Jade; Roberts, Derek J; Yipp, Bryan G; Doig, Christopher J

    2015-01-01

    Objective Administrative health data are important for health services and outcomes research. We optimised and validated in intensive care unit (ICU) patients an International Classification of Disease (ICD)-coded case definition for sepsis, and compared this with an existing definition. We also assessed the definition's performance in non-ICU (ward) patients. Setting and participants All adults (aged ≥18 years) admitted to a multisystem ICU with general medicosurgical ICU care from one of three tertiary care centres in the Calgary region in Alberta, Canada, between 1 January 2009 and 31 December 2012 were included. Research design Patient medical records were randomly selected and linked to the discharge abstract database. In ICU patients, we validated the Canadian Institute for Health Information (CIHI) ICD-10-CA (Canadian Revision)-coded definition for sepsis and severe sepsis against a reference standard medical chart review, and optimised this algorithm through examination of other conditions apparent in sepsis. Measures Sensitivity (Sn), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) were calculated. Results Sepsis was present in 604 of 1001 ICU patients (60.4%). The CIHI ICD-10-CA-coded definition for sepsis had Sn (46.4%), Sp (98.7%), PPV (98.2%) and NPV (54.7%); and for severe sepsis had Sn (47.2%), Sp (97.5%), PPV (95.3%) and NPV (63.2%). The optimised ICD-coded algorithm for sepsis increased Sn by 25.5% and NPV by 11.9% with slightly lowered Sp (85.4%) and PPV (88.2%). For severe sepsis both Sn (65.1%) and NPV (70.1%) increased, while Sp (88.2%) and PPV (85.6%) decreased slightly. Conclusions This study demonstrates that sepsis is highly undercoded in administrative data, thus under-ascertaining the true incidence of sepsis. The optimised ICD-coded definition has a higher validity with higher Sn and should be preferentially considered if used for surveillance purposes. PMID:26700284

  12. Validation and optimisation of an ICD-10-coded case definition for sepsis using administrative health data.

    PubMed

    Jolley, Rachel J; Quan, Hude; Jetté, Nathalie; Sawka, Keri Jo; Diep, Lucy; Goliath, Jade; Roberts, Derek J; Yipp, Bryan G; Doig, Christopher J

    2015-12-23

    Administrative health data are important for health services and outcomes research. We optimised and validated in intensive care unit (ICU) patients an International Classification of Disease (ICD)-coded case definition for sepsis, and compared this with an existing definition. We also assessed the definition's performance in non-ICU (ward) patients. All adults (aged ≥ 18 years) admitted to a multisystem ICU with general medicosurgical ICU care from one of three tertiary care centres in the Calgary region in Alberta, Canada, between 1 January 2009 and 31 December 2012 were included. Patient medical records were randomly selected and linked to the discharge abstract database. In ICU patients, we validated the Canadian Institute for Health Information (CIHI) ICD-10-CA (Canadian Revision)-coded definition for sepsis and severe sepsis against a reference standard medical chart review, and optimised this algorithm through examination of other conditions apparent in sepsis. Sensitivity (Sn), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) were calculated. Sepsis was present in 604 of 1001 ICU patients (60.4%). The CIHI ICD-10-CA-coded definition for sepsis had Sn (46.4%), Sp (98.7%), PPV (98.2%) and NPV (54.7%); and for severe sepsis had Sn (47.2%), Sp (97.5%), PPV (95.3%) and NPV (63.2%). The optimised ICD-coded algorithm for sepsis increased Sn by 25.5% and NPV by 11.9% with slightly lowered Sp (85.4%) and PPV (88.2%). For severe sepsis both Sn (65.1%) and NPV (70.1%) increased, while Sp (88.2%) and PPV (85.6%) decreased slightly. This study demonstrates that sepsis is highly undercoded in administrative data, thus under-ascertaining the true incidence of sepsis. The optimised ICD-coded definition has a higher validity with higher Sn and should be preferentially considered if used for surveillance purposes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  13. RhNAC2 and RhEXPA4 Are Involved in the Regulation of Dehydration Tolerance during the Expansion of Rose Petals1[C][W][OA

    PubMed Central

    Dai, Fanwei; Zhang, Changqing; Jiang, Xinqiang; Kang, Mei; Yin, Xia; Lü, Peitao; Zhang, Xiao; Zheng, Yi; Gao, Junping

    2012-01-01

    Dehydration inhibits petal expansion resulting in abnormal flower opening and results in quality loss during the marketing of cut flowers. We constructed a suppression subtractive hybridization library from rose (Rosa hybrida) flowers containing 3,513 unique expressed sequence tags and analyzed their expression profiles during cycles of dehydration. We found that 54 genes were up-regulated by the first dehydration, restored or even down-regulated by rehydration, and once again up-regulated by the second dehydration. Among them, we identified a putative NAC family transcription factor (RhNAC2). With transactivation activity of its carboxyl-terminal domain in yeast (Saccharomyces cerevisiae) cell and Arabidopsis (Arabidopsis thaliana) protoplast, RhNAC2 belongs to the NAC transcription factor clade related to plant development in Arabidopsis. A putative expansin gene named RhEXPA4 was also dramatically up-regulated by dehydration. Silencing RhNAC2 or RhEXPA4 in rose petals by virus-induced gene silencing significantly decreased the recovery of intact petals and petal discs during rehydration. Overexpression of RhNAC2 or RhEXPA4 in Arabidopsis conferred strong drought tolerance in the transgenic plants. RhEXPA4 expression was repressed in RhNAC2-silenced rose petals, and the amino-terminal binding domain of RhNAC2 bound to the RhEXPA4 promoter. Twenty cell wall-related genes, including seven expansin family members, were up-regulated in Arabidopsis plants overexpressing RhNAC2. These data indicate that RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals and that RhEXPA4 expression may be regulated by RhNAC2. PMID:23093360

  14. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system

    PubMed Central

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D.; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-01-01

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy. PMID:28186137

  15. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system.

    PubMed

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-02-10

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P 0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.

  16. Exploration of association rule mining for coding consistency and completeness assessment in inpatient administrative health data.

    PubMed

    Peng, Mingkai; Sundararajan, Vijaya; Williamson, Tyler; Minty, Evan P; Smith, Tony C; Doktorchik, Chelsea T A; Quan, Hude

    2018-03-01

    Data quality assessment is a challenging facet for research using coded administrative health data. Current assessment approaches are time and resource intensive. We explored whether association rule mining (ARM) can be used to develop rules for assessing data quality. We extracted 2013 and 2014 records from the hospital discharge abstract database (DAD) for patients between the ages of 55 and 65 from five acute care hospitals in Alberta, Canada. The ARM was conducted using the 2013 DAD to extract rules with support ≥0.0019 and confidence ≥0.5 using the bootstrap technique, and tested in the 2014 DAD. The rules were compared against the method of coding frequency and assessed for their ability to detect error introduced by two kinds of data manipulation: random permutation and random deletion. The association rules generally had clear clinical meanings. Comparing 2014 data to 2013 data (both original), there were 3 rules with a confidence difference >0.1, while coding frequency difference of codes in the right hand of rules was less than 0.004. After random permutation of 50% of codes in the 2014 data, average rule confidence dropped from 0.72 to 0.27 while coding frequency remained unchanged. Rule confidence decreased with the increase of coding deletion, as expected. Rule confidence was more sensitive to code deletion compared to coding frequency, with slope of change ranging from 1.7 to 184.9 with a median of 9.1. The ARM is a promising technique to assess data quality. It offers a systematic way to derive coding association rules hidden in data, and potentially provides a sensitive and efficient method of assessing data quality compared to standard methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.

    PubMed

    Li, Y; Ge, S; Li, N; Chen, L; Zhang, S; Wang, J; Wu, H; Wang, X; Wang, X

    2016-02-19

    Reactivation of consolidated memory initiates a memory reconsolidation process, during which the reactivated memory is susceptible to strengthening, weakening or updating. Therefore, effective interference with the memory reconsolidation process is expected to be an important treatment for drug addiction. The nucleus accumbens (NAc) has been well recognized as a pathway component that can prevent drug relapse, although the mechanism underlying this function is poorly understood. We aimed to clarify the regulatory role of the NAc in the cocaine memory reconsolidation process, by examining the effect of applying different pharmacological interventions to the NAc on Zif 268 and Fos B expression in the entire reward circuit after cocaine memory reactivation. Through the cocaine-induced conditioned place preference (CPP) model, immunohistochemical and immunofluorescence staining for Zif 268 and Fos B were used to explore the functional activated brain nuclei after cocaine memory reactivation. Our results showed that the expression of Zif 268 and Fos B was commonly increased in the medial prefrontal cortex (mPFC), the infralimbic cortex (IL), the NAc-core, the NAc-shell, the hippocampus (CA1, CA2, and CA3 subregions), the amygdala, the ventral tegmental area (VTA), and the supramammillary nucleus (SuM) following memory reconsolidation, and Zif 268/Fos B co-expression was commonly observed (for Zif 268: 51-68%; for Fos B: 52-66%). Further, bilateral NAc-shell infusion of MK 801 and SCH 23390, but not raclopride or propranolol, prior to addictive memory reconsolidation, decreased Zif 268 and Fos B expression in the entire reward circuit, except for the amygdala, and effectively disturbed subsequent CPP-related behavior. In summary, N-methyl-d-aspartate (NMDA) and dopamine D1 receptors, but not dopamine D2 or β adrenergic receptors, within the NAc-shell, may regulate Zif 268 and Fos B expression in most brain nuclei of the reward circuit after cocaine memory reactivation

  18. Genome-Wide Analyses of the NAC Transcription Factor Gene Family in Pepper (Capsicum annuum L.): Chromosome Location, Phylogeny, Structure, Expression Patterns, Cis-Elements in the Promoter, and Interaction Network

    PubMed Central

    Diao, Weiping; Snyder, John C.; Liu, Jinbing; Pan, Baogui; Guo, Guangjun; Ge, Wei; Dawood, Mohammad Hasan Salman Ali

    2018-01-01

    The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family, which is involved in the regulation of tissue development in response to biotic and abiotic stress. To date, there have been no comprehensive studies investigating chromosomal location, gene structure, gene phylogeny, conserved motifs, or gene expression of NAC in pepper (Capsicum annuum L.). The recent release of the complete genome sequence of pepper allowed us to perform a genome-wide investigation of Capsicum annuum L. NAC (CaNAC) proteins. In the present study, a comprehensive analysis of the CaNAC gene family in pepper was performed, and a total of 104 CaNAC genes were identified. Genome mapping analysis revealed that CaNAC genes were enriched on four chromosomes (chromosomes 1, 2, 3, and 6). In addition, phylogenetic analysis of the NAC domains from pepper, potato, Arabidopsis, and rice showed that CaNAC genes could be clustered into three groups (I, II, and III). Group III, which contained 24 CaNAC genes, was exclusive to the Solanaceae plant family. Gene structure and protein motif analyses showed that these genes were relatively conserved within each subgroup. The number of introns in CaNAC genes varied from 0 to 8, with 83 (78.9%) of CaNAC genes containing two or less introns. Promoter analysis confirmed that CaNAC genes are involved in pepper growth, development, and biotic or abiotic stress responses. Further, the expression of 22 selected CaNAC genes in response to seven different biotic and abiotic stresses [salt, heat shock, drought, Phytophthora capsici, abscisic acid, salicylic acid (SA), and methyl jasmonate (MeJA)] was evaluated by quantitative RT-PCR to determine their stress-related expression patterns. Several putative stress-responsive CaNAC genes, including CaNAC72 and CaNAC27, which are orthologs of the known stress-responsive Arabidopsis gene ANAC055 and potato gene StNAC30, respectively, were highly regulated by treatment with different types

  19. Glucosamine Treatment-mediated O-GlcNAc Modification of Paxillin Depends on Adhesion State of Rat Insulinoma INS-1 Cells*

    PubMed Central

    Kwak, Tae Kyoung; Kim, Hyeonjung; Jung, Oisun; Lee, Sin-Ae; Kang, Minkyung; Kim, Hyun Jeong; Park, Ji-Min; Kim, Sung-Hoon; Lee, Jung Weon

    2010-01-01

    Protein-protein interactions and/or signaling activities at focal adhesions, where integrin-mediated adhesion to extracellular matrix occurs, are critical for the regulation of adhesion-dependent cellular functions. Although the phosphorylation and activities of focal adhesion molecules have been intensively studied, the effects of the O-GlcNAc modification of their Ser/Thr residues on cellular functions have been largely unexplored. We investigated the effects of O-GlcNAc modification on actin reorganization and morphology of rat insulinoma INS-1 cells after glucosamine (GlcN) treatment. We found that paxillin, a key adaptor molecule in focal adhesions, could be modified by O-GlcNAc in INS-1 cells treated with GlcN and in pancreatic islets from mice treated with streptozotocin. Ser-84/85 in human paxillin appeared to be modified by O-GlcNAc, which was inversely correlated to Ser-85 phosphorylation (Ser-83 in rat paxillin). Integrin-mediated adhesion signaling inhibited the GlcN treatment-enhanced O-GlcNAc modification of paxillin. Adherent INS-1 cells treated with GlcN showed restricted protrusions, whereas untreated cells showed active protrusions for multiple-elongated morphologies. Upon GlcN treatment, expression of a triple mutation (S83A/S84A/S85A) resulted in no further restriction of protrusions. Together these observations suggest that murine pancreatic β cells may have restricted actin organization upon GlcN treatment by virtue of the O-GlcNAc modification of paxillin, which can be antagonized by a persistent cell adhesion process. PMID:20829364

  20. Soils Project Risk-Based Corrective Action Evaluation Process with ROTC 1 and ROTC 2, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick; Sloop, Christina

    2012-04-01

    This document formally defines and clarifies the NDEP-approved process the NNSA/NSO Soils Activity uses to fulfill the requirements of the FFACO and state regulations. This process is used to establish FALs in accordance with the risk-based corrective action (RBCA) process stipulated in Chapter 445 of the Nevada Administrative Code (NAC) as described in the ASTM International (ASTM) Method E1739-95 (NAC, 2008; ASTM, 1995). It is designed to provide a set of consistent standards for chemical and radiological corrective actions.

  1. Bidirectional synaptic structural plasticity after chronic cocaine administration occurs through Rap1 small GTPase signaling

    PubMed Central

    Cahill, Michael E.; Bagot, Rosemary C.; Gancarz, Amy M.; Walker, Deena M.; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A.; Feng, Jian; Kennedy, Pamela J.; Koo, Ja Wook; Cates, Hannah M.; Neve, Rachael L.; Shen, Li; Dietz, David M.

    2016-01-01

    Summary Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens, a primary brain reward region, are seen at early vs. late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local-synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce “metaplasticity” in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner. PMID:26844834

  2. Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors

    PubMed Central

    2018-01-01

    O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP–peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol–ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay. PMID:29723473

  3. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3.

    PubMed

    Li, Shao-Jia; Yin, Xue-Ren; Wang, Wen-Li; Liu, Xiao-Fen; Zhang, Bo; Chen, Kun-Song

    2017-06-15

    Citric acid is the predominant organic acid of citrus fruit. Degradation of citric acid occurs during fruit development, influencing fruit acidity. Associations of CitAco3 transcripts and citric acid degradation have been reported for citrus fruit. Here, transient overexpression of CitAco3 significantly reduced the citric acid content of citrus leaves and fruits. Using dual luciferase assays, it was shown that CitNAC62 and CitWRKY1 could transactivate the promoter of CitAco3. Subcellular localization results showed that CitWRKY1 was located in the nucleus and CitNAC62 was not. Yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC) assays indicated that the two differently located transcription factors could interact with each other. Furthermore, BiFC showed that the protein-protein interaction occurred only in the nucleus, indicating the potential mobility of CitNAC62 in plant cells. A synergistic effect on citrate content was observed between CitNAC62 and CitWRKY1. Transient overexpression of CitNAC62 or CitWRKY1 led to significantly lower citrate content in citrus fruit. The combined expression of CitNAC62 and CitWRKY1 resulted in lower citrate content compared with the expression of CitNAC62 or CitWRKY1 alone. The transcript abundance of CitAco3 was consistent with the citrate content. Thus, we propose that a complex of CitWRKY1 and CitNAC62 contributes to citric acid degradation in citrus fruit, potentially via modulation of CitAco3. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Sex-Related Difference in Nitric Oxide Metabolites Levels after Nephroprotectant Supplementation Administration against Cisplatin-Induced Nephrotoxicity in Wistar Rat Model: The Role of Vitamin E, Erythropoietin, or N-Acetylcysteine.

    PubMed

    Nematbakhsh, Mehdi; Pezeshki, Zahra

    2013-01-01

    Background. Nitric oxide (NO) concentration in serum is altered by cisplatin (CP), and NO influences CP-induced nephrotoxicity. The effect of nephroprotectant agent supplementation (vitamin E, human recombinant erythropoietin (EPO), or n-acetylcysteine (NAC)) on the NO metabolites levels after CP administration in the two genders was determined. Methods. Sixty-four adult Wistar rats were randomly divided into 10 groups. Male and female rats in different groups received vehicle (saline), CP (7 mg/kg) alone, CP plus EPO (100 IU/kg), CP plus vitamin E (250 mg/kg), and CP plus NAC (600 mg/kg). CP was administrated as a single dose, but the supplementations were given for a period of 7 days. Results. In male rats, the serum levels of total NO metabolites (NO x ) and nitrite were increased significantly (P < 0.05) by CP. However, vitamin E significantly reduced the serum levels of these metabolites, which was increased by administration of CP (P < 0.05), and such findings were not observed for female rats. The EPO or NAC did not influence NO metabolites neither in male rats nor in female rats. Conclusion. Although vitamin E, EPO, and NAC are reported to be nephroprotectant agents against CP-induced nephrotoxicity, only vitamin E could reduce the level of all NO metabolites only in male rats.

  5. Oxycodone Self-Administration Induces Alterations in Expression of Integrin, Semaphorin and Ephrin Genes in the Mouse Striatum.

    PubMed

    Yuferov, Vadim; Zhang, Yong; Liang, Yupu; Zhao, Connie; Randesi, Matthew; Kreek, Mary J

    2018-01-01

    Oxycodone is one a commonly used medication for pain, and is also a widely abused prescription opioid, like other short-acting MOPr agonists. Neurochemical and structural adaptations in brain following chronic MOPr-agonist administration are thought to underlie pathogenesis and persistence of opiate addiction. Many axon guidance molecules, such as integrins, semaphorins, and ephrins may contribute to oxycodone-induced neuroadaptations through alterations in axon-target connections and synaptogenesis, that may be implicated in the behaviors associated with opiate addiction. However, little is known about this important area. The aim of this study is to investigate alterations in expression of selected integrin, semaphorin, ephrins, netrin, and slit genes in the nucleus accumbens (NAc) and caudate putamen (CPu) of mice following extended 14-day oxycodone self-administration (SA), using RNAseq. Methods: Total RNA from the NAc and CPu were isolated from adult male C57BL/6J mice within 1 h after the last session of oxycodone in a 14-day self-administration paradigm (4h/day, 0.25 mg/kg/infusion, FR1) or from yoked saline controls. Gene expressions were examined using RNA sequencing (RNA-Seq) technology. RNA-Seq libraries were prepared using Illumina's TruSeq® Stranded Total RNA LT kit. The reads were aligned to the mouse reference genome (version mm10) using STAR. DESeq2 was applied to the counts of protein coding genes to estimate the fold change between the treatment groups. False Discovery Rate (FDR) q < 0.1 were used to select genes that have a significant expression change. For selection of a subset of genes related to axon guidance pathway, REACTOME was used. Results: Among 38 known genes of the integrin, semaphorin, and ephrin gene families, RNA-seq data revealed up-regulation of six genes in the NAc: heterodimer receptor, integrins Itgal, Itgb2 , and Itgam , and its ligand semaphorin Sema7a , two semaphorin receptors, plexins Plxnd1 and Plxdc1 . There was down

  6. Luminorefrigeration: vibrational cooling of NaCs.

    PubMed

    Wakim, A; Zabawa, P; Haruza, M; Bigelow, N P

    2012-07-02

    We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X(1)Σ(+)(v ≥ 4) into the vibrational ground state X(1)Σ(+)(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X(1)Σ(+)(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, J(initial)=0-2 is only moderately affected resulting in J(final)=0-4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.

  7. Biases in detection of apparent “weekend effect” on outcome with administrative coding data: population based study of stroke

    PubMed Central

    Li, Linxin

    2016-01-01

    Objectives To determine the accuracy of coding of admissions for stroke on weekdays versus weekends and any impact on apparent outcome. Design Prospective population based stroke incidence study and a scoping review of previous studies of weekend effects in stroke. Setting Primary and secondary care of all individuals registered with nine general practices in Oxfordshire, United Kingdom (OXVASC, the Oxford Vascular Study). Participants All patients with clinically confirmed acute stroke in OXVASC identified with multiple overlapping methods of ascertainment in 2002-14 versus all acute stroke admissions identified by hospital diagnostic and mortality coding alone during the same period. Main outcomes measures Accuracy of administrative coding data for all patients with confirmed stroke admitted to hospital in OXVASC. Difference between rates of “false positive” or “false negative” coding for weekday and weekend admissions. Impact of inaccurate coding on apparent case fatality at 30 days in weekday versus weekend admissions. Weekend effects on outcomes in patients with confirmed stroke admitted to hospital in OXVASC and impacts of other potential biases compared with those in the scoping review. Results Among 92 728 study population, 2373 episodes of acute stroke were ascertained in OXVASC, of which 826 (34.8%) mainly minor events were managed without hospital admission, 60 (2.5%) occurred out of the area or abroad, and 195 (8.2%) occurred in hospital during an admission for a different reason. Of 1292 local hospital admissions for acute stroke, 973 (75.3%) were correctly identified by administrative coding. There was no bias in distribution of weekend versus weekday admission of the 319 strokes missed by coding. Of 1693 admissions for stroke identified by coding, 1055 (62.3%) were confirmed to be acute strokes after case adjudication. Among the 638 false positive coded cases, patients were more likely to be admitted on weekdays than at weekends (536

  8. Validation of coding algorithms for the identification of patients hospitalized for alcoholic hepatitis using administrative data.

    PubMed

    Pang, Jack X Q; Ross, Erin; Borman, Meredith A; Zimmer, Scott; Kaplan, Gilaad G; Heitman, Steven J; Swain, Mark G; Burak, Kelly W; Quan, Hude; Myers, Robert P

    2015-09-11

    Epidemiologic studies of alcoholic hepatitis (AH) have been hindered by the lack of a validated International Classification of Disease (ICD) coding algorithm for use with administrative data. Our objective was to validate coding algorithms for AH using a hospitalization database. The Hospital Discharge Abstract Database (DAD) was used to identify consecutive adults (≥18 years) hospitalized in the Calgary region with a diagnosis code for AH (ICD-10, K70.1) between 01/2008 and 08/2012. Medical records were reviewed to confirm the diagnosis of AH, defined as a history of heavy alcohol consumption, elevated AST and/or ALT (<300 U/L), serum bilirubin >34 μmol/L, and elevated INR. Subgroup analyses were performed according to the diagnosis field in which the code was recorded (primary vs. secondary) and AH severity. Algorithms that incorporated ICD-10 codes for cirrhosis and its complications were also examined. Of 228 potential AH cases, 122 patients had confirmed AH, corresponding to a positive predictive value (PPV) of 54% (95% CI 47-60%). PPV improved when AH was the primary versus a secondary diagnosis (67% vs. 21%; P < 0.001). Algorithms that included diagnosis codes for ascites (PPV 75%; 95% CI 63-86%), cirrhosis (PPV 60%; 47-73%), and gastrointestinal hemorrhage (PPV 62%; 51-73%) had improved performance, however, the prevalence of these diagnoses in confirmed AH cases was low (29-39%). In conclusion the low PPV of the diagnosis code for AH suggests that caution is necessary if this hospitalization database is used in large-scale epidemiologic studies of this condition.

  9. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    PubMed Central

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  10. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae.

    PubMed

    Wang, Zhaoyun; Xia, Yeqiang; Lin, Siyuan; Wang, Yanru; Guo, Baohuan; Song, Xiaoning; Ding, Shaochen; Zheng, Liyu; Feng, Ruiying; Chen, Shulin; Bao, Yalin; Sheng, Cong; Zhang, Xin; Wu, Jianguo; Niu, Dongdong; Jin, Hailing; Zhao, Hongwei

    2018-05-18

    Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more ROS accumulation and callose deposition, and up-regulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Bootstrap imputation with a disease probability model minimized bias from misclassification due to administrative database codes.

    PubMed

    van Walraven, Carl

    2017-04-01

    Diagnostic codes used in administrative databases cause bias due to misclassification of patient disease status. It is unclear which methods minimize this bias. Serum creatinine measures were used to determine severe renal failure status in 50,074 hospitalized patients. The true prevalence of severe renal failure and its association with covariates were measured. These were compared to results for which renal failure status was determined using surrogate measures including the following: (1) diagnostic codes; (2) categorization of probability estimates of renal failure determined from a previously validated model; or (3) bootstrap methods imputation of disease status using model-derived probability estimates. Bias in estimates of severe renal failure prevalence and its association with covariates were minimal when bootstrap methods were used to impute renal failure status from model-based probability estimates. In contrast, biases were extensive when renal failure status was determined using codes or methods in which model-based condition probability was categorized. Bias due to misclassification from inaccurate diagnostic codes can be minimized using bootstrap methods to impute condition status using multivariable model-derived probability estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Administration of the Antioxidant N-Acetyl-Cysteine in Pregnant Mice Has Long-Term Positive Effects on Metabolic and Behavioral Endpoints of Male and Female Offspring Prenatally Exposed to a High-Fat Diet.

    PubMed

    Berry, Alessandra; Bellisario, Veronica; Panetta, Pamela; Raggi, Carla; Magnifico, Maria C; Arese, Marzia; Cirulli, Francesca

    2018-01-01

    A growing body of evidence suggests the consumption of high-fat diet (HFD) during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS), might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy) on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery) and were exposed to the N-acetyl-cysteine (NAC) antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother's body weight and offspring's weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females) and in the central nervous system (males). Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important long

  13. Creating a Culture of Safety Around Bar-Code Medication Administration: An Evidence-Based Evaluation Framework.

    PubMed

    Kelly, Kandace; Harrington, Linda; Matos, Pat; Turner, Barbara; Johnson, Constance

    2016-01-01

    Bar-code medication administration (BCMA) effectiveness is contingent upon compliance with best-practice protocols. We developed a 4-phased BCMA evaluation program to evaluate the degree of integration of current evidence into BCMA policies, procedures, and practices; identify barriers to best-practice BCMA use; and modify BCMA practice in concert with changes to the practice environment. This program provides an infrastructure for frontline nurses to partner with hospital leaders to continually evaluate and improve BCMA using a systematic process.

  14. OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters.

    PubMed

    Mao, Chanjuan; Ding, Jialin; Zhang, Bin; Xi, Dandan; Ming, Feng

    2018-05-01

    Plant development and adaptation to environmental stresses are intimately associated with programmed cell death (PCD). Although some of the mechanisms regulating PCD [e.g., accumulation of reactive oxygen species (ROS)] are common among responses to different abiotic stresses, the pathways mediating salt-induced PCD remain largely uncharacterized. Here we report that overexpression of OsNAC2, which encodes a plant-specific transcription factor, promotes salt-induced cell death accompanied by the loss of plasma membrane integrity, nuclear DNA fragmentation, and changes to caspase-like activity. In OsNAC2-knockdown lines, cell death was markedly decreased in response to severe salt stress. Additionally, OsNAC2 expression was enhanced in rice seedlings exposed to a high NaCl concentration. Moreover, the results of quantitative real-time PCR, chromatin immunoprecipitation, dual-luciferase, and yeast one-hybrid assays indicated that OsNAC2 targeted genes that encoded an ROS scavenger (OsCOX11) and a caspase-like protease (OsAP37). Furthermore, K + -efflux channels (OsGORK and OsSKOR) were clearly activated by OsNAC2. Overall, our results suggested that OsNAC2 accelerates NaCl-induced PCD and provide new insights into the mechanisms that affect ROS accumulation, plant caspase-like activity, and K + efflux. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  15. Effect of change in coding rules on recording diabetes in hospital administrative datasets.

