Science.gov

Sample records for adolescent standing postural

  1. Pelvic Morphology, Body Posture and Standing Balance Characteristics of Adolescent Able-Bodied and Idiopathic Scoliosis Girls

    PubMed Central

    Stylianides, Georgios A.; Dalleau, Georges; Begon, Mickaël; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP), and its anteroposterior (AP) and mediolateral (ML) displacements. A multivariate analysis of variance (MANOVA) was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1), body posture variables (factor 2), and pelvic morphology variables (factors 3 and 4). Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population. PMID:23875021

  2. Limit cycle oscillations in standing human posture.

    PubMed

    Chagdes, James R; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Cinelli, Michael E; Denomme, Luke T; Powers, Kaley C; Raman, Arvind

    2016-05-01

    Limit cycle oscillations (LCOs) are a hallmark of dynamic instability in time-delayed and nonlinear systems such as climate change models, biological oscillators, and robotics. Here we study the links between the human neuromuscular system and LCOs in standing posture. First, we demonstrate through a simple mathematical model that the observation of LCOs in posture is indicative of excessive neuromuscular time-delay. To test this hypothesis we study LCOs in the postural sway of individuals with multiple sclerosis and concussed athletes representing two different populations with chronically and acutely increased neuromuscular time-delays. Using a wavelet analysis method we demonstrate that 67% of individuals with multiple sclerosis and 44% of individuals with concussion exhibit intermittent LCOs; 8% of MS-controls, 0% of older adults, and 0% of concussion-controls displayed LCOs. Thus, LCOs are not only key to understanding postural instability but also may have important applications for the detection of neuromuscular deficiencies. PMID:27018157

  3. Reliability of photographic posture analysis of adolescents

    PubMed Central

    Hazar, Zeynep; Karabicak, Gul Oznur; Tiftikci, Ugur

    2015-01-01

    [Purpose] Postural problems of adolescents needs to be evaluated accurately because they may lead to greater problems in the musculoskeletal system as they develop. Although photographic posture analysis has been frequently used, more simple and accessible methods are still needed. The purpose of this study was to investigate the inter- and intra-rater reliability of photographic posture analysis using MB-ruler software. [Subjects and Methods] Subjects were 30 adolescents (15 girls and 15 boys, mean age: 16.4±0.4 years, mean height 166.3±6.7 cm, mean weight 63.8±15.1 kg) and photographs of their habitual standing posture photographs were taken in the sagittal plane. For the evaluation of postural angles, reflective markers were placed on anatomical landmarks. For angular measurements, MB-ruler (Markus Bader- MB Software Solutions, triangular screen ruler) was used. Photographic evaluations were performed by two observers with a repetition after a week. Test-retest and inter-rater reliability evaluations were calculated using intra-class correlation coefficients (ICC). [Results] Inter-rater (ICC>0.972) and test-retest (ICC>0.774) reliability were found to be in the range of acceptable to excellent. [Conclusion] Reference angles for postural evaluation were found to be reliable and repeatable. The present method was found to be an easy and non-invasive method and it may be utilized by researchers who are in search of an alternative method for photographic postural assessments. PMID:26644658

  4. Stand Up Straight: Posture for Singers.

    ERIC Educational Resources Information Center

    Gauthier, Delores R.

    2002-01-01

    Focuses on the importance of posture in music-making. Provides information on the importance of posture and the different types of posture stances to help students work toward better posture. Includes information on using kinesthetic experiences to help students improve their posture. (CMK)

  5. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  6. Newly Standing Infants Increase Postural Stability When Performing a Supra-Postural Task

    PubMed Central

    Claxton, Laura J.; Haddad, Jeffrey M.; Ponto, Katelyn; Ryu, Joong Hyun; Newcomer, Sean C.

    2013-01-01

    Independent stance is one of the most difficult motor milestones to achieve. Newly standing infants exhibit exaggerated body movements and can only stand for a brief amount of time. Given the difficult nature of bipedal stance, these unstable characteristics are slow to improve. However, we demonstrate that infants can increase their stability when engaged in a standing goal-directed task. Infants' balance was measured while standing and while standing and holding a visually attractive toy. When holding the toy, infants stood for a longer period of time, exhibited less body sway, and more mature postural dynamics. These results demonstrate that even with limited standing experience, infants can stabilize posture to facilitate performance of a concurrent task. PMID:23940736

  7. Postural stability in children with hemiplegia estimated for three postural conditions: standing, sitting and kneeling.

    PubMed

    Szopa, Andrzej; Domagalska-Szopa, Małgorzata

    2015-04-01

    Postural control deficit is one of the most important problems in children with cerebral palsy (CP). The purpose of the presented study was to compare the effects of body posture asymmetry alone (i.e., in children with mild scoliosis) with the effects of body posture impairment (i.e., in children with hemiplegia) on postural stability. Forty-five outpatients with hemiplegia and 51 children with mild scoliosis were assessed using a posturography device. The examination comprised two parts: (1) analysis of the static load distribution; and (2) a posturographic test (CoP measurements) conducted in three postural conditions: standing, sitting and kneeling. Based on the asymmetry index of the unaffected/affected body sides while standing, the children with hemiplegia were divided into two different postural patterns: a pro-gravitational postural pattern (PGPP) and an anti-gravitational postural pattern (AGPP) (Domagalska-Szopa & Szopa (2013). BioMed Research International, 2013, 462094; (2014). Therapeutics and Clinical Risk Management, 10, 113). The group of children with mild scoliosis, considered as a standard for static body weight distribution, was used as the reference group. The results of present study only partially confirmed that children with hemiplegia have increased postural instability. Strong weight distribution asymmetry was found in children with an AGPP, which induced larger lateral-medial CoP displacements compared with children with scoliosis. In children with hemiplegia, distinguishing between their postural patterns may be useful to improve the guidelines for early therapy children with an AGPP before abnormal patterns of weight-bearing asymmetry are fully established. PMID:25677032

  8. The Control of Posture in Newly Standing Infants is Task Dependent

    ERIC Educational Resources Information Center

    Claxton, Laura J.; Melzer, Dawn K.; Ryu, Joong Hyun; Haddad, Jeffrey M.

    2012-01-01

    The postural sway patterns of newly standing infants were compared under two conditions: standing while holding a toy and standing while not holding a toy. Infants exhibited a lower magnitude of postural sway and more complex sway patterns when holding the toy. These changes suggest that infants adapt postural sway in a manner that facilitates…

  9. Postural optimization during functional reach while kneeling and standing

    PubMed Central

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Kawakami, Shingo; Murakami, Kenichi; Suzuki, Makoto

    2016-01-01

    [Purpose] The purpose of the present study was to examine the validity of functional reach models by comparing actual values with estimated values. [Subjects and Methods] Twenty-eight volunteers were included in this study (male: 14, female: 14, age: 21 ± 1 years, height: 166.8 ± 9.0 cm, and body mass: 60.1 ± 8.5 kg). The maximum forward fingertip position and joint angles were measured using the original equipment. In addition, the maximum forward fingertip position, shoulder joint angle, and knee or ankle joint angle were estimated using the functional reach model. [Results] The correlation coefficients between actual data and estimated data for the maximum forward fingertip position, shoulder joint angle, and ankle joint angle while standing were 0.93, 0.83, and 0.73, respectively. The correlation coefficients between actual data and estimated data for the maximum forward fingertip position, shoulder joint angle, and knee joint angle while kneeling were 0.86, 0.81, and 0.72, respectively. [Conclusion] The validity of both functional reach models in estimating optimal posture was confirmed. Therefore, the functional reach model is useful for evaluation of postural control and optimal postural control exercises.

  10. Age-dependency of posture parameters in children and adolescents

    PubMed Central

    Ludwig, Oliver; Mazet, Carola; Mazet, Dirk; Hammes, Annette; Schmitt, Eduard

    2016-01-01

    [Purpose] Poor posture in children and adolescents is a well-known problem. Therefore, early detection of incorrect posture is important. Photometric posture analysis is a cost-efficient and easy method, but needs reliable reference values. As children’s posture changes as they grow, the assessment needs to be age-specific. This study aimed to investigate the development of both one-dimensional posture parameter (body inclination angle) and complex parameter (posture index) in different age groups (childhood to adolescence). [Subjects and Methods] The participants were 372 symptom-free children and adolescents (140 girls and 232 boys aged 6–17). Images of their habitual posture were obtained in the sagittal plane. High-contrast marker points and marker spheres were placed on anatomical landmarks. Based on the marker points, the body inclination angle (INC) and posture index (PI) were calculated using the Corpus concepts software. [Results] The INC angle significantly increased with age. The PI did not change significantly among the age groups. No significant differences between the corresponding age groups were found for PI and INC for both sexes. [Conclusion] When evaluating posture using the body inclination angle, the age of the subject needs to be considered. Posture assessment with an age-independent parameter may be more suitable. PMID:27313382

  11. Postural Sway of Human Infants while Standing in Light and Dark.

    ERIC Educational Resources Information Center

    Ashmead, Daniel H.; McCarty, Michael E.

    1991-01-01

    Postural sway was measured in 12- to 14-month-old infants and adults while they were standing in the light and dark. Infants did not sway significantly more in the dark than in the light, whereas adults did. These findings indicate that early regulation of standing posture does not depend on visual information. (Author)

  12. Investigation of postural hypotension due to static prolonged standing in female workers.

    PubMed

    Kabe, Isamu; Tsuruoka, Hiroko; Tokujitani, Yoko; Endo, Yuichi; Furusawa, Mami; Takebayashi, Toru

    2007-07-01

    The "Just-in-Time system" improves productivity and efficiency through cost reduction while it makes workers work in a standing posture. The aim of this study was to investigate the prevalence of postural hypotension in females during prolonged standing work, and to discuss preventive methods. Twelve female static standing workers (mean age+/-standard deviation; 32+/-14 yr old), 6 male static standing workers (30+/-4 yr old), 10 female walking workers (27+/-7 yr old) and 9 female desk workers (31+/-5 yr old) in a certain telecommunications equipment manufacturing factory agreed to participate in this study. All participants received an interview with an occupational physician, and performed the standing up test before working and ambulatory blood pressure monitoring (ABPM) while working. Although the blood pressure of the standing up test did not differ among the groups, mean pulse rates on standing up significantly increased in every group. Hypotension rates in the female standing workers' group by ABPM were 9 persons of 12 participants (75%) for systolic blood pressure (SBP), and were 11 persons of 12 participants (92%) for diastolic blood pressure (DBP). There were significantly higher than those in the female desk workers' group, none of 9 participants (0%) for SBP and 2 of 9 participants (22%) for DBP. The hypotension rates both male standing and female walking worker groups did not differ. Because all 8 workers who were found to have postural hypotension by the standing up test had decreased SBP and/or DBP by ABPM, it is suggested that persons at high risk of postural hypotension during standing work could be screened by the standing up test. The mechanism of postural hypotension may be a decrease of venous return due to leg swelling, and neurocardiogenic or vasovagal response. Preventing the congestion of the lower limbs by walking, managing standing time and wearing elastic hose to keep the amount of the venous return could prevent postural hypotension

  13. Assisting people with multiple disabilities actively correct abnormal standing posture with a Nintendo Wii balance board through controlling environmental stimulation.

    PubMed

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed. PMID:20381997

  14. Decreasing Internal Focus of Attention Improves Postural Control during Quiet Standing in Young Healthy Adults

    ERIC Educational Resources Information Center

    Nafati, Gilel; Vuillerme, Nicolas

    2011-01-01

    This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they…

  15. Pelvis Morphology, Trunk Posture and Standing Imbalance and Their Relations to the Cobb Angle in Moderate and Severe Untreated AIS

    PubMed Central

    Dalleau, Georges; Leroyer, Pierre; Beaulieu, Marlène; Verkindt, Chantal; Rivard, Charles-Hilaire; Allard, Paul

    2012-01-01

    Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis and usually affects young girls. Studies mostly describe the differences between scoliotic and non-scoliotic girls and focus primarily on a single set of parameters derived from spinal and pelvis morphology, posture or standing imbalance. No study addressed all these three biomechanical aspects simultaneously in pre-braced AIS girls of different scoliosis severity but with similar curve type and their interaction with scoliosis progression. The first objective of this study was to test if there are differences in these parameters between pre-braced AIS girls with a right thoracic scoliosis of moderate (less than 27°) and severe (more than 27°) deformity. The second objective was to identify which of these parameters are related to the Cobb angle progression either individually or in combination of thereof. Forty-five scoliotic girls, randomly selected by an orthopedic surgeon from the hospital scoliosis clinic, participated in this study. Parameters related to pelvis morphology, pelvis orientation, trunk posture and quiet standing balance were measured. Generally moderate pre-brace idiopathic scoliosis patients displayed lower values than the severe group characterized by a Cobb angle greater than 27°. Only pelvis morphology and trunk posture were statistically different between the groups while pelvis orientation and standing imbalance were similar in both groups. Statistically significant Pearson coefficients of correlation between individual parameters and Cobb angle ranged between 0.32 and 0.53. Collectively trunk posture, pelvis morphology and standing balance parameters are correlated with Cobb angle at 0.82. The results suggest that spinal deformity progression is not only a question of trunk morphology distortion by itself but is also related to pelvis asymmetrical bone growth and standing neuromuscular imbalance. PMID:22792155

  16. Muscle activation and energy-requirements for varying postures in children and adolescents with cerebral palsy

    PubMed Central

    Peterson, Mark D.; Leferink, Svenja; Darrah, Johanna

    2015-01-01

    Objective To determine energy expenditure and muscle activity among children and adolescents with cerebral palsy (CP), across several conditions that approximate sedentary behavior, and standing. Study design Subjects with spastic CP (n=19; 4–20 years of age; Gross Motor Function Classification System [GMFCS] levels I to V) participated in this cohort study. Energy-expenditure and muscle activity were measured during lying supine, sitting with support, sitting without support, and standing. Energy-expenditure was measured using indirect calorimetry and expressed in metabolic equivalents (METs). Muscle activation was recorded using surface electromyography. The recorded values were calculated for every child and then averaged per posture. Results Mean energy expenditure was >1.5 METs during standing for all GMFCS levels. There was a non-significant trend for greater muscle activation for all postures with less support. Only for children classified at GMFCS level III standing resulted in significantly greater muscle activation (p<0.05) compared with rest. Conclusion Across all GMFCS levels, children and adolescents with CP had elevated energy expenditure during standing that exceeded the sedentary threshold of 1.5 METs. Our findings suggest that changing a child’s position to standing may contribute to the accumulation of light activity and reduction of long intervals of sedentary behavior. PMID:25151195

  17. Which biomechanical models are currently used in standing posture analysis?

    PubMed

    Crétual, A

    2015-11-01

    In 1995, David Winter concluded that postural analysis of upright stance was often restricted to studying the trajectory of the center of pressure (CoP). However, postural control means regulation of the center of mass (CoM) with respect to CoP. As CoM is only accessible by using a biomechanical model of the human body, the present article proposes to determine which models are actually used in postural analysis, twenty years after Winter's observation. To do so, a selection of 252 representative articles dealing with upright posture and published during the four last years has been checked. It appears that the CoP model largely remains the most common one (accounting for nearly two thirds of the selection). Other models, CoP/CoM and segmental models (with one, two or more segments) are much less used. The choice of the model does not appear to be guided by the population studied. Conversely, while some confusion remains between postural control and the associated concepts of stability or strategy, this choice is better justified for real methodological concerns when dealing with such high-level parameters. Finally, the computation of the CoM continues to be a limitation in achieving a more complete postural analysis. This unfortunately implies that the model is chosen for technological reasons in many cases (choice being a euphemism here). Some effort still has to be made so that bioengineering developments allow us to go beyond this limit. PMID:26388359

  18. "Stand up straight": notes toward a history of posture.

    PubMed

    Gilman, Sander L

    2014-03-01

    The essay presents a set of interlinked claims about posture in modern culture. Over the past two centuries it has come to define a wide range of assumptions in the West from what makes human beings human (from Lamarck to Darwin and beyond) to the efficacy of the body in warfare (from Dutch drill manuals in the 17th century to German military medical studies of soldiers in the 19th century). Dance and sport both are forms of posture training in terms of their own claims. Posture separates 'primitive' from 'advanced' peoples and the 'ill' from the 'healthy.' Indeed an entire medical sub-specialty developed in which gymnastics defined and recuperated the body. But all of these claims were also part of a Western attempt to use posture (and the means of altering it) as the litmus test for the healthy modern body of the perfect citizen. Focusing on the centrality of posture in two oddly linked moments of modern thought--modern Zionist thought and Nationalism in early 20th century China--in terms of bodily reform, we show how "posture" brings all of the earlier debates together to reform the body. PMID:24317755

  19. Postural Rehabilitation for Adolescent Idiopathic Scoliosis during Growth.

    PubMed

    Weiss, Hans-Rudolf; Moramarco, Marc Michael; Borysov, Maksym; Ng, Shu Yan; Lee, Sang Gil; Nan, Xiaofeng; Moramarco, Kathryn Ann

    2016-06-01

    Long-term follow-up of untreated patients with adolescent idiopathic scoliosis (AIS) indicates that, with the exception of some extremely severe cases, AIS does not have a significant impact on quality of life and does not result in dire consequences. In view of the relatively benign nature of AIS and the long-term complications of surgery, the indications for treatment should be reviewed. Furthermore, recent studies have shown that scoliosis-specific exercises focusing on postural rehabilitation can positively influence the spinal curvatures in growing adolescents. Experiential postural re-education is a conservative, non-invasive approach, and its role in the management of AIS warrants further study. This article reviews current evidence for the inclusion of various forms of postural reeducation in the management of AIS. Recent comprehensive reviews have been researched including a manual and PubMed search for evidence regarding the effectiveness of physical/postural re-education/physiotherapy programs in growing AIS patients. This search revealed that there were few studies on the application of postural re-education in the management of AIS. These studies revealed that postural re-education in the form of exercise rehabilitation programs may have a positive influence on scoliosis; however, the various programs were difficult to compare. More research is necessary. There is at present Level 1 evidence for the effectiveness of Schroth scoliosis exercises in the management of AIS. Whether this evidence can be extrapolated to include other forms of scoliosis- pattern-specific exercises requires further investigation. Because corrective postures theoretically reduce the asymmetric loading of the spinal deformities and reverse the vicious cycle of spinal curvature progression, their integration into AIS programs may be beneficial and should be further examined. PMID:27340540

  20. Postural Rehabilitation for Adolescent Idiopathic Scoliosis during Growth

    PubMed Central

    Weiss, Hans-Rudolf; Moramarco, Marc Michael; Borysov, Maksym; Lee, Sang Gil; Nan, Xiaofeng; Moramarco, Kathryn Ann

    2016-01-01

    Long-term follow-up of untreated patients with adolescent idiopathic scoliosis (AIS) indicates that, with the exception of some extremely severe cases, AIS does not have a significant impact on quality of life and does not result in dire consequences. In view of the relatively benign nature of AIS and the long-term complications of surgery, the indications for treatment should be reviewed. Furthermore, recent studies have shown that scoliosis-specific exercises focusing on postural rehabilitation can positively influence the spinal curvatures in growing adolescents. Experiential postural re-education is a conservative, non-invasive approach, and its role in the management of AIS warrants further study. This article reviews current evidence for the inclusion of various forms of postural reeducation in the management of AIS. Recent comprehensive reviews have been researched including a manual and PubMed search for evidence regarding the effectiveness of physical/postural re-education/physiotherapy programs in growing AIS patients. This search revealed that there were few studies on the application of postural re-education in the management of AIS. These studies revealed that postural re-education in the form of exercise rehabilitation programs may have a positive influence on scoliosis; however, the various programs were difficult to compare. More research is necessary. There is at present Level 1 evidence for the effectiveness of Schroth scoliosis exercises in the management of AIS. Whether this evidence can be extrapolated to include other forms of scoliosis- pattern-specific exercises requires further investigation. Because corrective postures theoretically reduce the asymmetric loading of the spinal deformities and reverse the vicious cycle of spinal curvature progression, their integration into AIS programs may be beneficial and should be further examined. PMID:27340540

  1. Anticipatory postural adjustments during standing in below-the-knee amputees.

    PubMed

    Aruin, A S; Nicholas, J J; Latash, M L

    1997-01-01

    OBJECTIVE: We studied the role of adaptive changes within the central nervous system in anticipatory postural adjustments seen in unilateral below-the-knee amputees. DESIGN: Changes in electromyographic and mechanical variables were compared during standardized tasks performed by standing subjects. BACKGROUND: Anticipatory postural adjustments represent an important mechanism of postural control which was expected to be changed in amputees because of both mechanical and secondary, neurological reasons. METHODS: Six patients after a below-the-knee amputation and six control subjects stood on a force platform and performed fast bilateral shoulder movements and also dropped or caught a load from (into) extended hands. Anticipatory changes in the background activity of postural muscles were analysed. RESULTS: In amputees, there were cases of marked asymmetry in anticipatory changes of the background muscle activity which were larger on the intact side of the body but were commonly small or absent on the side of the amputation. This asymmetry could lead to larger mediolateral forces and displacements of the centre of pressure. CONCLUSIONS: We suggest that asymmetrical patterns of anticipatory postural adjustments reflect central adaptive changes secondary to the amputation. Rehabilitation approaches would benefit from understanding and taking advantage of the adaptive changes within the central nervous system. RELEVANCE: We demonstrated asymmetries in patterns of anticipatory postural adjustments during voluntary arm movements and load manipulations by standing unilateral amputees. This finding is of potential importance for rehabilitation of amputees and their prosthetic training. PMID:11415672

  2. Assisting People with Multiple Disabilities Actively Correct Abnormal Standing Posture with a Nintendo Wii Balance Board through Controlling Environmental Stimulation

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board…

  3. Bioceramic fabrics improve quiet standing posture and handstand stability in expert gymnasts.

    PubMed

    Cian, C; Gianocca, V; Barraud, P A; Guerraz, M; Bresciani, J P

    2015-10-01

    Bioceramic fabrics have been claimed to improve blood circulation, thermoregulation and muscle relaxation, thereby also improving muscular activity. Here we tested whether bioceramic fabrics have an effect on postural control and contribute to improve postural stability. In Experiment 1, we tested whether bioceramic fabrics contribute to reduce body-sway when maintaining standard standing posture. In Experiment 2, we measured the effect of bioceramic fabrics on body-sway when maintaining a more instable posture, namely a handstand hold. For both experiments, postural oscillations were measured using a force platform with four strain gauges that recorded the displacements of the center of pressure (CoP) in the horizontal plane. In half of the trials, the participants wore a full-body second skin suit containing a bioceramic layer. In the other half of the trials, they wore a 'placebo' second skin suit that had the same cut, appearance and elasticity as the bioceramic suit but did not contain the bioceramic layer. In both experiments, the surface of displacement of the CoP was significantly smaller when participants were wearing the bioceramic suit than when they were wearing the placebo suit. The results suggest that bioceramic fabrics do have an effect on postural control and improve postural stability. PMID:26234473

  4. Organization of Functional Postural Responses Following Perturbations in Multiple Directions in Elderly Fallers Standing Quietly

    ERIC Educational Resources Information Center

    Matjacic, Zlatko; Sok, David; Jakovljevic, Miroljub; Cikajlo, Imre

    2013-01-01

    The objective of the study was to assess functional postural responses by analyzing the center-of-pressure trajectories resulting from perturbations delivered in multiple directions to elderly fallers. Ten elderly individuals were standing quietly on two force platforms while an apparatus delivered controlled perturbations at the level of pelvis…

  5. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    PubMed

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. PMID:26709429

  6. Effect of three different jaw positions on postural stability during standing

    PubMed Central

    Alghadir, Ahmad H.; Zafar, Hamayun; Iqbal, Zaheen A.

    2015-01-01

    Summary Studies in the literature show that jaw and neck regions are linked anatomically, biomechanically and neurologically. Voluntary clenching has been shown to improve muscle strength and performance of various motor tasks. Information from the neck sensory-motor system is reported to be important for posture. Hence it is reasonable to believe that activation of the jaw sensory-motor system has the potential to modulate posture. In a sample of 116 healthy subjects, we compared center of gravity (COG) velocity during quiet standing on a foam surface during three test positions: i) resting jaw, ii) open jaw, and iii) clenching; these were tested in two conditions: with eyes open and with eyes closed. The COG velocity decreased significantly during clenching in comparison to both open and resting jaw positions (p<0.0001). This suggests that the jaw sensory-motor system can modulate postural mechanisms. We conclude that jaw clenching can enhance postural stability during standing on an unstable surface in both the presence and absence of visual input in healthy adults and suggest that this should be taken into consideration in treatment and rehabilitation planning for patients with postural instability. PMID:26329542

  7. Standing working posture compared in pregnant and non-pregnant conditions.

    PubMed

    Paul, J A; Frings-Dresen, M H

    1994-09-01

    During pregnancy, an increase in body weight occurs together with changes in body weight distribution and in fit between body dimensions and workplace layout. These changes may cause alterations in working posture which may, in turn, have adverse consequences for the biomechanical load on the musculoskeletal system and so increase the risk of musculoskeletal disorders. Using photographic posture registration, the standing working posture was studied in 27 women during the last stage of pregnancy and after delivery (the experimental group). The women performed an assembly task while standing at various workplace layouts. The postural differences between the pregnant condition and the non-pregnant condition were studied and the effect of the various workplace layouts assessed. Ten non-pregnant controls were also studied twice to establish the effect of the time interval between the measuring occasions. We found that the women of the experimental group stood further from the work surface in the pregnant condition compared to the non-pregnant condition, the hips were positioned more backwards, and, in order to reach the tesk, they increased the flexion of the trunk, increased the anteflexion of the upper arms, and extended the arms more. At the workplace layout in which the work surface height was self-selected, the postural differences due to pregnancy were smallest or even absent, compared to the postural differences in the other workplace layouts studied. Ergonomists and workers in occupational health services should be alert to the consequences for the biomechanical load on the musculoskeletal system and the risk of development of health complaints caused by postural changes due to pregnancy. An adjustable workplace layout may prevent some problems. PMID:7957032

  8. Dementia alters standing postural adaptation during a visual search task in older adult men

    PubMed Central

    Joŕdan, Azizah J.; McCarten, J. Riley; Rottunda, Susan; Stoffregen, Thomas A.; Manor, Brad; Wade, Michael G.

    2015-01-01

    This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance—in the non-dementia group only—suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus appears to disrupt this perception-action synergy. PMID:25770830

  9. Reaching while standing in microgravity: a new postural solution to oversimplify movement control.

    PubMed

    Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry

    2012-01-01

    Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment. PMID:22159588

  10. Influence of Transcranial Direct Current Stimulation to the Cerebellum on Standing Posture Control.

    PubMed

    Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Onishi, Hideaki

    2016-01-01

    Damage to the vestibular cerebellum results in dysfunctional standing posture control. Patients with cerebellum dysfunction have a larger sway in the center of gravity while standing compared with healthy subjects. Transcranial direct current stimulation (tDCS) is a noninvasive technique for selectively exciting or inhibiting specific neural structures with potential applications in functional assessment and treatment of neural disorders. However, the specific stimulation parameters for influencing postural control have not been assessed. In this study, we investigated the influence of tDCS when applied over the cerebellum on standing posture control. Sixteen healthy subjects received tDCS (20 min, 2 mA) over the scalp 2 cm below the inion. In Experiment 1, all 16 subjects received tDCS under three stimulus conditions, Sham, Cathodal, and Anodal, in a random order with the second electrode placed on the forehead. In Experiment 2, five subjects received cathodal stimulation only with the second electrode placed over the right buccinator muscle. Center of gravity sway was measured twice for 60 s before and after tDCS in a standing posture with eyes open and legs closed, and average total locus length, locus length per second, rectangular area, and enveloped area were calculated. In Experiment 1, total locus length and locus length per second decreased significantly after cathodal stimulation but not after anodal or sham stimulation, while no tDCS condition influenced rectangular or enveloped areas. In Experiment 2, cathodal tDCS again significantly reduced total locus length and locus length per second but not rectangular and enveloped areas. The effects of tDCS on postural control are polarity-dependent, likely reflecting the selective excitation or inhibition of cerebellar Purkinje cells. Cathodal tDCS to the cerebellum of healthy subjects can alter body sway (velocity). PMID:27458358

  11. Influence of Transcranial Direct Current Stimulation to the Cerebellum on Standing Posture Control

    PubMed Central

    Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Onishi, Hideaki

    2016-01-01

    Damage to the vestibular cerebellum results in dysfunctional standing posture control. Patients with cerebellum dysfunction have a larger sway in the center of gravity while standing compared with healthy subjects. Transcranial direct current stimulation (tDCS) is a noninvasive technique for selectively exciting or inhibiting specific neural structures with potential applications in functional assessment and treatment of neural disorders. However, the specific stimulation parameters for influencing postural control have not been assessed. In this study, we investigated the influence of tDCS when applied over the cerebellum on standing posture control. Sixteen healthy subjects received tDCS (20 min, 2 mA) over the scalp 2 cm below the inion. In Experiment 1, all 16 subjects received tDCS under three stimulus conditions, Sham, Cathodal, and Anodal, in a random order with the second electrode placed on the forehead. In Experiment 2, five subjects received cathodal stimulation only with the second electrode placed over the right buccinator muscle. Center of gravity sway was measured twice for 60 s before and after tDCS in a standing posture with eyes open and legs closed, and average total locus length, locus length per second, rectangular area, and enveloped area were calculated. In Experiment 1, total locus length and locus length per second decreased significantly after cathodal stimulation but not after anodal or sham stimulation, while no tDCS condition influenced rectangular or enveloped areas. In Experiment 2, cathodal tDCS again significantly reduced total locus length and locus length per second but not rectangular and enveloped areas. The effects of tDCS on postural control are polarity-dependent, likely reflecting the selective excitation or inhibition of cerebellar Purkinje cells. Cathodal tDCS to the cerebellum of healthy subjects can alter body sway (velocity). PMID:27458358

  12. Variation between seated and standing/walking postures among male and female call centre operators

    PubMed Central

    2012-01-01

    Background The dose and time-pattern of sitting has been suggested in public health research to be an important determinant of risk for developing a number of diseases, including cardiovascular disorders and diabetes. The aim of the present study was to assess the time-pattern of seated and standing/walking postures amongst male and female call centre operators, on the basis of whole-shift posture recordings, analysed and described by a number of novel variables describing posture variation. Methods Seated vs. standing/walking was recorded using dichotomous inclinometers throughout an entire work shift for 43 male and 97 female call centre operators at 16 call centres. Data were analysed using an extensive set of variables describing occurrence of and switches between seated and standing/walking, posture similarity across the day, and compliance with standard recommendations for computer work. Results The majority of the operators, both male and female, spent more than 80% of the shift in a seated posture with an average of 10.4 switches/hour between seated and standing/walking or vice versa. Females spent, on average, 11% of the day in periods of sustained sitting longer than 1 hour; males 4.6% (p = 0.013). Only 38% and 11% of the operators complied with standard recommendations of getting an uninterrupted break from seated posture of at least 5 or 10 minutes, respectively, within each hour of work. Two thirds of all investigated variables showed coefficients of variation between subjects above 0.5. Since work tasks and contractual break schedules were observed to be essentially similar across operators and across days, this indicates that sedentary behaviours differed substantially between individuals. Conclusions The extensive occurrence of uninterrupted seated work indicates that efforts should be made at call centres - and probably in other settings in the office sector - to introduce more physical variation in terms of standing/walking periods during the work

  13. A method for early detection of the initiation of sit-to-stand posture transitions.

    PubMed

    Doulah, Abul; Shen, Xiangrong; Sazonov, Edward

    2016-04-01

    A powered lower extremity orthotic brace can potentially be used to assist frail elderly during daily activities. This paper presents a method for an early detection of the initiation of sit-to-stand (SiSt) posture transition that can be used in the control of the powered orthosis. Unlike the methods used in prosthetic devices that rely on surface electromyography (EMG), the proposed method uses only sensors embedded into the orthosis brace attached to the limb. The method was developed and validated using data from a human study with 10 individuals. Each human trial included different sets of sitting, standing and walking activities originating from various initial postures. Features from the sensor signal were extracted and aggregated in lagged epochs to incorporate the time history. Principal component analysis (PCA) was used to reduce the feature set. The principal components were then used in a leave-one-out manner to train a linear support vector machine (SVM) classifier to perform early detection of the SiSt posture transition. The proposed method achieved the sensitivity of 100% and the specificity 92.94% of trials without false positives. The average detection time (DT) of 0.1341  ±  0.3310 s following the start of transition demonstrated early recognition of the initiation of SiSt transition. PMID:26963478

  14. Long-Term Effects from Bacterial Meningitis in Childhood and Adolescence on Postural Control

    PubMed Central

    Petersen, Hannes; Patel, Mitesh; Ingason, Einar F.; Einarsson, Einar J.; Haraldsson, Ásgeir; Fransson, Per-Anders

    2014-01-01

    Bacterial meningitis in childhood is associated with cognitive deficiencies, sensorimotor impairments and motor dysfunction later in life. However, the long-term effects on postural control is largely unknown, e.g., whether meningitis subjects as adults fully can utilize visual information and adaptation to enhance stability. Thirty-six subjects (20 women, mean age 19.3 years) treated in childhood or adolescence for bacterial meningitis, and 25 controls (13 women, mean age 25.1 years) performed posturography with eyes open and closed under unperturbed and perturbed standing. The meningitis subjects were screened for subjective vertigo symptoms using a questionnaire, clinically tested with headshake and head thrust test, as well as their hearing was evaluated. Meningitis subjects were significantly more unstable than controls during unperturbed (p≤0.014) and perturbed standing, though while perturbed only with eyes open in anteroposterior direction (p = 0.034) whereas in lateral direction both with eyes open and closed (p<0.001). Meningitis subjects had poorer adaption ability to balance perturbations especially with eyes open, and they frequently reported symptoms of unsteadiness (88% of the subjects) and dizziness (81%), which was found significantly correlated to objectively decreased stability. Out of the 36 subjects only 3 had unilateral hearing impairment. Hence, survivors of childhood bacterial meningitis may suffer long-term disorders affecting postural control, and would greatly benefit if these common late effects became generally known so treatments can be developed and applied. PMID:25405756

  15. Study of the human postural control system during quiet standing using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2009-05-01

    The detrended fluctuation analysis is used to study the behavior of different time series obtained from the trajectory of the center of pressure, the output of the activity of the human postural control system. The results suggest that these trajectories present two different regimes in their scaling properties: persistent (for high frequencies, short-range time scale) to antipersistent (for low frequencies, long-range time scale) behaviors. The similitude between the results obtained for the measurements, done with both eyes open and eyes closed, indicate either that the visual system may be disregarded by the postural control system while maintaining the quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with the type of analysis performed here.

