Sample records for adsorbed dye molecules

  1. How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study

    PubMed Central

    Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.

    2016-01-01

    Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results. PMID:27991538

  2. How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.

    2016-12-01

    Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results.

  3. Ultrafast photodynamics of the indoline dye D149 adsorbed to porous ZnO in dye-sensitized solar cells.

    PubMed

    Rohwer, Egmont; Richter, Christoph; Heming, Nadine; Strauch, Kerstin; Litwinski, Christian; Nyokong, Tebello; Schlettwein, Derck; Schwoerer, Heinrich

    2013-01-14

    We investigate the ultrafast dynamics of the photoinduced electron transfer between surface-adsorbed indoline D149 dye and porous ZnO as used in the working electrodes of dye-sensitized solar cells. Transient absorption spectroscopy was conducted on the dye in solution, on solid state samples and for the latter in contact to a I(-)/I(3)(-) redox electrolyte typical for dye-sensitized solar cells to elucidate the effect of each component in the observed dynamics. D149 in a solution of 1:1 acetonitrile and tert-butyl alcohol shows excited-state lifetimes of 300±50 ps. This signature is severely quenched when D149 is adsorbed to ZnO, with the fastest component of the decay trace measured at 150±20 fs due to the charge-transfer mechanism. Absorption bands of the oxidized dye molecule were investigated to determine regeneration times which are in excess of 1 ns. The addition of the redox electrolyte to the system results in faster regeneration times, of the order of 1 ns. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  5. Application of low-cost adsorbents for dye removal--a review.

    PubMed

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  6. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    PubMed Central

    Tian, Guangyan; Zhu, Yongfeng; Zong, Li; Kang, Yuru; Wang, Aiqin

    2018-01-01

    Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT) composite adsorbents by a one-step in-situ carbonization process with natural starch (St) as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB), methyl violet (MV), and malachite green (MG) dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste. PMID:29316634

  7. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows themore » dye molecules to remain electrochemically addressable.« less

  8. Carbon composite lignin-based adsorbents for the adsorption of dyes.

    PubMed

    Wang, Xiaohong; Jiang, Chenglong; Hou, Bingxia; Wang, Yingying; Hao, Chen; Wu, Jingbo

    2018-05-10

    Carbon composite lignin-based adsorbent were prepared through hydrothermal method with glucose as carbon source, calcium lignosulfonate and triethylene tetramine as raw materials, respectively. The optimum synthesis conditions were determined by investigating the addition of carbon and triethylene tetramine. The adsorbent was used for the adsorption of azo dyes Congo red and Eriochrome blue black R, and the five factors affecting the adsorption were discussed, including pH of dyes, initial concentration, adsorption time, adsorption temperature and adsorbent dosage. The corresponding adsorption mechanism such as pseudo first order kinetics, pseudo second order kinetics, intraparticle diffusion, Langmuir adsorption isotherm, Freundlich isotherm, Temkin isotherm, Dubinin-Radushkevich adsorption isotherm, thermodynamics were also studied. When the dye concentration is 40 mg L -1 , Congo red and Eriochrome blue black R dye removal rates reach 99%. Moreover, the adsorption process of two kinds of dyes follow the pseudo second order kinetics and the Langmuir adsorption isotherm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Controlled enzymatic cutting of DNA molecules adsorbed on surfaces using soft lithography

    NASA Astrophysics Data System (ADS)

    Auerbach, Alyssa; Budassi, Julia; Shea, Emily; Zhu, Ke; Sokolov, Jonathan

    2013-03-01

    The enzyme DNase I was applied to adsorbed and aligned DNA molecules (Lamda, 48.5 kilobase pairs (kbp), and T4, 165.6 kbp), stretched linearly on a surface, by stamping with a polydimethylsiloxane (PDMS) grating. The DNAs were cut by the enzyme into separated, micron-sized segments along the length of the molecules at positions determined by the grating dimensions (3-20 microns). Ozone-treated PDMS stamps were coated with DNase I solutions and placed in contact with surface-adsorbed DNA molecules deposited on a 750 polymethylmethacrylate (PMMA) film spun-cast onto a silicon substrate. The stamps were applied under pressure for times up to 15 minutes at 37 C. The cutting was observed by fluorescence microscopy imaging of DNA labeled with YOYO dye. Cutting was found to be efficient despite the steric hindrance due to surface attachment of the molecules. Methods for detaching and separating the cut segments for sequencing applications will be discussed. Supported by NSF-DMR program.

  10. Chitosan-edible oil based materials as upgraded adsorbents for textile dyes.

    PubMed

    Dos Santos, Clayane Carvalho; Mouta, Rodolpho; Junior, Manoel Carvalho Castro; Santana, Sirlane Aparecida Abreu; Silva, Hildo Antonio Dos Santos; Bezerra, Cícero Wellington Brito

    2018-01-15

    Biopolymer chitosan is a low cost, abundant, environmentally friendly, very selective and efficient anionic dyes adsorbent, being a promising material for large-scale removal of dyes from wastewater. However, raw chitosan (CS) is an ineffective cationic dyes adsorbent and its performance is pH sensitive, thus, CS modifications that address these issues need to be developed. Here, we report the preparation and characterization of two new CS modifications using edible oils (soybean oil or babassu oil), and their adsorption performance for two dyes, one anionic (remazol red, RR) and one cationic (methylene blue, MB). Both modifications extended the pH range of RR adsorption. The babassu oil modification increased adsorption capacity of the cationic dye MB, whereas the soybean oil modification increased that of RR. Such improvements demonstrate the potential of these two new CS modifications as adsorbent candidates for controlling dyes pollution in effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluation of Aluminium Dross as Adsorbent for Removal of Carcinogenic Congo Red Dye in Wastewater

    NASA Astrophysics Data System (ADS)

    Zakaria, Mohamad Zulfika Hazielim b.; Zauzi, Nur Syuhada Ahmad; Baini, Rubiyah; Sutan, Norsuzailina Mohamed; Rezaur Rahman, Md

    2017-06-01

    In this study, aluminium dross waste generated from aluminium smelting industries was employed as adsorbent in removing of congo red dye in aqueous solution. The raw aluminium dross as adsorbent was characterized using Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) for surface area and X-Ray Fluorescence (XRF) Spectroscopy. Adsorption experiments were carried out by batch system at different adsorbent mass, pH, and initial dye concentration. The results showed that the per cent removal of dye increased as adsorbent mass increased. It was found that 0.4 gram of adsorbent can remove approximately 100 % of dye at pH 9 for dye concentration 20 and 40 ppm. Therefore, it can be concluded that raw aluminium dross without undergone any treatment can be effectively used for the adsorption of congo red in textile wastewater related industries.

  12. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    PubMed

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  14. Thermal properties of adsorbed molecule in external field

    NASA Astrophysics Data System (ADS)

    Devi, Sumana; Vidhani, Bhavna; Prasad, Vinod

    2018-05-01

    Thermodynamic properties such as free energy, internal energy, entropy and specific heat of an adsorbed molecule are systematically investigated in static electric field for four different confinements. The confined potentials taken are suitable for different experimental conditions and are very useful in determining properties of molecules adsorbed under different environments. The time independent Schrödinger equation is solved numerically using accurate 9-point finite difference method. The Energy spectrum thus obtained is used to find thermal properties of the adsorbed molecule. Interesting results are obtained and explained.

  15. Natural adsorbents of dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Rahmani, Meryem; El Hajjaji, souad; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Contamination of natural waters is a current environmental problem and lot of work has been done to find methods for its, prevention and remediation such as ionic exchange, adsorption on active carbon, filtration, electrolysis, biodegradation …etc. Adsorption is one of the most applied methods according to its effectiveness and easy management. Some adsorbents with good properties such as active alumina, zeolites, crop residues … etc, are suitable to substitute usual active carbon. This study aimed at the removal of dyes using oil shale as natural support, and its optimization by factorial experiment. Three factors were considered namly:pollutant concentration, pH and weight of the adsorbent. Tests have been performed with cationic and anionic dyes. Experimental results show that pseudo-first-order kinetic model provided the best fit to the experimental data for the adsorption by the oil shale. Langmuir, Freundlich and Temkin isotherm models were tested to fit experimental data, the adsorption equilibrium was well described by Freundlich isotherm for methylorange and Temkin for methyl blue. Analysis were completed by oil shale characterization educing XRD, IR, XRF techniques, and cationic exchange capacity.

  16. Adsorption mechanism for xanthene dyes to cellulose granules.

    PubMed

    Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu

    2012-01-01

    The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.

  17. Effect of adsorbed/intercalated anionic dyes into the mechanical properties of PVA: layered zinc hydroxide nitrate nanocomposites.

    PubMed

    Marangoni, Rafael; Mikowski, Alexandre; Wypych, Fernando

    2010-11-15

    Zinc hydroxide nitrate (ZHN) was adsorbed with anions of blue dyes (Chicago sky blue, CSB; Evans blue, EB; and Niagara blue, NB) and intercalated with anions of orange dyes (Orange G, OG; Orange II, OII; methyl orange, MO). Transparent, homogeneous and colored nanocomposite films were obtained by casting after dispersing the pigments (dye-intercalated/adsorbed into LHSs) into commercial poly(vinyl alcohol) (PVA). The films were characterized by XRD, UV-Vis spectroscopy, and mechanical testing. The mechanical properties of the PVA compounded with the dye-intercalated/adsorbed ZHN were evaluated, and reasonable increases in Young's modulus and ultimate tensile strength were observed, depending on the amount and choice of layered filler. These results demonstrate the possibility of using a new class of layered hydroxide salts intercalated and adsorbed with anionic dyes to prepare multifunctional polymer nanocomposite materials. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism

    NASA Astrophysics Data System (ADS)

    Sharma, Maya; Madras, Giridhar; Bose, Suryasarathi

    2016-07-01

    In this study, Fe (iron) and Ag (silver) based adsorbents were synthesized using solution combustion and in situ reduction techniques. The synthesized adsorbents were comprehensively characterized by different techniques including electron microscopy, BET, XRD, Zeta potential etc. Three chlorinated cationic dyes used were malachite green, methyl violet and pyronin Y. These dyes were adsorbed on various synthesized adsorbents [iron III oxide (Fe2O3)], iron III oxide decorated silver nanoparticles by combustion synthesis technique [Fe2O3-Ag(C)] and iron III oxide decorated silver nanoparticles using in situ reduction, [Fe2O3-Ag (S)]. The isotherm and the adsorption kinetics have been studied systematically. The kinetic data can be explained by the pseudo second order model and the adsorption equilibrium followed Langmuir isotherm. The equilibrium and kinetics results suggest that Fe2O3-Ag(S) nanoparticles showed the maximum adsorption among all the adsorbents. Hence, Polyvinylidene fluoride based membranes containing Fe2O3-Ag(S) nanoparticles were prepared via phase inversion (precipitation immersion using DMF/water) technique. The adsorption kinetics were studied in detail and it was observed that the composite membrane showed synergistic improvement in dye adsorption. Such membranes can be used for water purification.

  19. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications.

    PubMed

    Prajongtat, Pongthep; Suramitr, Songwut; Nokbin, Somkiat; Nakajima, Koichi; Mitsuke, Koichiro; Hannongbua, Supa

    2017-09-01

    Structural and electronic properties of eight isolated azo dyes (ArNNAr', where Ar and Ar' denote the aryl groups containing benzene and naphthalene skeletons, respectively) were investigated by density functional theory (DFT) based on the B3LYP/6-31G(d,p) and TD-B3LYP/6-311G(d,p) methods The effect of methanol solvent on the structural and electronic properties of the azo dyes was elucidated by employing a polarizable continuum model (PCM). Then, the azo dyes adsorbed onto the anatase TiO 2 (101) slab surface through a carboxyl group. The geometries and electronic structures of the adsorption complexes were determined using periodic DFT based on the PWC/DNP method. The calculated adsorption energies indicate that the adsorbed dyes preferentially take configuration of the bidentate bridging rather than chelating or monodentate ester-type geometries. Furthermore, the azo compounds having two carboxyl groups are coordinated to the TiO 2 surface more preferentially through the carboxyl group connecting to the benzene skeleton than through that connecting to the naphthalene skeleton. The dihedral angles (Φ B-N ) between the benzene- and naphthalene-skeleton moieties are smaller than 10° for the adsorbed azo compounds containing one carboxyl group. In contrast, Φ B-N > 30° are obtained for the adsorbed azo compounds containing two carboxyl groups. The almost planar conformations of the former appear to strengthen both π-electrons conjugation and electronic coupling between low-lying unoccupied molecular orbitals of the azo dyes and the conduction band of TiO 2 . On the other hand, such coupling is very weak for the latter, leading to a shift of the Fermi level of TiO 2 in the lower-energy direction. The obtained results are useful to the design and synthesize novel azo-dye-based molecules that give rise to higher photovoltaic performances of the dye-sensitized solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Interactions of Fluorescein Dye with Spherical and Star Shaped Gold Nanoparticles.

    PubMed

    Pal, Gopa Dutta; Paul, Somnath; Bardhan, Munmun; Ganguly, Tapan

    2018-04-01

    UV-vis absorption, FT-IR, steady state fluorescence and fluorescence lifetime measurements were made on Fluorescein dye (Fl dye) molecules in presence of gold nanoparticles of different morphologies: spherical gold nanoparticles (GNP) and star shaped gold nanoparticles (GNS). The experimental observations demonstrate that Fl dye molecules form dimers when adsorbed on nanosurface of spherical gold particles. On the other hand possibly due to lack of adsorption on the surface of GNS the dye molecules were unable to form dimers. The projected tips on the surface of GNS may possibly hinder the dyes to adsorb on the surface of this nanoparticle. From the spectral analysis and measurements of thermodynamic parameters it is inferred that two different types of ground state interactions occur between Fl-dye-GNP and Fl dye-GNS systems. Both the observed negative values of the thermodynamic parameters ΔH and ΔS in the case of the former system predict the possibility of occurrences of hydrogen bonding interactions between two neighboring Fl dye molecules when adsorbed on the nanosurface of GNP. On the other hand in Fl dye-GNS system electrostatic interactions appear to occur, as evidenced from negative ΔH and positive value of ΔS, between the positive charges residing on the tips of the nanoparticles and anionic form of Fl dye. It has been concluded that as the adsorption of organic dyes on solid surfaces is prerequisite for the degradation of dye pollutants, the present experimental observations demonstrate that GNP could be used as a better candidate than GNS in degradation mechanism of the xanthenes dyes.

  1. The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters

    PubMed Central

    Kyzas, George Z.; Fu, Jie; Matis, Kostas A.

    2013-01-01

    Adsorption is one of the most promising decolorization techniques in dyeing wastewater treatment. Adsorption techniques for wastewater treatment have become more popular in recent years owing to their efficiency in the removal of pollutants too stable for biological methods. Dye adsorption is a result of two mechanisms (adsorption and ion exchange) and is influenced by many factors as dye/adsorbent interaction, adsorbent’s surface area, particle size, temperature, pH, and contact time. The main advantage of adsorption recently became the use of low-cost materials, which reduces the procedure cost. The present review firstly introduced the technology process, research history and research hotspot of adsorption. Then, the application of adsorption in treatment of dyeing wastewaters in the past decades was summarized, revealing the impressive changes in modes, trends, and conditions. From this review article, the different philosophy of synthesis of adsorbent materials became evident. PMID:28788381

  2. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization.

    PubMed

    Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J

    2013-11-30

    For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent.

    PubMed

    Zhang, Songping; Sun, Yan

    2004-01-01

    A model describing the salt effect on adsorption equilibrium of a basic protein, lysozyme, to Cibacron Blue 3GA-modified Sepharose CL-6B (CB-Sepharose) has been developed. In this model, it is assumed that the presence of salt causes a fraction of dye-ligand molecules to lodge to the surface of the agarose gel, resulting from the induced strong hydrophobic interaction between dye ligand and agarose matrix. The salt effect on the lodging of dye-ligand is expressed by the equilibrium between salt and dye-ligand. For the interactions between protein and vacant binding sites, stoichiometric equations based either on cation exchanges or on hydrophobic interactions are proposed since the CB dye can be regarded as a cation exchanger contributed by the sulfonate groups on it. Combining with the basic concept of steric mass-action theory for ion exchange, which considers both the multipoint nature and the macromolecular steric shielding of protein adsorption, an explicit isotherm for protein adsorption equilibrium on the dye-ligand adsorbent is formulated, involving salt concentration as a variable. Analysis of the model parameters has yielded better understanding of the mechanism of salt effects on adsorption of the basic protein. Moreover, the model predictions are in good agreement with the experimental data over a wide range of salt and ligand concentrations, indicating the predictive nature of the model.

  4. Determination of the mass transfer limiting step of dye adsorption onto commercial adsorbent by using mathematical models.

    PubMed

    Marin, Pricila; Borba, Carlos Eduardo; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando R; de Oliveira, Silvia Priscila Dias; Kroumov, Alexander Dimitrov

    2014-01-01

    Reactive blue 5G dye removal in a fixed-bed column packed with Dowex Optipore SD-2 adsorbent was modelled. Three mathematical models were tested in order to determine the limiting step of the mass transfer of the dye adsorption process onto the adsorbent. The mass transfer resistance was considered to be a criterion for the determination of the difference between models. The models contained information about the external, internal, or surface adsorption limiting step. In the model development procedure, two hypotheses were applied to describe the internal mass transfer resistance. First, the mass transfer coefficient constant was considered. Second, the mass transfer coefficient was considered as a function of the dye concentration in the adsorbent. The experimental breakthrough curves were obtained for different particle diameters of the adsorbent, flow rates, and feed dye concentrations in order to evaluate the predictive power of the models. The values of the mass transfer parameters of the mathematical models were estimated by using the downhill simplex optimization method. The results showed that the model that considered internal resistance with a variable mass transfer coefficient was more flexible than the other ones and this model described the dynamics of the adsorption process of the dye in the fixed-bed column better. Hence, this model can be used for optimization and column design purposes for the investigated systems and similar ones.

  5. Surface Photochemistry: 3,3′-Dialkylthia and Selenocarbocyanine Dyes Adsorbed onto Microcrystalline Cellulose

    PubMed Central

    Vieira Ferreira, Luís F.; Ferreira, Diana P.; Duarte, Paulo; Oliveira, A. S.; Torres, E.; Machado, I. Ferreira; Almeida, P.; Reis, Lucinda V.; Santos, Paulo F.

    2012-01-01

    In this work, thia and selenocarbocyanines with n-alkyl chains of different length, namely with methyl, ethyl, propyl, hexyl and decyl substituents, were studied in homogeneous and heterogeneous media for comparison purposes. For both carbocyanine dyes adsorbed onto microcrystalline cellulose, a remarkable increase in the fluorescence quantum yields and lifetimes were detected, when compared with solution. Contrary to the solution behaviour, where the increase in the n-alkyl chains length increases to a certain extent the fluorescence emission ΦF and τF, on powdered solid samples a decrease of ΦF and τF was observed. The use of an integrating sphere enabled us to obtain absolute ΦF’s for all the powdered samples. The main difference for liquid homogeneous samples is that the increase of the alkyl chain strongly decreases the ΦF values, both for thiacarbocyanines and selenocarbocyanines. A lifetime distribution analysis for the fluorescence of these dyes adsorbed onto microcrystalline cellulose, evidenced location on the ordered and crystalline part of the substrate, as well as on the more disordered region where the lifetime is smaller. The increase of the n-alkyl chains length decreases the photoisomer emission for the dyes adsorbed onto microcrystalline cellulose, as detected for high fluences of the laser excitation, for most samples. PMID:22312274

  6. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology

    NASA Astrophysics Data System (ADS)

    Hong, Gui-Bing; Wang, Yi-Kai

    2017-11-01

    Rice bran is a major by-product of the rice milling industry and is abundant in Taiwan. This study proposed a simple method for modifying rice bran to make it a low-cost adsorbent to remove reactive blue 4 (RB4) from aqueous solutions. The effects of independent variables such as dye concentration (100-500 ppm), adsorbent dosage (20-120 mg) and temperature (30-60 °C) on the dye adsorption capacity of the modified rice bran adsorbent were investigated by using the response surface methodology (RSM). The results showed that the dye maximum adsorption capacity of the modified rice bran adsorbent was 151.3 mg g-1 with respect to a dye concentration of 500 ppm, adsorbent dosage of 65.36 mg, and temperature of 60 °C. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model well. The maximum monolayer adsorption capacity was 178.57-185.19 mg g-1, which was comparable to that of other agricultural waste adsorbents used to remove RB4 from aqueous solutions in the literature. The thermodynamics analysis results indicated that the adsorption of RB4 onto the modified rice bran adsorbent is an endothermic, spontaneous monolayer adsorption that occurs through a physical process.

  7. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    PubMed

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  8. Preparation, Characterization of Coal Ash Adsorbent and Orthogonal Experimental Rsearch on Treating Printing and Dyeing Wastewater

    NASA Astrophysics Data System (ADS)

    Wang, Qingyu; He, Lingfeng; Shi, Liang; Chen, Xiaogang; Chen, Xin; Xu, Zizhen; Zhang, Yongli

    2018-03-01

    Using high temperature activated sodium flying ash and carboxymethyl chitosan as raw material to prepare carboxymethylchitosan wrapping fly-ash adsorbent (CWF), combined with iron-carbon micro-electrolysis treatment of simulated and actual printing and dyeing wastewater. The conditions for obtaining are from the literature: the best condition for CWF to treat simulated printing and dyeing wastewater pretreated with iron-carbon micro-electrolysis is that the mixing time is 10min, the resting time is 30 min, pH=6, and the adsorbent dosage is 0.75 g/L. The results showed that COD removal efficiency and decoloration rate were above 97 %, and turbidity removal rate was over 90 %. The optimum dyeing conditions were used to treat the dyeing wastewater. The decolorization rate was 97.30 %, the removal efficiency of COD was 92.44 %, and the turbidity removal rate was 90.37 %.

  9. Adsorbed molecules in external fields: Effect of confining potential

    NASA Astrophysics Data System (ADS)

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials.

  10. EXAFS, ab Initio Molecular Dynamics, and NICIS Spectroscopy Studies on an Organic Dye Model at the Dye-Sensitized Solar Cell Photoelectrode Interface.

    PubMed

    Liu, Peng; Johansson, Viktor; Trilaksana, Herri; Rosdahl, Jan; Andersson, Gunther G; Kloo, Lars

    2017-06-14

    The organization of dye molecules in the dye layer adsorbed on the semiconductor substrate in dye-sensitized solar cells has been studied using a combination of theoretical methods and experimental techniques. The model system is based on the simple D-π-A dye L0, which has been chemically modified by substituting the acceptor group CN with Br (L0Br) to offer better X-ray contrast. Experimental EXAFS data based on the Br K-edge backscattering show no obvious difference between dye-sensitized titania powder and titania film samples, thus allowing model systems to be based on powder slurries. Ab initio molecular dynamic (aiMD) calculations have been performed to extract less biased information from the experimental EXASF data. Using the aiMD calculation as input, the EXAFS structural models can be generated a priori that match the experimental data. Our study shows that the L0Br dye adsorbs in the trans-L0Br configuration and that adsorption involves both a proximity to other L0Br dye molecules and the titanium atoms in the TiO 2 substrate. These results indicate direct coordination of the dye molecules to the TiO 2 surface in contrast to previous results on metal-organic dyes. The molecular coverage of L0Br on mesoporous TiO 2 was also estimated using NICIS spectroscopy. The NICISS results emphasized that the L0Br dye on nanoporous titania mainly forms monolayers with a small contribution of multilayer coverage.

  11. A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Tamez; Rahman, Md. Arifur; Rukanuzzaman, Md.; Islam, Md. Akhtarul

    2017-10-01

    This study was aimed at using mango leaf powder (MLP) as a potential adsorbent for the removal of methylene blue (MB) from aqueous solutions. Characterization of the adsorbent was carried out with scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption analysis. The pH at the point of zero charge of the adsorbent was determined by titration method and was found a value to be 5.6 ± 0.2. Batch studies were performed to evaluate the influence of various experimental parameters like initial solution pH, contact time, initial concentration of dye and adsorbent dosage on the removal of MB. An adsorption-desorption study was carried out resulting the mechanism of adsorption was carried out by electrostatic force of attraction. The adsorption equilibrium time required for the adsorption of MB on MLP was almost 2 h and 85 ± 5% of the total amount of dye uptake was found to occur in the first rapid phase (30 min). The Langmuir and Freundlich isotherm models were used for modeling the adsorption equilibrium. The experimental equilibrium data could be well interpreted by Langmuir isotherm with maximum adsorption capacity of 156 mg/g. To state the sorption kinetics, the fits of pseudo-first-order and pseudo-second-order kinetic models were investigated. It was obtained that the adsorption process followed the pseudo-second-order rate kinetics. The above findings suggest that MLP can be effectively used for decontamination of dye containing wastewater.

  12. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    NASA Astrophysics Data System (ADS)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  13. Adsorbed molecules in external fields: Effect of confining potential.

    PubMed

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-05

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Razor clam (Ensis directus) shell as a low-cost adsorbent for the removal of Congo red and Rhodamine B dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Areibat, Lila Elamari Mohamed; Kamari, Azlan

    2017-05-01

    Wastewater originating from industrial effluents contains many types of pollutants including dyes. Anionic and cationic dyes are very toxic and they can cause several problems to aquatic system. In present study, razor clam shell was used as a potential adsorbent to remove two classes of dyes, namely anionic (Congo red, CR) and cationic (Rhodamine B, RB) dyes from aqueous solution. Batch adsorption experiments were performed to study the effects of three experimental parameters, namely solution pH, adsorbent dosage and initial dye concentration, on adsorption capacity of CR and RB onto razor clam shell. Results indicated that pH 2.0 was optimum pH for adsorbent to adsorb both CR and RB. At an initial concentration of 20 mg/L, the removal percentages of CR and RB were 97% and 38%, respectively. The Freundlich and Langmuir isotherm models were used to describe adsorption behaviour of CR and RB, as well as the relationship between adsorbent and adsorbate. The adsorption equilibrium data were well fitted to Freundlich isotherm model. The separation factor (RL) constants suggest that both CR and RB were favourably adsorbed by razor clam shell. Razor clam shell was characterised by using two techniques, namely Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectrometry (FTIR). Overall, this study suggests that razor clam shell has great potential to be an alternative to expensive adsorbents.

  15. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent.

    PubMed

    Ghorai, Soumitra; Sarkar, Amit Kumar; Panda, A B; Pal, Sagar

    2013-09-01

    The aim of this work is to study the feasibility of XG-g-PAM/SiO2 nanocomposite towards its potential application as high performance adsorbent for removal of Congo red (CR) dye from aqueous solution. The surface area, average pore size and total pore volume of the developed nanocomposite has been determined. The efficiency of CR dye adsorption depends on various factors like pH, temperature of the solution, equilibrium time of adsorption, agitation speed, initial concentration of dye and adsorbent dosage. It has been observed that the nanocomposite is having excellent CR dye adsorption capacity (Q0=209.205 mg g(-1)), which is considerably high. The dye adsorption process is controlled by pseudo-second order and intraparticle diffusion kinetic models. The adsorption equilibrium data correlates well with Langmuir isotherm. Desorption study indicates the efficient regeneration ability of the dye loaded nanocomposite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation.

    PubMed

    Kadam, Avinash A; Telke, Amar A; Jagtap, Sujit S; Govindwar, Sanjay P

    2011-05-15

    The objective of this study was to develop consortium using Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 to decolorize adsorbed dyes from textile effluent wastewater under solid state fermentation. Among various agricultural wastes rice bran showed dye adsorption up to 90, 62 and 80% from textile dye reactive navy blue HE2R (RNB HE2R) solution, mixture of textile dyes and textile industry wastewater, respectively. Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 showed 62 and 38% decolorization of RNB HE2R adsorbed on rice bran in 24h under solid state fermentation. However, the consortium of Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 (consortium-PA) showed 80% decolorization in 24h. The consortium-PA showed effective ADMI removal ratio of adsorbed dyes from textile industry wastewater (77%), mixture of textile dyes (82%) and chemical precipitate of textile dye effluent (CPTDE) (86%). Secretion of extracellular enzymes such as laccase, azoreductase, tyrosinase and NADH-DCIP reductase and their significant induction in the presence of adsorbed dye suggests their role in the decolorization of RNB HE2R. GCMS and HPLC analysis of product suggests the different fates of biodegradation of RNB HE2R when used Pseudomonas sp. SUK1, A. ochraceus NCIM-1146 and consortium PA. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    PubMed

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  18. A novel adsorbent obtained by inserting carbon nanotubes into cavities of diatomite and applications for organic dye elimination from contaminated water.

    PubMed

    Yu, Hongwen; Fugetsu, Bunshi

    2010-05-15

    A novel approach is described for establishing adsorbents for elimination of water-soluble organic dyes by using multi-walled carbon nanotubes (MWCNTs) as the adsorptive sites. Agglomerates of MWCNTs were dispersed into individual tubes (dispersed-MWCNTs) using sodium n-dodecyl itaconate mixed with 3-(N,N-dimethylmyristylammonio)-propanesulfonate as the dispersants. The resultant dispersed-MWCNTs were inserted into cavities of diatomite to form composites of diatomite/MWCNTs. These composites were finally immobilized onto the cell walls of flexible polyurethane foams (PUF) through an in situ PUF formation process to produce the foam-like CNT-based adsorbent. Ethidium bromide, acridine orange, methylene blue, eosin B, and eosin Y were chosen to represent typical water-soluble organic dyes for studying the adsorptive capabilities of the foam-like CNT-based adsorbent. For comparisons, adsorptive experiments were also carried out by using agglomerates of the sole MWCNTs as adsorbents. The foam-like CNT-based adsorbents were found to have higher adsorptive capacities than the CNT agglomerates for all five dyes; in addition, they are macro-sized, durable, flexible, hydrophilic and easy to use. Adsorption isotherms plotted based on the Langmuir equation gave linear results, suggesting that the foam-like CNT-based adsorbent functioned in the Langmuir adsorption manner. The foam-like CNT-based adsorbents are reusable after regeneration with aqueous ethanol solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell.

    PubMed

    Parlane, Fraser G L; Mustoe, Chantal; Kellett, Cameron W; Simon, Sarah J; Swords, Wesley B; Meyer, Gerald J; Kennepohl, Pierre; Berlinguette, Curtis P

    2017-11-24

    The interactions between a surface-adsorbed dye and a soluble redox-active electrolyte species in the dye-sensitized solar cell has a significant impact on the rate of regeneration of photo-oxidized dye molecules and open-circuit voltage of the device. Dyes must therefore be designed to encourage these interfacial interactions, but experimentally resolving how such weak interactions affect electron transfer is challenging. Herein, we use X-ray absorption spectroscopy to confirm halogen bonding can exist at the dye-electrolyte interface. Using a known series of triphenylamine-based dyes bearing halogen substituents geometrically positioned for reaction with halides in solution, halogen bonding was detected only in cases where brominated and iodinated dyes were photo-oxidized. This result implies that weak intermolecular interactions between photo-oxidized dyes and the electrolyte can impact device photovoltages. This result was unexpected considering the low concentration of oxidized dyes (less than 1 in 100,000) under full solar illumination.

  20. Optical Properties of Nano-Spherical Gold Doped Dye Solution Hybrid

    NASA Astrophysics Data System (ADS)

    Hoa, D. Q.; Lien, N. T. H.; Ha, C. V.; Nhung, T. H.; Long, P.

    2011-03-01

    Gold nanoparticles with average diameter of 16 nm which are coated with Cetrimonium Bromide (CTAB) by chemical method are dissolved in dye solution at different concentrations. The absorption spectra of the dye mixture appeared almost unchanged at low concentrations of gold nanoparticles (around 1×1014 cm-3) despite its fluorescence intensity increased many-fold. Energy transfer from gold nanoparticles to dye molecules occurs through surface plasmon resonance(SPR). The fluorescence of rhodamine 610 (Rh610) dye molecules co-adsorbed within 16 nm gold nanoparticles assemblies can be useful for enhancing gain in lasing emission. An increase in laser efficiency by a factor of one and half times stronger compared to the single Rh610 dye suggest the potential of using the mixture of rhodamine dye with gold nanoparticles as laser medium in the configuration of quenching distributed feedback dye laser.

  1. Method and apparatus for passive optical dosimeter comprising caged dye molecules

    DOEpatents

    Sandison, David R.

    2001-07-03

    A new class of ultraviolet dosimeters is made possible by exposing caged dye molecules, which generate a dye molecule on exposure to ultraviolet radiation, to an exterior environment. Applications include sunburn monitors, characterizing the UV exposure history of UV-sensitive materials, especially including structural plastics, and use in disposable `one-use` optical equipment, especially medical devices.

  2. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    PubMed

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Preparation of core-shell structured CaCO3 microspheres as rapid and recyclable adsorbent for anionic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Mengen; Chen, Zhenhua; Lv, Xinyan; Zhou, Kang; Zhang, Jie; Tian, Xiaohan; Ren, Xiuli; Mei, Xifan

    2017-09-01

    Core-shell structured CaCO3 microspheres (MSs) were prepared by a facile, one-pot method at room temperature. The adsorbent dosage and adsorption time of the obtained CaCO3 MSs were investigated. The results suggest that these CaCO3 MSs can rapidly and efficiently remove 99-100% of anionic dyes within the first 2 min. The obtained CaCO3 MSs have a high Brunauer-Emmett-Teller surface area (211.77 m2 g-1). In addition, the maximum adsorption capacity of the obtained CaCO3 MSs towards Congo red was 99.6 mg g-1. We also found that the core-shell structured CaCO3 MSs have a high recycling capability for removing dyes from water. Our results demonstrate that the prepared core-shell structured CaCO3 MSs can be used as an ideal, rapid, efficient and recyclable adsorbent to remove dyes from aqueous solution.

  4. Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure

    NASA Astrophysics Data System (ADS)

    Han, Sancan; Liu, Kerui; Hu, Linfeng; Teng, Feng; Yu, Pingping; Zhu, Yufang

    2017-03-01

    Herein we report superior dye-adsorption performance for flower-like nanostructure composed of two dimensional (2D) MoS2 nanosheets by a facile hydrothermal method, more prominent adsorption of cationic dye compared with anodic dye indicates the dye adsorption performance strongly depends on surface charge of MoS2 nanosheets. The adsorption mechanism of dye is analyzed, the kinetic data of dye adsorption fit well with the pseudo-second-order model, meanwhile adsorption capability at different equilibrium concentrations follows Langmuir model, indicating the favorability and feasibility of dye adsorption. The regenerable property for MoS2 with full adsorption of dye molecules by using alkaline solution were demonstrated, showing the feasibility of reuse for the MoS2, which is promising in its practical water treatment application.