    PubMed

    Assareh, Hassan; Achat, Helen M; Guevarra, Veth M; Stubbs, Joanne M

    2016-10-01

    During 2008-2011 Australian Coding Standards mandated a causal relationship between diabetes and inpatient care as a criterion for recording diabetes as a comorbidity in hospital administrative datasets. We aim to measure the effect of the causality mandate on recorded diabetes and associated inter-hospital variations. For patients with diabetes, all admissions between 2004 and 2013 to all New South Wales acute public hospitals were investigated. Poisson mixed models were employed to derive adjusted rates and variations. The non-recorded diabetes incidence rate was 20.7%. The causality mandate increased the incidence rate four fold during the change period, 2008-2011, compared to the pre- or post-change periods (32.5% vs 8.4% and 6.9%). The inter-hospital variation was also higher, with twice the difference in the non-recorded rate between hospitals with the highest and lowest rates (50% vs 24% and 27% risk gap). The variation decreased during the change period (29%), while the rate continued to rise (53%). Admission characteristics accounted for over 44% of the variation compared with at most two per cent attributable to patient or hospital characteristics. Contributing characteristics explained less of the variation within the change period compared to pre- or post-change (46% vs 58% and 53%). Hospital relative performance was not constant over time. The causality mandate substantially increased the non-recorded diabetes rate and associated inter-hospital variation. Longitudinal accumulation of clinical information at the patient level, and the development of appropriate adoption protocols to achieve comprehensive and timely implementation of coding changes are essential to supporting the integrity of hospital administrative datasets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Studies of rotationally inelastic collisions of NaK and NaCs with Ar and He perturbers

    NASA Astrophysics Data System (ADS)

    Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Ashman, S.; Malenda, R. F.; Weiser, P.; Carlus, S.; Fragale, A.; Hickman, A. P.; Huennekens, J.

    2013-05-01

    We report studies of rotationally inelastic collisions of Ar and He atoms with the molecules NaK and NaCs prepared in various ro-vibrational levels of the A1Σ+ electronic state. We use laser induced fluorescence (LIF) and polarization labeling (PL) spectroscopy in a pump-probe, two step excitation process. The pump excites the molecule to a ro-vibrational level (v , J) in the A state. The probe laser is scanned over transitions to the 31 Π state in NaK or the 53 Π state in NaCs. In addition to strong direct lines, we observe weak satellite lines that arise from collision-induced transitions of the A state level (v , J) to (v , J + ΔJ) . The ratio of intensities of the satellite line to the direct line in LIF and PL yields information about population and orientation transfer. Preliminary results show a strong propensity for collisions with ΔJ =even for NaK; the propensity is larger for He than for Ar. Collisions of NaCs with He show a similar propensity, but collisions of NaCs with Ar do not. Theoretical calculations are also underway. For He-NaK, we have completed potential surface calculations using GAMESS and coupled channel scattering calculations of rotational energy transfer and transfer of orientation. Work supported by NSF and XSEDE.

  17. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans

    PubMed Central

    Peng, Wenjie; Pranskevich, Jennifer; Nycholat, Corwin; Gilbert, Michel; Wakarchuk, Warren; Paulson, James C; Razi, Nahid

    2012-01-01

    Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans. PMID:22786570

  18. 45 CFR 162.1011 - Valid code sets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...

  19. 45 CFR 162.1011 - Valid code sets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...

  20. 45 CFR 162.1011 - Valid code sets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...

  1. 45 CFR 162.1011 - Valid code sets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare Department of Health and Human Services ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...

  2. 45 CFR 162.1011 - Valid code sets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...

  3. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    PubMed

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Minimizing human error in radiopharmaceutical preparation and administration via a bar code-enhanced nuclear pharmacy management system.

    PubMed

    Hakala, John L; Hung, Joseph C; Mosman, Elton A

    2012-09-01

    The objective of this project was to ensure correct radiopharmaceutical administration through the use of a bar code system that links patient and drug profiles with on-site information management systems. This new combined system would minimize the amount of manual human manipulation, which has proven to be a primary source of error. The most common reason for dosing errors is improper patient identification when a dose is obtained from the nuclear pharmacy or when a dose is administered. A standardized electronic transfer of information from radiopharmaceutical preparation to injection will further reduce the risk of misadministration. Value stream maps showing the flow of the patient dose information, as well as potential points of human error, were developed. Next, a future-state map was created that included proposed corrections for the most common critical sites of error. Transitioning the current process to the future state will require solutions that address these sites. To optimize the future-state process, a bar code system that links the on-site radiology management system with the nuclear pharmacy management system was proposed. A bar-coded wristband connects the patient directly to the electronic information systems. The bar code-enhanced process linking the patient dose with the electronic information reduces the number of crucial points for human error and provides a framework to ensure that the prepared dose reaches the correct patient. Although the proposed flowchart is designed for a site with an in-house central nuclear pharmacy, much of the framework could be applied by nuclear medicine facilities using unit doses. An electronic connection between information management systems to allow the tracking of a radiopharmaceutical from preparation to administration can be a useful tool in preventing the mistakes that are an unfortunate reality for any facility.

  5. Studies of Inelastic Collisions of NaK and NaCs Molecules with Atomic Perturbers

    NASA Astrophysics Data System (ADS)

    Jones, Joshua A.

    We have investigated collisions of NaK molecules in the first excited state [2(A)1Sigma+], with Ar and He collision partners using laser-induced fluorescence spectroscopy (LIF) and polarization-labeling (PL) spectroscopy in a two-step excitation scheme. Additionally, we have investigated collisions of NaCs molecules in the first excited state [2(A)1Sigma +] with Ar and He perturbers using the LIF technique. We use a pump-probe, two-step excitation process. The pump laser prepares the molecule in a particular ro-vibrational (v, J) level in the A state. The probe laser frequency is scanned over transitions to the 31Π in NaK or to the 53Π in NaCs. In addition to observing strong direct lines, we also see weak collisional satellite lines that arise from collisions in the intermediate state that take the molecule from the prepared level (v, J) to level (v, J + Delta J). The ratio of the intensity of the collisional line to the intensity of the direct line in LIF and PL yield information about population and orientation transfer. Our results show a propensity for DeltaJ=even collisions of NaK with Ar and an even stronger propensity for collisions with He. Collisions of NaCs with Ar do not show any such J=even propensity. Preliminary investigations of collisions of NaCs with He seem to indicate a slight J=even propensity. In addition, we observe that rotationally inelastic collisions of excited NaK molecules with potassium atoms destroy almost all of the orientation, while collisions with argon destroy about one third to two thirds and collisions with helium destroy only about zero to one third of the initial orientation.

  6. A novel strategy for global mapping of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry identification.

    PubMed

    Shen, Bingquan; Zhang, Wanjun; Shi, Zhaomei; Tian, Fang; Deng, Yulin; Sun, Changqing; Wang, Guangshun; Qin, Weijie; Qian, Xiaohong

    2017-07-01

    O-GlcNAcylation is a kind of dynamic O-linked glycosylation of nucleocytoplasmic and mitochondrial proteins. It serves as a major nutrient sensor to regulate numerous biological processes including transcriptional regulation, cell metabolism, cellular signaling, and protein degradation. Dysregulation of cellular O-GlcNAcylated levels contributes to the etiologies of many diseases such as diabetes, neurodegenerative disease and cancer. However, deeper insight into the biological mechanism of O-GlcNAcylation is hampered by its extremely low stoichiometry and the lack of efficient enrichment approaches for large-scale identification by mass spectrometry. Herein, we developed a novel strategy for the global identification of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry analysis. Standard O-GlcNAc peptides can be efficiently enriched even in the presence of 500-fold more abundant non-O-GlcNAc peptides and identified by mass spectrometry with a low nanogram detection sensitivity. This strategy successfully achieved the first large-scale enrichment and characterization of O-GlcNAc proteins and peptides in human urine. A total of 474 O-GlcNAc peptides corresponding to 457 O-GlcNAc proteins were identified by mass spectrometry analysis, which is at least three times more than that obtained by commonly used enrichment methods. A large number of unreported O-GlcNAc proteins related to cell cycle, biological regulation, metabolic and developmental process were found in our data. The above results demonstrated that this novel strategy is highly efficient in the global enrichment and identification of O-GlcNAc peptides. These data provide new insights into the biological function of O-GlcNAcylation in human urine, which is correlated with the physiological states and pathological changes of human body and therefore indicate the potential of this strategy for biomarker discovery from human urine. Copyright

  7. O-GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance

    PubMed Central

    Su, Cathy

    2017-01-01

    O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo. This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a

  8. 3,4-methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice.

    PubMed

    Trigo, José Manuel; Renoir, Thibault; Lanfumey, Laurence; Hamon, Michel; Lesch, Klaus-Peter; Robledo, Patricia; Maldonado, Rafael

    2007-09-15

    The neurobiological mechanism underlying the reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) remains unclear. The aim of the present study was to determine the contribution of the serotonin transporter (SERT) in MDMA self-administration behavior by using knockout (KO) mice deficient in SERT. Knockout mice and wild-type (WT) littermates were trained to acquire intravenous self-administration of MDMA (0, .03, .06, .125, and .25 mg/kg/infusion) on a fixed ratio 1 (FR1) schedule of reinforcement. Additional groups of mice were trained to obtain food and water to rule out operant responding impairments. Microdialysis studies were performed to evaluate dopamine (DA) and serotonin (5-HT) extracellular levels in the nucleus accumbens (NAC) and prefrontal cortex (PFC), respectively, after acute MDMA (10 mg/kg). None of the MDMA doses tested maintained intravenous self-administration in KO animals, whereas WT mice acquired responding for MDMA. Acquisition of operant responding for food and water was delayed in KO mice, but no differences between genotypes were observed on the last day of training. MDMA increased DA extracellular levels to a similar extent in the NAC of WT and KO mice. Conversely, extracellular concentrations of 5-HT in the PFC were increased following MDMA only in WT mice. These findings provide evidence for the specific involvement of SERT in MDMA reinforcing properties.

  9. pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Yasuyuki; Zhang, Qing; Akita, Kaoru

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer ppGalNAc-T13 was up-regulated in high metastatic sublines of Lewis lung cancer. Black-Right-Pointing-Pointer ppGalNAc-T13 expression enhanced cell invasion activity in low metastatic sublines. Black-Right-Pointing-Pointer Trimeric Tn antigen was induced in the transfectant cells of ppGalNAc-T13 cDNA. Black-Right-Pointing-Pointer A major protein carrying trimeric Tn structure was identified as Syndecan-1. Black-Right-Pointing-Pointer Silencing of ppGalNAc-T13 resulted in the reduction of invasion and of metastasis.. -- Abstract: In order to analyze the mechanisms for cancer metastasis, high metastatic sublines (H7-A, H7-Lu, H7-O, C4-sc, and C4-ly) were obtained by repeated injection of mouse Lewis lung cancer sublines H7 and C4 into C57BL/6 mice. Thesemore » sublines exhibited increased proliferation and invasion activity in vitro. Ganglioside profiles exhibited lower expression of GM1 in high metastatic sublines than the parent lines. Then, we established GM1-Si-1 and GM1-Si-2 by stable silencing of GM1 synthase in H7 cells. These GM1-knockdown clones exhibited increased proliferation and invasion. Then, we explored genes that markedly altered in the expression levels by DNA microarray in the combination of C4 vs. C4-ly or H7 vs. H7 (GM1-Si). Consequently, pp-GalNAc-T13 gene was identified as up-regulated genes in the high metastatic sublines. Stable transfection of pp-GalNAc-T13 cDNA into C4 (T13-TF) resulted in increased invasion and motility. Then, immunoblotting and flow cytometry using various antibodies and lectins were performed. Only anti-trimeric Tn antibody (mAb MLS128), showed increased expression levels of trimeric Tn antigen in T13-TF clones. Moreover, immunoprecipitation/immunoblotting was performed by mAb MLS128, leading to the identification of an 80 kDa band carrying trimeric Tn antigen, i.e. Syndecan-1. Stable silencing of endogenous pp-GalNAc-T13 in C4-sc (T13-KD) revealed that primary tumors generated

  10. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the

  11. A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc.

    PubMed

    Islam, Shohana; Mate, Diana M; Martínez, Ronny; Jakob, Felix; Schwaneberg, Ulrich

    2018-05-01

    Bacterial aryl sulfotransferases (AST) utilize p-nitrophenylsulfate (pNPS) as a phenolic donor to sulfurylate typically a phenolic acceptor. Interest in aryl sulfotransferases is growing because of their broad variety of acceptors and cost-effective sulfuryl-donors. For instance, aryl sulfotransferase A (ASTA) from Desulfitobacterium hafniense was recently reported to sulfurylate d-glucose. In this study, a directed evolution protocol was developed and validated for aryl sulfotransferase B (ASTB). Thereby the well-known pNPS quantification system was advanced to operate efficiently as a continuous screening system in 96-well MTP format with a true coefficient of variation of 14.3%. A random mutagenesis library (SeSaM library) of ASTB was screened (1,760 clones) to improve sulfurylation of the carbohydrate building block N-acetylglucosamine (GlcNAc). The beneficial variant ASTB-V1 (Val579Asp) showed an up to 3.4-fold increased specific activity toward GlcNAc when compared to ASTB-WT. HPLC- and MS-analysis confirmed ASTB-V1's increased GlcNAc monosulfurylation (2.4-fold increased product formation) representing the validation of the first successful directed evolution round of an AST for a saccharide substrate. © 2017 Wiley Periodicals, Inc.

  12. Synthetic assembly of novel avidin-biotin-GlcNAc (ABG) complex as an attractive bio-probe and its interaction with wheat germ agglutinin (WGA).

    PubMed

    Kumari, Amrita; Koyama, Tetsuo; Hatano, Ken; Matsuoka, Koji

    2016-10-01

    A tetravalent GlcNAc pendant glycocluster was constructed with terminal biotin through C6 linker. To acquire the multivalent carbohydrate-protein interactions, we synthesized a glycopolymer of tetrameric structure using N-acetyl-d-glucosamine (GlcNAc) as the target carbohydrate by the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as coupling reagent, followed by biotin-avidin complexation leading to the formation of glycocluster of avidin-biotin-GlcNAc conjugate (ABG complex). The dynamic light scattering (DLS) system was implied for size detection and to check the binding affinity of GlcNAc conjugate with a WGA lectin we use fluorometric assay by means of specific excitation of tryptophan at λex 295nm and it was found to be very high Ka∼1.39×10(7) M(-1) in case of ABG complex as compared to GlcNAc only Ka∼1.01×10(4) M(-1) with the phenomenon proven to be due to glycocluster effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Interactions between Early Life Stress, Nucleus Accumbens MeCP2 Expression, and Methamphetamine Self-Administration in Male Rats

    PubMed Central

    Lewis, Candace R; Bastle, Ryan M; Manning, Tawny B; Himes, Sarah M; Fennig, Paulette; Conrad, Phoebe R; Colwell, Jenna; Pagni, Broc A; Hess, Lyndsay A; Matekel, Caitlin G; Newbern, Jason M; Olive, M Foster

    2016-01-01

    Early life stress (ELS) is highly related to the development of psychiatric illnesses in adulthood, including substance use disorders. A recent body of literature suggests that long-lasting changes in the epigenome may be a mechanism by which experiences early in life can alter neurobiological and behavioral phenotypes in adulthood. In this study, we replicate our previous findings that ELS, in the form of prolonged maternal separation, increases adult methamphetamine self-administration (SA) in male rats as compared with handled controls. In addition, we show new evidence that both ELS and methamphetamine SA alter the expression of the epigenetic regulator methyl CpG-binding protein 2 (MeCP2) in key brain reward regions, particularly in the nucleus accumbens (NAc) core. In turn, viral-mediated knockdown of MeCP2 expression in the NAc core reduces methamphetamine SA, as well as saccharin intake. Furthermore, NAc core MeCP2 knockdown reduces methamphetamine, but not saccharin, SA on a progressive ratio schedule of reinforcement. These data suggest that NAc core MeCP2 may be recruited by both ELS and methamphetamine SA and promote the development of certain aspects of drug abuse-related behavior. Taken together, functional interactions between ELS, methamphetamine SA, and the expression of MeCP2 in the NAc may represent novel mechanisms that can ultimately be targeted for intervention in individuals with adverse early life experiences who are at risk for developing substance use disorders. PMID:27312406

  14. Eating 'Junk-Food' Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction.

    PubMed

    Oginsky, Max F; Goforth, Paulette B; Nobile, Cameron W; Lopez-Santiago, Luis F; Ferrario, Carrie R

    2016-12-01

    Urges to eat are influenced by stimuli in the environment that are associated with food (food cues). Obese people are more sensitive to food cues, reporting stronger craving and consuming larger portions after food cue exposure. The nucleus accumbens (NAc) mediates cue-triggered motivational responses, and activations in the NAc triggered by food cues are stronger in people who are susceptible to obesity. This has led to the idea that alterations in NAc function similar to those underlying drug addiction may contribute to obesity, particularly in obesity-susceptible individuals. Motivational responses are mediated in part by NAc AMPA receptor (AMPAR) transmission, and recent work shows that cue-triggered motivation is enhanced in obesity-susceptible rats after 'junk-food' diet consumption. Therefore, here we determined whether NAc AMPAR expression and function is increased by 'junk-food' diet consumption in obesity-susceptible vs -resistant populations using both outbred and selectively bred models of susceptibility. In addition, cocaine-induced locomotor activity was used as a general 'read out' of mesolimbic function after 'junk-food' consumption. We found a sensitized locomotor response to cocaine in rats that gained weight on a 'junk-food' diet, consistent with greater responsivity of mesolimbic circuits in obesity-susceptible groups. In addition, eating 'junk-food' increased NAc calcium-permeable-AMPAR (CP-AMPAR) function only in obesity-susceptible rats. This increase occurred rapidly, persisted for weeks after 'junk-food' consumption ceased, and preceded the development of obesity. These data are considered in light of enhanced cue-triggered motivation and striatal function in obesity-susceptible rats and the role of NAc CP-AMPARs in enhanced motivation and addiction.

  15. Extinction Training Regulates Neuroadaptive Responses to Withdrawal from Chronic Cocaine Self-Administration

    PubMed Central

    Self, David W.; Choi, Kwang-Ho; Simmons, Diana; Walker, John R.; Smagula, Cynthia S.

    2004-01-01

    Cocaine produces multiple neuroadaptations with chronic repeated use. Many of these neuroadaptations can be reversed or normalized by extinction training during withdrawal from chronic cocaine self-administration in rats. This article reviews our past and present studies on extinction-induced modulation of the neuroadaptive response to chronic cocaine in the mesolimbic dopamine system, and the role of this modulation in addictive behavior in rats. Extinction training normalizes tyrosine hydroxylase levels in the nucleus accumbens (NAc) shell, an effect that could help ameliorate dysphoria and depression associated with withdrawal from chronic cocaine use. Extinction training also increases levels of GluR1 and GluR2/3 AMPA receptor subunits, while normalizing deficits in NR1 NMDA receptor subunits, in a manner consistent with long-term potentiation of excitatory synapses in the NAc shell. Our results suggest that extinction-induced increases in AMPA and NMDA receptors may restore deficits in cortico-accumbal neurotransmission in the NAc shell and facilitate inhibitory control over cocaine-seeking behavior. Other changes identified by gene expression profiling, including up-regulation in the AMPA receptor aggregating protein Narp, suggest that extinction training induces extensive synaptic reorganization. These studies highlight potential benefits for extinction training procedures in the treatment of drug addiction. PMID:15466321

  16. Comprehensive Genome-Wide Survey, Genomic Constitution and Expression Profiling of the NAC Transcription Factor Family in Foxtail Millet (Setaria italica L.)

    PubMed Central

    Puranik, Swati; Sahu, Pranav Pankaj; Mandal, Sambhu Nath; B., Venkata Suresh; Parida, Swarup Kumar; Prasad, Manoj

    2013-01-01

    The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet) that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI), with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants. PMID:23691254

  17. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).

    PubMed

    Puranik, Swati; Sahu, Pranav Pankaj; Mandal, Sambhu Nath; B, Venkata Suresh; Parida, Swarup Kumar; Prasad, Manoj

    2013-01-01

    The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet) that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI), with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants.

  18. An antibody to the GM1/GalNAc-GD1a complex correlates with development of pure motor Guillain-Barré syndrome with reversible conduction failure.

    PubMed

    Ogawa, Go; Kaida, Ken-ichi; Kuwahara, Motoi; Kimura, Fumihiko; Kamakura, Keiko; Kusunoki, Susumu

    2013-01-15

    Antibodies to a ganglioside complex consisting of GM1 and GalNAc-GD1a (GM1/GalNAc-GD1a) are found in sera from patients with Guillain-Barré syndrome (GBS). To elucidate the clinical significance of anti-GM1/GalNAc-GD1a antibodies in GBS, clinical features of 58 GBS patients with IgG anti-GM1/GalNAc-GD1a antibodies confirmed by enzyme-linked immunosorbent assay and thin layer chromatography immunostaining were analyzed. Compared to GBS patients without anti-GM1/GalNAc-GD1a antibodies, anti-GM1/GalNAc-GD1a-positive patients more frequently had a preceding respiratory infection (n=38, 66%, p<0.01) and were characterized by infrequency of cranial nerve deficits (n=9, 16%, p<0.01) and sensory disturbances (n=26, 45%, p<0.01). Of the 28 anti-GM1/GalNAc-GD1a-positive patients for whom electrophysiological data were available, 14 had conduction blocks (CBs) at intermediate segments of motor nerves, which were not followed by evident remyelination. Eight of 10 bedridden cases were able to walk independently within one month after the nadir. These results show that the presence of anti-GM1/GalNAc-GD1a antibodies correlated with pure motor GBS characterized by antecedent respiratory infection, fewer cranial nerve deficits, and CBs at intermediate sites of motor nerves. The CB may be generated through alteration of the regulatory function of sodium channels in the nodal axolemma. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaidani, Yuta; Ichiyanagi, Naoki; Saito, Chika

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer We characterized A130022J15Rik (Eogt1)-a mouse gene homologous to Drosophila Eogt. Black-Right-Pointing-Pointer Eogt1 encodes EGF domain O-GlcNAc transferase. Black-Right-Pointing-Pointer Expression of Eogt1 in Drosophila rescued the cell-adhesion defect in the Eogt mutant. Black-Right-Pointing-Pointer O-GlcNAcylation reaction in the secretory pathway is conserved through evolution. -- Abstract: O-linked-{beta}-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shownmore » whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.« less

  20. Indications for spine surgery: validation of an administrative coding algorithm to classify degenerative diagnoses

    PubMed Central

    Lurie, Jon D.; Tosteson, Anna N.A.; Deyo, Richard A.; Tosteson, Tor; Weinstein, James; Mirza, Sohail K.

    2014-01-01

    Study Design Retrospective analysis of Medicare claims linked to a multi-center clinical trial. Objective The Spine Patient Outcomes Research Trial (SPORT) provided a unique opportunity to examine the validity of a claims-based algorithm for grouping patients by surgical indication. SPORT enrolled patients for lumbar disc herniation, spinal stenosis, and degenerative spondylolisthesis. We compared the surgical indication derived from Medicare claims to that provided by SPORT surgeons, the “gold standard”. Summary of Background Data Administrative data are frequently used to report procedure rates, surgical safety outcomes, and costs in the management of spinal surgery. However, the accuracy of using diagnosis codes to classify patients by surgical indication has not been examined. Methods Medicare claims were link to beneficiaries enrolled in SPORT. The sensitivity and specificity of three claims-based approaches to group patients based on surgical indications were examined: 1) using the first listed diagnosis; 2) using all diagnoses independently; and 3) using a diagnosis hierarchy based on the support for fusion surgery. Results Medicare claims were obtained from 376 SPORT participants, including 21 with disc herniation, 183 with spinal stenosis, and 172 with degenerative spondylolisthesis. The hierarchical coding algorithm was the most accurate approach for classifying patients by surgical indication, with sensitivities of 76.2%, 88.1%, and 84.3% for disc herniation, spinal stenosis, and degenerative spondylolisthesis cohorts, respectively. The specificity was 98.3% for disc herniation, 83.2% for spinal stenosis, and 90.7% for degenerative spondylolisthesis. Misclassifications were primarily due to codes attributing more complex pathology to the case. Conclusion Standardized approaches for using claims data to accurately group patients by surgical indications has widespread interest. We found that a hierarchical coding approach correctly classified over 90

  1. Long-term N-acetylcysteine and L-arginine administration reduces endothelial activation and systolic blood pressure in hypertensive patients with type 2 diabetes.

    PubMed

    Martina, Valentino; Masha, Andi; Gigliardi, Valentina Ramella; Brocato, Loredana; Manzato, Enzo; Berchio, Arrigo; Massarenti, Paola; Settanni, Fabio; Della Casa, Lara; Bergamini, Stefania; Iannone, Anna

    2008-05-01

    Reactive oxygen and nitric oxide (NO) have recently been considered to be involved in the cardiovascular complications of patients with type 2 diabetes, as NO is thought to lose its beneficial physiological effects in the presence of oxygen radicals. For this reason, we tested the effects of l-arginine (ARG) and N-acetylcysteine (NAC) administration in increasing NO bioavailability by reducing free radical formation. A double-blind study was performed on 24 male patients with type 2 diabetes and hypertension divided into two groups of 12 patients that randomly received either an oral supplementation of placebo or NAC + ARG for 6 months. The NAC + ARG treatment caused a reduction of both systolic (P < 0.05) and diastolic (P < 0.05) mean arterial blood pressure, total cholesterol (P < 0.01), LDL cholesterol (P < 0.005), oxidized LDL (P < 0.05), high-sensitive C-reactive protein (P < 0.05), intracellular adhesion molecule (P < 0.05), vascular cell adhesion molecule (P < 0.01), nitrotyrosine (P < 0.01), fibrinogen (P < 0.01), and plasminogen activator inhibitor-1 (P < 0.05), and an improvement of the intima-media thickness during endothelial postischemic vasodilation (P < 0.02). HDL cholesterol increased (P < 0.05). No changes in other parameters studied were observed. NAC + ARG administration seems to be a potential well-tolerated antiatherogenic therapy because it improves endothelial function in hypertensive patients with type 2 diabetes by improving NO bioavailability via reduction of oxidative stress and increase of NO production. Our study's results give prominence to its potential use in primary and secondary cardiovascular prevention in these patients.

  2. Association between workarounds and medication administration errors in bar-code-assisted medication administration in hospitals.

    PubMed

    van der Veen, Willem; van den Bemt, Patricia M L A; Wouters, Hans; Bates, David W; Twisk, Jos W R; de Gier, Johan J; Taxis, Katja; Duyvendak, Michiel; Luttikhuis, Karen Oude; Ros, Johannes J W; Vasbinder, Erwin C; Atrafi, Maryam; Brasse, Bjorn; Mangelaars, Iris

    2018-04-01

    To study the association of workarounds with medication administration errors using barcode-assisted medication administration (BCMA), and to determine the frequency and types of workarounds and medication administration errors. A prospective observational study in Dutch hospitals using BCMA to administer medication. Direct observation was used to collect data. Primary outcome measure was the proportion of medication administrations with one or more medication administration errors. Secondary outcome was the frequency and types of workarounds and medication administration errors. Univariate and multivariate multilevel logistic regression analysis were used to assess the association between workarounds and medication administration errors. Descriptive statistics were used for the secondary outcomes. We included 5793 medication administrations for 1230 inpatients. Workarounds were associated with medication administration errors (adjusted odds ratio 3.06 [95% CI: 2.49-3.78]). Most commonly, procedural workarounds were observed, such as not scanning at all (36%), not scanning patients because they did not wear a wristband (28%), incorrect medication scanning, multiple medication scanning, and ignoring alert signals (11%). Common types of medication administration errors were omissions (78%), administration of non-ordered drugs (8.0%), and wrong doses given (6.0%). Workarounds are associated with medication administration errors in hospitals using BCMA. These data suggest that BCMA needs more post-implementation evaluation if it is to achieve the intended benefits for medication safety. In hospitals using barcode-assisted medication administration, workarounds occurred in 66% of medication administrations and were associated with large numbers of medication administration errors.

  3. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage.

    PubMed

    Goth, Christoffer K; Tuhkanen, Hanna E; Khan, Hamayun; Lackman, Jarkko J; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H; Overall, Christopher M; Clausen, Henrik; Schjoldager, Katrine T; Petäjä-Repo, Ulla E

    2017-03-17

    The β 1 -adrenergic receptor (β 1 AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β 1 AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O -glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O -glycosylates β 1 AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O -glycosylation and proteolytic cleavage assays, a cell line deficient in O -glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β 1 AR. Furthermore, we demonstrate that impaired O -glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O -glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β 1 AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage*

    PubMed Central

    Goth, Christoffer K.; Tuhkanen, Hanna E.; Khan, Hamayun; Lackman, Jarkko J.; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H.; Overall, Christopher M.; Clausen, Henrik; Schjoldager, Katrine T.; Petäjä-Repo, Ulla E.