  16. Modelling resonances of the standing body exposed to vertical whole-body vibration: Effects of posture

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2008-10-01

    Lumped parameter mathematical models representing anatomical parts of the human body have been developed to represent body motions associated with resonances of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body standing in five different postures: 'upright', 'lordotic', 'anterior lean', 'knees bent', and 'knees more bent'. The inertial and geometric parameters of the models were determined from published anthropometric data. Stiffness and damping parameters were obtained by comparing model responses with experimental data obtained previously. The principal resonance of the vertical apparent mass, and the first peak in the fore-and-aft cross-axis apparent mass, of the standing body in an upright posture (at 5-6 Hz) corresponded to vertical motion of the viscera in phase with the vertical motion of the entire body due to deformation of the tissues at the soles of the feet, with pitch motion of the pelvis out of phase with pitch motion of the upper body above the pelvis. Upward motion of the body was in phase with the forward pitch motion of the pelvis. Changing the posture of the upper body had minor effects on the mode associated with the principal resonances of the apparent mass and cross-axis apparent mass, but the mode changed significantly with bending of the legs. In legs-bent postures, the principal resonance (at about 3 Hz) was attributed to bending of the legs coupled with pitch motion of the pelvis in phase with pitch motion of the upper body. In this mode, extension of the legs was in phase with the forward pitch motion of the upper body and the upward vertical motion of the viscera.

  17. Effects of transporting an infant on the posture of women during walking and standing still.

    PubMed

    Junqueira, Lúcia Desideri; Amaral, Lia Queiroz; Iutaka, Alexandre Sadao; Duarte, Marcos

    2015-03-01

    We investigated the effects on women of carrying an infant in front, focusing on the pelvic and spinal posture and the displacement of the body's center of gravity. For such, we compared mothers to non-mothers not carrying anything or carrying the same load (a doll) and the mothers carrying their infants. Twenty mothers and 44 women who did not have children were analyzed for their movement and posture during walking and standing still with a motion capture system. Walking while carrying a load was slower and with a shorter stride length than while not carrying a load. The mothers' group walked slower and with a shorter stride length than the non-mothers' group. During walking and standing still, the women decreased their angle of pelvic anteversion, increased lumbar lordosis, increased thoracic kyphosis, and increased trunk backward inclination while carrying a load in comparison with not carrying anything. In addition, we observed some small differences in the spinal angles of mothers when carrying their infants compared to when carrying a doll. When standing still, the women carrying a load displaced backwards their vertical projection of the center of gravity to exactly compensate the destabilizing load at the front that resulted in no net change of the body-plus-load center of gravity. In general, these changes are qualitatively similar to the ones observed during pregnancy. PMID:25800000

  18. Single-leg postural stability deficits following anterior cruciate ligament reconstruction in pediatric and adolescent athletes.

    PubMed

    Sugimoto, Dai; Howell, David R; Micheli, Lyle J; Meehan, William P

    2016-07-01

    The objective of this study was to compare the postural stability of pediatric and adolescent athletes without anterior cruciate ligament injury with those who underwent anterior cruciate reconstruction (ACLR). Postural stability ratings derived from a video-force plate system during the three stances of the modified Balance Error Scoring System were collected from pediatric and adolescent athletes who underwent ACLR (N=24; mean 1.2 years after surgery) and from uninjured controls (N=479). The postural control rating was calculated as the mean of the displacement and variance of the torso and center of pressure data, normalized on a scale from 0 to 100. A higher rating indicates greater postural stability. Participants who underwent ACLR showed lower postural stability ratings during single-leg stance compared with uninjured controls (40.0 vs. 48.7; P=0.037). ACLR is associated with deficits in postural stability. PMID:26863483

  19. Static Standing Balance in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Villarroya, M. Adoracion; Gonzalez-Aguero, Alejandro; Moros-Garcia, Teresa; de la Flor Marin, Mario; Moreno, Luis A.; Casajus, Jose A.

    2012-01-01

    Aim: To analyse static-standing-balance of adolescents with Down syndrome (DS). Methods: Thirty-two adolescents with DS aged 10-19 years (DSG); 33 adolescents, age/sex-matched, without DS (CG). Static-standing-balance under four conditions (C1: open-eyes/fixed-foot-support; C2: closed-eyes/fixed-foot-support; C3: open-eyes/compliant-foot-support;…

  20. The subjective postural vertical in standing: reliability and normative data for healthy subjects.

    PubMed

    Bergmann, Jeannine; Kreuzpointner, Monica-Antoanela; Krewer, Carmen; Bardins, Stanislav; Schepermann, Andreas; Koenig, Eberhard; Müller, Friedemann; Jahn, Klaus

    2015-04-01

    Impaired verticality perception can cause falls, or even the inability to stand, due to lateropulsion or retropulsion. The internal estimate of verticality can be assessed through the subjective visual, haptic, or postural vertical (SPV). The SPV reflects impaired upright body orientation, but has primarily been assessed in sitting position. The internal representations of body orientation might be different between sitting and standing, mainly because of differences in somatosensory input for the estimation of SPV. To test the SPV during standing, we set up a paradigm using a device that allows movement in three dimensions (the Spacecurl). This study focused on the test-retest and interrater reliabilities of SPV measurements (n = 25) and provides normative values for the age range 20-79 years (n = 60; 10 healthy subjects per decade). The test-retest and interrater reliabilities for SPV measurements in standing subjects were good. The normality values ranged from -1.7° to 2.3° in the sagittal plane, and from -1.6° to 1.2° in the frontal plane. Minor alterations occurred with aging: SPV shifted backward with increasing age, and the variability of verticality estimates increased. Assessment of SPV in standing can be done with reliable results. SPV should next be used to test patients with an impaired sense of verticality, to determine its diagnostic value in comparison to established tools. PMID:25522832

  1. Cognitive and postural precursors of motion sickness in adolescent boxers.

    PubMed

    Chen, Yi-Chou; Tseng, Tzu-Chiang; Hung, Ting-Hsuan; Hsieh, City C; Chen, Fu-Chen; Stoffregen, Thomas A

    2013-09-01

    Athletic head trauma (both concussive and sub-concussive) is common among adolescents. Concussion typically is followed by motion sickness-like symptoms, by changes in cognitive performance, and by changes in standing body sway. We asked whether pre-bout body sway would differ between adolescent boxers who experienced post-bout motion sickness and those who did not. In addition, we asked whether pre-bout cognitive performance would differ as a function of adolescent boxers' post-bout motion sickness. Nine of nineteen adolescent boxers reported motion sickness after a bout. Pre-bout measures of cognitive performance and body sway differed between boxers who reported post-bout motion sickness and those who did not. The results suggest that susceptibility to motion sickness-like symptoms in adolescent boxers may be manifested in characteristic patterns of body sway and cognitive performance. It may be possible to use pre-bout data to predict susceptibility to post-bout symptoms. PMID:23680426

  2. Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images

    NASA Astrophysics Data System (ADS)

    Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2016-03-01

    Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.

  3. Influence of visual inputs on quasi-static standing postural steadiness in individuals with spinal cord injury.

    PubMed

    Lemay, Jean-François; Gagnon, Dany; Duclos, Cyril; Grangeon, Murielle; Gauthier, Cindy; Nadeau, Sylvie

    2013-06-01

    Postural steadiness while standing is impaired in individuals with spinal cord injury (SCI) and could be potentially associated with increased reliance on visual inputs. The purpose of this study was to compare individuals with SCI and able-bodied participants on their use of visual inputs to maintain standing postural steadiness. Another aim was to quantify the association between visual contribution to achieve postural steadiness and a clinical balance scale. Individuals with SCI (n = 15) and able-bodied controls (n = 14) performed quasi-static stance, with eyes open or closed, on force plates for two 45 s trials. Measurements of the centre of pressure (COP) included the mean value of the root mean square (RMS), mean COP velocity (MV) and COP sway area (SA). Individuals with SCI were also evaluated with the Mini-Balance Evaluation Systems Test (Mini BESTest), a clinical outcome measure of postural steadiness. Individuals with SCI were significantly less stable than able-bodied controls in both conditions. The Romberg ratios (eyes open/eyes closed) for COP MV and SA were significantly higher for individuals with SCI, indicating a higher contribution of visual inputs for postural steadiness in that population. Romberg ratios for RMS and SA were significantly associated with the Mini-BESTest. This study highlights the contribution of visual inputs in individuals with SCI when maintaining quasi-static standing posture. PMID:23332191

  4. Universal and individual characteristics of postural sway during quiet standing in healthy young adults

    PubMed Central

    Yamamoto, Tomohisa; Smith, Charles E; Suzuki, Yasuyuki; Kiyono, Ken; Tanahashi, Takao; Sakoda, Saburo; Morasso, Pietro; Nomura, Taishin

    2015-01-01

    The time course of the center of pressure (CoP) during human quiet standing, corresponding to body sway, is a stochastic process, influenced by a variety of features of the underlying neuro-musculo-skeletal system, such as postural stability and flexibility. Due to complexity of the process, sway patterns have been characterized in an empirical way by a number of indices, such as sway size and mean sway velocity. Here, we describe a statistical approach with the aim of estimating “universal” indices, namely parameters that are independent of individual body characteristics and thus are not “hidden” by the presence of individual, daily, and circadian variations of sway; in this manner it is possible to characterize the common aspects of sway dynamics across healthy young adults, in the assumption that they might reflect underlying neural control during quiet standing. Such universal indices are identified by analyzing intra and inter-subject variability of various indices, after sorting out individual-specific indices that contribute to individual discriminations. It is shown that the universal indices characterize mainly slow components of sway, such as scaling exponents of power-law behavior at a low-frequency regime. On the other hand, most of the individual-specific indices contributing to the individual discriminations exhibit significant correlation with body parameters, and they can be associated with fast oscillatory components of sway. These results are consistent with a mechanistic hypothesis claiming that the slow and the fast components of sway are associated, respectively, with neural control and biomechanics, supporting our assumption that the universal characteristics of postural sway might represent neural control strategies during quiet standing. PMID:25780094

  5. Changes in Habitual and Active Sagittal Posture in Children and Adolescents with and without Visual Input – Implications for Diagnostic Analysis of Posture

    PubMed Central

    Mazet, Carola; Mazet, Dirk; Hammes, Annette; Schmitt, Eduard

    2016-01-01

    Introduction Poor posture in children and adolescents has a prevalence of 22-65% and is suggested to be responsible for back pain. To assess posture, photometric imaging of sagittal posture is widely used, but usually only habitual posture positions (resting position with minimal muscle activity) are analysed. Aim The objective of this study was 1) to investigate possible changes in posture-describing parameters in the sagittal plane, when the subjects changed from a habitual passive posture to an actively corrected posture, and 2) to investigate the changes in posture parameters when an actively corrected posture was to be maintained with closed eyes. Materials and Methods In a group of 216 male children and adolescents (average 12.4 ± 2.5 years, range 7.0 – 17.6 years), six sagittal posture parameters (body tilt BT, trunk incline TI, posture index PI, horizontal distances between ear, shoulder and hip and the perpendicular to the ankle joint) were determined by means of photometric imaging in an habitual passive posture position, in an actively erect posture with eyes open, and in active stance with eyes closed. The change in these parameters during the transition between the posture positions was analysed statistically (dependent t-Test or Wilcoxon-Test) after Bonferroni correction (p<0.004). Results When moving from a habitual passive to an active posture BT, TI, PI, dEar, dShoulder, and dHip decreased significantly(p< 0.004). When the eyes were closed, only the perpendicular distances (dEar, dShoulder, and dHip) increased significantly. The parameters that describe the alignment of the trunk sections in relation to each other (BT, TI, PI), remained unchanged in both actively regulated posture positions. Conclusion Changes in sagittal posture parameters that occur when a habitual passive posture switches into an active posture or when an active posture is to be maintained while the eyes are closed can be used for diagnostic purposes regarding poor posture

  6. Postural responses to anterior and posterior perturbations applied to the upper trunk of standing human subjects.

    PubMed

    Colebatch, James G; Govender, Sendhil; Dennis, Danielle L

    2016-02-01

    This study concerned the effects of brisk perturbations applied to the shoulders of standing subjects to displace them either forwards or backwards, our aim being to characterise the responses to these disturbances. Subjects stood on a force platform, and acceleration was measured at the level of C7, the sacrum and both tibial tuberosities. Surface EMG was measured from soleus (SOL), tibialis anterior (TA), the hamstrings (HS), quadriceps (QUAD), rectus abdominis (RA) and lumbar paraspinal (PS) muscles. Trials were recorded for each of four conditions: subjects' eyes open (reference) or closed and on a firm (reference) or compliant surface. Observations were also made of voluntary postural reactions to a tap over the deltoid. Anterior perturbations (mean C7 acceleration 251.7 mg) evoked activity within the dorsal muscles (SOL, HS, PS) with a similar latency to voluntary responses to shoulder tapping. Responses to posterior perturbations (mean C7 acceleration -240.4 mg) were more complex beginning, on average, at shorter latency than voluntary activity (median TA 78.0 ms). There was activation of TA, QUAD and SOL associated with initial forward acceleration of the lower legs. The EMG responses consisted of an initial phasic discharge followed by a more prolonged one. These responses differ from the pattern of automatic postural responses that follow displacements at the level of the ankles, and it is unlikely that proprioceptive afferents excited by ankle movement had a role in the initial responses. Vision and surface properties had only minor effects. Perturbations of the upper trunk evoke stereotyped compensatory postural responses for each direction of perturbation. For posterior perturbations, EMG onset occurs earlier than for voluntary responses. PMID:26487178

  7. Risk Factors for Postural Tachycardia Syndrome in Children and Adolescents

    PubMed Central

    Li, Xueying; Ochs, Todd; Zhao, Juan; Zhang, Xi; Yang, Jinyan; Liu, Ping; Xiong, Zhenyu; Gai, Yong; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2014-01-01

    Background Postural tachycardia syndrome (POTS) is prevalent in children and adolescents and has a great impact on health. But its risk factors have not been fully understood. This study aimed to explore possible risk factors for children and adolescents with POTS. Methods and Findings 600 children and adolescents (test group) aged 7–18 (11.9±3.0) years old, 259 males and 341 females, were recruited for identifying its risk factors. Another 197 subjects aged from 7 to 18 (11.3±2.3) years old were enrolled in the validation group. Heart rate (HR) and blood pressure (BP) were monitored during upright test. Risk factors were analyzed and sensitivity and specificity for predicting POTS were tested via receiver operating characteristic curve. Among 600 subjects, 41 were confirmed with POTS patients (6.8%) based on clinical manifestation and upright test. The results showed a significant difference in daily water intake, the daily sleeping hours, supine HR, HR increment and maximum HR during upright test between POTS and the unaffected children (P<0.05). Likelihood of POTS would increase by 1.583 times if supine HR was increased by 10 beats/min (95%CI 1.184 to 2.116, P<0.01), by 3.877 times if a child's water intake was less than 800 ml/day (95%CI 1.937 to 7.760, P<0.001), or by 5.905 times (95%CI 2.972 to 11.733, P<0.001) if sleeping hours were less than 8 hours/day. Supine HR, daily water intake and sleeping hours showed the capability of predicting POTS in children and adolescents with an AUC of 83.9% (95% CI: 78.6%–89.1%), sensitivity of 80.5% and specificity of 75%. Furthermore, in validation group, predictive sensitivity and specificity were 73.3% and 72.5%. Conclusion Faster supine HR, less water intake and shorter sleeping hours were identified as risk factors for POTS. PMID:25474569

  8. The influence of gender and somatotype on single-leg upright standing postural stability in children.

    PubMed

    Lee, Alex J Y; Lin, Wei-Hsiu

    2007-08-01

    The purpose of this study was to investigate the influence of gender and somatotypes on single-leg upright standing postural stability in children. A total of 709 healthy children from different schools were recruited to measure the anthropometric somatotypes and the mean radius of center of pressure (COP) on a force platform with their eyes open and eyes closed. The results were that (a) girls revealed significantly smaller mean radius of COP distribution than boys, both in the eyes open and eyes closed conditions, and (b) the mesomorphic, muscular children had significantly smaller mean radius of COP distribution than the endomorphic, fatty children and the ectomorphic, linear children during the eyes closed condition. The explanation for gender differences might be due to the larger body weight in boys. The explanation for somatotype differences might be due to the significantly lower body height and higher portion of muscular profile in the mesomorphic children. PMID:18089914

  9. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task

    PubMed Central

    O’Brien, Megan K.

    2014-01-01

    Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat. PMID:25083345

  10. Transient effect of core stability exercises on postural sway during quiet standing.

    PubMed

    Kaji, Ayuko; Sasagawa, Shun; Kubo, Takahiro; Kanehisa, Hiroaki

    2010-02-01

    This study aimed to examine the transient effect of core stability exercises on the motion of the center of pressure (COP) during quiet standing. Seventeen healthy young adults (7 women and 10 men) were required to perform elbow-toe and hand-heel exercises for 30 seconds in both cases. Before and 1 minute after the execution of the 2 exercises, the subjects repeated 30 seconds of quiet standing with eyes closed 3 times on a force platform with intervals of 10 seconds between trials. The intervention of the 2 exercises induced significant decreases in the maximal range of mediolateral sway (34.7 +/- 7.0 mm to 30.2 +/- 6.1 mm, p = 0.0001), standard deviation of mediolateral sway (6.4 +/- 1.2 mm to 5.8 +/- 1.0 mm, p = 0.0006), the mean speed of anteroposterior sway (14.1 +/- 2.5 mm per second to 13.2 +/- 2.3 mm per second, p = 0.004), mean speed of mediolateral sway (22.8 +/- 2.8 mm per second to 20.9 +/- 2.3 mm per second, p = 0.004), sway speed (29.3 +/- 3.9 mm per second to 27.0 +/- 3.2 mm per second, p = 0.002), and sweep speed (73.2 +/- 23.4 mm per second to 62.0 +/- 19.7 mm per second, p = 0.005) of the COP trajectory, calculated from the force platform data. This result indicates that the practice of core stability exercises transiently decreases the area of the COP trajectory and its mediolateral and total excursions during quiet standing with the eyes closed. Performing core stability exercises as part of warm-up programs may be useful for temporarily improving postural control during standing in main exercise programs. PMID:20124792

  11. Persistence of Motor-Equivalent Postural Fluctuations during Bipedal Quiet Standing

    PubMed Central

    Verrel, Julius; Pradon, Didier; Vuillerme, Nicolas

    2012-01-01

    Theoretical and empirical work indicates that the central nervous system is able to stabilize motor performance by selectively suppressing task-relevant variability (TRV), while allowing task-equivalent variability (TEV) to occur. During unperturbed bipedal standing, it has previously been observed that, for task variables such as the whole-body center of mass (CoM), TEV exceeds TRV in amplitude. However, selective control (and correction) of TRV should also lead to different temporal characteristics, with TEV exhibiting higher temporal persistence compared to TRV. The present study was specifically designed to test this prediction. Kinematics of prolonged quiet standing (5 minutes) was measured in fourteen healthy young participants, with eyes closed. Using the uncontrolled manifold analysis, postural variability in six sagittal joint angles was decomposed into TEV and TRV with respect to four task variables: (1) center of mass (CoM) position, (2) head position, (3) trunk orientation and (4) head orientation. Persistence of fluctuations within the two variability components was quantified by the time-lagged auto-correlation, with eight time lags between 1 and 128 seconds. The pattern of results differed between task variables. For three of the four task variables (CoM position, head position, trunk orientation), TEV significantly exceeded TRV over the entire 300 s-period.The autocorrelation analysis confirmed our main hypothesis for CoM position and head position: at intermediate and longer time delays, TEV exhibited higher persistence than TRV. Trunk orientation showed a similar trend, while head orientation did not show a systematic difference between TEV and TRV persistence. The combination of temporal and task-equivalent analyses in the present study allow a refined characterization of the dynamic control processes underlying the stabilization of upright standing. The results confirm the prediction, derived from computational motor control, that task

  12. Coordination of muscle torques stabilizes upright standing posture: an UCM analysis.

    PubMed

    Park, Eunse; Reimann, Hendrik; Schöner, Gregor

    2016-06-01

    The control of upright stance is commonly explained on the basis of the single inverted pendulum model (ankle strategy) or the double inverted pendulum model (combination of ankle and hip strategy). Kinematic analysis using the uncontrolled manifold (UCM) approach suggests, however, that stability in upright standing results from coordinated movement of multiple joints. This is based on evidence that postural sway induces more variance in joint configurations that leave the body position in space invariant than in joint configurations that move the body in space. But does this UCM structure of kinematic variance truly reflect coordination at the level of the neural control strategy or could it result from passive biomechanical factors? To address this question, we applied the UCM approach at the level of muscle torques rather than joint angles. Participants stood on the floor or on a narrow base of support. We estimated torques at the ankle, knee, and hip joints using a model of the body dynamics. We then partitioned the joint torques into contributions from net, motion-dependent, gravitational, and generalized muscle torques. A UCM analysis of the structure of variance of the muscle torque revealed that postural sway induced substantially more variance in directions in muscle torque space that leave the Center of Mass (COM) force invariant than in directions that affect the force acting on the COM. This difference decreased when we decorrelated the muscle torque data by randomizing across time. Our findings show that the UCM structure of variance exists at the level of muscle torques and is thus not merely a by-product of biomechanical coupling. Because muscle torques reflect neural control signals more directly than joint angles do, our results suggest that the control strategy for upright stance involves the task-specific coordination of multiple degrees of freedom. PMID:26879770

  13. High flow variant postural orthostatic tachycardia syndrome amplifies the cardiac output response to exercise in adolescents

    PubMed Central

    Pianosi, Paolo T.; Goodloe, Adele H.; Soma, David; Parker, Ken O.; Brands, Chad K.; Fischer, Philip R.

    2014-01-01

    Abstract Postural orthostatic tachycardia syndrome (POTS) is characterized by chronic fatigue and dizziness and affected individuals by definition have orthostatic intolerance and tachycardia. There is considerable overlap of symptoms in patients with POTS and chronic fatigue syndrome (CFS), prompting speculation that POTS is akin to a deconditioned state. We previously showed that adolescents with postural orthostatic tachycardia syndrome (POTS) have excessive heart rate (HR) during, and slower HR recovery after, exercise – hallmarks of deconditioning. We also noted exaggerated cardiac output during exercise which led us to hypothesize that tachycardia could be a manifestation of a high output state rather than a consequence of deconditioning. We audited records of adolescents presenting with long‐standing history of any mix of fatigue, dizziness, nausea, who underwent both head‐up tilt table test and maximal exercise testing with measurement of cardiac output at rest plus 2–3 levels of exercise, and determined the cardiac output () versus oxygen uptake () relationship. Subjects with chronic fatigue were diagnosed with POTS if their HR rose ≥40 beat·min−1 with head‐up tilt. Among 107 POTS patients the distribution of slopes for the , relationship was skewed toward higher slopes but showed two peaks with a split at ~7.0 L·min−1 per L·min−1, designated as normal (5.08 ± 1.17, N = 66) and hyperkinetic (8.99 ± 1.31, N = 41) subgroups. In contrast, cardiac output rose appropriately with in 141 patients with chronic fatigue but without POTS, exhibiting a normal distribution and an average slope of 6.10 ± 2.09 L·min−1 per L·min−1. Mean arterial blood pressure and pulse pressure from rest to exercise rose similarly in both groups. We conclude that 40% of POTS adolescents demonstrate a hyperkinetic circulation during exercise. We attribute this to failure of normal regional vasoconstriction during exercise, such that patients must increase

  14. Quantitative postural analysis and pain in children and adolescents victims of burns.

    PubMed

    Valenciano, Paola Janeiro; Itakussu, Edna Yukimi; Trelha PhD, Celita Salmaso; Fujisawa PhD, Dirce Shizuko

    2015-12-01

    [Purpose] This study aimed to quantitatively assess postural alignment in both frontal and sagittal planes, as well as pain in children and adolescents victims of burn injuries. [Subjects and Methods] This cross-sectional study included 21 victims of burns, nine children (age [mean ± SD], 7.3 ± 1.1 yrs) and 12 adolescents (12,0 ± 1.4 yrs), classified as medium and large burns, being investigated on pain and postural alignment evaluated by photogrammetry. Pain intensity was assessed by face scales and postural examination included the assessment of global and thoraco-lumbo-pelvic alignment by previously designed protocols. [Results] Only two adolescents reported mild pain associated with burn injuries, whereas deviations of the projection of the gravity center; forward head posture, and scapular asymmetry were observed in both groups. In the analysis of the thoraco-lumbo-pelvic alignment, children tended to have anterior inclination trunk, increased thoracic kyphosis and lumbar lordosis, while in adolescents, increased thoracic kyphosis and lumbar lordosis were observed. [Conclusion] The results indicate that due to the postural alterations and asymmetries in both frontal and sagittal planes, there is an increased risk of developing scoliosis and possible future pain. Thus, physiotherapy is indicated and should be maintained until complete growth is reached. PMID:26834321

  15. Quantitative postural analysis and pain in children and adolescents victims of burns

    PubMed Central

    Valenciano, Paola Janeiro; Itakussu, Edna Yukimi; Trelha, PhD, Celita Salmaso; Fujisawa, PhD, Dirce Shizuko

    2015-01-01

    [Purpose] This study aimed to quantitatively assess postural alignment in both frontal and sagittal planes, as well as pain in children and adolescents victims of burn injuries. [Subjects and Methods] This cross-sectional study included 21 victims of burns, nine children (age [mean ± SD], 7.3 ± 1.1 yrs) and 12 adolescents (12,0 ± 1.4 yrs), classified as medium and large burns, being investigated on pain and postural alignment evaluated by photogrammetry. Pain intensity was assessed by face scales and postural examination included the assessment of global and thoraco-lumbo-pelvic alignment by previously designed protocols. [Results] Only two adolescents reported mild pain associated with burn injuries, whereas deviations of the projection of the gravity center; forward head posture, and scapular asymmetry were observed in both groups. In the analysis of the thoraco-lumbo-pelvic alignment, children tended to have anterior inclination trunk, increased thoracic kyphosis and lumbar lordosis, while in adolescents, increased thoracic kyphosis and lumbar lordosis were observed. [Conclusion] The results indicate that due to the postural alterations and asymmetries in both frontal and sagittal planes, there is an increased risk of developing scoliosis and possible future pain. Thus, physiotherapy is indicated and should be maintained until complete growth is reached. PMID:26834321

  16. A longitudinal investigation into the progression of dynamic postural stability performance in adolescents.

    PubMed

    Holden, Sinéad; Boreham, Colin; Doherty, Cailbhe; Wang, Dana; Delahunt, Eamonn

    2016-07-01

    Adolescent female athletes have a higher incidence of certain non-contact lower limb injuries compared to their male counterparts. Decreased postural stability is an established risk factor for lower limb injuries; however developmental-related sex differences in postural stability during adolescence have not been investigated. The objectives of this study were to longitudinally examine changes over time, and potential sex differences in dynamic postural stability performance in adolescents. One hundred and eighty four adolescent athletes participated (mean age=13±0.34 years). Participants were assessed, using the Star Excursion Balance Test (SEBT) at baseline (T1) and at 6 (T2), 12 (T3), 18 (T4) and 24 (T5) months. At each time-point, participants performed 3 trials of the anterior, posterior-medial and posterior-lateral directions of the SEBT on each limb. Reach distance for each direction was averaged across the 3 trials normalised to leg length. General linear mixed model analyses were carried out on each of the dependant variables (reach directions) with sex and time as the categorical independent variables. There was a significant sex×time interaction for the posterior-lateral reach distance scores. There were no significant sex×time interactions for any of the other reach directions. Males increased performance on the posterior-lateral reach direction from T1 to T5, while females only increased performance until T3. Young males and females demonstrate diverging postural stability profiles during adolescence. PMID:27285476