  5. 3D Oxidized Graphene Frameworks: An Efficient Adsorbent for Methylene Blue

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Deb, Madhurima; Tiwari, Shreya; Pawar, Pranav Bhagwan; Saxena, Sumit; Shukla, Shobha

    2018-04-01

    Extraordinary properties of graphene and its derivatives have found application in varied areas such as energy, electronics, optical devices and sensors, to name a few. Large surface area along with specialized functional groups make these materials attractive for removal of dye molecules in solution via adsorption. Industrial effluents contain large amounts of toxic chemicals resulting in pollution of water bodies, which pose environmental hazards in general. Here we report application of 3D oxidized graphene frameworks in the efficient removal of cationic dye molecules such as methylene blue via adsorption. Systematic parametric studies investigating the effect of the initial dye concentration, pH and contact time have been performed. Spectroscopic analysis of the filtrate suggests that tortuous paths in 3D oxidized graphene frameworks result in efficient removal of dye molecules due to enhanced interaction. The hydroxyl groups retained in these 3D oxidized graphene frameworks facilitate adsorption of the dye molecules while passing through the adsorbent. pH studies suggest that maximum removal efficiency for methylene blue was achieved at pH value of 9. The results suggest that these 3D oxidized graphene frameworks can be used for purification of large volumes of contaminated water from cationic dyes in waste water treatment plants.

  6. Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors.

    PubMed

    Dastjerdi, Roya; Montazer, Majid; Shahsavan, Shadi; Böttcher, Horst; Moghadam, M B; Sarsour, Jamal

    2013-01-01

    This research has designed innovative Ag/TiO(2) polysiloxane-shield nano-reactors on the PET fabric to develop novel durable bio-photocatalyst purifiers. To create these very fine nano-reactors, oppositely surface charged multiple size nanoparticles have been applied accompanied with a crosslinkable amino-functionalized polysiloxane (XPs) emulsion. Investigation of photocatalytic dye decolorization efficiency revealed a non-heterogeneous mechanism including an accelerated degradation of entrapped dye molecules into the structural polysiloxane-shield nano-reactors. In fact, dye molecules can be adsorbed by both Ag and XPs due to their electrostatic interactions and/or even via forming a complex with them especially with silver NPs. The absorbed dye and active oxygen species generated by TiO(2) were entrapped by polysiloxane shelter and the presence of silver nanoparticles further attract the negative oxygen species closer to the adsorbed dye molecules. In this way, the dye molecules are in close contact with concentrated active oxygen species into the created nano-reactors. This provides an accelerated degradation of dye molecules. This non-heterogeneous mechanism has been detected on the sample containing all of the three components. Increasing the concentration of Ag and XPs accelerated the second step beginning with an enhanced rate. Further, the treated samples also showed an excellent antibacterial activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Theory of raman scattering from molecules adsorbed at semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ueba, H.

    1983-09-01

    A theory is presented to calculate the Raman polarizability of an adsorbed molecule at a semiconductor surface, where the electronic excitation in the molecular site interacts with excitons (elementary excitations in the semiconductor) through non-radiative energy transfer between them, in an intermediate state in the Raman scattering process. The Raman polarizability thus calculated is found to exhibit a peak at the energy corresponding to a resonant excitation of excitons, thereby suggesting the possibility of surface enhanced Raman scattering on semiconductor surfaces. The mechanism studied here can also give an explanation of a recent observation of the Raman excitation profiles of p-NDMA and p-DMAAB adsorbed on ZnO or TiO 2, where those profiles were best described by assuming a resonant intermediate state of the exciton transition in the semiconductors. It is also demonstrated that in addition to vibrational Raman scattering, excitonic Raman scattering of adsorbed molecules will occur in the coupled molecule-semiconductor system, where the molecular returns to its ground electronic state by leaving an exciton in the semiconductor. A spectrum of the excitonic Raman scattering is expected to appear in the background of the vibrational Raman band and to be characterized by the electronic structure of excitons. A desirable experiment is suggested for an examination of the theory.

  8. Performance enhancement of dye-sensitized solar cells (DSSCs) using a natural sensitizer

    NASA Astrophysics Data System (ADS)

    Arifin, Zainal; Soeparman, Sudjito; Widhiyanuriyawan, Denny; Sutanto, Bayu; Suyitno

    2017-01-01

    Dye-sensitized solar cells (DSSCs) based on natural sensitizers have become a topic of significant research because of their urgency and importance in the energy conversion field and the following advantages: ease of fabrication, low-cost solar cell, and usage of nontoxic materials. The natural sensitizer in DSSCs is responsible for the absorption of light as well as the injection of charges to the conduction band of the semiconductor such as TiO2 nanoparticles. In this study, the chlorophyll extracted from papaya leaves was used as a natural sensitizer. Dye molecules were adsorbed by TiO2 nanoparticle surfaces when submerged in the dye solution for 24 h. The concentration of the dye solution influences both the amount of dye loading and the DSSC performance. The amount of adsorbed dye molecules by TiO2 nanoparticle was calculated using a desorption method. As the concentration of dye solution was increased, the dye loading capacity and power conversion efficiency increased. Above 90 mM dye solution concentration, however, the DSSC efficiency decreased because dye precipitated on the TiO2 nanostructure. These characteristics of DSSCs were analyzed under the irradiation of 100 mW/cm2. The best performance of DSSCs was obtained at 90 mM dye solution, with the values of Voc, Jsc, FF, and efficiency of DSSCs being 0.561 V, 0.402 mA/cm2, 41.65%, and 0.094%, respectively.

  9. Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.

    PubMed

    Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C

    2018-05-23

    Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite.

    PubMed

    Al-Ghouti, Mohammad A; Al-Degs, Yehya S; Khraisheh, Majeda A M; Ahmad, Mohammad N; Allen, Stephen J

    2009-08-01

    The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as delta-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the d-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern.

  11. Single wall carbon nanotubes dispersion study of different dye molecules and chitosan

    NASA Astrophysics Data System (ADS)

    Ramli, Muhammad M.; Isa, Siti S. Mat; Abdullah, M. M. A. B.; Murad, S. A. Z.

    2017-09-01

    Carbon Nanotubes (CNTs) is known for their hydrophobicity ability. However, this ability can become the bottleneck for the application of CNTs where a highly dispersion of materials are needed. In this project, different dispersing agents were investigated namely dye molecules and chitosan. Three different dyes are studied with different concentration, including 0.05 % of chitosan. The dispersion quality is determined by examining through UV-Vis-NIR. The best dispersion quality investigated here is when the concentration of dye molecules is higher, which is around 2.5 mM.

  12. DNA Molecules Adsorbed on Rippled Supported Cationic Lipid Membranes -- A new way to stretch DNAs

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo

    2005-03-01

    We discuss a novel approach to control to shapes of DNA molecules. We elucidate the recent experimental work of M. Hochrein, L. Golubovic and J. Raedler, on the conformational behavior of DNA molecules adsorbed on lipid membranes that are supported on grooved micro-structured surfaces. We explain the striking ability of the edges formed on these supported membranes to adsorb and completely orient (stretch) very long DNA molecules. Here we explain the experimentally observed DNA stretching effect in terms of the surface curvature dependent electrostatic potential seen by the adsorbed DNA molecules. On the curved, rippled membrane, we show that the DNA molecules undergo localization transitions causing them to stretch by binding to the ripple edges of the supported membrane. In the future, this stretching will allow to directly image, by the common fluorescence microscopy, fundamental biological processes of the interactions between DNA and single protein molecules.

  13. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.

    PubMed

    Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A

    2009-12-15

    Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.

  14. Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent.

    PubMed

    Georgin, Jordana; da Silva Marques, Bianca; da Silveira Salla, Julia; Foletto, Edson Luiz; Allasia, Daniel; Dotto, Guilherme Luiz

    2018-03-01

    The treatment of colored effluents containing Procion Red dye (PR) was investigated using H 2 SO 4 and HNO 3 modified avocado shells (Persea americana) as adsorbents. The adsorbent materials (AS-H 2 SO 4 and AS-HNO 3 ) were properly characterized. The adsorption study was carried out considering the effects of adsorbent dosage and pH. Kinetic, equilibrium, and thermodynamic aspects were also evaluated. Finally, the adsorbents were tested to treat simulated dye house effluents. For both materials, the adsorption was favored using 0.300 g L -1 of adsorbent at pH 6.5, where, more than 90% of PR was removed from the solution. General order model was able to explain the adsorption kinetics for both adsorbents. The Sips model was adequate to represent the isotherm data, being the maximum adsorption capacities of 167.0 and 212.6 mg g -1 for AS-H 2 SO 4 and AS-HNO 3 , respectively. The adsorption processes were thermodynamically spontaneous, favorable (- 17.0 < ΔG 0  < - 13.2 kJ mol -1 ), and exothermic (ΔH 0 values of - 29 and - 55 kJ mol -1 ). AS-H 2 SO 4 and AS-HNO 3 were adequate to treat dye house effluents, attaining color removal percentages of 82 and 75%. Avocado shells, after a simple acid treatment, can be a low-cost option to treat colored effluents.

  15. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  16. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    PubMed

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A small-molecule dye for NIR-II imaging

    NASA Astrophysics Data System (ADS)

    Antaris, Alexander L.; Chen, Hao; Cheng, Kai; Sun, Yao; Hong, Guosong; Qu, Chunrong; Diao, Shuo; Deng, Zixin; Hu, Xianming; Zhang, Bo; Zhang, Xiaodong; Yaghi, Omar K.; Alamparambil, Zita R.; Hong, Xuechuan; Cheng, Zhen; Dai, Hongjie

    2016-02-01

    Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (~90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)--a clinically approved NIR-I dye--in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ~4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.

  18. A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin

    2016-01-15

    A novel porous anionic metal–organic framework, (Me{sub 2}NH{sub 2}){sub 2}[Zn{sub 2}L{sub 1.5}bpy]·2DMF (BUT-201; H{sub 4}L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH{sub 3}){sub 2}NH{sub 2}{sup +}, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acidmore » Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Graphical abstract: A porous anionic metal–organic framework (BUT-201) can selectively adsorb the cationic dyes by cationic guest molecule substitution, and the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Highlights: • An anionic metal-organic framework (BUT-201) has been synthesized and characterized. • BUT-201 has a three-dimensional (3D) pillared double-layer structure. • BUT-201 can selectively and rapidly adsorb cationic dyes. • The adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}.« less

  19. Adsorption of CO and O2 molecules on Li metal adsorbed graphene: Search for graphene based gas sensors

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Sachdeva, Ritika; Dharamvir, Keya

    2018-05-01

    Adsorption of small gas molecules (such as CO and O2) on pristine graphene (PG) and Li-adsorbed graphene (PG-Li) have been investigated using first principles methods within density functional theory (DFT). We also notice that PG-Li has a higher chemical reactivity towards the gas molecules as compared to PG and these molecules have higher adsorption energy on this surface. Moreover, the strong interactions between PG-Li and the adsorbed molecules (as compared to PG and gas molecules) induce dramatic changes to the electronic properties of PG adsorbed with Li and make PG-Li a promising candidate as sensing material for CO and O2 gases.

  20. Catalytic growth of carbon nanofibers on Cr nanoparticles on a carbon substrate: adsorbents for organic dyes in water

    NASA Astrophysics Data System (ADS)

    de Oliveira, Luiz Carlos Alves; da Silva, Adilson Cândido; Machado, Alan Rodrigues Teixeira; Diniz, Renata; Pereira, Márcio César

    2013-05-01

    We have produced carbon nanofibers (CNFs) using leather waste that had been tanned with a chromium bath, and when dried contained Cr2O3. Suitable reduction processing produced a carbon substrate with supported nanoparticles of chromium metal. Powder X-ray diffraction showed that the Cr2O3 is reduced on the carbon surface to produce CrC and metal Cr, which is the effective catalyst for the CNFs growth. The CNF arrays were confirmed by TEM images. Raman data revealed that the synthesized CNFs have a poor-quality graphite structure which favors their use in adsorption processes. These CNFs presented higher affinity to adsorb anionic dyes, whereas the cationic dyes are better adsorbed on the carbon substrate. The low-cost and availability of the carbon precursor makes their potential use to produce CNFs of interest.

  1. Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro

    2013-06-01

    We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.

  2. Pyridinium molten salts as co-adsorbents in dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jui-Cheng; Sun, I-Wen; Yang, Cheng-Hsien

    2011-01-15

    The influence of using pyridinium molten salts as co-adsorbents to modify the monolayer of a TiO{sub 2} semiconductor on the performance of a dye-sensitized solar cell is studied. The current-voltage characteristics are measured under AM 1.5 (100 mW cm{sup -2}). The pyridinium molten salts significantly enhance the open-circuit photovoltage (V{sub oc}), the short circuit photocurrent density (J{sub sc}) as well as the solar energy conversion efficiency ({eta}). 1-Ethyl-3-carboxypyridinium iodide ([ECP][I]) is applied successfully to prepare an insulating molecular layer with N719, and achieve high energy conversion efficiency as high as 4.49% at 100 mW cm{sup -2} and AM 1.5. Themore » resulting efficiency is 20% higher than that of a non-additive device. This enhancement of conversion efficiency is attributed to the negative shift of the conduction band (CB) edge and the abundant concentration of I{sup -} on the surface of the electrode when using [ECP][I] as the co-adsorbent. (author)« less

  3. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.

    PubMed

    Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab

    2018-05-12

    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.

  4. Electronic structure of Fe- vs. Ru-based dye molecules

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.; Cook, Peter L.; Zegkinoglou, Ioannis; García-Lastra, J. M.; Rubio, Angel; Ruther, Rose E.; Hamers, Robert J.; Himpsel, F. J.

    2013-01-01

    In order to explore whether Ru can be replaced by inexpensive Fe in dye molecules for solar cells, the differences in the electronic structure of Fe- and Ru-based dyes are investigated by X-ray absorption spectroscopy and first-principles calculations. Molecules with the metal in a sixfold, octahedral N cage, such as tris(bipyridines) and tris(phenanthrolines), exhibit a systematic downward shift of the N 1s-to-π* transition when Ru is replaced by Fe. This shift is explained by an extra transfer of negative charge from the metal to the N ligands in the case of Fe, which reduces the binding energy of the N 1s core level. The C 1s-to-π* transitions show the opposite trend, with an increase in the transition energy when replacing Ru by Fe. Molecules with the metal in a fourfold, planar N cage (porphyrins) exhibit a more complex behavior due to a subtle competition between the crystal field, axial ligands, and the 2+ vs. 3+ oxidation states.

  5. Kondo effect in single cobalt phthalocyanine molecules adsorbed on Au(111) monoatomic steps

    NASA Astrophysics Data System (ADS)

    Zhao, Aidi; Hu, Zhenpeng; Wang, Bing; Xiao, Xudong; Yang, Jinlong; Hou, J. G.

    2008-06-01

    The Kondo effect in single dehydrogenated cobalt phthalocyanine (CoPc) molecules adsorbed on Au(111) monoatomic steps was studied with a low temperature scanning tunneling microscope. The CoPc molecules adsorbed on Au(111) monoatomic steps show two typical configurations, which can be dehydrogenated to reveal Kondo effect. Moreover, the Kondo temperatures (TK) measured for different molecules vary in a large range from ~150 to ~550 K, increasing monotonically with decreasing Co-Au distance. A simple model consisting of a single Co 3dz2 orbital and a Au 6s orbital is considered and gives a qualitative explanation to the dependence. The large variation of TK is attributed to the variation of the interaction between the magnetic-active cobalt ion and the Au substrate resulted from different Co-Au distances.

  6. Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions.

    PubMed

    Esquerdo, V M; Cadaval, T R S; Dotto, G L; Pinto, L A A

    2014-06-15

    The dye adsorption with chitosan is considered an eco-friendly alternative technology in relation to the existing water treatment technologies. However, the application of chitosan for dyes removal is limited, due to its low surface area and porosity. Then we prepared a chitosan scaffold with a megaporous structure as an alternative adsorbent to remove food dyes from solutions. The chitosan scaffold was characterized by infrared spectroscopy, scanning electron microscopy and structural characteristics. The potential of chitosan scaffold to remove five food dyes from solutions was investigated by equilibrium isotherms and thermodynamic study. The scaffold-dyes interactions were elucidated, and desorption studies were carried out. The chitosan scaffold presented pore sizes from 50 to 200 μm, porosity of 92.2±1.2% and specific surface area of 1135±2 m(2) g(-1). The two-step Langmuir model was suitable to represent the equilibrium data. The adsorption was spontaneous, favorable, exothermic and enthalpy-controlled process. Electrostatic interactions occurred between chitosan scaffold and dyes. Desorption was possible with NaOH solution (0.10 mol L(-1)). The chitosan megaporous scaffold showed good structural characteristics and high adsorption capacities (788-3316 mg g(-1)). Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dye adsorbates BrPDI, BrGly, and BrAsp on anatase TiO2(001) for dye-sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Çakır, D.; Gülseren, O.; Mete, E.; Ellialtıoǧlu, Ş.

    2009-07-01

    Using the first-principles plane-wave pseudopotential method within density functional theory, we systematically investigated the interaction of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) with both unreconstructed (UR) and reconstructed (RC) anatase TiO2(001) surfaces. All dye molecules form strong chemical bonds with surface in the most favorable adsorption structures. In UR-BrGly, RC-BrGly, and RC-BrAsp cases, we have observed that highest occupied molecular orbital and lowest unoccupied molecular orbital levels of molecules appear within band gap and conduction-band region, respectively. Moreover, we have obtained a gap narrowing upon adsorption of BrPDI on the RC surface. Because of the reduction in effective band gap of surface-dye system and possibly achieving the visible-light activity, these results are valuable for photovoltaic and photocatalytic applications. We have also considered the effects of hydration of surface to the binding of BrPDI. It has been found that the binding energy drops significantly for the completely hydrated surfaces.

  8. Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation.

    PubMed

    Sharma, Arush; Sharma, Gaurav; Naushad, Mu; Ghfar, Ayman A; Pathania, Deepak

    2018-04-01

    The present study was attempted to ascertain the possible application of activated carbon as a cost-effective and eco-friendly adsorbent prepared via microwave-assisted chemical activation. The activated carbon was characterized using different techniques. The various adsorption parameters have been optimized to examine the viability of activated carbon as a plausible sorbent for the remediation of Congo red (CR) dye from the aquatic system. The equilibrium data adequately fitted to the Langmuir isotherm with better R 2 (0.994). The maximum adsorption capacity (q m ) of activated carbon was recorded to be 68.96 mg/g. Additionally, sorptional kinetic data were examined by reaction-based and diffusion-based models such as pseudo-first-order and pseudo-second-order equations, and Elovich, intra-particle diffusion, and Dumwald-Wagner models, respectively. The computed values of thermodynamic parameters such as free energy change (ΔG 0 ), enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) were recorded as -3.63, 42.47 and 152.07 J/mol K, respectively, at 30°C, which accounted for a favorable, spontaneous and endothermic process. The regeneration study emphasized that the percentage uptake declined from 90.35% to 83.45% after six cycles of testing. So, our findings implied that activated carbon produced from biomass must be cost-effectively used as an adsorbent for detoxifying the CR dye from industrial effluents.

  9. Imaging the wave functions of adsorbed molecules

    PubMed Central

    Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F. Stefan; Ramsey, Michael G.; Puschnig, Peter

    2014-01-01

    The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust. PMID:24344291

  10. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Lucilha, Adriana Campano; Bonancêa, Carlos Eduardo; Barreto, Wagner José; Takashima, Keiko

    2010-01-01

    The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 °C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 nm. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo dye molecule may be adsorbed onto the ZnO surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies.

  11. Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies.

    PubMed

    Li, Panyu; Chen, Xi; Zeng, Xiaotong; Zeng, Yu; Xie, Yi; Li, Xiang; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2018-02-02

    Kitchen waste hydrolysis residue (KWHR), which is produced in the bioproduction process from kitchen waste (KW), is usually wasted with potential threats to the environment. Herein, experiments were carried out to evaluate the potential of KWHR as adsorbent for dye (methylene blue, MB) removal from aqueous solution. The adsorbent was characterized using FT-IR and SEM. Adsorption results showed that the operating variables had great effects on the removal efficiency of MB. Kinetic study indicated pseudo-second-order model was suitable to describe the adsorption process. Afterwards, the equilibrium data were well fitted by using Langmuir isotherm model, suggesting a monolayer adsorption. The Langmuir monolayer adsorption capacity was calculated to be 110.13 mg/g, a level comparable to some other low-cost adsorbents. It was found that the adsorption process of MB onto KWHR was spontaneous and exothermic through the estimation of thermodynamic parameters. Thus, KWHR was of great potential to be an alternative adsorbent material to improve the utilization efficiency of bioresource (KW) and lower the cost of adsorbent for color treatment.

  12. Sensitization of photoprocesses in colloidal Ag2S quantum dots by dye molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Oleg V.; Kondratenko, Tamara S.; Grevtseva, Irina G.; Smirnov, Mikhail S.; Pokutnyi, Sergey I.

    2016-07-01

    The effect of photosensitization of IR luminescence excitation (1205 nm) of colloidal Ag2S quantum dots (QDs) with average size of 2.5±0.6 nm in gelatin at 600 to 660 nm by molecules of 3,3'-di-(γ-sulfopropyl)-4,4',5,5'-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt (Dye1) and thionine dye (Dye2) was registered. Cis-J-aggregates of Dye1 and cations monomer of Dye2 conjugated with Ag2S QDs take part in this process. The photosensitization of luminescence excitation of colloidal Ag2S QDs was interpreted by resonance nonradiation transfer of electronic excitation energy from cis-J-aggregates of Dye1 and cations of Dye2 to centers of recombination luminescence of Ag2S QDs.

  13. Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent--silkworm pupa.

    PubMed

    Noroozi, B; Sorial, G A; Bahrami, H; Arami, M

    2007-01-02

    In this work the use of silkworm pupa, which is the waste of silk spinning industries has been investigated as an adsorbent for the removal of C.I. Basic Blue 41. The amino acid nature of the pupa provided a reasonable capability for dye removal. Equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of the dye could be described reasonably well by either Langmuir or Freundlich models. The characteristic parameters for each isotherm have been determined. The monolayer adsorption capacity was determined to be 555 mg/g. Kinetic studies indicated that the adsorption follows pseudo-second-order kinetics with a rate constant of 0.0434 and 0.0572 g/min mg for initial dye concentration of 200 mg/l at 20 and 40 degrees C, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process. The rate constant for intra-particle diffusion was estimated to be 1.985 mg/g min(0.5).

  14. Polymer based plasmonic elements with dye molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Douguo; Wang, Xiangxian; Chen, Yikai; Han, Lu; Wang, Pei; Ming, Hai

    2012-11-01

    Recently, dielectric loaded surface plasmons (SPs) elements are inducing highly interesting in the field of nanooptics, which are composed of dielectric nanostructures fabricated on a metallic thin film. This configuration will provide a route to novel integrated micro-optical devices and components combining photonics and electronics on the same chip. The advantages are easy fabrication, easy integration, and also the potential to realizing active plasmonic devices. In this talk, we will present our recent work in this field. Polymer (PMMA) nano-structures are fabricated on a silver film by the electron beam lithography (EBL) and laser interference lithography. These nano-structures are used to manipulate the behaviors of the SPs, such as converging, diverging, and guiding the propagation of SPs in subwavelength scale. Except for the pure PMMA nano-structures, dye materials (Rhodamine B, RhB) doped PMMA structures are also fabricated on the silver film. The RhB molecules will work as the active medium to excite the SPs or compensation the loss of SPs wave. The dye doped PMMA nanostructure provides a choice to realize active plasmonic elements, such as SPs Bragg gratings. On the other hand, the interaction between the fluorescence molecules and SPs will give rise to some new optical phenomena, such as directional fluorescence emission, anisotropic fluorescence emission. These polymer based plasmonic structures are investigated with a home-built leakage radiation microscopy (LRM).

  15. New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment.

    PubMed

    Dotto, G L; Pinto, L A A; Hachicha, M A; Knani, S

    2015-03-15

    In this work, statistical physics treatment was employed to study the adsorption of food dyes onto chitosan films, in order to obtain new physicochemical interpretations at molecular level. Experimental equilibrium curves were obtained for the adsorption of four dyes (FD&C red 2, FD&C yellow 5, FD&C blue 2, Acid Red 51) at different temperatures (298, 313 and 328 K). A statistical physics formula was used to interpret these curves, and the parameters such as, number of adsorbed dye molecules per site (n), anchorage number (n'), receptor sites density (NM), adsorbed quantity at saturation (N asat), steric hindrance (τ), concentration at half saturation (c1/2) and molar adsorption energy (ΔE(a)) were estimated. The relation of the above mentioned parameters with the chemical structure of the dyes and temperature was evaluated and interpreted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane.

    PubMed

    Sokolov, V S; Gavrilchik, A N; Kulagina, A O; Meshkov, I N; Pohl, P; Gorbunova, Yu G

    2016-08-01

    Photosensitizers are widely used as photodynamic therapeutic agents killing cancer cells by photooxidation of their components. Development of new effective photosensitive molecules requires profound knowledge of possible targets for reactive oxygen species, especially for its singlet form. Here we studied photooxidation of voltage-sensitive styryl dyes (di-4-ANEPPS, di-8-ANEPPS, RH-421 and RH-237) by singlet oxygen on the surface of bilayer lipid membranes commonly used as cell membrane models. Oxidation was induced by irradiation of a photosensitizer (aluminum phthalocyanine tetrasulfonate) and monitored by the change of dipole potential on the surface of the membrane. We studied the drop of the dipole potential both in the case when the dye molecules were adsorbed on the same side of the lipid bilayer as the photosensitizer (cis-configuration) and in the case when they were adsorbed on the opposite side (trans-configuration). Based on a simple model, we determined the rate of oxidation of the dyes from the kinetics of change of the potential during and after irradiation. This rate is proportional to steady-state concentration of singlet oxygen in the membrane under irradiation. Comparison of the oxidation rates of various dyes reveals that compounds of ANEPPS series are more sensitive to singlet oxygen than RH type dyes, indicating that naphthalene group is primarily responsible for their oxidation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The highermore » the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.« less

  18. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    PubMed

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  19. First-principles study of pollutant molecules absorbed on polymeric adsorbents using the vdW-DF2 functional

    NASA Astrophysics Data System (ADS)

    Zhu, Jinguo; Wang, Yapeng; Tian, Ting; Zhang, Qianfan

    2018-03-01

    Polymeric adsorbents have been attracting increasing attention because of their favorable structrual properties and effectiveness of solving small molecules contaminants. However, due to the absence of deep insight into the adsorption mechanism of polymeric adsorbents, researches on new polymeric adsorbents can only be carried out by repeated experiments and tests, which is extremely inefficient. Therefore, investigating the adsorption process of polymeric adsorbents, especially the mechanism of adsorbing various air pollutant molecules by materials modelling and simulation, is of great significance. Here in this work, we systematically studied the adsorption mechanism by first-principles computation with van der Waals interaction. It demonstrates that the adsorption between them was pure physisorption originating from the hydrogen bond and intermolecular forces consisting of Keesom force, Debye force and London dispersion force. The proportions of these forces varied according to different adsorption systems. The adsorption effects were determined by the polymers’ dipole moment and polarizability. The adsorption performance of some polymers with special structures was also investigated to explore their possibility as potential adsorbents. The results of our simulation can provide some guidance for developing new polymeric adsorbents with better performance.

  20. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.

    PubMed

    Zhou, Changjie; Yang, Weihuang; Zhu, Huili

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  1. Distinguishing between protein dynamics and dye photophysics in single-molecule FRET experiments.

    PubMed

    Chung, Hoi Sung; Louis, John M; Eaton, William A

    2010-02-17

    Förster resonance energy transfer (FRET) efficiency distributions in single-molecule experiments contain both structural and dynamical information. Extraction of this information from these distributions requires a careful analysis of contributions from dye photophysics. To investigate how mechanisms other than FRET affect the distributions obtained by counting donor and acceptor photons, we have measured single-molecule fluorescence trajectories of a small alpha/beta protein, i.e., protein GB1, undergoing two-state, folding/unfolding transitions. Alexa 488 donor and Alexa 594 acceptor dyes were attached to cysteines at positions 10 and 57 to yield two isomers-donor(10)/acceptor(57) and donor(57)/acceptor(10)-which could not be separated in the purification. The protein was immobilized via binding of a histidine tag added to a linker sequence at the N-terminus to cupric ions embedded in a polyethylene-glycol-coated glass surface. The distribution of FRET efficiencies assembled from the trajectories is complex with widths for the individual peaks in large excess of that caused by shot noise. Most of this complexity can be explained by two interfering photophysical effects-a photoinduced red shift of the donor dye and differences in the quantum yield of the acceptor dye for the two isomers resulting from differences in quenching rate by the cupric ion. Measurements of steady-state polarization, calculation of the donor-acceptor cross-correlation function from photon trajectories, and comparison of the single molecule and ensemble kinetics all indicate that conformational distributions and dynamics do not contribute to the complexity. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Preferred Molecular Orientation of Coumarin 343 on TiO 2 Surfaces: Application to Dye-Sensitized Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCree-Grey, Jonathan; Cole, Jacqueline M.; Evans, Peter J.

    2015-07-21

    The dye…TiO2 interfacial structure in working electrodes of dye-sensitized solar cells (DSCs) is known to influence its photovoltaic device performance. Despite this, direct and quantitative reports of such structure remain sparse. This case study presents the application of X-ray reflectometry to determine the preferred structural orientation and molecular packing of the organic dye, coumarin 343, adsorbed onto amorphous TiO2. Results show that the dye molecules are, on average, tilted by 61.1° relative to the TiO2 surface, and are separated from each other by 8.2 Å. These findings emulate the molecular packing arrangement of a monolayer of coumarin 343 within itsmore » crystal structure. This suggests that the dye adsorbs onto TiO2 in one of its lowest energy configurations, i.e. dye…TiO2 self assembly is driven more by thermodynamic rather than kinetic means. Complementary DSC device tests illustrate that this interfacial structure compromises photovoltaic performance, unless a suitably sized co-adsorbant is interdispersed between the coumarin 343 chromophores on the TiO2 surface.« less

  3. Activated carbon prepared from yerba mate used as a novel adsorbent for removal of tannery dye from aqueous solution.

    PubMed

    Linhares, Bruno; Weber, Caroline Trevisan; Foletto, Edson Luiz; Paz, Diego Silva; Mazutti, Marcio A; Collazzo, Gabriela Carvalho

    2013-01-01

    Activated carbon prepared from yerba mate (Ilex paraguariensis) was used as adsorbent for the removal of tannery dye from aqueous solution. The activated carbon was characterized, and it showed a mesoporous texture, with surface area of 537.4 m2 g(-1). The initial dye concentration, contact time and pH influenced the adsorption capacity. The equilibrium data were in good agreement with both Langmuir and Freundlich isotherms. The adsorption kinetics of the tannery dye on activated carbon prepared from yerba mate followed a pseudo-second-order model. The adsorption process was found to be controlled by both external mass-transfer and intraparticle diffusion, but the external diffusion was the dominating process. This work highlights the potential application of activated carbon produced from yerba mate in the field of adsorption.

  4. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  5. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE PAGES

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.; ...

    2017-05-17

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  6. Strength of interactions between immobilized dye molecules and sol-gel matrices.

    PubMed

    Ismail, Fanya; Schoenleber, Monika; Mansour, Rolan; Bastani, Behnam; Fielden, Peter; Goddard, Nicholas J

    2011-02-21

    In this paper we present a new theory to re-examine the immobilization technique of dye doped sol-gel films, define the strength and types of possible bonds between the immobilized molecule and sol-gel glass, and show that the immobilized molecule is not free inside the pores as was previously thought. Immobilizing three different pH sensitive dyes with different size and functional groups inside the same sol-gel films revealed important information about the nature of the interaction between the doped molecule and the sol-gel matrix. The samples were characterized by means of ultraviolet-visible spectrophotometer (UV-VIS), thermal gravimetric analysis (TGA), mercury porosimetry (MP), nuclear magnetic resonance spectroscopy ((29)Si NMR) and field-emission environmental scanning electron microscopy (ESEM-FEG). It was found that the doped molecule itself has a great effect on the strength and types of the bonds. A number of factors were identified, such as number and types of the functional groups, overall charge, size, pK(a) and number of the silanol groups which surround the immobilized molecule. These results were confirmed by the successful immobilization of bromocresol green (BCG) after a completely polymerized sol-gel was made. The sol-gel consisted of 50% tetraethoxysilane (TEOS) and 50% methyltriethoxysilane (MTEOS) (w/w). Moreover, the effect of the immobilized molecule on the structure of the sol-gel was studied by means of a leaky waveguide (LW) mode for doped films made before and after polymerization of the sol-gel.

  7. Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis.

    PubMed

    Mui, Edward L K; Cheung, W H; Valix, Marjorie; McKay, Gordon

    2010-07-15

    Two types of activated carbons from tyre char (with or without sulphuric acid treatment) were produced via carbon dioxide activation with BET surface areas in the range 59-1118 m(2)/g. Other characterisation tests include micropore and mesopore surface areas and volumes, pH, and elemental compositions, particularly heteroatoms such as nitrogen and sulphur. They were correlated to the adsorption capacity which were in the range of 0.45-0.71 mmol/g (untreated) and 0.62-0.84 mmol/g (acid-treated) for Acid Blue 25. In the case of larger-sized molecules like Acid Yellow 117, capacities were in the range of 0.23-0.42 mmol/g (untreated) and 0.29-0.40 mmol/g (acid-treated). Some tyre carbons exhibit a more superior performance than a microporous, commercial activated carbon (Calgon F400). By modelling the dye adsorption equilibrium data, the Redlich-Peterson isotherm is adopted as it has the lowest SSE. Based on the surface coverage analysis, a novel molecular orientation modelling of adsorbed dyes has been proposed and correlated with surface area and surface charge. For the acid dyes used in this study, molecules were likely to be adsorbed by the mesopore areas. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Field-induced structural control of COx molecules adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Matsubara, Manaho; Okada, Susumu

    2018-05-01

    Using the density functional theory combined with both the van der Waals correction and the effective screening medium method, we investigate the energetics and electronic structures of CO and CO2 molecules adsorbed on graphene surfaces in the field-effect-transistor structure with respect to the external electric field by the excess electrons/holes. The binding energies of CO and CO2 molecules to graphene monotonically increase with increasing hole and electron concentrations. The increase occurs regardless of the molecular conformations to graphene and the counter electrode, indicating that the carrier injection substantially enhances the molecular adsorption on graphene. Injected carriers also modulate the stable molecular conformation, which is metastable in the absence of an electric field.

  9. Development of an auto-phase separable and reusable graphene oxide-potato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye.