    2017-01-01

    The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. PMID:28167537

  5. The cost of implementing inpatient bar code medication administration.

    PubMed

    Sakowski, Julie Ann; Ketchel, Alan

    2013-02-01

    To calculate the costs associated with implementing and operating an inpatient bar-code medication administration (BCMA) system in the community hospital setting and to estimate the cost per harmful error prevented. This is a retrospective, observational study. Costs were calculated from the hospital perspective and a cost-consequence analysis was performed to estimate the cost per preventable adverse drug event averted. Costs were collected from financial records and key informant interviews at 4 not-for profit community hospitals. Costs included direct expenditures on capital, infrastructure, additional personnel, and the opportunity costs of time for existing personnel working on the project. The number of adverse drug events prevented using BCMA was estimated by multiplying the number of doses administered using BCMA by the rate of harmful errors prevented by interventions in response to system warnings. Our previous work found that BCMA identified and intercepted medication errors in 1.1% of doses administered, 9% of which potentially could have resulted in lasting harm. The cost of implementing and operating BCMA including electronic pharmacy management and drug repackaging over 5 years is $40,000 (range: $35,600 to $54,600) per BCMA-enabled bed and $2000 (range: $1800 to $2600) per harmful error prevented. BCMA can be an effective and potentially cost-saving tool for preventing the harm and costs associated with medication errors.

  6. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor.

    PubMed

    Ríos, Pablo; Argyris, Jason; Vegas, Juan; Leida, Carmen; Kenigswald, Merav; Tzuri, Galil; Troadec, Christelle; Bendahmane, Abdelhafid; Katzir, Nurit; Picó, Belén; Monforte, Antonio J; Garcia-Mas, Jordi

    2017-08-01

    Fruit ripening is divided into climacteric and non-climacteric types depending on the presence or absence of a transient rise in respiration rate and the production of autocatalytic ethylene. Melon is ideal for the study of fruit ripening, as both climacteric and non-climacteric varieties exist. Two introgressions of the non-climacteric accession PI 161375, encompassed in the QTLs ETHQB3.5 and ETHQV6.3, into the non-climacteric 'Piel de Sapo' background are able to induce climacteric ripening independently. We report that the gene underlying ETHQV6.3 is MELO3C016540 (CmNAC-NOR), encoding a NAC (NAM, ATAF1,2, CUC2) transcription factor that is closely related to the tomato NOR (non-ripening) gene. CmNAC-NOR was functionally validated through the identification of two TILLING lines carrying non-synonymous mutations in the conserved NAC domain region. In an otherwise highly climacteric genetic background, both mutations provoked a significant delay in the onset of fruit ripening and in the biosynthesis of ethylene. The PI 161375 allele of ETHQV6.3 is similar to that of climacteric lines of the cantalupensis type and, when introgressed into the non-climacteric 'Piel de Sapo', partially restores its climacteric ripening capacity. CmNAC-NOR is expressed in fruit flesh of both climacteric and non-climacteric lines, suggesting that the causal mutation may not be acting at the transcriptional level. The use of a comparative genetic approach in a species with both climacteric and non-climacteric ripening is a powerful strategy to dissect the complex mechanisms regulating the onset of fruit ripening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. The EGF Repeat-Specific O-GlcNAc-Transferase Eogt Interacts with Notch Signaling and Pyrimidine Metabolism Pathways in Drosophila

    PubMed Central

    Müller, Reto; Jenny, Andreas; Stanley, Pamela

    2013-01-01

    The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation. PMID:23671640

  8. Synthesis and NMR analysis of model compounds related to fucosylated chondroitin sulfates: GalNAc and Fuc(1 → 6)GalNAc derivatives.

    PubMed

    Vinnitskiy, Dmitry Z; Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Shashkov, Alexander S; Nifantiev, Nikolay E

    2017-01-13

    Unsubstituted and 6-O-α-L-fucosylated propyl 2-acetamido-2-deoxy-β-D-galactopyranosides and their selectively O-sulfated (both in GalNAc and Fuc units) derivatives were synthesized as model compounds representing the fragments of fucosylated chondroitin sulfates (FCS) from sea cucumbers. Per-O-acetylated 2-deoxy-2-N-phthalimido-D-glucopyranose was used as a key precursor for the preparation of all 2-acetamido-2-deoxy-D-galactopyranoside containing products. Attempts at 6-O-glycosylation of propyl 3-O-benzoyl-2-deoxy-2-N-phthalimido-D-galactoside by 2-O-benzyl-3,4-di-O-chloracetyl-L-fucosyl trichloracetimidate in the presence of TMSOTf gave a 1:1 mixture of the corresponding α- and β-isomeric disaccharides, while the use of structurally related fucosyl bromide donor with promotion by Bu 4 NBr led to the formation of desired α-isomeric disaccharide exclusively. Selective removal of orthogonal O-protections permitted subsequent O-sulfation both at the GalNAc and Fuc units. Further removal of blocking groups yielded the target products which were systematically studied by 1 H and 13 C NMR spectroscopy in order to determine the spectral effects of O-sulfation and α-L-fucosylation needed for the development of computer assisted structural analysis of natural FCS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Candida albicans Adheres to Chitin by Recognizing N-acetylglucosamine (GlcNAc).

    PubMed

    Ishijima, Sanae A; Yamada, Tsuyoshi; Maruyama, Naho; Abe, Shigeru

    2017-01-01

    The binding of Candida albicans cells to chitin was examined in a cell-binding assay. Microscopic observations indicated that both living and heat-killed Candida cells bound to chitin-coated substrates. C. albicans preferentially bound to chitin-coated plastic plates over chitosan-coated and uncoated plates. We prepared 125 I-labeled Candida cells for quantitative analysis of their binding to chitin. Heat-killed 125 I-labeled Candida cells bound to chitin-coated plates in a time-dependent manner until 1.5 hours after start of incubation at 4℃. The binding of 125 I-labeled Candida cells to chitin-coated plates was inhibited by adding unlabeled living or unlabeled heat-killed Candida cells. The binding of Candida to chitin was also reduced by addition of 25 mg/ml chitin or chitosan up to 10%. N-acetylglucosamine (GlcNAc), which is a constituent of chitin, inhibited binding of Candida to chitin in a dose-dependent manner between 12.5 and 200 mM. Glucosamine, which is a constituent of chitosan, showed no such inhibitory effect. These findings suggest that the binding of Candida to chitin may be mediated by recognition of GlcNAc.

  10. Eating ‘Junk-Food' Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction

    PubMed Central

    Oginsky, Max F; Goforth, Paulette B; Nobile, Cameron W; Lopez-Santiago, Luis F; Ferrario, Carrie R

    2016-01-01

    Urges to eat are influenced by stimuli in the environment that are associated with food (food cues). Obese people are more sensitive to food cues, reporting stronger craving and consuming larger portions after food cue exposure. The nucleus accumbens (NAc) mediates cue-triggered motivational responses, and activations in the NAc triggered by food cues are stronger in people who are susceptible to obesity. This has led to the idea that alterations in NAc function similar to those underlying drug addiction may contribute to obesity, particularly in obesity-susceptible individuals. Motivational responses are mediated in part by NAc AMPA receptor (AMPAR) transmission, and recent work shows that cue-triggered motivation is enhanced in obesity-susceptible rats after ‘junk-food' diet consumption. Therefore, here we determined whether NAc AMPAR expression and function is increased by ‘junk-food' diet consumption in obesity-susceptible vs -resistant populations using both outbred and selectively bred models of susceptibility. In addition, cocaine-induced locomotor activity was used as a general ‘read out' of mesolimbic function after ‘junk-food' consumption. We found a sensitized locomotor response to cocaine in rats that gained weight on a ‘junk-food' diet, consistent with greater responsivity of mesolimbic circuits in obesity-susceptible groups. In addition, eating ‘junk-food' increased NAc calcium-permeable-AMPAR (CP-AMPAR) function only in obesity-susceptible rats. This increase occurred rapidly, persisted for weeks after ‘junk-food' consumption ceased, and preceded the development of obesity. These data are considered in light of enhanced cue-triggered motivation and striatal function in obesity-susceptible rats and the role of NAc CP-AMPARs in enhanced motivation and addiction. PMID:27383008

  11. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals.

    PubMed

    Sawaguchi, Shogo; Varshney, Shweta; Ogawa, Mitsutaka; Sakaidani, Yuta; Yagi, Hirokazu; Takeshita, Kyosuke; Murohara, Toyoaki; Kato, Koichi; Sundaram, Subha; Stanley, Pamela; Okajima, Tetsuya

    2017-04-11

    The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt -/- retina, and Notch target gene expression was decreased in Eogt -/- endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.

  12. O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection.

    PubMed

    Pérez, José de Jesús; Udeshi, Namrata D; Shabanowitz, Jeffrey; Ciordia, Sergio; Juárez, Silvia; Scott, Cheryl L; Olszewski, Neil E; Hunt, Donald F; García, Juan Antonio

    2013-08-01

    O-GlcNAcylation is a dynamic protein modification which has been studied mainly in metazoans. We reported previously that an Arabidopsis thaliana O-GlcNAc transferase modifies at least two threonine residues of the Plum pox virus (PPV) capsid protein (CP). Now, six additional residues were shown to be involved in O-GlcNAc modification of PPV CP. CP O-GlcNAcylation was abolished in the PPV CP7-T/A mutant, in which seven threonines were mutated. PPV CP7-T/A infected Nicotiana clevelandii, Nicotiana benthamiana, and Prunus persica without noticeable defects. However, defects in infection of A. thaliana were readily apparent. In mixed infections of wild-type arabidopsis, the CP7-T/A mutant was outcompeted by wild-type virus. These results indicate that CP O-GlcNAcylation has a major role in the infection process. O-GlcNAc modification may have a role in virion assembly and/or stability as the CP of PPV CP7-T/A was more sensitive to protease digestion than that of the wild-type virus. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A Study of Clinical Coding Accuracy in Surgery: Implications for the Use of Administrative Big Data for Outcomes Management.

    PubMed

    Nouraei, S A R; Hudovsky, A; Frampton, A E; Mufti, U; White, N B; Wathen, C G; Sandhu, G S; Darzi, A

    2015-06-01

    Clinical coding is the translation of clinical activity into a coded language. Coded data drive hospital reimbursement and are used for audit and research, and benchmarking and outcomes management purposes. We undertook a 2-center audit of coding accuracy across surgery. Clinician-auditor multidisciplinary teams reviewed the coding of 30,127 patients and assessed accuracy at primary and secondary diagnosis and procedure levels, morbidity level, complications assignment, and financial variance. Postaudit data of a randomly selected sample of 400 cases were reaudited by an independent team. At least 1 coding change occurred in 15,402 patients (51%). There were 3911 (13%) and 3620 (12%) changes to primary diagnoses and procedures, respectively. In 5183 (17%) patients, the Health Resource Grouping changed, resulting in income variance of £3,974,544 (+6.2%). The morbidity level changed in 2116 (7%) patients (P < 0.001). The number of assigned complications rose from 2597 (8.6%) to 2979 (9.9%) (P < 0.001). Reaudit resulted in further primary diagnosis and procedure changes in 8.7% and 4.8% of patients, respectively. The coded data are a key engine for knowledge-driven health care provision. They are used, increasingly at individual surgeon level, to benchmark performance. Surgical clinical coding is prone to subjectivity, variability, and error (SVE). Having a specialty-by-specialty understanding of the nature and clinical significance of informatics variability and adopting strategies to reduce it, are necessary to allow accurate assumptions and informed decisions to be made concerning the scope and clinical applicability of administrative data in surgical outcomes improvement.

  14. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought

    PubMed Central

    Sosa-Valencia, Guadalupe; Palomar, Miguel; Covarrubias, Alejandra A.

    2017-01-01

    Abstract Recent studies have identified microRNAs as post-transcriptional regulators involved in stress responses. miR1514a is a legume microRNA that is induced in response to drought stress in Phaseolus vulgaris (common bean) and shows differential accumulation levels in roots during water deficit in two cultivars with different drought tolerance phenotypes. A recent degradome analysis revealed that miR1514a targets the transcripts of two NAC transcription factors (TFs), Phvul.010g121000 and Phvul.010g120700. Furthermore, expression studies and small RNA-seq data indicate that only Phvul.010g120700 generates phasiRNAs, which also accumulate under water deficit conditions. To confirm these results, we over-expressed miR1514a in transgenic hairy roots, and observed a reduced accumulation of Phvul.010g120700 and an increase in NAC-derived phasiRNAs; inhibition of miR1514a activity resulted in the opposite effect. Moreover, we determined that a NAC-derived phasiRNA associates with ARGONAUTE 1 (AGO1), suggesting that it is functional. In addition, a transcriptome analysis of transgenic hairy roots with reduced miR1514a levels revealed several differentially expressed transcripts, mainly involved in metabolism and stress responses, suggesting they are regulated by the NAC TF and/or by phasiRNAs. This work therefore demonstrates the participation of miR1514 in the regulation of a NAC transcription factor transcript through phasiRNA production during the plant response to water deficit. PMID:28338719

  15. 47 CFR 52.15 - Central office code administration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... assignment databases; (3) Conducting the Numbering Resource Utilization and Forecast (NRUF) data collection... telecommunications carrier that receives numbering resources from the NANPA, a Pooling Administrator or another... Administrator. (2) State commissions may investigate and determine whether service providers have activated...

  16. 47 CFR 52.15 - Central office code administration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assignment databases; (3) Conducting the Numbering Resource Utilization and Forecast (NRUF) data collection... telecommunications carrier that receives numbering resources from the NANPA, a Pooling Administrator or another... Administrator. (2) State commissions may investigate and determine whether service providers have activated...

  17. 47 CFR 52.15 - Central office code administration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... assignment databases; (3) Conducting the Numbering Resource Utilization and Forecast (NRUF) data collection... telecommunications carrier that receives numbering resources from the NANPA, a Pooling Administrator or another... Administrator. (2) State commissions may investigate and determine whether service providers have activated...

  18. Coding of Barrett's oesophagus with high-grade dysplasia in national administrative databases: a population-based cohort study.

    PubMed

    Chadwick, Georgina; Varagunam, Mira; Brand, Christian; Riley, Stuart A; Maynard, Nick; Crosby, Tom; Michalowski, Julie; Cromwell, David A

    2017-06-09

    The International Classification of Diseases 10th Revision (ICD-10) system used in the English hospital administrative database (Hospital Episode Statistics (HES)) does not contain a specific code for oesophageal high-grade dysplasia (HGD). The aim of this paper was to examine how patients with HGD were coded in HES and whether it was done consistently. National population-based cohort study of patients with newly diagnosed with HGD in England. The study used data collected prospectively as part of the National Oesophago-Gastric Cancer Audit (NOGCA). These records were linked to HES to investigate the pattern of ICD-10 codes recorded for these patients at the time of diagnosis. All patients with a new diagnosis of HGD between 1 April 2013 and 31 March 2014 in England, who had data submitted to the NOGCA. The main outcome assessed was the pattern of primary and secondary ICD-10 diagnostic codes recorded in the HES records at endoscopy at the time of diagnosis of HGD. Among 452 patients with a new diagnosis of HGD between 1 April 2013 and 31 March 2014, Barrett's oesophagus was the only condition coded in 200 (44.2%) HES records. Records for 59 patients (13.1%) contained no oesophageal conditions. The remaining 193 patients had various diagnostic codes recorded, 93 included a diagnosis of Barrett's oesophagus and 57 included a diagnosis of oesophageal/gastric cardia cancer. HES is not suitable to support national studies looking at the management of HGD. This is one reason for the UK to adopt an extended ICD system (akin to ICD-10-CM). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin

    PubMed Central

    Verdaguer, Roger; Soler, Marçal; Serra, Olga; Garrote, Aïda; Fernández, Sandra; Company-Arumí, Dolors; Anticó, Enriqueta; Molinas, Marisa; Figueras, Mercè

    2016-01-01

    Suberin and wax deposited in the cork (phellem) layer of the periderm form the lipophilic barrier that protects mature plant organs. Periderm lipids have been widely studied for their protective function with regards to dehydration and for how they respond to environmental stresses and wounding. However, despite advances in the biosynthetic pathways of suberin and associated wax, little is known about the regulation of their deposition. Here, we report on a potato NAC transcription factor gene, StNAC103, induced in the tuber phellem (skin). The StNAC103 promoter is active in cells undergoing suberization such as in the basal layer of the phellem, but also in the root apical meristem. Gene silencing in potato periderm correlates with an increase in the suberin and wax load, and specifically in alkanes, ω-hydroxyacids, diacids, ferulic acid, and primary alcohols. Concomitantly, silenced lines also showed up-regulation of key genes related to the biosynthesis and transport of suberin and wax in the tuber periderm. Taken together, our results suggest that StNAC103 has a role in the tight regulation of the formation of apoplastic barriers and is, to the best of our knowledge, the first candidate gene to be identified as being involved in the repression of suberin and wax deposition. PMID:27520790

  20. N-linked oligosaccharides on the low density lipoprotein receptor homolog SorLA/LR11 are modified with terminal GalNAc-4-SO4 in kidney and brain.

    PubMed

    Fiete, Dorothy; Mi, Yiling; Oats, Edward L; Beranek, Mary C; Baenziger, Jacques U

    2007-01-19

    Sorting protein-related receptor (SorLA/LR11) is a highly conserved mosaic receptor that is expressed by cells in a number of different tissues including principal cells of the collecting ducts in the kidney and neurons in the central and peripheral nervous systems. SorLA/LR11 has features that indicate it serves as a sorting receptor shuttling between the plasma membrane, endosomes, and the Golgi. We have found that a fraction of SorLA/LR11 that is synthesized in the kidney and the brain bears N-linked oligosaccharides that are modified with terminal beta1,4-linked GalNAc-4-SO(4). Oligosaccharides located in the vacuolar sorting (Vps) 10p domain (Vps10p domain) are modified with beta1,4-linked GalNAc when the Vps10p domain is expressed in cells along with either of two recently cloned protein-specific beta1,4GalNAc-transferases, GalNAcTIII and GalNAcTIV. Either of two sequences with basic amino acids located within the Vps10p domain is able to mediate recognition by these beta1,4GalNAc-transferases. The highly specific modification of oligosaccharides in the Vps10p domain of SorLA/LR11 with terminal GalNAc-4-SO(4) suggests that this unusual modification may modulate the interaction of SorLA/LR11 with proteins and influence their trafficking.

  1. O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Marotta, Nicholas P.; Lin, Yu Hsuan; Lewis, Yuka E.; Ambroso, Mark R.; Zaro, Balyn W.; Roth, Maxwell T.; Arnold, Don B.; Langen, Ralf; Pratt, Matthew R.

    2015-11-01

    Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.

  2. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity[S

    PubMed Central

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C.; MacPherson, Laura; Ruan, Hai-Bin; Wu, Jing; Pedersen, Thomas Å.; Steffensen, Knut R.; Yang, Xiaoyong; Matthews, Jason; Mandrup, Susanne; Nebb, Hilde I.; Grønning-Wang, Line M.

    2015-01-01

    Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked β-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin-independent effects of feeding on LXR-mediated lipogenic gene expression in vivo, we subjected control and streptozotocin-treated LXRα/β+/+ and LXRα/β−/− mice to a fasting-refeeding regime. We show that under hyperglycemic and hypoinsulinemic conditions, LXRs maintain their ability to upregulate the expression of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBPα, and the newly identified shorter isoform ChREBPβ. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBPα promoter was mediated, at least in part, by O-GlcNAc transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBPα promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity. PMID:25724563

  3. Shape and rotational elements of comet 67P/ Churyumov-Gerasimenko derived by stereo-photogrammetric analysis of OSIRIS NAC image data

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Scholten, Frank; Matz, Klaus-Dieter; Roatsch, Thomas; Willner, Konrad; Hviid, Stubbe; Knollenberg, Jörg; Kührt, Ekkehard; Sierks, Holger

    2015-04-01

    The European Space Agency's Rosetta spacecraft is equipped with the OSIRIS imaging system which consists of a wide-angle and a narrow-angle camera (WAC and NAC). After the approach phase, Rosetta was inserted into a descent trajectory of comet 67P/Churyumov-Gerasimenko (C-G) in early August 2014. Until early September, OSIRIS acquired several hundred NAC images of C-G's surface at different scales (from ~5 m/pixel during approach to ~0.9 m/pixel during descent). In that one month observation period, the surface was imaged several times within different mapping sequences. With the comet's rotation period of ~12.4 h and the low spacecraft velocity (< 1 m/s), the entire NAC dataset provides multiple NAC stereo coverage, adequate for stereo-photogrammetric (SPG) analysis towards the derivation of 3D surface models. We constrained the OSIRIS NAC images with our stereo requirements (15° < stereo angles < 45°, incidence angles <85°, emission angles <45°, differences in illumination < 10°, scale better than 5 m/pixel) and extracted about 220 NAC images that provide at least triple stereo image coverage for the entire illuminated surface in about 250 independent multi-stereo image combinations. For each image combination we determined tie points by multi-image matching in order to set-up a 3D control network and a dense surface point cloud for the precise reconstruction of C-G's shape. The control point network defines the input for a stereo-photogrammetric least squares adjustment. Based on the statistical analysis of adjustments we first refined C-G's rotational state (pole orientation and rotational period) and its behavior over time. Based upon this description of the orientation of C-G's body-fixed reference frame, we derived corrections for the nominal navigation data (pointing and position) within a final stereo-photogrammetric block adjustment where the mean 3D point accuracy of more than 100 million surface points has been improved from ~10 m to the sub

  4. Computerized N-acetylcysteine physician order entry by template protocol for acetaminophen toxicity.

    PubMed

    Thompson, Trevonne M; Lu, Jenny J; Blackwood, Louisa; Leikin, Jerrold B

    2011-01-01

    Some medication dosing protocols are logistically complex for traditional physician ordering. The use of computerized physician order entry (CPOE) with templates, or order sets, may be useful to reduce medication administration errors. This study evaluated the rate of medication administration errors using CPOE order sets for N-acetylcysteine (NAC) use in treating acetaminophen poisoning. An 18-month retrospective review of computerized inpatient pharmacy records for NAC use was performed. All patients who received NAC for the treatment of acetaminophen poisoning were included. Each record was analyzed to determine the form of NAC given and whether an administration error occurred. In the 82 cases of acetaminophen poisoning in which NAC was given, no medication administration errors were identified. Oral NAC was given in 31 (38%) cases; intravenous NAC was given in 51 (62%) cases. In this retrospective analysis of N-acetylcysteine administration using computerized physician order entry and order sets, no medication administration errors occurred. CPOE is an effective tool in safely executing complicated protocols in an inpatient setting.

  5. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana

    PubMed Central

    Wu, Yuzhou; Hou, Jiexi; Yu, Fen; Nguyen, Suong T. T.; McCurdy, David W.

    2018-01-01

    Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth

  6. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana.

    PubMed

    Wu, Yuzhou; Hou, Jiexi; Yu, Fen; Nguyen, Suong T T; McCurdy, David W

    2018-01-01

    Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans -differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018 , as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall

  7. Comprehensive analysis of NAC transcription factors and their expression during cucumber fruit spine development

    USDA-ARS?s Scientific Manuscript database

    Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and fruit trichomes ir spines are an important trait for external fruit quality. The mechanisms underlying spine formation are not well understood, but there is evidence of the involvement of the plant-specific NAC family of tra...

  8. Amphetamine Self-Administration and Dopamine Function: Assessment of Gene x Environment Interactions in Lewis and Fischer 344 Rats

    PubMed Central

    Meyer, Andrew C.; Bardo, Michael T.

    2015-01-01

    Rationale Previous research suggests both genetic and environmental influences on substance abuse vulnerability. Objectives The current work sought to investigate the interaction of genes and environment on the acquisition of amphetamine self-administration, as well as amphetamine-stimulated dopamine (DA) release in nucleus accumbens shell using in vivo microdialysis. Methods Inbred Lewis (LEW) and Fischer (F344) rat strains were raised in either an enriched condition (EC), social condition (SC), or isolated condition (IC). Acquisition of amphetamine self-administration (0.1 mg/kg/infusion) was determined across an incrementing daily fixed ratio (FR) schedule. In a separate cohort of rats, extracellular DA and the metabolite dihydroxyphenylacetic acid (DOPAC) were measured in the nucleus accumbens shell following an acute amphetamine injection (1 mg/kg). Results “Addiction-prone” LEW had greater acquisition of amphetamine self-administration on a FR1 schedule compared to “addiction-resistant” F344 when raised in the SC environment. These genetic differences were negated in both the EC and IC environments, with enrichment buffering against self-administration and isolation enhancing self-administration in both strains. On a FR5 schedule, the isolation-induced increase in amphetamine self-administration was greater in F344 than LEW. While no group differences were obtained in extracellular DA, gene x environment differences were obtained in extracellular levels of the metabolite DOPAC. In IC rats only, LEW showed an attenuation in the amphetamine-induced decrease in DOPAC compared to F344. IC LEW rats also had an attenuated DOPAC response to amphetamine compared to EC LEW. Conclusions The current results demonstrate gene x environment interactions in amphetamine self-administration and amphetamine-induced changes in extracellular DOPAC in NAc shell. However, the behavioral and neurochemical differences were not related directly, indicating that mechanisms

  9. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    PubMed

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis

    PubMed Central

    Qin, Wei; Lv, Pinou; Fan, Xinqi; Quan, Baiyi; Zhu, Yuntao; Qin, Ke; Chen, Ying; Wang, Chu

    2017-01-01

    O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo. PMID:28760965

  11. 24 CFR 200.925c - Model codes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.925c Model codes. (a... Plumbing Code, 1993 Edition, and the BOCA National Mechanical Code, 1993 Edition, excluding Chapter I, Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood...

  12. 24 CFR 200.925c - Model codes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.925c Model codes. (a... Plumbing Code, 1993 Edition, and the BOCA National Mechanical Code, 1993 Edition, excluding Chapter I, Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood...

  13. 22 CFR 139.4 - Responsibilities of the Program Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of living, support infrastructure, and other relevant factors. The Program Administrator, from time... program regulations, including rules of the Program Administrator and the code of code of conduct; or the...

  14. The glycan-specific sulfotransferase (R77W)GalNAc-4-ST1 putatively responsible for peeling skin syndrome has normal properties consistent with a simple sequence polymorphisim.

    PubMed

    Fiete, Dorothy; Mi, Yiling; Beranek, Mary; Baenziger, Nancy L; Baenziger, Jacques U

    2017-05-01

    Expanded access to DNA sequencing now fosters ready detection of site-specific human genome alterations whose actual significance requires in-depth functional study to rule in or out disease-causing mutations. This is a particular concern for genomic sequence differences in glycosyltransferases, whose implications are often difficult to assess. A recent whole-exome sequencing study identifies (c.229 C > T) in the GalNAc-4-ST1 glycosyltransferase (CHST8) as a disease-causing missense R77W mutation yielding the genodermatosis peeling skin syndrome (PSS) when homozygous. Cabral et al. (Genomics. 2012;99:202-208) cite this sequence change as reducing keratinocyte GalNAc-4-ST1 activity, thus decreasing glycosaminoglycan sulfation, as the mechanism for this blistering disorder. Such an identification could point toward potential clinical and/or prenatal diagnosis of a harmful medical condition. However, GalNAc-4-ST1 has minimal activity toward glycosaminoglycans, instead modifying terminal β1,4-linked GalNAc on N- and O-linked oligosaccharides on specific glycoproteins. We find expression, processing and catalytic activity of GalNAc-4-ST1 completely equivalent between wild type and (R77W) sulfotransferases. Moreover, keratinocytes have little or no GalNAc-4-ST1 mRNA, indicating that they do not express GalNAc-4-ST1. In addition, loss-of-function of GalNAc-4-ST1 primarily presents as reproductive system aberrations rather than skin effects. These findings, an allele frequency of 0.004357, and a 10-fold difference in prevalence of CHST8 (c.299 C > T, R77W) across different ethnic groups, suggest that this sequence represents a "passenger" distributed polymorphism, a simple sequence variant form of the enzyme having normal activity, rather than a "driver" disease-causing mutation that accounts for PSS. This study presents an example for guiding biomedical research initiatives, as well as medical and personal/family perspectives, regarding newly-identified genomic sequence

  15. Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Makoto; Adachi, Yuka; Ito, Yukishige

    Calreticulin (CRT) is well known as a lectin-like chaperone that recognizes Glc1Man9GlcNAc2 (G1M9)-glycoproteins in the endoplasmic reticulum (ER). However, whether CRT can directly interact with the aglycone moiety (protein portion) of the glycoprotein remains controversial. To improve our understanding of CRT interactions, structure-defined G1M9-derivatives with different aglycones (–OH, –Gly–NH{sub 2}, and –Gly–Glu–{sup t}Bu) were used as CRT ligands, and their interactions with recombinant CRT were analyzed using thermal shift analysis. The results showed that CRT binds strongly to a G1M9-ligand in the order –Gly–Glu–{sup t}Bu > –Gly–NH{sub 2} > –OH, which is the same as that of the reglucosylation of Man9GlcNAc2 (M9)-derivatives by themore » folding sensor enzyme UGGT (UDP-glucose: glycoprotein glucosyltransferase). Our results indicate that, similar to UGGT, CRT discriminates the proximal region at the N-glycosylation site, suggesting a similar mechanism mediating the recognition of aglycone moieties in the ER glycoprotein quality control system. - Highlights: • Glc1Man9GlcNAc2 (G1M9) ligands with different aglycones were chemically prepared. • Calreticulin (CRT) discriminates the aglycone of Glc1Man9GlcNAc2 (G1M9) ligand. • CRT binds with G1M9 ligands in a similar manner to folding sensor enzyme.« less

  16. 24 CFR 200.925c - Model codes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... below. (1) Model Building Codes—(i) The BOCA National Building Code, 1993 Edition, The BOCA National..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... number 2 (Chapter 7) of the Building Code, but including the Appendices of the Code. Available from...