  17. Improvement of Postural Stability During Quiet Standing Obtained After Mental Rotation of Foot Stimuli.

    PubMed

    Kawasaki, Tsubasa; Higuchi, Takahiro

    2016-01-01

    In a study on postural stability, the authors examined whether the effects of mental rotation (MR) intervention using a foot stimulus would last for a relatively long time (up to 60 min). The participants performed a randomly assigned MR task (using foot stimuli, hand stimuli, or non-body-related stimuli [car]) for 10 min. The amount of body sway during unipedal standing was measured immediately after the intervention and 10, 30, and 60 min after the intervention. Results showed that MR intervention using foot stimuli was more effective than that using hand or car stimuli. This suggests that foot stimuli, rather than body-related stimuli, would be advantageous for the intervention. The results show that beneficial effects were observed 60 min after the intervention; this indicates that the effects of the foot MR were unlikely to be explained on the basis of enhanced corticospinal excitability involving motor execution. The authors discuss a potential explanation for the effects and application of the MR task in a clinical setting. PMID:27162153

  18. The difficulty of the postural control task affects multi-muscle control during quiet standing.

    PubMed

    García-Massó, X; Pellicer-Chenoll, M; Gonzalez, L M; Toca-Herrera, J L

    2016-07-01

    The aim of this study was to compare the electromyographic (EMG) coherence between the lower limb and the core muscles when carrying out two postural tasks at different difficulty levels. EMG was recorded in 20 healthy male subjects while performing two independent quiet standing tasks. The first one involved a bipedal stance with the eyes open, while the second consisted of a dominant unipedal stance also with the eyes open. The obtained EMG signals were analysed by computing estimations of EMG-EMG coherence between muscle pairs, both singly (single-pair estimations) and combined (pooled estimations). Pooled and single coherence of anterior, posterior, core, antagonist and mixed pairs of muscles were significant in the 0-5 Hz frequency band. The results indicate that core and antagonist muscle groups, such as the anterior and posterior muscles, share low-frequency neural inputs (0-5 Hz) which could be responsible of the M-modes assembly. The core muscles could therefore provide the necessary synergy to maintain spine stability during the balancing exercise. Finally, differences in EMG-EMG coherence suggest that the muscle synergies formed during unipedal stance tasks are different from those established during bipedal stance. PMID:26942928

  19. Electromyographic analysis of postural responses during standing leg flexion in adults with hemiparesis.

    PubMed

    Hedman, L D; Rogers, M W; Pai, Y C; Hanke, T A

    1997-04-01

    The purpose of this study was to examine muscle activation patterns during standing leg single leg flexion in adults with hemiparesis. Specifically, the electromyographic activation patterns of the flexing limb biceps femoris and gluteus medius, and the stance limb gluteus medius muscles were analyzed as a function of whether the muscles were paretic or not. Delayed activation of the affected flexing side gluteus medius, as compared with unaffected flexing side gluteus medius, resulted in it being activated simultaneous with the flexing biceps femoris rather than preceding it as was previously found in healthy subjects. This suggests a temporal change in the sequential mode of coordination of the postural and intended components of the task. In addition, the magnitude of the electromyographic integrals of both the affected and unaffected flexing side gluteus medius in the early propulsive phase of the task was significantly reduced in comparison with healthy subjects. These alterations can be attributed to spatial alterations in the sequential form of organization or to a shift to a different mode of neural control in order to perform a relatively novel task. These results suggest a potential adaptive capacity in these individuals. PMID:9152210

  20. Difference in Postural Control during Quiet Standing between Young Children and Adults: Assessment with Center of Mass Acceleration

    PubMed Central

    Oba, Naoko; Sasagawa, Shun; Yamamoto, Akio; Nakazawa, Kimitaka

    2015-01-01

    The development of upright postural control has often been investigated using time series of center of foot pressure (COP), which is proportional to the ankle joint torque (i.e., the motor output of a single joint). However, the center of body mass acceleration (COMacc), which can reflect joint motions throughout the body as well as multi-joint coordination, is useful for the assessment of the postural control strategy at the whole-body level. The purpose of the present study was to investigate children’s postural control during quiet standing by using the COMacc. Ten healthy children and 15 healthy young adults were instructed to stand upright quietly on a force platform with their eyes open or closed. The COMacc as well as the COP in the anterior–posterior direction was obtained from ground reaction force measurement. We found that both the COMacc and COP could clearly distinguish the difference between age groups and visual conditions. We also found that the sway frequency of COMacc in children was higher than that in adults, for which differences in biomechanical and/or neural factors between age groups may be responsible. Our results imply that the COMacc can be an alternative force platform measure for assessing developmental changes in upright postural control. PMID:26447883

  1. Center of Mass Acceleration Feedback Control of Functional Neuromuscular Stimulation for Standing in the Presence of Internal Postural Perturbations

    PubMed Central

    Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study determined the feasibility and performance of center of mass (COM) acceleration feedback control of a neuroprosthesis utilizing functional neuromuscular stimulation (FNS) to restore standing balance to a single subject paralyzed by a motor and sensory complete, thoracic-level spinal cord injury (SCI). An artificial neural network (ANN) was created to map gain-modulated changes in total body COM acceleration estimated from body-mounted sensors to optimal changes in stimulation required to maintain standing. Feedback gains were systematically tuned to minimize the upper extremity (UE) loads applied by the subject to an instrumented support device during internally generated postural perturbations produced by volitional reaching and object manipulation. Total body COM acceleration was accurately estimated (> 90% variance explained) from two three-dimensional (3-D) accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, COM acceleration feedback control of stimulation improved standing performance by reducing the UE loading required to resist internal postural disturbances by 27%. This case study suggests that COM acceleration feedback could potentially be advantageous in a standing neuroprosthesis since it can be implemented with only a few feedback parameters and requires minimal instrumentation for comprehensive, 3-D control of dynamic standing function. PMID:23299260

  2. Is there an association between variables of postural control and strength in adolescents?

    PubMed

    Granacher, Urs; Gollhofer, Albert

    2011-06-01

    Is there an association between variables of postural control and strength in adolescents? The risk of sustaining sport injuries is particularly high in adolescents. Deficits in postural control and muscle strength represent 2 important intrinsic injury risk factors. Therefore, the purpose of this study was to investigate the relationship between variables of static and dynamic postural control and isometric and dynamic muscle strength and to find out whether there is an association between measures of postural control and muscle strength. Twenty-eight adolescents participated in this study (age 16.8 ± 0.6 years; body mass index 20.5 ± 1.8 kg · m(-2)). Biomechanic tests included the measurements of maximal isometric leg extension force (MIF) and rate of force development (RFDmax) of the leg extensors on a leg press with the feet resting on a force platform, vertical jumping force, and height (countermovement jump [CMJ]) on a force plate and the assessment of static (1-legged stance on a balance platform) and dynamic (mediolateral perturbation impulse on a balance platform) postural control. The significance level was set at p < 0.05. No significant associations were observed between measures of static and dynamic postural control. Significant positive correlations were detected between variables of isometric and dynamic muscle strength with r-values ranging from 0.441 to 0.779 (p < 0.05). Based on these models, a 100-N increase in MIF of the leg extensors was associated with 3.9, 4.2, and 6.5% better maximal CMJ force, CMJ height, and RFDmax, respectively. No significant correlations were observed between variables of postural control and muscle strength. The nonsignificant correlation between static/dynamic postural control and muscle strength implies that primarily dynamic measures of postural control should be incorporated in injury risk assessment and that postural control and muscle strength are independent of each other and may have to be trained

  3. Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat.

    PubMed

    Naranjo, E N; Cleworth, T W; Allum, J H J; Inglis, J T; Lea, J; Westerberg, B D; Carpenter, M G

    2016-02-01

    We investigated how vestibulo-spinal reflexes (VSRs) and vestibulo-ocular reflexes (VORs) measured through vestibular evoked myogenic potentials (VEMPs) and video head impulse test (vHIT) outcomes, respectively, are modulated during standing under conditions of increased postural threat. Twenty-five healthy young adults stood quietly at low (0.8 m from the ground) and high (3.2 m) surface height conditions in two experiments. For the first experiment (n = 25) VEMPs were recorded with surface EMG from inferior oblique (IO), sternocleidomastoid (SCM), trapezius (TRP), and soleus (SOL) muscles in response to 256 air-conducted short tone bursts (125 dB SPL, 500 Hz, 4 ms) delivered via headphones. A subset of subjects (n = 19) also received horizontal and vertical head thrusts (∼150°/s) at each height in a separate session, comparing eye and head velocities by using a vHIT system for calculating the functional VOR gains. VEMP amplitudes (IO, TRP, SOL) and horizontal and vertical vHIT gains all increased with high surface height conditions (P < 0.05). Changes in IO and SCM VEMP amplitudes as well as horizontal vHIT gains were correlated with changes in electrodermal activity (ρ = 0.44-0.59, P < 0.05). VEMP amplitude for the IO also positively correlated with fear (ρ = 0.43, P = 0.03). Threat-induced anxiety, fear, and arousal have significant effects on VSR and VOR gains that can be observed in both physiological and functional outcome measures. These findings provide support for a potential central modulation of the vestibular nucleus complex through excitatory inputs from neural centers involved in processing fear, anxiety, arousal, and vigilance. PMID:26631147

  4. Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors.

    PubMed

    Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi

    2013-01-01

    The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system. PMID:24110831

  5. Risk factors associated with structural postural changes in the spinal column of children and adolescents

    PubMed Central

    Sedrez, Juliana Adami; da Rosa, Maria Izabel Zaniratti; Noll, Matias; Medeiros, Fernanda da Silva; Candotti, Claudia Tarragô

    2015-01-01

    OBJECTIVE: To investigate the association between behavioral risk factors, specifically postural habits, with the presence of structural changes in the spinal column of children and adolescents. METHODS: 59 students were evaluated through the self-reporting Back Pain and Body Posture Evaluation Instrument and spinal panoramic radiographic examination. Spine curvatures were classified based on Cobb angles, as normal or altered in the saggital plane and as normal or scoliotic in the frontal plane. Data were analyzed using SPSS 18.0, based on descriptive statistics and chi-square association test (a=0,05). RESULTS: The prevalence of postural changes was 79.7% (n=47), of which 47.5% (n=28) showed frontal plane changes and 61% (n=36) sagital plane changes. Significant association was found between the presence of thoracic kyphosis and female gender, practice of physical exercises only once or twice a week, sleep time greater than 10 hours, inadequate postures when sitting on a seat and sitting down to write, and how school supplies are carried. Lumbar lordosis was associated with the inadequate way of carrying the school backpack (asymmetric); and scoliosis was associated wuth the practice of competitive sports and sleep time greater than 10 hours. CONCLUSIONS: Lifestyle may be associated with postural changes. It is important to develop health policies in order to reduce the prevalence of postural changes, by decreasing the associated risk factors. PMID:25623725

  6. Comparison of posture among adolescent male volleyball players and non-athletes

    PubMed Central

    2014-01-01

    Due to high training loads and frequently repeated unilateral exercises, several types of sports training can have an impact on the process of posture development in young athletes. The objective of the study was to assess and compare the postures of adolescent male volleyball players and their non-training peers. The study group comprised 104 volleyball players while the control group consisted of 114 non-training individuals aged 14-16 years. Body posture was assessed by the Moiré method. The volleyball players were significantly taller, and had greater body weight and fat-free mass. The analysis of posture relative to symmetry in the frontal and transverse planes did not show any significant differences between the volleyball players and non-athletes. Postural asymmetries were observed in both the volleyball players and the control participants. Lumbar lordosis was significantly less defined in the volleyball players compared to non-training individuals while no difference was observed in thoracic kyphosis. All athletes demonstrated a loss of lumbar lordosis and an increase in thoracic kyphosis. Significant differences in anteroposterior curvature of the spine between the volleyball players and the non-athletes might be associated with both training and body height. Considering the asymmetric spine overloads which frequently occur in sports training, meticulous posture assessment in young athletes seems well justified. PMID:25729154

  7. Simulating the restoration of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2016-01-01

    In this simulation study, we present and examine methods to develop a feedback controller for a neuroprosthesis that restores forward and side leaning function during standing following complete thoracic-level spinal cord injury. Achieving leaning postures away from erect stance with functional neuromuscular stimulation (FNS) would allow users to extend their reaching capabilities. Utilizing a 3-D computer model of human stance, an FNS control system based on total-body center of mass (CoM) kinematics (position, acceleration) is developed and tested in simulation. CoM kinematics drive an artificial neural network to modulate muscle excitations and reduce the upper extremity loading, presumably against a walker or similar support surface, required to resist the effects of postural perturbations. Furthermore, a novel method to robustly estimate the feedback kinematics for standing applications is also presented while assuming 3-D accelerometer signals at locations consistent with a proposed implantable networked neuroprosthesis system. For shifting and balance at leaning postures, respectively, center of mass position and acceleration could be approximated to within 20 % of the maximum value, with strong correlations (R > 0.9) between values estimated by the proposed method and the true values derived from model dynamics. When utilizing the estimated feedback kinematics for FNS control, standing performance in terms of maximum upper extremity loading was still significantly reduced (p < 0.001) compared to conventionally applying constant and maximal stimulation. In the future, these simulation-based methods will be employed to develop experimental approaches for restoring leaning standing function by FNS. PMID:26324246

  8. Effect of wearing tight pants on the trunk flexion and pelvic tilting angles in the stand-to-sit movement and a seated posture

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the effect of wearing the tight pants on the trunk flexion and pelvic tilting angles in the stand-to-sit movement and a seated posture. [Subjects] Nine male subjects were recruited. [Methods] The trunk flexion angle and pelvic posterior tilting angle were measured using a motion-capture system during the stand-to-sit movement and in a seated posture. [Results] The trunk flexion and the posterior pelvic tilting angles during the stand-to-sit movement and in the seated posture when wearing tight pants significantly increased compared with those when wearing of general pants. [Conclusion] Therefore, wearing tight pants could produce musculoskeletal disorders via abnormal movement and posture in the lumbar spine and pelvis. So the effects of wearing tight pants need to be investigated in further studies to reveal their direct relationship to musculoskeletal problems. PMID:26957736

  9. SEMG analysis of astronaut upper arm during isotonic muscle actions with normal standing posture

    NASA Astrophysics Data System (ADS)

    Qianxiang, Zhou; Chao, Ma; Xiaohui, Zheng

    sEMG analysis of astronaut upper arm during isotonic muscle actions with normal standing posture*1 Introduction Now the research on the isotonic muscle actions by using Surface Electromyography (sEMG) is becoming a pop topic in fields of astronaut life support training and rehabilitations. And researchers paid more attention on the sEMG signal processes for reducing the influence of noise which is produced during monitoring process and the fatigue estimation of isotonic muscle actions with different force levels by using the parameters which are obtained from sEMG signals such as Condition Velocity(CV), Median Frequency(MDF), Mean Frequency(MNF) and so on. As the lucubrated research is done, more and more research on muscle fatigue issue of isotonic muscle actions are carried out with sEMG analysis and subjective estimate system of Borg scales at the same time. In this paper, the relationship between the variable for fatigue based on sEMG and the Borg scale during the course of isotonic muscle actions of the upper arm with different contraction levels are going to be investigated. Methods 13 young male subjects(23.4±2.45years, 64.7±5.43Kg, 171.7±5.41cm) with normal standing postures were introduced to do isotonic actions of the upper arm with different force levels(10% MVC, 30%MVC and 50%MVC). And the MVC which means maximal voluntary contraction was obtained firstly in the experiment. Also the sEMG would be recorded during the experiments; the Borg scales would be recorded for each contraction level. By using one-third band octave method, the fatigue variable (p) based on sEMG were set up and it was expressed as p = i g(fi ) · F (fi ). And g(fi ) is defined as the frequent factor which was 0.42+0.5 cos(π fi /f0 )+0.08 cos(2π fi /f0 ), 0 < FI fi 0, orf0 ≤> f0 . According to the equations, the p could be computed and the relationship between variable p and the Borg scale would be investigated. Results In the research, three kinds of fitted curves between

  10. Hemispheric specificity for proprioception: Postural control of standing following right or left hemisphere damage during ankle tendon vibration.

    PubMed

    Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge

    2015-11-01

    Right brain damage (RBD) following stroke often causes significant postural instability. In standing (without vision), patients with RBD are more unstable than those with left brain damage (LBD). We hypothesised that this postural instability would relate to the cortical integration of proprioceptive afferents. The aim of this study was to use tendon vibration to investigate whether these changes were specific to the paretic or non-paretic limbs. 14 LBD, 12 RBD patients and 20 healthy subjects were included. Displacement of the Centre of Pressure (CoP) was recorded during quiet standing, then during 3 vibration conditions (80 Hz - 20s): paretic limb, non-paretic limb (left and right limbs for control subjects) and bilateral. Vibration was applied separately to the peroneal and Achilles tendons. Mean antero-posterior position of the CoP, variability and velocity were calculated before (4s), during and after (24s) vibration. For all parameters, the strongest perturbation was during Achilles vibrations. The Achilles non-paretic condition induced a larger backward displacement than the Achilles paretic condition. This condition caused specific behaviour on the velocity: the LBD group was perturbed at the onset of the vibrations, but gradually recovered their stability; the RBD group was significantly perturbed thereafter. After bilateral Achilles vibration, RBD patients required the most time to restore initial posture. The reduction in use of information from the paretic limb may be a central strategy to deal with risk-of-fall situations such as during Achilles vibration. The postural behaviour is profoundly altered by lesions of the right hemisphere when proprioception is perturbed. PMID:26358149

  11. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered

    PubMed Central

    Pialasse, Jean-Philippe; Descarreaux, Martin; Mercier, Pierre; Blouin, Jean; Simoneau, Martin

    2015-01-01

    Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20) or severe (n = 16) spine deformation were compared to those of healthy control adolescents (n = 16). Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes. PMID:26580068

  12. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered.

    PubMed

    Pialasse, Jean-Philippe; Descarreaux, Martin; Mercier, Pierre; Blouin, Jean; Simoneau, Martin

    2015-01-01

    Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20) or severe (n = 16) spine deformation were compared to those of healthy control adolescents (n = 16). Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes. PMID:26580068

  13. SEMG analysis of astronaut upper arm during isotonic muscle actions with normal standing posture

    NASA Astrophysics Data System (ADS)

    Qianxiang, Zhou; Chao, Ma; Xiaohui, Zheng

    sEMG analysis of astronaut upper arm during isotonic muscle actions with normal standing posture*1 Introduction Now the research on the isotonic muscle actions by using Surface Electromyography (sEMG) is becoming a pop topic in fields of astronaut life support training and rehabilitations. And researchers paid more attention on the sEMG signal processes for reducing the influence of noise which is produced during monitoring process and the fatigue estimation of isotonic muscle actions with different force levels by using the parameters which are obtained from sEMG signals such as Condition Velocity(CV), Median Frequency(MDF), Mean Frequency(MNF) and so on. As the lucubrated research is done, more and more research on muscle fatigue issue of isotonic muscle actions are carried out with sEMG analysis and subjective estimate system of Borg scales at the same time. In this paper, the relationship between the variable for fatigue based on sEMG and the Borg scale during the course of isotonic muscle actions of the upper arm with different contraction levels are going to be investigated. Methods 13 young male subjects(23.4±2.45years, 64.7±5.43Kg, 171.7±5.41cm) with normal standing postures were introduced to do isotonic actions of the upper arm with different force levels(10% MVC, 30%MVC and 50%MVC). And the MVC which means maximal voluntary contraction was obtained firstly in the experiment. Also the sEMG would be recorded during the experiments; the Borg scales would be recorded for each contraction level. By using one-third band octave method, the fatigue variable (p) based on sEMG were set up and it was expressed as p = i g(fi ) · F (fi ). And g(fi ) is defined as the frequent factor which was 0.42+0.5 cos(π fi /f0 )+0.08 cos(2π fi /f0 ), 0 < FI fi 0, orf0 ≤> f0 . According to the equations, the p could be computed and the relationship between variable p and the Borg scale would be investigated. Results In the research, three kinds of fitted curves between

  14. Time-to-contact and multiscale entropy identify differences in postural control in adolescent idiopathic scoliosis.

    PubMed

    Gruber, Allison H; Busa, Michael A; Gorton Iii, George E; Van Emmerik, Richard E A; Masso, Peter D; Hamill, Joseph

    2011-05-01

    Previous reports on changes in postural control in adolescent idiopathic scoliosis (AIS) compared to healthy controls have been inconsistent. This may suggest center of pressure (COP) sway parameters are not sufficient for determining the ability to maintain quiet upright stance indicating more complex measures may be needed to examine postural control in AIS. The purpose of this investigation was to compare postural control between AIS of different severity levels and healthy controls using time-to-contact (TtC), the complexity index of multiscale entropy (C(r)), and COP sway parameters. Thirty-six AIS patients were classified as pre-bracing or pre-operative and compared to 10 healthy control subjects. Overall, the AIS patients showed significantly greater COP sway in mediolateral direction, but deficits with respect to the anteroposterior direction were only systematically identified with the time-to-contact and entropy measures. The multiscale entropy (C(r)) results indicate that those with AIS utilize a different control strategy from healthy controls in the mediolateral direction that is more constrained, less complex and less adaptable. AIS severity further reduced this adaptability in the anteroposterior direction. These results indicate it is necessary to examine both planes of motion when investigating postural control in AIS. Additionally, the application of the measures used to assess the nature of the postural control changes in AIS should also be considered. PMID:21478018

  15. A decentralized adaptive fuzzy robust strategy for control of upright standing posture in paraplegia using functional electrical stimulation.

    PubMed

    Kobravi, Hamid-Reza; Erfanian, Abbas

    2012-01-01

    In this paper, we present a novel decentralized robust methodology for control of quiet upright posture during arm-free paraplegic standing using functional electrical stimulation (FES). Each muscle-joint complex is considered as a subsystem and individual controllers are designed for each one. Each controller operates solely on its associated subsystem, with no exchange of information between them, and the interaction between the subsystems are taken as external disturbances. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed. The method is based on the synergistic combination of an adaptive nonlinear compensator with sliding mode control (SMC). Fuzzy logic system is used to represent unknown system dynamics for implementing SMC and an adaptive updating law is designed for online estimating the system parameters such that the global stability and asymptotic convergence to zero of tracking errors is guaranteed. The proposed controller requires no prior knowledge about the dynamics of system to be controlled and no offline learning phase. The results of experiments on three paraplegic subjects show that the proposed control strategy is able to maintain the vertical standing posture using only FES control of ankle dorsiflexion and plantarflexion without using upper limbs for support and to compensate the effect of external disturbances and muscle fatigue. PMID:21764350

  16. Relation between the Sensory and Anthropometric Variables in the Quiet Standing Postural Control: Is the Inverted Pendulum Important for the Static Balance Control?

    PubMed Central

    Alonso, Angélica C.; Mochizuki, Luis; Silva Luna, Natália Mariana; Ayama, Sérgio; Canonica, Alexandra Carolina; Greve, Júlia M. D. A.

    2015-01-01

    The aim of this study was to evaluate the relation between the sensory and anthropometric variables in the quiet standing. Methods. One hundred individuals (50 men, 50 women; 20–40 years old) participated in this study. For all participants, the body composition (fat tissue, lean mass, bone mineral content, and bone mineral density) and body mass, height, trunk-head length, lower limb length, and upper limb length were measured. The center of pressure was measured during the quiet standing posture, the eyes opened and closed with a force platform. Correlation and regression analysis were run to analyze the relation among body composition, anthropometric data, and postural sway. Results. The correlation analysis showed low relation between postural sway and anthropometric variables. The multiple linear regression analyses showed that the height explained 12% of the mediolateral displacement and 11% of the center of pressure area. The length of the trunk head explained 6% of displacement in the anteroposterior postural sway. During eyes closed condition, the support basis and height explained 18% of mediolateral postural sway. Conclusion. The postural control depends on body composition and dimension. This relation is mediated by the sensory information. The height was the anthropometric variable that most influenced the postural sway. PMID:26539550

  17. A new method for sudden mechanical perturbation with axial load, to assess postural control in sitting and standing.

    PubMed

    Claus, Andrew P; Verrel, Julius; Pounds, Paul E I; Shaw, Renee C; Brady, Niamh; Chew, Min T; Dekkers, Thomas A; Hodges, Paul W

    2016-05-01

    Sudden application of load along a sagittal or coronal axis has been used to study trunk stiffness, but not axial (vertical) load. This study introduces a new method for sudden-release axial load perturbation. Prima facie validity was supported by comparison with standard mechanical systems. We report the response of the human body to axial perturbation in sitting and standing and within-day repeatability of measures. Load of 20% of body weight was released from light contact onto the shoulders of 22 healthy participants (10 males). Force input was measured via force transducers at shoulders, output via a force plate below the participant, and kinematics via 3-D motion capture. System identification was used to fit data from the time of load release to time of peak load-displacement, fitting with a 2nd-order mass-spring-damper system with a delay term. At peak load-displacement, the mean (SD) effective stiffness measured with this device for participants in sitting was 12.0(3.4)N/mm, and in standing was 13.3(4.2)N/mm. Peak force output exceeded input by 44.8 (10.0)% in sitting and by 30.4(7.9)% in standing. Intra-class correlation coefficients for within-day repeatability of axial stiffness were 0.58 (CI: -0.03 to 0.83) in sitting and 0.82(0.57-0.93) in standing. Despite greater degrees of freedom in standing than sitting, standing involved lesser time, downward displacement, peak output force and was more repeatable in defending upright postural control against the same axial loads. This method provides a foundation for future studies of neuromuscular control with axial perturbation. PMID:26968087

  18. Anticipatory Postural Adjustments in Standing Reach Tasks Among Middle-Aged Adults With Diplegic Cerebral Palsy.

    PubMed

    Su, Ivan Y W; Chow, Daniel H K

    2016-01-01

    Previous studies reported that children with cerebral palsy (CP) exhibited premature anticipatory postural adjustments (APAs) with high variability and excessive activity in the frontal plane. To better understand the effects of gross motor functioning level on APAs over the life course, the authors examined the presence and consistency of APAs in 11 adults with diplegia at 2 functioning levels against 8 age-matched healthy adults during unilateral and bilateral reaching. Results revealed an anticipatory vertical torque (TZ) and an increased likelihood of APAs during bilateral reaching for the lower functioning group. It is postulated that APAs may first emerge in TZ in CP. Results also indicated an excessive premovement postural activity in the frontal plane in both CP groups. PMID:26730748

  19. Determination of stabilogram diffusion analysis coefficients and invariant density analysis parameters to understand postural stability associated with standing on anti-fatigue mats.

    PubMed

    Soangra, Rahul; Lockhart, Thurmon E

    2012-01-01

    Prolonged standing has been associated with loss of balance, onset of low back pain symptoms and development of fatigue in lower extremity muscles in working populations. Although so far, it is unknown how individuals’ postural stability is affected by standing on rigid versus cushioned platform but many industries are opting for anti-fatigue mats at workstations to reduce fall and injury related socio-economic cost. The goal of this study is to test SATECH's anti-fatigue mat for its effects on postural stability. A pilot test with seven healthy subjects (25–35 years old) has been conducted with a force plate to obtain kinetics of body when standing on two different platforms. The centers of pressure (COP) position of subjects were determined on rigid and anti-fatigue mats for quiet stance (each trial 60 seconds). In order to understand postural control along with dynamic or stochastic characteristics of the COP, stabilogram diffusion analysis (SDA) and Invariant density analysis methods are used. Subject specific patterns were seen in stabilogram diffusion plots and associated parameters in both conditions. We also found differences in some postural sway SDA parameters with anti-fatigue mats compared to rigid vinyl floor standing with open eyes condition. But no significant differences were found in sway IDA parameters. This work further provides insights whether anti fatigue mats can be helpful to workers involved with prolonged standing tasks. PMID:22846314

  20. The effects of acute arm crank ergometry and cycle ergometry on postural sway and attentional demands during quiet bipedal standing.

    PubMed

    Hill, Mathew; Pereira, Christopher; Talbot, Chris; Oxford, Sam; Price, Mike

    2015-06-01

    Current evidence suggests that acute bouts of lower limb exercise elicits a number of adverse effects on both sensory and motor components of postural control. The effects of acute exercise on quiet standing balance while concurrently performing an attentional task remains equivocal. This study aimed to compare the alterations in postural control and attentional demands elicited by upper and lower limb exercise. Twelve healthy young males (mean ± SD age, 22.2 ± 3.2 years) were examined on six separate occasions. The first two visits determined maximal aerobic fitness on an arm crank ergometer (ACE) and cycle ergometer (CYC). Subsequently, participant's postural sway was assessed during single- (ST) and dual-task (DT) conditions before and immediately after moderate- and high-intensity exercise engaging the upper or lower body musculature. The order of the four exercise tests was counterbalanced. The centre of pressure displacement in the anteroposterior (COPAP) and mediolateral (COPML) directions and the COP path length (COPL) were computed using a force platform. A time × mode interaction was observed for COPAP (ST; p = 0.011, DT; p = 0.018) and COPML (ST; p = 0.001). CYC elicited large (ES; 1.6-2.0) increases in COPAP and COPML, but there were no differences between aerobic and anaerobic tests (p > 0.05). The effect of cognitive load appeared to increase sway in the frontal plane following anaerobic CYC (p = 0.001) but not ACE (p < 0.05). Exercise has different effects on frontal and sagittal plane sway following different cognitive loads. In particular, COPML was increased at the cost of maintaining attentional performance following exercise. PMID:25791429

  1. One- or Two-Legged Standing: What Is the More Suitable Protocol to Assess the Postural Effects of the Rigid Ankle Orthosis?

    ERIC Educational Resources Information Center

    Rougier, Patrice; Genthon, Nicolas; Gallois-Montbrun, Thibault; Brugiere, Steve; Bouvat, Eric

    2009-01-01

    To highlight the capacity of one- and two-legged standing protocols when assessing postural behavior induced by a rigid ankle orthosis, 14 healthy individuals stood upright barefoot and wore either an elastic stocking on the preferred leg or a rigid orthosis with or without additional taping in one- or two-legged (TL) conditions. Traditional…

  2. Center of Mass Acceleration Feedback Control of Standing Balance by Functional Neuromuscular Stimulation against External Postural Perturbations

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study investigated the use of center of mass (COM) acceleration feedback for improving performance of a functional neuromuscular stimulation (FNS) control system to restore standing function to a subject with complete, thoracic-level spinal cord injury (SCI). The approach for linearly relating changes in muscle stimulation to changes in COM acceleration was verified experimentally and subsequently produced data to create an input-output map driven by sensor feedback. The feedback gains were systematically tuned to reduce upper extremity (UE) loads applied to an instrumented support device while resisting external postural disturbances. Total body COM acceleration was accurately estimated (> 89% variance explained) using three-dimensional (3-D) outputs of two accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, feedback control of stimulation reduced UE loading by 33%. COM acceleration feedback is advantageous in constructing a standing neuroprosthesis since it provides the basis for a comprehensive control synergy about a global, dynamic variable and requires minimal instrumentation. Future work should include tuning and testing the feedback control system during functional reaching activity that is more indicative of activities of daily living. PMID:22987499

  3. Heterogeneity in the Energy Cost of Posture Maintenance during Standing Relative to Sitting: Phenotyping According to Magnitude and Time-Course

    PubMed Central

    Miles-Chan, Jennifer L.; Sarafian, Delphine; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul

    2013-01-01

    Background Reducing sitting-time may decrease risk of disease and increase life-span. In the search for approaches to reduce sitting-time, research often compares sitting to standing and ambulation, but the energetic cost of standing alone versus sitting is equivocal, with large variation in reported mean values (0% to >20% increase in energy expenditure (EE) during standing). Objective To determine the magnitude and time-course of changes in EE and respiratory quotient (RQ) during steady-state standing versus sitting. Design Min-by-min monitoring using a posture-adapted ventilated-hood indirect calorimetry system was conducted in 22 young adults with normal BMI during 10 min of steady-state standing versus sitting comfortably. Results This study reveals three distinct phenotypes based on the magnitude and time-course of the EE response to steady-state standing. One-third of participants (8/22) showed little or no change in EE during standing relative to sitting (ΔEE <5%; below first quartile). Of the 14 responders (ΔEE 7–21%), 4 showed sustained, elevated EE during standing, while 10 decreased their EE to baseline sitting values during the second half of the standing period. These EE phenotypes were systematically mirrored by alterations in RQ (a proxy of substrate oxidation), with ΔEE inversely correlated with ΔRQ (r = 0.6–0.8, p<0.01). Conclusion This study reveals different phenotypes pertaining to both energy cost and fuel utilization during standing, raising questions regarding standing as a strategy to increase EE and thermogenesis for weight control, and opening new avenues of research towards understanding the metabolic and psychomotor basis of variability in the energetics of standing and posture maintenance. PMID:23741514

  4. Postural control during sit-to-stand movement and its relationship with upright position in children with hemiplegic spastic cerebral palsy and in typically developing children

    PubMed Central

    Pavão, Silvia L.; Santos, Adriana N.; Oliveira, Ana B.; Rocha, Nelci A. C. F.