    PubMed

    Bhattacharyya, Amartya; Banerjee, Bhaskar; Ghorai, Soumitra; Rana, Dipak; Roy, Indranil; Sarkar, Gunjan; Saha, Nayan Ranjan; De, Sriparna; Ghosh, Tapas Kumar; Sadhukhan, Sourav; Chattopadhyay, Dipankar

    2018-05-15

    In this work, we report the development of a cross-linked bio-composite consisting of graphene oxide, potato starch, cross-linker glutaraldehyde and its application to adsorption of the industrial dye, methylene blue, from aqueous solution. The inexpensiveness, non-hazardous nature and easy bio-degradability are the major reasons for the selection of starch material as one of the components of the bio-composite. The bio-composite has been characterized by FTIR, SEM, XRD, particle size and zeta potential analysis. The FTIR analysis reveals the nature of the binding sites and surface morphology of the bio-composite can be understood through SEM. The auto-phase separability of the adsorbent i.e., the precipitation of the adsorbent without any mechanical means is another factor which makes this particular material very attractive as an adsorbent. Parameters like adsorbent dosage, pH, temperature, rotation speed and salt concentration have been varied to find out the suitable dye adsorption conditions. Furthermore, the time dependence of adsorption process has been analyzed using pseudo-first and pseudo-second order kinetics. The adsorption isotherms have been constructed to suggest convincing mechanistic pathway for this adsorption process. Finally, desorption studies have been successfully performed in 3 cycles, establishing the reusability of the material, which should allow the adsorbent to be economically promising for practical application in wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Dye and its removal from aqueous solution by adsorption: a review.

    PubMed

    Yagub, Mustafa T; Sen, Tushar Kanti; Afroze, Sharmeen; Ang, H M

    2014-07-01

    In this review article the authors presented up to-date development on the application of adsorption in the removal of dyes from aqueous solution. This review article provides extensive literature information about dyes, its classification and toxicity, various treatment methods, and dye adsorption characteristics by various adsorbents. One of the objectives of this review article is to organise the scattered available information on various aspects on a wide range of potentially effective adsorbents in the removal of dyes. Therefore, an extensive list of various adsorbents such as natural materials, waste materials from industry, agricultural by-products, and biomass based activated carbon in the removal of various dyes has been compiled here. Dye bearing waste treatment by adsorption using low cost alternative adsorbent is a demanding area as it has double benefits i.e. water treatment and waste management. Further, activated carbon from biomass has the advantage of offering an effected low cost replacement for non-renewable coal based granular activated carbon provided that they have similar or better adsorption on efficiency. The effectiveness of various adsorbents under different physico-chemical process parameters and their comparative adsorption capacity towards dye adsorption has also been presented. This review paper also includes the affective adsorption factors of dye such as solution pH, initial dye concentration, adsorbent dosage, and temperature. The applicability of various adsorption kinetic models and isotherm models for dye removal by wide range of adsorbents is also reported here. Conclusions have been drawn from the literature reviewed and few suggestions for future research are proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A novel biosorbent for dye removal: extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1.

    PubMed

    Zhang, Zhiqiang; Xia, Siqing; Wang, Xuejiang; Yang, Aming; Xu, Bin; Chen, Ling; Zhu, Zhiliang; Zhao, Jianfu; Jaffrezic-Renault, Nicole; Leonard, Didier

    2009-04-15

    This paper deals with the extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 used as a novel biosorbent to remove dye from aqueous solution in batch systems. As a widely used and hazardous dye, basic blue 54 (BB54) was chosen as the model dye to examine the adsorption performance of the EPS. The effects of pH, initial dye concentration, contact time and temperature on the sorption of BB54 to the EPS were examined. At various initial dye concentrations (50-400 mg/L), the batch sorption equilibrium can be obtained in only 5 min. Kinetic studies suggested that the sorption followed the internal transport mechanism. According to the Langmuir model, the maximum BB54 uptake of 2.005 g/g was obtained. Chemical analysis of the EPS indicated the presence of protein (30.9%, w/w) and acid polysaccharide (63.1%, w/w). Scanning electron microscopy (SEM) images showed that the EPS with a crystal-linear structure was whole enwrapped by adsorbed dye molecules. FTIR spectrum result revealed the presence of adsorbing groups such as carboxyl, hydroxyl and amino groups in the EPS. High-molecular weight of the EPS with more binding-sites and stronger van der Waals forces together with its specific construct leads to the excellent performance of dye adsorption. The EPS shows potential board application as a biosorbent for both environmental protection and dye recovery.

  12. Distinguishing between Protein Dynamics and Dye Photophysics in Single-Molecule FRET Experiments

    PubMed Central

    Chung, Hoi Sung; Louis, John M.; Eaton, William A.

    2010-01-01

    Abstract Förster resonance energy transfer (FRET) efficiency distributions in single-molecule experiments contain both structural and dynamical information. Extraction of this information from these distributions requires a careful analysis of contributions from dye photophysics. To investigate how mechanisms other than FRET affect the distributions obtained by counting donor and acceptor photons, we have measured single-molecule fluorescence trajectories of a small α/β protein, i.e., protein GB1, undergoing two-state, folding/unfolding transitions. Alexa 488 donor and Alexa 594 acceptor dyes were attached to cysteines at positions 10 and 57 to yield two isomers—donor10/acceptor57 and donor57/acceptor10—which could not be separated in the purification. The protein was immobilized via binding of a histidine tag added to a linker sequence at the N-terminus to cupric ions embedded in a polyethylene-glycol–coated glass surface. The distribution of FRET efficiencies assembled from the trajectories is complex with widths for the individual peaks in large excess of that caused by shot noise. Most of this complexity can be explained by two interfering photophysical effects—a photoinduced red shift of the donor dye and differences in the quantum yield of the acceptor dye for the two isomers resulting from differences in quenching rate by the cupric ion. Measurements of steady-state polarization, calculation of the donor-acceptor cross-correlation function from photon trajectories, and comparison of the single molecule and ensemble kinetics all indicate that conformational distributions and dynamics do not contribute to the complexity. PMID:20159166

  13. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent

    NASA Astrophysics Data System (ADS)

    Haldorai, Yuvaraj; Shim, Jae-Jin

    2014-02-01

    We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CS-MgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

  14. Surface-enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerker, M.; Wang, D.S.; Chew, H.

    1980-12-15

    A model for Raman scattering by a molecule adsorbed at the surface of a spherical particle is articulated by treating the molecule as a classical electric dipole. This follows Moskovits's suggestion (J. Chem. Phys. 69, 4159 (1978)) and the experiments by Creighton et al. (J. Chem. Soc. Faraday Trans. II, 75, 790(1979)) that such a system may exhibit SERS simlar to that at roughened electrode surfaces. The molecule is stimulated by a primary field comprised of the incident and near-scattered fields. Emission consists of the dipole field plus a scattered field, each at the shifted frequency. Addition of feedback termsmore » between the dipole and the particle makes only a negligible contribution to the fields. For pyridine adsorbed at the surface of a silver sphere, the 1010 cm/sup -1/ band is enhanced by approx.10/sup 6/ if the radius is much less than the wavelengths and the excitation wavelength is approx.382 nm, a wavelength for which the relative refractive index of silver is close to m = ..sqrt..2i. Detailed results are given for the effect upon the angular distribution and the polarization of the Raman emission of particle size, distance from the surface, excitation wavelength, and location of the molecule upon the surface. These results simulate those observed at roughened silver electrodes and suggest that the mechanism of SERS at those electrodes may resemble the electromagnetic mechanism elucidated here. The authors predict that comparable effects should be observed for fluorescent scattering. 53 references, 9 figures.« less

  15. Photovoltaic studies of Dye Sensitized Solar cells Fabricated from Microwave Exposed Photo anodes

    NASA Astrophysics Data System (ADS)

    Ramachandran, Anju; Sreekala, C. O.; Sreelatha, K. S.; Jinchu, I.

    2018-02-01

    The configuration of Dye Sensitized solar cells (DSSC), consists of sintered nanoparticle titanium dioxide film, dyes, electrolyte and counter electrodes. Upon the absorption of photons by the dye molecules, excitons are generated, subsequently electrons are injected into the TiO2 photoanode. Afterward the electrons injected into the TiO2 photoanode, to produce photocurrent, scavenged by redox couple, and the hole transport to the photo cathode. The power conversion efficiency of the device depends on the amount of dye adsorbed by the photoanode. This paper explores in enhancing the efficiency of the device by controlled microwave exposure. With same exposure time, the photoanode is exposed at three different frequencies. SEM analysis is carried out to find the porosity of the photoanode on exposure. Current density is found to have an effect on microwave exposure.

  16. Widening and diversifying the proteome capture by combinatorial peptide ligand libraries via Alcian Blue dye binding.

    PubMed

    Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Lavarello, Chiara; Inglese, Elvira; Bruschi, Maurizio; Ghiggeri, Gian Marco; Boschetti, Egisto; Righetti, Pier Giorgio

    2015-01-01

    Combinatorial peptide ligand libraries (CPLLs) tend to bind complex molecules such as dyes due to their aromatic, heterocyclic, hydrophobic, and ionic nature that may affect the protein capture specificity. In this experimental work Alcian Blue 8GX, a positively charged phthalocyanine dye well-known to bind to glycoproteins and to glucosaminoglycans, was adsorbed on a chemically modified CPLL solid phase, and the behavior of the resulting conjugate was then investigated. The control and dye-adsorbed beads were used to harvest the human urinary proteome at physiological pH, this resulting in a grand total of 1151 gene products identified after the capture. Although the Alcian Blue-modified CPLL incremented the total protein capture by 115 species, it particularly enriched some families among the harvested proteins, such as glycoproteins and nucleotide-binding proteins. This study teaches that it is possible, via the two combined harvest mechanisms, to drive the CPLL capture toward the enrichment of specific protein categories.

  17. Growth of potassium sulfate crystals in the presence of organic dyes: in situ characterization by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Mauri, Andrea; Moret, Massimo

    2000-01-01

    In situ atomic force microscopy (AFM) has been used to observe potassium sulfate crystals growing in the presence of acid fuchsin and pyranine. These polysulfonated dyes are well known for their ability to adsorb onto the {1 1 0} and {0 1 0} (pyranine only) crystal faces. Using AFM, we analyzed the changes in surface micromorphology induced by the additives on advancing steps for the {1 1 0} and {0 1 0} surfaces. In situ AFM showed that layers grow by step flow at pre-existing steps by the addition of growth units at the step edges. It has been found that dye concentrations as low as ˜2×10 -6 M for pyranine and ˜4×10 -4 M for acid fuchsin produce significant changes in the step morphology and growth rates. The additive molecules attach to the terraces and pin the growing front. As a consequence, the edges of the growing steps become jagged as the dye molecules are adsorbed onto the crystal surface. At critical dye concentrations crystal growth is heavily hampered or even stopped along certain crystallographic directions producing, on a macroscopic scale, strong habit modifications. The formation of dye inclusions by means of macrosteps overgrowing the poisoned surface was also imaged. Interestingly, comparison of the in situ AFM experiments with previous habit modification studies showed acid fuchsin is also able to enter the {0 1 0} surfaces, a previously unnoticed phenomenon.

  18. Graphene oxide/Fe3O4/chitosan nanocomposite: a recoverable and recyclable adsorbent for organic dyes removal. Application to methylene blue

    NASA Astrophysics Data System (ADS)

    Tran, Hoang V.; Bui, Lieu T.; Dinh, Thuy T.; Le, Dang H.; Huynh, Chinh D.; Trinh, Anh X.

    2017-03-01

    In this research, the potential of chitosan/Fe3O4/graphene oxide (CS/Fe3O4/GO) nanocomposite for efficient removal of methylene blue (MB) as a cationic dye from aqueous solutions was investigated. For this purpose, first, graphene oxide (GO) was prepared from pencil’s graphite by Hummer’s method, then after, CS/Fe3O4/GO was synthesized via chemical co-precipitation method from a mixture solution of GO, Fe3+, Fe2+ and chitosan. The synthesized CS/Fe3O4/GO was characterized by XRD, VSM and SEM techniques. Also, the various parameters affecting dye removal were investigated. Dye adsorption equilibrium data were fitted well to the Langmuir isotherm rather than Freundlich isotherm. The maximum monolayer capacity (q max), was calculated from the Langmuir as 30.10 mg · g-1. The results show that, CS/Fe3O4/GO nanocomposite, can be used as a cheap and efficient adsorbent for removal of cationic dyes from aqueous solutions.

  19. Adsorbed Molecules and Surface Treatment Effect on Optical Properties of ZnO Nanowires Grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jabri, S.; Souissi, H.; Sallet, V.; Lusson, A.; Meftah, A.; Galtier, P.; Oueslati, M.

    2017-07-01

    We have investigated the optical properties of ZnO nanowires grown by metalorganic chemical vapor deposition (MOCVD) with nitrous oxide (N2O) as oxygen precursor. Photoluminescence (PL) and Raman measurements showed the influence of adsorbed molecules on the optical properties. Low-temperature (4 K) PL studies on the surface exciton (SX) at 3.3660 eV elucidated the nature and origin of this emission. In particular, surface treatment by annealing at high temperature under inert gas reduced the emission intensity of SX. Raman vibrational spectra proved that presence of a considerable amount of adsorbed molecules on the surface of ZnO nanowires plays a key role in the occurrence of surface excitons.

  20. In situ STM imaging of the structures of pentacene molecules adsorbed on Au(111).

    PubMed

    Pong, Ifan; Yau, Shuehlin; Huang, Peng-Yi; Chen, Ming-Chou; Hu, Tarng-Shiang; Yang, Yawchia; Lee, Yuh-Lang

    2009-09-01

    In situ scanning tunneling microscope (STM) was used to examine the spatial structures of pentacene molecules adsorbed onto a Au(111) single-crystal electrode from a benzene dosing solution containing 16-400 microM pentacene. Molecular-resolution STM imaging conducted in 0.1 M HClO(4) revealed highly ordered pentacene structures of ( radical31 x radical31)R8.9 degrees , (3 x 10), ( radical31 x 10), and ( radical7 x 2 radical7)R19.1 degrees adsorbed on the reconstructed Au(111) electrode dosed with different pentacene solutions. These pentacene structures and the reconstructed Au(111) substrate were stable between 0.2 and 0.8 V [vs reversible hydrogen electrode, RHE]. Increasing the potential to E > 0.8 V lifted the reconstructed Au(111) surface and disrupted the ordered pentacene adlattices simultaneously. Ordered pentacene structures could be restored by applying potentials negative enough to reinforce the reconstructed Au(111). At potentials negative of 0.2 V, the adsorption of protons became increasingly important to displace adsorbed pentacene admolecules. Although the reconstructed Au(111) structure was not essential to produce ordered pentacene adlayers, it seemed to help the adsorption of pentacene molecules in a long-range ordered pattern. At room temperature (25 degrees C), approximately 100 pentacene molecules seen in STM images could rotate and align themselves to a neighboring domain in 10 s, suggesting that pentacene admolecules could be mobile on Au(111) under the STM imaging conditions of -150 mV in bias voltage and 1 nA in feedback current.

  1. Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerlings, P.; Tariel, N.; Botrel, A.

    1984-11-08

    A study has been conducted to explain the interaction mechanisms of (bridging and terminal) surface hydroxyl groups with molecules, using ab initio, EHT, and CNDO/2-FA quantum-chemical calculations. Bond strength variations and charge shifts were found to be in complete agreement with Gutmann's rules, and provide a basis for the understanding of the Bronsted acid properties of zeolites and amorphous silica-alumina. A quantitative measure of the interaction strength is possible by referring to the experimentally determined donor number (Gutmann) following many molecules, but care should be taken for those molecules for which the donor strength was determined by indirect methods. Onlymore » a few exceptions to Gutmann's rules should exist, e.g., in those cases where the atom interacting with the proton is not the most electronegative of the donor molecule (such as for CO). Individual bonds in a given complex are more susceptible to perturbations (changes in composition and interactions with adsorbing molecules) if the coordination number increases. These rules are in agreement with the observations and apply to all reactions (inter- or intramolecular) involving a change in coordination. 52 references, 6 figures, 4 tables.« less

  2. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    NASA Astrophysics Data System (ADS)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  3. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    NASA Astrophysics Data System (ADS)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  4. Dye-Binding Assays for Evaluation of the Effects of Small Molecule Inhibitors on Amyloid (Aβ) Self-Assembly

    PubMed Central

    2012-01-01

    Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors’ potential toward Aβ peptides, species involved in Alzheimer’s disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays. PMID:23173064

  5. Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review.

    PubMed

    Raval, Nirav P; Shah, Prapti U; Shah, Nisha K

    2016-08-01

    Increasing amount of dyes in an ecosystem has propelled the search of various methods for dye removal. Amongst all the methods, adsorption occupies a prominent place in dye removal. Keeping this in mind, many adsorbents used for the removal of hazardous anionic azo dye Congo red (CR) from aqueous medium were reviewed by the authors. The main objectives behind this review article are to assemble the information on scattered adsorbents and enlighten the wide range of potentially effective adsorbents for CR removal. Thus, CR sorption by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites are surveyed and critically reviewed as well as their sorption capacities are also compared. This review also explores the grey areas of the adsorption performance of various adsorbents with reference to the effects of pH, contact time, initial dye concentration and adsorbent dosage. The equilibrium adsorption isotherm, kinetic and thermodynamic data of different adsorbents used for CR removal were also analysed. It is evident from a literature survey of more than 290 published papers that nanoparticle and nanocomposite adsorbents have demonstrated outstanding adsorption capabilities for CR. Graphical abstract ᅟ.

  6. Solar photocatalytic degradation of mono azo methyl orange and diazo reactive green 19 in single and binary dye solutions: adsorbability vs photodegradation rate.

    PubMed

    Ong, Soon-An; Min, Ohm-Mar; Ho, Li-Ngee; Wong, Yee-Shian

    2013-05-01

    The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir-Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.

  7. Mesoporous Nb2O5/SiO2 material obtained by sol-gel method and applied as adsorbent of crystal violet dye.

    PubMed

    Umpierres, Cibele S; Prola, Lizie D T; Adebayo, Matthew A; Lima, Eder C; Dos Reis, Glaydson S; Kunzler, Diego D F; Dotto, G L; Arenas, Leliz T; Benvenutti, Edilson V

    2017-03-01

    In this work, SiO 2 /Nb 2 O 5 (SiNb) material was prepared using sol-gel method and employed as adsorbent for removal of crystal violet dye (CV). The material was characterized using nitrogen adsorption-desorption isotherms, FTIR spectroscopy, pH pzc , and SEM-EDS. The analysis of N 2 isotherms revealed the presence of micro- and mesopores in the SiNb sample with specific surface area as high as 747 m 2  g -1 . For the CV adsorption process, variations of several parameters such as of pH, temperature, contact time, and concentration of dye of the process were evaluated. The optimum initial pH of the CV dye solution was 7.0. The adsorption kinetic and equilibrium data for CV adsorption were suitably represented by the general-order and Liu models, respectively. The maximum adsorption capacity of the CV dye by SiNb was achieved at 303 K, which attained 116 mg g -1 at this temperaure. Dye effluents were simulated and used to check the applicability of the SiNb material for treatment of effluents - the material showed very good efficiency for decolorization of dye effluents.

  8. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment.

    PubMed

    Zhang, Zhenfu; Yomo, Dan; Gradinaru, Claudiu

    2017-07-01

    Nonspecific interactions between lipids and fluorophores can alter the outcomes of single-molecule spectroscopy of membrane proteins in live cells, liposomes or lipid nanodiscs and of cytosolic proteins encapsulated in liposomes or tethered to supported lipid bilayers. To gain insight into these effects, we examined interactions between 9 dyes that are commonly used as labels for single-molecule fluorescence (SMF) and 6 standard lipids including cationic, zwitterionic and anionic types. The diffusion coefficients of dyes in the absence and presence of set amounts of lipid vesicles were measured by fluorescence correlation spectroscopy (FCS). The partition coefficients and the free energies of partitioning for different fluorophore-lipid pairs were obtained by global fitting of the titration FCS curves. Lipids with different charges, head groups and degrees of chain saturation were investigated, and interactions with dyes are discussed in terms of hydrophobic, electrostatic and steric contributions. Fluorescence imaging of individual fluorophores adsorbed on supported lipid bilayers provides visualization and additional quantification of the strength of dye-lipid interaction in the context of single-molecule measurements. By dissecting fluorophore-lipid interactions, our study provides new insights into setting up single-molecule fluorescence spectroscopy experiments with minimal interference from interactions between fluorescent labels and lipids in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  10. First Principles Optical Absorption Spectra of Organic Molecules Adsorbed on Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar; Mete, Ersen; Gulseren, Oguz; Ellialtioglu, Sinasi

    2012-02-01

    We present results from first principles computations on passivated rutile TiO2 nanoparticles in both free-standing and dye-sensitized configurations to investigate the size dependence of their optical absorption spectra. The computations are performed using time-dependent density functional theory (TDDFT) as well as GW-Bethe-Salpeter-Equation (GWBSE) methods and compared with each other. We interpret the first principles spectra for free-standing TiO2 nanoparticles within the framework of the classical Mie-Gans theory using the bulk dielectric function of TiO2. We investigate the effects of the titania support on the absorption spectra of a particular set of perylene-diimide (PDI) derived dye molecules, namely brominated PDI (Br2C24H8N2O4) and its glycine and aspartine derivatives.

  11. Photodynamic dye adsorption and release performance of natural zeolite

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-03-01

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment.

  12. Photodynamic dye adsorption and release performance of natural zeolite.

    PubMed

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-03-31

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment.

  13. Electric field assisted sintering to improve the performance of nanostructured dye sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Shojaeifar, Mohsen; Mohajerani, Ezeddin; Fathollahi, Mohammadreza

    2018-01-01

    Herein, we report the application of electric field assisted sintering (EFAS) procedure in dye sensitized solar cells (DSSCs). The EFAS process improved DSSC performance by enhancing optical and electrical characteristics simultaneously. The EFAS procedure is shown to be capable of reducing the TiO2 nanoparticle aggregation leading to the higher surface area for dye molecules adsorbates. Lower nanoparticle aggregation can be evidently observed by field emission scanning electron microscopy imaging. By applying an external electric field, the current density and conversion efficiency improved significantly about 30% and 45%, respectively. UV-Visible spectra of the desorbed dye molecules on the porous nanoparticles bedding confirm a higher amount of dye loading in the presence of an external electric field. Correspondingly, comprehensive J-V characteristics modeling reveals the enhancement of the diffusion coefficient by EFAS process. The proposed method can be applied to improve the efficiency of the mesostructured hybrid perovskite solar cells, photodetectors, and quantum dot-sensitized solar cells, as well as reduction of the surface area loss in all porous media.

  14. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.

    Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less

  15. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

    DOE PAGES

    Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.; ...

    2018-04-25

    Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less

  16. In vitro isolation of small-molecule-binding aptamers with intrinsic dye-displacement functionality

    PubMed Central

    Yu, Haixiang; Yang, Weijuan; Alkhamis, Obtin; Canoura, Juan; Yang, Kyung-Ae; Xiao, Yi

    2018-01-01

    Abstract Aptamer-based sensors offer a powerful tool for molecular detection, but the practical implementation of these biosensors is hindered by costly and laborious sequence engineering and chemical modification procedures. We report a simple strategy for directly isolating signal-reporting aptamers in vitro through systematic evolution of ligands by exponential enrichment (SELEX) that transduce binding events into a detectable change of absorbance via target-induced displacement of a small-molecule dye. We first demonstrate that diethylthiatricarbocyanine (Cy7) can stack into DNA three-way junctions (TWJs) in a sequence-independent fashion, greatly altering the dye's absorbance spectrum. We then design a TWJ-containing structured library and isolate an aptamer against 3,4-methylenedioxypyrovalerone (MDPV), a synthetic cathinone that is an emerging drug of abuse. This aptamer intrinsically binds Cy7 within its TWJ domain, but MDPV efficiently displaces the dye, resulting in a change in absorbance within seconds. This assay is label-free, and detects nanomolar concentrations of MDPV. It also recognizes other synthetic cathinones, offering the potential to detect newly-emerging designer drugs, but does not detect structurally-similar non-cathinone compounds or common cutting agents. Moreover, we demonstrate that the Cy7-displacement colorimetric assay is more sensitive than a conventional strand-displacement fluorescence assay. We believe our strategy offers an effective generalized approach for the development of sensitive dye-displacement colorimetric assays for other small-molecule targets. PMID:29361056

  17. Enhanced electronic excitation energy transfer between dye molecules incorporated in nano-scale media with apparent fractal dimensionality

    NASA Astrophysics Data System (ADS)

    Yefimova, Svetlana L.; Rekalo, Andrey M.; Gnap, Bogdan A.; Viagin, Oleg G.; Sorokin, Alexander V.; Malyukin, Yuri V.

    2014-09-01

    In the present study, we analyze the efficiency of Electronic Excitation Energy Transfer (EEET) between two dyes, an energy donor (D) and acceptor (A), concentrated in structurally heterogeneous media (surfactant micelles, liposomes, and porous SiO2 matrices). In all three cases, highly effective EEET in pairs of dyes has been found and cannot be explained by Standard Förster-type theory for homogeneous solutions. Two independent approaches based on the analysis of either the D relative quantum yield () or the D fluorescence decay have been used to study the deviation of experimental results from the theoretical description of EEET process. The observed deviation is quantified by the apparent fractal distribution of molecules parameter . We conclude that the highly effective EEET observed in the nano-scale media under study can be explained by both forced concentration of the hydrophobic dyes within nano-volumes and non-uniform cluster-like character of the distribution of D and A dye molecules within nano-volumes.

  18. How Does the Surface of Al-ITQ-HB 2D-MOF Condition the Intermolecular Interactions of an Adsorbed Organic Molecule?

    PubMed

    Caballero-Mancebo, Elena; Moreno, José María; Corma, Avelino; Díaz, Urbano; Cohen, Boiko; Douhal, Abderrazzak

    2018-05-30

    In this work, we unravel how the two-dimensional Al-ITQ-4-heptylbenzoic acid (HB) metal-organic framework (MOF) changes the interactions of Nile red (NR) adsorbed on its surface. Time-resolved emission experiments indicate the occurrence of energy transfer between adsorbed NR molecules, in abnormally long time constant of 2-2.5 ns, which gets shorter (∼0.25 ns) when the concentration of the surface-adsorbed NR increases. We identify the emission from local excited state of aggregates and charge transfer and energy transfer between adsorbed molecules. Femtosecond emission studies reveal an ultrafast process (∼425 fs) in the NR@Al-ITQ-HB composites, assigned to an intramolecular charge transfer in NR molecules. A comparison of the observed photobehavior with that of NR/SiO 2 and NR/Al 2 O 3 composites suggests that the occurrence of energy transfer in the NR@MOF complexes is a result of specific and nonspecific interactions, reflecting the different surface properties of Al-ITQ-HB that are of relevance to the reported high catalytic activity. Our results provide new knowledge for further researches on other composites with the aim to improve understanding of photocatalytic and photonic processes within MOFs.

  19. Gamma irradiation and steam pretreatment of jute stick powder for the enhancement of dye adsorption efficiency

    NASA Astrophysics Data System (ADS)

    Parvin, Fahmida; Sultana, Nargis; Habib, S. M. Ahsan; Bhoumik, Nikhil Chandra

    2017-11-01

    The aim of this study is to find out the facile and effective pretreatment technique to enhance the capacity of jute stick powder (JSP) in adsorbing dye from raw textile effluent. Hence, different pretreatment techniques, i.e., radiation treatment, alkali treatment, ammonia treatment, steam treatment and CaCl2 treatment were applied to JSP and the adsorbing performance were examined for synthetic dye solutions (Blue FCL and Red RL dye). Different gamma radiation doses were applied on JSP and optimum dye removal efficiency was found at 500 krad in removing these two dyes (50 ppm) from solutions. Among the different pretreatment techniques, gamma irradiated JSP (500 Krad) exhibits highest dye uptake capacity for RED RL dye, whereas steam-treated JSP shows highest performance in adsorbing blue FCL dye. Subsequently, we applied the gamma irradiated and steam-treated JSP on real textile effluent (RTE) and these two techniques shows potentiality in adsorbing dye from raw textile effluent and in reducing BOD5, COD load and TOC to some extent as well. Fourier transform infrared spectroscopy (FTIR) analysis also proved that dye has been adsorbed on pretreated JSP.

  20. Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (aβ) self-assembly.

    PubMed

    Jameson, Laramie P; Smith, Nicholas W; Dzyuba, Sergei V

    2012-11-21

    Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors' potential toward Aβ peptides, species involved in Alzheimer's disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays.

  1. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica.

    PubMed

    Ghorai, Soumitra; Sarkar, Asish; Raoufi, Mohammad; Panda, Asit Baran; Schönherr, Holger; Pal, Sagar

    2014-04-09

    The synthesis and characterization of a novel nanocomposite is reported that was developed as an efficient adsorbent for the removal of toxic methylene blue (MB) and methyl violet (MV) from aqueous solution. The nanocomposite comprises hydrolyzed polyacrylamide grafted onto xanthan gum as well as incorporated nanosilica. The synthesis exploits the saponification of the grafted polyacrylamide and the in situ formation of nanoscale SiO2 by a sol-gel reaction, in which the biopolymer matrix promotes the silica polymerization and therefore acts as a novel template for nanosilica formation. The detailed investigation of the kinetics and the adsorption isotherms of MB and MV from aqueous solution showed that the dyes adsorb rapidly, in accordance with a pseudo-second-order kinetics and a Langmuir adsorption isotherm. The entropy driven process was furthermore found to strongly depend on the point of zero charge (pzc) of the adsorbent. The remarkably high adsorption capacity of dyes on the nanocomposites (efficiency of MB removal, 99.4%; maximum specific removal Qmax, 497.5 mg g(-1); and efficiency of MV removal, 99.1%; Qmax, 378.8 mg g(-1)) is rationalized on the basis of H-bonding interactions as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules. Because of the excellent regeneration capacity the nanocomposites are considered interesting materials for the uptake of, for instance, toxic dyes from wastewater.

  2. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    PubMed Central

    2012-01-01

    Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

  3. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field.

    PubMed

    Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi

    2017-02-23

    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10 6  A·cm -2 , or about 1 × 10 25 electrons s -1 cm -2 . This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10 13 electrons per cm 2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.

  4. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field

    PubMed Central

    Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi

    2017-01-01

    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054

  5. Photodynamic dye adsorption and release performance of natural zeolite

    PubMed Central

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-01-01

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment. PMID:28361968

  6. Native, acidic pre-treated and composite clay efficiency for the adsorption of dicationic dye in aqueous medium.

    PubMed

    Ehsan, Asma; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2017-02-01

    Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe 2 O 4 /clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.

  7. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.

    PubMed

    Yu, Yang; Murthy, Bandaru N; Shapter, Joseph G; Constantopoulos, Kristina T; Voelcker, Nicolas H; Ellis, Amanda V

    2013-09-15

    Graphene oxide (GO) nanosheets were grafted to acid-treated natural clinoptilolite-rich zeolite powders followed by a coupling reaction with a diazonium salt (4-carboxybenzenediazoniumtetrafluoroborate) to the GO surface. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) revealed successful grafting of GO nanosheets onto the zeolite surface. The application of the adsorbents for the adsorption of rhodamine B from aqueous solutions was then demonstrated. After reaching adsorption equilibrium the maximum adsorption capacities were shown to be 50.25, 55.56 and 67.56 mg g(-1) for pristine natural zeolite, GO grafted zeolite (GO-zeolite) and benzene carboxylic acid derivatized GO-zeolite powders, respectively. The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. Further, a relationship between surface functional groups, pH and adsorption efficiency was established. Results indicate that benzene carboxylic acid derivatized GO-zeolite powders are environmentally favorable adsorbents for the removal of cationic dyes from aqueous solutions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    PubMed Central

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  9. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes

    PubMed Central

    Sheng, Shixiong; Liu, Bo; Hou, Xiangyu; Wu, Bing; Yao, Fang; Ding, Xinchun; Huang, Lin

    2017-01-01

    This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater. PMID:29278390

  10. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes.

    PubMed

    Sheng, Shixiong; Liu, Bo; Hou, Xiangyu; Wu, Bing; Yao, Fang; Ding, Xinchun; Huang, Lin

    2017-12-26

    This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH₃-N, SO₄ 2- together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.

  11. Formation of Adsorbed Oxygen Radicals on Minerals at the Martian Surface and the Decomposition of Organic Molecules

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.; Freeman, B. A.; Hecht, M. H.

    2000-01-01

    We present experimental evidence that superoxide ions form on mineral grains at the martian surface and show that these adsorbates can explain the unusual reactivity of the soil as well as the apparent absence of organic molecules.

  12. Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal.

    PubMed

    Soleimani, Khadijeh; Tehrani, Abbas Dadkhah; Adeli, Mohsen

    2018-01-01

    In this study, graphene oxide - cellulose nanowhiskers nanocomposite hydrogel was easily synthesized through covalent functionalization of cellulose nanowhiskers with graphene oxide via a facile approach. The nitrene chemistry applied for covalent functionalization of graphene oxide sheets. The surface morphology and chemical structure of the nanocomposite hydrogel were characterized by FTIR, TGA, Raman, XRD, elemental analysis and SEM. The UV/Visible absorption spectrum revealed that the obtained porous nanocomposite hydrogel can efficiently remove cationic dyes such as methylene blue (MB) and Rhodamine B (RhB) from wastewater with high absorption power. The adsorption process showed that 100% of MB and 90% of RhB have been removed and the equilibrium state has been reached in 15min for low concentration solutions in accordance with the pseudo-second-order model. Moreover, the sample exhibited stable performance after being used several times. High adsorption capacity and easy recovery are the efficient factors making these materials as good adsorbent for water pollutants and wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling.

    PubMed

    Ni, Weihai; Chen, Huanjun; Su, Jing; Sun, Zhenhua; Wang, Jianfang; Wu, Hongkai

    2010-04-07

    The effects of various factors on the resonance coupling between elongated Au nanocrystals and organic dyes have been systematically investigated through the preparation of hybrid nanostructures between Au nanocrystals and the electrostatically adsorbed dye molecules. A nanocrystal sample is chosen for each dye to match the longitudinal plasmon resonance wavelength with the absorption peak wavelength of the dye as close as possible so that the resonance coupling strength can be maximized. The resonance coupling strength is found to approximately increase as the molecular volume-normalized absorptivity is increased. It is mainly determined by the plasmon resonance energy of the Au nanocrystals instead of their shapes and sizes. Moreover, the resonance coupling can be reversibly controlled if the dye in the hybrid nanostructures is pH-sensitive. The coupling can also be weakened in the presence of metal ions. These results will be highly useful for designing resonance coupling-based sensing devices and for plasmon-enhanced spectroscopy.