  17. 24 CFR 200.925c - Model codes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... below. (1) Model Building Codes—(i) The BOCA National Building Code, 1993 Edition, The BOCA National..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... number 2 (Chapter 7) of the Building Code, but including the Appendices of the Code. Available from...

  18. 24 CFR 200.925c - Model codes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... below. (1) Model Building Codes—(i) The BOCA National Building Code, 1993 Edition, The BOCA National..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... number 2 (Chapter 7) of the Building Code, but including the Appendices of the Code. Available from...

  19. Bar-code medication administration system for anesthetics: effects on documentation and billing.

    PubMed

    Nolen, Agatha L; Rodes, W Dyer

    2008-04-01

    The effects of using a new bar-code medication administration (BCMA) system for anesthetics to automate documentation of drug administration by anesthesiologists were studied. From October 1, 2004, to September 15, 2005, all medications administered to patients undergoing cardiac surgery were documented with a BCMA system at a large acute care facility. Drug claims data for 12 targeted anesthetics in diagnosis-related groups (DRGs) 104-111 were analyzed to determine the quantity of drugs charged and the revenue generated. Those data were compared with claims data for a historical case-control group (October 1, 2003, to September 15, 2004, for the same DRGs) for which medication use was documented manually. From October 1, 2005, to October 1, 2006, anesthesiologists for cardiac surgeries either voluntarily used the automated system or completed anesthesia records manually. A total of 870 cardiac surgery cases for which the BCMA system was used were evaluated. There were 961 cardiac surgery cases in the historical control group. The BCMA system increased the quantity of drugs documented per case by 21.7% and drug revenue captured per case by 18.8%. The time needed by operating-room pharmacy staff to process an anesthesia record for billing decreased by eight minutes per case. After two years, anesthesiologists voluntarily used the new technology on 100% of cardiac surgery patients. Implementation of a BCMA system for anesthetic use in cardiac surgery increased the quantity of drugs charged by 21.7% per case and drug revenue per case by 18.8%. Anesthesiologists continued to use the automated system on a voluntary basis after conclusion of the initial study.

  20. A New Era in Solar Thermal-IR Astronomy: the NSO Array Camera (NAC) on the McMath-Pierce Telescope

    NASA Astrophysics Data System (ADS)

    Ayres, T.; Penn, M.; Plymate, C.; Keller, C.

    2008-09-01

    The U.S. National Solar Observatory Array Camera (NAC) is a cryogenically cooled 1Kx1K InSb ``Aladdin" array that recently became operational at the McMath-Pierce facility on Kitt Peak, a high dry site in the southwest U.S. (Arizona). The new camera is similar to those already incorporated into instruments on nighttime telescopes, and has unprecedented sensitivity, low noise, and excellent cosmetics compared with the Amber Engineering (AE) device it replaces. (The latter was scavenged from a commercial surveillance camera in the 1990's: only 256X256 format, high noise, and annoying flatfield structure). The NAC focal plane is maintained at 30 K by a mechanical closed-cycle helium cooler, dispensing with the cumbersome pumped--solid-N2 40 K system used previously with the AE camera. The NAC linearity has been verified for exposures as short as 1 ms, although latency in the data recording holds the maximum frame rate to about 8 Hz (in "streaming mode"). The camera is run in tandem with the Infrared Adaptive Optics (IRAO) system. Utilizing a 37-actuator deformable mirror, IRAO can--under moderate seeing conditions--correct the telescope image to the diffraction limit longward of 2.3 mu (if a suitable high contrast target is available: the IR granulation has proven too bland to reliably track). IRAO also provides fine control over the solar image for spatial scanning in long-slit mode with the 14 m vertical "Main" spectrograph (MS). A 1'X1' area scan, with 0.5" steps orthogonal to the slit direction, requires less than half a minute, much shorter than p-mode and granulation evolution time scales. A recent engineering test run, in April 2008, utilized NAC/IRAO/MS to capture the fundamental (4.6 mu) and first-overtone (2.3 mu) rovibrational bands of CO, including maps of quiet regions, drift scans along the equatorial limbs (to measure the off-limb molecular emissions), and imaging of a fortuitous small sunspot pair, a final gasp, perhaps, of Cycle 23. Future work with

  1. Inhibitors incorporating zinc-binding groups target the GlcNAc-PI de-N-acetylase in Trypanosoma brucei, the causative agent of African sleeping sickness.

    PubMed

    Abdelwahab, Nuha Z; Crossman, Arthur T; Sullivan, Lauren; Ferguson, Michael A J; Urbaniak, Michael D

    2012-03-01

    Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC(50) values 0.1-1.5mM and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC(50)= 19±0.5μm. © 2011 John Wiley & Sons A/S.

  2. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell

    PubMed Central

    Kalyanasundar, B.; Perez, Claudia I.; Luna, Alvaro; Solorio, Jessica; Moreno, Mario G.; Elias, David; Simon, Sidney A.

    2015-01-01

    Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds. PMID:25972577

  3. Detecting chronic kidney disease in population-based administrative databases using an algorithm of hospital encounter and physician claim codes.

    PubMed

    Fleet, Jamie L; Dixon, Stephanie N; Shariff, Salimah Z; Quinn, Robert R; Nash, Danielle M; Harel, Ziv; Garg, Amit X

    2013-04-05

    Large, population-based administrative healthcare databases can be used to identify patients with chronic kidney disease (CKD) when serum creatinine laboratory results are unavailable. We examined the validity of algorithms that used combined hospital encounter and physician claims database codes for the detection of CKD in Ontario, Canada. We accrued 123,499 patients over the age of 65 from 2007 to 2010. All patients had a baseline serum creatinine value to estimate glomerular filtration rate (eGFR). We developed an algorithm of physician claims and hospital encounter codes to search administrative databases for the presence of CKD. We determined the sensitivity, specificity, positive and negative predictive values of this algorithm to detect our primary threshold of CKD, an eGFR <45 mL/min per 1.73 m² (15.4% of patients). We also assessed serum creatinine and eGFR values in patients with and without CKD codes (algorithm positive and negative, respectively). Our algorithm required evidence of at least one of eleven CKD codes and 7.7% of patients were algorithm positive. The sensitivity was 32.7% [95% confidence interval: (95% CI): 32.0 to 33.3%]. Sensitivity was lower in women compared to men (25.7 vs. 43.7%; p <0.001) and in the oldest age category (over 80 vs. 66 to 80; 28.4 vs. 37.6 %; p < 0.001). All specificities were over 94%. The positive and negative predictive values were 65.4% (95% CI: 64.4 to 66.3%) and 88.8% (95% CI: 88.6 to 89.0%), respectively. In algorithm positive patients, the median [interquartile range (IQR)] baseline serum creatinine value was 135 μmol/L (106 to 179 μmol/L) compared to 82 μmol/L (69 to 98 μmol/L) for algorithm negative patients. Corresponding eGFR values were 38 mL/min per 1.73 m² (26 to 51 mL/min per 1.73 m²) vs. 69 mL/min per 1.73 m² (56 to 82 mL/min per 1.73 m²), respectively. Patients with CKD as identified by our database algorithm had distinctly higher baseline serum creatinine values and lower eGFR values

  4. Detecting chronic kidney disease in population-based administrative databases using an algorithm of hospital encounter and physician claim codes

    PubMed Central

    2013-01-01

    Background Large, population-based administrative healthcare databases can be used to identify patients with chronic kidney disease (CKD) when serum creatinine laboratory results are unavailable. We examined the validity of algorithms that used combined hospital encounter and physician claims database codes for the detection of CKD in Ontario, Canada. Methods We accrued 123,499 patients over the age of 65 from 2007 to 2010. All patients had a baseline serum creatinine value to estimate glomerular filtration rate (eGFR). We developed an algorithm of physician claims and hospital encounter codes to search administrative databases for the presence of CKD. We determined the sensitivity, specificity, positive and negative predictive values of this algorithm to detect our primary threshold of CKD, an eGFR <45 mL/min per 1.73 m2 (15.4% of patients). We also assessed serum creatinine and eGFR values in patients with and without CKD codes (algorithm positive and negative, respectively). Results Our algorithm required evidence of at least one of eleven CKD codes and 7.7% of patients were algorithm positive. The sensitivity was 32.7% [95% confidence interval: (95% CI): 32.0 to 33.3%]. Sensitivity was lower in women compared to men (25.7 vs. 43.7%; p <0.001) and in the oldest age category (over 80 vs. 66 to 80; 28.4 vs. 37.6 %; p < 0.001). All specificities were over 94%. The positive and negative predictive values were 65.4% (95% CI: 64.4 to 66.3%) and 88.8% (95% CI: 88.6 to 89.0%), respectively. In algorithm positive patients, the median [interquartile range (IQR)] baseline serum creatinine value was 135 μmol/L (106 to 179 μmol/L) compared to 82 μmol/L (69 to 98 μmol/L) for algorithm negative patients. Corresponding eGFR values were 38 mL/min per 1.73 m2 (26 to 51 mL/min per 1.73 m2) vs. 69 mL/min per 1.73 m2 (56 to 82 mL/min per 1.73 m2), respectively. Conclusions Patients with CKD as identified by our database algorithm had distinctly higher baseline serum

  5. Validity of ICD-9-CM codes for breast, lung and colorectal cancers in three Italian administrative healthcare databases: a diagnostic accuracy study protocol.

    PubMed

    Abraha, Iosief; Serraino, Diego; Giovannini, Gianni; Stracci, Fabrizio; Casucci, Paola; Alessandrini, Giuliana; Bidoli, Ettore; Chiari, Rita; Cirocchi, Roberto; De Giorgi, Marcello; Franchini, David; Vitale, Maria Francesca; Fusco, Mario; Montedori, Alessandro

    2016-03-25

    Administrative healthcare databases are useful tools to study healthcare outcomes and to monitor the health status of a population. Patients with cancer can be identified through disease-specific codes, prescriptions and physician claims, but prior validation is required to achieve an accurate case definition. The objective of this protocol is to assess the accuracy of International Classification of Diseases Ninth Revision-Clinical Modification (ICD-9-CM) codes for breast, lung and colorectal cancers in identifying patients diagnosed with the relative disease in three Italian administrative databases. Data from the administrative databases of Umbria Region (910,000 residents), Local Health Unit 3 of Napoli (1,170,000 residents) and Friuli--Venezia Giulia Region (1,227,000 residents) will be considered. In each administrative database, patients with the first occurrence of diagnosis of breast, lung or colorectal cancer between 2012 and 2014 will be identified using the following groups of ICD-9-CM codes in primary position: (1) 233.0 and (2) 174.x for breast cancer; (3) 162.x for lung cancer; (4) 153.x for colon cancer and (5) 154.0-154.1 and 154.8 for rectal cancer. Only incident cases will be considered, that is, excluding cases that have the same diagnosis in the 5 years (2007-2011) before the period of interest. A random sample of cases and non-cases will be selected from each administrative database and the corresponding medical charts will be assessed for validation by pairs of trained, independent reviewers. Case ascertainment within the medical charts will be based on (1) the presence of a primary nodular lesion in the breast, lung or colon-rectum, documented with imaging or endoscopy and (2) a cytological or histological documentation of cancer from a primary or metastatic site. Sensitivity and specificity with 95% CIs will be calculated. Study results will be disseminated widely through peer-reviewed publications and presentations at national and

  6. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    PubMed

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  7. N-acetylcysteine (NAC) ameliorates Epstein-Barr virus latent membrane protein 1 induced chronic inflammation.

    PubMed

    Gao, Xiao; Lampraki, Eirini-Maria; Al-Khalidi, Sarwah; Qureshi, Muhammad Asif; Desai, Rhea; Wilson, Joanna Beatrice

    2017-01-01

    Chronic inflammation results when the immune system responds to trauma, injury or infection and the response is not resolved. It can lead to tissue damage and dysfunction and in some cases predispose to cancer. Some viruses (including Epstein-Barr virus (EBV)) can induce inflammation, which may persist even after the infection has been controlled or cleared. The damage caused by inflammation, can itself act to perpetuate the inflammatory response. The latent membrane protein 1 (LMP1) of EBV is a pro-inflammatory factor and in the skin of transgenic mice causes a phenotype of hyperplasia with chronic inflammation of increasing severity, which can progress to pre-malignant and malignant lesions. LMP1 signalling leads to persistent deregulated expression of multiple proteins throughout the mouse life span, including TGFα S100A9 and chitinase-like proteins. Additionally, as the inflammation increases, numerous chemokines and cytokines are produced which promulgate the inflammation. Deposition of IgM, IgG, IgA and IgE and complement activation form part of this process and through genetic deletion of CD40, we show that this contributes to the more tissue-destructive aspects of the phenotype. Treatment of the mice with N-acetylcysteine (NAC), an antioxidant which feeds into the body's natural redox regulatory system through glutathione synthesis, resulted in a significantly reduced leukocyte infiltrate in the inflamed tissue, amelioration of the pathological features and delay in the inflammatory signature measured by in vivo imaging. Reducing the degree of inflammation achieved through NAC treatment, had the knock on effect of reducing leukocyte recruitment to the inflamed site, thereby slowing the progression of the pathology. These data support the idea that NAC could be considered as a treatment to alleviate chronic inflammatory pathologies, including post-viral disease. Additionally, the model described can be used to effectively monitor and accurately measure

  8. Overexpression of the Steroidogenic Enzyme Cytochrome P450 Side Chain Cleavage in the Ventral Tegmental Area Increases 3α,5α-THP and Reduces Long-Term Operant Ethanol Self-Administration

    PubMed Central

    Cook, Jason B.; Werner, David F.; Maldonado-Devincci, Antoniette M.; Leonard, Maggie N.; Fisher, Kristen R.; O'Buckley, Todd K.; Porcu, Patrizia; McCown, Thomas J.; Besheer, Joyce; Hodge, Clyde W.

    2014-01-01

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology. PMID:24760842

  9. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    PubMed

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  10. 28 CFR 36.608 - Guidance concerning model codes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Guidance concerning model codes. 36.608... Codes § 36.608 Guidance concerning model codes. Upon application by an authorized representative of a... relevant model code and issue guidance concerning whether and in what respects the model code is consistent...

  11. O-GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 up-regulation in endothelial cells.

    PubMed

    Zhang, Yuan; Qu, Yuan; Niu, Tian; Wang, Haiyan; Liu, Kun

    2017-02-26

    Intracellular adhesion molecule 1 (ICAM-1) is an important inflammatory factor that causes retinal damage during diabetic retinopathy. Hyperglycaemia can increase ICAM-1 expression in endothelial cells and the ICAM-1 promoter is responsive to the transcription factor specificity protein 1 (Sp1). O-GlcNAc modification is driven by the glucose concentration and has a profound effect on Sp1 activity. In this study, we investigated the underlying mechanism through which hyperglycaemia triggers ICAM-1 expression, which is mediated by O-GlcNAc modification of Sp1 in human umbilical vein endothelial cells (HUVECs) and rat retinal capillary endothelial cells (RRCECs). We showed that hyperglycaemia (30 mM) increased ICAM-1 expression compared to control conditions (5 mM). The addition of an OGT inhibitor decreased ICAM-1 expression and addition of an OGA inhibitor enhanced ICAM-1 expression. Furthermore, cells transduced with siSp1 exhibited dramatically decreased ICAM-1 expression. These results proved that the up-regulation of ICAM-1 with hyperglycaemia is mediated by O-GlcNAc modification of Sp1. It helps to explain the mechanism of ICAM-1 processing in HUVECs and RRCECs. Understanding how this inflammatory factor is modulated during diabetic retinopathy will ultimately help to design novel therapeutics to treat this condition. Copyright © 2017. Published by Elsevier Inc.

  12. Aluminum Enhances Growth and Sugar Concentration, Alters Macronutrient Status and Regulates the Expression of NAC Transcription Factors in Rice

    PubMed Central

    Moreno-Alvarado, Marcos; García-Morales, Soledad; Trejo-Téllez, Libia Iris; Hidalgo-Contreras, Juan Valente; Gómez-Merino, Fernando Carlos

    2017-01-01

    Aluminum (Al) is a beneficial element for some plant species, especially when used at low concentrations. Though some transcription factors are induced by exposure to this element, no data indicate that Al regulates the expression of NAC genes in rice. In this study we tested the effect of applying 200 μM Al on growth, chlorophyll, amino acids, sugars, macronutrient concentration and regulation of NAC transcription factors gene expression in 24-day-old plants of four rice (Oryza sativa ssp. indica) cultivars: Cotaxtla, Tres Ríos, Huimanguillo and Temporalero, grown hydroponically under greenhouse conditions. Twenty days after treatment, we observed that Al enhanced growth in the four cultivars studied. On average, plants grown in the presence of Al produced 140% more root dry biomass and were 30% taller than control plants. Cotaxtla and Temporalero showed double the root length, while Huimanguillo and Cotaxtla had three times more root fresh biomass and 2.5 times more root dry biomass. Huimanguillo plants showed 1.5 times more shoot height, while Cotaxtla had almost double the root dry biomass. With the exception of Tres Ríos, the rest of the cultivars had almost double the chlorophyll concentration when treated with Al, whereas amino acid and proline concentrations were not affected by Al. Sugar concentration was also increased in plants treated with Al, almost 11-fold in comparison to the control. Furthermore, we observed a synergic response of Al application on P and K concentration in roots, and on Mg concentration in shoots. Twenty-four hours after Al treatment, NAC transcription factors gene expression was measured in roots by quantitative RT-PCR. Of the 57 NAC transcription factors genes primer-pairs tested, we could distinguish that 44% (25 genes) showed different expression patterns among rice cultivars, with most of the genes induced in Cotaxtla and Temporalero plants. Of the 25 transcription factors up-regulated, those showing differential expression

  13. Revisiting the substrate specificity of mammalian α1,6-fucosyltransferase reveals that it catalyzes core fucosylation of N-glycans lacking α1,3-arm GlcNAc.

    PubMed

    Yang, Qiang; Zhang, Roushu; Cai, Hui; Wang, Lai-Xi

    2017-09-08

    The mammalian α1,6-fucosyltransferase (FUT8) catalyzes the core fucosylation of N -glycans in the biosynthesis of glycoproteins. Previously, intensive in vitro studies with crude extract or purified enzyme concluded that the attachment of a GlcNAc on the α1,3 mannose arm of N -glycan is essential for FUT8-catalyzed core fucosylation. In contrast, we have recently shown that expression of erythropoietin in a GnTI knock-out, FUT8-overexpressing cell line results in the production of fully core-fucosylated glycoforms of the oligomannose substrate Man 5 GlcNAc 2 , suggesting that FUT8 can catalyze core fucosylation of N -glycans lacking an α1,3-arm GlcNAc in cells. Here, we revisited the substrate specificity of FUT8 by examining its in vitro activity toward an array of selected N -glycans, glycopeptides, and glycoproteins. Consistent with previous studies, we found that free N -glycans lacking an unmasked α1,3-arm GlcNAc moiety are not FUT8 substrates. However, Man 5 GlcNAc 2 glycan could be efficiently core-fucosylated by FUT8 in an appropriate protein/peptide context, such as with the erythropoietin protein, a V3 polypeptide derived from HIV-1 gp120, or a simple 9-fluorenylmethyl chloroformate-protected Asn moiety. Interestingly, when placed in the V3 polypeptide context, a mature bi-antennary complex-type N -glycan also could be core-fucosylated by FUT8, albeit at much lower efficiency than the Man 5 GlcNAc 2 peptide. This study represents the first report of in vitro FUT8-catalyzed core fucosylation of N -glycans lacking the α1,3-arm GlcNAc moiety. Our results suggest that an appropriate polypeptide context or other adequate structural elements in the acceptor substrate could facilitate the core fucosylation by FUT8. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Kombucha brewing under the Food and Drug Administration model Food Code: risk analysis and processing guidance.

    PubMed

    Nummer, Brian A

    2013-11-01

    Kombucha is a fermented beverage made from brewed tea and sugar. The taste is slightly sweet and acidic and it may have residual carbon dioxide. Kombucha is consumed in many countries as a health beverage and it is gaining in popularity in the U.S. Consequently, many retailers and food service operators are seeking to brew this beverage on site. As a fermented beverage, kombucha would be categorized in the Food and Drug Administration model Food Code as a specialized process and would require a variance with submission of a food safety plan. This special report was created to assist both operators and regulators in preparing or reviewing a kombucha food safety plan.

  15. 77 FR 64837 - Federal Aviation Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Fourth Meeting: RTCA Special Committee 227, Standards of Navigation Performance AGENCY: Federal Aviation Administration (FAA), U.S... Operations Group, Federal Aviation Administration. [FR Doc. 2012-26034 Filed 10-22-12; 8:45 am] BILLING CODE...

  16. 78 FR 41183 - Federal Aviation Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Meeting: RTCA Program Management Committee AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION... Operations Group, Federal Aviation Administration. [FR Doc. 2013-16464 Filed 7-8-13; 8:45 am] BILLING CODE...

  17. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat.

    PubMed

    Chen, Dandan; Richardson, Terese; Chai, Shoucheng; Lynne McIntyre, C; Rae, Anne L; Xue, Gang-Ping

    2016-10-01

    A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels.

    PubMed

    Liu, Jia; Marchase, Richard B; Chatham, John C

    2007-01-01

    It has been shown that glutamine protects the heart from ischemia/reperfusion (I/R) injury; however, the mechanisms underlying this protection have not been identified. Glutamine:fructose-6-phosphate amidotransferase (GFAT) regulates the entry of glucose into the hexosamine biosynthesis pathway (HBP), and activation of this pathway has been shown to be cardioprotective. Glutamine is required for metabolism of glucose via GFAT; therefore, the goal of this study was to determine whether glutamine cardioprotection could be attributed to increased flux through the HBP and elevated levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins. Hearts from male rats were isolated and perfused with Krebs-Henseliet buffer containing 5 mM glucose, and global, no-flow ischemia was induced for 20 min followed by 60 min of reperfusion. Thirty-minute pre-treatment with 2.5 mM glutamine significantly improved functional recovery (RPP: 15.6+/-5.7% vs. 59.4+/-6.1%; p<0.05) and decreased cardiac troponin I release (25.4+/-3.0 vs. 4.7+/-1.9 ng/ml; p<0.05) during reperfusion. This protection was associated with a significant increase in the levels of protein O-GlcNAc and ATP. Pre-treatment with 80 muM azaserine, an inhibitor of GFAT, completely reversed the protection seen with glutamine and prevented the increase in protein O-GlcNAc. O-GlcNAc transferase (OGT) catalyzes the formation of O-GlcNAc, and inhibition of OGT with 5 mM alloxan also reversed the protection associated with glutamine. These data support the hypothesis that in the ex vivo perfused heart glutamine cardioprotection is due, at least in part, to enhanced flux through the HBP and increased protein O-GlcNAc levels.

  19. Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning.

    PubMed

    Saddoris, Michael P; Carelli, Regina M

    2014-01-15

    Cocaine use is often associated with diminished cognitive function, persisting even after abstinence from the drug. Likely targets for these changes are the core and shell of the nucleus accumbens (NAc), which are critical for mediating the rewarding aspects of drugs of abuse as well as supporting associative learning. To understand this deficit, we recorded neural activity in the NAc of rats with a history of cocaine self-administration or control subjects while they learned Pavlovian first- and second-order associations. Rats were trained for 2 weeks to self-administer intravenous cocaine or water. Later, rats learned a first-order Pavlovian discrimination where a conditioned stimulus (CS)+ predicted food, and a control (CS-) did not. Rats then learned a second-order association where, absent any food reinforcement, a novel cued (SOC+) predicted the CS+ and another (SOC-) predicted the CS-. Electrophysiological recordings were taken during performance of these tasks in the NAc core and shell. Both control subjects and cocaine-experienced rats learned the first-order association, but only control subjects learned the second-order association. Neural recordings indicated that core and shell neurons encoded task-relevant information that correlated with behavioral performance, whereas this type of encoding was abolished in cocaine-experienced rats. The NAc core and shell perform complementary roles in supporting normal associative learning, functions that are impaired after cocaine experience. This impoverished encoding of motivational behavior, even after abstinence from the drug, might provide a key mechanism to understand why addiction remains a chronically relapsing disorder despite repeated attempts at sobriety. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    PubMed

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  1. First NAC Image Obtained in Mercury Orbit

    NASA Image and Video Library

    2017-12-08

    NASA image acquired: March 29, 2011 This is the first image of Mercury taken from orbit with MESSENGER’s Narrow Angle Camera (NAC). MESSENGER’s camera system, the Mercury Dual Imaging System (MDIS), has two cameras: the Narrow Angle Camera and the Wide Angle Camera (WAC). Comparison of this image with MESSENGER’s first WAC image of the same region shows the substantial difference between the fields of view of the two cameras. At 1.5°, the field of view of the NAC is seven times smaller than the 10.5° field of view of the WAC. This image was taken using MDIS’s pivot. MDIS is mounted on a pivoting platform and is the only instrument in MESSENGER’s payload capable of movement independent of the spacecraft. The other instruments are fixed in place, and most point down the spacecraft’s boresight at all times, relying solely on the guidance and control system for pointing. The 90° range of motion of the pivot gives MDIS a much-needed extra degree of freedom, allowing MDIS to image the planet’s surface at times when spacecraft geometry would normally prevent it from doing so. The pivot also gives MDIS additional imaging opportunities by allowing it to view more of the surface than that at which the boresight-aligned instruments are pointed at any given time. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft ever to orbit the planet Mercury. The mission is currently in the commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory

  2. Prolonged withdrawal from cocaine self-administration affects prefrontal cortex- and basolateral amygdala-nucleus accumbens core circuits but not accumbens GABAergic local interneurons.

    PubMed

    Purgianto, Anthony; Weinfeld, Michael E; Wolf, Marina E

    2017-11-01

    Withdrawal from extended-access cocaine self-administration leads to progressive intensification ('incubation') of cocaine craving. After prolonged withdrawal (1-2 months), when craving is high, expression of incubation depends on strengthening of excitatory inputs to medium spiny neurons (MSN) of the nucleus accumbens (NAc). These excitatory inputs interact with the intra-NAc GABAergic 'microcircuit', composed of MSN axon collaterals and GABAergic interneurons. Here, we investigated whether the increased glutamatergic neurotransmission observed after prolonged withdrawal is accompanied by altered GABAergic neurotransmission, focusing on NAc core. Rats self-administered cocaine or saline (6 hours/day) and then underwent >40 days of withdrawal. First, we investigated parvalbumin positive (PV+) interneurons, GABAergic fast-spiking interneurons that regulate MSN activity. Immunohistochemical studies revealed no significant change in PV signal intensity or the number of PV+ cells in cocaine rats versus saline controls. We then screened PV and other interneuron markers using immunoblotting. We detected no changes in levels of PV, calretinin, calbindin or neuronal nitric oxide synthase. Because expression of these markers is activity dependent, our results suggest no marked changes in interneuron activity. Finally, we utilized local field potential recording, which can detect GABA-mediated alterations at the circuit level, to investigate potential changes in two circuits implicated in cocaine craving: prelimbic prefrontal cortex to NAc core and basolateral amygdala to NAc core. We detected differential adaptations in these circuits, some of which may involve GABA. Overall, our results suggest that alterations in GABA transmission may accompany incubation of cocaine craving, but they are circuit specific and less pronounced than alterations in glutamate transmission. © 2016 Society for the Study of Addiction.