    2015-01-01

    OBJECTIVE: The purpose of this study was to compare postural control in typically developing (TD) children and children with cerebral palsy (CP) during the sit-to-stand (STS) movement and to assess the relationship between static (during static standing position) and dynamic postural control (during STS movement) in both groups. METHOD: The center of pressure (CoP) behavior of 23 TD children and 6 children with spastic hemiplegic CP (Gross Motor Function Classification System [GMFCS] I and II) was assessed during STS movement performance and during static standing conditions with the use of a force plate. The data obtained from the force plate were used to calculate CoP variables: anteroposterior (AP) and mediolateral (ML) amplitudes of CoP displacement and the area and velocity of CoP oscillation. RESULTS: According to the Mann-Whitney test, children with CP exhibited higher CoP values in all of the analyzed variables during the beginning of STS movement. Pearson's correlation verified a positive correlation between the CoP variables during both static conditions and the performance of STS movement. CONCLUSIONS: Children with spastic hemiplegic CP present major postural oscillations during the beginning of STS movement compared with typical children. Moreover, the observed relationship between postural control in static and dynamic conditions reveals the importance of body control in the static position for the performance of functional activities that put the body in motion, such as STS movement. PMID:25651131

  5. The altered vestibular-evoked myogenic and whole-body postural responses in old men during standing.

    PubMed

    Dalton, Brian H; Blouin, Jean-Sébastien; Allen, Matti D; Rice, Charles L; Inglis, J Timothy

    2014-12-01

    Age-related decrements within the sensorimotor system may lead to alterations and impairments in postural control, but a link to a vestibular mechanism is unclear. The purpose of the present study was to determine whether vestibular control of standing balance is altered with adult aging. Eight old (~77 years) and eight young (~26 years) men stood without aids on a commercially available force plate with their head turned to the right, arms relaxed at their sides and eyes closed while receiving stochastic vestibular stimuli (0-25 Hz, root mean square amplitude=0.85 mA). Surface electromyography signals were sampled from the left soleus, medial gastrocnemius and tibialis anterior. Whole-body balance, as measured by the anteroposterior forces and muscle responses, was quantified using frequency (coherence and gain functions) and time (cumulant density function) domain correlations with the vestibular stimuli. Old men exhibited a compressed frequency response of the vestibular reflex with a greater relative gain at lower frequencies for the plantar flexors and anteroposterior forces than young. In the time domain, the peak amplitude of the short latency response was 45-64% lower for the plantar flexors and anteroposterior forces (p≤0.05) in the old than young, but not for the tibialis anterior (p=0.21). The old men had a 190% and 31% larger medium latency response for only the tibialis anterior and anteroposterior forces, respectively, than young (p≤0.01). A strong correlation between the tibialis anterior and the force response was also detected (r=0.80, p<0.01). In conclusion, net vestibular-evoked muscle responses led to smaller short and larger medium latency peak amplitudes in anteroposterior forces for the old. The present results likely resulted from a compressed and lower operational frequency range of the vestibular reflexes and the activation of additional muscles (tibialis anterior) to maintain standing balance. PMID:25456846

  6. Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies

    PubMed Central

    Wayne, Peter M.; Gow, Brian J.; Costa, Madalena D.; Peng, C.-K.; Lipsitz, Lewis A.; Hausdorff, Jeffrey M.; Davis, Roger B.; Walsh, Jacquelyn N.; Lough, Matthew; Novak, Vera; Yeh, Gloria Y.; Ahn, Andrew C.; Macklin, Eric A.; Manor, Brad

    2014-01-01

    Background Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale “complexity” of postural sway fluctuations. Objectives To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults. Methods A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up–and-Go tests characterized physical function. Results At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (P<0.001), and ML EC (P<0.001) conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018). Long- and short-term TC training were positively associated with physical function

  7. The influence of changes in trunk and pelvic posture during single leg standing on hip and thigh muscle activation in a pain free population

    PubMed Central

    2014-01-01

    Background Thigh muscle injuries commonly occur during single leg loading tasks and patterns of muscle activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh muscle activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in muscle activation. Methods Hip and thigh muscle activation patterns were compared in 22 asymptomatic, male subjects (20–45 years old) in paired functionally relevant single leg standing test postures: Anterior vs. Posterior Trunk Sway; Anterior vs. Posterior Pelvic Rotation; Left vs. Right Trunk Shift; and Pelvic Drop vs. Raise. Surface EMG was collected from eight hip and thigh muscles calculating Root Mean Square. EMG was normalized to an “upright standing” reference posture. Repeated measures ANOVA was performed along with associated F tests to determine if there were significant differences in muscle activation between paired test postures. Results In right leg stance, Anterior Trunk Sway (compared to Posterior Sway) increased activity in posterior sagittal plane muscles, with a concurrent deactivation of anterior sagittal plane muscles (p: 0.016 - <0.001). Lateral hip abductor muscles increased activation during Left Trunk Shift (compared to Right) (p :≤ 0.001). Lateral Pelvic Drop (compared to Raise) decreased activity in hip abductors and increased hamstring, adductor longus and vastus lateralis activity (p: 0.037 - <0.001). Conclusion Changes in both trunk and pelvic posture during single leg stance generally resulted in large, predictable changes in hip and thigh muscle activation in asymptomatic young males. Changes in trunk position in the sagittal plane and pelvis position in the frontal plane had the greatest effect on muscle activation. Investigation of these activation patterns in clinical populations such as hip and thigh muscle injuries may

  8. Young Adults Largely Depend on Vision for Postural Control When Standing on a BOSU Ball but Not on Foam.

    PubMed

    Lubetzky-Vilnai, Anat; McCoy, Sarah W; Price, Robert; Ciol, Marcia A

    2015-10-01

    What happens at the sensory level when a person is balancing on compliant surfaces? Compliant surfaces such as both-sides-up (BOSU) balls are often used as a form of "proprioceptive exercises." Clinical theories in neurorehabilitation suggest that compliant surfaces disrupt the somatosensory contribution to balance and increase reliance on vision and vestibular input. Understanding the sensory aspects of compliant surfaces' exercises would have important implications for balance training of athletes and of people with somatosensory deficits such as people with recurrent ankle sprains. We tested this clinical theory in a sample of 30 healthy young adults and 10 adults with a history of repeated ankle sprains while they were standing on a BOSU ball, memory foam, or floor. We measured participants' center of pressure response to dots projected on a screen, moving mediolaterally at one of the 3 frequencies (0.4, 0.48, and 0.56 Hz). We calculated magnitude of the postural response (gains) and participants' primary frequency (PF) of sway and compared it between surfaces per frequency. In both groups, gains were significantly higher on the BOSU compared with floor or foam (p < 0.001) with no significant difference between floor and foam. The PF difference was significant (p < 0.001) with a clear peak matching of the visual stimulation frequency only on the BOSU. During a single session of stance on compliant surfaces, visual dependence was a dominant factor on a challenging condition. When prescribing BOSU exercises to young adults as specific balance training, trainers should consider its effect on increased visual dependence with respect to that session's goals. PMID:26402476

  9. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control.

    PubMed

    Clark, Ross A; Pua, Yong-Hao; Oliveira, Cristino C; Bower, Kelly J; Thilarajah, Shamala; McGaw, Rebekah; Hasanki, Ksaniel; Mentiplay, Benjamin F

    2015-07-01

    The Microsoft Kinect V2 for Windows, also known as the Xbox One Kinect, includes new and potentially far improved depth and image sensors which may increase its accuracy for assessing postural control and balance. The aim of this study was to assess the concurrent validity and reliability of kinematic data recorded using a marker-based three dimensional motion analysis (3DMA) system and the Kinect V2 during a variety of static and dynamic balance assessments. Thirty healthy adults performed two sessions, separated by one week, consisting of static standing balance tests under different visual (eyes open vs. closed) and supportive (single limb vs. double limb) conditions, and dynamic balance tests consisting of forward and lateral reach and an assessment of limits of stability. Marker coordinate and joint angle data were concurrently recorded using the Kinect V2 skeletal tracking algorithm and the 3DMA system. Task-specific outcome measures from each system on Day 1 and 2 were compared. Concurrent validity of trunk angle data during the dynamic tasks and anterior-posterior range and path length in the static balance tasks was excellent (Pearson's r>0.75). In contrast, concurrent validity for medial-lateral range and path length was poor to modest for all trials except single leg eyes closed balance. Within device test-retest reliability was variable; however, the results were generally comparable between devices. In conclusion, the Kinect V2 has the potential to be used as a reliable and valid tool for the assessment of some aspects of balance performance. PMID:26009500

  10. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity

    PubMed Central

    Fujita, Hiroyuki; Kasubuchi, Kenji; Wakata, Satoshi; Hiyamizu, Makoto; Morioka, Shu

    2016-01-01

    Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM). The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb) levels during standing during single (S-S), standing during dual (S-D), one leg standing during single (O-S), and one leg standing during dual (O-D) tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance. PMID:27034947

  11. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity.

    PubMed

    Fujita, Hiroyuki; Kasubuchi, Kenji; Wakata, Satoshi; Hiyamizu, Makoto; Morioka, Shu

    2016-01-01

    Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM). The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb) levels during standing during single (S-S), standing during dual (S-D), one leg standing during single (O-S), and one leg standing during dual (O-D) tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance. PMID:27034947

  12. What Makes a Bystander Stand By? Adolescents and Bullying

    ERIC Educational Resources Information Center

    Chapin, John; Brayack, Michael

    2016-01-01

    The current study sheds some light on the extent to which adolescents say they are experiencing bullying, what they think they would do when confronted with bullies, and what they have actually done in the past when witnessing bullying. Results from a survey of 1,742 adolescents indicates even young adolescents have already experienced verbal,…

  13. Low back pain and postural sway during quiet standing with and without sensory manipulation: a systematic review.

    PubMed

    Mazaheri, Masood; Coenen, Pieter; Parnianpour, Mohamad; Kiers, Henri; van Dieën, Jaap H

    2013-01-01

    A previous review concluded that postural sway is increased in patients with low back pain (LBP). However, more detailed analysis of the literature shows that postural deficit may be dependent on experimental conditions in which patients with LBP have been assessed. The research question to be answered in this review was: "Is there any difference in postural sway between subjects with and without LBP across several sensory manipulation conditions?". A literature search in Pubmed, Scopus, Embase and PsychInfo was performed followed by hand search and contact with authors. Studies investigating postural sway during bipedal stance without applying external forces in patients with specific and non-specific LBP compared to healthy controls were included. Twenty three articles fulfilled the eligibility criteria. Most studies reported an increased postural sway in LBP, or no effect of LBP on postural sway. In a minority of studies, a decreased sway was found in LBP patients. There were no systematic differences between studies finding an effect and those reporting no effect of LBP. The proportion of studies finding between-group differences did not increase with increased complexity of sensory manipulations. Potential factors that may have caused inconsistencies in the literature are discussed in this systematic review. PMID:22796243

  14. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002

  15. Adolescents with Intellectual Disability Have Reduced Postural Balance and Muscle Performance in Trunk and Lower Limbs Compared to Peers without Intellectual Disability

    ERIC Educational Resources Information Center

    Blomqvist, Sven; Olsson, Josefine; Wallin, Louise; Wester, Anita; Rehn, Borje

    2013-01-01

    For adolescent people with ID, falls are more common compared to peers without ID. However, postural balance among this group is not thoroughly investigated. The aim of this study was to compare balance and muscle performance among adolescents aged between 16 and 20 years with a mild to moderate intellectual disability (ID) to age-matched…

  16. TEST‐RETEST CONSISTENCY OF A POSTURAL SWAY ASSESSMENT PROTOCOL FOR ADOLESCENT ATHLETES MEASURED WITH A FORCE PLATE

    PubMed Central

    Lee, Aaron; Hugentobler, Jason A.; Kurowski, Brad G.; Myer, Gregory D.; Riley, Michael A.

    2013-01-01

    Purpose/Background: Postural control assessments can provide a powerful means of detecting concussion‐related neurophysiological abnormalities and are considered an important part of the concussion management processes. Studies with college athletes indicate that postural sway analyzed using complexity metrics may provide a sensitive and novel way to detect post‐concussion postural control impairments. The purpose of this study was to determine if a postural sway assessment protocol (PSAP) measured using a force plate system can serve as a reliable assessment tool for adolescent athletes. Methods: The short‐term and long‐term test‐retest reliability of the PSAP was examined in a group of adolescent female athletes under eyes open and eyes closed conditions. Detrended fluctuation analysis was used to evaluate the complexity of the times series data (i.e., degree of self‐similarity across time scales). Conventional measures of standard deviation and total path length (distance traveled by the center‐of‐pressure) were also assessed. Results: The complexity and conventional measures generally demonstrated good reliability coefficients for short‐term and long‐term test‐retest reliability with both eyes open and eyes closed conditions. Intra‐class Correlation Coefficient (ICC) values ranged from .38‐.90 The highest ICC values corresponded with the short‐term reliability for the eyes open condition, while the lower ICC values corresponded with the long‐term reliability for the eyes closed condition. Conclusions: The results of this study indicate that the PSAP demonstrated good short‐term and long‐term test‐retest reliability. In addition, no evidence of learning effects was elicited through this study. Future studies should further explore the validity and feasibility of the use of this protocol for different age groups, different types of athletes, and longitudinal evaluations of post‐concussion impairments. Clinical Relevance: This

  17. Longitudinal Associations of Electronic Aggression and Victimization with Social Standing during Adolescence

    ERIC Educational Resources Information Center

    Badaly, Daryaneh; Kelly, Brynn M.; Schwartz, David; Dabney-Lieras, Karen

    2013-01-01

    Prior empirical work has documented that the dynamics of social standing can play a critical role in the perpetration and receipt of aggression during adolescence. Recently, investigators have emphasized the emergence of new, electronic modalities for aggressive acts. Our longitudinal project therefore considered electronic forms of aggression and…

  18. Electromyographic responses of erector spinae and lower limb's muscles to dynamic postural perturbations in patients with adolescent idiopathic scoliosis.

    PubMed

    Farahpour, Nader; Ghasemi, Safoura; Allard, Paul; Saba, Mohammad Sadegh

    2014-10-01

    The aim of this study was to evaluate electromyographic (EMG) responses of erector spinae (ES) and lower limbs' muscles to dynamic forward postural perturbation (FPP) and backward postural perturbation (BPP) in patients with adolescent idiopathic scoliosis (AIS) and in a healthy control group. Ten right thoracic AIS patients (Cobb=21.6±4.4°) and 10 control adolescents were studied. Using bipolar surface electrodes, EMG activities of ES muscle at T10 (EST10) and L3 (ESL3) levels, biceps femoris (BF), gastrocnemius lateralis (G) and rectus femoris (RF) muscles in the right and the left sides during FPP and BPP were evaluated. Muscle responses were measured over a 1s time window after the onset of perturbation. In FPP test, the EMG responses of right EST10, ESL3 and BF muscles in the scoliosis group were respectively about 1.40 (p=0.035), 1.43 (p=0.07) and 1.45 (p=0.01) times greater than those in control group. Also, in BPP test, at right ESL3 muscle of the scoliosis group the EMG activity was 1.64 times higher than that in the control group (p=0.01). The scoliosis group during FPP displayed asymmetrical muscle responses in EST10 and BF muscles. This asymmetrical muscle activity in response to FPP is hypothesized to be a possible compensatory strategy rather than an inherent characteristic of scoliosis. PMID:25008019

  19. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  20. Center of Pressure Displacement of Standing Posture during Rapid Movements Is Reorganised Due to Experimental Lower Extremity Muscle Pain

    PubMed Central

    Shiozawa, Shinichiro; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas

    2015-01-01

    Background Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP) displacement in a reaction time task condition. Methods Nine healthy males performed two reaction time tasks (dominant side shoulder flexion and bilateral heel lift) before, during, and after experimental pain induced in the dominant side vastus medialis or the tibialis anterior muscles by hypertonic saline injections. The CoP displacement was extracted from the ipsilateral and contralateral side by two force plates and the net CoP displacement was calculated. Results Compared with non-painful sessions, tibialis anterior muscle pain during the peak and peak-to-peak displacement for the CoP during anticipatory postural adjustments (APAs) of the shoulder task reduced the peak-to-peak displacement of the net CoP in the medial-lateral direction (P<0.05). Tibialis anterior and vastus medialis muscle pain during shoulder flexion task reduced the anterior-posterior peak-to-peak displacement in the ipsilateral side (P<0.05). Conclusions The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered. PMID:26680777

  1. Effects of Balance Training on Postural Sway, Leg Extensor Strength, and Jumping Height in Adolescents

    ERIC Educational Resources Information Center

    Granacher, Urs; Gollhofer, Albert; Kriemler, Susi

    2010-01-01

    Deficits in strength of the lower extremities and postural control have been associated with a high risk of sustaining sport-related injuries. Such injuries often occur during physical education (PE) classes and mostly affect the lower extremities. Thus, the objectives of this study were to investigate the effects of balance training on postural…

  2. Exercises for the torso performed in a standing posture: spine and hip motion and motor patterns and spine load.

    PubMed

    McGill, Stuart M; Karpowicz, Amy; Fenwick, Chad M J; Brown, Stephen H M

    2009-03-01

    The purpose of this study was to document the muscle activity, spine motion, spine load, and stiffness during several movement-based or "functional" exercises and to assess the effect of technique change. Eight subjects, all healthy men from a university population, were instrumented to obtain surface electromyography of selected trunk and hip muscles, together with video analysis and electromagnetic lumbar spine position sensor to track spine posture. Exercises included a walkout in the sagittal plane that compared an upright form against a wall with those performed on the floor, overhead cable pushes, lateral cable walkouts, the good morning exercise, and the bowler's squat. Generally, muscle activation levels were quite modest even though the tasks were quite strenuous in many cases. Even though similar joint moments were required in different exercises, the pattern of activity between muscles was different. Abdominal bracing increased spine stiffness at the expense of more spine load. Thus, muscle activity seems to be constrained in "functional" exercises. There are several possible reasons for this. Single muscles cannot be activated to 100% of the maximum voluntary contraction in functional exercises because this would upset the balance of moments about the 3 orthopedic axes of the spine, or it would upset the balance of stiffening muscles around the spine required to ensure stability of the spinal column. The one exception was the floor walkout, which resulted in full activation of the rectus abdominis; however, this was a sagittal plane task without the joint moment constraints of multiplanar exercise. Therefore, maximal muscle activity is observed during single-plane tasks, but muscle activation levels were constrained during functional tasks. Thus, strength training muscles may not help in "functional multiplanar" tasks. These data can be used to assist decisions regarding the selection of exercises, specifically choices regarding the starting challenge

  3. Influence of pelvic asymmetry and idiopathic scoliosis in adolescents on postural balance during sitting.

    PubMed

    Jung, Ji-Yong; Cha, Eun-Jong; Kim, Kyung-Ah; Won, Yonggwan; Bok, Soo-Kyung; Kim, Bong-Ok; Kim, Jung-Ja

    2015-01-01

    The effects of pelvic asymmetry and idiopathic scoliosis on postural balance during sitting were studied by measuring inclination angles, pressure distribution, and electromyography. Participants were classified into a control group, pelvic asymmetry group, scoliosis group, and scoliosis with pelvic asymmetry and then performed anterior, posterior, left, and right pelvic tilting while sitting on the unstable board for 5 seconds to assess their postural balance. Inclination and obliquity angles between the groups were measured by an accelerometer located on the unstable board. Pressure distribution (maximum force and peak pressure) was analyzed using a capacitive seat sensor. In addition, surface electrodes were attached to the abdominal and erector spinae muscles of each participant. Inclination and obliquity angles increased more asymmetrically in participants with both pelvic asymmetry and scoliosis than with pelvic asymmetry or scoliosis alone. Maximum forces and peak pressures of each group showed an asymmetrical pressure distribution caused by the difference in height between the left and right pelvis and curve type of the patients' spines when performing anterior, posterior, left, and right pelvic tilting while sitting. Muscle contraction patterns of external oblique, thoracic erector spinae, lumbar erector spinae, and lumbar multifidus muscles may be influenced by spine curve type and region of idiopathic scoliosis. Asymmetrical muscle activities were observed on the convex side of scoliotic patients and these muscle activity patterns were changed by the pelvic asymmetry. From these results, it was confirmed that pelvic asymmetry and idiopathic scoliosis cause postural asymmetry, unequal weight distribution, and muscular imbalance during sitting. PMID:26406054

  4. Characteristics of human knee muscle coordination during isometric contractions in a standing posture: The effect of limb task

    PubMed Central

    MacLeod, Toran D.; Manal, Kurt; Silbernagel, Karin Grävare; Snyder-Mackler, Lynn; Buchanan, Thomas S.

    2015-01-01

    Different functional roles for the hands have been demonstrated, however leg control is not as well understood. The purpose of the present study was to evaluate bilateral knee neuromuscular control to determine if the limb receiving greater attention would have more well-tuned control compared to an unattended limb. Surface electrodes were placed on seven muscles of each limb, before standing on two force platforms. Visual feedback was given of the forces and moments of the “focus limb,” but not the “unattended limb.” Static isometric forces were matched with their focus limb, requiring their unattended limb to push in the opposite direction, using a combination of forward-backward-medial-lateral shear forces while muscle activity was collected bilaterally. There was a significant main effect for limb task (p = 0.02), with the medial hamstrings being more specific (p = 0.001) while performing the unattended limb and the lateral hamstring being more well-tuned (p = 0.007) while performing the focus limb task. The focus limb's medial and lateral gastrocnemius were principally active in the forwards direction, but only the unattended limb's lateral gastrocnemius was active in the backwards direction. Findings suggest unique neuromuscular control strategies are used for the legs depending on limb task. PMID:23790392

  5. Decorticate posture

    MedlinePlus

    Decorticate posture is an abnormal posturing in which a person is stiff with bent arms, clenched fists, and legs ... Decorticate posture is a sign of damage to the nerve pathway between the brain and spinal cord. Although it ...

  6. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population

    PubMed Central

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B.; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  7. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population.

    PubMed

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  8. Lower lumbar spine axial rotation is reduced in end-range sagittal postures when compared to a neutral spine posture.

    PubMed

    Burnett, Angus; O'Sullivan, Peter; Ankarberg, Lars; Gooding, Megan; Nelis, Rogier; Offermann, Frank; Persson, Jannike

    2008-08-01

    Sports such as rowing, gymnastics, cycling and fast bowling in cricket that combine rotation with spine flexion and extension are known to carry greater risk of low back pain (LBP). Few studies have investigated the capacity of the lumbar spine to rotate in various sagittal positions, and further, these studies have generated disparate conclusions. The purpose of this study was to determine whether the range of lower lumbar axial rotation (L3-S2) is decreased in end-range flexion and extension postures when compared to the neutral spine posture. Eighteen adolescent female rowers (mean age=14.9 years) with no history of LBP were recruited for this study. Lower lumbar axial rotation was measured by an electromagnetic tracking system (3-Space Fastrak) in end-range flexion, extension and neutral postures, in sitting and standing positions. There was a reduction in the range of lower lumbar axial rotation in both end-range extension and flexion (p<0.001) postures when compared to neutral. Further, the range of lower lumbar axial rotation measurements in flexion when sitting was reduced when compared to standing (p=0.013). These findings are likely due to the anatomical limitations of the passive structures in end-range sagittal postures. PMID:17395521

  9. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers. PMID:20698188

  10. Perception-Action and Adaptation in Postural Control of Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Barela, Jose A.; Focks, Grietje M. Jaspers; Hilgeholt, Toke; Barela, Ana M. F.; Carvalho, Raquel de P.; Savelsbergh, Geert J. P.

    2011-01-01

    The aim of this study was to examine the coupling between visual information and body sway and the adaptation in this coupling of individuals with cerebral palsy (CP). Fifteen children with and 15 without CP, 6-15 years old, were required to stand upright inside of a moving room. All children first performed two trials with no movement of the room…

  11. Foot-type analysis and plantar pressure differences between obese and nonobese adolescents during upright standing.

    PubMed

    Cimolin, Veronica; Capodaglio, Paolo; Cau, Nicola; Galli, Manuela; Pau, Massimiliano; Patrizi, Alessandra; Tringali, Gabriella; Sartorio, Alessandro

    2016-03-01

    This study aimed to characterize the effect of obesity on foot-type and plantar pressure distribution in adolescents. Ten obese adolescents (obese group; BMI: 35.45±4.73 kg/m) and eight normal-weighted adolescents (control group; BMI: 18.67±2.46 kg/m) were recruited. Both groups were evaluated while standing using the Pedar-X in-shoe system. Foot-ground contact was characterized using contact area, peak of force and pressure calculated for the subareas of the foot. The analysis showed that obese participants had significantly higher area of contact in forefoot and midfoot (only in medial area) regions in comparison with the control group, whereas no statistically significant differences were observed for the rearfoot region. As far as the maximum pressure and force was concerned, similar results were obtained for both groups. Obese participants showed higher values for all the regions, with the exception of medial rearfoot area, for which the values were similar between the two groups. The analysis of foot-type distribution displayed that in the obese group high percentage of participants presented flat foot (70%) respect to cavus foot (20%) and normal foot (10%); on the contrary, in the control group, foot-types were markedly different, with 25% of participants with flat foot, 25% with cavus foot and 50% with normal foot. These results are important from a clinical perspective to develop and enhance the rehabilitative options in these patients and to avoid a worsening of their foot abnormalities. Untreated flat foot can in fact be disabling and over time can result in significant difficulties for the patient. PMID:26632774

  12. Evaluation of Myoelectric Activity of Paraspinal Muscles in Adolescents with Idiopathic Scoliosis during Habitual Standing and Sitting

    PubMed Central

    Kwok, Garcia; Yip, Joanne; Cheung, Mei-Chun; Yick, Kit-Lun

    2015-01-01

    There is a number of research work in the literature that have applied sEMG biofeedback as an instrument for muscle rehabilitation. Therefore, sEMG is a good tool for this research work and is used to record the myoelectric activity in the paraspinal muscles of those with AIS during habitual standing and sitting. After the sEMG evaluation, the root-mean-square (RMS) sEMG values of the paraspinal muscles in the habitual postures reflect the spinal curvature situation of the PUMC Type Ia and IIc subjects. Both groups have a stronger average RMS sEMG value on the convex side of the affected muscle regions. Correction to posture as instructed by the physiotherapist has helped the subjects to achieve a more balanced RMS sEMG ratio in the trapezius and latissimus dorsi regions; the erector spinae in the thoracic region and/or erector spinae in the lumbar region. It is, therefore, considered that with regular practice of the suggested positions, those with AIS can use motor learning to achieve a more balanced posture. Consequently, the findings can be used in less intrusive early orthotic intervention and provision of care to those with AIS. PMID:26583151

  13. Evaluation of Myoelectric Activity of Paraspinal Muscles in Adolescents with Idiopathic Scoliosis during Habitual Standing and Sitting.

    PubMed

    Kwok, Garcia; Yip, Joanne; Cheung, Mei-Chun; Yick, Kit-Lun

    2015-01-01

    There is a number of research work in the literature that have applied sEMG biofeedback as an instrument for muscle rehabilitation. Therefore, sEMG is a good tool for this research work and is used to record the myoelectric activity in the paraspinal muscles of those with AIS during habitual standing and sitting. After the sEMG evaluation, the root-mean-square (RMS) sEMG values of the paraspinal muscles in the habitual postures reflect the spinal curvature situation of the PUMC Type Ia and IIc subjects. Both groups have a stronger average RMS sEMG value on the convex side of the affected muscle regions. Correction to posture as instructed by the physiotherapist has helped the subjects to achieve a more balanced RMS sEMG ratio in the trapezius and latissimus dorsi regions; the erector spinae in the thoracic region and/or erector spinae in the lumbar region. It is, therefore, considered that with regular practice of the suggested positions, those with AIS can use motor learning to achieve a more balanced posture. Consequently, the findings can be used in less intrusive early orthotic intervention and provision of care to those with AIS. PMID:26583151

  14. Relationships between Task-Oriented Postural Control and Motor Ability in Children and Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Wang, Hui-Yi; Long, I-Man; Liu, Mei-Fang

    2012-01-01

    Individuals with Down syndrome (DS) have been characterized by greater postural sway in quiet stance and insufficient motor ability. However, there is a lack of studies to explore the properties of dynamic postural sway, especially under conditions of task-oriented movement. The purpose of this study was to investigate the relationships between…

  15. The Relationship between Physical Function and Postural Sway during Local Vibratory Stimulation of Middle-aged People in the Standing Position

    PubMed Central

    Ito, Tadashi; Sakai, Yoshihito; Kubo, Akira; Yamazaki, Kazunori; Ohno, Yasuo; Nakamura, Eishi; Sato, Noritaka; Morita, Yoshifumi

    2014-01-01

    [Purpose] The purpose of this study was to examine the relationship between physical function and postural sway during local vibratory stimulation of middle-aged subjects in an upright position. [Subjects] The subjects were 25 healthy community-dwelling middle-aged people. [Methods] We measured postural sway using a Wii board while vibratory stimulations of 30, 60, or 240 Hz were applied to the subjects’ lumbar multifidus or gastrocnemius muscles. Physical function was evaluated by 5-m usual gait speed and grip strength. [Results] Gait speed was strongly correlated to the anteroposterior body sway in the upright position during 30 Hz gastrocnemius muscles vibration (GMV). [Conclusion] Postural sway during 30 Hz GMV was strongly associated with gait speed and showed a posterior displacement. These findings show that the lower leg’s response to balance control under 30 Hz proprioceptive stimulation might be a good indicator of declining gait function. PMID:25364130

  16. Standing Tall: The Benefits of Standing Devices

    ERIC Educational Resources Information Center

    Warner, Mark P.

    2007-01-01

    In the author's opinion as a pediatric physical therapist, with the exception of a wheelchair, there is no other piece of assistive technology that is more beneficial to children and adults with special needs than a standing device. Postural symmetry during standing and walking activities is extremely important for everyone. Very few children…

  17. In restless legs syndrome, the neural substrates of the sensorimotor symptoms are also normally involved in upright standing posture and biped walking.