  14. Fabrication and characterization of mixed dye: Natural and synthetic organic dye

    NASA Astrophysics Data System (ADS)

    Richhariya, Geetam; Kumar, Anil

    2018-05-01

    Mixed dye from hibiscus sabdariffa and eosin Y was employed in the fabrication of dye sensitized solar cell (DSSC). Nanostructured mesoporous film was prepared from the titanium dioxide (TiO2). The energy conversion efficiency of hibiscus, eosin Y and mixed dye was obtained as 0.41%, 1.53% and 2.02% respectively. Mixed DSSC has shown improvement in the performance of the cell as compared to hibiscus and eosin Y dye due to addition of synthetic organic dye. This illustrates the effect of synthetic organic dyes in performance enhancement of natural dyes. It has been credited to the improved absorption of light mainly in higher energy state (λ = 440-560 nm) when two dyes were employed simultaneously as was obvious from the absorption spectra of dyes adsorbed onto TiO2 electrode. The cell with TiO2 electrode sensitized by mixed dye gives short circuit current density (Jsc) = 4.01 mA/cm2, open circuit voltage (Voc) = 0.67 V, fill factor (FF) = 0.60 and energy conversion efficiency (η) of 2.02%.

  15. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  16. Malachite green "a cationic dye" and its removal from aqueous solution by adsorption

    NASA Astrophysics Data System (ADS)

    Raval, Nirav P.; Shah, Prapti U.; Shah, Nisha K.

    2017-11-01

    Adsorption can be efficiently employed for the removal of various toxic dyes from water and wastewater. In this article, the authors reviewed variety of adsorbents used by various researchers for the removal of malachite green (MG) dye from an aqueous environment. The main motto of this review article was to assemble the scattered available information of adsorbents used for the removal of MG to enlighten their wide potential. In addition to this, various optimal experimental conditions (solution pH, equilibrium contact time, amount of adsorbent and temperature) as well as adsorption isotherms, kinetics and thermodynamics data of different adsorbents towards MG were also analyzed and tabulated. Finally, it was concluded that the agricultural solid wastes and biosorbents such as biopolymers and biomass adsorbents have demonstrated outstanding adsorption capabilities for removal of MG dye.

  17. Where to attach dye molecules to a protein: lessons from the computer program WHAT IF

    NASA Astrophysics Data System (ADS)

    Altenberg-Greulich, B.; Vriend, G.

    2001-10-01

    Genomic and proteomic projects are producing a flood of data that all require interpretation which often is best performed based on a three dimensional structure of the molecule(s) involved. These structures can be determined experimentally, or modelled by homology. Because of the complexity of the questions and the heterogeneity of the data, the software used for modelling proteins must become even more versatile. We describe several case studies in which the questions asked, the data, and the requirements on the software all are very different. It is shown how structural knowledge about a protein helps to determine the best place to bind a fluorescent dye. Such dyes are needed to determine protein-protein, protein-DNA interactions or intrinsic fluorescence microscopy. Further, using dyes you can trace molecules in the cell and thus get a handle on subcellular localisation. The first example (OCT-1) involves the search for free amino groups in a protein-DNA complex. The second example (BPTI) is a case, in which the amino acid distribution shows that amino groups are spread all over the structure, so that the natural structure has to be modified to get an answer. The third example (HFE) involves a model built by homology. In this case the amino group distribution can also be predicted. All these studies were performed using the WHAT IF software package. This package is available including source code, documentation, etc. See http://www.cmbi.kun.nl/whatif/

  18. Decolorisation of Basic Textile Dye from Aqueous Solutions using a Biosorbent derived from Thespesia populnea used Biomass

    NASA Astrophysics Data System (ADS)

    Gunturu, Bhargavi; Rao Palukuri, Nageswara; Sahadevan, Renganathan

    2018-03-01

    In the present study, the efficiency of a biosorbent derived from seeds of Thespesia populnea was investigated towards the removal of basic textile dye Methylene Blue from an aqueous solution. Adsorption studies were carried out in batch system. Influence of experimental parameters such as adsorbent dosage (0.1g/L-0.3g/L), PH (2-10) and initial dye concentration (50-130mg/L) on adsorption of dye onto biosorbent was investigated. Maximum uptake of dye was observed with 0.1g/L adsorbent dosage at PH 8.0. Equilibrium uptake of methylene blue dye by the adsorbent was analyzed by Langmuir and Freundlich isotherm models. The data fitted best with Freundlich model, suggesting that adsorption of the dye was by multilayer model on the surface of the adsorbent. Experimental results obtained support that the biosorbent used in the present study can be a suitable low cost alternate for the removal of basic textile dyes.

  19. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    NASA Astrophysics Data System (ADS)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  20. Investigation of the influence of coadsorbent dye upon the interfacial structure of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Honda, M.; Yanagida, M.; Han, L.; Miyano, K.

    2014-11-01

    The interface between Ru(tcterpy)(NCS)3TBA2 [black dye (BD); tcterpy = 4,4',4″-tricarboxy-2,2':6',2″-terpyridine, NCS = thiocyanato, TBA = tetrabutylammonium cation] and nanocrystalline TiO2, as found in dye-sensitized solar cells, is investigated by soft-X-ray synchrotron radiation and compared with the adsorption structure of cis-Ru(Hdcbpy)2(NCS)2TBA2 (N719; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) on TiO2 to elucidate the relationship between the adsorption mode of BD and the photocurrent with and without coadsorbed indoline dye D131. The depth profile is characterized with X-ray photoelectron spectroscopy and S K-edge X-ray absorption fine structure using synchrotron radiation. Both datasets indicate that one of the isothiocyanate groups of BD interacts with TiO2 via its S atom when the dye is adsorbed from a single-component solution. In contrast, the interaction is slightly suppressed when D131 is coadsorbed, indicated by the fact that the presence of D131 changes the adsorption mode of BD. Based upon these results, the number of BD dye molecules interacting with the substrate is shown to decrease by 10% when D131 is coadsorbed, and the dissociation is shown to be related to the short-circuit photocurrent in the 600-800 nm region. The design of a procedure to promote the preferential adsorption of D131 therefore leads to an improvement of the short-circuit current and conversion efficiency.

  1. Molecular engineering of fluorescein dyes as complementary absorbers in dye co-sensitized solar cells

    DOE PAGES

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...

    2016-09-22

    Fluorescein dye derivatives exhibit extended optical absorption up to 500 nm, rendering these compounds suitable as co-absorbers in dye-sensitized solar cells (DSCs). A molecular engineering approach is presented, which embraces this intrinsic optical attribute of fluoresceins, while modifying the dye chemistry to enhance their light harvesting efficiency, in order to effectively tailor them for DSC applications. This approach first realizes relationships between the molecular structure and the optoelectronic properties for a series of five a priori known (parent) fluorescein dyes: 5-carboxyfluorescein (1), a mixture of m-carboxyfluorescein where m = 5 or 6 (2), 5-carboxyfluorescein diacetate (3), 6-carboxyfluorescein diacetate (4), amore » mixture of n-carboxy-2',7'-dichlorofluorescein diacetate where n = 5 or 6 (5). The first step in this approach combines, where available, experimental and computational methods so that electronic structure calculations can also be validated for representative fluorescein dyes. Such calculations can then be used reliably to predict the structure and properties of fluorescein dyes for cases where experimental data are lacking. Structure-function relationships established from this initial step inform the selection of parent dye 1 that is taken forward to the second step in molecular engineering: in silico chemical derivation to re-functionalize 1 for DSC applications. For this purpose, computational calculations are used to extend the charge conjugation in 1 between its donor and acceptor moieties. These structural modifications result in a bathochromic shift of the lowest excitation by ~1.3-1.9 eV (100-170 nm), making the dye optically absorb in the visible region. Further calculations on dye molecules adsorbed onto the surface of a TiO 2 cluster are used to investigate the dye sensitization behavior via dye adsorption energies and anchoring modes. The results of this theoretical investigation lead to two molecularly engineered

  2. Molecular engineering of fluorescein dyes as complementary absorbers in dye co-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.

    Fluorescein dye derivatives exhibit extended optical absorption up to 500 nm, rendering these compounds suitable as co-absorbers in dye-sensitized solar cells (DSCs). A molecular engineering approach is presented, which embraces this intrinsic optical attribute of fluoresceins, while modifying the dye chemistry to enhance their light harvesting efficiency, in order to effectively tailor them for DSC applications. This approach first realizes relationships between the molecular structure and the optoelectronic properties for a series of five a priori known (parent) fluorescein dyes: 5-carboxyfluorescein (1), a mixture of m-carboxyfluorescein where m = 5 or 6 (2), 5-carboxyfluorescein diacetate (3), 6-carboxyfluorescein diacetate (4), amore » mixture of n-carboxy-2',7'-dichlorofluorescein diacetate where n = 5 or 6 (5). The first step in this approach combines, where available, experimental and computational methods so that electronic structure calculations can also be validated for representative fluorescein dyes. Such calculations can then be used reliably to predict the structure and properties of fluorescein dyes for cases where experimental data are lacking. Structure-function relationships established from this initial step inform the selection of parent dye 1 that is taken forward to the second step in molecular engineering: in silico chemical derivation to re-functionalize 1 for DSC applications. For this purpose, computational calculations are used to extend the charge conjugation in 1 between its donor and acceptor moieties. These structural modifications result in a bathochromic shift of the lowest excitation by ~1.3-1.9 eV (100-170 nm), making the dye optically absorb in the visible region. Further calculations on dye molecules adsorbed onto the surface of a TiO 2 cluster are used to investigate the dye sensitization behavior via dye adsorption energies and anchoring modes. The results of this theoretical investigation lead to two molecularly engineered

  3. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C60

    NASA Astrophysics Data System (ADS)

    Golunski, M.; Verkhoturov, S. V.; Verkhoturov, D. S.; Schweikert, E. A.; Postawa, Z.

    2017-02-01

    Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C60 projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  4. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    PubMed

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  5. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  6. Microcolumn studies of dye adsorption onto manganese oxides modified diatomite.

    PubMed

    Al-Ghouti, M A; Khraisheh, M A M; Ahmad, M N; Allen, S J

    2007-07-19

    The method described here cannot fully replace the analysis of large columns by small test columns (microcolumns). The procedure, however, is suitable for speeding up the determination of adsorption parameters of dye onto the adsorbent and for speeding up the initial screening of a large adsorbent collection that can be tedious if a several adsorbents and adsorption conditions must be tested. The performance of methylene blue (MB), a basic dye, Cibacron reactive black (RB) and Cibacron reactive yellow (RY) was predicted in this way and the influence of initial dye concentration and other adsorption conditions on the adsorption behaviour were demonstrated. On the basis of the experimental results, it can be concluded that the adsorption of RY onto manganese oxides modified diatomite (MOMD) exhibited a characteristic "S" shape and can be simulated effectively by the Thomas model. It is shown that the adsorption capacity increased as the initial dye concentration increased. The increase in the dye uptake capacity with the increase of the adsorbent mass in the column was due to the increase in the surface area of adsorbent, which provided more binding sites for the adsorption. It is shown that the use of high flow rates reduced the time that RY in the solution is in contact with the MOMD, thus allowing less time for adsorption to occur, leading to an early breakthrough of RY. A rapid decrease in the column adsorption capacity with an increase in particle size with an average 56% reduction in capacity resulting from an increase in the particle size from 106-250 microm to 250-500 microm. The experimental data correlated well with calculated data using the Thomas equation and the bed depth-service time (BDST) equation. Therefore, it might be concluded that the Thomas equation and the BDST equations can produce accurate predication for variation of dye concentration, mass of the adsorbent, flow rate and particle size. In general, the values of adsorption isotherm capacity

  7. Adsorption of basic dyes on granular activated carbon and natural zeolite.

    PubMed

    Meshko, V; Markovska, L; Mincheva, M; Rodrigues, A E

    2001-10-01

    The adsorption of basic dyes from aqueous solution onto granular activated carbon and natural zeolite has been studied using an agitated batch adsorber. The influence of agitation, initial dye concentration and adsorbent mass has been studied. The parameters of Langmuir and Freundlich adsorption isotherms have been determined using the adsorption data. Homogeneous diffusion model (solid diffusion) combined with external mass transfer resistance is proposed for the kinetic investigation. The dependence of solid diffusion coefficient on initial concentration and mass adsorbent is represented by the simple empirical equations.

  8. Investigation on removal of malachite green using EM based compost as adsorbent.

    PubMed

    Bhagavathi Pushpa, T; Vijayaraghavan, J; Sardhar Basha, S J; Sekaran, V; Vijayaraghavan, K; Jegan, J

    2015-08-01

    The discarded materials from different sources can be utilized as effective materials in wastewater remediation. This proposed study was aimed mainly to investigate the possibility of Effective Microorganisms based compost (EMKC), which is derived from the kitchen solid waste, as a non-conventional low cost adsorbent for the removal of malachite green from aqueous solution. Batch experiments were carried out to evaluate the optimum operating parameters like pH (2-9), initial dye concentration (50-1000mg/L), adsorbent particle size (0.6-2.36mm) and adsorbent dosage (2-12g/L). EMKC recorded maximum uptake of 136.6mg/g of MG at pH 8, initial dye concentration 1000mg/L, adsorbent particle size 1.18mm and adsorbent dosage 4g/L. Two and three parameter adsorption models were employed to describe experimental biosorption isotherm data. The results revealed that the Sips model resulted in better fit than other models. The pseudo-first and -second order models were applied to describe kinetic data, of which the pseudo-second order described experimental data better with high correlation coefficient. This investigation suggested that EMKC could be an effective and low cost material for the removal of malachite green dye from aqueous solution. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Thermodynamic characteristics of the adsorption of organic molecules on modified MCM-41 adsorbents

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Sukhareva, D. A.; Salikhova, G. R.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2017-07-01

    The adsorption of a number of organic molecules on samples of MCM-41 adsorbent modified with dichloromethylphenylsilane and subsequently treated with sulfuric acid (MDCS) and N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride (MNM) is studied. Specific retention volumes equal to the Henry constant are determined by means of inverse gas chromatography at infinite dilution. The thermodynamic characteristics of adsorption, the dispersive and specific components of the Helmholtz energy of adsorption, and the increment of the methyl group to the heat of adsorption are calculated. It is shown that the grafting of aminosilane and phenylsilane groups enhances the forces of dispersion and reduces specific interactions. A greater drop in polarity is observed for MDCS than for MNM, due to the stronger polarity of amoinosilane; the enthalpy factor makes the main contribution to the adsorption of organic compounds on the investigated adsorbents. It is found that the MNM sample is capable of the irreversible adsorption of alcohols.

  10. Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells.

    PubMed

    Brewster, Timothy P; Konezny, Steven J; Sheehan, Stafford W; Martini, Lauren A; Schmuttenmaer, Charles A; Batista, Victor S; Crabtree, Robert H

    2013-06-03

    We present the first analysis of performance of hydroxamate linkers as compared to carboxylate and phosphonate groups when anchoring ruthenium-polypyridyl dyes to TiO2 surfaces in dye-sensitized solar cells (DSSCs). The study provides fundamental insight into structure/function relationships that are critical for cell performance. Our DSSCs have been produced by using newly synthesized dye molecules and characterized by combining measurements and simulations of experimental current density-voltage (J-V) characteristic curves. We show that the choice of anchoring group has a direct effect on the overall sunlight-to-electricity conversion efficiency (η), with hydroxamate anchors showing the best performance. Solar cells based on the pyridyl-hydroxamate complex exhibit higher efficiency since they suppress electron transfer from the photoanode to the electrolyte and have superior photoinjection characteristics. These findings suggest that hydroxamate anchoring groups should be particularly valuable in DSSCs and photocatalytic applications based on molecular adsorbates covalently bound to semiconductor surfaces. In contrast, analogous acetylacetonate anchors might undergo decomposition under similar conditions suggesting limited potential in future applications.

  11. Four-color single-molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes.

    PubMed

    DeRocco, Vanessa; Anderson, Trevor; Piehler, Jacob; Erie, Dorothy A; Weninger, Keith

    2010-11-01

    To enable studies of conformational changes within multimolecular complexes, we present a simultaneous, four-color single molecule fluorescence methodology implemented with total internal reflection illumination and camera-based, wide-field detection. We further demonstrate labeling histidine-tagged proteins noncovalently with Tris-nitrilotriacetic acid (Tris-NTA)-conjugated dyes to achieve single molecule detection. We combine these methods to colocalize the mismatch repair protein MutSα on DNA while monitoring MutSα-induced DNA bending using Förster resonance energy transfer (FRET) and to monitor assembly of membrane-tethered SNARE protein complexes.

  12. Four-color single molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes

    PubMed Central

    DeRocco, Vanessa C.; Anderson, Trevor; Piehler, Jacob; Erie, Dorothy A.; Weninger, Keith

    2010-01-01

    To allow studies of conformational changes within multi-molecular complexes, we present a simultaneous, 4-color single molecule fluorescence methodology implemented with total internal reflection illumination and camera based, wide-field detection. We further demonstrate labeling histidine-tagged proteins non-covalently with tris-Nitrilotriacetic acid (tris-NTA) conjugated dyes to achieve single molecule detection. We combine these methods to co-localize the mismatch repair protein MutSα on DNA while monitoring MutSα-induced DNA bending using Förster resonance energy transfer (FRET) and to monitor assembly of membrane-tethered SNARE protein complexes. PMID:21091445

  13. Energy-level alignment in organic dye-sensitized TiO2 from GW calculations.

    PubMed

    Umari, P; Giacomazzi, L; De Angelis, F; Pastore, M; Baroni, Stefano

    2013-07-07

    The electronic energy levels of some representative isolated and oxide-supported organic dyes, relevant for photovoltaic applications, are investigated using many-body perturbation theory within the GW approximation. We consider a set of all-organic dyes (denominated L0, L2, L3, and L4) featuring the same donor and anchor groups and differing for the linker moieties. We first calculate the energy levels of the isolated molecules, thus allowing us to address the effects of the different linker groups, and resulting in good agreement with photo-electron spectroscopic and electrochemical data. We then consider the L0 dye adsorbed on the (101) surface of anatase-TiO2. We find a density of occupied states in agreement with experimental photo-electron data. The HOMO-LUMO energy gap of the L0 dye is found to be reduced by ~1 eV upon adsorption. Our results validate the reliability of GW calculations for photovoltaic applications and point to their potential as a powerful tool for the screening and rational design of new components of electrochemical solar cells.

  14. Effect of reduction degree on the adsorption properties of graphene sponge for dyes

    NASA Astrophysics Data System (ADS)

    Yu, Baowei; Chen, Lingyun; Wu, Ruihan; Liu, Xiaoyang; Li, Hongliang; Yang, Hua; Ming, Zhu; Bai, Yitong; Yang, Sheng-Tao

    2017-04-01

    Graphene sponge (GS) is usually prepared by reducing graphene oxide for the adsorption of pollutants. Different reduction methods lead to different reduction degrees, but the relationship between reduction degree and adsorption performance is still unexplored. In this study, we prepared three GS samples of different reduction degrees and compared their adsorption properties for different dyes. Taking methylene blue (MB) as the model dye, the adsorption isotherms, kinetics and influencing factors were investigated. The adsorptions of different dyes on three GS samples were also compared. Our results indicated that the adsorption of MB on GS was inhibited at high reduction degree by reducing the electrostatic interaction between oxygen containing groups and MB molecules. The adsorption kinetics slowed down at lower reduction degree. The pH showed more significant influence for highly reduced GS, which should be assigned to the deprotonation of hydroxyl groups at high pH. Ionic strength had ignorable effect on the adsorption. Beyond that, the dye properties also regulated the adsorption. The implication to the design of better GS adsorbents based on reduction degree is discussed.

  15. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  16. Investigation of the influence of coadsorbent dye upon the interfacial structure of dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M., E-mail: honda.mitsunori@jaea.go.jp; Miyano, K.; Yanagida, M.

    2014-11-07

    The interface between Ru(tcterpy)(NCS){sub 3}TBA{sub 2} [black dye (BD); tcterpy = 4,4{sup ′},4{sup ″}-tricarboxy-2,2{sup ′}:6{sup ′},2{sup ″}-terpyridine, NCS = thiocyanato, TBA = tetrabutylammonium cation] and nanocrystalline TiO{sub 2}, as found in dye-sensitized solar cells, is investigated by soft-X-ray synchrotron radiation and compared with the adsorption structure of cis-Ru(Hdcbpy){sub 2}(NCS){sub 2}TBA{sub 2} (N719; dcbpy = 4,4{sup ′}-dicarboxy-2,2{sup ′}-bipyridine) on TiO{sub 2} to elucidate the relationship between the adsorption mode of BD and the photocurrent with and without coadsorbed indoline dye D131. The depth profile is characterized with X-ray photoelectron spectroscopy and S K-edge X-ray absorption fine structure using synchrotron radiation. Bothmore » datasets indicate that one of the isothiocyanate groups of BD interacts with TiO{sub 2} via its S atom when the dye is adsorbed from a single-component solution. In contrast, the interaction is slightly suppressed when D131 is coadsorbed, indicated by the fact that the presence of D131 changes the adsorption mode of BD. Based upon these results, the number of BD dye molecules interacting with the substrate is shown to decrease by 10% when D131 is coadsorbed, and the dissociation is shown to be related to the short-circuit photocurrent in the 600–800 nm region. The design of a procedure to promote the preferential adsorption of D131 therefore leads to an improvement of the short-circuit current and conversion efficiency.« less

  17. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies.

    PubMed

    Stawiński, Wojciech; Węgrzyn, Agnieszka; Dańko, Tomasz; Freitas, Olga; Figueiredo, Sónia; Chmielarz, Lucjan

    2017-04-01

    Additional treatment with NaOH of acid activated vermiculite results in even higher increase in the adsorption capacity in comparison to samples modified only in acidic solution (first step of activation) with respect to raw material. Optimization of treatment conditions and adsorption capacity for two cationic dyes (methylene blue (MB) and astrazon red (AR)), also as binary mixture, was evaluated. The capacity, based on column studies, increased from 48 ± 2 to 203 ± 4 mg g -1 in the case of methylene blue and from 51 ± 1 to 127 ± 2 mg g -1 in the case of astrazon red on starting and acid-base treated material, respectively. It was shown that adsorption mechanism changes for both cationic dyes after NaOH treatment and it results in decrease of adsorption rate. In binary mixtures methylene blue is bound stronger by adsorbent and astrazon red may be removed in initial stage of adsorption. Extensive studies on desorption/regeneration process proved high efficiency in recyclable use of all materials. Although cation exchange capacity decreases due to acid treatment, after base treatment exchange properties are used more efficiently. On the other hand, increased specific surface area has less significant contribution into the adsorption potential of studied materials. Obtained adsorbents worked efficiently in 7 adsorption-regeneration cycles and loss of adsorption capacity was observed only in two first cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Laser performance of Coumarin 540A dye molecules in polymeric host media with different viscosities: From liquid solution to solid polymer matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costela, A.; Garcia-Moreno, I.; Barroso, J.

    1998-01-01

    Photophysical parameters and lasing properties of Coumarin 540A dye molecules are studied in solutions of increasing viscosity, from liquid solutions in 1,4-dioxane to solid solutions in poly(methyl methacrylate). The fluorescence quantum yield and lasing efficiencies decrease as the viscosity of the solution increases, reflecting the strong influence of the rigidity of the medium on the radiative processes. The photodegradation mechanisms acting on the fluorophores are analyzed by following the dependence of laser induced fluorescence and laser output on the number of pump laser pulses. The fluorescence redistribution after pattern photobleaching technique is used, and Fick{close_quote}s second law is applied tomore » study the diffusion of dye molecules in the highly viscous polymer solutions. The diffusion coefficients of the dye molecules as a function of the increased viscosity of the medium are determined. {copyright} {ital 1998 American Institute of Physics.}« less

  19. Reconstruction of calmodulin single-molecule FRET states, dye interactions, and CaMKII peptide binding by MultiNest and classic maximum entropy

    NASA Astrophysics Data System (ADS)

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2013-08-01

    We analyzed single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  20. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy

    PubMed Central

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2013-01-01

    We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data. PMID:24223465

  1. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy.

    PubMed

    Devore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2013-08-30

    We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca 2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  2. Persistent optical hole-burning spectroscopy of nano-confined dye molecules in liquid at room temperature: Spectral narrowing due to a glassy state and extraordinary relaxation in a nano-cage

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroshi

    2018-04-01

    Persistent optical hole-burning spectroscopy has been conducted for a dye molecule within a very small (˜1 nm) reverse micelle at room temperature. The spectra show a spectral narrowing due to site-selective excitation. This definitely demonstrates that the surroundings of the dye molecule are in a glassy state regardless of a solution at room temperature. On the other hand, the hole-burning spectra exhibit large shifts from excitation frequencies, and their positions are almost independent of excitation frequencies. The hole-burning spectra have been theoretically calculated by taking account of a vibronic absorption band of the dye molecule under the assumption that the surroundings of the dye molecule are in a glassy state. The calculated results agree with the experimental ones that were obtained for the dye molecule in a polymer glass for comparison, where it has been found that the ratio of hole-burning efficiencies of vibronic- to electronic-band excitations is quite high. On the other hand, the theoretical results do not explain the large spectral shift from the excitation frequency and small spectral narrowing observed in the hole-burning spectra measured for the dye-containing reverse micelle. It is thought that the spectral shift and broadening occur within the measurement time owing to the relaxation process of the surroundings that are hot with the thermal energy deposited by the dye molecule optically excited. Furthermore, the relaxation should be temporary because the cooling of the inside of the reverse micelle takes place with the dissipation of the excess thermal energy to the outer oil solvent, and so the surroundings of the dye molecule return to the glassy state and do not attain the thermal equilibrium. These results suggest that a very small reverse micelle provides a unique reaction field in which the diffusional motion can be controlled by light in a glassy state.

  3. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn

    2016-03-14

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode ofmore » the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.« less

  4. Photovoltaic performance of TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent in dye-sensitized solar cells.

    PubMed

    Kwon, Oh Oun; Kim, Eui Jin; Lee, Jae Hyeok; Kim, Tae Young; Park, Kyung Hee; Kim, Sang Yook; Suh, Hwa Jin; Lee, Hyo Jung; Lee, Jae Wook

    2015-02-05

    To improve the photovoltaic conversion efficiency in dye-sensitized solar cells (DSSCs), TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent was successfully formulated on nanoporous TiO2 surface. Adsorption and desorption properties of crude gardenia yellow solution on a macroporous resin, XAD-1600, were investigated to purify gardenia yellow because of its strong adsorption and desorption abilities as well as high selectivity. To this end, adsorption equilibrium and kinetic data were measured and fitted using adsorption isotherms and kinetic models. Adsorption and desorption breakthrough curves in a column packed with XAD-1600 resin was obtained to optimize the separation process of gardenia yellow. The photovoltaic performance of the photo-electrode adsorbed with the crude and purified gardenia yellow in DSSCs was compared from current-voltage measurements. The results showed that the photovoltaic conversion efficiency was highly dependent on how to separate and purify gardenia yellow as a photosensitizer. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Photocatalytic degradation of leather dye over ZnO catalyst supported on alumina and glass surfaces.

    PubMed

    Sakthivel, S; Neppoiian, B; Palanichamy, M; Arabindoo, B; Murugesan, V

    2001-01-01

    The photocatalytic degradation of leather dye, Acid green 16, has been investigated over a ZnO catalyst supported on two different materials, namely alumina and glass beads (3-5 mm diameter). Sunlight was used as the energy source. The alumina-supported ZnO outperformed the glass-supported ZnO under identical operational conditions suggesting that the dye molecules are adsorbed on the alumina supports to make a high concentration environment around the loaded ZnO. The degradation efficiency was greater at pH = 4 compared to other acidic and neutral pH. Also, the degradation efficiency was a little bit higher in alkaline medium, which correlates with the adsorption behaviour of acid green 16 on the alumina supported ZnO. The influence of inorganic oxidants like H2O2, FeCl3 and Fenton reagent on the degradation efficiency were systematically studied. The decolourisation and extent of degradation of the dye were determined by UV-VIS spectroscopy and COD reflux methods, respectively. Complete mineralisation of the dye was conformed by High performance liquid chromatography (HPLC) analysis.

  6. Photobleaching effect in azo-dye containing epoxy resin films: the potentiality of carbon nanotubes as azo-dye dispensers

    NASA Astrophysics Data System (ADS)

    Díaz Costanzo, Guadalupe; Goyanes, Silvia; Ledesma, Silvia

    2015-04-01

    Azo-dye molecules may suffer from bleaching under certain illumination conditions. When this photoinduced process occurs, it generates an irreversible effect that is characterized by the loss of absorption of the dye molecule. Moreover, the well-known isomerization of azodye molecules does not occur anymore. In this work it is shown how the addition of a small amount of multi-walled carbon nanotubes (MWCNTs) helps to decrease the bleaching effect in a photosensitive guest-host azo-polymer film. Two different systems were fabricated using an epoxy resin as polymer matrix. An azo-dye, Disperse Orange 3, was used as photosensitive material in both systems and MWCNTs were added into one of them. The optical response of the polymeric systems was studied considering the degree of photoinduced birefringence. Photobleaching of the azo-dye was observed in all cases however, the effect is lower for the composite material containing 0.2 wt % MWCNTs. The weak interaction between MWCNTs and dye molecules is less favorable when the material is heated. The optical behavior of the heated composite material suggests that carbon nanotubes can be potentially used as azo dye dispensers. The results are interpreted in terms of the non-covalent interaction between azo-dye molecules and MWCNTs.

  7. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    NASA Astrophysics Data System (ADS)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Influence of the layer thickness and concentration of dye molecules on the emission amplification in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Alaverdyan, R. B.; Gevorgyan, A. A.; Chilingaryan, A. D.; Chilingaryan, Yu S.

    2008-05-01

    The propagation of light through a planar layer of a cholesteric liquid crystal doped with dye molecules is considered. The features of the emission spectra of the crystal are studied both in the absence and presence of dielectric boundaries. The increase in the emission intensity is investigated for different layer thicknesses and different concentrations of dye molecules. It is shown that an anomalously strong increase in the emission intensity with the diffraction intrinsic polarisation takes place in the case of a comparatively small crystal thickness and a relatively low concentration of dye molecules. The obtained results can be used for the development of miniature lasers with the circular polarisation of the fundamental radiation mode.

  9. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@yahoo.com; Najafi, Farhood

    2012-07-15

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticlemore » (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.« less

  10. Study of decolorisation of binary dye mixture by response surface methodology.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Investigation of the SERS Spectra of Hydroquinone Molecule Adsorbed on Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Polubotko, A. M.; Chelibanov, V. P.

    2018-01-01

    The paper analyzes the SERS spectrum of hydroquinone adsorbed on nanoparticles of titanium dioxide (TiO2). It is seen that the enhancement is stronger for a larger mean size of nanoparticles that is in agreement with an electrostatic approximation. In addition, it is found that there are the lines, which are forbidden in usual Raman spectra. There is also an enhancement caused both by the normal and tangential components of the electric field. This result is in agreement with the theory of SERS on semiconductor and dielectric substrates. The discovery of the forbidden lines indicates on the sufficiently large role of the strong quadrupole light-molecule interaction in such a system.

  12. Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials.

    PubMed

    De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard

    2018-03-16

    Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

  13. Abatement of Azo Dye from Wastewater Using Bimetal-Chitosan

    PubMed Central

    Asgari, Ghorban; Farjadfard, Sima

    2013-01-01

    We introduce a new adsorbent, bimetallic chitosan particle (BCP) that is successfully synthesized and applied to remove the orange II dye from wastewater. The effects of pH, BCP quantity, and contact time are initially verified on the basis of the percentage of orange II removed from the wastewater. Experimental data reveal that the Cu/Mg bimetal and chitosan have a synergistic effect on the adsorption process of the adsorbate, where the dye adsorption by Cu/Mg bimetal, chitosan alone, and bimetal-chitosan is 10, 49, and 99.5%, respectively. The time required for the complete decolorization of orange II by 1 mg/L of BCP is 10 min. The Langmuir model is the best fit for the experimental data, which attains a maximum adsorption capacity of 384.6 mg/g. The consideration of the kinetic behavior indicates that the adsorption of orange II onto the BCP fits best with the pseudo-second-order and Elovich models. Further, the simulated azo dye wastewater can be effectively treated using a relatively low quantity of the adsorbent, 1 mg/L, within a short reaction time of 20 min. Overall, the use of BCP can be considered a promising method for eliminating the azo dye from wastewater effectively. PMID:24348163

  14. Adsorption behavior and mechanism of acidic blue 25 dye onto cucurbit[8]uril: A spectral and DFT study

    NASA Astrophysics Data System (ADS)

    Luo, Hanhan; Huang, Xiangyu; Luo, Yuhan; Li, Zhuang; Li, Lan; Gao, Chao; Xiong, Jinyan; Li, Wei

    2018-03-01

    The acidic blue 25 (AB25) dye was efficiently adsorbed by CB [8]; the saturated adsorption capacity (qexp) reached 434.8 mg/g and was far higher than those of previous reported adsorbents. The Langmuir and Freundich isotherms were used to fit the equilibrium data, and the results showed that the Freundlich isotherm seemed to agree better with the AB25 adsorption. The adsorption kinetics followed the pseudo-second-order model. Calculated thermodynamic parameters showed that the adsorption of AB25 onto CB [8] was a spontaneous and enthalpy-driven process. The adsorption mechanism was explored by N2 adsorption-desorption, TG, FT-IR, UV-vis as well as MD simulation and DFT calculations. TG analysis revealed that a new inclusion complex was produced, and FT-IR,UV-vis spectrum and DFT calculations verify its structure. In this inclusion complex, the AB25 dye molecule inserted into cavities of CB [8] from portal, and the sulfonate and phenyl groups stayed in the hydrophobic cavity. TDDFT calculations indicated that all excitation arisen from π → π* transition.

  15. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design.

    PubMed

    Dawood, Sara; Sen, Tushar Kanti

    2012-04-15

    Pine cone a natural, low-cost agricultural by-product in Australia has been studied for its potential application as an adsorbent in its raw and hydrochloric acid modified form. Surface study of pine cone and treated pine cone was investigated using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The modification process leads to increases in the specific surface area and decreases mean particle sizes of acid-treated pine cone when compared to raw pine cone biomass. Batch adsorption experiments were performed to remove anionic dye Congo red from aqueous solution. It was found that the extent of Congo red adsorption by both raw pine cone biomass and acid-treated biomass increased with initial dye concentration, contact time, temperature but decreased with increasing solution pH and amount of adsorbent of the system. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on pseudo-first-order and intra-particle diffusion models. The different kinetic parameters including rate constant, half-adsorption time, and diffusion coefficient were determined at different physico-chemical conditions. Equilibrium data were best represented by Freundlich isotherm model among Langmuir and Freundlich adsorption isotherm models. It was observed that the adsorption was pH dependent and the maximum adsorption of 32.65 mg/g occurred at pH of 3.55 for an initial dye concentration of 20 ppm by raw pine cone, whereas for acid-treated pine cone the maximum adsorption of 40.19 mg/g for the same experimental conditions. Freundlich constant 'n' also indicated favourable adsorption. Thermodynamic parameters such as ∆G(0), ∆H(0), and ∆S(0) were calculated. A single-stage batch absorber design for the Congo red adsorption onto pine cone biomass also presented based on the Freundlich isotherm model equation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.