  3. Practical guide to bar coding for patient medication safety.

    PubMed

    Neuenschwander, Mark; Cohen, Michael R; Vaida, Allen J; Patchett, Jeffrey A; Kelly, Jamie; Trohimovich, Barbara

    2003-04-15

    Bar coding for the medication administration step of the drug-use process is discussed. FDA will propose a rule in 2003 that would require bar-code labels on all human drugs and biologicals. Even with an FDA mandate, manufacturer procrastination and possible shifts in product availability are likely to slow progress. Such delays should not preclude health systems from adopting bar-code-enabled point-of-care (BPOC) systems to achieve gains in patient safety. Bar-code technology is a replacement for traditional keyboard data entry. The elements of bar coding are content, which determines the meaning; data format, which refers to the embedded data and symbology, which describes the "font" in which the machine-readable code is written. For a BPOC system to deliver an acceptable level of patient protection, the hospital must first establish reliable processes for a patient identification band, caregiver badge, and medication bar coding. Medications can have either drug-specific or patient-specific bar codes. Both varieties result in the desired code that supports patient's five rights of drug administration. When medications are not available from the manufacturer in immediate-container bar-coded packaging, other means of applying the bar code must be devised, including the use of repackaging equipment, overwrapping, manual bar coding, and outsourcing. Virtually all medications should be bar coded, the bar code on the label should be easily readable, and appropriate policies, procedures, and checks should be in place. Bar coding has the potential to be not only cost-effective but to produce a return on investment. By bar coding patient identification tags, caregiver badges, and immediate-container medications, health systems can substantially increase patient safety during medication administration.

  4. Occurrence probability of slopes on the lunar surface: Estimate by the shaded area percentage in the LROC NAC images

    NASA Astrophysics Data System (ADS)

    Abdrakhimov, A. M.; Basilevsky, A. T.; Ivanov, M. A.; Kokhanov, A. A.; Karachevtseva, I. P.; Head, J. W.

    2015-09-01

    The paper describes the method of estimating the distribution of slopes by the portion of shaded areas measured in the images acquired at different Sun elevations. The measurements were performed for the benefit of the Luna-Glob Russian mission. The western ellipse for the spacecraft landing in the crater Bogus-lawsky in the southern polar region of the Moon was investigated. The percentage of the shaded area was measured in the images acquired with the LROC NAC camera with a resolution of ~0.5 m. Due to the close vicinity of the pole, it is difficult to build digital terrain models (DTMs) for this region from the LROC NAC images. Because of this, the method described has been suggested. For the landing ellipse investigated, 52 LROC NAC images obtained at the Sun elevation from 4° to 19° were used. In these images the shaded portions of the area were measured, and the values of these portions were transferred to the values of the occurrence of slopes (in this case, at the 3.5-m baseline) with the calibration by the surface characteristics of the Lunokhod-1 study area. For this area, the digital terrain model of the ~0.5-m resolution and 13 LROC NAC images obtained at different elevations of the Sun are available. From the results of measurements and the corresponding calibration, it was found that, in the studied landing ellipse, the occurrence of slopes gentler than 10° at the baseline of 3.5 m is 90%, while it is 9.6, 5.7, and 3.9% for the slopes steeper than 10°, 15°, and 20°, respectively. Obviously, this method can be recommended for application if there is no DTM of required granularity for the regions of interest, but there are high-resolution images taken at different elevations of the Sun.

  5. Anonymization of Administrative Billing Codes with Repeated Diagnoses Through Censoring

    PubMed Central

    Tamersoy, Acar; Loukides, Grigorios; Denny, Joshua C.; Malin, Bradley

    2010-01-01

    Patient-specific data from electronic medical records (EMRs) is increasingly shared in a de-identified form to support research. However, EMRs are susceptible to noise, error, and variation, which can limit their utility for reuse. One way to enhance the utility of EMRs is to record the number of times diagnosis codes are assigned to a patient when this data is shared. This is, however, challenging because releasing such data may be leveraged to compromise patients’ identity. In this paper, we present an approach that, to the best of our knowledge, is the first that can prevent re-identification through repeated diagnosis codes. Our method transforms records to preserve privacy while retaining much of their utility. Experiments conducted using 2676 patients from the EMR system of the Vanderbilt University Medical Center verify that our method is able to retain an average of 95.4% of the diagnosis codes in a common data sharing scenario. PMID:21347085

  6. The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer

    PubMed Central

    Munkley, Jennifer; Oltean, Sebastian; Vodák, Daniel; Wilson, Brian T.; Livermore, Karen E.; Zhou, Yan; Star, Eleanor; Floros, Vasileios I.; Johannessen, Bjarne; Knight, Bridget; McCullagh, Paul; McGrath, John; Crundwell, Malcolm; Skotheim, Rolf I.; Robson, Craig N.; Leung, Hing Y.; Harries, Lorna W.; Rajan, Prabhakar; Mills, Ian G.; Elliott, David J.

    2015-01-01

    Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, being significantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression. PMID:26452038

  7. Exploring reaction pathways for O-GlcNAc transferase catalysis. A string method study.

    PubMed

    Kumari, Manju; Kozmon, Stanislav; Kulhánek, Petr; Štepán, Jakub; Tvaroška, Igor; Koča, Jaroslav

    2015-03-26

    The inverting O-GlcNAc glycosyltransferase (OGT) is an important post-translation enzyme, which catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to the hydroxyl group of the Ser/Thr of cytoplasmic, nuclear, and mitochondrial proteins. In the past, three different catalytic bases were proposed for the reaction: His498, α-phosphate, and Asp554. In this study, we used hybrid quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello molecular dynamics to investigate reaction paths using α-phosphate and Asp554 as the catalytic bases. The string method was used to calculate the free-energy reaction profiles of the tested mechanisms. During the investigations, an additional mechanism was observed. In this mechanism, a proton is transferred to α-phosphate via a water molecule. Our calculations show that the mechanism with α-phosphate acting as the base is favorable. This reaction has a rate-limiting free-energy barrier of 23.5 kcal/mol, whereas reactions utilizing Asp554 and water-assisted α-phosphate have barriers of 41.7 and 40.9 kcal/mol, respectively. Our simulations provide a new insight into the catalysis of OGT and may thus guide rational drug design of transition-state analogue inhibitors with potential therapeutic use.

  8. Coding in Stroke and Other Cerebrovascular Diseases.

    PubMed

    Korb, Pearce J; Jones, William

    2017-02-01

    Accurate coding is critical for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of coding principles for patients with strokes and other cerebrovascular diseases and includes an illustrative case as a review of coding principles in a patient with acute stroke.

  9. Validating malignant melanoma ICD-9-CM codes in Umbria, ASL Napoli 3 Sud and Friuli Venezia Giulia administrative healthcare databases: a diagnostic accuracy study

    PubMed Central

    Orso, Massimiliano; Serraino, Diego; Fusco, Mario; Giovannini, Gianni; Casucci, Paola; Cozzolino, Francesco; Granata, Annalisa; Gobbato, Michele; Stracci, Fabrizio; Ciullo, Valerio; Vitale, Maria Francesca; Orlandi, Walter; Montedori, Alessandro; Bidoli, Ettore

    2018-01-01

    Objectives To assess the accuracy of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes in identifying subjects with melanoma. Design A diagnostic accuracy study comparing melanoma ICD-9-CM codes (index test) with medical chart (reference standard). Case ascertainment was based on neoplastic lesion of the skin and a histological diagnosis from a primary or metastatic site positive for melanoma. Setting Administrative databases from Umbria Region, Azienda Sanitaria Locale (ASL) Napoli 3 Sud (NA) and Friuli Venezia Giulia (FVG) Region. Participants 112, 130 and 130 cases (subjects with melanoma) were randomly selected from Umbria, NA and FVG, respectively; 94 non-cases (subjects without melanoma) were randomly selected from each unit. Outcome measures Sensitivity and specificity for ICD-9-CM code 172.x located in primary position. Results The most common melanoma subtype was malignant melanoma of skin of trunk, except scrotum (ICD-9-CM code: 172.5), followed by malignant melanoma of skin of lower limb, including hip (ICD-9-CM code: 172.7). The mean age of the patients ranged from 60 to 61 years. Most of the diagnoses were performed in surgical departments. The sensitivities were 100% (95% CI 96% to 100%) for Umbria, 99% (95% CI 94% to 100%) for NA and 98% (95% CI 93% to 100%) for FVG. The specificities were 88% (95% CI 80% to 93%) for Umbria, 77% (95% CI 69% to 85%) for NA and 79% (95% CI 71% to 86%) for FVG. Conclusions The case definition for melanoma based on clinical or instrumental diagnosis, confirmed by histological examination, showed excellent sensitivities and good specificities in the three operative units. Administrative databases from the three operative units can be used for epidemiological and outcome research of melanoma. PMID:29678984

  10. Validating malignant melanoma ICD-9-CM codes in Umbria, ASL Napoli 3 Sud and Friuli Venezia Giulia administrative healthcare databases: a diagnostic accuracy study.

    PubMed

    Orso, Massimiliano; Serraino, Diego; Abraha, Iosief; Fusco, Mario; Giovannini, Gianni; Casucci, Paola; Cozzolino, Francesco; Granata, Annalisa; Gobbato, Michele; Stracci, Fabrizio; Ciullo, Valerio; Vitale, Maria Francesca; Eusebi, Paolo; Orlandi, Walter; Montedori, Alessandro; Bidoli, Ettore

    2018-04-20

    To assess the accuracy of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes in identifying subjects with melanoma. A diagnostic accuracy study comparing melanoma ICD-9-CM codes (index test) with medical chart (reference standard). Case ascertainment was based on neoplastic lesion of the skin and a histological diagnosis from a primary or metastatic site positive for melanoma. Administrative databases from Umbria Region, Azienda Sanitaria Locale (ASL) Napoli 3 Sud (NA) and Friuli Venezia Giulia (FVG) Region. 112, 130 and 130 cases (subjects with melanoma) were randomly selected from Umbria, NA and FVG, respectively; 94 non-cases (subjects without melanoma) were randomly selected from each unit. Sensitivity and specificity for ICD-9-CM code 172.x located in primary position. The most common melanoma subtype was malignant melanoma of skin of trunk, except scrotum (ICD-9-CM code: 172.5), followed by malignant melanoma of skin of lower limb, including hip (ICD-9-CM code: 172.7). The mean age of the patients ranged from 60 to 61 years. Most of the diagnoses were performed in surgical departments.The sensitivities were 100% (95% CI 96% to 100%) for Umbria, 99% (95% CI 94% to 100%) for NA and 98% (95% CI 93% to 100%) for FVG. The specificities were 88% (95% CI 80% to 93%) for Umbria, 77% (95% CI 69% to 85%) for NA and 79% (95% CI 71% to 86%) for FVG. The case definition for melanoma based on clinical or instrumental diagnosis, confirmed by histological examination, showed excellent sensitivities and good specificities in the three operative units. Administrative databases from the three operative units can be used for epidemiological and outcome research of melanoma. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Deciphering the functions of O-GlcNAc glycosylation in the brain: The role of site-specific quantitative O-GlcNAcomics.

    PubMed

    Thompson, John W; Sorum, Alexander W; Hsieh-Wilson, Linda C

    2018-06-23

    The dynamic posttranslational modification O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is present on thousands of intracellular proteins in the brain. Like phosphorylation, O-GlcNAcylation is inducible and plays important functional roles in both physiology and disease. Recent advances in mass spectrometry (MS) and bioconjugation methods are now enabling the mapping of O-GlcNAcylation events to individual sites in proteins. However, our understanding of which glycosylation events are necessary for regulating protein function and controlling specific processes, phenotypes, or diseases remains in its infancy. Given the sheer number of O-GlcNAc sites, methods are greatly needed to identify promising sites and prioritize them for time- and resource-intensive functional studies. Revealing sites that are dynamically altered by different stimuli or disease states will likely to go a long way in this regard. Here, we describe advanced methods for identifying O-GlcNAc sites on individual proteins and across the proteome, and for determining their stoichiometry in vivo. We also highlight emerging technologies for quantitative, site-specific MS-based O-GlcNAc proteomics (O-GlcNAcomics), which allow proteome-wide tracking of O-GlcNAcylation dynamics at individual sites. These cutting-edge technologies are beginning to bridge the gap between the high-throughput cataloging of O-GlcNAcylated proteins and the relatively low-throughput study of individual proteins. By uncovering the O-GlcNAcylation events that change in specific physiological and disease contexts, these new approaches are providing key insights into the regulatory functions of O-GlcNAc in the brain, including their roles in neuroprotection, neuronal signaling, learning and memory, and neurodegenerative diseases.

  12. Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution.

    PubMed

    Nishima, Wataru; Miyashita, Naoyuki; Yamaguchi, Yoshiki; Sugita, Yuji; Re, Suyong

    2012-07-26

    The introduction of bisecting GlcNAc and core fucosylation in N-glycans is essential for fine functional regulation of glycoproteins. In this paper, the effect of these modifications on the conformational properties of N-glycans is examined at the atomic level by performing replica-exchange molecular dynamics (REMD) simulations. We simulate four biantennary complex-type N-glycans, namely, unmodified, two single-substituted with either bisecting GlcNAc or core fucose, and disubstituted forms. By using REMD as an enhanced sampling technique, five distinct conformers in solution, each of which is characterized by its local orientation of the Manα1-6Man glycosidic linkage, are observed for all four N-glycans. The chemical modifications significantly change their conformational equilibria. The number of major conformers is reduced from five to two and from five to four upon the introduction of bisecting GlcNAc and core fucosylation, respectively. The population change is attributed to specific inter-residue hydrogen bonds, including water-mediated ones. The experimental NMR data, including nuclear Overhauser enhancement and scalar J-coupling constants, are well reproduced taking the multiple conformers into account. Our structural model supports the concept of "conformer selection", which emphasizes the conformational flexibility of N-glycans in protein-glycan interactions.

  13. The role of the thiol N-acetylcysteine in the prevention of tumor invasion and angiogenesis.

    PubMed

    Morini, M; Cai, T; Aluigi, M G; Noonan, D M; Masiello, L; De Flora, S; D'Agostini, F; Albini, A; Fassina, G

    1999-01-01

    We have extensively studied the effects of N-acetylcysteine (NAC), a cytoprotective drug that can prevent in vivo carcinogenesis. Here we review our findings NAC completely inhibits gelatinolytic activity of metalloproteases and chemotactic and invasive activities of tumor cells. In addition, NAC reduces the number of lung metastases when malignant murine melanoma cells are injected into nude mice. NAC treatment decreases the weight of primary tumors and produces a dose-related increase in tumor latency. Moreover, oral administration of NAC reduces the formation of spontaneous metastases. In experimental metastasis assays, we have found a synergistic reduction in the number of lung metastases after treatment with doxorubicin (DOX) and NAC in nude mice. In tumorigenicity and spontaneous metastasis assays, the combined administration of DOX and oral NAC again has shown synergistic effects on the frequency and weight of primary tumors and local recurrences and completely prevented the formation of lung metastases. The addition of NAC to endothelial cells strongly reduces their invasive activity in response to angiogenic stimuli. NAC inhibited the degradation and release of radiolabeled type IV collagen by activated endothelial cells, indicating that NAC blocks gelatinase activity. Oral administration of NAC reduces the angiogenic response induced by KS tumor cell products, confirming the ability of NAC to inhibit the invasive activity of endothelial cells in vivo and thereby blocking angiogenesis.

  14. Phase II evaluation of clinical coding schemes: completeness, taxonomy, mapping, definitions, and clarity. CPRI Work Group on Codes and Structures.

    PubMed

    Campbell, J R; Carpenter, P; Sneiderman, C; Cohn, S; Chute, C G; Warren, J

    1997-01-01

    To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for "parent" and "child" codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p < .00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56, UMLS 3.17; READ 2.14, *p < .005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p < .00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p < .004) associated with a loss of clarity

  15. Semiquinone formation and DNA base damage by toxic quinones and inhibition by N-acetylcysteine (NAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.C.; Shibamoto, T.

    1986-03-05

    Toxic, mutagenic, carcinogenic, and teratogenic effects have been reported for some quinones as well as compounds metabolized to quinones. Semiquinone radical formation, thymidine degradation, and protection by NAC were studied in a hypoxanthine/xanthine oxidase (HX/XO) system. Quinone, benzo(a)pyrene-3,6-quinone, danthron, doxorubicin, emodin, juglone, menadione, and moniliformin were tested. Diethylstilbestrolquinone, N-acetylquinoneimine, and benzoquinonediimine, hypothesized toxic metabolites of diethylstilbestrol, acetaminophen and p-phenylenediamine, respectively, were synthesized and studied. Semiquinone radical formation was assessed in a HX/XO system monitoring cytochrome C reduction. Large differences in rates of semiquinone radical formation were noted for different quinones, with V/Vo values ranging from 1.2 to 10.6. DNA basemore » degradation, thymine or thymidine glycol formation, and thiobarbituric acid reactive substance (TBARS) production were measured in a similar system containing thymine, thymidine, calf thymus DNA, or deoxyribose. TBARS formation was observed with deoxyribose, but thymidine degradation without TBARS formation was noted with thymidine. NAC (0.5 to 10 mM) caused dose-dependent inhibition of quinone-induced cytochrome C reduction.« less

  16. Phase II Evaluation of Clinical Coding Schemes

    PubMed Central

    Campbell, James R.; Carpenter, Paul; Sneiderman, Charles; Cohn, Simon; Chute, Christopher G.; Warren, Judith

    1997-01-01

    Abstract Objective: To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). Methods: The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for “parent” and “child” codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. Results: SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p <.00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56; UMLS 3.17; READ 2.14, *p <.005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p <. 00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p

  17. Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis.

    PubMed

    McGreal, Steven R; Bhushan, Bharat; Walesky, Chad; McGill, Mitchell R; Lebofsky, Margitta; Kandel, Sylvie E; Winefield, Robert D; Jaeschke, Hartmut; Zachara, Natasha E; Zhang, Zhen; Tan, Ee Phie; Slawson, Chad; Apte, Udayan

    2018-04-01

    Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.

  18. [Evaluation of combination chemotherapy with oral S-1 administration followed by docetaxel by superselective intra-arterial infusion for patients with oral squamous cell carcinomas].

    PubMed

    Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Uchida, Daisuke; Tamatani, Tetsuya; Fujisawa, Kenji; Iwamoto, Seiji; Miyamoto, Youji

    2011-05-01

    The purpose of this study was to evaluate the effectiveness and adverse events of combination chemotherapy with oral S-1 administration following docetaxel (DOC) treatment by superselective intra-arterial infusion as neo-adjuvant chemotherapy (NAC) for patients with oral squamous cell carcinoma. Thirteen patients were enrolled in this study (9 men and 4 women, with a mean age of 61. 0 years). All patients were given S-1 65mg/m(2) per day for 14 days, and DOC 40-50mg/m(2) by intraarterial infusion was administered. The locoregional response evaluated 3 weeks after administration was 100%, including a 69. 2% complete response. According to Oboshi and Shimosato's classification, histological evaluation of surgical specimens revealed that 3 cases were Grade II a, 4 cases Grade II b, 1 case Grade IV a, and 4 cases Grade IV c. The severe side effects were neutropenia and cerebral infarction. The present study suggests that combination chemotherapy with S-1 and DOC by superselective intra-arterial infusion would be an effective and safe regimen in NAC for oral squamous cell carcinomas.

  19. Amphetamine self-administration and dopamine function: assessment of gene × environment interactions in Lewis and Fischer 344 rats.

    PubMed

    Meyer, Andrew C; Bardo, Michael T

    2015-07-01

    Previous research suggests both genetic and environmental influences on substance abuse vulnerability. The current work sought to investigate the interaction of genes and environment on the acquisition of amphetamine self-administration as well as amphetamine-stimulated dopamine (DA) release in nucleus accumbens shell using in vivo microdialysis. Inbred Lewis (LEW) and Fischer (F344) rat strains were raised in either an enriched condition (EC), social condition (SC), or isolated condition (IC). Acquisition of amphetamine self-administration (0.1 mg/kg/infusion) was determined across an incrementing daily fixed ratio (FR) schedule. In a separate cohort of rats, extracellular DA and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in the nucleus accumbens shell following an acute amphetamine injection (1 mg/kg). "Addiction-prone" LEW rats had greater acquisition of amphetamine self-administration on a FR1 schedule compared to "addiction-resistant" F344 rats when raised in the SC environment. These genetic differences were negated in both the EC and IC environments, with enrichment buffering against self-administration and isolation enhancing self-administration in both strains. On a FR5 schedule, the isolation-induced increase in amphetamine self-administration was greater in F344 than LEW rats. While no group differences were obtained in extracellular DA, gene × environment differences were obtained in extracellular levels of the metabolite DOPAC. In IC rats only, LEW rats showed attenuation in the amphetamine-induced decrease in DOPAC compared to F344 rats. IC LEW rats also had an attenuated DOPAC response to amphetamine compared to EC LEW rats. The current results demonstrate gene × environment interactions in amphetamine self-administration and amphetamine-induced changes in extracellular DOPAC in nucleus accumbens (NAc) shell. However, the behavioral and neurochemical differences were not related directly, indicating that

  20. Characterization of the specificities of human blood group H gene-specified alpha 1,2-L-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between alpha 1,2-L-fucosylation of Gal and alpha 1,6-L-fucosylation of asparagine-linked GlcNAc.

    PubMed

    Chandrasekaran, E V; Jain, R K; Larsen, R D; Wlasichuk, K; Matta, K L

    1996-07-09

    The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in

  1. Validation of Living Donor Nephrectomy Codes

    PubMed Central

    Lam, Ngan N.; Lentine, Krista L.; Klarenbach, Scott; Sood, Manish M.; Kuwornu, Paul J.; Naylor, Kyla L.; Knoll, Gregory A.; Kim, S. Joseph; Young, Ann; Garg, Amit X.

    2018-01-01

    Background: Use of administrative data for outcomes assessment in living kidney donors is increasing given the rarity of complications and challenges with loss to follow-up. Objective: To assess the validity of living donor nephrectomy in health care administrative databases compared with the reference standard of manual chart review. Design: Retrospective cohort study. Setting: 5 major transplant centers in Ontario, Canada. Patients: Living kidney donors between 2003 and 2010. Measurements: Sensitivity and positive predictive value (PPV). Methods: Using administrative databases, we conducted a retrospective study to determine the validity of diagnostic and procedural codes for living donor nephrectomies. The reference standard was living donor nephrectomies identified through the province’s tissue and organ procurement agency, with verification by manual chart review. Operating characteristics (sensitivity and PPV) of various algorithms using diagnostic, procedural, and physician billing codes were calculated. Results: During the study period, there were a total of 1199 living donor nephrectomies. Overall, the best algorithm for identifying living kidney donors was the presence of 1 diagnostic code for kidney donor (ICD-10 Z52.4) and 1 procedural code for kidney procurement/excision (1PC58, 1PC89, 1PC91). Compared with the reference standard, this algorithm had a sensitivity of 97% and a PPV of 90%. The diagnostic and procedural codes performed better than the physician billing codes (sensitivity 60%, PPV 78%). Limitations: The donor chart review and validation study was performed in Ontario and may not be generalizable to other regions. Conclusions: An algorithm consisting of 1 diagnostic and 1 procedural code can be reliably used to conduct health services research that requires the accurate determination of living kidney donors at the population level. PMID:29662679

  2. Molecular cloning and characterization of two novel NAC genes from Mikania micrantha (Asteraceae).

    PubMed

    Li, D M; Wang, J H; Peng, S L; Zhu, G F; Lü, F B

    2012-12-17

    NAC proteins, which are plant-specific transcription factors, have been identified to play important roles in plant response to stresses and in plant development. The full-length cDNAs that encode 2 putative NAC proteins, designated as MmATAF1 and MmNAP, respectively, were cloned from Mikania micrantha by rapid amplification of cDNA ends. The full-length cDNAs of MmATAF1 and MmNAP were 1329 and 1072 bp, respectively, and they encoded deduced proteins of 260- and 278-amino acid residues, respectively. The proteins MmATAF1 and MmNAP had a calculated molecular mass of 29.81 and 32.55 kDa and a theoretical isoelectric point of 7.08 and 9.00, respectively. Nucleotide sequence data indicated that both MmATAF1 and MmNAP contained 2 introns and 3 exons and that they shared a conserved genomic organization. Multiple sequence alignments showed that MmATAF1 showed high sequence identity with ATAF1 of Arabidopsis thaliana (61%) and that MmNAP showed high sequence identity with NAP of A. thaliana (67%) and CitNAC of Citrus sinensis Osbeck (62%). Phylogenetic analysis showed that the predicted MmATAF1 and MmNAP proteins were classified into the ATAF and NAP subgroups, respectively. Transient expression analysis of onion epidermal cells indicated nuclear localization of both MmATAF1-GFP and MmNAP-GFP fusion proteins. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis indicated that MmATAF1 was expressed in all the tissues tested, but in varying abundance, while MmNAP was specifically expressed in stems, petioles, shoots, and leaves, but not in roots. The transcript levels of MmATAF1 and MmNAP in shoots and in infected stems were induced and strengthened by wounding, exogenous ZnSO(4), abscisic acid, salicylic acid, and Cuscuta campestris infection on the basis of semi-quantitative RT-PCR and real-time PCR analyses, respectively. Collectively, these results indicated that MmATAF1 and MmNAP, besides having roles in M. micrantha adaptation to C

  3. 28 CFR 36.607 - Guidance concerning model codes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Guidance concerning model codes. 36.607... BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a...

  4. 28 CFR 36.607 - Guidance concerning model codes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Guidance concerning model codes. 36.607... BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a...

  5. 28 CFR 36.607 - Guidance concerning model codes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Guidance concerning model codes. 36.607... BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a...

  6. 28 CFR 36.607 - Guidance concerning model codes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Guidance concerning model codes. 36.607... BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a...

  7. Toward early estimation and treatment of addiction vulnerability: radial arm maze and N-acetyl cysteine before cocaine sensitization or nicotine self-administration in neonatal ventral hippocampal lesion rats.

    PubMed

    Rao, Kalyan N; Sentir, Alena M; Engleman, Eric A; Bell, Richard L; Hulvershorn, Leslie A; Breier, Alan; Chambers, R Andrew

    2016-12-01

    Prefrontal cortical (PFC)-hippocampal-striatal circuits, interconnected via glutamatergic signaling, are dysfunctional in mental illnesses that involve addiction vulnerability. In healthy and neurodevelopmentally altered rats, we examined how Radial Arm Maze (RAM) performance estimates addiction vulnerability, and how starting a glutamatergic modulating agent, N-acetyl cysteine (NAC) in adolescence alters adult mental illness and/or addiction phenotypes. Rats with neonatal ventral hippocampal lesions (NVHL) vs. SHAM-operated controls were randomized to NAC vs. saline in adolescence followed by cognitive testing (RAM) in early adulthood and then cocaine behavioral sensitization (experiment 1; n = 80) or nicotine self-administration (experiment 2; n = 12). In experiment 1, NVHL rats showed over-consumption of food (Froot-Loops (FL)) baiting the RAM with poor working memory (low-arm entries to repeat (ETR)), producing an elevated FL to ETR ratio ("FLETR"; p < 0.001). FLETR was the best linear estimator (compared to FL or ETR) of magnitude of long-term cocaine sensitization (R 2  = 0.14, p < 0.001). NAC treatment did not alter FL, ETR, FLETR, or cocaine sensitization. In experiment 2, FLETR also significantly and uniquely correlated with subsequent drug seeking during nicotine-induced reinstatement after extinction of nicotine self-administration (R 2  = 0.47, p < 0.01). NAC did not alter RAM performance, but significantly reversed NVHL-induced increases in nicotine seeking during extinction and reinstatement. These findings demonstrate the utility of animal models of mental illness with addiction vulnerability for developing novel diagnostic measures of PFC-hippocampal-striatal circuit dysfunction that may reflect addiction risk. Such tests may direct pharmacological treatments prior to adulthood and addictive drug exposure, to prevent or treat adult addictions.

  8. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content.

    PubMed

    Negi, Sanjana; Tak, Himanshu; Ganapathi, T R

    2018-03-01

    MusaSNAC1 function in H 2 O 2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO 2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H 2 O 2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H 2 O 2 generation in guard cells, regulated by a NAC-protein in banana.

  9. Exercise Administrator Administrative Instructions for Age Classes 1, 2 & 3. Year 11, October 1979-May 1980.

    ERIC Educational Resources Information Center

    Research Triangle Inst., Durham, NC.