    PubMed

    Akpinar, Sevket

    2009-08-01

    Restless legs syndrome (RLS) exhibits sensorimotor symptoms. In familial cases, a gene at chromosomal location 9p-24-22 is linked to RLS and the expressed mutation is Dopamine Receptor Specific Individual Sensitivity (DRSIS). The symptoms are triggered during changes in alertness, generally at sleep hours, resulting from insufficient dopamine transmission. The conscious experience of sensory abnormalities are described as 'an urge to move the limbs with or without paresthesias' leading to motor signs such as periodic limb movements and motor restlessness which exhibit temporary loss of extensor motor system dominance over the flexor motor system of the upright posture. The relationship of the expressed mutation to EEG alpha activity makes RLS a sleep disorder as well as a cognitive dysfunction. The recurrent character of sensorimotor symptoms impede the patient's ability to sleep, wake and force to move leading to insomnia. In Uner Tan Syndrome, the nonsense mutation in the same gene leads to underdevelopment of the neural substrates of upright posture. The defects include dopamine receptor deficiency (DRD) leading to severe cognitive dysfunctions and motor disorders-complete loss of extensor motor system dominance over the flexor motor system-quadrupedality, primitive speech, cerebellar symptoms, and strabismus. Comparisons between the neural substrates of sensorimotor symptoms seen in RLS and MRI findings for cases of Uner Tan Syndrome show cortico-cerebellar hypoplasias in the neural networks involved in upright posture. Both RLS and Uner Tan Syndrome seem to be due to different mutations in the dopamine receptor gene at 9p-24 locus, affecting the diencephalon dopaminergic system and the neural networks involved in upright posture. PMID:19394150

  18. Postural threat influences conscious perception of postural sway.

    PubMed

    Cleworth, Taylor W; Carpenter, Mark G

    2016-05-01

    This study examined how changes in threat influenced conscious perceptions of postural sway. Young healthy adults stood on a forceplate mounted to a hydraulic lift placed at two heights (0.8m and 3.2m). At each height, subjects stood quietly with eyes open and eyes closed for 60s. Subjects were instructed to either stand normal, or stand normal and track their perceived sway in the antero-posterior plane by rotating a hand-held potentiometer. Participants reported an increased level of fear, anxiety, arousal and a decreased level of balance confidence when standing at height. In addition, postural sway amplitude decreased and frequency increased at height. However, there were no effects of height on perceived sway. When standing under conditions of increased postural threat, sway amplitude is reduced, while sway perception appears to remain unchanged. Therefore, when threat is increased, sensory gain may be increased to compensate for postural strategies that reduce sway (i.e. stiffening strategy), thereby ensuring sufficient afferent information is available to maintain, or even increase the conscious perception of postural sway. PMID:27016388

  19. [The peculiarities of stability of vertical posture in patients with segmental lesions of the spinal cord].

    PubMed

    Iavorskiĭ, A B; Sologubov, E G

    2005-01-01

    Using computer stabilography, vertical posture has been studied in 3 groups of children and adolescences with traumatic lesion of the spinal cord after surgery of congenital myelocele (n=10) and myelodysplasia (n=10) and in 124 healthy controls. Also, an extent of segmental lesions was investigated by electroneuromyography of lower extremities muscles. Patients with pronounced segmental lesion had small-amplitude, -velocity and -frequency variations of body center of gravity (BCG) during standing with visual control. After excluding visual control of vertical posture, there was a significant decrease of vertical stability that suggests a relevant role of visual analyzer in the control of vertical posture. In patients with minor segmental lesion, BCG variations of small amplitude, velocity and frequency were observed. Exclusion of visual control did not result in significant reduction of vertical stability. It is concluded that stabilographic survey is an objective method for diagnosis of an extent of segmental lesion of the spinal cord. PMID:15875937

  20. Influences of visual and supporting surface conditions on standing postural control and correlation with walking ability in patients with post-stroke hemiplegia.

    PubMed

    Okawara, Nanami; Usuda, Shigeru

    2015-05-01

    [Purpose] To quantify the influence of visual and under-foot-surface conditions on standing balance in patients with post stroke hemiplegia and examine associations of this ordinal score with somatosensory disturbance and walking ability. [Subjects] Sixty-six patients with post-stroke hemiplegia. [Methods] Standing balance was tested in 4 conditions (firm floor or foam rubber surface with eyes open or eyes closed) for 30 s per condition and scored using a 5-category ordinal scale. The accuracy of the standing balance score to distinguish patients above/below cut-offs for the timed up-and-go test (14 s) and functional ambulation category (4) was determined. [Results] Standing balance score was correlated with sensory impairments (tactile and vibration perception) and walking ability (up-and-go and functional ambulation category). The standing balance score distinguished patients with up-and-go times ≤14 and >14 s with moderate sensitivity and specificity, and distinguished patients with functional ambulation category <4 and ≥4 with high sensitivity and specificity. [Conclusion] Patients with post-stroke hemiplegia may be unable to adapt to changing visual or surface conditions. Therapists should perform comprehensive balance tests. The standing balance ordinal scale score was moderately correlate with walking ability, distinguishing patients according to walking ability. This scale's validity and reliability must be assessed in clinical settings. PMID:26157211

  1. Decerebrate posture

    MedlinePlus

    ... Brain problem due to drugs, poisoning, or infection Head injury Brain problem due to liver failure Increased pressure ... of posture? Is there any history of a head injury or other condition? What other symptoms came before ...

  2. Postural performance of vestibular loss patients under increased postural threat.

    PubMed

    Young, Laurence R; Bernard-Demanze, Laurence; Dumitrescu, Michel; Magnan, Jacques; Borel, Liliane; Lacour, Michel

    2012-01-01

    The effects of increasing postural task difficulty on balance control was investigated in 9 compensated vestibular loss patients whose results were compared to 11 healthy adults. Subjects were tested in static (stable support) and dynamic (sinusoidal translation of the support) conditions, both at floor level and at height (62 cm above the floor), and with and without vision, to create an additional postural threat. Wavelet analysis of the center of foot pressure displacement and motion analysis of the body segments were used to evaluate the postural performance. Evaluation questionnaires were used to examine the compensation level of the patients (DHI test), their general anxiety level (SAST), fear of height (subjective scale), and workload (NASA TLX test). (Vestibular loss patients rely more on vision and spend more energy maintaining balance than controls, but they use the same postural strategy as normals in both static and dynamic conditions.) Questionnaire data all showed differences in behavior and perceptions between the controls and the patients. However, at height and without vision, a whole body strategy leading to rigid posture replaces the head stabilization strategy found for standing at floor level. The effects of height on postural control can be attributable to an increase in postural threat and attention changes resulting from modifications in perception. PMID:23000612

  3. Early Adolescents' Social Standing in Peer Groups: Behavioral Correlates of Stability and Change

    ERIC Educational Resources Information Center

    Lansford, Jennifer E.; Killeya-Jones, Ley A.; Miller, Shari; Costanzo, Philip R.

    2009-01-01

    Sociometric nominations, social cognitive maps, and self-report questionnaires were completed in consecutive years by 327 students (56% girls) followed longitudinally from grade 7 to grade 8 to examine the stability of social standing in peer groups and correlates of changes in social standing. Social preference, perceived popularity, network…

  4. Sagittal Spinal Morphology in Highly Trained Adolescent Tennis Players

    PubMed Central

    Muyor, José M.; Sánchez-Sánchez, Estefanía; Sanz-Rivas, David; López-Miñarro, Pedro A.

    2013-01-01

    Sports with a predominance of forward-bending and extension postures have been associated with alterations in the sagittal spinal curvatures and greater risk of spinal injury. Because, the tennis players adopt these postures, the aims of this study were: 1) to describe spinal curvatures and pelvic tilt in male and female highly trained adolescent tennis players during relaxed standing posture and with thoracic spine corrected (in prone lying on the floor); and 2) to determine the frequency of thoracic hyperkyphosis and lumbar hypo/hyper lordosis in these postures. Forty adolescent tennis players (24 male and 16 female) aged 13-18 years, participated voluntarily in this study. The Spinal Mouse system was used to measure sagittal spinal curvatures and pelvic tilt. The mean values in the relaxed standing posture were 43.83° ± 7.87° (thoracic kyphosis), - 27.58° ± 7.01° (lumbar lordosis), and 13.38° ± 5.57° (pelvic tilt) for male tennis players, respectively; and 36.13° ± 6.69° (thoracic kyphosis), - 32.69° ± 5.06° (lumbar lordosis), 20.94° ± 5.36° (pelvic tilt) for female tennis players (p < 0.05 between genders in all spinal parameters). The male and female tennis players showed a frequency of 62.5% and 93.8% (p = 0.032) for neutral thoracic kyphosis, and 83.3% and 93.8% (p = 0.062) in neutral lumbar lordosis, respectively. In conclusion, due to the high percentage of neutral spinal curvatures in both male and female tennis players, to practice tennis in these levels does not alter sagittal spinal morphology in the relaxed standing posture in adolescent highly trained tennis players. Key Points This study evaluated thoracic and lumbar spinal curvatures and pelvic tilt during several postures in young highly trained tennis players. Female tennis players showed statistically significant greater anterior pelvic tilt, lumbar lordosis and lower thoracic kyphosis than male tennis players. The high percentage of neutral thoracic kyphosis and lumbar

  5. Postural Stability is Altered by Blood Shift

    NASA Astrophysics Data System (ADS)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  6. Coupling of postural and manual tasks in expert performers.

    PubMed

    Amado, A C; Palmer, C J; Hamill, J; van Emmerik, R E A

    2016-04-01

    The purpose of this study was to investigate the integration of bimanual rhythmic movements and posture in expert marching percussionists. Participants (N=11) performed three rhythmic manual tasks [1:1, 2:3, and 2:3-F (2:3 rhythm played faster at a self-selected tempo)] in one of three postures: sitting, standing on one foot, and standing on two feet. Discrete relative phase, postural time-to-contact, and coherence analysis were used to analyze the performance of the manual task, postural control, and the integration between postural and manual performance. Across all three rhythms, discrete relative phase mean and variability results showed no effects of posture on rhythmic performance. The complexity of the manual task (1:1 vs. 2:3) had no effect on postural time-to-contact. However, increasing the tempo of the manual task (2:3 vs. 2:3-F) did result in a decreased postural time-to-contact in the two-footed posture. Coherence analysis revealed that the coupling between the postural and manual task significantly decreased as a function of postural difficulty (going from a two-footed to a one-footed posture) and rhythmic complexity (1:1 vs. 2:3). Taken together, these results demonstrate that expert marching percussionists systematically decouple postural and manual fluctuations in order to preserve the performance of the rhythmic movement task. PMID:26803676

  7. Nonstationary properties of postural sway.

    PubMed

    Carroll, J P; Freedman, W

    1993-01-01

    Postural sway during quite stance is usually assumed to be a stationary stochastic process. We tested this assumption by investigating the time invariance of the average value and variance of the postural sway of three subjects. The sway was measured with a force plate under three conditions: subject standing on two feet with eyes open; subject standing on two feet with eyes closed; and subject standing on one foot with eyes open. Data were collected in 1 min runs. More than 50 min of data were collected for each subject under each test condition. The data were averaged across all runs for each subject and condition. Trends were found to be present in the data. In addition, there were initial transient increases in the second-order moments about the trends. The transient changes in first- and second-order moments usually disappeared during the first 20 s. In light of these findings, we can reject the hypothesis that postural sway is a stationary process. The results imply that the usual methods to parameterize postural sway have to be either changed or reinterpreted. PMID:8478345

  8. "A Chance to Stand Back": Parenting Programmes for Parents of Adolescents

    ERIC Educational Resources Information Center

    Clarke, Karen; Churchill, Harriet

    2012-01-01

    Parenting interventions were an important feature of New Labour's policies to combat social exclusion. This paper critically examines parenting programmes for families with adolescents, assessing national and local policy aims against the perspectives of women who took part in a parenting course, which was the subject of a local evaluation. The…

  9. [Bariatric surgery for morbid obesity in childhood and adolescence: where do we stand in 2008?].

    PubMed

    Till, Holger; Bluher, Susann; Kiess, Wiel

    2009-01-01

    Bariatric surgery for children and adolescents with morbid obesity has not gained broad acceptance in Germany yet.Nevertheless, these children often fail to reduce weight despite intensive weight loss programmes and suffer from an associate metabolic syndrome, just like adults. Thus, bariatric surgery may be a favourable option. The present article compares national and international experiences concerning guidelines, surgical procedures, and results. It becomes obvious that Germany has neither specific guidelines for children and adolescents nor a central registry. Internationally,the recommendation from the Bariatric Scientific Collaborative Group (BSCG) should be taken as the standard. As in adults, most surgeons perform Roux-Y gastric bypass or gastric banding. Additionally, sleeve gastrectomy is gaining some popularity. These procedures are performed in designated pediatric centres especially in the US. Their success and complication rates are similar to those found in adults.The overall long-term consequences, however, remain unclear.Thus, for bariatric surgery in children and adolescents it may be concluded that a) these patients should be treated in designated centres that offer the full range of therapeutic options,b) specific guidelines should be established, especially in Germany, and c) a long-term postoperative study of all patients is necessary to collect all data and refine the techniques used. PMID:20124776

  10. Use of an allostatic neurotechnology by adolescents with postural orthostatic tachycardia syndrome (POTS) is associated with improvements in heart rate variability and changes in temporal lobe electrical activity.

    PubMed

    Fortunato, John E; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W; Pajewski, Nicholas M; Franco, Meghan E; Cook, Jared F; Shaltout, Hossam A; Tegeler, Charles H

    2016-03-01

    Autonomic dysregulation and heterogeneous symptoms characterize postural orthostatic tachycardia syndrome (POTS). This study evaluated the effect of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM(®)), a noninvasive, allostatic neurotechnology for relaxation and auto-calibration of neural oscillations, on heart rate variability, brain asymmetry, and autonomic symptoms, in adolescents with POTS. Seven subjects with POTS (three males, ages 15-18) underwent a median of 14 (10-16) HIRREM sessions over 13 (8-17) days. Autonomic function was assessed from 10-min continuous heart rate and blood pressure recordings, pre- and post-HIRREM. One-minute epochs of temporal high-frequency (23-36 Hz) brain electrical activity data (T3 and T4, eyes closed) were analyzed from baseline HIRREM assessment and subsequent sessions. Subjects rated autonomic symptoms before and after HIRREM. Four of seven were on fludrocortisone, which was stopped before or during their sessions. Heart rate variability in the time domain (standard deviation of the beat-to-beat interval) increased post-HIRREM (mean increase 51%, range 10-143, p = 0.03), as did baroreflex sensitivity (mean increase in high-frequency alpha 65%, range -6 to 180, p = 0.05). Baseline temporal electrical asymmetry negatively correlated with change in asymmetry from assessment to the final HIRREM session (p = 0.01). Summed high-frequency amplitudes at left and right temporal lobes decreased a median of 3.8 μV (p = 0.02). There was a trend for improvements in self-reported symptoms related to the autonomic nervous system. Use of HIRREM was associated with reduced sympathetic bias in autonomic cardiovascular regulation, greater symmetry and reduced amplitudes in temporal lobe high-frequency electrical activity, and a trend for reduced autonomic symptoms. Data suggest the potential for allostatic neurotechnology to facilitate increased flexibility in autonomic cardiovascular regulation, possibly

  11. Free-Standing Canes.

    ERIC Educational Resources Information Center

    Ehresman, Paul

    1995-01-01

    A precane device, called the "free-standing cane," was developed to help children with blindness along with other disabilities. The cane detects obstacles; guides the user's hands into a relaxed, static position in front of the hips; facilitates postural security and control; and offers tactile and kinesthetic feedback. (JDD)

  12. Seated postural hypotension.

    PubMed

    Gorelik, Oleg; Cohen, Natan

    2015-12-01

    Most studies of postural hypotension (PH) have focused on standing PH. Less is known about PH after transition from a supine to sitting position. Moreover, seated PH has not been previously reviewed in the English literature. The aim of this review was to provide current information regarding seating-induced PH. Seventeen studies were reviewed regarding prevalence, methods of evaluation, manifestations, predisposing factors, prognosis, and management of seated PH. Prevalence ranged from 8% among community-dwelling persons to 56% in elderly hospitalized patients. Dizziness and palpitations were the most frequent symptoms. Of a variety of factors that have been identified as predisposing and contributing to seated PH, aging, bed rest, and hypertension were most important. Because seated PH is a common, easily diagnosable and frequently symptomatic condition, especially in elderly inpatients, this disorder warrants attention. Moreover, seating-induced falls in blood pressure and the associated symptoms, may be largely prevented by nonpharmacologic interventions. PMID:26515671

  13. Postural sway and perceived comfort in pointing tasks.

    PubMed

    Solnik, Stanislaw; Pazin, Nemanja; Coelho, Chase J; Rosenbaum, David A; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-05-21

    In this study, we explored relations between indices of postural sway and perceived comfort during pointing postures performed by standing participants. The participants stood on a force plate, grasped a pointer with the dominant (right) hand, and pointed to targets located at four positions and at two distances from the body. We quantified postural sway over 60-s intervals at each pointing posture, and found no effects of target location or distance on postural sway indices. In contrast, comfort ratings correlated significantly with indices of one of the sway components, trembling. Our observations support the hypothesis that rambling and trembling sway components involve different neurophysiological mechanisms. They also suggest that subjective perception of comfort may be more important than the actual posture for postural sway. PMID:24686189

  14. Determining postural stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez (Inventor); Forth, Katharine E. (Inventor); Paloski, William H. (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  15. Comparison of Biodynamic Responses in Standing and Seated Human Bodies

    NASA Astrophysics Data System (ADS)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2000-12-01

    The dynamic responses of the human body in a standing position and in a sitting position have been compared. The apparent mass and transmissibilities to the head, six locations along the spine, and the pelvis were measured with eight male subjects exposed to vertical whole-body vibration. In both postures, the principal resonance in the apparent mass occurred in the range 5-6 Hz, with slightly higher frequencies and lower apparent mass in the standing posture. There was greater transmission of vertical vibration to the pelvis and the lower spine and greater relative motion within the lower spine in the standing posture than in the sitting posture at the principal resonance and at higher frequencies. Transmissibilities from the supporting surface (floor or seat) to the thoracic region had similar magnitudes for both standing and sitting subjects. The lumbar spine has less lordosis and may be more compressed and less flexible in the sitting posture than in the standing posture. This may have reduced the relative motions between lumbar vertebrae and both the supporting vibrating surface and the other vertebrae in the sitting posture. The characteristics of the vibration transmitted to the pelvis may have differed in the two postures due to different transmission paths. Increased forward rotation of the pelvis in the standing posture may have caused the differences in responses of the pelvis and the lower spine that were observed between the two postures.

  16. Confounders of Vasovagal Syncope: Postural Tachycardia Syndrome

    PubMed Central

    Nwazue, Victor C.; Raj, Satish R

    2012-01-01

    Most patients who present to a cardiologist with syncope will have vasovagal (reflex) syncope. A busy syncope practice will often also see patients with postural tachycardia syndrome, often presenting with severe recurrent presyncope. Recognition of this “syncope confounder” might be difficult without adequate knowledge of their presentation, and this can adversely affect optimal management. Patients with postural tachycardia syndrome exhibit an excessive increase in heart rate ≥ 30 bpm within 10 minutes of standing (in the absence of orthostatic hypotension), in addition to chronic symptoms of orthostatic intolerance. Postural tachycardia syndrome can often be differentiated from vasovagal syncope by its hemodynamic pattern during tilt table test and differing clinical characteristics. This article will briefly review the presentation of postural tachycardia syndrome, its putative pathophysiology and an approach to non-pharmacological and pharmacological management. PMID:23217691

  17. Postural education and behavior among students in a city in southern Brazil: student postural education and behavior

    PubMed Central

    Fonseca, Cíntia Detsch; Cardoso dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio

    2015-01-01

    [Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine. PMID:26504322

  18. Postural education and behavior among students in a city in southern Brazil: student postural education and behavior.

    PubMed

    Fonseca, Cíntia Detsch; Cardoso Dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio

    2015-09-01

    [Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine. PMID:26504322

  19. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    PubMed

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. PMID:18506762

  20. Exercise and Posture

    MedlinePlus

    ... Info For Teens Message Boards & Forums Donate Shop Exercise & Posture About Spondylitis / Exercise & Posture Overview For The ... Diet Blood Work and Spondylitis Spondylitis Awareness Month Exercise Exercise is an integral part of any spondylitis ...

  1. The force output of handle and pedal in different bicycle-riding postures.

    PubMed

    Chen, Chia-Hsiang; Wu, Yu-Kuang; Chan, Ming-Sheng; Shih, Yo; Shiang, Tzyy-Yuang

    2016-01-01

    The purpose of this study was to analyse the force output of handle and pedal as well as the electromyography (EMG) of lower extremity in different cycling postures. Bilateral pedalling asymmetry indices of force and EMG were also determined in this study. Twelve healthy cyclists were recruited for this study and tested for force output and EMG during steady state cycling adopting different pedalling and handle bar postures. The standing posture increased the maximal stepping torque (posture 1: 204.2 ± 47.0 Nm; posture 2: 212.5 ± 46.1 Nm; posture 3: 561.5 ± 143.0 Nm; posture 4: 585.5 ± 139.1 Nm), stepping work (posture 1: 655.2 ± 134.6 Nm; posture 2: 673.2 ± 116.3 Nm; posture 3: 1852.3 ± 394.4 Nm; posture 4: 1911.3 ± 432.9 Nm), and handle force (posture 1: 16.6 ± 3.6 N; posture 2: 16.4 ± 3.6 N; posture 3: 26.5 ± 8.2 N; posture 4: 41.4 ± 11.1 N), as well as muscle activation (posture 1: 13.6-25.1%; posture 2: 13.0-23.9%; posture 3: 23.6-61.8%; posture 4: 22.5-65.8%) in the erector spine, rectus femoris, tibialis anterior, and soleus. However, neither a sitting nor a standing riding posture affected the hamstring. The riding asymmetry was detected between the right and left legs only in sitting conditions. When a cyclist changes posture from sitting to standing, the upper and lower extremities are forced to produce more force output because of the shift in body weight. These findings suggest that cyclists can switch between sitting and standing postures during competition to increase cycling efficiency in different situations. Furthermore, coaches and trainers can modify sitting and standing durations to moderate cycling intensity, without concerning unbalanced muscle development. PMID:26967311

  2. Effects of disease severity and medication state on postural control asymmetry during challenging postural tasks in individuals with Parkinson's disease.

    PubMed

    Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B

    2016-04-01

    The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. PMID:26741255

  3. Postural control in man: the phylogenetic perspective.

    PubMed

    Gramsbergen, Albert

    2005-01-01

    Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phylogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure. PMID:16097476

  4. Postural orthostatic tachycardia syndrome (POTS)

    PubMed Central

    Sidhu, Bharat; Obiechina, Nonyelum; Rattu, Noman; Mitra, Shanta

    2013-01-01

    Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous group of conditions characterised by autonomic dysfunction and an exaggerated sympathetic response to assuming an upright position. Up till recently, it was largely under-recognised as a clinical entity. There is now consensus about the definition of POTS as a greater than 30/min heart rate increase on standing from a supine position (greater than 40/min increase in 12–19-year-old patients) or an absolute heart rate of greater than 120/min within 10 min of standing from a supine position and in the absence of hypotension, arrhythmias, sympathomimetic drugs or other conditions that cause tachycardia. We present two cases of POTS, followed by a discussion of its pathogenesis, pathophysiology, epidemiology and management. PMID:24042210

  5. Obesity Impact on the Attentional Cost for Controlling Posture

    PubMed Central

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  6. School Furniture Dimensions: Standing and Reaching.

    ERIC Educational Resources Information Center

    Department of Education and Science, London (England).

    Performance of school children in regard to their standing and reach postures are described with dimensions given on the limits of their performance only. The facts of task performances are presented for the following tasks--(1) seeing into a shelf, (2) reaching into a shelf, (3) drawing on a vertical surface, (4) sitting or standing while…

  7. Barnacle Geese Achieve Significant Energetic Savings by Changing Posture

    PubMed Central

    Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2012-01-01

    Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture. PMID:23071672

  8. Can Smartwatches Replace Smartphones for Posture Tracking?

    PubMed Central

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G.; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-01-01

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch’s ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches’ ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed. PMID:26506354

  9. Can smartwatches replace smartphones for posture tracking?

    PubMed

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-01-01

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed. PMID:26506354

  10. What is brain fog? An evaluation of the symptom in postural tachycardia syndrome

    PubMed Central

    Ross, Amanda J.; Medow, Marvin S.; Rowe, Peter C.

    2013-01-01

    Purpose Adolescents with postural tachycardia syndrome (POTS) often experience ill-defined cognitive impairment referred to by patients as “brain fog.” The objective of this study was to evaluate the symptom of brain fog as a means of gaining further insight into its etiology and potential palliative interventions. Methods Eligible subjects who reported having been diagnosed with POTS were recruited from social media web sites. Subjects were asked to complete a 38-item questionnaire designed for this study, and the Wood mental fatigue inventory (WMFI). Results Responses were received from 138 subjects with POTS (88 % female), ranging in age from 14 to 29 years; 132 subjects reported brain fog. WMFI scores correlated with brain fog frequency and severity (P < 0.001). The top ranked descriptors of brain fog were “forgetful,” “cloudy,” and “difficulty focusing, thinking and communicating.” The most frequently reported brain fog triggers were fatigue (91 %), lack of sleep (90 %), prolonged standing (87 %), dehydration (86 %), and feeling faint (85 %). Although aggravated by upright posture, brain fog was reported to persist after assuming a recumbent posture. The most frequently reported interventions for the treatment of brain fog were intravenous saline (77 %), stimulant medications (67 %), salt tablets (54 %), intra-muscular vitamin B-12 injections (48 %), and midodrine (45 %). Conclusions Descriptors for “brain fog” are most consistent with it being a cognitive complaint. Factors other than upright posture may play a role in the persistence of this symptom. Subjects reported a number of therapeutic interventions for brain fog not typically used in the treatment of POTS that may warrant further investigation. PMID:23999934

  11. Standing between Two Worlds in Harlem: A Developmental Psychopathology Perspective of Perinatally Acquired Human Immunodeficiency Virus and Adolescence

    ERIC Educational Resources Information Center

    Kang, Ezer; Mellins, Claude Ann; Ng, Warren Yiu Kee; Robinson, Lisa-Gaye; Abrams, Elaine J.

    2008-01-01

    Perinatal HIV infection in the US continues to evolve from a fatal pediatric illness to a chronic medical condition of childhood and adolescence. Although navigating this period is influenced by multi-leveled deprivations commonly experienced by low-income minority families, HIV alters the timing and experience of developmental milestones for many…

  12. The neuropathic postural tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J. R.; Robertson, R. M.; Wathen, M.; Stein, M.; Biaggioni, I.; Ertl, A.; Black, B.; Robertson, D.

    2000-01-01

    BACKGROUND: The postural tachycardia syndrome is a common disorder that is characterized by chronic orthostatic symptoms and a dramatic increase in heart rate on standing, but that does not involve orthostatic hypotension. Several lines of evidence indicate that this disorder may result from sympathetic denervation of the legs. METHODS: We measured norepinephrine spillover (the rate of entry of norepinephrine into the venous circulation) in the arms and legs both before and in response to exposure to three stimuli (the cold pressor test, sodium nitroprusside infusion, and tyramine infusion) in 10 patients with the postural tachycardia syndrome and in 8 age- and sex-matched normal subjects. RESULTS: At base line, the mean (+/-SD) plasma norepinephrine concentration in the femoral vein was lower in the patients with the postural tachycardia syndrome than in the normal subjects (135+/-30 vs. 215+/-55 pg per milliliter [0.80+/-0.18 vs. 1.27+/-0.32 nmol per liter], P=0.001). Norepinephrine spillover in the arms increased to a similar extent in the two groups in response to each of the three stimuli, but the increases in the legs were smaller in the patients with the postural tachycardia syndrome than in the normal subjects (0.001+/-0.09 vs. 0.12+/-0.12 ng per minute per deciliter of tissue [0.006+/-0.53 vs. 0.71+/-0.71 nmol per minute per deciliter] with the cold pressor test, P=0.02; 0.02+/-0.07 vs. 0.23+/-0.17 ng per minute per deciliter [0.12+/-0.41 vs. 1.36+/-1.00 nmol per minute per deciliter] with nitroprusside infusion, P=0.01; and 0.008+/-0.09 vs. 0.19+/-0.25 ng per minute per deciliter [0.05+/-0.53 vs. 1.12+/-1.47 nmol per minute per deciliter] with tyramine infusion, P=0.04). CONCLUSIONS: The neuropathic postural tachycardia syndrome results from partial sympathetic denervation, especially in the legs.

  13. Postured voxel-based human models for electromagnetic dosimetry

    NASA Astrophysics Data System (ADS)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2008-12-01

    High-resolution anatomically realistic whole-body voxel models have recently been developed for electromagnetic dosimetry. However, the posture of most models is similar to the standing one, which strongly limits electromagnetic dosimetry when simulating a realistic exposure scenario. In this paper, we present the development of postured models based on anatomically realistic voxel models with standing posture. Voxel models of the Japanese adult male and female were used as the original upright standing models. The Japanese models were composed of 2 mm cubic voxels, each of which was segmented into 51 different tissue types. We developed several different types of posture models using a novel posture transformation method. These posture models were smoothly transformed, while the continuity of the internal tissues and organs was maintained. In this paper, we also present our calculations of the whole-body averaged specific absorption rates (SARs) of sitting male and female models exposed to electromagnetic plane waves at very high (VHF) and ultra high frequency (UHF) bands.

  14. Social Postural Coordination

    ERIC Educational Resources Information Center

    Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.

    2011-01-01

    The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…

  15. [Pyridostigmine in the treatment of postural orthostatic tachycardia syndrome].

    PubMed

    Can, Ilknur; Tholakanahalli, Venkatakrishna

    2014-09-01

    A 34-year-old female patient was admitted with the complaints of inability to stand upright, palpitations, dizziness, and fatigue in the upright posture for the last one year. She was found to stand upright for less than one minute without symptoms. Tilt table testing showed that, compared to baseline her heart rate increased 55 beats/min in the fifth minute of the test with the symptoms of palpitations, fatigue and sweating without any significant change in her blood pressure. Postural orthostatic tachycardia syndrome was diagnosed, and pyridostigmine treatment was started. Four months after treatment her symptoms were relieved so that she was able to function as a nurse. PMID:25362946

  16. Hypertension associated with massive, bilateral, posture-dependent renal dysfunction

    SciTech Connect

    Clorius, J.H.; Schmidlin, P.; Raptou, E.; Huber, W.; Georgi, P.

    1981-07-01

    Hippurate function scintiscans were obtained in prone and standing positions in a group of 76 patients with concurrent hypertension and nephroptosis. Twelve of these patients had massive, bilateral disturbance of intrarenal hippurate transport in the standing position; hippurate transport was normal in the prone position. This pattern was present in only three of 120 normotensive patients with nephroptosis. To investigate the importance of nephroptosis, 87 other hypertensive patients were examined. Eighteen of these patients demonstrated posture-dependent tubular dysfunction, but only four had nephroptosis. The results suggest a direct relationship between bilateral posture-dependent tubular dysfunction and hypertension.