    1981-01-01

    The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.

  17. The influence of local electric fields on photoinduced absorption in dye-sensitized solar cells.

    PubMed

    Cappel, Ute B; Feldt, Sandra M; Schöneboom, Jan; Hagfeldt, Anders; Boschloo, Gerrit

    2010-07-07

    The dye-sensitized solar cell (DSC) challenges conventional photovoltaics with its potential for low-cost production and its flexibility in terms of color and design. Transient absorption spectroscopy is widely used to unravel the working mechanism of DSCs. A surprising, unexplained feature observed in these studies is an apparent bleach of the ground-state absorption of the dye, under conditions where the dye is in the ground state. Here, we demonstrate that this feature can be attributed to a change of the local electric field affecting the absorption spectrum of the dye, an effect related to the Stark effect first reported in 1913. We present a method for measuring the effect of an externally applied electric field on the absorption of dye monolayers adsorbed on flat TiO(2) substrates. The measured signal has the shape of the first derivative of the absorption spectra of the dyes and reverses sign along with the reversion of the direction of the change in dipole moment upon excitation relative to the TiO(2) surface. A very similar signal is observed in photoinduced absorption spectra of dye-sensitized TiO(2) electrodes under solar cell conditions, demonstrating that the electric field across the dye molecules changes upon illumination. This result has important implications for the analysis of transient absorption spectra of DSCs and other molecular optoelectronic devices and challenges the interpretation of many previously published results.

  18. One-step Preparation of graphene oxide/polypyrrole magnetic nanocomposite and its application in the removal of methylene blue dye from aqueous solution

    NASA Astrophysics Data System (ADS)

    Afzali Nezhad, Ali; Alimoradi, Mohammad; Ramezani, Majid

    2018-02-01

    Herein, we report a novel one-step strategy to construct magnetic nanocomposite (polypyrrole/GO@Fe3O4) via a simple and effective chemical method. First, the GO nanosheets were fabricated through modified Hummers method, and then, the Fe3O4 nanoparticles and polypyrrole were decorated on surface of the GO nanosheets by coprecipitation of ferrous salts and pyrrole monomer in GO suspension. The ferric chloride could act both as oxidizing agent and also for preparation of magnetic Fe3O4 nanoparticles. The prepared nanomaterials were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy, x-ray diffraction, and TGA measurements. The prepared magnetic nanocomposite had a much higher thermal stability than pure graphene oxide. The magnetic nanocomposite has been employed as adsorbent for the magnetic separation of Methylene Blue dye from water. The adsorption test of Methylene Blue (MB) demonstrates that it only takes few minutes for MB to attain equilibrium. The effect of experimental conditions such as contact time and pH as well as kinetic and isotherm of adsorption of MB dye was also studied. The highest adsorption capacity for MB was 323.2 mg g-1. The pH optimization experiments showed that pH = 8 is optimum pH for investigation of MB dye adsorption. It is also must be mentioned that most of adsorption of MB dye achieved within first 10 min of exposure to MB dye which indicated the strong interaction between dye molecules and adsorbent and high rate of adsorption of dye on magnetic nanocomposite. Adsorption procedure of dye were fitted well by pseudo-second-order kinetic and Langmuir isotherm models. The cycling reusability of magnetic nanocomposite showed comparable values to other studies. Results showed that the prepared new magnetic nanocomposite has great potential application for removal of organic dyes from polluted water.

  19. Graphene oxide supported copper oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes

    NASA Astrophysics Data System (ADS)

    Rajesh, Rajendiran; Iyer, Sahithya S.; Ezhilan, Jayabal; Kumar, S. Senthil; Venkatesan, Rengarajan

    2016-09-01

    Herein, we report a simple, one step synthesis of hybrid copper oxide nanoneedles on graphene oxide sheets (GO-CuONNs) through sonochemical method. The present method affords a facile mean for controlling effective concentration of the active CuO nanoneedles on the graphene oxide sheets, and also offers the necessary stability to the resulting GO-CuONNs structure for adsorption transformations.Furthermore, this hybrid GO-CuONNs is successfully employed in the removal of a series of hazardous ionic organic dyes namely coomassie brilliant blue, methylene blue, congo red and amidoblack 10B. Through careful investigation of the material, we found that the synergetic effect between CuONNs and GO play a significant role in the adsorption of all the dyes studied. The prepared hybrid material contains both hydrophobic and hydrophilic environment which is expected to enhance the electrostatic interaction between the adsorbent and the dye molecules, consequently favouring the adsorption process.

  20. SERS+MEF of the anti-tumoral drug emodin adsorbed on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sevilla, Paz; De Llanos, Raquel; Domingo, Concepción; Sánchez-Cortés, Santiago; García-Ramos, José V.

    2010-02-01

    Metal nanostructures are known to amplify the spontaneous emission of fluorescent molecules by resonant coupling to external electromagnetic fields. We have used spectroscopy to characterize the structural properties of emodin molecules, a natural anthraquinone dye, and bovine serum albumin, the most abundant protein in plasma, in the presence of silver nanoparticles. Aggregation of emodin at pH=10 and pH=6 gives rise to SERS and MEF effects in silver colloid. We have obtained MEF spectra at acidic pH=2.9 using two different silver nanostructures. We have also studied the change in the secondary structure of bovine serum albumin adsorbed on metal nanoparticles surface. Circular dichroism, fluorescence emission and fluorescence lifetime measurements indicate an increase in the alfa-helical content of the protein and a change in the environment of the tryptophan residues that bury in the interior of the biomolecule. This variation on the secondary structure could have further influence in the binding of the drug to form transport and regulatory complexes.

  1. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana

    2013-11-30

    Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    PubMed

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  3. Sorption of organic molecules on surfaces of a microporous polymer adsorbent modified with different quantities of uracil

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Ganieva, A. G.; Kudasheva, F. Kh.

    2016-11-01

    The sorption of organic molecules on the surfaces of a number of adsorbents based on a microporous copolymer of styrene and divinylbenzene modified with different quantities of uracil is studied by means of inverse gas chromatography at infinite dilution. Samples containing 10-6, 10-5, 10-4, 10-3, 10-2, and 0.5 × 10‒1 weight parts of uracil (the pC of uracil ranges from 1.3 to 6) are studied. The contributions from different intermolecular interactions to the Helmholtz energy of sorption are calculated via the linear free energy relationship. It is found that as the concentration of uracil on the surface of the polymer adsorbent grows, the contributions from different intermolecular interactions and the conventional polarity of the surface have a bend at pC = 3, due probably to the formation of a supramolecular structure of uracil. Based on the obtained results, it is concluded that the formation of the supramolecular structure of uracil on the surface of the polymer adsorbent starts when pC < 3.

  4. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO2 Anchoring Characteristics for Dye-Sensitized Solar Cells.

    PubMed

    Cole, Jacqueline M; Blood-Forsythe, Martin A; Lin, Tze-Chia; Pattison, Philip; Gong, Yun; Vázquez-Mayagoitia, Álvaro; Waddell, Paul G; Zhang, Lei; Koumura, Nagatoshi; Mori, Shogo

    2017-08-09

    Donor-π-acceptor dyes containing thiophenyl π-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S···C≡N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the π-conjugated portion of MK-44 shows that this S···C≡N bonding underpins the highly efficient intramolecular charge transfer (ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO 2 surfaces, to form the dye···TiO 2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO 2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S···C≡N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of MK-2. More generally, this study provides the first unequivocal evidence for an S···C≡N interaction, confirming previous speculative assignments of such interactions in other compounds.

  5. Novel energy relay dyes for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahbubur; Ko, Min Jae; Lee, Jae-Joon

    2015-02-01

    4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively. Electronic supplementary information (ESI) available: Details of the materials and instrumentation, device fabrication, measurement and calculations of the quantum yield (Qd), calculations of the Förster radius (R0), optimization of the ERDs mixed with electrolyte according to Type-A strategy; normalized absorption profiles of the N3, Ru505, and Z907 dyes and the emission profiles of DAPI and H33342

  6. Magnetic graphene oxide for adsorption of organic dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Drashya, Lal, Shyam; Hooda, Sunita

    2018-05-01

    Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.

  7. Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika

    2016-12-01

    The present study aims at exploring the potential of the seeds of a tropical weed, Argemone mexicana (AM), for the removal of a toxic xanthene textile dye, Rhodamine B (RHB), from waste water. Impact of pH, adsorbent dosage, particle size, contact time and dye concentration have been assessed during adsorption. The weed has been well characterized by several latest techniques thereby providing an indepth information of the mechanism during adsorption. About 80% removal has been attained with 0.06 g of adsorbent over the studied system. Thermodynamic and kinetic studies, followed by second order kinetic model, directed towards the endothermic nature of adsorption. The results obtained from batch experiments were modelled using Langmuir and Freundlich isotherm and were analysed on the basis of R 2 and six error functions for selection of appropriate model. Langmuir isotherm was found to be best fitted to the experimental data with high values of R 2 and lower values of error functions. Adsorption study revealed the affinity of AM seeds for the dye ions present in waste water, introducing a novel adsorbent in field of waste water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies.

    PubMed

    Sukriti; Sharma, Jitender; Chadha, Amritpal Singh; Pruthi, Vaishali; Anand, Prerna; Bhatia, Jaspreet; Kaith, B S

    2017-04-01

    Present work reports the synthesis of semi-Interpenetrating Network Polymer (semi-IPN) using Gelatin-Gum xanthan hybrid backbone and polyvinyl alcohol in presence of l-tartaric acid and ammonium persulphate as the crosslinker-initiator system. Reaction parameters were optimized with Response Surface Methodology (RSM) in order to maximize the percent gel fraction of the synthesized sample. Polyvinyl alcohol, l-Tartaric acid, ammonium persulphate, reaction temperature, time and pH of the reaction medium were found to make an impact on the percentage gel fraction obtained. Incorporation of polyvinyl alcohol chains onto hybrid backbone and crosslinking between the different polymer chains were confirmed through techniques like FTIR, SEM-EDX and XRD. Semi-IPN was found to be very efficient in the removal of cationic dyes rhodamine-B (70%) and auramine-O (63%) from a mixture with an adsorbent dose of 700 mg, initial concentration of rhodamine-B 6 mgL -1 and auramine-O 26 mgL -1 , at an time interval of 22-25 h and 30 °C temp. Further to determine the nature of adsorption Langmuir and Freundlich adsorption isotherm models were studied and it was found that Langmuir adsorption isotherm was the best fit model for the removal of mixture of dyes. Kinetic studies for the sorption of dyes favored the reaction mechanism to occur via a pseudo second order pathway with R 2 value about 0.99. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Self-Assembly of Cis-Configured Squaraine Dyes at the TiO2-Dye Interface: Far-Red Active Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Punitharasu, Vellimalai; Mele Kavungathodi, Munavvar Fairoos; Nithyanandhan, Jayaraj

    2018-05-16

    To synergize both steric and electronic factors in designing the dyes for dye-sensitized solar cells, a series of cis-configured unsymmetrical squaraine dyes P11-P15 with suitably functionalized alkyl groups and squaric acid units containing the electron-withdrawing groups were synthesized, respectively. These dyes capture the importance of (i) the effect and position of branched alkyl groups, (ii) mono- and di-anchoring groups containing dyes, and (iii) further appending the alkyl groups through the cyanoester vinyl unit on the central squaric acid units of D-A-D-based cis-configured squaraine dyes. All the above factors govern the controlled self-assembly of the dyes on the TiO 2 surface which helps to broaden the absorption profile of the dyes with an increased energy-harvesting process. With respect to the position of the branched alkyl groups, dye P11 with the sp 3 -C and N-alkyl groups away from the TiO 2 surface showed a better device efficiency of 5.98% ( J sc of 14.46 mA cm -2 , V oc of 0.576 V, and ff of 71.8%) than its positional isomer P12 with 3.45% ( J sc of 8.78 mA cm -2 , V oc of 0.554 V, and ff of 70.9%). However, with respect to the dyes containing mono- and di-anchoring groups, P13 with two anchoring units exhibited a superior device performance of 7.58% ( J sc of 17.12 mA cm -2 , V oc of 0.618 V, and ff of 71.7%) in the presence of optically transparent co-adsorbent CDCA (3α,7α-dihydroxy-5β-cholanic acid) than dyes P11 and P12.

  10. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    NASA Astrophysics Data System (ADS)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  11. Utilization of magnetically responsive cereal by-product for organic dye removal.

    PubMed

    Baldikova, Eva; Politi, Dorothea; Maderova, Zdenka; Pospiskova, Kristyna; Sidiras, Dimitrios; Safarikova, Mirka; Safarik, Ivo

    2016-04-01

    Barley straw, an agricultural by-product, can also serve as a low-cost and relatively efficient adsorbent of various harmful compounds. In this case, adsorption of four water-soluble dyes belonging to different dye classes (specifically Bismarck brown Y, representing the azo group; methylene blue, quinone-imine group; safranin O, safranin group; and crystal violet, triphenylmethane group) on native and citric acid-NaOH-modified barley straw, both in magnetic and non-magnetic versions, was studied. The adsorption was characterized using three adsorption models, namely Langmuir, Freundlich and Sips. To compare the maximum adsorption capacities (qmax), the Langmuir model was employed. The qmax values reached 86.5-124.3 mg of dye per g of native non-magnetic straw and 410.8-520.3 mg of dye per g of magnetic chemically modified straw. Performed characterization studies suggested that the substantial increase in qmax values after chemical modification could be caused by rougher surface of adsorbent (observed by scanning electron microscopy) and by the presence of higher amounts of carboxyl groups (detected by Fourier transform infrared spectroscopy). The adsorption processes followed the pseudo-second-order kinetic model and thermodynamic studies indicated spontaneous and endothermic adsorption. The chemical modification of barley straw led to a significant increase in maximum adsorption capacities for all tested dyes, while magnetic modification substantially facilitated the manipulation with adsorbent. © 2015 Society of Chemical Industry.

  12. Synthesis of magnetic biocomposite for efficient adsorption of azo dye from aqueous solution.

    PubMed

    Sivashankar, R; Sathya, A B; Krishnakumar, Uma; Sivasubramanian, V

    2015-11-01

    A novel magnetic biocomposite was synthesized using metal chlorides and aquatic macrophytes by co-precipitation method. The resulting product, magnetic biocomposite was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and Scanning electron microscope (SEM). The adsorption performance of the magnetic biocomposite was tested with removal of Metanil Yellow dye from aqueous solution. The effect of influencing parameters such as initial dye concentration, solution pH and agitation were investigated. The equilibrium isotherm was well described by the Langmuir model with the with maximum adsorption capacity of 90.91mg/g. Adsorption kinetics experiments were carried out and the data were well fitted by a pseudo-second-order equation. The results revealed that the magnetic biocomposite could efficiently adsorb the azo dyes from aqueous solution, and the spent adsorbents could be recovered completely by magnetic separation process. Therefore, the prepared magnetic biocomposite could thus be used as promising adsorbent for the removal of azo dyes from polluted water. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenlin; Zhang, Lian Ying; Zhao, Xi Juan

    An adsorbent, citrus pectin derived porous carbons with ultra-high adsorption capacity, rapid adsorption rate and good reusability toward removal of methylene blue, was synthesized by a facile zinc chloride activation approach in this study. The materials hold a great potential for treatment of dye wastewater. - Graphical abstract: Citrus pectin derived porous carbons with ultra-high adsorption capacity, rapid adsorption rate and good reusability toward methylene blue removal. - Highlights: • Citrus pectin derived porous carbons (CPPCs) were synthesized a facile zinc chloride activation approach. • CPPCs had abundant macro/meso/micropores for trapping MB molecules. • CPPCs exhibited ultrahigh adsorption capacity, rapidmore » adsorption rate and good reusability toward removal of MB.« less

  14. Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell.

    PubMed

    Ooyama, Yousuke; Furue, Kensuke; Enoki, Toshiaki; Kanda, Masahiro; Adachi, Yohei; Ohshita, Joji

    2016-11-09

    A type-I/type-II hybrid dye sensitizer with a pyridyl group and a catechol unit as the anchoring group has been developed and its photovoltaic performance in dye-sensitized solar cells (DSSCs) is investigated. The sensitizer has the ability to adsorb on a TiO 2 electrode through both the coordination bond at Lewis acid sites and the bidentate binuclear bridging linkage at Brønsted acid sites on the TiO 2 surface, which makes it possible to inject an electron into the conduction band of the TiO 2 electrode by the intramolecular charge-transfer (ICT) excitation (type-I pathway) and by the photoexcitation of the dye-to-TiO 2 charge transfer (DTCT) band (type-II pathway). It was found that the type-I/type-II hybrid dye sensitizer adsorbed on TiO 2 film exhibits a broad photoabsorption band originating from ICT and DTCT characteristics. Here we reveal the photophysical and electrochemical properties of the type-I/type-II hybrid dye sensitizer bearing a pyridyl group and a catechol unit, along with its adsorption modes onto TiO 2 film, and its photovoltaic performance in type-I/type-II DSSC, based on optical (photoabsorption and fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), density functional theory (DFT) calculation, FT-IR spectroscopy of the dyes adsorbed on TiO 2 film, photocurrent-voltage (I-V) curves, incident photon-to-current conversion efficiency (IPCE) spectra, and electrochemical impedance spectroscopy (EIS) for DSSC.

  15. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    PubMed

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Adsorption capacity of Curcuma longa for the removal of basic green 1 dye--equilibrium, kinetics and thermodynamic study.

    PubMed

    Roopavathi, K V; Shanthakumar, S

    2016-09-01

    In the present study, Curcuma longa (turmeric plant) was used as an adsorbent to remove Basic Green 1 (BG) dye. Batch study was carried out to evaluate the adsorption potential of C. longa and influencing factors such as pH (4-10), adsorbent dose (0.2-5 g l-1), initial dye concentration (50-250 mg l-1) and temperature (30-50°C) on dye removal were analysed. The characterisation of adsorbent was carried out using fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) method. Isotherm models that included Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich, and kinetic models such as pseudo first order, pseudo second-order, Elovich and intraparticle diffusion models were studied. A maximum removal percentage (82.76%) of BG dye from aqueous solution was obtained with optimum conditions of pH 7, 1g l-1 adsorbent dose and 30°C temperature, for 100 mg l-1 initial dye concentration. The equilibrium and kinetic study revealed that the experimental data fitted suitably the Freundlich isotherm and Pseudo second order kinetic model. Thermodynamic analysis proved that adsorption system in this study was spontaneous, feasible and endothermic in nature.

  17. Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder

    NASA Astrophysics Data System (ADS)

    Singh, Dilbagh; Sowmya, V.; Abinandan, S.; Shanthakumar, S.

    2017-11-01

    In this study, batch experiments were carried out to study the adsorption of Malachite green dye from aqueous solution by Mangifera indica (mango) seed kernel powder. The mango seed kernel powder was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Effect of various parameters including pH, contact time, adsorbent dosage, initial dye concentration and temperature on adsorption capacity of the adsorbent was observed and the optimized condition for maximum dye removal was identified. Maximum percentage removal of 96% was achieved with an adsorption capacity of 22.8 mg/g at pH 6 with an initial concentration of 100 mg/l. The equilibrium data were examined to fit the Langmuir and Freundlich isotherm models. Thermodynamic parameters for the adsorption process were also calculated.

  18. Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions.

    PubMed

    Ponnusami, V; Vikram, S; Srivastava, S N

    2008-03-21

    Batch sorption experiments were carried out using a novel adsorbent, guava leaf powder (GLP), for the removal of methylene blue (MB) from aqueous solutions. Potential of GLP for adsorption of MB from aqueous solution was found to be excellent. Effects of process parameters pH, adsorbent dosage, concentration, particle size and temperature were studied. Temperature-concentration interaction effect on dye uptake was studied and a quadratic model was proposed to predict dye uptake in terms of concentration, time and temperature. The model conforms closely to the experimental data. The model was used to find optimum temperature and concentration that result in maximum dye uptake. Langmuir model represent the experimental data well. Maximum dye uptake was found to be 295mg/g, indicating that GLP can be used as an excellent low-cost adsorbent. Pseudo-first-order, pseudo-second order and intraparticle diffusion models were tested. From experimental data it was found that adsorption of MB onto GLP follow pseudo second order kinetics. External diffusion and intraparticle diffusion play roles in adsorption process. Free energy of adsorption (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were calculated to predict the nature of adsorption. Adsorption in packed bed was also evaluated.

  19. Magnetically modified sheaths of Leptothrix sp. as an adsorbent for Amido black 10B removal

    NASA Astrophysics Data System (ADS)

    Angelova, Ralitsa; Baldikova, Eva; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-04-01

    The goal of this study was to assess the biosorption of Amido black 10B dye from aqueous solutions on magnetically modified sheaths of Leptothrix sp. in a batch system. The magnetic modification of the sheaths was performed using both microwave synthesized iron oxide nano- and microparticles and perchloric acid stabilized ferrofluid. The native and both magnetically modified sheaths were characterized by SEM. Various parameters significantly affecting the adsorption process, such as pH, contact time, temperature and initial concentration, were studied in detail using the adsorbent magnetized by both methods. The highest adsorption efficiency was achieved at pH 2. The maximum adsorption capacities of both types of magnetized material at room temperature were found to be 339.2 and 286.1 mg of dye per 1 g of ferrofluid modified and microwave synthesized particles modified adsorbent, respectively. Thermodynamic study of dye adsorption revealed a spontaneous and endothermic process in the temperature range between 279.15 and 313.15 K. The data were fitted to various equilibrium and kinetic models. Experimental data matched well with the pseudo-second-order kinetics and Freundlich isotherm model. The Leptothrix sheaths have excellent efficacy for dye adsorption. This material can be used as an effective, low-cost adsorbent.

  20. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications.

    PubMed

    Capanema, Nádia S V; Mansur, Alexandra A P; Mansur, Herman S; de Jesus, Anderson C; Carvalho, Sandhra M; Chagas, Poliane; de Oliveira, Luiz C

    2017-08-28

    In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g -1 depending on the dye concentration (from 100 to 500 mg L -1 ), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L -1 , 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.

  1. Optimization of nanoparticle structure for improved conversion efficiency of dye solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com.my

    2014-10-24

    Heavy dye loading and the ability to contain the light within the thin layer (typically ∼12 μm) are the requirement needed for the photoelectrode material in order to enhance the harvesting efficiency of dye solar cell. This can be realized by optimizing the particle size with desirable crystal structure. The paper reports the investigation on the dependency of the dye loading and light scattering on the properties of nanostructured photoelectrode materials by comparing 4 different samples of TiO{sub 2} in the form of nanoparticles and micron-sized TiO{sub 2} aggregates which composed of nanocrystallites. Their properties were evaluated by using scanningmore » electron microscopy, X-ray diffraction and UVVis spectroscopy while the performance of the fabricated test cells were measured using universal photovoltaic test system (UPTS) under 1000 W/cm{sup 2} intensity of radiation. Nano sized particles provide large surface area which allow for greater dye adsorption but have no ability to retain the incident light in the TiO{sub 2} film. In contrast, micron-sized particles in the form of aggregates can generate light scattering allowing the travelling distance of the light to be extended and increasing the interaction between the photons and dye molecules adsorb on TiO{sub 2}nanocrystallites. This resulted in an improvement in the conversion efficiency of the aggregates that demonstrates the close relation between light scattering effect and the structure of the photolectrode film.« less

  2. Electrospun nanofiber membranes for adsorption of dye molecules from textile wastewater

    NASA Astrophysics Data System (ADS)

    Akduman, C.; Akçakoca Kumbasar, E. P.; Morsunbul, S.

    2017-10-01

    The nanofiber membranes prepared by the electrospinning method have unique properties such as high specific surface area and high porosity with fine pores. These properties led electrospun nanofiber membranes to use for the removal of dye molecules from textile wastewater. In this study, a hydrophobic Thermoplastic Polyurethane (TPU) and a hydrophilic Poly (vinyl alcohol) (PVA) were selected for producing electrospun nanofibers and their sorption capacities were investigated. The largest sorption capacity reached to maximum 88.31 mg/g, belong to BTCA cross-linked PVA membranes due to hydrophilic character of PVA. Contrary to expectation, hydrophobic character of TPU was dominant and incorporation of CD to the TPU nanofibers did not affect the sorption of the TPU membranes, and showed very low adsorption capacity (14.48 mg/g).

  3. Surface enhanced Raman spectroscopy (SERS) from a molecule adsorbed on a nanoscale silver particle cluster in a holographic plate

    NASA Astrophysics Data System (ADS)

    Jusinski, Leonard E.; Bahuguna, Ramen; Das, Amrita; Arya, Karamjeet

    2006-02-01

    Surface enhanced Raman spectroscopy has become a viable technique for the detection of single molecules. This highly sensitive technique is due to the very large (up to 14 orders in magnitude) enhancement in the Raman cross section when the molecule is adsorbed on a metal nanoparticle cluster. We report here SERS (Surface Enhanced Raman Spectroscopy) experiments performed by adsorbing analyte molecules on nanoscale silver particle clusters within the gelatin layer of commercially available holographic plates which have been developed and fixed. The Ag particles range in size between 5 - 30 nanometers (nm). Sample preparation was performed by immersing the prepared holographic plate in an analyte solution for a few minutes. We report here the production of SERS signals from Rhodamine 6G (R6G) molecules of nanomolar concentration. These measurements demonstrate a fast, low cost, reproducible technique of producing SERS substrates in a matter of minutes compared to the conventional procedure of preparing Ag clusters from colloidal solutions. SERS active colloidal solutions require up to a full day to prepare. In addition, the preparations of colloidal aggregates are not consistent in shape, contain additional interfering chemicals, and do not generate consistent SERS enhancement. Colloidal solutions require the addition of KCl or NaCl to increase the ionic strength to allow aggregation and cluster formation. We find no need to add KCl or NaCl to create SERS active clusters in the holographic gelatin matrix. These holographic plates, prepared using simple, conventional procedures, can be stored in an inert environment and preserve SERS activity after several weeks subsequent to preparation.

  4. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce

    2015-12-01

    A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [Adsorption of a dye by sludges and the roles of extracellular polymeric substances].

    PubMed

    Kong, Wang-sheng; Liu, Yan

    2007-12-01

    This paper investigated the adsorption of a dye, acid turquoise blue A, by four kinds of sludges including activated sludge, anaerobic sludge, dried activated sludge, and dried anaerobic sludge, respectively. The roles of extracellular polymeric substances (EPS) including the soluble EPS (SEPS) and bound EPS (BEPS) for the biosorption of activated sludge and anaerobic sludge were further studied. Results show that the relation between four kinds of sludge adsorption amount and remained concentration of the dye fitted well both Freundlich model (R2: 0.921-0.995) and Langmuir model (R2: 0.958-0.993), but not quite fitted BET model (R2: 0.07-0.863). The adsorption capability of dried anaerobic sludge ranked the highest, and dried activated sludge was the lowest. According to Langmuir isotherm, the maximum adsorption amount of dried anaerobic, anaerobic, activated, and dried activated sludge was 104 mg/g, 86 mg/g, 65 mg/g, 20 mg/g, respectively. The amount of the dye found in EPS for both activated sludge and anaerobic sludge were over 50%, illustrating that EPS adsorption was predominant in adsorption of the dye by sludge. The amount of adsorbed dye by BEPS was greater than that by SEPS for anaerobic sludge, but for activated sludge the result was quite opposite. The amount of adsorbed dye by unit mass SEPS was much higher than the corresponding values of BEPS for both sludges. The average amount of adsorbed dye by unit mass SEPS was 52 times of the corresponding value of BEPS for activated sludge, and 10 times for anaerobic sludge. The relation between adsorption amount of dye by BEPS from anaerobic sludge and remained concentration of the dye in mixed liquor was best fitted to Langmuir model (R2: 0.9986).

  6. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.

    PubMed

    Zhao, Dan-Hua; Gao, Hong-Wen

    2010-01-01

    to the Langmuir isothermal adsorption with the binding constant (K) of 5.24 x 10(4) M(-1) and the Gibbs free energy change (Delta G) of -26.9 kJ/mol. The molar ratio of Ca(2+) to CO(3) (2-) and APRB was calculated to be 1:0.94:0.0102, i.e., approximately 92 CaCO(3) molecules occluded only one APRB. Approximately 78% of the inclusion aggregates are between 3 and 20 mm and the particles are global-like with 50-100 nm. The element mapping on Ca, S, and C indicated APRB distributed a lot of CaCO(3), i.e., the APRB layer may be pressed between both sides of CaCO(3) layers. The molar ratio of Ca to S was calculated to 44, i.e., 88 CaCO(3) molecules carried one APRB, according to the above data. During the growing of CaCO(3) particles, APRB may be attracted into the temporary electric double layer in micelle form by the strong charge interaction between sulfonic groups of APRB and Ca(2+) and the hydrophobic stack of long alkyl chains. Four dyes were adsorbed: reactive brilliant red X-3B and weak acid green GS as anionic dyes and EV and MB as cationic dyes. The removals of EV and MB are extremely obvious and the saturation adsorption of EV and MB just neutralized all the negative charges in the inclusion particles. The selectivity demonstrated the ion-pair attraction, i.e., the cationic adsorption capacity depends on the negative charge number of the inclusion material. By fitting the Langmuir isotherm model, the monolayer adsorptions of EV and MB were confirmed. Their K values were calculated to be 2.4 x 10(6) and 7.3 x 10(5) M(-1), and Delta G was calculated to be 36.4 and -33.4 kJ/mol. The adsorption of four POPs on the material obeyed the lipid-water partition law, and their partition coefficients (K (pw)) were calculated to be 9,342 L/kg for Phe, 7,301 L/kg for Flu, 1,226 L/kg for Bip, and 870 L/kg for Bpa. The K (pw) is the direct ratio to their lipid-water partition coefficients (K (ow)) with 0.314 of slope. Besides this, a cost-effective CaCO(3)/APRB inclusion

  8. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics.

    PubMed

    Rodríguez, Araceli; García, Juan; Ovejero, Gabriel; Mestanza, María

    2009-12-30

    Activated carbon was utilized as adsorbent to remove anionic dye, Orange II (OII), and cationic dye, Methylene blue (MB), from aqueous solutions by adsorption. Batch experiments were conducted to study the effects of temperature (30-65 degrees C), initial concentration of adsorbate (300-500 mg L(-1)) and pH (3.0-9.0) on dyes adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The equilibrium experimental data were analyzed by the Langmuir, Freundlich, Toth and Redlich-Peterson models. The kinetic data obtained with different carbon mass were analyzed using a pseudo-first order, pseudo-second order, intraparticle diffusion, Bangham and Chien-Clayton equations. The best results were achieved with the Langmuir isotherm equilibrium model and with the pseudo-second order kinetic model. The activated carbon was found to be very effective as adsorbent for MB and OII from aqueous solutions.

  9. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal

    NASA Astrophysics Data System (ADS)

    Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.

    2014-06-01

    The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.

  10. Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells.

    PubMed

    Inoue, Ippei; Watanabe, Kiyoshi; Yamauchi, Hirofumi; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2014-10-01

    We designed and mass-produced a versatile protein supramolecule that can be used to manufacture a highly efficient dye-sensitized solar cell (DSSC). Twelve single-walled carbon-nanotube (SWNT)-binding and titanium-mineralizing peptides were genetically integrated on a cage-shaped dodecamer protein (CDT1). A process involving simple mixing of highly conductive SWNTs with CDT1 followed by TiO2 biomineralization produces a high surface-area/weight TiO2 -(anatase)-coated intact SWNT nanocomposite under environmentally friendly conditions. A DSSC with a TiO2 photoelectrode containing 0.2 wt % of the SWNT-TiO2 nanocomposite shows a current density improvement by 80% and a doubling of the photoelectric conversion efficiency. The SWNT-TiO2 nanocomposite transfers photon-generated electrons from dye molecules adsorbed on the TiO2 to the anode electrode swiftly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tunable electronic and optical properties of gas molecules adsorbed monolayer graphitic ZnO: Implications for gas sensor and environment monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Du, Qikui; Zhang, Lifa

    2017-12-01

    Due to the large surface area and the peculiar electronic characters, great attention has been paid to 2D materials for the gas sensing applications. Here, using the hybrid density functional calculations, we systematically study the adsorptions of gas molecules on the monolayer graphitic ZnO (g-ZnO), including CO, H2, H2O, H2S, NH3, NO, NO2, O2, and SO2. For most of the molecules, g-ZnO shows superior sensing performance to the well-known MoS2, black phosphorus, blue phosphorus, antimonene, and germanene. H2S, NO, NO2, and SO2 act as charge acceptors, and CO, H2, H2O, and NH3 serve as charge donors. These molecules also induce distinct modifications to the electronic structures, work functions, and optical adsorptions. NO, NO2, and O2 form flat bands in the bandgaps of the spin-up or spin-down states, whereas other molecules mainly tune the bandgaps and the orbital couplings. In particular, g-ZnO is most likely to adsorb the atmospheric pollutant SO2, which has the strongest interaction through hybridizing its widely broadened 2p orbitals with the 3d orbitals of g-ZnO. Moreover, the improved visible light absorption is demonstrated in the NO2 adsorbed g-ZnO. Our results not only confirm that the electronic and optical properties of g-ZnO can be effectively tuned by the selective adsorption of gas molecules but also provide insightful guidance for the potential application of g-ZnO in the field of gas sensors.

  12. Control of the dipole layer of polar organic molecules adsorbed on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Su, Kai-Jun; Wang, Chin-Yung; Pi, Tun-Wen; Metz, Sebastian; Papadopoulos, Theodoros A.; Chiang, T.-C.; Ishii, Hisao; Tang, S.-J.

    2017-02-01

    Organic molecules with a permanent electric dipole moment have been widely used as a template for further growth of molecular layers in device structures. Key properties of the resulting organic films such as energy level alignment (ELA), work function, and injection/collection barrier are linked to the magnitude and direction of the dipole moment at the interface. Using angle-resolved photoemission spectroscopy (ARPES), we have systematically investigated the coverage-dependent work function and spectral line shapes of occupied molecular energy states (MESs) of chloroaluminium-phthalocyanine (ClAlPc) grown on Ag(111). We demonstrate that the dipole orientation of the first ClAlPc layer can be controlled by adjusting the deposition rate and postannealing conditions, and we find that the ELA at the interface differs by ˜0.4 eV between the Cl up and down configurations of the adsorbed ClAlPc molecules. These observations are rationalized by density functional theory (DFT) calculations based on a realistic model of the ClAlPc/Ag(111) interface, which reveal that the different orientations of the ClAlPc dipole layer lead to different charge-transfer channels between the adsorbed ClAlPc and Ag(111) substrate. Our findings provide a useful framework toward method development for ELA tuning.