    This manual for Exercise Administrators of the National Assessment of Educational Progress; Second Literature Third Reading Assessment, consists of administrative instructions for use immediately preceding, during and after assessment sessions in schools. Definitions of racial/ethnic categories, associated codes, and guidelines for solicting…

  10. Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc.

    PubMed

    Miszkiel, Aleksandra; Wojciechowski, Marek

    2017-11-01

    Glucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5' diphospho N-acetyl-d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes of it a potential target for anti-fungal, anti-bacterial and anti-diabetic therapy. The crystal structure of isomerase domain from human pathogenic fungus Candida albicans has been solved recently but it doesn't reveal the molecular mechanism details of inhibition taking place under UDP-GlcNAc influence, the unique feature of eukaryotic enzyme. The following study is a continuation of the previous research based on comparative molecular dynamics simulations of the structures with and without the enzyme's physiological inhibitor (UDP-GlcNAc) bound. The models used for this study included fructose-6-phosphate, one of the enzyme's substrates in its binding pocket. The simulation results studies demonstrated differences in mobility of the compared structures. Some amino acid residues were determined, for which flexibility is evidently different between the models. Importantly, it has been confirmed that the most fixed residues are related to the inhibitor binding process and to the catalysis reaction. The obtained results constitute an important step towards understanding of the inhibition that GlcN-6-P synthase is subjected by UDP-GlcNAc molecule. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The arterial supply of the nipple areola complex (NAC) and its relations: an analysis of angiographic CT imaging for breast pedicle design.

    PubMed

    Stirling, Aaron D; Murray, Conor P; Lee, Mark A

    2017-10-01

    To investigate the blood supply to the nipple areola complex (NAC) on thoracic CT angiograms (CTA) to improve breast pedicle design in reduction mammoplasty. In a single centre, CT scans of the thorax were retrospectively reviewed for suitability by a cardiothoracic radiologist. Suitable scans had one or both breasts visible in extended fields, with contrast enhancement of breast vasculature in a female patient. The arterial sources, intercostal space perforated, glandular/subcutaneous course, vessel entry point, and the presence of periareolar anastomoses were recorded for the NAC of each breast. From 69 patients, 132 breasts were suitable for inclusion. The most reproducible arterial contribution to the NAC was perforating branches arising from the internal thoracic artery (ITA) (n = 108, 81.8%), followed by the long thoracic artery (LTA) (n = 31, 23.5%) and anterior intercostal arteries (AI) (n = 21, 15.9%). Blood supply was superficial versus deep in (n = 86, 79.6%) of ITA sources, (n = 28, 90.3%) of LTA sources, and 10 (47.6%) of AI sources. The most vascularly reliable breast pedicle would be asymmetrical in 7.9% as a conservative estimate. We suggest that breast CT angiography can provide valuable information about NAC blood supply to aid customised pedicle design, especially in high-risk, large-volume breast reductions where the risk of vascular-dependent complications is the greatest and asymmetrical dominant vasculature may be present. Superficial ITA perforator supplies are predominant in a majority of women, followed by LTA- and AIA-based sources, respectively.

  12. Accuracy of Administrative Billing Codes to Detect Urinary Tract Infection Hospitalizations

    PubMed Central

    Hall, Matthew; Auger, Katherine A.; Hain, Paul D.; Jerardi, Karen E.; Myers, Angela L.; Rahman, Suraiya S.; Williams, Derek J.; Shah, Samir S.

    2011-01-01

    BACKGROUND: Hospital billing data are frequently used for quality measures and research, but the accuracy of the use of discharge codes to identify urinary tract infections (UTIs) is unknown. OBJECTIVE: To determine the accuracy of International Classification of Diseases, 9th revision (ICD-9) discharge codes to identify children hospitalized with UTIs. METHODS: This multicenter study conducted in 5 children's hospitals included children aged 3 days to 18 years who had been admitted to the hospital, undergone a urinalysis or urine culture, and discharged from the hospital. Data were obtained from the pediatric health information system database and medical record review. With the use of 2 gold-standard methods, the positive predictive value (PPV) was calculated for individual and combined UTI codes and for common UTI identification strategies. PPV was measured for all groupings for which the UTI code was the principal discharge diagnosis. RESULTS: There were 833 patients in the study. The PPV was 50.3% with the use of the gold standard of laboratory-confirmed UTIs but increased to 85% with provider confirmation. Restriction of the study cohort to patients with a principle diagnosis of UTI improved the PPV for laboratory-confirmed UTI (61.2%) and provider-confirmed UTI (93.2%), as well as the ability to benchmark performance. Other common identification strategies did not markedly affect the PPV. CONCLUSIONS: ICD-9 codes can be used to identify patients with UTIs but are most accurate when UTI is the principal discharge diagnosis. The identification strategies reported in this study can be used to improve the accuracy and applicability of benchmarking measures. PMID:21768320

  13. 45 CFR 162.1002 - Medical data code sets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Terminology, Fourth Edition (CPT-4), as maintained and distributed by the American Medical Association, for... 45 Public Welfare 1 2012-10-01 2012-10-01 false Medical data code sets. 162.1002 Section 162.1002... REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1002 Medical data code sets. The Secretary adopts the...

  14. 45 CFR 162.1002 - Medical data code sets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Terminology, Fourth Edition (CPT-4), as maintained and distributed by the American Medical Association, for... 45 Public Welfare 1 2014-10-01 2014-10-01 false Medical data code sets. 162.1002 Section 162.1002... REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1002 Medical data code sets. The Secretary adopts the...

  15. 45 CFR 162.1002 - Medical data code sets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Terminology, Fourth Edition (CPT-4), as maintained and distributed by the American Medical Association, for... 45 Public Welfare 1 2013-10-01 2013-10-01 false Medical data code sets. 162.1002 Section 162.1002... REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1002 Medical data code sets. The Secretary adopts the...

  16. 45 CFR 162.1002 - Medical data code sets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Terminology, Fourth Edition (CPT-4), as maintained and distributed by the American Medical Association, for... 45 Public Welfare 1 2011-10-01 2011-10-01 false Medical data code sets. 162.1002 Section 162.1002... REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1002 Medical data code sets. The Secretary adopts the...

  17. 45 CFR 162.1002 - Medical data code sets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Terminology, Fourth Edition (CPT-4), as maintained and distributed by the American Medical Association, for... 45 Public Welfare 1 2010-10-01 2010-10-01 false Medical data code sets. 162.1002 Section 162.1002... REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1002 Medical data code sets. The Secretary adopts the...

  18. Under-coding of secondary conditions in coded hospital health data: Impact of co-existing conditions, death status and number of codes in a record.

    PubMed

    Peng, Mingkai; Southern, Danielle A; Williamson, Tyler; Quan, Hude

    2017-12-01

    This study examined the coding validity of hypertension, diabetes, obesity and depression related to the presence of their co-existing conditions, death status and the number of diagnosis codes in hospital discharge abstract database. We randomly selected 4007 discharge abstract database records from four teaching hospitals in Alberta, Canada and reviewed their charts to extract 31 conditions listed in Charlson and Elixhauser comorbidity indices. Conditions associated with the four study conditions were identified through multivariable logistic regression. Coding validity (i.e. sensitivity, positive predictive value) of the four conditions was related to the presence of their associated conditions. Sensitivity increased with increasing number of diagnosis code. Impact of death on coding validity is minimal. Coding validity of conditions is closely related to its clinical importance and complexity of patients' case mix. We recommend mandatory coding of certain secondary diagnosis to meet the need of health research based on administrative health data.

  19. Structure of human O-GlcNAc transferase and its complex with a peptide substrate

    PubMed Central

    Lazarus, Michael B.; Nam, Yunsun; Jiang, Jiaoyang; Sliz, Piotr; Walker, Suzanne

    2010-01-01

    O-GlcNAc transferase (OGT) is an essential mammalian enzyme that couples metabolic status to the regulation of a wide variety of cellular signaling pathways by acting as a nutrient sensor1. OGT catalyzes the transfer of N-acetyl-glucosamine from UDP-GlcNAc to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins2,3, including numerous transcription factors4, tumor suppressors, kinases5, phosphatases1, and histone-modifying proteins6. Aberrant O-GlcNAcylation by OGT has been linked to insulin resistance7, diabetic complications8, cancer9 and neurodegenerative diseases including Alzheimer’s10. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 A) and a ternary complex with UDP and a peptide substrate (1.95 A). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT’s functions and the design of inhibitors for use as cellular probes and to assess its potential as a therapeutic target. PMID:21240259

  20. NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life.

    PubMed

    Kumar, Rakesh; Tamboli, Vajir; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2018-09-01

    Several Penjar accessions of tomato grown in the Mediterranean exhibit prolonged shelf life and harbor alcobaca mutation. To uncover the metabolic basis underlying shelf life, we compared four Penjar accessions to Ailsa Craig. Three accessions bore alcobaca mutation, whereas the fourth was a novel NAC-NOR allele. Cuticle composition of Penjars varied widely during fruit ripening. All Penjars exhibited delayed ripening, prolonged on-vine and off-vine shelf life, low ethylene emission, and carotenoid levels. Metabolic profiling revealed shifts in Krebs cycle intermediates, amino acids, and γ-aminobutyric acid levels indicating the attenuation of respiration in Penjars during post-harvest storage. Penjar fruits also showed concerted downregulation of several cell-wall modifying genes and related metabolites. The high ABA and sucrose levels at the onset of senescence in Penjar fruits likely contribute to reduced water loss. Our analyses reveal that the attenuation of various metabolic processes by NAC-NOR mutation likely prolongs the shelf life of Penjar fruits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages

    PubMed Central

    Tranbarger, Timothy J.; Fooyontphanich, Kim; Roongsattham, Peerapat; Pizot, Maxime; Collin, Myriam; Jantasuriyarat, Chatchawan; Suraninpong, Potjamarn; Tragoonrung, Somvong; Dussert, Stéphane; Verdeil, Jean-Luc; Morcillo, Fabienne

    2017-01-01

    The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are

  2. Antioxidant supplement inhibits skeletal muscle constitutive autophagy rather than fasting-induced autophagy in mice.

    PubMed

    Qi, Zhengtang; He, Qiang; Ji, Liu; Ding, Shuzhe

    2014-01-01

    In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD) and TP53-induced glycolysis and apoptosis regulator (TIGAR), both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity.

  3. Antioxidant Supplement Inhibits Skeletal Muscle Constitutive Autophagy rather than Fasting-Induced Autophagy in Mice

    PubMed Central

    Qi, Zhengtang; He, Qiang; Ji, Liu; Ding, Shuzhe

    2014-01-01

    In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD) and TP53-induced glycolysis and apoptosis regulator (TIGAR), both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity. PMID:25028602

  4. 75 FR 61552 - Federal Railroad Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF TRANSPORTATION Federal Railroad Administration Notice of Informational Filing In accordance with Section 236.913 of Title 49 of the Code of Federal Regulations (CFR), notice is hereby given that the Federal Railroad Administration (FRA) has received an informational filing from the Northeast...

  5. 76 FR 65183 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open..., National Oceanic and Atmospheric Administration. [FR Doc. 2011-27113 Filed 10-19-11; 8:45 am] BILLING CODE...

  6. Accumulation and therapeutic modulation of 6-sulfo LacNAc(+) dendritic cells in multiple sclerosis.

    PubMed

    Thomas, Katja; Dietze, Kristin; Wehner, Rebekka; Metz, Imke; Tumani, Hayrettin; Schultheiß, Thorsten; Günther, Claudia; Schäkel, Knut; Reichmann, Heinz; Brück, Wolfgang; Schmitz, Marc; Ziemssen, Tjalf

    2014-10-01

    To examine the potential role of 6-sulfo LacNAc(+) (slan) dendritic cells (DCs) displaying pronounced proinflammatory properties in the pathogenesis of multiple sclerosis (MS). We determined the presence of slanDCs in demyelinated brain lesions and CSF samples of patients with MS. In addition, we explored the impact of methylprednisolone, interferon-β, glatiramer acetate, or natalizumab on the frequency of blood-circulating slanDCs in patients with MS. We also evaluated whether interferon-β modulates important proinflammatory capabilities of slanDCs. SlanDCs accumulate in highly inflammatory brain lesions and are present in the majority of CSF samples of patients with MS. Short-term methylprednisolone administration reduces the percentage of slanDCs in blood of patients with MS and the proportion of tumor necrosis factor-α- or CD150-expressing slanDCs. Long-term interferon-β treatment decreases the percentage of blood-circulating slanDCs in contrast to glatiramer acetate or natalizumab. Furthermore, interferon-β inhibits the secretion of proinflammatory cytokines by slanDCs and their capacity to promote proliferation and differentiation of T cells. Accumulation of slanDCs in highly inflammatory brain lesions and their presence in CSF indicate that slanDCs may play an important role in the immunopathogenesis of MS. The reduction of blood-circulating slanDCs and the inhibition of their proinflammatory properties by methylprednisolone and interferon-β may contribute to the therapeutic efficiency of these drugs in patients with MS.

  7. Accumulation and therapeutic modulation of 6-sulfo LacNAc+ dendritic cells in multiple sclerosis

    PubMed Central

    Thomas, Katja; Dietze, Kristin; Wehner, Rebekka; Metz, Imke; Tumani, Hayrettin; Schultheiß, Thorsten; Günther, Claudia; Schäkel, Knut; Reichmann, Heinz; Brück, Wolfgang; Schmitz, Marc

    2014-01-01

    Objective: To examine the potential role of 6-sulfo LacNAc+ (slan) dendritic cells (DCs) displaying pronounced proinflammatory properties in the pathogenesis of multiple sclerosis (MS). Methods: We determined the presence of slanDCs in demyelinated brain lesions and CSF samples of patients with MS. In addition, we explored the impact of methylprednisolone, interferon-β, glatiramer acetate, or natalizumab on the frequency of blood-circulating slanDCs in patients with MS. We also evaluated whether interferon-β modulates important proinflammatory capabilities of slanDCs. Results: SlanDCs accumulate in highly inflammatory brain lesions and are present in the majority of CSF samples of patients with MS. Short-term methylprednisolone administration reduces the percentage of slanDCs in blood of patients with MS and the proportion of tumor necrosis factor-α– or CD150-expressing slanDCs. Long-term interferon-β treatment decreases the percentage of blood-circulating slanDCs in contrast to glatiramer acetate or natalizumab. Furthermore, interferon-β inhibits the secretion of proinflammatory cytokines by slanDCs and their capacity to promote proliferation and differentiation of T cells. Conclusion: Accumulation of slanDCs in highly inflammatory brain lesions and their presence in CSF indicate that slanDCs may play an important role in the immunopathogenesis of MS. The reduction of blood-circulating slanDCs and the inhibition of their proinflammatory properties by methylprednisolone and interferon-β may contribute to the therapeutic efficiency of these drugs in patients with MS. PMID:25340085

  8. Divergent Functions of orthologous NAC Transcription Factors in Wheat and Rice

    PubMed Central

    Distelfeld, Assaf; Pearce, Stephen P.; Avni, Raz; Scherer, Beatrice; Uauy, Cristobal; Piston, Fernando; Slade, Ann; Zhao, Rongrong; Dubcovsky, Jorge

    2016-01-01

    The wheat GPC-B1 gene located on chromosome 6B is an early regulator of senescence and affects remobilization of protein and minerals to the grain. GPC-B1 is a NAC transcription factor and has a paralogous copy on chromosome 2B in tetraploid wheat, GPC-B2. The closest rice homolog to both wheat GPC genes is Os07g37920 which is located on rice chromosome 2 and is colinear with GPC-B2. Since rice is a diploid species with a sequenced genome, we initiated the study of Os07g37920 to develop a simpler model to study senescence and mineral remobilization in cereals. We developed eleven independent RNA interference transgenic rice lines (Os07g37920-RNAi) and 10 over-expressing transgenic lines (Os07g37920-OE), but none of them showed differences in senescence. Transgenic Os07g37920-RNAi rice plants had reduced proportions of viable pollen grains and were male-sterile, but were able to produce seeds by cross pollination. Analysis of the flower morphology of the transgenic rice plants showed that anthers failed to dehisce. Transgenic Os07g37920-OE lines showed no sterility or anther dehiscence problems. Os07g37920 transcript levels were higher in stamens compared to leaves and significantly reduced in the transgenic Os07g37920-RNAi plants. Wheat GPC genes showed the opposite transcription profile (higher transcript levels in leaves than in flowers) and plants carrying knock-out mutations of all GPC-1 and GPC-2 genes exhibited delayed senescence but normal anther dehiscence and fertility. These results indicate a functional divergence of the homologous wheat and rice NAC genes and suggest the need for separate studies of the function and targets of these transcription factors in wheat and rice. PMID:22278768

  9. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats.

    PubMed

    Saddoris, Michael P; Wang, Xuefei; Sugam, Jonathan A; Carelli, Regina M

    2016-01-06

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in

  10. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    PubMed Central

    Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence

  11. Photometric characterization of the Chang'e-3 landing site using LROC NAC images

    NASA Astrophysics Data System (ADS)

    Clegg-Watkins, R. N.; Jolliff, B. L.; Boyd, A.; Robinson, M. S.; Wagner, R.; Stopar, J. D.; Plescia, J. B.; Speyerer, E. J.

    2016-07-01

    China's robotic Chang'e-3 spacecraft, carrying the Yutu rover, touched down in Mare Imbrium on the lunar surface on 14 December 2013. The Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) imaged the site both before and after landing. Multi-temporal NAC images taken before and after the landing, phase-ratio images made from NAC images taken after the landing, and Hapke photometric techniques were used to evaluate surface changes caused by the disturbance of regolith at the landing site (blast zone) by the descent engines of the Chang'e-3 spacecraft. The reflectance of the landing site increased by 10 ± 1% (from I/F = 0.040 to 0.044 at 30° phase angle) as a result of the landing, a value similar to reflectance increases estimated for the Apollo, Luna, and Surveyor landing sites. The spatial extent of the disturbed area at the Chang'e-3 landing site, 2530 m2, also falls close to what is predicted on the basis of correlations between lander mass, thrust, and blast zone areas for the historic landed missions. A multi-temporal ratio image of the Chang'e-3 landing site reveals a main blast zone (slightly elongate in the N-S direction; ∼75 m across N-S and ∼43 m across in the E-W direction) and an extended diffuse, irregular halo that is less reflective than the main blast zone (extending ∼40-50 m in the N-S direction and ∼10-15 m in the E-W direction beyond the main blast zone). The N-S elongation of the blast zone likely resulted from maneuvering during hazard avoidance just prior to landing. The phase-ratio image reveals that the blast zone is less backscattering than surrounding undisturbed areas. The similarities in magnitude of increased reflectance between the Chang'e-3 landing site and the Surveyor, Apollo, and Luna landing sites suggest that lunar soil reflectance changes caused by interaction with rocket exhaust are not significantly altered over a period of 40-50 years. The reflectance changes are independent of regolith composition

  12. AglH, a thermophilic UDP-N-acetylglucosamine-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase initiating protein N-glycosylation pathway in Sulfolobus acidocaldarius, is capable of complementing the eukaryal Alg7.

    PubMed

    Meyer, Benjamin H; Shams-Eldin, Hosam; Albers, Sonja-Verena

    2017-01-01

    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D 100 ), IV (F 220 ) and V (F 264 ) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival.

  13. O-GlcNAc Modification of the runt-Related Transcription Factor 2 (Runx2) Links Osteogenesis and Nutrient Metabolism in Bone Marrow Mesenchymal Stem Cells*

    PubMed Central

    Nagel, Alexis K.; Ball, Lauren E.

    2014-01-01

    Runx2 is the master switch controlling osteoblast differentiation and formation of the mineralized skeleton. The post-translational modification of Runx2 by phosphorylation, ubiquitinylation, and acetylation modulates its activity, stability, and interactions with transcriptional co-regulators and chromatin remodeling proteins downstream of osteogenic signals. Characterization of Runx2 by electron transfer dissociation tandem mass spectrometry revealed sites of O-linked N-acetylglucosamine (O-GlcNAc) modification, a nutrient-responsive post-translational modification that modulates the action of numerous transcriptional effectors. O-GlcNAc modification occurs in close proximity to phosphorylated residues and novel sites of arginine methylation within regions known to regulate Runx2 transactivation. An interaction between Runx2 and the O-GlcNAcylated, O-GlcNAc transferase enzyme was also detected. Pharmacological inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc from Ser/Thr residues, enhanced basal (39.9%) and BMP2/7-induced (43.3%) Runx2 transcriptional activity in MC3T3-E1 pre-osteoblasts. In bone marrow-derived mesenchymal stem cells differentiated for 6 days in osteogenic media, inhibition of OGA resulted in elevated expression (24.3%) and activity (65.8%) of alkaline phosphatase (ALP) an early marker of bone formation and a transcriptional target of Runx2. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells in the presence of BMP2/7 for 8 days culminated in decreased OGA activity (39.0%) and an increase in the abundance of O-GlcNAcylated Runx2, as compared with unstimulated cells. Furthermore, BMP2/7-induced ALP activity was enhanced by 35.6% in bone marrow-derived mesenchymal stem cells differentiated in the presence of the OGA inhibitor, demonstrating that direct or BMP2/7-induced inhibition of OGA is associated with increased ALP activity. Altogether, these findings link O-GlcNAc cycling to the Runx2

  14. N-acetylcysteine prevents the development of gastritis induced by Helicobacter pylori infection.

    PubMed

    Jang, Sungil; Bak, Eun-Jung; Cha, Jeong-Heon

    2017-05-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen, causing various gastric diseases ranging from gastritis to gastric adenocarcinoma. It has been reported that combining N-acetylcysteine (NAC) with conventional antibiotic therapy increases the success rate of H. pylori eradication. We evaluated the effect of NAC itself on the growth and colonization of H. pylori, and development of gastritis, using in vitro liquid culture system and in vivo animal models. H. pylori growth was evaluated in broth culture containing NAC. The H. pylori load and histopathological scores of stomachs were measured in Mongolian gerbils infected with H. pylori strain 7.13, and fed with NAC-containing diet. In liquid culture, NAC inhibited H. pylori growth in a concentration-dependent manner. In the animal model, 3-day administration of NAC after 1 week from infection reduced the H. pylori load; 6-week administration of NAC after 1 week from infection prevented the development of gastritis and reduced H. pylori colonization. However, no reduction in the bacterial load or degree of gastritis was observed with a 6-week administration of NAC following 6-week infection period. Our results indicate that NAC may exert a beneficial effect on reduction of bacterial colonization, and prevents the development of severe inflammation, in people with initial asymptomatic or mild H. pylori infection.

  15. Billing code algorithms to identify cases of peripheral artery disease from administrative data

    PubMed Central

    Fan, Jin; Arruda-Olson, Adelaide M; Leibson, Cynthia L; Smith, Carin; Liu, Guanghui; Bailey, Kent R; Kullo, Iftikhar J

    2013-01-01

    Objective To construct and validate billing code algorithms for identifying patients with peripheral arterial disease (PAD). Methods We extracted all encounters and line item details including PAD-related billing codes at Mayo Clinic Rochester, Minnesota, between July 1, 1997 and June 30, 2008; 22 712 patients evaluated in the vascular laboratory were divided into training and validation sets. Multiple logistic regression analysis was used to create an integer code score from the training dataset, and this was tested in the validation set. We applied a model-based code algorithm to patients evaluated in the vascular laboratory and compared this with a simpler algorithm (presence of at least one of the ICD-9 PAD codes 440.20–440.29). We also applied both algorithms to a community-based sample (n=4420), followed by a manual review. Results The logistic regression model performed well in both training and validation datasets (c statistic=0.91). In patients evaluated in the vascular laboratory, the model-based code algorithm provided better negative predictive value. The simpler algorithm was reasonably accurate for identification of PAD status, with lesser sensitivity and greater specificity. In the community-based sample, the sensitivity (38.7% vs 68.0%) of the simpler algorithm was much lower, whereas the specificity (92.0% vs 87.6%) was higher than the model-based algorithm. Conclusions A model-based billing code algorithm had reasonable accuracy in identifying PAD cases from the community, and in patients referred to the non-invasive vascular laboratory. The simpler algorithm had reasonable accuracy for identification of PAD in patients referred to the vascular laboratory but was significantly less sensitive in a community-based sample. PMID:24166724

  16. 4 CFR 5.4 - Pay administration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Pay administration. 5.4 Section 5.4 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM COMPENSATION § 5.4 Pay administration. The provisions of chapter 55 of title 5, U.S. Code and the Office of Personnel Management implementing regulations apply to Government...

  17. Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of Hyaluronan Synthase 2 in the Control of Chondroitin Sulfate and Hyaluronan Synthesis*

    PubMed Central

    Vigetti, Davide; Deleonibus, Sara; Moretto, Paola; Karousou, Eugenia; Viola, Manuela; Bartolini, Barbara; Hascall, Vincent C.; Tammi, Markku; De Luca, Giancarlo; Passi, Alberto

    2012-01-01

    Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies. PMID:22887999

  18. Intravenous Administration of Stable-Labeled N-Acetylcysteine Demonstrates an Indirect Mechanism for Boosting Glutathione and Improving Redox Status.

    PubMed

    Zhou, Jie; Coles, Lisa D; Kartha, Reena V; Nash, Nardina; Mishra, Usha; Lund, Troy C; Cloyd, James C

    2015-08-01

    There is an increasing interest in using N-acetylcysteine (NAC) as a treatment for neurodegenerative disorders to increase glutathione (GSH) levels and its redox status. The purpose of this study was to characterize the biosynthesis of NAC to GSH using a novel stable isotope-labeled technique, and investigate the pharmacodynamics of NAC in vivo. Female wild-type mice were given a single intravenous bolus dose of 150 mg kg(-1) stable-labeled NAC. Plasma, red blood cells (RBC), and brain tissues were collected at predesignated time points. Stable-labeled NAC and its metabolite GSH (both labeled and unlabeled forms) were quantified in blood and brain samples. Molar ratios of the reduced and oxidized forms of GSH (GSH divided by glutathione disulfide, redox ratio) were also determined. The elimination phase half-life of NAC was approximately 34 min. Both labeled and unlabeled GSH in RBC were found to increase; however, the area under the curve above baseline (AUCb0-280 ) of labeled GSH was only 1% of the unlabeled form. These data indicate that NAC is not a direct precursor of GSH. In addition, NAC has prolonged effects in brain even when the drug has been eliminated from systemic circulation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Effects of N-acetylcysteine and tirilazad mesylate on intestinal functional capillary density, leukocyte adherence, mesenteric plasma extravasation and cytokine levels in experimental endotoxemia in rats.

    PubMed

    Birnbaum, J; Lehmann, Ch; Klotz, E; Hein, O Vargas; Blume, A; Jubin, F; Polze, N; Luther, D; Spies, C D

    2008-01-01

    The study's objective was to determine the effects of the administration of N-acetylcysteine (NAC) and of tirilazad mesylate (TM) on intestinal functional capillary density, mesenteric plasma extravasation, leukocyte adherence and on cytokine release during experimental endotoxemia in rats. In a prospective, randomized, controlled animal study, 80 male Wistar rats were examined in 2 test series. Both series were divided into 4 groups. Group 1 served as control group (CON group). Group 2 (LPS group), group 3 (NAC group) and group 4 (TM group) received endotoxin infusions (10 mg/kg over 2 h). In NAC group 150 mg/kg body weight NAC was administered after the first 30 minutes of endotoxemia intravenously. In TM group, 10 mg/kg body weight TM was administered after the first 30 minutes of endotoxemia intravenously. Animals of the series 1 underwent studies of leukocyte adherence on submucosal venular endothelium of the small bowel wall and intestinal functional capillary density (FCD) in the intestinal mucosa and the circular as well as the longitudinal muscle layer by intravital fluorescence microscopy (IVM). Plasma levels of interleukin 1beta (IL-1beta), interferone gamma (IFN-gamma) and soluble intercellular adhesion molecule1 (s-ICAM 1) as well as white blood cell count (WBC) were estimated. In the animals of the series 2 mesenteric plasma extravasation was determined by IVM and plasma levels of tumor necrosis factor alpha (TNF-alpha), IL-4, IL-6, IL-10 and malondialdehyde (MDA) were estimated. After LPS administration, FCD in the villi intestinales was unchanged and in the longitudinal muscularis layer it was increased. There was no effect of NAC or TM administration on FCD.Although the plasma extravasation was not significantly influenced by LPS administration, TM administration resulted in a lower plasma extravasation in the TM group compared to the other groups. After endotoxin challenge, the firmly adherence of leukocytes to vascular endothelium as a parameter

  20. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less

  1. Electron transfer dissociation (ETD): The mass spectrometric breakthrough essential for O-GlcNAc protein site assignments – A study of the O-GlcNAcylated protein Host Cell Factor C1

    PubMed Central

    Myers, Samuel A.; Daou, Salima; Affar, El Bachir; Burlingame, AL

    2014-01-01

    The development of electron-based, unimolecular dissociation mass spectrometric methods, i.e. electron capture and electron transfer dissociation (ECD and ETD, respectively), has greatly increased the speed and reliability of labile post-translational modification (PTM) site assignment. The field of intracellular O-GlcNAc (O-linked N-acetylglucosamine) signaling has especially advanced with the advent of ETD mass spectrometry. Only within the last five years have proteomic-scale experiments utilizing ETD allowed the assignment of hundreds of O-GlcNAc sites within cells and subcellular structures. Our ability to identify and unambiguously assign the site of O-GlcNAc modifications using ETD is rapidly increasing our understanding of this regulatory glycosylation and its potential interaction with other PTMs. Here, we discuss the advantages of using ETD, complimented with collisional-activation mass spectrometry (CID/CAD), in a study of O-GlcNAc modified peptides of the extensively O-GlcNAcylated protein Host Cell Factor C1 (HCF-1). HCF-1 is a transcriptional co-regulator, forms a stable complex with O-GlcNAc transferase and is involved in control of cell cycle progression. ETD, along with higher energy collisional dissociation (HCD) mass spectrometry, was employed to assign the PTMs of the HCF-1 protein isolated from HEK293T cells. These include nineteen sites of O-GlcNAcylation, two sites of phosphorylation and two sites bearing dimethylarginine, and showcase the residue-specific, PTM complexity of this regulator of cell proliferation. PMID:23335398

  2. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane.