  17. Tai Chi training reduced coupling between respiration and postural control.

    PubMed

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  18. Reversible postural orthostatic tachycardia syndrome

    PubMed Central

    Abdulla, Aza; Rajeevan, Thirumagal

    2015-01-01

    Postural orthostatic tachycardia syndrome (POTS) is a relatively rare syndrome recognised since 1940. It is a heterogenous condition with orthostatic intolerance due to dysautonomia and is characterised by rise in heart rate above 30 bpm from base line or to more than 120 bpm within 5-10 min of standing with or without change in blood pressure which returns to base line on resuming supine position. This condition present with various disabling symptoms such as light headedness, near syncope, fatigue, nausea, vomiting, tremor, palpitations and mental clouding, etc. However there are no identifiable signs on clinical examination and patients are often diagnosed to have anxiety disorder. The condition predominantly affects young female between the ages of 15-50 but is rarely described in older people. We describe an older patient who developed POTS which recovered over 12 mo. Recognising this condition is important as there are treatment options available to alleviate the disabling symptoms. PMID:26244158

  19. Postural dependence of human locomotion during gait initiation.

    PubMed

    Mille, Marie-Laure; Simoneau, Martin; Rogers, Mark W

    2014-12-15

    The initiation of human walking involves postural motor actions for body orientation and balance stabilization that must be effectively integrated with locomotion to allow safe and efficient transport. Our ability to coordinately adapt these functions to environmental or bodily changes through error-based motor learning is essential to effective performance. Predictive compensations for postural perturbations through anticipatory postural adjustments (APAs) that stabilize mediolateral (ML) standing balance normally precede and accompany stepping. The temporal sequencing between these events may involve neural processes that suppress stepping until the expected stability conditions are achieved. If so, then an unexpected perturbation that disrupts the ML APAs should delay locomotion. This study investigated how the central nervous system (CNS) adapts posture and locomotion to perturbations of ML standing balance. Healthy human adults initiated locomotion while a resistance force was applied at the pelvis to perturb posture. In experiment 1, using random perturbations, step onset timing was delayed relative to the APA onset indicating that locomotion was withheld until expected stability conditions occurred. Furthermore, stepping parameters were adapted with the APAs indicating that motor prediction of the consequences of the postural changes likely modified the step motor command. In experiment 2, repetitive postural perturbations induced sustained locomotor aftereffects in some parameters (i.e., step height), immediate but rapidly readapted aftereffects in others, or had no aftereffects. These results indicated both rapid but transient reactive adaptations in the posture and gait assembly and more durable practice-dependent changes suggesting feedforward adaptation of locomotion in response to the prevailing postural conditions. PMID:25231611

  20. Motor Difficulties in Autism Spectrum Disorder: Linking Symptom Severity and Postural Stability

    ERIC Educational Resources Information Center

    Travers, Brittany G.; Powell, Patrick S.; Klinger, Laura G.; Klinger, Mark R.

    2013-01-01

    Postural stability is a fundamental aspect of motor ability that allows individuals to sustain and maintain the desired physical position of one's body. The present study examined postural stability in average-IQ adolescents and adults with Autism Spectrum Disorder (ASD). Twenty-six individuals with ASD and 26 age-and-IQ-matched individuals…

  1. (De)stabilization of Required and Spontaneous Postural Dynamics with Learning

    ERIC Educational Resources Information Center

    Faugloire, Elise; Bardy, Benoit G.; Stoffregen, Thomas A.

    2009-01-01

    The present research examined how learning a new ankle-hip coordination influenced the preexisting postural repertoire. Standing participants learned a new ankle-hip coordination mode (relative phase of 90[degrees]). Before and after practice, postural patterns were evaluated in two different tasks. In the required task, specific ankle-hip…

  2. Postural Analysis in Time and Frequency Domains in Patients with Ehlers-Danlos Syndrome

    ERIC Educational Resources Information Center

    Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30 s in two conditions: open eyes (OE) and closed…

  3. Development of prolonged standing strain index to quantify risk levels of standing jobs.

    PubMed

    Halim, Isa; Omar, Abdul Rahman

    2012-01-01

    Many occupations in industry such as metal stamping workers, electronics parts assembly operators, automotive industry welders, and lathe operators require working in a standing posture for a long time. Prolonged standing can contribute to discomfort and muscle fatigue particularly in the back and legs. This study developed the prolonged standing strain index (PSSI) to quantify the risk levels caused by standing jobs, and proposed recommendations to minimize the risk levels. Risk factors associated with standing jobs, such as working posture, muscles activity, standing duration, holding time, whole-body vibration, and indoor air quality, were the basis for developing the PSSI. All risk factors were assigned multipliers, and the PSSI was the product of those multipliers. Recommendations for improvement are based on the PSSI; however, extensive studies are required to validate their effectiveness. multipliers, and the PSSI was the product of those multipliers. Recommendations for improvement are based on the PSSI; however, extensive studies are required to validate their effectiveness. PMID:22429532

  4. Quantifying and Reducing Posture-Dependent Distortion in Ballistocardiogram Measurements

    PubMed Central

    Javaid, Abdul Q.; Wiens, Andrew D.; Fesmire, N. Forrest; Weitnauer, Mary A.; Inan, Omer T.

    2015-01-01

    Ballistocardiography is a non-invasive measurement of the mechanical movement of the body caused by cardiac ejection of blood. Recent studies have demonstrated that ballistocardiogram (BCG) signals can be measured using a modified home weighing scale, and used to track changes in myocardial contractility and cardiac output. With this approach, the BCG can potentially be used both for preventive screening and for chronic disease management applications. However, for achieving high signal quality, subjects are required to stand still on the scale in an upright position for the measurement; the effects of intentional (for user comfort) or unintentional (due to user error) modifications in the position or posture of the subject during the measurement have not been investigated in the existing literature. In this study, we quantified the effects of different standing and seated postures on the measured BCG signals, and on the most salient BCG-derived features compared to reference standard measurements (e.g., impedance cardiography). We determined that the standing upright posture led to the least distorted signals as hypothesized, and that the correlation between BCG-derived timing interval features (R-J interval) and the pre-ejection period, PEP (measured using ICG), decreased significantly with impaired posture or sitting position. We further implemented two novel approaches to improve the PEP estimates from other standing and sitting postures, using system identification and improved J-wave detection methods. These approaches can improve the usability of standing BCG measurements in unsupervised settings (i.e. the home), by improving the robustness to non-ideal posture, as well as enabling high quality seated BCG measurements. PMID:26058064

  5. Assessing Postural Stability in the Concussed Athlete

    PubMed Central

    Ruhe, Alexander; Fejer, René; Gänsslen, Axel; Klein, Wolfgang

    2014-01-01

    Context: Postural stability assessment is included as part of the diagnostic and monitoring process for sports-related concussions. Particularly, the relatively simple Balance Error Scoring System (BESS) and more sophisticated force plate measures like the Sensory Organization Test (SOT) are suggested. Evidence Acquisition: Relevant studies were identified via the following electronic databases: PubMed, MEDLINE, EMBASE, Web of Science, ScienceDirect, and CINAHL (1980 to July 2013). Inclusion was based on the evaluation of postural sway or balance in concussed athletes of any age or sex and investigating the reliability or validity of the included tests. Study Design: Clinical review. Level of Evidence: Level 4 Results: Both the SOT and the BESS show moderate reliability, but a learning effect due to repetitive testing needs to be considered. Both tests indicate that postural stability returns to baseline by day 3 to 5 in most concussed athletes. While the BESS is a simple and valid method, it is sensitive to subjectivity in scoring and the learning effect. The SOT is very sensitive to even subtle changes in postural sway, and thus, more accurate than the BESS; however, it is a rather expensive method of balance testing. Conclusion: Both tests serve the purpose of monitoring balance performance in the concussed athlete; however, neither may serve as a stand-alone diagnostic or monitoring tool. Strength of Recommendation Taxonomy: B PMID:25177420

  6. Influence of musical groove on postural sway.

    PubMed

    Ross, Jessica M; Warlaumont, Anne S; Abney, Drew H; Rigoli, Lillian M; Balasubramaniam, Ramesh

    2016-03-01

    Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record PMID:26727019

  7. Clinical evaluation of a new biofeedback standing balance training device.

    PubMed

    Lee, M Y; Wong, M K; Tang, F T

    1996-01-01

    For patients with neurological damage of the central nervous system, such as that due to cerebrovascular accident (CVA), standing balance training is a critical therapeutic procedure to be undertaken before walking and self-care training. The identification and characterization of neurological disorder in postural steadiness will enhance our understanding of the postural control system, and help to identify patients at risk of falls in the CVA population. This paper discusses the design and clinical evaluation of a new biofeedback training device for static (postural steadiness) performance of the standing balance system. The device includes a height adjustable standing table, an instrumented force sensing platform, an on-line weight bearing audio/visual biofeedback system, a postural correction mirror, and a belt suspension system for the upper extremities. A quantitative evaluation protocol of bilateral asymmetries in weight distribution and postural sway to characterize standing balance with the force sensing platform is discussed. Finally, the clinical evaluation results of sixty patients with hemiplegia from acute stroke for a period of four weeks are discussed. With this economic standing training device, the static standing steadiness can be trained effectively through weight bearing biofeedback and a postural correction mirror in the clinical and home caring environments. PMID:8836924

  8. Modulation of ankle stiffness during postural sway.

    PubMed

    Lang, Christopher B; Kearney, Robert E

    2014-01-01

    Ankle stiffness is a nonlinear, time-varying system which contributes to the control of human upright stance. This study sought to examine the nature of the contribution of stiffness to postural control by determining how intrinsic and reflex stiffnesses varied with sway. Subjects were instructed to stand quietly on a bilateral electro-hydraulic actuator while perturbations were applied about the ankle. Subjects performed three types of trials: normal stance, forward lean, and backward lean. Position, torque, and EMGs from the tibialis anterior and triceps surae were recorded. Background torque, intrinsic stiffness and reflex stiffness were calculated for each perturbation. Intrinsic and reflex stiffnesses were heavily modulated by postural sway. Moreover, they were modulated in a complimentary manner; intrinsic stiffness was lowest when reflex gain was highest, and vice versa. These findings suggest that intrinsic stiffness is modulated simultaneously with reflex stiffness to optimize the control of balance. PMID:25570884

  9. Orthodontics in a quantum world IV: balance, posture and oral function.

    PubMed

    James, Gavin

    2008-01-01

    Loss of balance and postural adaptation are discussed in the context of temporomandibular disorders. Two examples are given of how orthodontic treatment in adults can lead to a recovery of balance and postural improvement. In children, spontaneous postural improvement can occur following simple dental intervention. The results of examining this observation in a sample of 100 children are discussed. The findings indicate the need for an orthodontic assessment to include a standing postural examination. Criteria for a larger investigation are outlined and techniques to assist in this are suggested. PMID:19263634

  10. Postural Control in Children, Teenagers and Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Rigoldi, Chiara; Galli, Manuela; Mainardi, Luca; Crivellini, Marcello; Albertini, Giorgio

    2011-01-01

    The goal of this work was to analyze postural control in Down syndrome (DS) participants considering three different groups composed by children, teenagers and adults with DS. An analysis of the centre of pressure (COP) displacement during standing position was therefore performed for the three groups of subjects. The obtained signal of COP was…

  11. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    NASA Astrophysics Data System (ADS)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2009-12-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  12. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    NASA Astrophysics Data System (ADS)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  13. [What are the effects of the aging of the neuromuscular system on postural stability?].

    PubMed

    Cattagni, Thomas; Scaglioni, Gil; Cornu, Christophe; Berrut, Gilles; Martin, Alain

    2015-12-01

    Aging is frequently associated with a decreased postural stability, essentially after 60 years, leading to an increased risk of falling. In this article we propose to highlight the influence of the aging of the neuromuscular system on postural stability when standing upright. To maintain balance while standing upright, human needs to control the activity of ankle muscles and particularly the plantar flexors. During the aging process, the performance of these muscles are strongly altered. It is commonly observed large deficits in elderly people with history of falls. Some authors reported an inverse correlation between the amplitude of postural sway and the capacity of force production of ankle muscles suggesting that the assessment of neuromuscular function could be an index of postural stability or even of the falling risk. Finally, enhance the strength of ankle muscles in elderly through physical exercise could be an adequate intervention to improve postural stability and reduce the incidence of falls. PMID:26707554

  14. Autoimmune Basis for Postural Tachycardia Syndrome

    ClinicalTrials.gov

    2016-03-30

    Postural Orthostatic Tachycardia Syndrome; Postural Tachycardia Syndrome; Tachycardia; Arrhythmias, Cardiac; Autonomic Nervous System Diseases; Orthostatic Intolerance; Cardiovascular Diseases; Primary Dysautonomias

  15. Standing on a declining surface reduces transient prolonged standing induced low back pain development.

    PubMed

    Gallagher, Kaitlin M; Callaghan, Jack P

    2016-09-01

    While alternating standing position on a sloped surface has proven successful at reducing low back pain during standing, the purpose of this study was to evaluate standing solely on a declining surface to isolate the influence of the postural change. Seventeen participants performed two 75-min prolonged standing occupational simulations- level ground and declining surface. Fifty-three percent of participants (9/17) were categorized as pain developers during the level ground standing condition. For these same pain developers, their average maximum pain scores were 58% lower during sloped standing. All participants showed greater hip flexion, trunk-to-thigh angle flexion, and posterior translation of the trunk center of gravity when standing on the sloped surface. These postural changes could cause the muscles crossing the hip posteriorly to increase passive stiffness and assist with stabilizing the pelvis. This study stresses the importance of hip kinematics, not just lumbar spine posture, in reducing prolonged standing induced low back pain. PMID:27184314

  16. Tips to Maintain Good Posture

    MedlinePlus

    ... Pain and Chiropractic Posture Spinal Health Winter Activities Backpack Safety Kids and Sports Exercising Outdoors with Baby ... Pain and Chiropractic Posture Spinal Health Winter Activities Backpack Safety Kids and Sports Exercising Outdoors with Baby ...

  17. Postural correlates with painful situations

    PubMed Central

    Lelard, Thierry; Montalan, Benoît; Morel, Maria F.; Krystkowiak, Pierre; Ahmaidi, Said; Godefroy, Olivier; Mouras, Harold

    2013-01-01

    Background: Emotional context may play a crucial role in movement production. According to simulation theories, emotional states affect motor systems. The aim of this study was to compare postural responses assessed by posturography and electromyography when subjects were instructed to imagine themselves in a painful or a non-painful situation. Methods: Twenty-nine subjects (22.3 ± 3.7 years) participated in this study. While standing quietly on a posturographic platform, they were instructed to imagine themselves in a painful or non-painful situation. Displacement of the center of pressure (COP), leg muscle electromyographic activity, heart rate, and electrodermal activity were assessed in response to painful and non-painful situations. Results: The anteroposterior path was shorter (p < 0.05) when subjects imagined themselves in a painful situation (M = 148.0 ± 33.4 mm) compared to a non-painful situation (158.2 ± 38.7 mm). Higher tibialis anterior (TA) activity (RMS-TA = 3.38 ± 1.95% vs. 3.24 ± 1.85%; p < 0.001) and higher variability of soleus (SO) activity (variation coefficient of RMS-SO = 13.5 ± 16.2% vs. M = 9.0 ± 7.2%; p < 0.05) were also observed in painful compared to non-painful situations. No significant changes were observed for other physiological data. Conclusion: This study demonstrates that simulation of painful situations induces changes in postural control and leg muscle activation compared to non-painful situations, as increased stiffness was demonstrated in response to aversive pictures in accordance with previous results. PMID:23386816

  18. Postural Orthostatic Tachycardia Syndrome

    PubMed Central

    2014-01-01

    The postural orthostatic tachycardia syndrome is a disease characterized by excessively increased heart rate during orthostatic challenge associated with symptoms of orthostatic intolerance including dizziness, exercise intolerance, headache, fatigue, memory problems, nausea, blurred vision, pallor, and sweating, which improve with recumbence. Postural orthostatic tachycardia syndrome patients may present with a multitude of additional symptoms that are attributable to vascular vasoconstriction. Observed signs and symptoms in a patient with postural orthostatic tachycardia syndrome include tachycardia at rest, exaggerated heart rate increase with upright position and exercise, crushing chest pain, tremor, syncope, loss of vision, confusion, migraines, fatigue, heat intolerance, parasthesia, dysesthesia, allodynia, altered traditional senses, and thermoregulatory abnormalities. There are a number of possible dermatological manifestations of postural orthostatic tachycardia syndrome easily explained by its recently discovered pathophysiology. The author reports the case of a 22-year-old woman with moderate-to-severe postural orthostatic tachycardia syndrome with numerous dermatological manifestations attributable to the disease process. The cutaneous manifestations observed in this patient are diverse and most noticeable during postural orthostatic tachycardia syndrome flares. The most distinct are evanescent, hyperemic, sharply demarcated, irregular patches on the chest and neck area that resolve upon diascopy. This distinct “evanescent hyperemia” disappears spontaneously after seconds to minutes and reappears unexpectedly. Other observed dermatological manifestations of this systemic disease include Raynaud’s phenomenon, koilonychia, onychodystrophy, madarosis, dysesthesia, allodynia, telogen effluvium, increased capillary refill time, and livedo reticularis. The treatment of this disease poses a great challenge. The author reports the unprecedented use of an

  19. Validity of self-reported duration of work postures obtained by interview. MUSIC-Norrtälje Study Group.

    PubMed

    Mortimer, M; Hjelm, E W; Wiktorin, C; Pernold, G; Kilbom, A; Vingård, E

    1999-12-01

    The aim of the study was to validate interview data concerning the duration of four work postures (1) sitting, (2) standing/walking with hands above shoulder level, (3) standing/walking with hands between shoulder and knuckle level, and (4) standing/walking with hands below knuckle level. The self-reported time spent in each posture was tested in relation to observations and technical measurements in 20 subjects during two full working days. The linear relationships between self-reports and observations were strong for the three postures; sitting (r2 = 0.55), hands above shoulder level (r2 = 0.58) and hands below knuckle level (r2 = 0.69). Thus, using this interview technique, self-reports concerning time spent in (1) sitting, (2) standing/walking with hands above shoulder level and, (3) standing/walking with hands below knuckle level may be accurate enough for studying these work postures in epidemiological studies. PMID:10693827

  20. Modulation of plasma melatonin concentrations by changes in posture.

    PubMed

    Nathan, P J; Jeyaseelan, A S; Burrows, G D; Norman, T R

    1998-05-01

    Posture change from a lying position to a standing position results in a decrease in plasma volume, which leads to an increase in plasma constituents, especially that of proteins and blood constituents bound to them. The aim of the present study was to investigate the physiological effects of postural changes on plasma nocturnal melatonin concentrations in healthy human volunteers. The study was divided into four stages. During stage one, subjects were seated from 21.00 hr to 01.00 hr. In stage two, subjects were lying at ground level from 21.00 hr to 01.00 hr. In stage three, subjects were is a sitting position from 2100 hr to 2300 hr and then in a standing position from 23.00 hr to 24.00 hr, and back to the sitting position from 24.00 hr to 01.00 hr. In the final stage, subjects were in a lying position from 21.00 hr to 23.00 hr and then in a standing position from 23.00 hr to 24.00 hr and back to the lying position from 24.00 hr to 01.00 hr. AUC analysis showed significant differences between sitting and lying positions (t=2.84; P<0.05; df=5), with higher melatonin levels associated with the sitting position (mean difference in peak concentration of 17.1 pg/ml). Furthermore a change in posture from the lying to the standing position produced a statistically significant increase in melatonin concentrations (final stage) (t=-3.37; P<0.05; df=5) (mean difference in peak concentration of 28.5 pg/ml). No differences were found with a change in posture from a sitting to a standing position. The hemoconcentration and hemodilution associated with posture changes may play a role in altering plasma protein bound hormones such as melatonin. PMID:9572531

  1. Detecting altered postural control after cerebral concussion in athletes with normal postural stability

    PubMed Central

    Cavanaugh, J; Guskiewicz, K; Giuliani, C; Marshall, S; Mercer, V; Stergiou, N

    2005-01-01

    Objective: To determine if approximate entropy (ApEn), a regularity statistic from non-linear dynamics, could detect changes in postural control during quiet standing in athletes with normal postural stability after cerebral concussion. Methods: The study was a retrospective, case series analysis of centre of pressure (COP) data collected during the Sensory Organization Test (SOT) from NCAA Division I (USA) athletes prior to and within 48 h after injury. Subjects were 21 male and six female athletes from a variety of sports who sustained a cerebral concussion between 1997 and 2003. After injury, athletes displayed normal postural stability equivalent to preseason levels. For comparison, COP data also were collected from 15 male and 15 female healthy non-athletes on two occasions. ApEn values were calculated for COP anterior-posterior (AP) and medial-lateral (ML) time series. Results: Compared to healthy subjects, COP oscillations among athletes generally became more regular (lower ApEn value) after injury despite the absence of postural instability. For AP time series, declines in ApEn values were much larger in SOT conditions 1 and 2 (approximately three times as large as the standard error of the mean) than for all other conditions. For ML time series, ApEn values declined after injury in all sensory conditions (F1,55 = 6.36, p = 0.02). Conclusions: Athletes who demonstrated normal postural stability after concussion nonetheless displayed subtle changes in postural control. Changes in ApEn may have represented a clinically abnormal finding. ApEn analysis of COP oscillations may be a valuable supplement to existing concussion assessment protocols for athletes. PMID:16244188

  2. Posture and Movement

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.

  3. An investigation of a reference posture used in determining rearfoot kinematics for both healthy and patellofemoral pain syndrome individuals.

    PubMed

    Levinger, Pazit; Gilleard, Wendy

    2005-09-01

    The choice of a reference posture is important when investigating rearfoot motion in clinical populations. The reference posture used may affect the magnitude of the peak angles and therefore may not enable comparison of the rearfoot kinematics across different populations. This study examined the relationship between the rearfoot frontal plane pattern of motion and three reference postures during the stance phase of walking in healthy and patellofemoral pain syndrome (PFPS) subjects. The three reference postures investigated were: Relaxed Standing posture, subtalar joint neutral position (STJN) and when the calcaneus and the lower leg were vertically aligned (Vertical Alignment). The rearfoot inversion/eversion during the stance phase was measured in 14 healthy subjects and 13 subjects with diagnosed PFPS using three dimensional motion analysis with the three different reference postures. The graphs of rearfoot inversion/eversion motion were overlaid with the angle at the rearfoot in the static posture and any intersection between the static angle and rearfoot motion was noted. An ANOVA showed significant differences in static posture between the groups for Relaxed Standing (p = 0.01), and STJN (p = 0.02). For both groups, with Relaxed Standing as a reference posture, the mean rearfoot pattern of motion did not intersect the Relaxed Standing static angle during the stance phase. The use of Vertical Alignment reference posture, however, showed an intersection of this reference posture through the rearfoot pattern of motion. The use of the Vertical Alignment reference posture also generated a typical rearfoot motion pattern for both groups and therefore it may be an appropriate reference posture for both healthy and PFPS individuals. Key PointsThe use of the three reference postures resulted in shifting of the curve of the rearfoot frontal plane pattern of motion. The shift of the curve is important in identifying the magnitude of rearfoot peak motion during the

  4. Effects of Levodopa on Postural Strategies in Parkinson's disease.

    PubMed

    Baston, Chiara; Mancini, Martina; Rocchi, Laura; Horak, Fay

    2016-05-01

    Altered postural control and balance are major disabling issues of Parkinson's disease (PD). Static and dynamic posturography have provided insight into PD's postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. PMID:27131172

  5. The lumbosacral segment as a vulnerable region in various postures

    NASA Technical Reports Server (NTRS)

    Rosemeyer, B.

    1978-01-01

    The lumbosacral region in man is exposed to special static and dynamic load. In a supine position, the disc size increases because of the absence of axial load. In a standing position, with physiological posture of the spine, strain discomfort occurs which is increased even more in the sitting position due to the curvature of the lumbar region of the spine and the irregular distribution of pressure in the discs as a result of this. This special problem of sitting posture can be confirmed by examinations.

  6. Specificity of Postural Sway to the Demands of a Precision Task at Sea

    ERIC Educational Resources Information Center

    Chen, Fu-Chen; Stoffregen, Thomas A.

    2012-01-01

    Mariners actively adjust their body orientation in response to ship motion. On a ship at sea, we evaluated relations between standing postural activity and the performance of a precision aiming task. Standing participants (experienced mariners) maintained the beam from a handheld laser on a target. Targets were large or small, thereby varying the…

  7. Mechanical Characteristics of Reflex Durign Upright Posture in Paralyzed Subjects

    NASA Astrophysics Data System (ADS)

    Kim, Yongchul; Youm, Youngil; Lee, Bumsuk; Kim, Youngho; Choi, Hyeonki

    The characteristics of flexor reflexes have been investigated in the previous studies with human subjects who were seated or supine position. However, researchers did not describe how the spinal circuits are used in different hip angles for paralyzed subjects, such as the standing position with walker or cane. In upright posture the compatibility between a flexor reflex of leg and body balance is a special problem for lower limb injured subjects. Therefore, the purpose of this study was to investigate the effects of hip angle change on the flexor reflex evoked in standing paralyzed subjects supported by walker. In this study, six spinal cord injured and four stroke subjects were recruited through the inpatient physical therapy clinics of Korea national rehabilitation hospital. A single axis electronic goniometer was mounted on the lateral side of the hip joint of the impaired limb to record movements in the sagittal plane at this joint. The electronic goniometer was connected to a data acquisition system, through amplifiers to a computer. Since subject' posture influenced characteristics of the flexion reflex response, the subjects were supported in an upright posture by the help of parallelogram walder. Two series of tests were performed on each leg. The first series of the tests investigated the influence of hip angle during stationary standing posture on flexion reflex response. The hip angle was adjusted by the foot plate. The second examined the effect of the voluntary action of subject on swing motion during the gait. The electrically induced flexion reflex simultaneously produced the flexion of the hip, knee and dorsiflexion of the ankle enabling the swing phase of walking. Form the experimental results we observed that the reflex response of hip joint was largerwith the hip in the extended position than in the flexed position during standing posture. Under voluntary movement on flexion reflex during gaint, the peak hip angle induced by stimulation was

  8. Human posture classification for intelligent visual surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    Intelligent surveillance systems (ISS) have gained a significant attention in recent years due to the nationwide security concerns. Some of the important applications of ISS include: homeland security, border monitoring, battlefield intelligence, and sensitive facility monitoring. The essential requirements of an ISS include: (1) multi-modality multi-sensor data and information fusion, (2) communication networking, (3) distributed data/information processing,(4) Automatic target recognition and tracking, (5) Scenario profiling from discrete correlated/uncorrelated events, (6) Context-based situation reasoning, and (7) Collaborative resource sharing and decision support systems. In this paper we have addressed the problem of humanposture classification in crowded urban terrain environments. Certain range of human postures can be attributed to different suspicious acts of intruders in a constrained environment. By proper time analysis of human trespassers' postures in an environment, it would be possible to identify and differentiate malicious intention of the trespassers from other normal human behaviors. Specifically in this paper, we have proposed an image processing-based approach for characterization of five different human postures including: standing, bending, crawling, carrying a heavy object, and holding a long object. Two approaches were introduced to address the problem: template-matching and Hamming Adaptive Neural Network (HANN) classifiers. The former approach performs human posture characterization via binary-profile projection and applies a correlation-based method for classification of human postures. The latter approach is based a HANN technique. For training of the neural, the posture-patterns are initially compressed, thresholded, and serialized. The binary posture-pattern arrays were then used for training of the HANN. The comparative performance evaluation of both approaches the same set of training and testing examples were used to measure

  9. Postural stabilization and balance assessment in Charcot–Marie–Tooth 1A subjects

    PubMed Central

    Lencioni, T.; Rabuffetti, M.; Piscosquito, G.; Pareyson, D.; Aiello, A.; Di Sipio, E.; Padua, L.; Stra, F.; Ferrarin, M.

    2014-01-01

    The aim of the present study was to assess postural stabilization skill in adult subjects affected by Charcot–Marie–Tooth disease (CMT) type 1A. For this purpose ground reaction force (GRF) was measured by means of a piezoelectric force platform during the sit-to-stand (STS) movement, until a steady state erect posture was achieved. Specific indexes to quantify Centre of Mass acceleration, both during postural stabilization and during quiet standing, were computed using a mathematical model. Forty-seven CMT1A subjects were recruited for the study, and the control group was formed by forty-one age- and sex-matched healthy subjects. The results show that CMT1A subjects are less stable than controls during the quiet stance. Greater difficulty (high values of Yinf, the final instability rate) to maintain erect posture appears to be mainly associated with plantar-flexor muscle weakness, rather than to damage of the proprioceptive system. The worst performances shown by CMT1A subjects in the stabilization phase (high values of I, the global index of postural stabilization performance) seem to be associated with reduced muscle strength and the loss of large sensory nerve fibres. Distal muscle weakness appears to affect both postural stabilization and quiet erect posture. The presented protocol and the analysis of postural stabilization parameters provide useful information on CMT1A balance disorders. PMID:25082324

  10. Postural stabilization and balance assessment in Charcot-Marie-Tooth 1A subjects.

    PubMed

    Lencioni, T; Rabuffetti, M; Piscosquito, G; Pareyson, D; Aiello, A; Di Sipio, E; Padua, L; Stra, F; Ferrarin, M

    2014-09-01

    The aim of the present study was to assess postural stabilization skill in adult subjects affected by Charcot-Marie-Tooth disease (CMT) type 1A. For this purpose ground reaction force (GRF) was measured by means of a piezoelectric force platform during the sit-to-stand (STS) movement, until a steady state erect posture was achieved. Specific indexes to quantify Centre of Mass acceleration, both during postural stabilization and during quiet standing, were computed using a mathematical model. Forty-seven CMT1A subjects were recruited for the study, and the control group was formed by forty-one age- and sex-matched healthy subjects. The results show that CMT1A subjects are less stable than controls during the quiet stance. Greater difficulty (high values of Yinf, the final instability rate) to maintain erect posture appears to be mainly associated with plantar-flexor muscle weakness, rather than to damage of the proprioceptive system. The worst performances shown by CMT1A subjects in the stabilization phase (high values of I, the global index of postural stabilization performance) seem to be associated with reduced muscle strength and the loss of large sensory nerve fibres. Distal muscle weakness appears to affect both postural stabilization and quiet erect posture. The presented protocol and the analysis of postural stabilization parameters provide useful information on CMT1A balance disorders. PMID:25082324

  11. Take a Stand for Standing

    ERIC Educational Resources Information Center

    Labandz, Stephenie

    2010-01-01

    As a school-based physical therapist, the author sees children with a wide variety of diagnoses affecting their mobility and motor function. Supported standing is an important part of the routines of those who are unable to stand independently due to issues affecting the neuromuscular system. Being eye-to-eye with their peers and interacting with…

  12. The Role of Anticipatory Postural Adjustments in Compensatory Control of Posture: 2. Biomechanical Analysis

    PubMed Central

    Santos, Marcio J.; Kanekar, Neeta; Aruin, Alexander S.