  13. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs.

    PubMed

    Zhou, Li; Gao, Chao; Xu, Weijian

    2010-05-01

    A versatile and robust adsorbent with both magnetic property and very high adsorption capacity is presented on the basis of functionalization of iron oxide-silica magnetic particles with carboxylic hyperbranched polyglycerol (Fe(3)O(4)/SiO(2)/HPG-COOH). The structure of the resulting product was confirmed by Fourier transform infrared (FTIR) spectra, thermo gravimetric analysis (TGA), zeta-potential, and transmission electron microscopy (TEM). According to the TGA results, the density of the carboxylic groups on the surface of Fe(3)O(4)/SiO(2)/HPG-COOH is calculated to be as high as 3.0 mmol/g, posing a powerful base for adsorbing dyes and drugs. Five kinds of dyes and one representative anticancer drug were chosen to investigate the adsorption capacity of the as-prepared magnetic adsorbent. The adsorbent shows highly efficient adsorption performance for all of the adsorbates especially for the cationic dyes and drug. For example, the saturated adsorption capacity of the Fe(3)O(4)/SiO(2)/HPG-COOH for methyl violet (MV) can reach 0.60 mmol/g, which is much higher than the previous magnetic adsorbents (usually lower than 0.30 mmol/g). 95% of MV and 90% of R6G could be adsorbed within 5 min, and both of the adsorptions reached equilibrium in about 15 min. The adsorption kinetics and isotherm of the adsorbents were investigated in detail and found that the kinetic and equilibrium adsorptions are well-modeled using pseudo-second-order kinetics and Langmuir isotherm model, respectively. In addition, the influences of pH and ionic strength on the adsorption capacity were also examined and found that pH has much greater effect on the adsorption capacity compared with the ionic strength. Regeneration experiments showed that the Fe(3)O(4)/SiO(2)/HPG-COOH can be well-regenerated in ethanol and partially regenerated in 1 M HCl aqueous solution. After regeneration, the magnetic adsorbents can still show high adsorption capacity even for 10 cycles of desorption-adsorption. No

  14. Hydrogen Abstraction from Individual Thiophenol Molecules Adsorbed on Cu(111)

    NASA Astrophysics Data System (ADS)

    Rao, Bommisetty; Kwon, Ki-Young; Liu, Anwei; Zhang, Jin-Tao; Bartels, Ludwig

    2004-03-01

    Thiol compounds on metal surfaces have been studied intensively because of their ability to form self-assembled monolayers (SAMs). However, the transition from the thiol to the surface thiolate is difficult to investigate in detail in the solution phase. Here we report on STM measurements that address the adsorption of a variety of substituted thiophenols on Cu(111) at 15K in vacuum. At this temperature, adsorption does not cause immediate scission of the S-H bond. We confirmed this by STM-based vibrational spectroscopy. Consequently, the sulfur atom of the thiol group adsorbs on-top of a substrate atom, which results in a sufficient separation of the aryl group from the substrate to allow its free rotation even at 15K. Asymmetrically substituted thiophenols result in STM images of pronounced helicity, which indicates that the molecules cannot tilt upright to exchange their adsorption side. Attachment of electrons from the tunneling current can cause hydrogen abstraction from the thiophenols, which locks them into the substrate. We investigated the dependence of the yield of the hydrogen abstraction on the thiophenol substituent identity and position. We find pronounced variations which may follow the Hammett Equation known from Standard Organic Chemistry.

  15. MALDI mass spectrometry of dye-peptide and dye-protein complexes.

    PubMed

    Salih, B; Zenobi, R

    1998-04-15

    Immobilized sulfonate dyes are widely used for protein separation and purification, but the mode of interaction between the dye molecules and the proteins is largely unknown. Here we show that specific noncovalent dye-protein and dye-peptide complexes can be observed using MALDI mass spectrometry. We prove that the interaction is prodominantly electrostatic and that it involves protonated sites of the peptides and proteins, including the NH2 terminus, and deprotonated SO3 groups of the dyes. Furthermore, we show that MALDI-MS of such complexes with a nonacidic matrix, p-nitro-aniline, can be used to determine the number of accessible basic sites of a protein or peptide in its folded structure. Our results are in good agreement with measurements of the same property done with electrospray ionization.

  16. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO 2 Anchoring Characteristics for Dye-Sensitized Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Jacqueline M.; Blood-Forsythe, Martin A.; Lin, Tze-Chia

    Donor-pi-acceptor dyes containing thiophenyl pi-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S center dot center dot centermore » dot C equivalent to N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the pi-conjugated portion of MK-44 shows that this S center dot center dot center dot C equivalent to N bonding underpins the highly efficient intramolecular charge transfer(ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S center dot center dot center dot C equivalent to N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of,MK-2. More generally, this study provides the first unequivocal evidence for an S center dot center dot center dot C equivalent to N

  17. Optical properties of cyanine dyes in nanotubes of chrysotile asbestos

    NASA Astrophysics Data System (ADS)

    Starovoytov, Anton A.; Vartanyan, Tigran A.; Belotitskii, Vladimir I.; Kumzerov, Yuri A.; Sysoeva, Anna A.

    2017-08-01

    Optical properties of cyanine dye molecules incorporated in nanotubes of natural chrysotile asbestos are studied. The absorption and fluorescence spectra of dye in asbestos have the similar shapes as in the ethanol solution, apart from small blue shift of the maxima. The Stokes shift in asbestos is smaller than in the ethanol solution. The fluorescence decay times of the dyes in asbestos nanotubes are found to be larger than that in the case of thin films of the same dyes formed on the transparent dielectric supports. This observation is rationalized in terms of the stereoisomerization hindrance in the excited electronic state of dye molecules. At the same time linear dichroism and fluorescence anisotropy observed in the experiment indicate that the embedded dye molecules are well-isolated monomer oriented predominantly along asbestos nanotubes.

  18. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    NASA Astrophysics Data System (ADS)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  19. Adsorbates in a Box: Titration of Substrate Electronic States

    NASA Astrophysics Data System (ADS)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  20. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Uptake of dyes by a promising locally available agricultural solid waste: coir pith.

    PubMed

    Namasivayam, C; Radhika, R; Suba, S

    2001-01-01

    The adsorption of rhodamine-B and acid violet by coir pith carbon was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose and pH. The adsorption followed both Langmuir and Freundlich isotherms. The adsorption capacity was found to be 2.56 mg and 8.06 mg dye per g of the adsorbent for rhodamine-B and acid violet, respectively. Adsorption of dyes followed first order rate kinetics. Acidic pH was favorable for the adsorption of acid violet and alkaline pH was favorable to rhodamine-B. Desorption studies showed that alkaline pH was favorable for the desorption of acid violet and acidic pH was favorable for the desorption of rhodamine-B.

  2. Dye sensitized solar cell (DSSC) with natural dyes extracted from Jatropha leaves and purple Chrysanthemum flowers as sensitizer

    NASA Astrophysics Data System (ADS)

    Tahir, Dahlang; Satriani, Wilda; Gareso, P. L.; Abdullah, B.

    2018-03-01

    DSSC (Dye-Sensitized Solar Cell) prototype has been investigated using Jatropha leaves and purple Chrysanthemum flowers as natural dyes. DSSC consists of working electrode and counter electrode. A working electrode composed of semiconductor nanoparticles TiO2 that has been coated with dye molecules. Dye molecules serve as light photon catchers, while semiconductor nanoparticles TiO2 function to absorb and forward photons into electrons. In the electrode counter given catalyst carbon, serves to accelerate the reaction kinetics of triiodide reduction process on transparent conductive oxide (TCO). DSSC using TiO2 as a semiconductor material and natural dyes as sensitizer from Jatropha leaves and purple Chrysanthemum flowers are successful produced. The physical properties of the working electrode have been determined by using XRD and the chemical properties of the TiO2 powder and dye powder using FTIR and dye solution using UV-Vis. The resulted fabrications are also examined its I-V characteristics. The best performance is generated by mixed dye 1.91 x 10-3 % compared than those DSSC for dye extracted from Jatropha leaves or purple Chrysanthemum. The characterization results show that the higher of the absorption wavelength of the DSSC efficiency is high.

  3. Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells.

    PubMed

    Shen, Qing; Ogomi, Yuhei; Park, Byung-wook; Inoue, Takafumi; Pandey, Shyam S; Miyamoto, Akari; Fujita, Shinsuke; Katayama, Kenji; Toyoda, Taro; Hayase, Shuzi

    2012-04-07

    Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to Nc

  4. Energy transfer dynamics from individual semiconductor nanoantennae to dye molecules with implication to light-harvesting nanosystems

    NASA Astrophysics Data System (ADS)

    Shan, Guangcun; Hu, Mingjun; Yan, Ze; Li, Xin; Huang, Wei

    2018-03-01

    Semiconductor nanocrystals can be used as nanoscale optical antennae to photoexcite individual dye molecules in an ensemble via energy transfer mechanism. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. Herein we investigate the effect of the average donor-acceptor spacing on the time-resolved fluorescence intensity and dynamics of single donor-acceptor pairs with the dye acceptor concentration decreasing by using quantum Monte-Carlo simulation of FRET dynamics. Our results validated that the spatial disorder controlling the microscopic energy transfer rates accounts for the scatter in donor fluorescence lifetimes and intensities, which provides a new design guideline for artificial light-harvesting nanosystems.

  5. Physicochemical modeling of reactive violet 5 dye adsorption on home-made cocoa shell and commercial activated carbons using the statistical physics theory

    NASA Astrophysics Data System (ADS)

    Sellaoui, Lotfi; Lima, Éder Cláudio; Dotto, Guilherme Luiz; Dias, Silvio L. P.; Ben Lamine, Abdelmottaleb

    Two equilibrium models based on statistical physics, i.e., monolayer model with single energy and multilayer model with saturation, were developed and employed to access the steric and energetic aspects in the adsorption of reactive violet 5 dye (RV-5) on cocoa shell activated carbon (AC) and commercial activated carbon (CAC), at different temperatures (from 298 to 323 K). The results showed that the multilayer model with saturation was able to represent the adsorption system. This model assumes that the adsorption occurs by a formation of certain number of layers. The n values ranged from 1.10 to 2.98, indicating that the adsorbate molecules interacted in an inclined position on the adsorbent surface and aggregate in solution. The study of the total number of the formed layers (1 + L2) showed that the steric hindrance is the dominant factor. The description of the adsorbate-adsorbent interactions by calculation of the adsorption energy indicated that the process occurred by physisorption in nature, since the values were lower than 40 kJ mol-1.

  6. Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions

    NASA Technical Reports Server (NTRS)

    Shortt, Brian; Chutjian, Ara; Orient, Otto

    2008-01-01

    A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

  7. Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells.

    PubMed

    Park, Kyung-Hee; Kim, Tae-Young; Han, Shin; Ko, Hyun-Seok; Lee, Suk-Ho; Song, Yong-Min; Kim, Jung-Hun; Lee, Jae-Wook

    2014-07-15

    Two natural dyes extracted from gardenia yellow (Gardenia jasminoides) and cochineal (Dactylopius coccus) were used as sensitizers in the assembly of dye-sensitized solar cells (DSSCs) to harvest light over a wide range of wavelengths. The adsorption characteristics, electrochemical properties and photovoltaic efficiencies of the natural DSSCs were investigated. The adsorption kinetics data of the dyes were obtained in a small adsorption chamber and fitted with a pseudo-second-order model. The photovoltaic performance of a photo-electrode adsorbed with single-dye (gardenia or cochineal) or the mixture or successive adsorption of the two dyes, was evaluated from current-voltage measurements. The energy conversion efficiency of the TiO2 electrode with the successive adsorption of cochineal and gardenia dyes was 0.48%, which was enhanced compared to single-dye adsorption. Overall, a double layer of the two natural dyes as sensitizers was successfully formulated on the nanoporous TiO2 surface based on the differences in their adsorption affinities of gardenia and cochineal. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatani, Mehboob, E-mail: mkhatani@hotmail.com; Hamid, Nor Hisham, E-mail: hishmid@petronas.com.my; Sahmer, Ahmed Zahrin, E-mail: azclement@yahoo.com

    2015-07-22

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO{sub 2} using TiCl{sub 4} treatment was deposited prior to the deposition of the photoanode (active area of 1cm{sup 2}) with the thickness of 6, 12, 18, 24, andmore » 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO{sub 2}/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency.« less

  9. Experimental and Computational Studies on the Design of Dyes for Water-splitting Dye-sensitized Photoelectrochemical Tandem Cells

    NASA Astrophysics Data System (ADS)

    Mendez-Hernandez, Dalvin D.

    Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into oxygen and hydrogen (a useful chemical fuel) is a fascinating theoretical and experimental challenge that is worth pursuing because the advance of the knowledge that it implies and the availability of water and sunlight. Inspired by natural photosynthesis and building on previous work from our laboratory, this dissertation focuses on the development of water-splitting dye-sensitized photoelectrochemical tandem cells (WSDSPETCs). The design, synthesis, and characterization of high-potential porphyrins and metal-free phthalocyanines with phosphonic anchoring groups are reported. Photocurrents measured for WSDSPETCs made with some of these dyes co-adsorbed with molecular or colloidal catalysts on TiO2 electrodes are reported as well. To guide in the design of new molecules we have used computational quantum chemistry extensively. Linear correlations between calculated frontier molecular orbital energies and redox potentials were built and tested at multiple levels of theory (from semi-empirical methods to density functional theory). Strong correlations (with r2 values > 0.99) with very good predictive abilities (rmsd < 50 mV) were found when using density functional theory (DFT) combined with a continuum solvent model. DFT was also used to aid in the elucidation of the mechanism of the thermal relaxation observed for the charge-separated state of a molecular triad that mimics the photo-induced proton coupled electron transfer of the tyrosine-histidine redox relay in the reaction center of Photosystem II. It was found that the inclusion of explicit solvent molecules, hydrogen bonded to specific sites within the molecular triad, was essential to explain the observed

  10. A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

    PubMed Central

    Wan, Decheng; Chen, Feng; Geng, Qingrui; Lu, Hang; Willcock, Helen; Liu, Qiuming; Wang, Fangyingkai; Zou, Kaidian; Jin, Ming; Pu, Hongting; Du, Jianzhong

    2014-01-01

    The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, π–π stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials. PMID:25465671

  11. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.

    PubMed

    Wang, Hong-Yan; Gao, Hong-Wen

    2009-05-01

    Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. On the basis of the chemical coprecipitation of calcium oxalate (CaC(2)O(4)), bromopyrogallol red (BPR) was embedded during the growing of CaC(2)O(4) particles. The ternary C(2)O(4) (2-)-BPR-Ca(2+) sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. The saturation number of BPR binding to CaC(2)O(4) reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 x 10(5) M(-1). Over 80% of the sorbent particles are between 0.7 and 1.02 microm, formed by the aggregation of the global CaC(2)O(4)/BPR inclusion grains of 30-50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC(2)O(4)/BPR inclusion material adsorbed EV over two times more

  12. Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution.

    PubMed

    Zhou, Li; Huang, Jiachang; He, Benzhao; Zhang, Faai; Li, Huabin

    2014-01-30

    This study investigated the potential use of natural peach gum (PG) as alternative adsorbent for the removal of dyes from aqueous solutions. The PG showed high adsorption capacities and selectivity for cationic dyes (e.g., methylene blue (MB) and methyl violet (MV)) in the pH range 6-10. 98% of MB and MV could be adsorbed within 5 min, and both of the adsorptions reached equilibrium within 30 min. The dye uptake process followed the pseudo-second-order kinetic model. The intraparticle diffusion was not the sole rate controlling step. Equilibrium adsorption isotherm data indicated a good fit to the Langmuir isotherm model. Regeneration study revealed that PG could be well regenerated in acid solution. The recovered PG still exhibited high adsorption capacity even after five cycles of desorption-adsorption. On the basis of its excellent adsorption performance and facile availability, PG can be employed as an efficient low cost adsorbent for environmental cleanup. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Atomic scale friction of molecular adsorbates during diffusion.

    PubMed

    Lechner, B A J; de Wijn, A S; Hedgeland, H; Jardine, A P; Hinch, B J; Allison, W; Ellis, J

    2013-05-21

    Experimental observations suggest that molecular adsorbates exhibit a larger friction coefficient than atomic species of comparable mass, yet the origin of this increased friction is not well understood. We present a study of the microscopic origins of friction experienced by molecular adsorbates during surface diffusion. Helium spin-echo measurements of a range of five-membered aromatic molecules, cyclopentadienyl, pyrrole, and thiophene, on a copper(111) surface are compared with molecular dynamics simulations of the respective systems. The adsorbates have different chemical interactions with the surface and differ in bonding geometry, yet the measurements show that the friction is greater than 2 ps(-1) for all these molecules. We demonstrate that the internal and external degrees of freedom of these adsorbate species are a key factor in the underlying microscopic processes and identify the rotation modes as the ones contributing most to the total measured friction coefficient.

  14. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  15. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  16. Water hyacinth cellulose-based membrane for adsorption of liquid waste dyes and chromium

    NASA Astrophysics Data System (ADS)

    Agtasia Putri, Cintia; Yulianti, Ian; Desianna, Ika; Sholihah, Anisa; Sujarwata

    2018-04-01

    Water hyacinth (Eichornia crassipes) is a weed in aquatic area whose trunk contains a lot of cellulose. Cellulose contained can be used as dyes adsorbent in a form of composite membrane. This study aims to investigate the capacity of water hyacinth cellulose-based membrane to adsorb dye and Chromium (Cr) contained in liquid. The process of membrane fabrication begins with isolation of water hyacinth cellulose. The isolated cellulose powder was used to make the membrane by mixing it with polyvinyl alcohol-polyethylene glycol (PVA-PEG) with various compositions. The morphology of membrane surface was analyzed using CCD microscope. The analysis using Ultraviolet Visible Spectroscopy (UV-Vis) and Atomic Absorption Spectroscopy (AAS) indicate that the membrane with composition ratio of cellulose: PVA: PEG of 6.5: 2.5: 1 adsorb Cr up to 38.75%.

  17. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    NASA Astrophysics Data System (ADS)

    Wang, Wenxia; Huang, Guohe; An, Chunjiang; Xin, Xiaying; Zhang, Yan; Liu, Xia

    2017-05-01

    From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  18. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent.

    PubMed

    Munagapati, Venkata Subbaiah; Yarramuthi, Vijaya; Kim, Yeji; Lee, Kwon Min; Kim, Dong-Su

    2018-02-01

    The adsorption characteristics of Reactive Black 5 (RB5) and Cong Red (CR) onto Banana Peel Powder (BPP) from aqueous solution were investigated as a function of pH, contact time, initial dye concentration and temperature. The BPP was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) analysis. FTIR results revealed that hydroxyl (-OH), amine (-NH) and carboxyl (-C˭O) functional groups present on the surface of BPP. The SEM results show that BPP has an irregular and porous surface morphology which is adequate for dye adsorption. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Experimental results were best represented by the Langmuir isotherm model. The adjustments of models were confirmed by the Chi-square (χ 2 ) test and the correlation coefficients (R 2 ). The maximum monolayer adsorption capacities of RB5 and CR on BPP calculated from Langmuir isotherm model were 49.2 and 164.6mg/g at pH 3.0 and 298K. Experimental data were also tested in terms of adsorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption processes of both RB5 and CR followed well pseudo-second-order kinetic models. The calculated thermodynamic parameters ΔG°, ΔH° and ΔS° showed that the adsorption of RB5 and CR onto BPP was feasible, spontaneous and endothermic in the temperature range 298-318K. The RB5 and CR were desorbed from BPP using 0.1M NaOH. The recovery for both anionic dyes was found to be higher than 90%. Based on these it can be concluded that BPP can be used as an effective, low cost, and eco-friendly adsorbent for CR removal than RB5 from aqueous solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  20. Discovery of black dye crystal structure polymorphs: Implications for dye conformational variation in dye-sensitized solar cells

    DOE PAGES

    Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun

    2015-11-24

    Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less

  1. Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis.

    PubMed

    S, Suganya; P, Senthil Kumar; A, Saravanan; P, Sundar Rajan; C, Ravikumar

    2017-03-01

    In this research, the microwave assistance has been employed for the preparation of novel material from agro/natural bio-waste i.e. sawdust, for the effective removal of methylene blue (MB) dye from aqueous solution. The characterization of the newly prepared microwave assisted sawdust (MASD) material was performed by using FTIR, SEM and XRD analyses. In order to obtain the maximum removal of MB dye from wastewater, the adsorption experimental parameters such as initial dye concentration, contact time, solution pH and adsorbent dosage were optimized by trial and error approach. The obtained experimental results were applied to the different theoretical models to predict the system behaviour. The optimum conditions for the maximum removal MB dye from aqueous solution for an initial MB dye concentration of 25mg/L was calculated as: adsorbent dose of 3g/L, contact time of 90min, solution pH of 7.0 and at the temperature of 30°C. Freundlich and pseudo-second order models was best obeyed with the studied experimental data. Langmuir maximum monolayer adsorption capacity of MASD for MB dye removal was calculated as 58.14mg of MB dye/g of MASD. Adsorption diffusion model stated that the present adsorption system was controlled by intraparticle diffusion model. The obtained results proposed that, novel MASD was considered to be an effective and low-cost adsorbent material for the removal of dye from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Interaction Between Cyanine Dye IR-783 and Polystyrene Nanoparticles in Solution.

    PubMed

    Zhang, Yunzhi; Xu, Hui; Casabianca, Leah B

    2018-05-17

    The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In the present work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference (STD)-NMR was also used to show that protons near the positively-charged nitrogen in the dye are more strongly associated with the negatively-charged nanoparticle surface than protons near the negatively-charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles. This article is protected by copyright. All rights reserved.

  3. Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Nan, Hui; Shen, He-Ping; Wang, Gang; Xie, Shou-Dong; Yang, Gui-Jun; Lin, Hong

    2017-11-01

    Anthocyanin and Chlorophyll extracted from Troll flower and Cypress leaf respectively are used as natural sensitizers in dye sensitized solar cells (DSCs), with their optical and electrochemical properties investigated. UV-Vis absorption measurement showed that the mixture of two dyes enabled an enhanced and wider absorption in the wavelength range of 300 nm-700 nm compared to each single dye. FTIR results proved that anthocyanin is chemically adsorbed onto the TiO2 film, while it is physical adsorption for chlorophyll. The energy level offsets on the TiO2/dye/electrolyte interface for each dye and the dye mixture with different ratios were calculated from the electrochemical analysis, which affect the electron injection and dye regeneration efficiencies. The optimized ratio of the two dyes in the mixture was found to be ∼2:5, inducing both sufficient charge transfer driving force and minimal energy loss. By incorporating this mixture into the solar cell as co-adsorbing sensitizer, the photovoltaic performance was prominently improved compared with the single dye sensitization system.

  4. Effect of DNA-CTMA complex on optical properties of LDS 821 dye

    NASA Astrophysics Data System (ADS)

    Udayan, Sony; Ramachandran, Vijesh Kavumoottil; Sebastian, Mathew; Chandran, Pradeep; Nampoori, Vadakkedath Parameswaran Narayanan; Thomas, Sheenu

    2017-07-01

    We have investigated the fluorescence behavior of LDS 821 dye (Styryl 9 M) with deoxyribonucleic acid attached with cetyltrimethyl-ammonium (DNA-CTMA). Optical absorption studies confirm the intercalation of the dye molecules with DNA-CTMA. Fluorescence studies show an enhancement of fluorescence intensity of dye with DNA-CTMA, which suggest the reduction of TICT states of the dye molecule. The FWHM of the fluorescence spectrum increases from 95 nm to 161 nm indicating the formation of new energy levels when DNA-CTMA forms a complex with LDS 821 dye. Fluorescence lifetime measurements shows that lifetime of LDS 821 varies from 507ps to 953 ps with the addition of DNA-CTMA, which also confirms the deactivation of TICT states of dye molecule. Results show that the incorporation of DNA-CTMA with LDS 821 dye improves the optical characteristics of LDS 821 dye and therefore, can be used as a good fluorescence probe for DNA visualization as well as in lasing applications.

  5. Adsorption of Dyes in Studying the Surface Chemistry of Ultradispersed Diamond

    NASA Astrophysics Data System (ADS)

    Khokhlova, T. D.; Yunusova, G. R.; Lanin, S. N.

    2018-05-01

    The effect the surface chemistry of ultradispersed diamond (UDD) has on the adsorption of watersoluble dyes is considered. A comparison is made to adsorption on graphitized thermal carbon black (GTCB), which has a homogeneous and nonporous surface. The adsorption isotherms of dyes and the dependence of the adsorption on the pH of solutions are measured. It is found that UDD adsorbs acid (anionic) dyes—acid orange (AO) and acid anthraquinone blue (AAB)—but barely adsorbs a basic (cationic) dye, methylene blue (MB), because of the predominance of positively charged basic groups on the surface of UDD. The maximum adsorption of AO is much lower on UDD than on GTCB, while the maximum adsorption of AAB is similar for both surfaces. The adsorption of AO on UDD depends strongly on the pH of the solution, while the adsorption of AAB is independent of this parameter. It is suggested that the adsorption of AAB is determined not only by ionic and hydrophobic interactions but also by coordination interactions with impurity metal ions on a UDD surface. It is concluded that the adsorption of dyes characterizes the chemistry of a UDD surface with high sensitivity.

  6. Active MgO-SiO2 hybrid material for organic dye removal: A mechanism and interaction study of the adsorption of C.I. Acid Blue 29 and C.I. Basic Blue 9.

    PubMed

    Ciesielczyk, Filip; Bartczak, Przemysław; Zdarta, Jakub; Jesionowski, Teofil

    2017-12-15

    A comparative analysis was performed concerning the removal of two different organic dyes from model aqueous solution using an inorganic oxide adsorbent. The key element of the study concerns evaluation of the influence of the dyes' structure and their acid-base character on the efficiency of the adsorption process. The selection of sorbent material for this research - an MgO-SiO 2 oxide system synthesized via a modified sol-gel route - is also not without significance. The relatively high porous structure parameters of this material (A BET  = 642 m 2 /g, V p  = 1.11 mL and S p  = 9.8 nm) are a result of the proposed methodology for its synthesis. Both organic dyes (C.I. Acid Blue 29 and C.I. Basic Blue 9) were subjected to typical batch adsorption tests, including investigation of such process parameters as time, initial adsorbate concentration, adsorbent dose, pH and temperature. An attempt was also made to estimate the sorption capacity of the oxide material with respect to the analyzed organic dyes. To achieve the objectives of the research - determine the efficiency of adsorption - it was important to perform a thorough physicochemical analysis of the adsorbents (e.g. FTIR, elemental analysis and porous structure parameters). The results confirmed the significantly higher affinity of the basic dye to the oxide adsorbents compared with the acidic dye. The regeneration tests, which indirectly determine the nature of the adsorbent/adsorbate interactions, provide further evidence for this finding. On this basis, a probable mechanism of dyes adsorption on the MgO-SiO 2 oxide adsorbent was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Smart Adsorbents with Photoregulated Molecular Gates for Both Selective Adsorption and Efficient Regeneration.

    PubMed

    Cheng, Lei; Jiang, Yao; Yan, Ni; Shan, Shu-Feng; Liu, Xiao-Qin; Sun, Lin-Bing

    2016-09-07

    Selective adsorption and efficient regeneration are two crucial issues for adsorption processes; unfortunately, only one of them instead of both is favored by traditional adsorbents with fixed pore orifices. Herein, we fabricated a new generation of smart adsorbents through grafting photoresponsive molecules, namely, 4-(3-triethoxysilylpropyl-ureido)azobenzene (AB-TPI), onto pore orifices of the support mesoporous silica. The azobenzene (AB) derivatives serve as the molecular gates of mesopores and are reversibly opened and closed upon light irradiation. Irradiation with visible light (450 nm) causes AB molecules to isomerize from cis to trans configuration, and the molecular gates are closed. It is easy for smaller adsorbates to enter while difficult for the larger ones, and the selective adsorption is consequently facilitated. Upon irradiation with UV light (365 nm), the AB molecules are transformed from trans to cis isomers, promoting the desorption of adsorbates due to the opened molecular gates. The present smart adsorbents can consequently benefit not only selective adsorption but also efficient desorption, which are exceedingly desirable for adsorptive separation but impossible for traditional adsorbents with fixed pore orifices.

  8. Correlation between surface morphology and surface forces of protein A adsorbed on mica.

    PubMed Central

    Ohnishi, S; Murata, M; Hato, M

    1998-01-01

    We have investigated the morphology and surface forces of protein A adsorbed on mica surface in the protein solutions of various concentrations. The force-distance curves, measured with a surface force apparatus (SFA), were interpreted in terms of two different regimens: a "large-distance" regimen in which an electrostatic double-layer force dominates, and an "adsorbed layer" regimen in which a force of steric origin dominates. To further clarify the forces of steric origin, the surface morphology of the adsorbed protein layer was investigated with an atomic force microscope (AFM) because the steric repulsive forces are strongly affected by the adsorption mode of protein A molecules on mica. At lower protein concentrations (2 ppm, 10 ppm), protein A molecules were adsorbed "side-on" parallel to the mica surfaces, forming a monolayer of approximately 2.5 nm. AFM images at higher concentrations (30 ppm, 100 ppm) showed protruding structures over the monolayer, which revealed that the adsorbed protein A molecules had one end oriented into the solution, with the remainder of each molecule adsorbed side-on to the mica surface. These extending ends of protein A overlapped each other and formed a "quasi-double layer" over the mica surface. These AFM images proved the existence of a monolayer of protein A molecules at low concentrations and a "quasi-double layer" with occasional protrusions at high concentrations, which were consistent with the adsorption mode observed in the force-distance curves. PMID:9449346

  9. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2017-06-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  10. Adsorption of allura red dye by cross-linked chitosan from shrimp waste.

    PubMed

    Sánchez-Duarte, Reyna G; Sánchez-Machado, Dalia I; López-Cervantes, Jaime; Correa-Murrieta, Ma A

    2012-01-01

    The present study was designed to evaluate the chitosan, which has been obtained by deacetylation of chitin, as a biosorbent. The chitin was isolated from fermented shrimp waste by an important local industrial food biopolymer. The aim of this work was the characterization of chitosan and preparation of cross-linked chitosan- tripolyphosphate (chitosan-TPP) beads for the removal of allura red food dye from aqueous solutions. Conditions of batch adsorption such as pH, time and adsorbent dose were examined. The effectiveness of cross-linked chitosan beads for dye removal was found to be higher for pH 2 (98%, percentage of dye removal) and tends to decrease at pHs of 3 to 11 (up to 49%). The values of percentage removal show that the adsorption capacity increases with time of contact and dosage of chitosan-TPP, but red dye adsorption is mainly influenced by pH level. The cross-linked chitosan-TPP beads can significantly adsorb allura red monoazo dye from aqueous solutions even at acidic pHs unlike raw chitosan beads that tend to dissolve in acidic solutions. Consequently, this modified chitosan has characteristics that allow minimization of environmental pollution and widening the valorization of shrimp waste.

  11. Self-Assembly of Optical Molecules with Supramolecular Concepts

    PubMed Central

    Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko

    2009-01-01

    Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931

  12. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  13. Adsorption Properties of Low-Cost Biomaterial Derived from Prunus amygdalus L. for Dye Removal from Water

    PubMed Central

    Deniz, Fatih

    2013-01-01

    The capability of Prunus amygdalus L. (almond) shell for dye removal from aqueous solutions was investigated and methyl orange was used as a model compound. The effects of operational parameters including pH, ionic strength, adsorbent concentration and mesh size, dye concentration, contact time, and temperature on the removal of dye were evaluated. The adsorption kinetics conformed to the pseudo-second-order kinetic model. The equilibrium data pointed out excellent fit to the Langmuir isotherm model with maximum monolayer adsorption capacity of 41.34 mg g−1 at 293 K. Thermodynamic analysis proved a spontaneous, favorable, and exothermic process. It can be concluded that almond shell might be a potential low-cost adsorbent for methyl orange removal from aqueous media. PMID:23935442

  14. Enhanced absorption in a reverse saturable absorbing dye blended with carbon nanotubes.

    PubMed

    Webster, Scott; Reyes-Reyes, Marisol; Williams, Richard; Carroll, David L

    2008-12-01

    Using nonlinear absorption at 532 nm in the nanosecond temporal regime, we have measured the low fluence nonlinear transmittance properties of the reverse saturable absorbing carbocyanine dye, 1,1',3,3,3',3'-hexamethylindotricarbocyanine iodide (HITCI), blended with well dispersed carbon nanotubes. The nonlinear optical properties of the blends are strongly dependent on the ratio of dye to nanotubes in solution. In the case where the nanotubes per dye molecule ratio is large, we see a distinctive enhancement in optical fluence limiting properties of the system, suggesting enhanced absorption of the excited states. However, when the nanotube to dye ratio decreases, the system's response is dominated by the behavior of the dye. We suggest that this can be understood as a two component system in which sensitized dye molecules associated with the nanotubes have an effectively different optical cross-section from the dye molecules far from the nanotubes. From classical antennae considerations, this is expected.

  15. First principles DFT study of dye-sensitized CdS quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam, E-mail: shyam387@gmail.com

    2014-04-24

    Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positionsmore » of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.« less

  16. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    PubMed

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways.

    PubMed

    Gupta, Kanika; Khatri, Om P

    2017-09-01

    Efficient removal of malachite green (MG) dye from simulated wastewater is demonstrated using high surface area reduced graphene oxide (rGO). The plausible interaction pathways between MG dye and rGO are deduced from nanostructural features (HRTEM) of rGO and spectroscopic analyses (FTIR and Raman). The high surface area (931m 2 ⋅gm -1 ) of rGO, π-π interaction between the aromatic rings of MG dye and graphitic skeleton, and electrostatic interaction of cationic centre of MG dye with π-electron clouds and negatively charged residual oxygen functionalities of rGO collectively facilitate the adsorption of MG dye on the rGO. The rGO displays adsorption capacity as high as 476.2mg⋅g -1 for MG dye. The thermodynamic parameters calculated from the temperature dependent isotherms suggested that the adsorption was a spontaneous and endothermic process. These results promise the potential of high surface area rGO for efficient removal of cationic dyes for wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    PubMed

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.