    PubMed

    Lackman, Jarkko J; Goth, Christoffer K; Halim, Adnan; Vakhrushev, Sergey Y; Clausen, Henrik; Petäjä-Repo, Ulla E

    2018-01-01

    G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors

  3. Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats.

    PubMed

    Larson, Erin B; Graham, Danielle L; Arzaga, Rose R; Buzin, Nicole; Webb, Joseph; Green, Thomas A; Bass, Caroline E; Neve, Rachael L; Terwilliger, Ernest F; Nestler, Eric J; Self, David W

    2011-11-09

    Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.

  4. 75 FR 57841 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective Date AGENCY: Nuclear... include Amendment Number 6 to Certificate of Compliance (CoC) Number 1025. DATES: Effective Date: The... regulations at 10 CFR 72.214 to include Amendment No. 6 to CoC No. 1025. Amendment No. 6 changes the...

  5. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label requirements...

  6. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label requirements...

  7. Dress Codes. Legal Brief.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2000-01-01

    As illustrated by two recent decisions, the courts in the past decade have demarcated wide boundaries for school officials considering dress codes, whether in the form of selective prohibitions or required uniforms. Administrators must warn the community, provide legitimate justification and reasonable clarity, and comply with state law. (MLH)

  8. Cocaine sensitization does not alter SP effects on locomotion or excitatory synaptic transmission in the NAc of rats.

    PubMed

    Kombian, Samuel B; Ananthalakshmi, Kethireddy V V; Zidichouski, Jeffrey A; Saleh, Tarek M

    2012-02-01

    Substance P (SP) and cocaine employ similar mechanisms to modify excitatory synaptic transmission in the nucleus accumbens (NAc), a region implicated in substance abuse. Here we explored, using NAc slices, whether SP effects on these synaptic responses were altered in rats that have been sensitized to cocaine and whether SP could mimic cocaine in triggering increased locomotion in sensitized rats. Intraperitoneal (IP) injection of naïve rats with cocaine (15 mg/kg) caused increased locomotion by 408.5 ± 85.9% (n = 5) which further increased by 733.1 ± 157.8% (n = 5) following a week of cocaine sensitization. A similar challenge with 10 mg/kg of SP after cocaine sensitization did not produce significant changes in locomotion (170.6 ± 61.0%; n = 4). In contrast to cocaine, IP injection of rats with SP or SP(5-11) (10-100 mg/kg) with or without phosphoramidon did not elicit changes in locomotion. In electrophysiological studies, both cocaine and SP depressed evoked NMDA and non-NMDA receptor-mediated excitatory synaptic currents (EPSCs) in slices obtained from naïve rats. In slices derived from cocaine-sensitized rats, cocaine but not SP produced a more profound decrease in non-NMDA compared to NMDA responses. Similar to that in naïve rats, cocaine's effect on the EPSCs in these sensitized rats occluded those of SP. Thus, although SP and cocaine may employ similar mechanisms to depress EPSCs in the NAc, IP injection of SP does not mimic cocaine-induced hyperlocomotion indicating that not all of cocaine's effects are mimicked by SP. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. 77 FR 42750 - Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Substance Abuse and Mental Health Services Administration... 9, 2012, of the Substance Abuse and Mental Health Services Administration's (SAMHSA) four National..., the Center for Substance Abuse Prevention NAC, the Center for Substance Abuse Treatment NAC), and the...

  10. 76 FR 14433 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-023)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  11. 75 FR 53350 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-096)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  12. 76 FR 28470 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-047)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  13. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-093] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The [[Page 67029

  14. 75 FR 74089 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-149)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  15. 78 FR 15961 - Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Substance Abuse and Mental Health Services Administration... 11, 2013, of the Substance Abuse and Mental Health Services Administration's (SAMHSA) four National Advisory Councils (the SAMHSA National Advisory Council (NAC), the Center for Mental Health Services NAC...

  16. 5'-(E)-Vinylphosphonate: A Stable Phosphate Mimic Can Improve the RNAi Activity of siRNA-GalNAc Conjugates.

    PubMed

    Parmar, Rubina; Willoughby, Jennifer L S; Liu, Jingxuan; Foster, Donald J; Brigham, Benjamin; Theile, Christopher S; Charisse, Klaus; Akinc, Akin; Guidry, Erin; Pei, Yi; Strapps, Walter; Cancilla, Mark; Stanton, Matthew G; Rajeev, Kallanthottathil G; Sepp-Lorenzino, Laura; Manoharan, Muthiah; Meyers, Rachel; Maier, Martin A; Jadhav, Vasant

    2016-06-02

    Small interfering RNA (siRNA)-mediated silencing requires siRNA loading into the RNA-induced silencing complex (RISC). Presence of 5'-phosphate (5'-P) is reported to be critical for efficient RISC loading of the antisense strand (AS) by anchoring it to the mid-domain of the Argonaute2 (Ago2) protein. Phosphorylation of exogenous duplex siRNAs is thought to be accomplished by cytosolic Clp1 kinase. However, although extensive chemical modifications are essential for siRNA-GalNAc conjugate activity, they can significantly impair Clp1 kinase activity. Here, we further elucidated the effect of 5'-P on the activity of siRNA-GalNAc conjugates. Our results demonstrate that a subset of sequences benefit from the presence of exogenous 5'-P. For those that do, incorporation of 5'-(E)-vinylphosphonate (5'-VP), a metabolically stable phosphate mimic, results in up to 20-fold improved in vitro potency and up to a threefold benefit in in vivo activity by promoting Ago2 loading and enhancing metabolic stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Implementing a bar-code assisted medication administration system: effects on the dispensing process and user perceptions.

    PubMed

    Samaranayake, N R; Cheung, S T D; Cheng, K; Lai, K; Chui, W C M; Cheung, B M Y

    2014-06-01

    We assessed the effects of a bar-code assisted medication administration system used without the support of computerised prescribing (stand-alone BCMA), on the dispensing process and its users. The stand-alone BCMA system was implemented in one ward of a teaching hospital. The number of dispensing steps, dispensing time and potential dispensing errors (PDEs) were directly observed one month before and eight months after the intervention. Attitudes of pharmacy and nursing staff were assessed using a questionnaire (Likert scale) and interviews. Among 1291 and 471 drug items observed before and after the introduction of the technology respectively, the number of dispensing steps increased from five to eight and time (standard deviation) to dispense one drug item by one staff personnel increased from 0.8 (0.09) to 1.5 (0.12) min. Among 2828 and 471 drug items observed before and after the intervention respectively, the number of PDEs increased significantly (P<0.001). 'Procedural errors' and 'missing drug items' were the frequently observed PDEs in the after study. 'Perceived usefulness' and 'job relevance' of the technology decreased significantly (P=0.003 and P=0.004 respectively) among users who participated in the before (N=16) and after (N=16) questionnaires surveys. Among the interviewees, pharmacy staff felt that the system offered less benefit to the dispensing process (9/16). Nursing staff perceived the system as useful in improving the accuracy of drug administration (7/10). Implementing a stand-alone BCMA system may slow down and complicate the dispensing process. Nursing staff believe the stand-alone BCMA system could improve the drug administration process but pharmacy staff believes the technology would be more helpful if supported by computerised prescribing. However, periodical assessments are needed to identify weaknesses in the process after implementation, and all users should be educated on the benefits of using this technology. Copyright © 2014

  18. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  19. Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse.

    PubMed

    Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh; Rusyn, Ivan

    2018-01-01

    Trichloroethylene (TCE) is a ubiquitous environmental toxicant that is a liver and kidney carcinogen. Conjugation of TCE with glutathione (GSH) leads to formation of nepthrotoxic and mutagenic metabolites postulated to be critical for kidney cancerdevelopment; however, relatively little is known regarding their tissue levels as previous analytical methods for their detection lacked sensitivity. Here, an LC-MS/MS-based method for simultaneous detection of S-(1,2-dichlorovinyl)-glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) in multiple mouse tissues was developed. This analytical method is rapid, sensitive (limits of detection (LOD) 3-30 fmol across metabolites and tissues), and robust to quantify all three metabolites in liver, kidneys, and serum. The method was used to characterize inter-tissue and inter-strain variability in formation of conjugative metabolites of TCE. Single oral dose of TCE (24, 240 or 800 mg/kg) was administered to male mice from 20 inbred strains of Collaborative Cross. Inter-strain variability in the levels of DCVG, DCVC, and NAcDCVC (GSD = 1.6-2.9) was observed. Whereas NAcDCVC was distributed equally among analyzed tissues, highest levels of DCVG were detected in liver and DCVC in kidneys. Evidence indicated that inter-strain variability in conjugative metabolite formation of TCE might affect susceptibility to adverse health effects and that this method might aid in filling data gaps in human health assessment of TCE.

  20. Alternative Fuels Data Center: E85 Codes and Standards

    Science.gov Websites

    Development Equipment Options Equipment Installation Codes, Standards, & Safety Vehicles Laws & ; Incentives Ethanol Codes, Standards, and Safety The U.S. Environmental Protection Agency's (EPA) Office of -Gasoline Blends. The Occupational Safety and Health Administration (OSHA) regulates some fuel-dispensing

  1. 48 CFR 501.105-1 - Publication and code arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Publication and code arrangement. 501.105-1 Section 501.105-1 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION GENERAL GENERAL SERVICES ADMINISTRATION ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance...

  2. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-012] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  3. 75 FR 54389 - NASA Advisory Council; Science Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-103)] NASA Advisory Council; Science... National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for the...

  4. 75 FR 14472 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-033)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  5. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-080)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  6. 75 FR 2892 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-003)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  7. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-052)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  8. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Evaluation and Research, Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857 (requests... Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Bar code label requirements. 201.25 Section 201.25...

  9. Pediatric oral formulation of dendrimer-N-acetyl-l-cysteine conjugates for the treatment of neuroinflammation.

    PubMed

    Yellepeddi, Venkata K; Mohammadpour, Raziye; Kambhampati, Siva P; Sayre, Casey; Mishra, Manoj K; Kannan, Rangaramanujam M; Ghandehari, Hamidreza

    2018-04-20

    N-Acetyl-l-cysteine (NAC) commonly used as an antidote in acetaminophen poisoning has shown promise in the treatment of neurological disorders such as cerebral palsy (CP). However, NAC suffers from drawbacks such as poor oral bioavailability and suboptimal blood-brain-barrier (BBB) permeability limiting its clinical success. It was previously demonstrated that intravenous administration of dendrimer-NAC (D-NAC) conjugates have shown significant promise in the targeted treatment of neuroinflammation, in multiple preclinical models. Development of an oral formulation of D-NAC may open new administrative routes for this compound. Here, we report the gastrointestinal stability, in vitro transepithelial permeability, and in vivo oral absorption and pharmacokinetics in rats of a pediatric formulation of D-NAC containing Capmul MCM (glycerol monocaprylate) as a penetration enhancer. D-NAC was stable for 6 h in all five simulated gastrointestinal fluids with no signs of chemical degradation. The apparent permeability (P app ) of D-NAC increased 9-fold in the formulation containing Capmul. The area under the curve [AUC] 0-∞ of D-NAC with Capmul increased by 47% when compared to D-NAC alone. These results indicate that an oral pediatric formulation containing D-NAC and Capmul can be an effective option for the treatment of neuroinflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. 1 CFR 11.3 - Code of Federal Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Code of Federal Regulations. 11.3 Section 11.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER AVAILABILITY OF OFFICE OF THE FEDERAL... complete set of the Code of Federal Regulations is $1,019 per year for the bound, paper edition, or $247...

  11. 1 CFR 11.3 - Code of Federal Regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Code of Federal Regulations. 11.3 Section 11.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER AVAILABILITY OF OFFICE OF THE FEDERAL... complete set of the Code of Federal Regulations is $1,019 per year for the bound, paper edition, or $247...

  12. 1 CFR 11.3 - Code of Federal Regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Code of Federal Regulations. 11.3 Section 11.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER AVAILABILITY OF OFFICE OF THE FEDERAL... complete set of the Code of Federal Regulations is $1,019 per year for the bound, paper edition, or $247...

  13. NAICS Sector 92: Public Administration

    EPA Pesticide Factsheets

    Find the public administration industries EPA regulations affect, with their North American Industry Classification System (NAICS) code. On those pages you can find a list of laws and regulations that affect your industry as well as compliance information

  14. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    PubMed Central

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  15. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    PubMed

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  16. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 51, Silver Spring, MD...-600), Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Bar code label requirements. 201.25 Section 201.25...

  17. Accuracy of lung cancer ICD-9-CM codes in Umbria, Napoli 3 Sud and Friuli Venezia Giulia administrative healthcare databases: a diagnostic accuracy study

    PubMed Central

    Montedori, Alessandro; Bidoli, Ettore; Serraino, Diego; Fusco, Mario; Giovannini, Gianni; Casucci, Paola; Franchini, David; Granata, Annalisa; Ciullo, Valerio; Vitale, Maria Francesca; Gobbato, Michele; Chiari, Rita; Cozzolino, Francesco; Orso, Massimiliano; Orlandi, Walter

    2018-01-01

    Objectives To assess the accuracy of International Classification of Diseases 9th Revision–Clinical Modification (ICD-9-CM) codes in identifying subjects with lung cancer. Design A cross-sectional diagnostic accuracy study comparing ICD-9-CM 162.x code (index test) in primary position with medical chart (reference standard). Case ascertainment was based on the presence of a primary nodular lesion in the lung and cytological or histological documentation of cancer from a primary or metastatic site. Setting Three operative units: administrative databases from Umbria Region (890 000 residents), ASL Napoli 3 Sud (NA) (1 170 000 residents) and Friuli Venezia Giulia (FVG) Region (1 227 000 residents). Participants Incident subjects with lung cancer (n=386) diagnosed in primary position between 2012 and 2014 and a population of non-cases (n=280). Outcome measures Sensitivity, specificity and positive predictive value (PPV) for 162.x code. Results 130 cases and 94 non-cases were randomly selected from each database and the corresponding medical charts were reviewed. Most of the diagnoses for lung cancer were performed in medical departments. True positive rates were high for all the three units. Sensitivity was 99% (95% CI 95% to 100%) for Umbria, 97% (95% CI 91% to 100%) for NA, and 99% (95% CI 95% to 100%) for FVG. The false positive rates were 24%, 37% and 23% for Umbria, NA and FVG, respectively. PPVs were 79% (73% to 83%)%) for Umbria, 58% (53% to 63%)%) for NA and 79% (73% to 84%)%) for FVG. Conclusions Case ascertainment for lung cancer based on imaging or endoscopy associated with histological examination yielded an excellent sensitivity in all the three administrative databases. PPV was moderate for Umbria and FVG but lower for NA. PMID:29773701

  18. Photoassociation studies of ultracold NaCs from the Cs 6(2)P(3/2) asymptote.

    PubMed

    Wakim, A; Zabawa, P; Bigelow, N P

    2011-11-14

    A combination of pulsed depletion spectroscopy and photoassociation spectroscopy is utilized to assign photoassociation spectra of NaCs. These methods investigate the ab initio Ω = 2 potential energy curve and indicate a previously unknown avoided crossing between the (3)Ω = 1 and (4)Ω = 1 electronic states. We present rotational assignments of deeply bound singlet ground state molecules, an improved C(6) coefficient for the (4)Ω = 1 and assignments for all twenty-three photoassociation resonances detuned from the Cs 6(2)P(3/2) asymptote.

  19. NAc Shell Arc/Arg3.1 Protein Mediates Reconsolidation of Morphine CPP by Increased GluR1 Cell Surface Expression: Activation of ERK-Coupled CREB is Required

    PubMed Central

    Lv, Xiu-Fang; Sun, Lin-Lin; Han, Ji-Sheng

    2015-01-01

    Background: Relapse into drug abuse evoked by reexposure to the drug-associated context has been a primary problem in the treatment of drug addiction. Disrupting the reconsolidation of drug-related context memory would therefore limit the relapse susceptibility. Methods: Morphine conditioned place preference (CPP) was used to assess activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and correlative molecule expression in the Nucleus accumbens (NAc) shell during the reconsolidation of morphine CPP. U0126 and Arc/Arg3.1 antisense oligodeoxynucleotide were adapted to evaluate the role and the underlying mechanism of Arc/Arg3.1 during the reconsolidation. Results: The retrieval of morphine CPP in rats specifically increased the Arc/Arg3.1 protein level in the NAc shell, accompanied simultaneously by increases in the phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2), the phosphorylation of Cyclic Adenosine monophosphate (cAMP) response element-binding (pCREB), and the up-regulation of the membrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors GluR1 subunit level. Intra-NAc shell infusion U0126, an inhibitor of the Mitogen-activated protein kinase kinase (MEK), prevented the retrieval-induced up-regulation of pERK1/2, pCREB, Arc/Arg3.1, and membrane GluR1 immediately after retrieval of morphine CPP. The effect of disrupting the reconsolidation of morphine CPP by U0126 could last for at least 14 days, and could not be evoked by a priming injection of morphine. Furthermore, the specific knockdown of Arc/Arg3.1 in the NAc shell decreased the membrane GluR1 level, and impaired both the reconsolidation and the reinstatement of morphine CPP. Conclusions: Arc/Arg3.1 in the NAc shell mediates the reconsolidation of morphine-associated context memory via up-regulating the level of membrane of GluR1, for which the local activation of the ERK-CREB signal pathway, as an upstream mechanism of Arc/Arg3.1, is required. PMID

  20. "Nutrient-sensing" and self-renewal: O-GlcNAc in a new role.

    PubMed

    Sharma, Nikita S; Saluja, Ashok K; Banerjee, Sulagna

    2018-06-01

    Whether embryonic, hematopoietic or cancer stem cells, this metabolic reprogramming is dependent on the nutrient-status and bioenergetic pathways that is influenced by the micro-environmental niches like hypoxia. Thus, the microenvironment plays a vital role in determining the stem cell fate by inducing metabolic reprogramming. Under the influence of the microenvironment, like hypoxia, the stem cells have increased glucose and glutamine uptake which result in activation of hexosamine biosynthesis pathway (HBP) and increased O-GlcNAc Transferase (OGT). The current review is focused on understanding how HBP, a nutrient-sensing pathway (that leads to increased OGT activity) is instrumental in regulating self-renewal not only in embryonic and hematopoietic stem cells (ESC/HSC) but also in cancer stem cells.

  1. 25 CFR 11.705 - Removal of executor or administrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Removal of executor or administrator. 11.705 Section 11... OFFENSES AND LAW AND ORDER CODE Probate Proceedings § 11.705 Removal of executor or administrator. The Court of Indian Offenses may order the executor or administrator to show cause why he or she should not...

  2. O-linked N-acetylglucosamine (O-GlcNAc) protein modification is increased in the cartilage of patients with knee osteoarthritis.

    PubMed

    Tardio, L; Andrés-Bergós, J; Zachara, N E; Larrañaga-Vera, A; Rodriguez-Villar, C; Herrero-Beaumont, G; Largo, R

    2014-02-01

    There is increasing evidence that the addition of O-linked N-acetylglucosamine (O-GlcNAc) to proteins plays an important role in cell signaling pathways. In chondrocytes, accumulation of O-GlcNAc-modified proteins induces hypertrophic differentiation. Osteoarthritis (OA) is characterized by cartilage degradation, and hypertrophic-like changes in hyaline chondrocytes. However, the mechanisms responsible for these changes have not been described. Our aim was to study whether O-GlcNAcylation and the enzymes responsible for this modification are dysregulated in the cartilage of patients with knee OA and whether interleukin-1 could induce these modifications in cultured human OA chondrocytes (HOC). Human cartilage was obtained from patients with knee OA and from age and sex-matched healthy donors. HOC were cultured and stimulated with the catabolic cytokine IL-1α. Global protein O-GlcNAcylation and the synthesis of the key enzymes responsible for this modification, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), were assessed by western blot. OA was associated with a 4-fold increase in the global O-GlcNAcylation in the cartilage. OA cartilage showed a re-distribution of the OGT and OGA isoforms, with a net increase in the presence of both enzymes, in comparison to healthy cartilage. In HOC, IL-1α stimulation rapidly increased O-GlcNAcylation and OGT and OGA synthesis. Our results indicate that a proinflammatory milieu could favor the accumulation of O-GlcNAcylated proteins in OA cartilage, together with the dysregulation of the enzymes responsible for this modification. The increase in O-GlcNAcylation could be responsible, at least partially, for the re-expression of hypertrophic differentiation markers that have been observed in OA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells*

    PubMed Central

    de Queiroz, Rafaela Muniz; Madan, Rashna; Chien, Jeremy; Dias, Wagner Barbosa; Slawson, Chad

    2016-01-01

    O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma. PMID:27402830

  4. Therapeutics effect of N-acetyl cysteine on mustard gas exposed patients: evaluating clinical aspect in patients with impaired pulmonary function test.

    PubMed

    Shohrati, Majid; Aslani, Jafar; Eshraghi, Mehdi; Alaedini, Farshid; Ghanei, Mostafa

    2008-03-01

    Long-term prescription of N-acetyl cysteine (NAC) may be effective in diseases caused by active radicals of oxygen species. The aim of this study was to determine the effect of 2- and 4-month administration of NAC (1800 mg daily) on mustard induced bronchiolitis obliterans. In a double blind clinical trial, 144 patients with bronchiolitis obliterans due to sulfur mustard in bronchiolitis obliterans syndrome (BOS) classes 1 and 2, randomly entered Group 1 (n=72, NAC) and Group 2 (n=72, placebo). Dyspnea, wake-up dyspnea, cough, and sputum were measured after 4 months. Spirometric findings were measured at the beginning of the trial, 2 months after and after 4 months of prescription of 1800 mg/day in three doses of NAC or placebo. Dyspnea, cough, sputum, and wake-up dyspnea improved after 4 months of NAC compared to the control group. After 4 months, spirometric components were significantly improved in NAC group compared to placebo group. Fourth months administration of NAC (1800 mg daily) can improve clinical conditions and spirometric findings in mustard exposed in BOS class 1 or 2.

  5. Implementing a bar-coded bedside medication administration system.

    PubMed

    Yates, Cindy

    2007-01-01

    Hospitals across the nation are struggling with implementing electronic medication administration and reporting (eMAR) systems as part of patient safety programs. St Luke's Hospital in Chesterfield, Mo, initiated their eMAR initiative in June 2003, initiating program start-up in September 2004. This case study documents how the project was approached, its overall success, and what was learned along the way. Also included is a recent update highlighting the expansion of St Luke's patient safety initiative, adapting eMAR to two specialty units: dialysis and laboratory processes.

  6. O-GlcNAc Transferase/Host Cell Factor C1 Complex Regulates Gluconeogenesis by Modulating PGC-1α Stability

    PubMed Central

    Ruan, Hai-Bin; Han, Xuemei; Li, Min-Dian; Singh, Jay Prakash; Qian, Kevin; Azarhoush, Sascha; Zhao, Lin; Bennett, Anton M.; Samuel, Varman T.; Wu, Jing; Yates, John R.; Yang, Xiaoyong

    2012-01-01

    SUMMARY A major cause of hyperglycemia in diabetic patients is inappropriate hepatic gluconeogenesis. PGC-1α is a master regulator of gluconeogenesis, and its activity is controlled by various post-translational modifications. A small portion of glucose metabolizes through the hexosamine biosynthetic pathway, which leads to O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins. Using a proteomic approach, we identified a broad variety of proteins associated with O-GlcNAc transferase (OGT), among which host cell factor C1 (HCF-1) is highly abundant. HCF-1 recruits OGT to O-GlcNAcylate PGC-1α and O-GlcNAcylation facilitates the binding of the deubiquitinase BAP1, thus protecting PGC-1α from degradation and promoting gluconeogenesis. Glucose availability modulates gluconeogenesis through the regulation of PGC-1α O-GlcNAcylation and stability by the OGT/HCF1 complex. Hepatic knockdown of OGT and HCF-1 improves glucose homeostasis in diabetic mice. These findings define the OGT/HCF-1 complex as a glucose sensor and key regulator of gluconeogenesis, shedding light on new strategies for treating diabetes. PMID:22883232

  7. The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix.

    PubMed

    Gundogdu, Mehmet; Llabrés, Salomé; Gorelik, Andrii; Ferenbach, Andrew T; Zachariae, Ulrich; van Aalten, Daan M F

    2018-05-17

    O-linked β-N-acetyl- D -glucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential post-translational modification that is abundant in the brain. Recently, OGT mutations have been associated with intellectual disability, although it is not understood how they affect OGT structure and function. Using a multi-disciplinary approach we show that the L254F OGT mutation leads to conformational changes of the tetratricopeptide repeats and reduced activity, revealing the molecular mechanisms contributing to pathogenesis. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Fasciola hepatica Immune Regulates CD11c+ Cells by Interacting with the Macrophage Gal/GalNAc Lectin.

    PubMed

    Rodríguez, Ernesto; Carasi, Paula; Frigerio, Sofía; da Costa, Valeria; van Vliet, Sandra; Noya, Verónica; Brossard, Natalie; van Kooyk, Yvette; García-Vallejo, Juan J; Freire, Teresa

    2017-01-01

    Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica , is a trematode zoonosis of interest in public health and livestock production. Like other helminths, F. hepatica modulates the host immune response by inducing potent polarized Th2 and regulatory T cell immune responses and by downregulating the production of Th1 cytokines. In this work, we show that F. hepatica glycans increase Th2 immune responses by immunomodulating TLR-induced maturation and function of dendritic cells (DCs). This process was mediated by the macrophage Gal/GalNAc lectin (MGL) expressed on DCs, which recognizes the Tn antigen (GalNAc-Ser/Thr) on parasite components. More interestingly, we identified MGL-expressing CD11c + cells in infected animals and showed that these cells are recruited both to the peritoneum and the liver upon F. hepatica infection. These cells express the regulatory cytokines IL-10, TNFα and TGFβ and a variety of regulatory markers. Furthermore, MGL + CD11c + cells expand parasite-specific Th2/regulatory cells and suppress Th1 polarization. The results presented here suggest a potential role of MGL in the immunomodulation of DCs induced by F. hepatica and contribute to a better understanding of the molecular and immunoregulatory mechanisms induced by this parasite.

  9. Fasciola hepatica Immune Regulates CD11c+ Cells by Interacting with the Macrophage Gal/GalNAc Lectin

    PubMed Central

    Rodríguez, Ernesto; Carasi, Paula; Frigerio, Sofía; da Costa, Valeria; van Vliet, Sandra; Noya, Verónica; Brossard, Natalie; van Kooyk, Yvette; García-Vallejo, Juan J.; Freire, Teresa

    2017-01-01

    Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is a trematode zoonosis of interest in public health and livestock production. Like other helminths, F. hepatica modulates the host immune response by inducing potent polarized Th2 and regulatory T cell immune responses and by downregulating the production of Th1 cytokines. In this work, we show that F. hepatica glycans increase Th2 immune responses by immunomodulating TLR-induced maturation and function of dendritic cells (DCs). This process was mediated by the macrophage Gal/GalNAc lectin (MGL) expressed on DCs, which recognizes the Tn antigen (GalNAc-Ser/Thr) on parasite components. More interestingly, we identified MGL-expressing CD11c+ cells in infected animals and showed that these cells are recruited both to the peritoneum and the liver upon F. hepatica infection. These cells express the regulatory cytokines IL-10, TNFα and TGFβ and a variety of regulatory markers. Furthermore, MGL+ CD11c+ cells expand parasite-specific Th2/regulatory cells and suppress Th1 polarization. The results presented here suggest a potential role of MGL in the immunomodulation of DCs induced by F. hepatica and contribute to a better understanding of the molecular and immunoregulatory mechanisms induced by this parasite. PMID:28360908

  10. 21 CFR 106.90 - Coding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Coding. 106.90 Section 106.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES Quality Control Procedures for Assuring Nutrient Content...