    2010-01-01

    The central nervous system (CNS) utilizes anticipatory (APAs) and compensatory (CPAs) postural adjustments to maintain equilibrium while standing. It is known that these postural adjustments involve displacements of the center of mass (COM) and center of pressure (COP). The purpose of the study was to investigate the relationship between APAs and CPAs from a kinetic and kinematic perspective. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level while standing. Kinematic and kinetic data were recorded and analyzed during the time duration typical for anticipatory and compensatory postural adjustments. When the perturbations were unpredictable, the COM and COP displacements were larger compared to predictable conditions with APAs. Thus, the peak of COM displacement, after the pendulum impact, in the posterior direction reached 28 ± 9.6 mm in the unpredictable conditions with no APAs whereas it was 1.6 times smaller, reaching 17 ± 5.5 mm during predictable perturbations. Similarly, after the impact, the peak of COP displacement in the posterior direction was 60 ± 14 mm for unpredictable conditions and 28 ± 3.6 mm for predictable conditions. Finally, the times of the peak COM and COP displacements were similar in the predictable and unpredictable conditions. This outcome provides additional knowledge about how body balance is controlled in presence and in absence of information about the forthcoming perturbation. Moreover, it suggests that control of posture could be enhanced by better utilization of APAs and such an approach could be considered as a valuable modality in the rehabilitation of individuals with balance impairment. PMID:20156693

  13. Postural development in rats.

    PubMed

    Lelard, T; Jamon, M; Gasc, J-P; Vidal, P-P

    2006-11-01

    Mammals adopt a limited number of postures during their day-to-day activities. These stereotyped skeletal configurations are functionally adequate and limit the number of degrees of freedom to be controlled by the central nervous system. The temporal pattern of emergence of these configurations in altricial mammals is unknown. We therefore carried out an X-ray study in unrestrained rats from birth (P0) until postnatal day 23 (P23). The X-rays showed that many of the skeletal configurations described in adult rodents were already present at birth. By contrast, limb placement changed abruptly at around P10. These skeletal configurations, observed in anesthetized pups, required the maintenance of precise motor control. On the other hand, motor control continued to mature, as shown by progressive changes in resting posture and head movements from P0 to P23. We suggest that a few innate skeletal configurations provide the necessary frames of reference for the gradual construction of an adult motor repertoire in altricial mammals, such as the rat. The apparent absence of a requirement for external sensorial cues in the maturation of this repertoire may account for the maturation of postural and motor control in utero in precocial mammals (Muir et al., 2000 for a review on the locomotor behavior of altricial and precocial animals). PMID:16814770

  14. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing. PMID:26117153

  15. Postural stress analysis in industry.

    PubMed

    Genaidy, A M; Al-Shedi, A A; Karwowski, W

    1994-04-01

    Both observational and instrumentation-based techniques have been used to conduct postural stress analysis in industry. As observational methods are more widespread than instrumentation-based techniques and can be used as a practical tool in the workplace, this study reviews and assesses the scientific literature on observational techniques. Techniques are classified into macropostural, micropostural and postural-work activity. The basis for each classification is outlined and evaluated. Postural recording is performed either continuously or intermittently. Intermittent postural recording procedures lack the criteria for determining the optimum number of observations for low and high repetitive jobs. Research is warranted to examine the sources and magnitudes of errors associated with postural classification. Such information is required to train job analysts in the ergonomics of working postures. PMID:15676953

  16. Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects

    PubMed Central

    Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura

    2015-01-01

    The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713

  17. Can Postural Instability Respond to Galvanic Vestibular Stimulation in Patients with Parkinson’s Disease?

    PubMed Central

    Kataoka, Hiroshi; Okada, Yohei; Kiriyama, Takao; Kita, Yorihiro; Nakamura, Junji; Morioka, Shu; Shomoto, Koji; Ueno, Satoshi

    2016-01-01

    Objective Galvanic vestibular stimulation (GVS) activates the vestibular afferents, and these changes in vestibular input exert a strong influence on the subject’s posture or standing balance. In patients with Parkinson’s disease (PD), vestibular dysfunction might contribute to postural instability and gait disorders. Methods Current intensity was increased to 0.7 mA, and the current was applied to the patients for 20 minutes. To perform a sham stimulation, the current intensity was increased as described and then decreased to 0 mA over the course of 10 seconds. The patient’s status was recorded continuously for 20 minutes with the patient in the supine position. Results Three out of 5 patients diagnosed with PD with postural instability and/or abnormal axial posture showed a reduction in postural instability after GVS. The score for item 12 of the revised Unified Parkinson’s Disease Rating Scale part 3 was decreased in these patients. Conclusions The mechanism of postural instability is complex and not completely understood. In 2 out of the 5 patients, postural instability was not changed in response to GVS. Nonetheless, the GVS-induced change in postural instability for 3 patients in our study suggests that GVS might be a therapeutic option for postural instability. PMID:26648182

  18. Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting.

    PubMed

    Claeys, Kurt; Brumagne, Simon; Dankaerts, Wim; Kiers, Henri; Janssens, Lotte

    2011-01-01

    Optimal postural control is an essential capacity in daily life and can be highly variable. The purpose of this study was to investigate if young people have the ability to choose the optimal postural control strategy according to the postural condition and to investigate if non-specific low back pain (NSLBP) influences the variability in proprioceptive postural control strategies. Young individuals with NSLBP (n = 106) and healthy controls (n = 50) were tested on a force plate in different postural conditions (i.e., sitting, stable support standing and unstable support standing). The role of proprioception in postural control was directly examined by means of muscle vibration on triceps surae and lumbar multifidus muscles. Root mean square and mean displacements of the center of pressure were recorded during the different trials. To appraise the proprioceptive postural control strategy, the relative proprioceptive weighting (RPW, ratio of ankle muscles proprioceptive inputs vs. back muscles proprioceptive inputs) was calculated. Postural robustness was significantly less in individuals with NSLBP during the more complex postural conditions (p < 0.05). Significantly higher RPW values were observed in the NSLBP group in all postural conditions (p < 0.05), suggesting less ability to rely on back muscle proprioceptive inputs for postural control. Therefore, healthy controls seem to have the ability to choose a more optimal postural control strategy according to the postural condition. In contrast, young people with NSLBP showed a reduced capacity to switch to a more multi-segmental postural control strategy during complex postural conditions, which leads to decreased postural robustness. PMID:20824281

  19. Postural adjustments associated with rapid voluntary arm movements 1. Electromyographic data.

    PubMed Central

    Friedli, W G; Hallett, M; Simon, S R

    1984-01-01

    Normal subjects made bilaterally symmetric rapid elbow flexions or extensions ("focal movement") while free standing or when supported by being strapped to a firm wall behind them (different "postural set"). In some trials a load opposed the movement two thirds of the way into its course. Electromyographic activity in leg and trunk muscles ("associated postural adjustments") demonstrated specific patterns for each type of movement. Activity in these muscles began prior to activity in the arm muscles and demonstrated a distal-to-proximal order of activation. The EMG patterns were characterised by alternating activity in the antagonist pairs similar to the triphasic pattern seen in the arm muscles. When the movement type was changed change of the pattern of the postural muscles occurred over several trials. It is concluded that the associated postural adjustments are pre-programmed motor activity linked to the focal movement, specific for the focal movement including anticipated events and the postural set. PMID:6736995

  20. Evaluation of postural stability in children with hemiplegic cerebral palsy

    PubMed Central

    Kenis-Coskun, Ozge; Giray, Esra; Eren, Beyhan; Ozkok, Ozlem; Karadag-Saygi, Evrim

    2016-01-01

    [Purpose] Postural stability is the ability of to maintain the position of the body within the support area. This function is affected in cerebral palsy. The aim of the present study was to compare static and dynamic postural stability between children with hemiplegic cerebral palsy and healthy controls. [Subjects and Methods] Thirty-seven children between the ages of 5 and 14 diagnosed with hemiplegic cerebral palsy (19 right, 18 left) and 23 healthy gender- and age-matched controls were included in the study. Postural stability was evaluated in both of the groups using a Neurocom Balance. Sway velocity was measured both with the eyes open and closed. Sit to stand and turning abilities were also assessed. [Results] The sway velocities with the eyes open and closed were significantly different between the groups. The weight transfer time in the Sit to Stand test was also significantly slower in children with cerebral palsy. Children with cerebral palsy also showed slower turning times and greater sway velocities during the Step and Quick Turn test on a force plate compared with their healthy counterparts. [Conclusion] Both static and dynamic postural stability parameters are affected in hemiplegic cerebral palsy. Further research is needed to define rehabilitation interventions to improve these parameters in patients. PMID:27313338

  1. Selection of optimal muscle set for 16-channel standing neuroprosthesis

    PubMed Central

    Gartman, Steven J.; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2009-01-01

    The Case Western Reserve University/Department of Veterans Affairs 8-channel lower-limb neuroprosthesis can restore standing to selected individuals with paraplegia by application of functional electrical stimulation. The second generation of this system will include 16 channels of stimulation and a closed-loop control scheme to provide automatic postural corrections. This study used a musculoskeletal model of the legs and trunk to determine which muscles to target with the new system in order to maximize the range of postures that can be statically maintained, which should increase the system’s ability to provide adequate support to maintain standing when the user’s posture moves away from a neutral stance, either by an external disturbance or a volitional change in posture by the user. The results show that the prime muscle targets should be the medial gastrocnemius, tibialis anterior, vastus lateralis, semimembranosus, gluteus maximus, gluteus medius, adductor magnus, and erector spinae. This set of 16 muscles supports 42 percent of the standing postures that are attainable by the nondisabled model. Coactivation of the lateral gastrocnemius and peroneus longus with the medial gastrocnemius and of the peroneus tertius with the tibialis anterior increased the percentage of feasible postures to 71 percent. PMID:16847793

  2. Development of adaptive sensorimotor control in infant sitting posture.

    PubMed

    Chen, Li-Chiou; Jeka, John; Clark, Jane E

    2016-03-01

    A reliable and adaptive relationship between action and perception is necessary for postural control. Our understanding of how this adaptive sensorimotor control develops during infancy is very limited. This study examines the dynamic visual-postural relationship during early development. Twenty healthy infants were divided into 4 developmental groups (each n=5): sitting onset, standing alone, walking onset, and 1-year post-walking. During the experiment, the infant sat independently in a virtual moving-room in which anterior-posterior oscillations of visual motion were presented using a sum-of-sines technique with five input frequencies (from 0.12 to 1.24Hz). Infants were tested in five conditions that varied in the amplitude of visual motion (from 0 to 8.64cm). Gain and phase responses of infants' postural sway were analyzed. Our results showed that infants, from a few months post-sitting to 1 year post-walking, were able to control their sitting posture in response to various frequency and amplitude properties of the visual motion. Infants showed an adult-like inverted-U pattern for the frequency response to visual inputs with the highest gain at 0.52 and 0.76Hz. As the visual motion amplitude increased, the gain response decreased. For the phase response, an adult-like frequency-dependent pattern was observed in all amplitude conditions for the experienced walkers. Newly sitting infants, however, showed variable postural behavior and did not systemically respond to the visual stimulus. Our results suggest that visual-postural entrainment and sensory re-weighting are fundamental processes that are present after a few months post sitting. Sensorimotor refinement during early postural development may result from the interactions of improved self-motion control and enhanced perceptual abilities. PMID:26979899

  3. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  4. Ankle and hip postural strategies defined by joint torques.

    PubMed

    Runge, C F; Shupert, C L; Horak, F B; Zajac, F E

    1999-10-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  5. Effects of emotional videos on postural control in children.

    PubMed

    Brandão, Arthur de Freitas; Palluel, Estelle; Olivier, Isabelle; Nougier, Vincent

    2016-03-01

    The link between emotions and postural control has been rather unexplored in children. The objective of the present study was to establish whether the projection of pleasant and unpleasant videos with similar arousal would lead to specific postural responses such as postural freezing, aversive or appetitive behaviours as a function of age. We hypothesized that postural sway would similarly increase with the viewing of high arousal videos in children and adults, whatever the emotional context. 40 children participated in the study and were divided into two groups of age: group 7-9 years (n=23; mean age=8 years ± 0.7) and group 10-12 years (n=17; mean age=11 years ± 0.7). 19 adults (mean age=25.8 years ± 4.4) also took part in the experiment. They viewed emotional videos while standing still on a force platform. Centre of foot pressure (CoP) displacements were analysed. Antero-posterior, medio-lateral mean speed and sway path length increased similarly with the viewing of high arousal movies in the younger, older children, and adults. Our findings suggest that the development of postural control is not influenced by the maturation of the emotional processing. PMID:26979902

  6. Postural responses during the various frequencies of anteroposterior perturbation.

    PubMed

    Han, Kap Soo; Shin, Sun Hye; Yu, Chang Ho; Kwon, Tae Kyu

    2014-01-01

    This study investigated the characteristics of dynamic postural responses when subjects attempted to maintain an upright standing position on a support plate during continuous sinusoidal perturbation in the anterior-posterior direction. Fifteen healthy young subjects participated in the experiment. Body movement patterns during the perturbation were captured and analyzed using a 3D motion analysis system (APAS 3D motion analysis, Ariel Dynamics Inc.). Seven markers were attached on the subject's body to measure and analyze the motion patterns. The markers were positioned at the head, chest, hip, right knee, left knee, right ankle, and left ankle. Five different frequencies of motion were applied to the support surface: 0.1, 0.5, 1.0, 1.5, and 2.0 Hz with a 4-cm path of motion at the base. The experiments measured dynamic postural responses in a condition were subjects had their eyes open. The results showed that the median frequency of the knee and ankle increased in all frequency bands. Following an increase in the frequency of the perturbation, the postural control strategy was changed from the ankle strategy to a combined strategy. These experimental results could be applied to the dynamic postural training for the elderly and to rehabilitation training for patients to improve their ability for postural control. PMID:25226955

  7. Effect of Smart Phone Use on Dynamic Postural Balance

    PubMed Central

    Cho, Sung-Hak; Choi, Mun-Hee; Goo, Bong-Oh

    2014-01-01

    [Purpose] The present study investigated what kind of effect smart phone use has on dynamic postural balance. [Subjects] The study subjects were 30 healthy students in their 20’s who were recruited from a University in Busan, Korea. [Methods] The present experiment was quasi-experimental research which measured the postural balance (Biodex) of subjects while they sent text messages via smart phones in the standing position with the eyes open, and while they used two-way SNS. [Results] There were significant differences between standing and the dual-task situations. Among dual tasks using smart phones, SNS using situations showed the highest instability. [Conclusion] The use of smart phones in less stable conditions such as while walking or in moving vehicles should be discouraged. PMID:25140085

  8. Effect of smart phone use on dynamic postural balance.

    PubMed

    Cho, Sung-Hak; Choi, Mun-Hee; Goo, Bong-Oh

    2014-07-01

    [Purpose] The present study investigated what kind of effect smart phone use has on dynamic postural balance. [Subjects] The study subjects were 30 healthy students in their 20's who were recruited from a University in Busan, Korea. [Methods] The present experiment was quasi-experimental research which measured the postural balance (Biodex) of subjects while they sent text messages via smart phones in the standing position with the eyes open, and while they used two-way SNS. [Results] There were significant differences between standing and the dual-task situations. Among dual tasks using smart phones, SNS using situations showed the highest instability. [Conclusion] The use of smart phones in less stable conditions such as while walking or in moving vehicles should be discouraged. PMID:25140085

  9. Mobile Phone Use Behaviors and Postures on Public Transportation Systems.

    PubMed

    Liang, Huey-Wen; Hwang, Yaw-Huei

    2016-01-01

    Mobile phones are common in our daily life, but the users' preferences for postures or screen operating styles have not been studied. This was a cross-sectional and observational study. We randomly sampled passengers who used mobile phones on the Mass Rapid Transit (MRT) system in metropolitan Taipei. A checklist was used to observe their body postures and screen operating styles while sitting or standing. As a result, 1,230 subjects from 400 trips were observed. Overall, of all the passengers who were sitting, 41% of them were using mobile phones. The majority of the tasks involved browsing (84%) with their phones in a portrait orientation (93%). Different-hand holding/operating was the most commonly used operating style while sitting (46%) and same-hand holding/operating was the most common while standing (46%). The distribution of screen operating styles was significantly different for those sitting than for those standing and for different genders and age groups. The most frequently observed postures while sitting were having one's trunk against a backrest, feet on the floor and with or without an arm supported (58%). As for the users who were standing, the both- and different-hands groups had a high proportion of arms unsupported, feet on the floor and either their trunk supported or not. In contrast, the same-hand group tended to have their trunk unsupported, were holding a pole or handstrap and had both feet on floor. Further studies are warranted to characterize the ergonomic exposure of these commonly used postures and operating styles, and our results will help guide the selection of experimental conditions for laboratory settings. PMID:26828797

  10. Mobile Phone Use Behaviors and Postures on Public Transportation Systems

    PubMed Central

    Liang, Huey-Wen; Hwang, Yaw-Huei

    2016-01-01

    Mobile phones are common in our daily life, but the users’ preferences for postures or screen operating styles have not been studied. This was a cross-sectional and observational study. We randomly sampled passengers who used mobile phones on the Mass Rapid Transit (MRT) system in metropolitan Taipei. A checklist was used to observe their body postures and screen operating styles while sitting or standing. As a result, 1,230 subjects from 400 trips were observed. Overall, of all the passengers who were sitting, 41% of them were using mobile phones. The majority of the tasks involved browsing (84%) with their phones in a portrait orientation (93%). Different-hand holding/operating was the most commonly used operating style while sitting (46%) and same-hand holding/operating was the most common while standing (46%). The distribution of screen operating styles was significantly different for those sitting than for those standing and for different genders and age groups. The most frequently observed postures while sitting were having one’s trunk against a backrest, feet on the floor and with or without an arm supported (58%). As for the users who were standing, the both- and different-hands groups had a high proportion of arms unsupported, feet on the floor and either their trunk supported or not. In contrast, the same-hand group tended to have their trunk unsupported, were holding a pole or handstrap and had both feet on floor. Further studies are warranted to characterize the ergonomic exposure of these commonly used postures and operating styles, and our results will help guide the selection of experimental conditions for laboratory settings. PMID:26828797

  11. Cardio-postural interactions and short-arm centrifugation.

    NASA Astrophysics Data System (ADS)

    Blaber, Andrew; Goswami, Nandu; Xu, Da; Laurin, Alexendre

    INTRODUCTION: We are interested in mechanisms associated with orthostatic tolerance. In previous studies we have shown that postural muscles in the calf contribute to both posture and blood pressure regulation during orthostatic stress. In this study we investigated the relationship between cardiovascular and postural muscle control before, during and after short arm human centrifuge (SAHC) up to 2.2 G. METHODS: Eleven healthy young subjects (6 m, 5 f), with no history of cardiovascular disease, falls or orthostatic hypotension, participated. All were familiarized with the SAHC with 10 minutes at 1-G at the feet. Each subject was instrumented in the supine position on the SAHC for beat-to-beat ECG and blood pressure (Portapres derived SBP). Bilateral lower leg EMG was collected from four leg postural muscles: tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and medial soleus. Transdermal differential recording of signals was performed using an 8-channel EMG system, (Myosystem 1200, Noraxon Inc., Arizona, USA). Postural sway data of the body COP was computed from the force and moment data collected with a force platform (Accusway, AMTI, MA, USA). Before and after SAHC, the subject stood on a force platform with their gaze fixed on a point at eye level, closed their eyes and stood quietly for 5 min. A final stand was conducted 30 min after centrifugation with supine rest in between. During clockwise centrifugation (10-min 1g and 10-min 2.2g at the foot) the subjects’ head was hooded and in the dark. The subject’s body was restrained into the rotation arm with a parachute harness and given additional body support with a foot-plate. ECG, EMG and BP data were collected throughout and centre of pressure trajectory (COP) collected during the stand test. Subjects were requested to relax and not to voluntarily contract the leg muscles; however, they were not to suppress contractions as they occurred involuntarily or by reflex. A Continuous Wavelet

  12. Postural Stability When Leaning from Perceived Upright

    NASA Technical Reports Server (NTRS)

    Vanya, Robert D.; Grounds, John F.; Wood, Scott J.

    2011-01-01

    The transition between quiet stance and gait requires the volitional movement of one?s center of mass (COM) toward a limit of stability (LOS). The goal of this study was to measure the effect of leaning from perceived upright on postural stability when voluntarily maintaining fixed stance positions and during perturbations of the support surface. The COM was derived from force plate data in 12 healthy subjects while standing with feet positioned so that lateral base of support was equal to foot length. For all conditions, arms were folded and subjects were instructed to lean without bending at the hips or lifting their feet. The LOS was determined during maximal voluntary leans with eyes open and closed. The COM was then displayed on a monitor located in front of the subject. Subjects were visually guided to lean toward a target position, maintain this position for 10s, return to upright, and then repeat the same targeted lean maneuver with eyes closed. Targets were randomly presented at 2? in 8 directions and between 2-6? in these same directions according to the asymmetric LOS. Subjects were then verbally guided to lean between 2? back and 4? forward prior to a perturbation of the support surface in either a forward or backward direction. The average LOS was 5.8? forward, 2.9? back, and 4.8? in left/right directions, with no significant difference between eyes open and closed. Center of pressure (COP) velocity increased as subjects maintained fixed stance positions farther from upright, with increased variability during eyes closed conditions. The time to stability and COP path length increased as subjects leaned opposite to the direction of the support surface perturbations. We conclude that postural stability is compromised as subjects lean away from perceived upright, except for perturbations that induce sway in the direction opposite the lean. The asymmetric LOS relative to perceived upright favors postural stability for COM movements in the forward direction.

  13. Putative spinal interneurons mediating postural limb reflexes provide basis for postural control in different planes

    PubMed Central

    Zelenin, Pavel V.; Hsu, Li-Ju; Lyalka, Vladimir F.; Orlovsky, Grigori N.; Deliagina, Tatiana G.

    2014-01-01

    The dorsal-side-up trunk orientation in standing quadrupeds is maintained by the postural system driven mainly by somatosensory inputs from the limbs. Postural limb reflexes (PLRs) represent a substantial component of this system. Earlier we described spinal neurons presumably contributing to the generation of PLRs. The first aim of the present study was to reveal trends in the distribution of neurons with different parameters of PLR-related activity across the gray matter of the spinal cord. The second aim was to estimate the contribution of PLR-related neurons with different patterns of convergence of sensory inputs from the limbs to stabilization of body orientation in different planes. For this purpose, the head and vertebral column of the decerebrate rabbit were fixed, whereas the hindlimbs were positioned on a platform. Activity of individual neurons from L5–L6 was recorded during PLRs evoked by lateral tilts of the platform. In addition, the neurons were tested by tilts of the platform under only the ipsilateral or only the contralateral limb, as well as during in-phase tilts of the platforms under both limbs. We found that, across the spinal gray matter, strength of PLR-related neuronal activity and sensory input from the ipsi-limb decreased in the dorso-ventral direction, while strength of the input from the contra-limb increased. A near linear summation of tilt-related sensory inputs from different limbs was found. Functional roles were proposed for individual neurons. The obtained data present the first characterization of posture-related spinal neurons, forming a basis for studies of postural networks impaired by injury. PMID:25370349

  14. Dynamic posture analysis of Spacelab-1 crew members

    NASA Technical Reports Server (NTRS)

    Anderson, D. J.; Reschke, M. F.; Homick, J. E.; Werness, S. A.

    1986-01-01

    Dynamic posture testing was conducted on the science crew of the Spacelab-1 mission on a single axis linear motion platform. Tests took place in pre- and post-flight sessions lasting approximately 20 min each. The pre-flight tests were widely spaced over the several months prior to the mission while the post-flight tests were conducted over the first, second, fourth, and sixth days after landing. Two of the crew members were also tested on the day of landing. Consistent with previous postural testing conducted on flight crews, these crew members were able to complete simple postural tasks to an acceptable level even in the first few hours after landing. Our tests were designed to induce dynamic postural responses using a variety of stimuli and from these responses, evaluate subtle changes in the postural control system which had occurred over the duration of the flight. Periodic sampling post-flight allowed us to observe the time course of readaptation to terrestrial life. Our observations of hip and shoulder position, when subjected to careful analysis, indicated modification of the postural response from pre- to post-flight and that demonstrable adjustments in the dynamic control of their postural systems were taking place in the first few days after flight. For transient stimuli where the platform on which they were asked to stand quickly moved a few centimeters fore or aft then stopped, ballistic or open loop 'programs' would closely characterize the response. During these responses the desired target position was not always achieved and of equal importance not always properly corrected some 15 seconds after the platform ceased to move. The persistent observation was that the subjects had a much stronger dependence on visual stabilization post-flight than pre-flight. This was best illustrated by a slow or only partial recovery to an upward posture after a transient base-of-support movement with eyes open. Postural responses to persistent wideband pseudorandom

  15. Development of a cost effective three-dimensional posture analysis tool: validity and reliability

    PubMed Central

    2013-01-01

    Background The lack of clear understanding of the association between sitting posture and adolescent musculoskeletal pain, might reflect invalid and/or unreliable posture measurement instruments. The psychometric properties of any new measurement instrument should be demonstrated prior to use for research or clinical purposes. This paper describes psychometric testing of a new three-dimensional (3D), portable, non-invasive posture analysis tool (3D-PAT), from sequential studies using a mannequin and high school students. Methods The first study compared the 3D-(X-, Y- and Z-) coordinates of reflective markers placed on a mannequin using the 3D-PAT, and the Vicon motion analysis system. This study also tested the reliability of taking repeated measures of the 3D-coordinates of the reflective markers. The second study determined the concurrent validity and test-retest reliability of the 3D-PAT measurements of nine sitting postural angles of high school students undertaking a standard computing task. In both studies, concordance correlation coefficients and Intraclass correlation coefficients described test-retest reliability, whilst Pearson product moment correlation coefficients and Bland-Altman plots demonstrated concurrent validity. Results The 3D-PAT provides reliable and valid 3D measurements of five of the nine postural angles i.e. head flexion, neck flexion, cranio-cervical angle, trunk flexion and head lateral bending in adolescents undertaking a standard task. Conclusions The 3D-PAT is appropriate for research and clinical settings to measure five upper quadrant postural angles in three dimensions. As a measurement instrument it can provide further understanding of the relationship between sitting posture, changes to sitting posture and adolescent musculoskeletal pain. PMID:24289665

  16. Effects of Four Days Hiking on Postural Control

    PubMed Central

    Vieira, Marcus Fraga; de Avelar, Ivan Silveira; Silva, Maria Sebastiana; Soares, Viviane; Lobo da Costa, Paula Hentschel

    2015-01-01

    Hiking is a demanding form of exercise that may cause delayed responses of the postural muscles and a loss of somatosensory information, particularly when repeatedly performed for several days. These effects may negatively influence the postural control of hikers. Therefore, the aim of this study was to investigate the effects of a four-day hike on postural control. Twenty-six adults of both sexes travelled 262 kilometers, stopping for lunch and resting in the early evening each day. Force platforms were used to collect center of pressure (COP) data at 100 Hz for 70 seconds before hiking started and immediately after arriving at the rest station each day. The COP time course data were analyzed according to global stabilometric descriptors, spectral analysis and structural descriptors using sway density curve (SDC) and stabilometric diffusion analysis (SDA). Significant increases were found for global variables in both the anterior-posterior and medial-lateral directions (COP sway area, COP total sway path, COP mean velocity, COP root mean square value and COP range). In the spectral analysis, only the 80% power frequency (F80) in the anterior-posterior direction showed a significant increase, reflecting the increase of the sway frequencies. The SDC revealed a significant increase in the mean distance between peaks (MD) and a significant decrease in the mean peak amplitudes (MP), suggesting that a larger torque amplitude is required for stabilization and that the postural stability is reduced. The SDA revealed a decrease in the long-term slope (Hl) and increases in the short-term (Ks) and the long-term (Kl) intercepts. We considered the likelihood that the presence of local and general fatigue, pain and related neuromuscular adaptations and somatosensory deficits may have contributed to these postural responses. Together, these results demonstrated that four days of hiking increased sway frequencies and deteriorated postural control in the standing position. PMID

  17. Effects of four days hiking on postural control.

    PubMed

    Vieira, Marcus Fraga; de Avelar, Ivan Silveira; Silva, Maria Sebastiana; Soares, Viviane; Lobo da Costa, Paula Hentschel

    2015-01-01

    Hiking is a demanding form of exercise that may cause delayed responses of the postural muscles and a loss of somatosensory information, particularly when repeatedly performed for several days. These effects may negatively influence the postural control of hikers. Therefore, the aim of this study was to investigate the effects of a four-day hike on postural control. Twenty-six adults of both sexes travelled 262 kilometers, stopping for lunch and resting in the early evening each day. Force platforms were used to collect center of pressure (COP) data at 100 Hz for 70 seconds before hiking started and immediately after arriving at the rest station each day. The COP time course data were analyzed according to global stabilometric descriptors, spectral analysis and structural descriptors using sway density curve (SDC) and stabilometric diffusion analysis (SDA). Significant increases were found for global variables in both the anterior-posterior and medial-lateral directions (COP sway area, COP total sway path, COP mean velocity, COP root mean square value and COP range). In the spectral analysis, only the 80% power frequency (F80) in the anterior-posterior direction showed a significant increase, reflecting the increase of the sway frequencies. The SDC revealed a significant increase in the mean distance between peaks (MD) and a significant decrease in the mean peak amplitudes (MP), suggesting that a larger torque amplitude is required for stabilization and that the postural stability is reduced. The SDA revealed a decrease in the long-term slope (Hl) and increases in the short-term (Ks) and the long-term (Kl) intercepts. We considered the likelihood that the presence of local and general fatigue, pain and related neuromuscular adaptations and somatosensory deficits may have contributed to these postural responses. Together, these results demonstrated that four days of hiking increased sway frequencies and deteriorated postural control in the standing position. PMID

  18. Correlation dimension estimates of human postural sway.

    PubMed

    Gurses, Senih; Celik, Huseyin

    2013-02-01

    Human postural sway during quiet standing demonstrates a complex structured dynamics, which has been studied by applying numerous methods, such as linear system identification methods, stochastic analysis, and nonlinear system dynamics tools. Although each of the methods applied revealed some particular features of the sway data none of them have succeeded to present a global picture of the quiet stance dynamics, which probably has both stochastic and deterministic properties. In this study we have started applying ergodic theory of dynamical systems to explore statistical characteristic of the sway dynamics observed in successive trials of a subject, different subjects in an age group, and finally different age groups constituted by children, adults, and elderly subjects. Five successive 180-s long trials were performed by each of 28 subjects in four age groups at quiet stance with eyes open. Stationary and ergodic signal characteristics of five successive center of pressure time series collected from a subject in antero-posterior direction (CoPx) were examined. 97% of the trials were found to be stationary by applying Run Test while children and elderly groups demonstrated significant nonstationary behavior. On the other hand 13 out of 24 subjects were found to be nonergodic. We expected to observe differences in complexity of CoPx dynamics due to aging (Farmer, Ott, & Yorke, 1983). However linear metrics such as standard deviation and Fourier spectra of CoPx signals did not show differences due to the age groups. Correlation dimension (Dk) estimates of stationary CoPx signals being an invariant measure of nonlinear system dynamics were computed by using the average displacement method (Eckmann & Ruelle, 1985). Postural dynamics was expanded in m-dimensional space through CoPx signal by introducing optimum time delays, τcritical. 112 out of 136 stationary CoPx signals for 24 stationary subjects converged to Dk estimates. Average of Dk estimates for children and

  19. Closed loop kinesthetic feedback for postural control rehabilitation.

    PubMed

    Vérité, Fabien; Bachta, Wael; Morel, Guillaume

    2014-01-01

    Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels. This allows implementing rehabilitation exercises where the patients control their posture with the help of additional sensory inputs. In this paper, a closed loop control of the Center-Of-Pressure (CoP) based on kinesthetic feedback is proposed as a new form of biofeedback. The motion of a one Degree of Freedom (DoF) translational device, lightly touched by the patient's forefinger, is servoed to the patient's CoP position extracted from the measurements of a force plate on which he/she stands. As a result, the patient's CoP can be controllably displaced. A first set of experiments is used to prove the feasibility of this closed-loop control under ideal conditions favoring the perception of the kinesthetic feedback, while the subject is totally unaware of the context. A second set of experiments is then proposed to evaluate the robustness of this approach under experimental conditions that are more realistic with regards to the clinical context of a rehabilitation program involving biofeedback-based exercises. PMID:24968379

  20. Effect of intermittent feedback control on robustness of human-like postural control system.

    PubMed

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-01-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281

  1. Effect of intermittent feedback control on robustness of human-like postural control system

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  2. Effect of intermittent feedback control on robustness of human-like postural control system

    PubMed Central

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-01-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281

  3. Posture-related modulation of cortical excitability in the tibialis anterior muscle in humans.

    PubMed

    Obata, Hiroki; Sekiguchi, Hirofumi; Ohtsuki, Tatsuyuki; Nakazawa, Kimitaka

    2014-08-19

    Corticospinal excitability in the lower leg muscles is enhanced during standing as compared to other postures. In the present study, we investigated how the excitability of intracortical circuits that control the tibialis anterior muscle (TA) is modulated during standing. Short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were assessed by the paired-pulse transcranial magnetic stimulation technique during standing (STD) and sitting (SIT) with a comparable background activity level in both the soleus and the TA muscle. The results demonstrated that SICI was less effective during STD than during SIT, whereas ICF was more effective during STD than during SIT. These findings suggest that the excitabilities of these cortical neural circuits are modulated depending on posture. A decrease in SICI and an increase in ICF may reflect subliminal enhancement of the cortical excitability in the TA muscle during standing as compared with that during sitting. PMID:24978603

  4. Postural Tachycardia Syndrome (POTS)

    PubMed Central

    Low, Phillip A.; Sandroni, Paola; Joyner, Michael; Shen, Win-Kuang

    2014-01-01

    Introduction POTS is defined as the development of orthostatic symptoms associated with a heart rate (HR) increment ≥30, usually to ≥120 bpm without orthostatic hypotension. Symptoms of orthostatic intolerance are those due to brain hypoperfusion and those due to sympathetic overaction. Methods We provide a review of POTS based primarily on work from the Mayo Clinic. Results Females predominate over males by 5:1. Mean age of onset in adults is about 30 years and most patients are between the ages of 20–40 years. Pathophysiologic mechanisms (not mutually exclusive) include peripheral denervation, hypovolemia, venous pooling, β-receptor supersensitivity, psychologic mechanisms, and presumed impairment of brain stem regulation. Prolonged deconditioning may also interact with these mechanisms to exacerbate symptoms. The evaluation of POTS requires a focused history and examination, followed by tests that should include HUT, some estimation of volume status and preferably some evaluation of peripheral denervation and hyperadrenergic state. All patients with POTS require a high salt diet, copious fluids, and postural training. Many require β-receptor antagonists in small doses and low-dose vasoconstrictors. Somatic hypervigilance and psychologic factors are involved in a significant proportion of patients. Conclusions POTS is heterogeneous in presentation and mechanisms. Major mechanisms are denervation, hypovolemia, deconditioning, and hyperadrenergic state. Most patients can benefit from a pathophysiologically based regimen of management. PMID:19207771

  5. Idiopathic orthostatic intolerance and postural tachycardia syndromes

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1999-01-01

    Upright posture imposes a substantial gravitational stress on the body, for which we are able to compensate, in large part because of the autonomic nervous system. Alteration in autonomic function, therefore, may lead to orthostatic intolerance. On one extreme, patients with autonomic failure caused by degenerative loss of autonomic function are severely disabled by orthostatic hypotension and may faint whenever they stand up. Fortunately, such patients are relatively rare. On the other hand, disabling orthostatic intolerance can develop in otherwise normal young people. These patients can be severely impaired by symptoms of fatigue, tachycardia, and shortness of breath when they stand up. The actual incidence of this disorder is unknown, but these patients make up the largest group of patients referred to centers that specialize in autonomic disorders. We will review recent advances made in the understanding of this condition, potential pathophysiological mechanisms that contribute to orthostatic intolerance, therapeutic alternatives currently available for the management of these patients, and areas in which more research is needed.