  19. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  20. Removal of Acid Orange 7 dye from aqueous solutions by adsorption onto Kenya tea pulps; granulated shape

    PubMed Central

    Naraghi, Behnaz; Zabihi, Fahimeh; Narooie, Mohammad Reza; Saeidi, Mahdi; Biglari, Hamed

    2017-01-01

    Background and Aim Water resources pollution control is one of the main challenges of our time for researchers. Colored wastewater discharges caused by textile industry activities has added to the concern. In this study, removal of Acid Orange 7 dye (AO7) using Kenya Tea residue absorbent (granular) has been studied. Methods This cross-sectional study was conducted in 2016. In this work, initially, tea residue was prepared in three forms of raw, treated with concentrated phosphoric acid, and carbonated, at temperatures of 350, 450 and 500 °C in the chemistry laboratory of Gonabad University of Medical Sciences. Then, efficiency of the above absorbents in the removal of Acid Orange 7 dye in initial concentrations of dye as 50–500 mg/l from water samples in terms of pH 2–10 and 1–10 g/l of adsorbent dose within 20 to 300 minutes was investigated. In addition, their subordination from Langmuir and Freundlich absorption isotherms was also determined. Concentration changes in Acid Orange 7 dye at a wavelength of 483 nm was determined by spectrophotometry and results were reported using descriptive statistics. Results Results showed that efficiency of Acid Orange 7 dye removal is higher in acidic pH and higher adsorbent dosage. The highest efficiency of Acid Orange 7 dye removal was 98.41% by raw tea residue absorbent at pH 2, reaction time was 120 minutes and initial concentration of dye was 50 mg/l, which was obtained at adsorbent dosage of 10 g/l. It was determined that the mechanism of absorption acceptably follows Freundlich absorption isotherm (R2=0.97). Conclusion Due to the availability and very low price, optimal performance of Kenya tea raw residue (granular) in Acid Orange 7 dye removal, it can be used as an efficient surface absorber in an absorber from colored wastewater. PMID:28713501

  1. Altering the self-organization of dyes on titania with dyeing solvents to tune the charge-transfer dynamics of sensitized solar cells.

    PubMed

    Wang, Yinglin; Yang, Lin; Zhang, Jing; Li, Renzhi; Zhang, Min; Wang, Peng

    2014-04-14

    Herein we selected the model organic donor-acceptor dye C218 and modulated the self-organization of dye molecules on the surface of titania by changing the dyeing solvent from chlorobenzene to a mixture of acetonitrile and tert-butanol. We further unveiled the relationship between the microstructure of a dye layer and the multichannel charge-transfer dynamics that underlie the photovoltaic performance of dye-sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  3. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    PubMed

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  4. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry

    NASA Astrophysics Data System (ADS)

    Silber, David; Kowalski, Piotr M.; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-01

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO2(110) surface.

  5. Dye-ligand affinity systems.

    PubMed

    Denizli, A; Pişkin, E

    2001-10-30

    Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.

  6. Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a potential adsorbent for removing cationic organic dye from aqueous solution.

    PubMed

    Pei, Ying; Chu, Shan; Chen, Yue; Li, Zhidong; Zhao, Jin; Liu, Shuqi; Wu, Xingjun; Liu, Jie; Zheng, Xuejing; Tang, Keyong

    2017-10-01

    Tannin-immobilized cellulose (CT) hydrogels were successfully fabricated by homogeneous immobilization and crosslinking reaction via a simple method. The structures and properties of hydrogels were characterized by SEM and mechanical test. Methlyene Blue (MB) was selected as a cationic dye model, and the adsorption ability of CT hydrogel was evaluated. Tannins immobilized acted as adsorbent sites which combined MB by electrostatic attraction, resulting in the attractive adsorption ability of CT hydrogel. Adsorption kinetics could be better described by the pseudo-second-order model, and the absorption behaviors were in agreement with a Langmuir isotherm. The adsorption-desorption cycle of CT hydrogel was repeated six times without significant loss of adsorption capacity. In this work, both tannin immobilization and hydrogel formation were achieved simultaneously by a facile homogeneous reaction, providing a new pathway to fabricate tannin-immobilized materials for water treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Time-Delayed Two-Step Selective Laser Photodamage of Dye-Biomolecule Complexes

    NASA Astrophysics Data System (ADS)

    Andreoni, A.; Cubeddu, R.; de Silvestri, S.; Laporta, P.; Svelto, O.

    1980-08-01

    A scheme is proposed for laser-selective photodamage of biological molecules, based on time-delayed two-step photoionization of a dye molecule bound to the biomolecule. The validity of the scheme is experimentally demonstrated in the case of the dye Proflavine, bound to synthetic polynucleotides.

  8. Revealing the influence of Cyano in Anchoring Groups of Organic Dyes on Adsorption Stability and Photovoltaic Properties for Dye-Sensitized Solar Cells.

    PubMed

    Chen, Wei-Chieh; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang

    2017-07-10

    Determining an ideal adsorption configuration for a dye on the semiconductor surface is an important task in improving the overall efficiency of dye-sensitized solar cells. Here, we present a detailed investigation of different adsorption configurations of designed model dyes on TiO 2 anatase (101) surface using first principles methods. Particularly, we aimed to investigate the influence of cyano group in the anchoring part of dye on its adsorption stability and the overall photovoltaic properties such as open circuit voltage, electron injection ability to the surface. Our results indicate that the inclusion of cyano group increases the stability of adsorption only when it adsorbs via CN with the surface and it decreases the photovoltaic properties when it does not involve in binding. In addition, we also considered full dyes based on the results of model dyes and investigated the different strength of acceptor abilities on stability and electron injection ability. Among the various adsorption configurations considered here, the bidentate bridging mode (A3) is more appropriate one which has higher electron injection ability, larger V OC value and more importantly it has higher dye loading on the surface.

  9. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    PubMed

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  10. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-05

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  12. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  13. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  14. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  15. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of

  16. Theoretical Study of Electron Transfer Properties of Squaraine Dyes for Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Juwita, Ratna; Tsai, Hui-Hsu Gavin

    2018-01-01

    The environmental issues and high cost of Ru create many scientists to explore cheaper and safer sensitizer as alternative for dye sensitized solar cells (DSCs). Dyes play an important role in solar energy conversion efficiency. The squaraine (SQ) dyes has good spectral match with the solar spectra, therefore, SQ dyes have great potential for the applications in DSCs. SQ01_CA is an unsymmetrical SQ dye, reported by Grätzel and colleagues in 2007, featuring a D-π-spacer-A framework and has a carboxylic acid anchoring group. The electron donating ability of indolium in SQ01_CA and SQ01_CAA dyes is relatively weak, better performance may be achieved by introducing an additional donor moiety into indolium [1]. In this study, we investigate six unsymmetrical SQ dyes adsorbed on a (TiO2)38 cluster [2] using density functional theory (DFT) and time-dependent DFT to study electron transfer properties of squaraine dyes on their photophysical. SQ01_CA, WH-SQ01_CA, and WH-SQ02_CA use a carboxylic acid group as its electron acceptor. Furthermore, SQ01_CAA, WH-SQ01_CAA, and WH-SQ02_CAA use a cyanoacrylic acid group as its electron acceptor. WH-SQ01_CA and WH-SQ01_CAA have an alkyl, while WH-SQ02_CA and WH-SQ02_CAA have alkoxyl substituted diarylamines to the indolium donor of sensitizer SQ01_CA. Our calculations show with additional diarylamines in donor tail of WH-SQ02_CAA, the SQ dyes have red-shifted absorption and have slightly larger probability of electron density transferred to TiO2 moiety. Furthermore, an additional -CN group as electron a withdrawing group in the acceptor exhibits red-shifted absorption and enhances the electron density transferred to TiO2 and anchoring moiety after photo-excitation. The tendency of calculated probabilities of electron density being delocalized into TiO2 and driving force for excited-state electron injection of these studied SQ dyes is compatible with their experimentally observed.

  17. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis.

    PubMed

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-10-21

    Multilayer dye aggregation at the dye/TiO 2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO 2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO 2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO 2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO 2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells.

  18. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis

    PubMed Central

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-01-01

    Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells. PMID:27767196

  19. Wood (Bagassa guianensis Aubl) and green coconut mesocarp (cocos nucifera) residues as textile dye removers (Remazol Red and Remazol Brilliant Violet).

    PubMed

    Monteiro, Mônica S; de Farias, Robson F; Chaves, José Alberto Pestana; Santana, Sirlane A; Silva, Hildo A S; Bezerra, Cícero W B

    2017-12-15

    In this work the efficiency of two lignocellulosic waste materials, wood residues and coconut mesocarp, were investigated as adsorbents towards two representative textile dyes (Remazol Red, RR and Remazol Brilliant Violet, RBV). The moisture, carbohydrate, protein, lipid, ash and fiber contents of both natural matrices were characterized. The materials were also characterized by infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, specific surface area analysis and thermogravimetry. The adsorption of dyes was monitored by using UV-Vis spectrophotometry. It was verified that both, coconut mesocarp (CM) and wood residues can act as effective adsorbents towards the investigated dyes. It is verified that the maximum adsorption capacity Γ M (mg g -1 ) for RBV and RR are 7.28 and 3.97 towards CM and 0.64 and 0.71 towrads SD. Furthermore, it was verified that the adsorption is strongly pH dependent and, as a general behavior, an increase in the pH value is associated with a decrease of the total amount of adsorbed dye. The adsorption of violet dye onto coconut mesocarp is well described by the Langmuir model, while all the remazol red fitted better with the Freundlich equation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mutagenicity of commercial hair dyes and detection of 2,7-diaminophenazine.

    PubMed

    Watanabe, T; Hirayama, T; Fukui, S

    1990-08-01

    Four commercial oxidative-type hair dye formulations, A, B, C, and D, were treated with hydrogen peroxide (H2O2) to simulate normal conditions of use, and the oxidized hair dyes were tested for their mutagenicity in Salmonella typhimurium TA98 in the presence of a mammalian metabolic activation system (S9 mix). Most of them did not show obvious mutagenicity in the range of 1-25 microliters/plate and all exhibited bactericidal activity at 10 microliters/plate. In order to evaluate the mutagenicity of hair dyes both before and after H2O2 oxidation, rayon linked to a copper-phthalocyanine derivative (blue rayon) was used as an adsorbent for the elimination of interfering bactericidal compounds. Adsorbed compounds on blue rayon were eluted with ammoniacal methanol and eluents were subjected to the Ames test. The mutagenicity of the blue-rayon extracts in TA98 with S9 mix was increased by H2O2 oxidation. The blue-rayon extracts obtained from oxidized A and B were potent mutagens and reverted 334 and 999 colonies/10 microliters of original substance, respectively. In addition, 88 and 249 ng of 2,7-diaminophenazine, which was extremely mutagenic in TA98 with S9 mix, were detected in the extracts of 40 ml of the hair dye formulations A and B, respectively. The mutagenicity in oxidized hair dye formulations was successfully detected by use of blue-rayon extraction. 2,7-Diaminophenazine was only formed in the hair dye formulations containing m-phenylenediamine by H2O2 oxidation. Therefore, attention needs to be paid to the use of m-phenylenediamine as a hair dye component, not only for its own toxicity but also for that of its oxidation products.

  1. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  2. Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors.

    PubMed

    Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina

    2016-01-01

    The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed.

  3. Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye.

    PubMed

    Gürses, A; Doğar, C; Karaca, S; Açikyildiz, M; Bayrak, R

    2006-04-17

    An activated carbon was developed from Rosa canina sp. seeds, characterized and used for the removal of methylene blue (basic dye) from aqueous solutions. Adsorption studies were carried out at 20 degrees C and various initial dye concentrations (20, 40, 60, 80, and 100 mg/L) for different times (15, 30, 60, and 120 min). The adsorption isotherm was obtained from data. The results indicate that the adsorption isotherm of methylene blue is typically S-shaped. The shape of isotherm is believed to reflect three distinct modes of adsorption. In region 1, the adsorption of methylene blue is carried out mainly by ion exchange. In region 2 by polarizations of pi-electrons established at cyclic parts of the previously adsorbed methylene blue molecules is occurred. However, it is not observed any change at the sign of the surface charge although zeta potential value is decreased with increase of amount adsorbed. In region 3, the slope of the isotherm is reduced, because adsorption now must overcome electrostatic repulsion between oncoming ions and the similarly charged solid. Adsorption in this fashion is usually complete when the surface is covered with a monolayer of methylene blue. To reveal the adsorptive characteristics of the produced active carbon, porosity and BET surface area measurements were made. Structural analysis was performed using SEM-EDS. The produced active carbon has the specific surface area of 799.2 m2 g-1 and the iodine number of 495 mg/g.

  4. Enhancement of Fluorescence and Raman Scattering in Cyanine-Dye Molecules on the Surface of Silicon-Coated Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamalieva, A. N.; Toropov, N. A.; Bogdanov, K. V.; Vartanyan, T. A.

    2018-03-01

    A method of formation of a composite structure based on silver nanoparticles and a thin protective silicon film (Ag NPs/Si) is developed. Enhancement of the fluorescence and Raman scattering in cyaninedye molecules deposited onto the formed nanostructure is observed. The optical properties and morphology stability of particles that are in contact with cyanine-dye solutions in organic solvents are studied. It is shown that the Ag NPs/Si composite structure can be multiply used as an SERS-active surface.

  5. Novel water soluble NIR dyes: does charge matter?

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Beckford, Garfield; Daube, Alison

    2012-03-01

    Near-Infrared (NIR) dyes are used as reporters, probes or markers in the biological and medical field. NIR dyes can be useful for investigating and characterizing biomolecular interactions or imaging which is possible because biological mammalian tissue has a low absorption window in the NIR region. Biomolecules such as proteins are known to bind to NIR dyes. Upon binding NIR dyes often exhibit spectral changes that can be used for characterizing the binding event. Serum albumins may be responsible for in vivo transport of NIR dyes. Studying this binding event can be useful when correlated to in vivo behavior of the NIR dye. The studies presented here use spectroscopic methods to investigate how NIR dyes that may be used in imaging, biological or bioanalytical applications bind to proteins, such as serum albumins. Our research group systematically synthesized several NIR dyes that have varying hydrophobicity, chromophore size and charge. During these investigations we developed novel NIR cyanine fluorophores having varying aqueous solubility and a variety of net charges. The binding properties of the carbocyanines change when charged or hydrophobic moieties are systematically varied. One of the properties we put a special emphasis on is what we call residual hydrophobicity of the NIR dye molecule which is defined as the unmasked (by the charged moieties) hydrophobicity of the molecule. Residual hydrophobicity may be responsible for binding the otherwise highly water soluble NIR dye to hydrophobic pockets of biomolecules. High residual hydrophobicity of a highly water soluble dye can be disadvantageous during biological, medical or similar applications.

  6. The oxygen-rich pentaerythritol modified multi-walled carbon nanotube as an efficient adsorbent for aqueous removal of alizarin yellow R and alizarin red S

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Ying; Jiang, Xin-Yu; Jiao, Fei-Peng; Yu, Jin-Gang

    2018-04-01

    A contrastive work on the removal of two organic dyes, alizarin yellow R (AYR) and alizarin red S (ARS), was carried out by utilizing pentaerythritol modified multi-walled carbon nanotubes (ox-MWCNT-PER) as a highly efficient adsorbent. Various characterization methods such as scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, the Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS), were applied for revealing the physical and chemical properties of the as-prepared material. In addition, the adsorption kinetics, isotherms and thermodynamic parameters were also discussed. The results showed that the time required to achieve the adsorption equilibrium for both dyes was about 30 min, and the increase in temperature was not favorable to the adsorption process. It was worth noting that the adsorption capacity of ox-MWCNT-PER towards ARS dye was more significant than that towards AYR dye. And the maximum adsorption capacities for ARS and AYR were 257.73 mg g-1 and 45.39 mg g-1, respectively. The possible adsorption mechanism was also proposed, and the synergistic effects of the hydrogen bonding and the π-π electron stacking interactions between the adsorbents and adsorbates both contributed to the adsorption. It could be proposed that the ox-MWCNT-PER nanocomposite might have some positive effects in removing organic dyes from water treatment in the future.

  7. Adsorption of Acid Blue 25 dye by bentonite and surfactant modified bentonite

    NASA Astrophysics Data System (ADS)

    Jeeva, Mark; Wan Zuhairi, W. Y.

    2018-04-01

    Adsorption of Acid Blue (AB 25) from water via batch adsorption experiments onto Na-Bentonite (NB) and CTAB-modified bentonite (CTAB-Ben) was investigated. Studies concerning the factors influencing the adsorption capacities of NB and CTAB-Ben, such as initial dye concentration, adsorbent dosage, pH, contact time and temperature were investigated and discussed. The results revealed that CTAB-modified bentonite demonstrated high adsorption capacities toward acid dyes, while NB exhibited sorption capacities lower than CTAB-Ben. The maximum adsorption efficiency was found to be 50% at an AB 25 concentration of 50 mg/L, adsorbent dosage of 1.8 g/L, reaction time of 90 min and equilibrium pH of 11. The results of isotherm study fit the Langmuir and Freundlich models (R2 > 0.93) and (R2 > 0.9) respectively.

  8. Dyes and Redox Couples with Matched Energy Levels: Elimination of the Dye-Regeneration Energy Loss in Dye-Sensitized Solar Cells.

    PubMed

    Jiang, Dianlu; Darabedian, Narek; Ghazarian, Sevak; Hao, Yuanqiang; Zhgamadze, Maxim; Majaryan, Natalie; Shen, Rujuan; Zhou, Feimeng

    2015-11-16

    In dye-sensitized solar cells (DSSCs), a significant dye-regeneration force (ΔG(reg)(0)≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy-conversion efficiency of state-of-art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close-to-zero driving force. By using Ru(dcbpy)(bpy)2(2+) as the dye and Ru(bpy)2(MeIm)2(3+//2+) as the redox couple, a short-circuit current (J(sc)) of 4 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.9 V were obtained with a ΔG(reg)(0) of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)2(1+/0) (ΔG(reg)(0)=0.0 eV), which produced an J(sc) of 2.5 mA cm(-2) and V(oc) of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof-of-concept study demonstrates that high V(oc) values can be attained by significantly curtailing the dye-regeneration force. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Resonant Pump-dump Quantum Control of Solvated Dye Molecules with Phase Jumps

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Lozovoy, Vadim; Dantus, Marcos

    2014-03-01

    Quantum coherent control of two photon and multiphoton excitation processes in atomic and condensed phase systems employing phase jumps has been well studied and understood. Here we demonstrate coherent quantum control of a two photon resonant pump-dump process in a complex solvated dye molecule. Phase jump in the frequency domain via a pulse shaper is employed to coherently enhance the stimulated emission by an order of magnitude when compared to transform limited pulses. Red shifted stimulated emission from successive low energy Stokes shifted excited states leading to narrowband emission are observed upon scanning the pi step across the excitation spectrum. A binary search space routine was also employed to investigate the effects of other types of phase jumps on stimulated emission and to determine the optimum phase that maximizes the emission. Understanding the underlying mechanism of this kind of enhancement will guide us in designing pulse shapes for enhancing stimulated emission, which can be further applied in the field of imaging.

  10. Ability of a montmorillonitic clay to interact with cationic and anionic dyes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pleşa Chicinaş, R.; Bedelean, H.; Stefan, R.; Măicăneanu, A.

    2018-02-01

    A montmorillonitic clay in raw and treated forms (size-fractionated, organoclay, Al pillared) was evaluated as adsorbent for cationic (toluidine blue - TB and malachite green - MG) and anionic (Congo red - CR) dyes. A thorough characterization using XRD, SEM-EDS, N2 adsorption, and FTIR of the considered samples was realized, all highlighting the structural changes after various treatments. UV-VIS analysis demonstrated the interaction between dyes and the adsorbent surface. The investigation of the effects of various experimental parameters using a batch adsorption technique showed that ON has a high adsorption potential for cationic dyes (33 and 39 mg/g in case of TB and MG, respectively). The kinetic study indicated that the adsorption process followed the pseudo-second-order model, while Freundlich isotherm showed a favorable adsorption. The calculated values of Gibbs free energy suggested also that the adsorption is spontaneous and is more favorable at higher temperatures.

  11. The use of date palm as a potential adsorbent for wastewater treatment: a review.

    PubMed

    Ahmad, Tanweer; Danish, Mohammad; Rafatullah, Mohammad; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah; Ibrahim, Mohamad Nasir Mohamad

    2012-06-01

    In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution. This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years. Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.

  12. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push-Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells.

    PubMed

    Fernandes, Sara S M; Castro, M Cidália R; Pereira, Ana Isabel; Mendes, Adélio; Serpa, Carlos; Pina, João; Justino, Licínia L G; Burrows, Hugh D; Raposo, M Manuela M

    2017-12-31

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push-pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO 2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine-thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO 2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20-64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%.

  13. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push–Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells

    PubMed Central

    2017-01-01

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push–pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine–thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20–64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%. PMID:29302638

  14. Adsorption Properties of p -Methyl Red Monomeric-to-Pentameric Dye Aggregates on Anatase (101) Titania Surfaces: First-Principles Calculations of Dye/TiO 2 Photoanode Interfaces for Dye-Sensitized Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.

    2014-08-29

    The optical and electronic properties of dye aggregates of p-methyl red on a TiO2 anatase (101) surface were modeled as a function of aggregation order (monomer to pentameric dye) via first principles calculations. A progressive red-shifting and intensity increase toward the visible region in UV/vis absorption spectra is observed from monomeric-to-tetrameric dyes, with each molecule in a given aggregate binding to one of the four possible TiO2 (101) adsorption sites. The pentamer exhibits a blue-shifted peak wave- length in the UV/vis absorption spectra and less absorption intensity in the visible region in comparison; a corresponding manifestation of H-aggregation occurs sincemore » one of these five molecules cannot occupy an adsorption site. This finding is consistent with experiment. Calculated density of states (DOS) and partial DOS spectra reveal similar dye…TiO2 nanocomposite conduction band characteristics but different valence band features. Associated molecular orbital distributions reveal dye-to-TiO2 interfacial charge transfer in all five differing aggregate orders; meanwhile, the level of intramolecular charge transfer in the dye becomes progressively localized around its azo- and electron-donating groups, up to the tetrameric dye/TiO2 species. Dye adsorption energies and dye coverage levels are calculated and compared with experiment. Overall, the findings of this case study serve to aid the molecular design of azo dyes towards better performing DSSC devices wherein they are incorporated. In addition, they provide a helpful example reference for understanding the effects of dye aggregation on the adsorbate…TiO2 interfacial optical and electronic properties.« less

  15. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2}more » and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.« less

  16. pH-sensitive wax emulsion copolymerization with acrylamide hydrogel using gamma irradiation for dye removal

    NASA Astrophysics Data System (ADS)

    Ghobashy, Mohamed Mohamady; Elhady, Mohamed., A.

    2017-05-01

    Emulsion polymerization is an efficient method for the production of new wax-hydrogel matrices of cetyl alcohol: stearic acid wax and acrylamide hydrogel using triethylamine (TEA) as an emulsifier. A cross-linking reaction occurred when a mixture of wax-hydrogel solution was irradiated with gamma rays at a dose of 20 kGy. The gelation percentage of the matrices (CtOH-StA/PAAm) was 86%, which indicates that a sufficiently high conversion occurred in these new wax-hydrogel matrices. The ability of PAAm and CtOH-StA/PAAm as an adsorbent for dye removal was investigated. The removal of three reactive dyes, namely Remazol Red (RR), Amido Black (AB), and Toluidine Blue (TB), from aqueous solutions depends on the pH of the dye solution. Removal efficiency was investigated by UV spectrophotometry, and the results showed the affinity of the wax hydrogel to adsorb TB was 98% after 320 min. Fourier transform infrared-attenuated total reflectance spectra confirmed the cross-linking process involved between the chains of wax and hydrogel; furthermore, scanning electron microscopy images showed that the wax and hydrogel were completely miscible to form a single matrix. Swelling measurements showed the high affinity of adsorbed dyes from aqueous solutions at different pH values to the wax-hydrogel network; the highest swelling values of 13.05 and 8.24 (g/g) were observed at pH 10 and 6, respectively

  17. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  18. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  19. Dyes removal using activated carbon from palm oil waste with digital image colorimetry quantification

    NASA Astrophysics Data System (ADS)

    Firdaus, M. Lutfi; Puspita, Melfi; Alwi, Wiwit; Ghufira, Nurhamidah, Elvia, Rina

    2017-11-01

    In the present study, activated carbon prepared from palm oil husk was used as adsorbent to remove synthetic dyes of Reactive Red 120 (RR) and Direct Green 26 (DG) from aqueous solution. The effects of solution pH, contact time, adsorbent weight, dyes concentration, and temperature on adsorption were evaluated based on batch experiments along with determination of the adsorption isotherms, kinetics, and thermodynamics parameters. Visible spectrophotometry was used for the quantification of dyes concentration, in conjunction with digital image colorimetry as a novel quantification method. Compared to visible spectrophotometry, the results of digital image colorimetry were accurate. In addition, improved sensitivity was achieved using this new colorimetry method. At equilibrium, dyes adsorption onto activated carbon followed Freundlich model, with adsorption capacities for RR and DG were 32 and 27 mg/g, respectively. The adsorption kinetics study showed a pseudo-second-order model with thermodynamic parameters of ΔG°, ΔH°, and ΔS° were -1.8 to -3.8 kJ/mol, -13.5 to -24.38 kJ/mol, and 0.001 J/mol, respectively. Therefore, the process of adsorption was exothermic and spontaneous with an increase in the disorder or entropy of the system.

  20. Plasmonic nanoparticles enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Meng, Weisi; Huang, Yidong

    2013-12-01

    Here we present investigations on utilizing two kinds of plasmonic nanoparticles (NPs) to enhance the efficiency of dye sensitized solar cells (DSCs). The Au@PVP NPs is proposed and present the specialty of adhesiveness to dye molecules, which could help to localize additional dye molecules near the plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the DSCs by 30% from 3.3% to 4.3%. Meanwhile, an irregular Au-Ag alloy popcorn-shaped NPs (popcorn NPs) with plenty of fine structures is also proposed and realized to enhance the light absorption of DSC. A pronounced absorption enhancement in a broadband wavelength range is observed due to the excitation of localized surface plasmon at different wavelengths. The PCE is enhanced by 32% from 5.94% to 7.85%.

  1. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes.

    PubMed

    Auta, M; Hameed, B H

    2013-05-01

    A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had <20% adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2015-09-14

    The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.

  3. Directional emission from dye-functionalized plasmonic DNA superlattice microcavities

    PubMed Central

    Park, Daniel J.; Ku, Jessie C.; Sun, Lin; Lethiec, Clotilde M.; Stern, Nathaniel P.; Schatz, George C.; Mirkin, Chad A.

    2017-01-01

    Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye–nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon–excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena. PMID:28053232

  4. Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon

    DOE PAGES

    Mamontov, Eugene; Yue, Yanfeng; Bahadur, Jitendra; ...

    2016-10-20

    Even when not functionalized intentionally, most carbon materials are not hydrophobic and readily adsorb water molecules from atmospheric water vapor. We have equilibrated an ultramicroporous carbon at several levels of relative humidity, thereby attaining various hydration levels. The water molecules were adsorbed on the pore walls (but did not fill completely the pore volume) and thus could be better described as hydration, or surface, rather than confined, water. We used quasielastic neutron scattering to perform a detailed investigation of the dependence of microscopic dynamics of these adsorbed water species on the hydration level and temperature. The behavior of hydration watermore » in ultramicroporous carbon clearly demonstrates the same universal traits that characterize surface (hydration) water in other materials that are surface-hydrated. In addition, unless special treatment is intentionally applied to ultramicroporous carbon, the species filling its pores in various applications, ranging from hydrogen molecules to electrolytes, likely find themselves in contact with non-freezing water molecules characterized by rich microscopic dynamics.« less

  5. Co and Fe-catalysts supported on sepiolite: effects of preparation conditions on their catalytic behaviors in high temperature gas flow treatment of dye.

    PubMed

    Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan

    2016-08-01

    An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.

  6. Probing the Relative Photoinjection Yields of Monomer and Aggregated Dyes into ZnO Crystals.

    PubMed

    King, Laurie A; Parkinson, B A

    2017-01-17

    Cyanine dyes, often used in dye-sensitized solar cells (DSSCs), form a range of molecular species from monomers to large H and J aggregates in both solution and when adsorbed at a photoelectrode surface. To determine the relative capability of the different dye species to inject photoexcited electrons into a wideband gap oxide semiconductor, sensitization at a single-crystal zinc oxide surface was studied by simultaneous attenuated reflection (ATR) ultraviolet-visible (UV-vis) absorption and photocurrent spectroscopy measurements. ATR measurements enable identification of the dye species populating the surface with simultaneous photocurrent spectroscopy to identify the contribution of the various dye forms to photocurrent signal. We study the dye 2,2'-carboxymethylthiodicarbocyanine bromide that is particularly prone to aggregation both in solution and at the surface of sensitized oxide semiconductors.

  7. Co-sensitized natural dyes potentially used to enhance light harvesting capability

    NASA Astrophysics Data System (ADS)

    Amelia, R.; Sawitri, D.; Risanti, D. D.

    2015-01-01

    We present the photoelectrochemical properties of dye-sensitized solar cells using natural pigments containing anthocyanins, betalains, and caroteins. The dyes were adsorbed by a photoanode that was fabricated from nanocrystalline TiO2 on transparent conductive glass. TiO2 comprises of 100% anatase and 90:10 anatase:rutile fraction. The dyes extracted from mangosteen pericarp, Musa aromatica pericarp, Celosia cristata flower and red beet root were characterized through UV-vis and IPCE. The effectiveness of the dyes was explained through photocurrent as a function of incident light power. It was found that the cocktail and multilayered dyes comprised of anthocyanins and caroteins is beneficial to obtain high photocurrent, whereas betalains is not recommended to be applied on untreated TiO2. Due to the bandgap properties of rutile and anatase, the presence of 10% rutile in TiO2 is favourable to further enhance the electron transport.

  8. Smectite clays of Serbia and their application in adsorption of organic dyes

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil

    2014-05-01

    Colorants and dyes are currently available in over a 100.000 different species and several biggest industries are using them daily in their manufacture processes (textile, cosmetics, food industry, etc.). Since colorants are easily dissoluble in water they pass through filter membranes without further decomposing and in that manner they end up in the environment. The main goal of this work is to apply certain methods in determining the suitability of individual clay in adsorbing and removing colorants from polluted waters. For this study we have chosen four different raw clays from three regions in Serbia: Svrljig (B), Bogovina (Bo) and Slatina-Ub (C and V) and as colorant - methylene blue dye (MB (MERCK, for analytical purposes)). Experiments where carried out to determine the sample structure (XRD and IR), grain size (granulometry), cationic exchange capacity (CEC via spectrophotometry using MB) and adsorption capabilities (spectrophotometry and fluorimetry using MB). XRD and IR data are showing that the samples are smectite clays where samples B i Bo are mainly montmorillonite while C and V are montmorillonite-illite clays. Granulometric distribution results indicate that samples B i Bo have smaller grain size, less that 1μ (over 60%) whereas the samples C and V are more coarse grained (40% over 20μ). This grain distribution is affecting their specific surface area in the manner that those coarse grained samples have smaller specific surface area. Cationic exchange capacity determined with methylene blue indicate that montmorillonite samples have larger CEC (B = 37 meq/100g, Bo = 50 meq/100g) and montmorillonite-illite samples smaller CEC (V = 5 meq/100g, V = 3 meq/100g). Fluorimetry measurement results gave us a clear distinction between those with higher and smaller adsorption capability. Montmorillonite samples (B and Bo) with higher CEC values and smaller grain size are adsorbing large amounts of methylene blue witch is visible by absence of fluorimetric

  9. Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning.

    PubMed

    Li, Yanhui; Sun, Jiankun; Du, Qiuju; Zhang, Luhui; Yang, Xiaoxia; Wu, Shaoling; Xia, Yanzhi; Wang, Zonghua; Xia, Linhua; Cao, Anyuan

    2014-02-15

    Graphene oxide/chitosan composite fibers were prepared by a wet spinning method, and their mechanical properties were investigated. Experimental results showed that the introduction of graphene oxide at 4 wt% loading can improve the tensile strengths of chitosan fibers. Batch adsorption experiments were carried out to study the effect of various parameters, such as the initial pH value, adsorbent dosage, contact time and temperature on adsorption of fuchsin acid dye. The Langmuir model was used to fit the experimental data of adsorption isotherm, and kinetic studies showed that the adsorption data followed the pseudo-second order model. Thermodynamic studies indicated that the adsorption of fuchsin acid dye on graphene oxide/chitosan fibers was a spontaneous and exothermic process. Our results indicate that the graphene oxide/chitosan fibers have excellent mechanical properties and can serve as a promising adsorbent for the removal of dyes from aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Electroadsorption of acilan blau dye from textile effluents by using activated carbon-perlite mixtures.

    PubMed

    Koparal, A S; Yavuz, Y; Bakir Ogütveren, U

    2002-01-01

    The feasibility of the removal of dye stuffs from textile effluents by electroadsorption has been investigated. An activated carbon-perlite mixture with a ratio of 8:1 for bipolarity has been used as the adsorbent. Conventional adsorption experiments have also been conducted for comparison. A bipolar trickle reactor has been used in the electroadsorption experiments. The model wastewater has been prepared by using acilan blau dye. Initial dye concentration, bed height between the electrodes, applied potential, flowrate, and the supporting electrolyte concentration have been examined as the parameters affecting the removal efficiency. A local textile plant effluent has been treated in the optimum values of these parameters obtained from the experimental studies. Adsorption kinetics and the amount of adsorbent required to reach the maximum removal efficiency have also been investigated and mass-transfer coefficients have been calculated for adsorption and electroadsorption. The results showed that a removal efficiency of up to 100% can be achieved with energy consumption values of 1.58 kWh/m3 of wastewater treated. However, energy consumption decreases to 0.09 kWh/m3 if an exit dye concentration of 4.65 mg/L is accepted. It can be concluded from this work that this method combines all of the advantages of the activated-carbon adsorption and electrolytic methods for the removal of dyes from wastewater.

  11. Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlin; Zhang, Lian Ying; Zhao, Xi Juan; Zhou, Zhiqin

    2016-11-01

    An adsorbent, citrus pectin derived porous carbons with ultra-high adsorption capacity, rapid adsorption rate and good reusability toward removal of methylene blue, was synthesized by a facile zinc chloride activation approach in this study. The materials hold a great potential for treatment of dye wastewater.

  12. A key discovery at the TiO2/dye/electrolyte interface: slow local charge compensation and a reversible electric field.