  11. 21 CFR 106.90 - Coding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Coding. 106.90 Section 106.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES Quality Control Procedures for Assuring Nutrient Content...

  12. 21 CFR 106.90 - Coding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Coding. 106.90 Section 106.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES Quality Control Procedures for Assuring Nutrient Content...

  13. Individual differences in anhedonic and accumbal dopamine responses to chronic social stress and their link to cocaine self-administration in female rats

    PubMed Central

    Holly, Elizabeth N.; Boyson, Christopher O.; DeBold, Joseph F.; Miczek, Klaus A.

    2014-01-01

    Rationale Women are twice as likely as men to develop major depressive disorder. Exposure to chronic stress can induce depression in some vulnerable individuals, while others are resistant to depressive-like symptoms after equivalent levels of chronic stress. Objectives In female rats, individual differences in saccharin intake during chronic social defeat stress may predict subsequent cocaine self-administration, and may be attributed to alterations in mesolimbic dopamine activity. Methods Female rats were exposed to 21 days of chronic social defeat stress, during which they were evaluated for their anhedonia-like responses in the form of saccharin intake. After chronic social defeat stress, the rats were tested for behavioral cross-sensitization to cocaine and escalated cocaine self-administration in a 24-h “binge.” A separate group of animals underwent in vivo microdialysis of the nucleus accumbens (NAc) shell to assess dopamine (DA) in response to acute cocaine challenge. Results Cluster analysis revealed two phenotypes among the stressed female rats based on their saccharin intake while being exposed to stress, termed stress-resistant (SR, 28 %) and stress-sensitive (SS, 72 %). The amount of cocaine self-administered during the 24-h “binge” was positively correlated with preceding saccharin intake. The NAc DA response to a cocaine challenge was significantly lower in SR rats than in the SS and non-stressed control rats. No other significant differences were observed in behavioral cross-sensitization or cocaine self-administration prior to the “binge.” Conclusion Female rats showed individual differences in their anhedonic-like response to chronic social defeat stress, and these differences were reliably associated with subsequent cocaine-taking behavior. PMID:25178816

  14. Identifying Pediatric Severe Sepsis and Septic Shock: Accuracy of Diagnosis Codes.

    PubMed

    Balamuth, Fran; Weiss, Scott L; Hall, Matt; Neuman, Mark I; Scott, Halden; Brady, Patrick W; Paul, Raina; Farris, Reid W D; McClead, Richard; Centkowski, Sierra; Baumer-Mouradian, Shannon; Weiser, Jason; Hayes, Katie; Shah, Samir S; Alpern, Elizabeth R

    2015-12-01

    To evaluate accuracy of 2 established administrative methods of identifying children with sepsis using a medical record review reference standard. Multicenter retrospective study at 6 US children's hospitals. Subjects were children >60 days to <19 years of age and identified in 4 groups based on International Classification of Diseases, Ninth Revision, Clinical Modification codes: (1) severe sepsis/septic shock (sepsis codes); (2) infection plus organ dysfunction (combination codes); (3) subjects without codes for infection, organ dysfunction, or severe sepsis; and (4) infection but not severe sepsis or organ dysfunction. Combination codes were allowed, but not required within the sepsis codes group. We determined the presence of reference standard severe sepsis according to consensus criteria. Logistic regression was performed to determine whether addition of codes for sepsis therapies improved case identification. A total of 130 out of 432 subjects met reference SD of severe sepsis. Sepsis codes had sensitivity 73% (95% CI 70-86), specificity 92% (95% CI 87-95), and positive predictive value 79% (95% CI 70-86). Combination codes had sensitivity 15% (95% CI 9-22), specificity 71% (95% CI 65-76), and positive predictive value 18% (95% CI 11-27). Slight improvements in model characteristics were observed when codes for vasoactive medications and endotracheal intubation were added to sepsis codes (c-statistic 0.83 vs 0.87, P = .008). Sepsis specific International Classification of Diseases, Ninth Revision, Clinical Modification codes identify pediatric patients with severe sepsis in administrative data more accurately than a combination of codes for infection plus organ dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Time trend of injection drug errors before and after implementation of bar-code verification system.

    PubMed

    Sakushima, Ken; Umeki, Reona; Endoh, Akira; Ito, Yoichi M; Nasuhara, Yasuyuki

    2015-01-01

    Bar-code technology, used for verification of patients and their medication, could prevent medication errors in clinical practice. Retrospective analysis of electronically stored medical error reports was conducted in a university hospital. The number of reported medication errors of injected drugs, including wrong drug administration and administration to the wrong patient, was compared before and after implementation of the bar-code verification system for inpatient care. A total of 2867 error reports associated with injection drugs were extracted. Wrong patient errors decreased significantly after implementation of the bar-code verification system (17.4/year vs. 4.5/year, p< 0.05), although wrong drug errors did not decrease sufficiently (24.2/year vs. 20.3/year). The source of medication errors due to wrong drugs was drug preparation in hospital wards. Bar-code medication administration is effective for prevention of wrong patient errors. However, ordinary bar-code verification systems are limited in their ability to prevent incorrect drug preparation in hospital wards.

  16. Wood reinforcement of poplar by rice NAC transcription factor

    PubMed Central

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-01

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961

  17. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat.

    PubMed

    Uauy, Cristobal; Distelfeld, Assaf; Fahima, Tzion; Blechl, Ann; Dubcovsky, Jorge

    2006-11-24

    Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.

  18. Accuracy of external cause-of-injury coding in VA polytrauma patient discharge records.

    PubMed

    Carlson, Kathleen F; Nugent, Sean M; Grill, Joseph; Sayer, Nina A

    2010-01-01

    Valid and efficient methods of identifying the etiology of treated injuries are critical for characterizing patient populations and developing prevention and rehabilitation strategies. We examined the accuracy of external cause-of-injury codes (E-codes) in Veterans Health Administration (VHA) administrative data for a population of injured patients. Chart notes and E-codes were extracted for 566 patients treated at any one of four VHA Polytrauma Rehabilitation Center sites between 2001 and 2006. Two expert coders, blinded to VHA E-codes, used chart notes to assign "gold standard" E-codes to injured patients. The accuracy of VHA E-coding was examined based on these gold standard E-codes. Only 382 of 517 (74%) injured patients were assigned E-codes in VHA records. Sensitivity of VHA E-codes varied significantly by site (range: 59%-91%, p < 0.001). Sensitivity was highest for combat-related injuries (81%) and lowest for fall-related injuries (60%). Overall specificity of E-codes was high (92%). E-coding accuracy was markedly higher when we restricted analyses to records that had been assigned VHA E-codes. E-codes may not be valid for ascertaining source-of-injury data for all injuries among VHA rehabilitation inpatients at this time. Enhanced training and policies may ensure more widespread, standardized use and accuracy of E-codes for injured veterans treated in the VHA.

  19. Steepness of Slopes at the Luna-Glob Landing Sites: Estimating by the Shaded Area Percentage in the LROC NAC Images

    NASA Astrophysics Data System (ADS)

    Krasilnikov, S. S.; Basilevsky, A. T.; Ivanov, M. A.; Abdrakhimov, A. M.; Kokhanov, A. A.

    2018-03-01

    The paper presents estimates of the occurrence probability of slopes, whose steep surfaces could be dangerous for the landing of the Luna-Glob descent probe ( Luna-25) given the baseline of the span between the landing pads ( 3.5 m), for five potential landing ellipses. As a rule, digital terrain models built from stereo pairs of high-resolution images (here, the images taken by the Narrow Angle Camera onboard the Lunar Reconnaissance Orbiter (LROC NAC)) are used in such cases. However, the planned landing sites are at high latitudes (67°-74° S), which makes it impossible to build digital terrain models, since the difference in the observation angle of the overlapping images is insufficient at these latitudes. Because of this, to estimate the steepness of slopes, we considered the interrelation between the shaded area percentage in the image and the Sun angle over horizon at the moment of imaging. For five proposed landing ellipses, the LROC NAC images (175 images in total) with a resolution from 0.4 to 1.2 m/pixel were analyzed. From the results of the measurements in each of the ellipses, the dependence of the shaded area percentage on the solar angle were built, which was converted to the occurrence probability of slopes. For this, the data on the Apollo 16 landing region ware used, which is covered by both the LROC NAC images and the digital terrain model with high resolution. As a result, the occurrence probability of slopes with different steepness has been estimated on the baseline of 3.5 m for five landing ellipses according to the steepness categories of <7°, 7°-10°, 10°-15°, 15°-20°, and >20°.

  20. Hijacking of the O-GlcNAcZYME complex by the HTLV-1 Tax oncoprotein facilitates viral transcription

    PubMed Central

    Waast, Laetitia; Kuo, Mei-Shiue; Mangeney, Marianne; Martella, Christophe; Souidi, Mouloud; Issad, Tarik

    2017-01-01

    The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5’LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O

  1. Hijacking of the O-GlcNAcZYME complex by the HTLV-1 Tax oncoprotein facilitates viral transcription.

    PubMed

    Groussaud, Damien; Khair, Mostafa; Tollenaere, Armelle I; Waast, Laetitia; Kuo, Mei-Shiue; Mangeney, Marianne; Martella, Christophe; Fardini, Yann; Coste, Solène; Souidi, Mouloud; Benit, Laurence; Pique, Claudine; Issad, Tarik

    2017-07-01

    The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway

  2. Xylem specific activation of 5' upstream regulatory region of two NAC transcription factors (MusaVND6 and MusaVND7) in banana is regulated by SNBE-like sites.

    PubMed

    Negi, Sanjana; Tak, Himanshu; Ganapathi, T R

    2018-01-01

    Deposition of secondary cell wall in the xylem elements is controlled by a subgroup of NAC (NAM, ATAF, CUC) family, known as vascular-related NAC transcription factors (VNDs). In the present study, we analyzed the 5' upstream regulatory region of two banana NAC transcription factors (MusaVND6 and MusaVND7) for tissue specific expression and presence of 19-bp secondary-wall NAC binding element (SNBE)-like motifs. Transgenic banana plants of Musa cultivar Rasthali harboring either PMusaVND7::GUS or PMusaVND6::GUS showed specific GUS (β-D-Glucuronidase) activity in cells of the xylem tissue. Approximately 1.2kb promoter region of either MusaVND6 or MusaVND7 showed presence of at least two SNBE-like motifs. This 1.2kb promoter region was retarded in a gel shift assay by three banana VND protein (VND1,VND2 and VND3). The banana VND1-VND3 could also retard the mobility of isolated SNBE-like motifs of MusaVND6 or MusaVND7 in a gel shift assay. Transcript levels of MusaVND6 and MusaVND7 were elevated in transgenic banana overexpressing either banana VND1, VND2 or VND3. Present study suggested a probable regulation of banana VND6 and VND7 expression through direct interaction of banana VND1- VND3 with SNBE-like motifs. Our study also indicated two promoter elements for possible utilization in cell wall modifications in plants especially banana, which is being recently considered as a potential biofuel crop.

  3. 78 FR 664 - Establishment of Drug Codes for 26 Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration 21 CFR Part 1308 [Docket No. DEA-368] Establishment of Drug Codes for 26 Substances AGENCY: Drug Enforcement Administration (DEA), Department of Justice. ACTION: Final rule. SUMMARY: On July 9, 2012, the President signed into law the Synthetic Drug...

  4. Problems, solutions and recommendations for implementing CODES (Crash Outcome Data Evaluation System)

    DOT National Transportation Integrated Search

    2001-02-01

    Problems, solutions and recommendations for implementation have been contributed by 16 of the 27 CODES states and organized as appropriate under the administrative, linkage and application requirements for a Crash Outcome Data Evaluation System (CODE...

  5. O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique.

    PubMed

    Jia, Cangzhi; Zuo, Yun; Zou, Quan; Hancock, John

    2018-02-06

    Protein O-GlcNAcylation (O-GlcNAc) is an important post-translational modification of serine (S)/threonine (T) residues that involves multiple molecular and cellular processes. Recent studies have suggested that abnormal O-G1cNAcylation causes many diseases, such as cancer and various neurodegenerative diseases. With the available protein O-G1cNAcylation sites experimentally verified, it is highly desired to develop automated methods to rapidly and effectively identify O-G1cNAcylation sites. Although some computational methods have been proposed, their performance has been unsatisfactory, particularly in terms of prediction sensitivity. In this study, we developed an ensemble model O-GlcNAcPRED-II to identify potential O-G1cNAcylation sites. A K-means principal component analysis oversampling technique (KPCA) and fuzzy undersampling method (FUS) were first proposed and incorporated to reduce the proportion of the original positive and negative training samples. Then, rotation forest, a type of classifier-integrated system, was adopted to divide the eight types of feature space into several subsets using four sub-classifiers: random forest, k-nearest neighbour, naive Bayesian and support vector machine. We observed that O-GlcNAcPRED-II achieved a sensitivity of 81.05%, specificity of 95.91%, accuracy of 91.43% and Matthew's correlation coefficient of 0.7928 for five-fold cross-validation run 10 times. Additionally, the results obtained by O-GlcNAcPRED-II on two independent datasets also indicated that the proposed predictor outperformed five published prediction tools. http://121.42.167.206/OGlcPred/. cangzhijia@dlmu.edu.cn or zouquan@nclab.net. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Administration of SIN-1 induces guinea pig airway hyperresponsiveness through inactivation of airway neutral endopeptidase.

    PubMed

    Kanazawa, H; Hirata, K; Yoshikawa, J

    1999-12-01

    Peroxynitrite plays an important role in the pathogenesis of airway inflammation. We have already found that peroxynitrite may contribute to decreased beta(2)-adrenoceptor responses in airway smooth muscle. However, it is not known whether peroxynitrite can alter neutral endopeptidase (EC 3.4.24.11; NEP) activity in the airways. This study was designed to determine whether peroxynitrite induces airway hyperresponsiveness to substance P (SP) and endothelin-1 (ET-1) through the inactivation of airway NEP. We examined whether the administration of S-morpholinosydnonimine (SIN-1), a compound that releases peroxynitrite, increased bronchoconstrictor responses to SP and ET-1 in anesthetized guinea pigs. In addition, we assayed NEP activity in the airways of SIN-1-exposed guinea pigs. Though SIN-1 (10(-7) M) alone had no effect on pulmonary resistance, pretreatment with SIN-1 significantly enhanced SP- and ET-1-induced bronchoconstriction. Pretreatment with phosphoramidon, an NEP inhibitor, also enhanced SP- and ET-1-induced bronchoconstriction. However, simultaneous administration of phosphoramidon and SIN-1 had no additive effect on SP- and ET-1-induced bronchoconstriction. Peroxynitrite formation by SIN-1 was completely inhibited by N-acetylcysteine (NAC) and glutathione (GSH) in vitro, and pretreatment with NAC and GSH significantly reversed the potentiation by SIN-1 of SP-induced bronchoconstriction. In addition, the NEP activity of the trachea after SIN-1 exposure was significantly reduced compared to the level in control guinea pigs (solvent for SIN-1: 30.0+/-4.2 fmol.min(-1).mg tissue(-1); 10(-7) M SIN-1; 15.5+/-4.5 fmol.min(-1).mg tissue(-1), p<0.05). These findings suggest that peroxynitrite induces airway hyperresponsiveness to SP and ET-1 through the inactivation of airway NEP, and that peroxynitrite is an important mediator of the alterations in airway functions.

  7. Dose-response characteristics of methylphenidate on locomotor behavior and on sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats.

    PubMed

    Yang, Pamela B; Swann, Alan C; Dafny, Nachum

    2006-01-17

    Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among

  8. Response of the Ubiquitin-Proteasome System to Memory Retrieval After Extended-Access Cocaine or Saline Self-Administration.

    PubMed

    Werner, Craig T; Milovanovic, Mike; Christian, Daniel T; Loweth, Jessica A; Wolf, Marina E

    2015-12-01

    The ubiquitin-proteasome system (UPS) has been implicated in the retrieval-induced destabilization of cocaine- and fear-related memories in Pavlovian paradigms. However, nothing is known about its role in memory retrieval after self-administration of cocaine, an operant paradigm, or how the length of withdrawal from cocaine may influence retrieval mechanisms. Here, we examined UPS activity after an extended-access cocaine self-administration regimen that leads to withdrawal-dependent incubation of cue-induced cocaine craving. Controls self-administered saline. In initial experiments, memory retrieval was elicited via a cue-induced seeking/retrieval test on withdrawal day (WD) 50-60, when craving has incubated. We found that retrieval of cocaine- and saline-associated memories produced similar increases in polyubiquitinated proteins in the nucleus accumbens (NAc), compared with rats that did not undergo a seeking/retrieval test. Measures of proteasome catalytic activity confirmed similar activation of the UPS after retrieval of saline and cocaine memories. However, in a subsequent experiment in which testing was conducted on WD1, proteasome activity in the NAc was greater after retrieval of cocaine memory than saline memory. Analysis of other brain regions confirmed that effects of cocaine memory retrieval on proteasome activity, relative to saline memory retrieval, depend on withdrawal time. These results, combined with prior studies, suggest that the relationship between UPS activity and memory retrieval depends on training paradigm, brain region, and time elapsed between training and retrieval. The observation that mechanisms underlying cocaine memory retrieval change depending on the age of the memory has implications for development of memory destabilization therapies for cue-induced relapse in cocaine addicts.

  9. S-(N, N-diethylcarbamoyl)glutathione (carbamathione), a disulfiram metabolite and its effect on nucleus accumbens and prefrontal cortex dopamine, GABA, and glutamate: A microdialysis study

    PubMed Central

    Faiman, Morris D.; Kaul, Swetha; Latif, Shaheen A.; Williams, Todd D.; Lunte, Craig E.

    2015-01-01

    Disulfiram (DSF), used for the treatment of alcohol use disorders (AUDs) for over six decades, most recently has shown promise for treating cocaine dependence. Although DSF’s mechanism of action in alcohol abuse is due to the inhibition of liver mitochondrial aldehyde dehydrogenase (ALDH2), its mechanism of action in the treatment of cocaine dependence is unknown. DSF is a pro-drug, forming a number of metabolites each with discrete pharmacological actions. One metabolite formed during DSF bioactivation is S-(N, N-diethylcarbamoyl) glutathione (carbamathione) (carb). We previously showed that carb affects glutamate binding. In the present studies, we employed microdialysis techniques to investigate the effect of carb administration on dopamine (DA), GABA, and glutamate (Glu) in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), two brain regions implicated in substance abuse dependence. The effect of DSF on DA, GABA, and Glu in the NAc also was determined. Both studies were carried out in male rats. Carb (20, 50, 200 mg/kg i v) in a dose-dependent manner increased DA, decreased GABA, and had a biphasic effect on Glu, first increasing and then decreasing Glu in both the NAc and mPFC. These changes all occurred concurrently. After carb administration, NAc and mPFC carb, as well as carb in plasma, were rapidly eliminated with a half-life for each approximately 4 min, while the changes in DA, GABA, and GLu in the NAc and mPFC persisted for approximately two hours. The maximal increase in carb (Cmax) in the NAc and mPFC after carb administration was dose-dependent, as was the area under the curve (AUC). DSF (200 mg/kg i p) also increased DA, decreased GABA, and had a biphasic effect on Glu in the NAc similar to that observed in the NAc after carb administration. When the cytochrome P450 inhibitor N-benzylimidazole (NBI) (20 mg/kg i p) was administered before DSF dosing, no carb could be detected in the NAc and plasma and also no changes in NAc DA, GABA

  10. Oil and gas field code master list 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storagemore » Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.« less

  11. Quality of data regarding diagnoses of spinal disorders in administrative databases. A multicenter study.

    PubMed

    Faciszewski, T; Broste, S K; Fardon, D

    1997-10-01

    The purpose of the present study was to evaluate the accuracy of data regarding diagnoses of spinal disorders in administrative databases at eight different institutions. The records of 189 patients who had been managed for a disorder of the lumbar spine were independently reviewed by a physician who assigned the appropriate diagnostic codes according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The age range of the 189 patients was seventeen to eighty-four years. The six major diagnostic categories studied were herniation of a lumbar disc, a previous operation on the lumbar spine, spinal stenosis, cauda equina syndrome, acquired spondylolisthesis, and congenital spondylolisthesis. The diagnostic codes assigned by the physician were compared with the codes that had been assigned during the ordinary course of events by personnel in the medical records department of each of the eight hospitals. The accuracy of coding was also compared among the eight hospitals, and it was found to vary depending on the diagnosis. Although there were both false-negative and false-positive codes at each institution, most errors were related to the low sensitivity of coding for previous spinal operations: only seventeen (28 per cent) of sixty-one such diagnoses were coded correctly. Other errors in coding were less frequent, but their implications for conclusions drawn from the information in administrative databases depend on the frequency of a diagnosis and its importance in an analysis. This study demonstrated that the accuracy of a diagnosis of a spinal disorder recorded in an administrative database varies according to the specific condition being evaluated. It is necessary to document the relative accuracy of specific ICD-9-CM diagnostic codes in order to improve the ability to validate the conclusions derived from investigations based on administrative databases.

  12. Xylem specific activation of 5’ upstream regulatory region of two NAC transcription factors (MusaVND6 and MusaVND7) in banana is regulated by SNBE-like sites

    PubMed Central

    2018-01-01

    Deposition of secondary cell wall in the xylem elements is controlled by a subgroup of NAC (NAM, ATAF, CUC) family, known as vascular-related NAC transcription factors (VNDs). In the present study, we analyzed the 5’ upstream regulatory region of two banana NAC transcription factors (MusaVND6 and MusaVND7) for tissue specific expression and presence of 19-bp secondary-wall NAC binding element (SNBE)-like motifs. Transgenic banana plants of Musa cultivar Rasthali harboring either PMusaVND7::GUS or PMusaVND6::GUS showed specific GUS (β-D-Glucuronidase) activity in cells of the xylem tissue. Approximately 1.2kb promoter region of either MusaVND6 or MusaVND7 showed presence of at least two SNBE-like motifs. This 1.2kb promoter region was retarded in a gel shift assay by three banana VND protein (VND1,VND2 and VND3). The banana VND1-VND3 could also retard the mobility of isolated SNBE-like motifs of MusaVND6 or MusaVND7 in a gel shift assay. Transcript levels of MusaVND6 and MusaVND7 were elevated in transgenic banana overexpressing either banana VND1, VND2 or VND3. Present study suggested a probable regulation of banana VND6 and VND7 expression through direct interaction of banana VND1- VND3 with SNBE-like motifs. Our study also indicated two promoter elements for possible utilization in cell wall modifications in plants especially banana, which is being recently considered as a potential biofuel crop. PMID:29438404

  13. Establishment of a New Drug Code for Marihuana Extract. Final rule.

    PubMed

    2016-12-14

    The Drug Enforcement Administration is creating a new Administration Controlled Substances Code Number for "Marihuana Extract." This code number will allow DEA and DEA-registered entities to track quantities of this material separately from quantities of marihuana. This, in turn, will aid in complying with relevant treaty provisions. Under international drug control treaties administered by the United Nations, some differences exist between the regulatory controls pertaining to marihuana extract versus those for marihuana and tetrahydrocannabinols. The DEA has previously established separate code numbers for marihuana and for tetrahydrocannabinols, but not for marihuana extract. To better track these materials and comply with treaty provisions, DEA is creating a separate code number for marihuana extract with the following definition: "Meaning an extract containing one or more cannabinoids that has been derived from any plant of the genus Cannabis, other than the separated resin (whether crude or purified) obtained from the plant." Extracts of marihuana will continue to be treated as Schedule I controlled substances.

  14. 21 CFR 19.6 - Code of ethics for government service.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Code of ethics for government service. 19.6 Section 19.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL STANDARDS OF CONDUCT AND CONFLICTS OF INTEREST General Provisions § 19.6 Code of ethics for government...

  15. 21 CFR 19.6 - Code of ethics for government service.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Code of ethics for government service. 19.6 Section 19.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL STANDARDS OF CONDUCT AND CONFLICTS OF INTEREST General Provisions § 19.6 Code of ethics for government...

  16. 21 CFR 19.6 - Code of ethics for government service.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Code of ethics for government service. 19.6 Section 19.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL STANDARDS OF CONDUCT AND CONFLICTS OF INTEREST General Provisions § 19.6 Code of ethics for government...

  17. 21 CFR 19.6 - Code of ethics for government service.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Code of ethics for government service. 19.6 Section 19.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL STANDARDS OF CONDUCT AND CONFLICTS OF INTEREST General Provisions § 19.6 Code of ethics for government...

  18. Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats.

    PubMed

    Strong, C E; Schoepfer, K J; Dossat, A M; Saland, S K; Wright, K N; Kabbaj, M

    2017-07-15

    Clinical evidence suggests superior antidepressant response over time with a repeated, intermittent ketamine treatment regimen as compared to a single infusion. However, the club drug ketamine is commonly abused. Therefore, the abuse potential of repeated ketamine injections at low doses needs to be investigated. In this study, we investigated the abuse potential of repeated exposure to either 0, 2.5, or 5 mg/kg ketamine administered once weekly for seven weeks. Locomotor activity and conditioned place preference (CPP) were assayed to evaluate behavioral sensitization to the locomotor activating effects of ketamine and its rewarding properties, respectively. Our results show that while neither males nor females developed CPP, males treated with 5 mg/kg and females treated with either 2.5 or 5 mg/kg ketamine behaviorally sensitized. Furthermore, dendritic spine density was increased in the NAc of both males and females administered 5 mg/kg ketamine, an effect specific to the NAc shell (NAcSh) in males but to both the NAc core (NAcC) and NAcSh in females. Additionally, males administered 5 mg/kg ketamine displayed increased protein expression of ΔfosB, calcium calmodulin kinase II alpha (CaMKIIα), and brain-derived neurotrophic factor (BDNF), an effect not observed in females administered either dose of ketamine. However, males and females administered 5 mg/kg ketamine displayed increased protein expression of AMPA receptors (GluA1). Taken together, low-dose ketamine, when administered intermittently, induces behavioral sensitization at a lower dose in females than males, accompanied by an increase in spine density in the NAc and protein expression changes in pathways commonly implicated in addiction. Copyright © 2017. Published by Elsevier Ltd.

  19. Overexpression of NAC gene from Lepidium latifolium L. enhances biomass, shortens life cycle and induces cold stress tolerance in tobacco: potential for engineering fourth generation biofuel crops.

    PubMed

    Grover, Atul; Singh, Sadhana; Pandey, Pankaj; Patade, Vikas Yadav; Gupta, Sanjay Mohan; Nasim, M

    2014-11-01

    We report elevated biomass and altered growth characteristics of tobacco plants up on transformation with a NAC (NAM, ATAF1/2,CUC2) gene (GenBank Accession FJ754254) isolated from Lepidium latifolium L. (LlaNAC). Transgenic plants showed significant differences in fresh weight, midrib length of longest leaf, leaf area, height of the plant, root and shoot weights, etc. during vegetative phase. On 100th day after sowing (DAS), plants of transgenic lines were 2-3 times taller than the wild type plants, though no significant difference was recorded in moisture contents of any of the plant tissues. Over-expression of NAC gene up to 2,000 fold was recorded in leaves of transgenic plants on 100th DAS. Interestingly, transgenic plants showed significantly shortened (P(t) = 0.02-0.04) life cycle, as they showed a completely altered growth behaviour. Transgenic plants entered reproductive phase earlier by 60 days, with lines NC2 and NC7b entering first, followed by line NC10. However, the time period spent in the reproductive phase by the plant was nearly twice in case of transgenic lines NC2, NC7b and NC10, as compared to the wild type plants. Despite that, these lines completed their life cycle in 45-60 days lesser than the time taken by wild-type tobacco plants. No difference was recorded in fruit and seed yield of transgenic or wild type plants. To the best of our knowledge, this is the first report on over-expression of NAC gene causing altered growth and biomass patterns. We expect this study to become an important reference towards future engineering of plants for fuel and fodder purposes.

  20. 49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...