  6. Attractiveness is influenced by the relationship between postures of the viewer and the viewed person

    PubMed Central

    Bertamini, Marco; Byrne, Christopher; Bennett, Kate M.

    2013-01-01

    Many factors influence physical attractiveness, including degree of symmetry and relative length of legs. We asked a sample of 112 young adults to rate the attractiveness of computer-generated female bodies that varied in terms of symmetry and leg-to-body ratio. These effects were confirmed. However, we also varied whether the person in the image was shown sitting or standing. Half of the participants were tested standing and the other half sitting. The difference in the posture of the participants increased the perceived attractiveness of the images sharing the same posture, despite the fact that participants were unaware that their posture was relevant for the experiment. We conclude that our findings extend the role of embodied simulation in social cognition to perception of attractiveness from static images. PMID:23799194

  7. Attractiveness is influenced by the relationship between postures of the viewer and the viewed person.

    PubMed

    Bertamini, Marco; Byrne, Christopher; Bennett, Kate M

    2013-01-01

    Many factors influence physical attractiveness, including degree of symmetry and relative length of legs. We asked a sample of 112 young adults to rate the attractiveness of computer-generated female bodies that varied in terms of symmetry and leg-to-body ratio. These effects were confirmed. However, we also varied whether the person in the image was shown sitting or standing. Half of the participants were tested standing and the other half sitting. The difference in the posture of the participants increased the perceived attractiveness of the images sharing the same posture, despite the fact that participants were unaware that their posture was relevant for the experiment. We conclude that our findings extend the role of embodied simulation in social cognition to perception of attractiveness from static images. PMID:23799194

  8. Spinal Reflexes During Postural Control Under Psychological Pressure.

    PubMed

    Tanaka, Yoshifumi

    2015-07-01

    This study investigated the effect of psychological pressure on spinal reflex excitability. Thirteen participants performed a balancing task by standing on a balance disk with one foot. After six practice trials, they performed one nonpressure and one pressure trial involving a performance-contingent cash reward or punishment. Stress responses were successfully induced; state anxiety, mental effort, and heart rates all increased under pressure. Soleus Hoffmann reflex amplitude in the pressure trial was significantly smaller than in the nonpressure trial. This modification of spinal reflexes may be caused by presynaptic inhibition under the control of higher central nerve excitation under pressure. This change did not prevent 12 of the 13 participants from successfully completing the postural control task under pressure. These results suggest that Hoffmann reflex inhibition would contribute to optimal postural control under stressful situations. PMID:25587695

  9. Characterizing the human postural control system using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2010-01-01

    Detrended fluctuation analysis is used to study the behaviour of the time series of the position of the center of pressure, output from the activity of a human postural control system. The results suggest that these trajectories present a crossover in their scaling properties from persistent (for high frequencies, short-range time scale) to anti-persistent (for low frequencies, long-range time scale) behaviours. The values of the scaling exponent found for the persistent parts of the trajectories are very similar for all the cases analysed. The similarity of the results obtained for the measurements done with both eyes open and both eyes closed indicate either that the visual system may be disregarded by the postural control system, while maintaining quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with this technique.

  10. Scaling-violation phenomena and fractality in the human posture control systems

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Mittermaier, Christian; Hanel, Rudolf; Ehrenberger, Klaus

    2000-09-01

    By analyzing the movements of quiet standing persons by means of wavelet statistics, we observe multiple scaling regions in the underlying body dynamics. The use of the wavelet-variance function opens the possibility to relate scaling violations to different modes of posture control. We show that scaling behavior becomes close to perfect, when correctional movements are dominated by the vestibular system.

  11. Vestibular humanoid postural control.

    PubMed

    Mergner, Thomas; Schweigart, Georg; Fennell, Luminous

    2009-01-01

    Many of our motor activities require stabilization against external disturbances. This especially applies to biped stance since it is inherently unstable. Disturbance compensation is mainly reactive, depending on sensory inputs and real-time sensor fusion. In humans, the vestibular system plays a major role. When there is no visual space reference, vestibular-loss clearly impairs stance stability. Most humanoid robots do not use a vestibular system, but stabilize upright body posture by means of center of pressure (COP) control. We here suggest using in addition a vestibular sensor and present a biologically inspired vestibular sensor along with a human-inspired stance control mechanism. We proceed in two steps. First, in an introductory review part, we report on relevant human sensors and their role in stance control, focusing on own models of transmitter fusion in the vestibular sensor and sensor fusion in stance control. In a second, experimental part, the models are used to construct an artificial vestibular system and to embed it into the stance control of a humanoid. The robot's performance is investigated using tilts of the support surface. The results are compared to those of humans. Functional significance of the vestibular sensor is highlighted by comparing vestibular-able with vestibular-loss states in robot and humans. We show that a kinematic body-space sensory feedback (vestibular) is advantageous over a kinetic one (force cues) for dynamic body-space balancing. Our embodiment of human sensorimotor control principles into a robot is more than just bionics. It inspired our biological work (neurorobotics: 'learning by building', proof of principle, and more). We envisage a future clinical use in the form of hardware-in-the-loop simulations of neurological symptoms for improving diagnosis and therapy and designing medical assistive devices. PMID:19665555

  12. Posture, flexibility and grip strength in horse riders.

    PubMed

    Hobbs, Sarah Jane; Baxter, Joanna; Broom, Louise; Rossell, Laura-Ann; Sinclair, Jonathan; Clayton, Hilary M

    2014-09-29

    Since the ability to train the horse to be ambidextrous is considered highly desirable, rider asymmetry is recognized as a negative trait. Acquired postural and functional asymmetry can originate from numerous anatomical regions, so it is difficult to suggest if any is developed due to riding. The aim of this study was therefore to assess symmetry of posture, strength and flexibility in a large population of riders and to determine whether typical traits exist due to riding. 127 right handed riders from the UK and USA were categorized according to years riding (in 20 year increments) and their competition level (using affiliated test levels). Leg length, grip strength and spinal posture were measured and recorded by a physiotherapist. Standing and sitting posture and trunk flexibility were measured with 3-D motion capture technology. Right-left differences were explored in relation to years riding and rider competitive experience. Significant anatomical asymmetry was found for the difference in standing acromion process height for a competition level (-0.07±1.50 cm Intro/Prelim; 0.02±1.31 cm Novice; 0.43±1.27 cm Elementary+; p=0.048) and for sitting iliac crest height for years riding (-0.23±1.36 cm Intro/Prelim; 0.01±1.50 cm Novice; 0.86±0.41 cm Elementary+; p=0.021). For functional asymmetry, a significant interaction was found for lateral bending ROM for years riding x competition level (p=0.047). The demands on dressage riders competing at higher levels may predispose these riders to a higher risk of developing asymmetry and potentially chronic back pain rather than improving their symmetry. PMID:25414745

  13. Posture, Flexibility and Grip Strength in Horse Riders

    PubMed Central

    Hobbs, Sarah Jane; Baxter, Joanna; Broom, Louise; Rossell, Laura-Ann; Sinclair, Jonathan; Clayton, Hilary M

    2014-01-01

    Since the ability to train the horse to be ambidextrous is considered highly desirable, rider asymmetry is recognized as a negative trait. Acquired postural and functional asymmetry can originate from numerous anatomical regions, so it is difficult to suggest if any is developed due to riding. The aim of this study was therefore to assess symmetry of posture, strength and flexibility in a large population of riders and to determine whether typical traits exist due to riding. 127 right handed riders from the UK and USA were categorized according to years riding (in 20 year increments) and their competition level (using affiliated test levels). Leg length, grip strength and spinal posture were measured and recorded by a physiotherapist. Standing and sitting posture and trunk flexibility were measured with 3-D motion capture technology. Right-left differences were explored in relation to years riding and rider competitive experience. Significant anatomical asymmetry was found for the difference in standing acromion process height for a competition level (−0.07±1.50 cm Intro/Prelim; 0.02±1.31 cm Novice; 0.43±1.27 cm Elementary+; p=0.048) and for sitting iliac crest height for years riding (−0.23±1.36 cm Intro/Prelim; 0.01±1.50 cm Novice; 0.86±0.41 cm Elementary+; p=0.021). For functional asymmetry, a significant interaction was found for lateral bending ROM for years riding x competition level (p=0.047). The demands on dressage riders competing at higher levels may predispose these riders to a higher risk of developing asymmetry and potentially chronic back pain rather than improving their symmetry. PMID:25414745

  14. Balance control in sitting and standing in children and young adults with benign cerebellar tumors.

    PubMed

    Schoch, Beate; Hogan, Aidan; Gizewski, Elke R; Timmann, Dagmar; Konczak, Juergen

    2010-09-01

    Children and young adolescents with chronic surgical cerebellar lesions show persistent balance control problems during standing when lesions affect the deep cerebellar fastigial and adjacent interposed nuclei. The purpose of this study is to confirm that the same lesion sites are also associated with permanent signs of trunkal ataxia during sitting. A second aim is to demonstrate that examining the postural control of patients while sitting or standing on a foam cushion may constitute a simple clinical exam yielding results commensurate to a more involved dynamic posturography exam. Balance control was assessed in 16 patients after surgery of a benign cerebellar tumor in chronic state and healthy age- and gender-matched control subjects. Using an ultrasound-based kinematic recording system, trunkal and shoulder sway was measured during sitting and standing in different conditions. High-resolution MRI scans were acquired in the cerebellar patients. Voxel-wise statistical lesion symptom mapping was performed to compare lesioned areas between affected and unaffected patients in a given condition using χ² tests. During sitting, 56% of cerebellar patients exhibited trunkal sway outside the range of healthy controls, and 87.5% of cerebellar patients revealed abnormal sway patterns during standing. Abnormalities were most pronounced when visual information was absent, and somatosensory information became unreliable and/or when the base of support along the medio-lateral axis was minimized during tandem stance. Lesion symptom mapping revealed that pathological values in the behavior data were more likely in patients with surgical lesions involving the fastigial nuclei (NF) and adjacent interposed nuclei (NI). In patients with surgery <1-year lesions of the inferior cerebellar vermis also had an impact on balance function. Our results corroborate previous evidence that the extent of permanent damage to the deep cerebellar nuclei greatly impacts on the recovery on balance

  15. Relationship between Spectral Characteristics of Spontaneous Postural Sway and Motion Sickness Susceptibility

    PubMed Central

    Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne

    2015-01-01

    Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus. PMID:26657203

  16. Relationship between Spectral Characteristics of Spontaneous Postural Sway and Motion Sickness Susceptibility.

    PubMed

    Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne

    2015-01-01

    Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus. PMID:26657203

  17. Automatic and Interactive Key Posture Design by Combing the PIK with Parametric Posture Splicing

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Wu, Bing; Liang, Jiahong; Su, Jiongming

    Key posture design is commonly needed in computer animation. This paper presents an automatic and interactive whole body posture designing technique by combining the PIK (prioritized inverse kinematics) with the proposed parametric human posture splicing technique. The key feature of PIK is that the user can design a posture by adding high level constraints with different priorities. However, the PIK is essentially a numerical IK algorithm which relies on the iterative optimization starting from a good enough initial posture to get the final result. To speed up the running efficiency and ensure the lifelikeness of the final posture, the parametric posture splicing technique is proposed to generate the initial guess of the PIK. According to the set of the high level constraints, the whole body is divided into some partial parts, whose postures are then generated by the parametric posture synthesis from a single posture database. Then an initial posture guess with some main characteristics of the finally acceptable posture can be generated approximately by splicing these partial body postures together. Starting from this initial guess and with all constraints considered at different priority levels, the PIK can be initialized with a bias defined by this particularly initial guess and iterated step by step to get a final posture. The total process of the whole body posture generation is automatic and interactive. The experimental results show that this combination method can not only improve the computation efficiency of the PIK but also can simultaneously ensure the naturalness of the final posture.

  18. Numerical simulation of the influence of gravity and posture on cardiac performance

    NASA Technical Reports Server (NTRS)

    Peterson, Kristy; Ozawa, Edwin T.; Pantalos, George M.; Sharp, M. Keith

    2002-01-01

    A numerical model of the cardiovascular system was used to quantify the influences on cardiac function of intrathoracic pressure and intravascular and intraventricular hydrostatic pressure, which are fundamental biomechanical stimuli for orthostatic response. The model included a detailed arterial circulation with lumped parameter models of the atria, ventricles, pulmonary circulation, and venous circulation. The venous circulation was divided into cranial, central, and caudal regions with nonlinear compliance. Changes in intrathoracic pressure and the effects of hydrostatic pressure were simulated in supine, launch, sitting, and standing postures for 0, 1, and 1.8 G. Increasing intrathoracic pressure experienced with increasing gravity caused 12% and 14% decreases in cardiac output for 1 and 1.8 G supine, respectively, compared to 0 G. Similar results were obtained for launch posture, in which the effects of changing intrathoracic pressure dominated those of hydrostatic pressure. Compared to 0 G, cardiac output decreased 0.9% for 1 G launch and 15% for 1.8 G launch. In sitting and standing, the position of the heart above the hydrostatic indifference level caused the effects of changing hydrostatic pressure to dominate those of intrathoracic pressure. Compared to 0 G, cardiac output decreased 13% for 1 G sitting and 23% for 1.8 G sitting, and decreased 17% for 1 G standing and 31% for 1.8 G standing. For a posture change from supine to standing in 1 G, cardiac output decreased, consistent with the trend necessary to explain orthostatic intolerance in some astronauts during postflight stand tests. Simulated lower body negative pressure (LBNP) in 0 G reduced cardiac output and mean aortic pressure similar to I G standing, suggesting that LBNP provides at least some cardiovascular stimuli that may be useful in preventing postflight orthostatic intolerance. A unifying concept, consistent with the Frank-Starling mechanism of the heart, was that cardiac output was

  19. Sensorimotor integration in human postural control

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  20. Age Related Decline in Postural Control Mechanisms.

    ERIC Educational Resources Information Center

    Stelmach, George E.; And Others

    1989-01-01

    Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…

  1. Influences of sensory input from the limbs on feline corticospinal neurons during postural responses

    PubMed Central

    Karayannidou, A; Deliagina, T G; Tamarova, Z A; Sirota, M G; Zelenin, P V; Orlovsky, G N; Beloozerova, I N

    2008-01-01

    The dorsal-side-up body posture of standing quadrupeds is maintained by coordinated activity of all limbs. Somatosensory input from the limbs evokes postural responses when the supporting surface is perturbed. The aim of this study was to reveal the contribution of sensory inputs from individual limbs to the posture-related modulation of pyramidal tract neurons (PTNs) arising in the primary motor cortex. We recorded the activity of PTNs from the limb representation of motor cortex in the cat maintaining balance on a platform periodically tilted in the frontal plane. Each PTN was recorded during standing on four limbs, and when two or three limbs were lifted from the platform and thus did not signal its displacement to motor cortex. By comparing PTN responses to tilts in different tests we found that the amplitude and the phase of the response in the majority of them were determined primarily by the sensory input from the corresponding contralateral limb. In a portion of PTNs, this input originated from afferents of the peripheral receptive field. Sensory input from the ipsilateral limb, as well as input from limbs of the other girdle made a much smaller contribution to the PTN modulation. These results show that, during postural activity, a key role of PTNs is the feedback control of the corresponding contralateral limb and, to a lesser extent, the coordination of posture within a girdle and between the two girdles. PMID:17974591

  2. Postural sway in men and women during nauseogenic motion of the illuminated environment.

    PubMed

    Koslucher, Frank; Munafo, Justin; Stoffregen, Thomas A

    2016-09-01

    We exposed standing men and women to motion relative to the illuminated environment in a moving room. During room motion, we measured the kinematics of standing body sway. Participants were instructed to discontinue immediately if they experienced any symptoms of motion sickness, however mild. For this reason, our analysis of body sway included only movement before the onset of motion sickness. We analyzed the spatial magnitude of postural sway in terms of the positional variability and mean velocity of the center of pressure. We analyzed the multifractality of postural sway in terms of the width of the multifractal spectrum and the degree of multiplicativity of center of pressure positions. Results revealed that postural sway differed between participants who later reported motion sickness and those who did not, replicating previous effects. In a novel effect, postural responses to motion of the illuminated environment differed between women and men. In addition, we identified statistically significant interactions that involved both Sex and motion sickness status. Effects were observed separately in the spatial magnitude and multifractality of sway. The results were consistent with the postural instability theory of motion sickness (Riccio and Stoffregen in Ecol Psychol 3:195-240, 1991) and suggest that Sex differences in motion sickness may be related to Sex differences in the control and stabilization of bodily activity. PMID:27236456

  3. Improving postural control by applying mechanical noise to ankle muscle tendons.

    PubMed

    Borel, Liliane; Ribot-Ciscar, Edith

    2016-08-01

    The application of subthreshold mechanical vibrations with random frequencies (white mechanical noise) to ankle muscle tendons is known to increase muscle proprioceptive information and to improve the detection of ankle movements. The aim of the present study was to analyze the effect of this mechanical noise on postural control, its possible modulation according to the sensory strategies used for postural control, and the consequences of increasing postural difficulty. The upright stance of 20 healthy young participants tested with their eyes closed was analyzed during the application of four different levels of noise and compared to that in the absence of noise (control) in three conditions: static, static on foam, and dynamic (sinusoidal translation). The quiet standing condition was conducted with the eyes open and closed to determine the subjects' visual dependency to maintain postural stability. Postural performance was assessed using posturographic and motion analysis evaluations. The results in the static condition showed that the spectral power density of body sway significantly decreased with an optimal level of noise and that the higher the spectral power density without noise, the greater the noise effect, irrespective of visual dependency. Finally, noise application was ineffective in the foam and dynamic conditions. We conclude that the application of mechanical noise to ankle muscle tendons is a means to improve quiet standing only. These results suggest that mechanical noise stimulation may be more effective in more impaired populations. PMID:27021075

  4. Recognizing postural orthostatic tachycardia syndrome.

    PubMed

    Pavlik, Daniel; Agnew, Donna; Stiles, Lauren; Ditoro, Rachel

    2016-04-01

    This article describes the pathophysiology, clinical presentation, differential diagnosis, diagnosis, and management of postural orthostatic tachycardia syndrome (POTS), a potentially debilitating autonomic disorder that can have many causes and presentations. POTS can be mistaken for panic disorder, inappropriate sinus tachycardia, and chronic fatigue syndrome. Clinician suspicion for the syndrome is key to prompt patient diagnosis and treatment. PMID:26967958

  5. Activity of red nucleus neurons in the cat during postural corrections

    PubMed Central

    Zelenin, P. V.; Beloozerova, I. N.; Sirota, M. G.; Orlovsky, G. N.; Deliagina, T. G.

    2010-01-01

    The dorsal-side-up body posture in standing quadrupeds is maintained by the postural system, which includes spinal and supraspinal mechanisms driven by somatosensory inputs from the limbs. A number of descending tracts can transmit suprasinal commands for postural corrections. The first aim of this study was to understand whether the rubrospinal tract participates in their transmission. We recorded activity of red nucleus neurons (RNNs) in the cat maintaining balance on the periodically tilting platform. Most neurons were identified as rubrospinal ones. It was found that many RNNs were profoundly modulated by tilts, suggesting that they transmit postural commands. The second aim of this study was to examine the contribution of sensory inputs from individual limbs to posture-related RNNs modulation. Each RNN was recorded during standing on all four limbs, as well as when two or three limbs were lifted from the platform and could not signal platform displacements. By comparing RNN responses in different tests, we found that the amplitude and phase of responses in the majority of RNNs were determined primarily by sensory input from the corresponding (fore or hind) contralateral limb, whereas inputs from other limbs made a much smaller contribution to RNNs modulation. These findings suggest that the rubrospinal system is primarily involved in the intra-limb postural coordination, i.e., in the feedback control of the corresponding limb and, to a lesser extent, in the inter-limb coordination. This study provides a new insight into the formation of supraspinal motor commands for postural corrections. PMID:20980611

  6. Relationships between postural balance, rifle stability and shooting accuracy among novice rifle shooters.

    PubMed

    Mononen, K; Konttinen, N; Viitasalo, J; Era, P

    2007-04-01

    The present study examined the relationships between shooting accuracy and shooters' behavioral performance, i.e., postural balance and gun barrel stability, among novice rifle shooters in intra- and inter-individual levels. Postural balance and rifle stability were assessed in terms of anteroposterior (VEL(AP)) and mediolateral (VEL(ML)) sway velocity of the movement of center of pressure, and horizontal (DEV(H)) and vertical (DEV(V)) deviation of the aiming point. The participants (n=58) performed 30 shots in the standing position at a distance of 10 m from the target. The data showed that shooting accuracy was related to postural balance and rifle stability, but only at the inter-individual level. The correlation coefficients between shooting score and behavioral performance variables ranged from -0.29 to -0.45. The stepwise multiple regression analysis revealed that the VEL(ML) and the DEV(H) as independent variables accounted for 26% of the variance in the shooting score. The results also suggested that postural balance is related to the shooting accuracy both directly and indirectly through rifle stability. As the role of postural balance appeared to be important in shooting performance, the use of additional balance training programs to improve a shooter's postural skills should be encouraged. PMID:17394480

  7. Postural correction reduces hip pain in adult with acetabular dysplasia: a case report

    PubMed Central

    Lewis, Cara L.; Khuu, Anne; Marinko, Lee

    2015-01-01

    Developmental dysplasia of the hip is often diagnosed in infancy, but less severe cases of acetabular dysplasia are being detected in young active adults. The purpose of this case report is to present a non-surgical intervention for a 31-year-old female with mild acetabular dysplasia and an anterior acetabular labral tear. The patient presented with right anterior hip and groin pain, and she stood with the trunk swayed posterior to the pelvis (swayback posture). The hip pain was reproduced with the anterior impingement test. During gait, the patient maintained the swayback posture and reported 6/10 hip pain. Following correction of the patient’s posture, the patient’s pain rating was reduced to a 2/10 while walking. The patient was instructed to maintain the improved posture. At the 1 year follow-up, she demonstrated significantly improved posture in standing and walking. She had returned to recreational running and was generally pain-free. The patient demonstrated improvement on self-reported questionnaires for pain, function and activity. These findings suggest that alteration of posture can have an immediate and lasting effect on hip pain in persons with structural abnormality and labral pathology. PMID:25731688

  8. Influence of virtual height exposure on postural reactions to support surface translations.

    PubMed

    Cleworth, Taylor W; Chua, Romeo; Inglis, J Timothy; Carpenter, Mark G

    2016-06-01

    As fear of falling is related to the increased likelihood of falls, it is important to understand the effects of threat-related factors (fear, anxiety and confidence) on dynamic postural reactions. Previous studies designed to examine threat effects on dynamic postural reactions have methodological limitations and lack a comprehensive analysis of simultaneous kinetic, kinematic and electromyographical recordings. The current study addressed these limitations by examining postural reactions of 26 healthy young adults to unpredictable anterior-posterior support-surface translations (acceleration=0.6m/s(2), constant velocity=0.25m/s, total displacement=0.75m) while standing on a narrow virtual surface at Low (0.4cm) and High (3.2m) virtual heights. Standing at virtual height increased fear and anxiety, and decreased confidence. Prior to perturbations, threat led to increased tonic muscle activity in tibialis anterior, resulting in a higher co-contraction index between lower leg muscles. For backward perturbations, muscle activity in the lower leg and arm, and center of pressure peak displacements, were earlier and larger when standing at virtual height. In addition, arm flexion significantly increased while leg, trunk and center of mass displacements remained unchanged across heights. When controlling for leaning, threat-related factors can influence the neuro-mechanical responses to an unpredictable perturbation, causing specific characteristics of postural reactions to be facilitated in young adults when their balance is threatened. PMID:27264411

  9. Effects of Norepinephrine Reuptake Inhibition on Postural Tachycardia Syndrome

    PubMed Central

    Green, Elizabeth A.; Raj, Vidya; Shibao, Cyndya A.; Biaggioni, Italo; Black, Bonnie K.; Dupont, William D.; Robertson, David; Raj, Satish R.

    2013-01-01

    Background Postural tachycardia syndrome (POTS) is a disorder of chronic orthostatic intolerance accompanied by excessive orthostatic tachycardia. Patients with POTS commonly have comorbid conditions such as attention deficit hyperactivity disorder, depression, or fibromyalgia that are treated with medications that inhibit the norepinephrine reuptake transporter (NRI). NRI medications can increase sympathetic nervous system tone, which may increase heart rate (HR) and worsen symptoms in POTS patients. We sought to determine whether NRI with atomoxetine increases standing tachycardia or worsens the symptom burden in POTS patients. Methods and Results Patients with POTS (n=27) underwent an acute drug trial of atomoxetine 40 mg and placebo on separate mornings in a randomized, crossover design. Blood pressure (BP), HR, and symptoms were assessed while seated and after standing prior to and hourly for 4 hours following study drug administration. Atomoxetine significantly increased standing HR compared with placebo (121±17 beats per minute versus 105±15 beats per minute; P=0.001) in POTS patients, with a trend toward higher standing systolic BP (P=0.072). Symptom scores worsened with atomoxetine compared to placebo (+4.2 au versus −3.5 au; P=0.028) from baseline to 2 hours after study drug administration. Conclusion Norepinephrine reuptake inhibition with atomoxetine acutely increased standing HR and symptom burden in patients with POTS. Clinical Trials Registration URL: http://clinicaltrials.gov. Unique identifier: NCT00262470. PMID:24002370

  10. Postural control--a comparison between patients with chronic anterior cruciate ligament insufficiency and healthy individuals.

    PubMed

    Lysholm, M; Ledin, T; Odkvist, L M; Good, L

    1998-12-01

    Postural control in the sagittal plane was evaluated in 22 patients with chronic anterior cruciate ligament (ACL) deficiency and the result was compared to that of a control group of 20 uninjured subjects. Measurement of the body sway was done on a fixed and sway-referenced force plate in both single-limb and two-limb stance, with the eyes open and closed, respectively. Further, an analysis of the postural reactions to perturbations backwards and forwards, respectively, was made in single-limb stance. The results demonstrated statistically significant deficits of the postural control in the patient group compared to the control group, but also within the patient group. There was a significantly higher body sway within the patient group when standing on a stable support surface on the injured limb than standing on the uninjured limb with the eyes open, but no difference with the eyes closed. When standing on a stable support surface, there was a significantly higher body sway in the patient group standing on the injured leg than in the control group, both with eyes open and closed. The patient group also showed a significantly impaired postural control compared to the control group when standing on the uninjured leg with the eyes closed. There was no difference between the groups in the two-limb stance. When standing on the sway-referenced support surface, the patient group had a significantly larger body sway than the control group when the eyes were open, but there was no significant difference between the groups with the eyes closed. The measurement of the postural corrective responses to perturbations backwards and forwards showed that the reaction time measured from the initiation of the force plate translation, and the amplitude of the body sway was significantly greater in the patient group than in the control group. We conclude that patients with a continuing chronic ACL insufficiency several years after injury have an impaired postural control in the antero