    PubMed

    Yang, Wenxing; Pazoki, Meysam; Eriksson, Anna I K; Hao, Yan; Boschloo, Gerrit

    2015-07-14

    Dye-sensitized mesoporous TiO2 films have been widely applied in energy and environmental science related research fields. The interaction between accumulated electrons inside TiO2 and cations in the surrounding electrolyte at the TiO2/dye/electrolyte interface is, however, still poorly understood. This interaction is undoubtedly important for both device performance and fundamental understanding. In the present study, Stark effects of an organic dye, LEG4, adsorbed on TiO2 were well characterized and used as a probe to monitor the local electric field at the TiO2/dye/electrolyte interface. By using time-resolved photo- and potential-induced absorption techniques, we found evidence for a slow (t > 0.1 s) local charge compensation mechanism, which follows electron accumulation inside the mesoporous TiO2. This slow local compensation was attributed to the penetration of cations from the electrolyte into the adsorbed dye layer, leading to a more localized charge compensation of the electrons inside TiO2. Importantly, when the electrons inside TiO2 were extracted, a remarkable reversal of the surface electric field was observed for the first time, which is attributed to the penetrated and/or adsorbed cations now being charge compensated by anions in the bulk electrolyte. A cation electrosorption model is developed to account for the overall process. These findings give new insights into the mesoporous TiO2/dye/electrolyte interface and the electron-cation interaction mechanism. Electrosorbed cations are proposed to act as electrostatic trap states for electrons in the mesoporous TiO2 electrode.

  13. Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent.

    PubMed

    Attallah, M F; Ahmed, I M; Hamed, Mostafa M

    2013-02-01

    The present work investigates the potential use of metal hydroxides sludge (MHS) generated from hot dipping galvanizing plant for adsorption of Congo Red and Naphthol Green B dyes from aqueous solutions. Characterization of MHS included infrared and X-ray fluorescence analysis. The effect of shaking time, initial dye concentration, temperature, adsorbent dosage and pH has been investigated. The results of adsorption experiments indicate that the maximum capacity of Congo Red and Naphthol Green B dyes at equilibrium (q(e)) and percentage of removal at pH 6 are 40 mg/g, 93 %, and 10 mg/g, 52 %, respectively. Some kinetic models were used to illustrate the adsorption process of Congo Red and Naphthol Green B dyes using MHS waste. Thermodynamic parameters such as (ΔG, ΔS, and ΔH) were also determined.

  14. Theoretical study of new potential semiconductor surfaces performance for dye sensitized solar cell usage: TiO2-B (001), (100) and H2Ti3O7 (100)

    NASA Astrophysics Data System (ADS)

    German, Estefania; Faccio, Ricardo; Mombrú, Álvaro W.

    2017-12-01

    Hydrogen titanate (H2Ti3O7) and TiO2-B polymorph are potential surfaces identified experimentally in the last years, which need to be analyzed. To study their performance as surfaces for dye sensitized solar cells (DSSC), a set of dye adsorption configurations were evaluated on them, as model dye the small and organic catechol molecule was used. We have calculated adsorption geometry, energy, electronic transfer from dye to semiconductor adsorbent and frontier orbitals by means of density functional theory (DFT). Results show that vacancy-like defected H2Ti3O7 (100) and TiO2-B (100) surfaces present favorable adsorption energies. Finally, an adequate energy level alignment make both surfaces prone to be adequate for direct electron transfer upon excitation, from catechol to the conduction band of the semiconductors, with bands located in the Visible region of the electromagnetic spectrum. Additionally, the band structure alignment indicates an increase in the open circuit voltage, in reference to I2/I3- redox pair potential. All these characteristics make hydrogen titanate (H2Ti3O7) and TiO2-B polymorph promising for DSSC applications.

  15. Miscibility and interaction between 1-alkanol and short-chain phosphocholine in the adsorbed film and micelles.

    PubMed

    Takajo, Yuichi; Matsuki, Hitoshi; Kaneshina, Shoji; Aratono, Makoto; Yamanaka, Michio

    2007-09-01

    The miscibility and interaction of 1-hexanol (C6OH) and 1-heptanol (C7OH) with 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the adsorbed films and micelles were investigated by measuring the surface tension of aqueous C6OH-DHPC and aqueous C7OH-DHPC solutions. The surface density, the mean molecular area, the composition of the adsorbed film, and the excess Gibbs energy of adsorption g(H,E), were estimated. Further, the critical micelle concentration of the mixtures was determined from the surface tension versus molality curves; the micellar composition was calculated. The miscibility of the 1-alkanols and DHPC molecules in the adsorbed film and micelles was examined using the phase diagram of adsorption (PDA) and that of micellization (PDM). The PDA and the composition dependence of g(H,E) indicated the non-ideal mixing of the 1-alkanols and DHPC molecules due to the attractive interaction between the molecules in the adsorbed film, while the PDM indicated that the 1-alkanol molecules were not incorporated in the micelles within DHPC rich region. The dependence of the mean molecular area of the mixtures on the surface composition suggested that the packing property of the adsorbed film depends on the chain length of 1-alkanol: C6OH expands the DHPC adsorbed film more than C7OH.

  16. Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal-organic framework: effects of Ce(iii) doping.

    PubMed

    Yang, Ji-Min; Ying, Rong-Jian; Han, Chun-Xiang; Hu, Qi-Tu; Xu, Hui-Min; Li, Jian-Hui; Wang, Qiang; Zhang, Wei

    2018-03-12

    Herein, we report the synthesis and characterization of Ce(iii)-doped UiO-66 nanocrystals, revealing their potential to efficiently remove organic dyes such as methylene blue (MB), methyl orange (MO), Congo red (CR), and acid chrome blue K (AC) from aqueous solutions. Specifically, the room-temperature adsorption capacities of Ce(iii)-doped UiO-66 equaled 145.3 (MB), 639.6 (MO), and 826.7 (CR) mg g -1 , exceeding those reported for pristine UiO-66 by 490, 270, and 70%, respectively. The above behavior was rationalized based on zeta potential and adsorption isotherm investigations, which revealed that Ce(iii) doping increases the number of adsorption sites and promotes π-π interactions between the adsorbent and the adsorbate, thus improving the adsorption capacity for cationic and anionic dyes and overriding the effect of electrostatic interactions. The obtained results shed light on the mechanism of organic dye adsorption on metal-organic frameworks, additionally revealing that the synergetic interplay of electrostatic, π-π, and hydrophobic interactions results in the operation of two distinct adsorption regimes depending on adsorbate concentration.

  17. Organic Semiconductors based on Dyes and Color Pigments.

    PubMed

    Gsänger, Marcel; Bialas, David; Huang, Lizhen; Stolte, Matthias; Würthner, Frank

    2016-05-01

    Organic dyes and pigments constitute a large class of industrial products. The utilization of these compounds in the field of organic electronics is reviewed with particular emphasis on organic field-effect transistors. It is shown that for most major classes of industrial dyes and pigments, i.e., phthalocyanines, perylene and naphthalene diimides, diketopyrrolopyrroles, indigos and isoindigos, squaraines, and merocyanines, charge-carrier mobilities exceeding 1 cm(2) V(-1) s(-1) have been achieved. The most widely investigated molecules due to their n-channel operation are perylene and naphthalene diimides, for which even values close to 10 cm(2) V(-1) s(-1) have been demonstrated. The fact that all of these π-conjugated colorants contain polar substituents leading to strongly quadrupolar or even dipolar molecules suggests that indeed a much larger structural space shows promise for the design of organic semiconductor molecules than was considered in this field traditionally. In particular, because many of these dye and pigment chromophores demonstrate excellent thermal and (photo-)chemical stability in their original applications in dyeing and printing, and are accessible by straightforward synthetic protocols, they bear a particularly high potential for commercial applications in the area of organic electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photophysical studies on the interaction of acridinedione dyes with universal protein denaturant: guanidine hydrochloride.

    PubMed

    Kumaran, R; Varalakshmi, T; Malar, E J Padma; Ramamurthy, P

    2010-09-01

    Photophysical studies of photoinduced electron transfer (PET) and non-PET based acridinedione dyes with guanidine hydrochloride (GuHCl) were carried out in water and methanol. Addition of GuHCl to photoinduced electron transfer (PET) based acridinedione dye (ADR 1) results in a fluorescence enhancement, whereas a non-PET based dye (ADR 2) shows no significant change in the fluorescence intensity and lifetime. Addition of GuHCl to ADR 1 dye in methanol results in single exponential decay behaviour, on the contrary a biexponential decay pattern was observed on the addition of GuHCl in water. Absorption and emission spectral studies of ADR 1 dye interaction with GuHCl reveals that the dye molecule is not in the protonated form in aqueous GuHCl solution, and the dye is confined to two distinguishable microenvironment in the aqueous phase. A large variation in the microenvironment around the dye molecule is created on the addition of GuHCl and this was ascertained by time-resolved area normalized emission spectroscopy (TRANES) and time-resolved emission spectroscopy (TRES). The dye molecule prefers to reside in the hydrophobic microenvironment, rather in the hydrophilic aqueous phase is well emphasized by time-resolved fluorescence lifetime studies. The mechanism of fluorescence enhancement of ADR 1 dye by GuHCl is attributed to the suppression of the PET process occurring through space.

  19. Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination

    NASA Astrophysics Data System (ADS)

    Saxena, Vibha; Aswal, D. K.

    2015-06-01

    In a quest to harvest solar power, dye-sensitized solar cells (DSSCs) have potential for low-cost eco-friendly photovoltaic devices. The major processes which govern the efficiency of a DSSC are photoelectron generation, injection of photo-generated electrons to the conduction band (CB) of the mesoporous nanocrystalline semiconductor (nc-SC); transport of CB electrons through nc-SC and subsequent collection of CB electrons at the counter electrode (CE) through the external circuit; and dye regeneration by redox couple or hole transport layer (HTL). Most of these processes occur at various interfaces of the photoanode. In addition, recombination losses of photo-generated electrons with either dye or redox molecules take place at the interfaces. Therefore, one of the key requirements for high efficiency is to improve light harvesting of the photoanode and to reduce the recombination losses at various interfaces. In this direction, surface modification of the photoanode is the simplest method among the various other approaches available in the literature. In this review, we present a comprehensive discussion on surface modification of the photoanode, which has been adopted in the literature for not only enhancing light harvesting but also reducing recombination. Various approaches towards surface modification of the photoanode discussed are (i) fluorine-doped tin oxide (FTO)/nc-SC interface modified via a compact layer of semiconductor material which blocks exposed sites of FTO to electrolyte (or HTL), (ii) nc-SC/dye interface modification either through acid treatment resulting in enhanced dye loading due to a positively charged surface or by depositing insulating/semiconducting blocking layer on the nc-SC surface, which acts as a tunneling barrier for recombination, (iii) nc-SC/dye interface modified by employing co-adsorbents which helps in reducing the dye aggregation and thereby recombination, and (iv) dye/electrolyte (or dye/HTL) interface modification using

  20. Interaction of a single acetophenone molecule with group III-IV elements mediated by Si(001)

    NASA Astrophysics Data System (ADS)

    Racis, A.; Jurczyszyn, L.; Radny, M. W.

    2018-03-01

    A theoretical study of an influence of the acetophenone molecule adsorbed on the Si(001) on the local chemical reactivity of silicon surface is presented. The obtained results indicate that the interaction of the molecule with silicon substrate breaks the intra-dimer π bonds in four surface silicon dimers interacting directly with adsorbed molecule. This leads to the formation of two pairs of unpaired dangling bonds at two opposite sides of the molecule. It is demonstrated that these dangling bonds increase considerably the local chemical reactivity of the silicon substrate in the vicinity of the adsorbed molecule. Consequently, it is shown that such molecule bonded with Si(001) can stabilize the position of In and Pb adatoms diffusing on silicon substrate at two sides and initiate the one-dimensional aggregation of the metallic adatoms on the Si(001) substrate anchored at both sides of the adsorbed molecule. This type of aggregation leads to the growth of chain-like atomic structures in opposite directions, pinned to adsorbed molecule and oriented perpendicular to the rows of surface silicon dimers.

  1. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Localization microscopy of DNA in situ using Vybrant(®) DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution.

    PubMed

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T; Prakash, Kirti; Mohana, Giriram K; Lee, Hyun-Keun; Roignant, Jean-Yves; Birk, Udo J; Dobrucki, Jurek W; Cremer, Christoph

    2016-05-01

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant(®) DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10(6) signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. Copyright © 2016. Published by Elsevier Inc.

  3. Teaching Old Dyes New Tricks: Biological Probes Built from Fluoresceins and Rhodamines.

    PubMed

    Lavis, Luke D

    2017-06-20

    Small-molecule fluorophores, such as fluorescein and rhodamine derivatives, are critical tools in modern biochemical and biological research. The field of chemical dyes is old; colored molecules were first discovered in the 1800s, and the fluorescein and rhodamine scaffolds have been known for over a century. Nevertheless, there has been a renaissance in using these dyes to create tools for biochemistry and biology. The application of modern chemistry, biochemistry, molecular genetics, and optical physics to these old structures enables and drives the development of novel, sophisticated fluorescent dyes. This critical review focuses on an important example of chemical biology-the melding of old and new chemical knowledge-leading to useful molecules for advanced biochemical and biological experiments.

  4. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry.

    PubMed

    Nautiyal, Piyushi; Subramanian, K A; Dastidar, M G

    2016-11-01

    The primary aim of this present study was to utilize the residual biomass (DB) of Spirulina platensis algae, left after in-situ transesterification, for biochar preparation. This is a solid waste residue of biodiesel industry. The biochar (BC) prepared was examined for its capacity to adsorb congo red dye from the aqueous solution. The results were compared with other adsorbents used in the study such as commercial activated carbon (AC), original algae biomass (AB) and DB. The results of proximate analysis of BC showed the decrease in the percentage of volatile matter and an increase in fixed carbon content compared to DB. The physico-chemical properties of BC were studied using elemental analysis, SEM, FTIR and XRD techniques. The AC and BC adsorbents showed better performance in removing 85.4% and 82.6% of dye respectively from solution compared to AB (76.6%) and DB (78.1%). The effect of initial dye concentration, adsorbent dosage and pH of solution on the adsorption phenomena was studied by conducting the batch adsorption experiments. The highest specific uptake for biochar was observed at acidic pH of 2 with 0.2 g/100 ml of adsorbent dosage and 90 mg/l of initial concentration. The equilibrium adsorption data were fitted to three isotherms, namely Langmuir, Freundlich and Temkin. Freundlich model proved to show the best suited results with value of correlation coefficient of 99.12%. Thus, the application of DB for production of biochar as potential adsorbent supports sustainability of algae biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electrodeposited styrylquinolinium dye as molecular electrocatalyst for coupled redox reactions.

    PubMed

    Hubenova, Yolina; Bakalska, Rumyana; Mitov, Mario

    2018-05-10

    Modification of carbonaceous materials with different conductive coatings is a successful approach to enhance their electrocatalytic activity and thus to increase the electrical outputs when used as electrodes in biofuel cells. In this study, a methodology for electrodeposition of styrylquinolinium dye on carbon felt was developed. The produced dye electrodeposits were characterized by means of AFM, ESI-MS/MS and NMR spectroscopy. The obtained data reveal that the dye forms overlaid layers consisting of monomer molecules most likely with an antiparallel orientation. The UV-VIS spectroscopy, CV and EIS analyses show that the dye molecules preserve their redox activity within the coating and a charge transfer between NADH/NAD + and electrodeposit is possible as a coupled redox reaction. The fabricated nano-modified electrodes were also tested as anodes in batch-mode operating yeast-based biofuel cell. The results indicate that the electrodeposited dye acts as an immobilized exogenous mediator, contributing to enhanced extracellular electron transfer. Copyright © 2018. Published by Elsevier B.V.

  6. Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics

    NASA Astrophysics Data System (ADS)

    Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.

    2017-07-01

    The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as Δ H 0, Δ S 0 and Δ G 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.

  7. Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films.

    PubMed

    Shah, Kinjal J; Imae, Toyoko

    2016-05-09

    The 2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNF) were hybridized with cation and anion-exchange organoclays, where poly(amido amine) dendrimers were loaded to enhance the functionality of gas adsorption, since dendrimers have the high adsorbability and the enough selectivity on the gas adsorption. The thin films were prepared from the organoclay-TOCNF hybrids and supplied to the gas adsorption. The adsorption of CO2 and NH3 gases increased with an increasing amount of organoclays in TOCNF films, but the behavior of the increase depended on gases, clays, and dendrimers. The hydrotalcite organoclay-TOCNF films displayed the highest adsorption of both gases, but the desorption of CO2 gas from hydrotalcite organoclay-TOCNF films was drastically high in comparison with the other systems. While the CO2 gas is adsorbed and remained on cationic dendrimer sites in cation-exchange organoclay-TOCNF films, the CO2 gas is adsorbed on cationic clay sites in anion exchange organoclay-TOCNF films, and it is easily desorbed from the films. The NH3 adsorption is inversive to the CO2 adsorption. Then the CO2 molecules adsorbed on the cationic dendrimers and the NH3 molecules adsorbed on the anionic dendrimers are preferably captured in these adsorbents. The present research incorporated dendrimers will be contributing to the development of gas-specialized adsorbents, which are selectively storable only in particular gases.

  8. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach

    NASA Astrophysics Data System (ADS)

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH 7.78, contact time 5 min, initial MB concentration 22 mg L- 1, initial MG concentration 12 mg L- 1 and adsorbent dosage 0.0055 g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85 mg g- 1 was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes.

  9. The Effects of Phosphonic Acids in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    James, Keith Edward

    Novel methods for the construction of dye-sensitized solar cells (DSSCs) were developed. A thin dense underlayer of TiO2 was applied on fluorine-doped tin oxide (FTO) glass using as a precursor Tyzor AA-105. Subsequently a mesoporous film of P-25 TiO2 was applied by spreading a suspension uniformly over the surface of the underlayer and allowing the plate to slowly dry while resting on a level surface. After sintering at 500° C slides were treated with TCPP as a sensitizing dye and assembled into DSSCs. A novel method was used to seal the cells; strips of ParafilmRTM were used as spacers between the electrodes and to secure the electrodes together. The cells were filled with a redox electrolyte and sealed by dipping into molten paraffin. A series of phosphonic acids and one arsonic acid were employed as coadsorbates in DSSCs. The coadsorbates were found to compete for binding sites, resulting in lower levels of dye adsorption. The resulting loss of photocurrent was not linear with the reduction of dye loading, and in some cases photocurrent and efficiency were higher for cells with lower levels of dye loading. Electrodes were treated with coadsorbates by procedures including pre-adsorption, simultaneous (sim-adsorption), and post-adsorption, using a range of concentrations and treatment times and a variety of solvents. Most cells were tested using an iodide-triiodide based electrolyte (I3I-1) but some cells were tested using electrolytes based on a Co(II)/Co(III) redox couple (CoBpy electrolytes). Phosphonic acid post-adsorbates increased the Voc of cells using CoBpy electrolytes but caused a decrease in the Voc of cells using I3I-1 electrolyte. Phosphonic acids as sim-adsorbates resulted in a significant increase in efficiency and Jsc, and they show promise as a treatment for TCPP DSSCs.

  10. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    PubMed

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.

  11. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  12. Preparation of char from lotus seed biomass and the exploration of its dye removal capacity through batch and column adsorption studies.

    PubMed

    Nethaji, S; Sivasamy, A; Kumar, R Vimal; Mandal, A B

    2013-06-01

    Char was obtained from lotus seed biomass by a simple single-step acid treatment process. It was used as an adsorbent for the removal of malachite green dye (MG) from simulated dye bath effluent. The adsorbent was characterized for its surface morphology, surface functionalities, and zero point charge. Batch studies were carried out by varying the parameters such as initial aqueous pH, adsorbent dosage, adsorbent particle size, and initial adsorbate concentration. Langmuir and Freundlich isotherms were used to test the isotherm data and the Freundlich isotherm best fitted the data. Thermodynamic studies were carried out and the thermodynamic parameters such as ∆G, ∆H, and ∆S were evaluated. Adsorption kinetics was carried out and the data were tested with pseudofirst-order model, pseudosecond-order model, and intraparticle diffusion model. Adsorption of MG was not solely by intraparticle diffusion but film diffusion also played a major role. Continuous column experiments were also conducted using microcolumn and the spent adsorbent was regenerated using ethanol and was repeatedly used for three cycles in the column to determine the reusability of the regenerated adsorbent. The column data were modeled with the modeling equations such as Adam-Bohart model, Bed Depth Service Time (BDST) model, and Yoon-Nelson model for all the three cycles.

  13. Synthesis and Characterization of Modified BiOCl and Their Application in Adsorption of Low-Concentration Dyes from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qihang; Xing, Yongxing; Liu, Zhiliang; Ouyang, Jing; Du, Chunfang

    2018-03-01

    The synthesis and characterization of BiOCl and Fe3+-grafted BiOCl (Fe/BiOCl) is reported that are developed as efficient adsorbents for the removal of cationic dyes rhodamine B (RhB) and methylene blue (MB) as well as anionic dyes methyl orange (MO) and acid orange (AO) from aqueous solutions with low concentration of 0.01 0.04 mmol/L. Characterizations by various techniques indicate that Fe3+ grafting induced more open porous structure and higher specific surface area. Both BiOCl and Fe/BiOCl with negatively charged surfaces showed excellent adsorption efficiency toward cationic dyes, which could sharply reach 99.6 and nearly 100% within 3 min on BiOCl and 97.0 and 98.0% within 10 min on Fe/BiOCl for removing RhB and MB, respectively. However, Fe/BiOCl showed higher adsorption capacity than BiOCl toward ionic dyes. The influence of initial dye concentration, temperature, and pH value on the adsorption capacity is comprehensively studied. The adsorption process of RhB conforms to Langmuir adsorption isotherm and pseudo-second-order kinetic feature. The excellent adsorption capacities of as-prepared adsorbents toward cationic dyes are rationalized on the basis of electrostatic attraction as well as open porous structure and high specific surface area. In comparison with Fe/BiOCl, BiOCl displays higher selective efficiency toward cationic dyes in mixed dye solutions.

  14. Molecular engineering of cyanine dyes to design a panchromatic response in Co-sensitized dye-sensitized solar cells

    DOE PAGES

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...

    2016-04-05

    Cyanines are optically tunable dyes with high molar extinction coefficients, suitable for applications in co-sensitized dye-sensitized solar cells (DSCs); yet, barely thus applied. This might be due to the lack of a rational molecular design strategy that efficiently exploits cyanine properties. This study computationally re-designs these dyes, to broaden their optical absorption spectrum and create dye···TiO 2 binding and co-sensitization functionality. This is achieved via a stepwise molecular engineering approach. Firstly, the structural and optical properties of four parent dyes are experimentally and computationally investigated: 3,3’-diethyloxacarbocyanine iodide, 3,3’-diethylthiacarbocyanine iodide, 3,3’-diethylthiadicarbocyanine iodide and 3,3’-diethylthiatricarbocyanine iodide. Secondly, the molecules are theoretically modifiedmore » and their energetics are analyzed and compared to the parent dyes. A dye···TiO 2 anchoring group (carboxylic or cyanoacrylic acid), absent from the parent dyes, is chemically substituted at different molecular positions to investigate changes in optical absorption. We find that cyanoacrylic acid substitution at the para-quinoidal position affects the absorption wavelength of all parent dyes, with an optimal bathochromic shift of ca. 40 nm. The theoretical lengthening of the polymethine chain is also shown to effect dye absorption. Two molecularly engineered dyes are proposed as promising co-sensitizers. Finally, corresponding dye···TiO 2 adsorption energy calculations corroborate their applicability, demonstrating the potential of cyanine dyes in DSC research.« less

  15. Extreme red shifted SERS nanotags† †Electronic supplementary information (ESI) available: General experimental details for the synthesis and characterization of dyes 1–14, intermediates 15–17, and HGNs; general description of the chemometrics used for principal component analysis; figures of SERS spectra of dye/HGN nanotags with 1280 nm excitation; extinction spectrum for HGNs; SERS spectra of Au and Ag nanoparticles and dye 13 aggregated with KCl; SERS spectra of dyes 13 and 14 on HGN not aggregated with KCl; details of mean plane angle calculations, tables of crystallographic data, atomic coordinates and equivalent isotropic displacement parameters, anisotropic placement parameters, bond lengths, bond angles, and hydrogen atom coordinates and isotropic displacement parameters for dye 14. CCDC 1040064. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03917c Click here for additional data file. Click here for additional data file.

    PubMed Central

    Bedics, Matthew A.; Kearns, Hayleigh; Cox, Jordan M.; Mabbott, Sam; Ali, Fatima; Shand, Neil C.; Faulds, Karen; Benedict, Jason B.

    2015-01-01

    Surfaced enhanced Raman scattering (SERS) nanotags operating with 1280 nm excitation were constructed from reporter molecules selected from a library of 14 chalcogenopyrylium dyes containing phenyl, 2-thienyl, and 2-selenophenyl substituents and a surface of hollow gold nanoshells (HGNs). These 1280 SERS nanotags are unique as they have multiple chalcogen atoms available which allow them to adsorb strongly onto the gold surface of the HGN thus producing exceptional SERS signals at this long excitation wavelength. Picomolar limits of detection (LOD) were observed and individual reporters of the library were identified by principal component analysis and classified according to their unique structure and SERS spectra. PMID:29308144

  16. Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption.

    PubMed

    Liew, Rock Keey; Azwar, Elfina; Yek, Peter Nai Yuh; Lim, Xin Yi; Cheng, Chin Kui; Ng, Jo-Han; Jusoh, Ahmad; Lam, Wei Haur; Ibrahim, Mohd Danial; Ma, Nyuk Ling; Lam, Su Shiung

    2018-06-19

    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m 2 /g) and pore volume (≤0.80 cm 3 /g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  18. Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell

    NASA Astrophysics Data System (ADS)

    Eljiedi, Arwa Alseddig Ahmed; Kamari, Azlan

    2017-05-01

    Textile effluents are considered as potential sources of water pollution because they contain toxic dyes. In the present study, lala clam shell was used as an alternative low-cost adsorbent for the removal of two harmful dyes, namely methyl orange (MO) and methylene blue (MB) from aqueous solution. Batch adsorption studies were carried out by varying experimental parameters such as solution pH, initial concentration and adsorbent dosage. The optimum pH values for MO and MB removal were pH 2.0 and pH 8.0, respectively. At an initial MO and MB concentration of 20 mg/L, the maximum removal percentage of MO and MB were 18.9 % and 81.3 %, respectively. The adsorption equilibrium data were correlated with both Langmuir and Freundlich isotherm models. The biomass adsorbent was characterised using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectrometer (FTIR). Results from this study suggest that lala clam shell, a fishery waste, can be beneficial for water treatment.

  19. A study of the Interaction of bovine Hemoglobin with Synthetic dyes using Spectroscopic techniques and Molecular docking

    NASA Astrophysics Data System (ADS)

    Kamaljeet; Bansal, Saurabh; SenGupta, Uttara

    2016-12-01

    Synthetic dyes are a very efficient class of dyes that are ingested or come into contact with the skin from numerous sources (cosmetics, textiles, leather, paper, drugs). An important component of their safety profile is the interactions that they form after they enter the body. Hemoglobin is a functionally important protein that can form multiple interactions with soluble compounds present in the blood, and hence forms an important aspect of the toxicological or safety profile of the dyes. Here we study the interaction between bovine haemoglobin and organic dyes using UV-Vis absorbance and fluorescence spectroscopy. Molecular modelling was used to visualise the binding site and partners of the dye molecules, within the hemoglobin molecule. We find that all four dyes studied form sufficiently strong interactions with haemoglobin to allow for the formation of potentially toxic interactions. Molecular modelling showed that all 4 dyes bound within the central cavity of the haemoglobin molecule. However, binding partners could not be identified as multiple binding conformations with very similar energies were possible for each dye.

  20. A Study of the Interaction of Bovine Hemoglobin with Synthetic Dyes Using Spectroscopic Techniques and Molecular Docking.

    PubMed

    Kamaljeet; Bansal, Saurabh; SenGupta, Uttara

    2016-01-01

    Synthetic dyes are a very efficient class of dyes that are ingested or come into contact with the skin from numerous sources (cosmetics, textiles, leather, paper, and drugs). An important component of their safety profile is the interactions that they form after they enter the body. Hemoglobin is a functionally important protein that can form multiple interactions with soluble compounds present in the blood, and hence forms an important aspect of the toxicological or safety profile of the dyes. Here we study the interaction between bovine hemoglobin and organic dyes using UV-Vis absorbance and fluorescence spectroscopy. Molecular modeling was used to visualize the binding site and partners of the dye molecules, within the hemoglobin molecule. We find that all four dyes studied form sufficiently strong interactions with hemoglobin to allow for the formation of potentially toxic interactions. Molecular modeling showed that all four dyes bind within the central cavity of the hemoglobin molecule. However, binding partners could not be identified as multiple binding conformations with very similar energies were possible for each dye.

  1. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of themore » dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)« less

  2. Self-consistent field theory of polymer-ionic molecule complexation.

    PubMed

    Nakamura, Issei; Shi, An-Chang

    2010-05-21

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.

  3. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.

    PubMed

    Annadurai, Gurusamy; Juang, Ruey-Shin; Lee, Duu-Jong

    2002-06-10

    Low-cost banana and orange peels were prepared as adsorbents for the adsorption of dyes from aqueous solutions. Dye concentration and pH were varied. The adsorption capacities for both peels decreased in the order methyl orange (MO) > methylene blue (MB) > Rhodamine B (RB) > Congo red (CR) > methyl violet (MV) > amido black 10B (AB). The isotherm data could be well described by the Freundlich and Langmuir equations in the concentration range of 10-120 mg/l. An alkaline pH was favorable for the adsorption of dyes. Based on the adsorption capacity, it was shown that banana peel was more effective than orange peel. Kinetic parameters of adsorption such as the Langergren rate constant and the intraparticle diffusion rate constant were determined. For the present adsorption process intraparticle diffusion of dyes within the particle was identified to be rate limiting. Both peel wastes were shown to be promising materials for adsorption removal of dyes from aqueous solutions.

  4. Photocatalytic degradation of textile dye using TiO2-activated carbon nanocomposite

    NASA Astrophysics Data System (ADS)

    Ghosh, Gourab; Basu, Sankhadeep; Saha, Sudeshna

    2018-05-01

    Rapid industrialisation has extended the use of dyes in various industrial applications in order to meet the escalating demands on consumer products. The toxicity level of a particular dye is very important due to its diverse effects on the environment and living organisms. Among all the techniques for dye removal, adsorption and photocatalysis are two important processes which are gaining much attention in recent years. In the present study activated carbon (adsorbent), TiO2 nanoparticles (photocatalyst) and their composite were used for dye removal. Prepared samples were characterized using standard characterization techniques such as XRD and SEM. Activated carbon was prepared from waste shells of Sterculia foetida. Mixture of activated carbon (activation temperature 600°C) and titania (calcined at 500°C) in the ratio 1:1 displayed greater dye removal efficiency than its individual components. Reusability study indicated that the mixture could effectively be used without further regeneration as very little loss in efficiency was observed after single cycle use.

  5. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.

    PubMed

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation > or = 0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g(-1). The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  6. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    PubMed Central

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  7. Sorption and desorption studies of a reactive azo dye on effective disposal of redundant material.

    PubMed

    Çelekli, Abuzer; Bozkurt, Hüseyin

    2013-07-01

    The effective disposal of redundant elephant dung (ED) is important for environmental protection and utilization of resource. The aim of this study was to remove a toxic-azo dye, Reactive Red (RR) 120, using this relatively cheap material as a new adsorbent. The FTIR-ATR spectra of ED powders before and after the sorption of RR 120 and zero point charge (pHzpc) of ED were determined. The sorption capacity of ED for removing of RR 120 were carried out as functions of particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. Sorption isotherm, kinetic, activation energy, thermodynamic, and desorption parameters of RR 120 on ED were studied. The sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. FTIR-ATR spectroscopy indicated that amine and amide groups have significant role on the sorption of RR 120 on ED. The pHzpc of ED was found to be 7.3. Sorption kinetic of RR 120 on ED was well described by sigmoidal Logistic model. The Langmuir isotherm was well fitted to the equilibrium data. The maximum sorption capacity was 95.71 mg g(-1). The sorption of RR 120 on ED was mainly physical and exothermic according to results of D-R isotherm, Arrhenius equation, thermodynamic, and desorption studies. The thermodynamic parameters showed that this process was feasible and spontaneous. This study showed that ED as a low-cost adsorbent had a great potential for the removal of RR 120 as an alternative eco-friendly process.

  8. On-chip tunable optofluidic dye laser

    NASA Astrophysics Data System (ADS)

    Cai, Zengyan; Shen, Zhenhua; Liu, Haigang; Yue, Huan; Zou, Yun; Chen, Xianfeng

    2016-11-01

    We demonstrate a chip-scale tunable optofluidic dye laser with Au-coated fibers as microcavity. The chip is fabricated by soft lithography. When the active region is pumped, a relatively low threshold of 6.7 μJ/mm2 is realized with multimode emission due to good confinement of the cavity mirrors, long active region, as well as total reflectivity. It is easy to tune the lasing emission wavelength by changing the solvent of laser dye. In addition, the various intensity ratios of multicolor lasing can be achieved by controlling flow rates of two fluid streams carried with different dye molecules. Furthermore, the convenience in fabrication and directional lasing emission outcoupled by the fiber make the tunable optofluidic dye laser a promising underlying coherent light source in the integrated optofluidic systems.

  9. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate

    PubMed Central

    Rojas García, Elizabeth; López Medina, Ricardo; May Lozano, Marcos; Hernández Pérez, Isaías; Valero, Maria J.; Maubert Franco, Ana M.

    2014-01-01

    A Metal-Organic Framework (MOF), iron-benzenetricarboxylate (Fe(BTC)), has been studied for the adsorptive removal of azo-dye Orange II from aqueous solutions, where the effect of various parameters was tested and isotherm and kinetic models were suggested. The adsorption capacities of Fe(BTC) were much higher than those of an activated carbon. The experimental data can be best described by the Langmuir isotherm model (R2 > 0.997) and revealed the ability of Fe(BTC) to adsorb 435 mg of Orange II per gram of adsorbent at the optimal conditions. The kinetics of Orange II adsorption followed a pseudo-second-order kinetic model, indicating the coexistence of physisorption and chemisorption, with intra-particle diffusion being the rate controlling step. The thermodynamic study revealed that the adsorption of Orange II was feasible, spontaneous and exothermic process (−25.53 kJ·mol−1). The high recovery of the dye showed that Fe(BTC) can be employed as an effective and reusable adsorbent for the removal of Orange II from aqueous solutions and showed the economic interest of this adsorbent material for environmental purposes. PMID:28788289

  10. Chemotaxis of Molecular Dyes in Polymer Gradients in Solution.

    PubMed

    Guha, Rajarshi; Mohajerani, Farzad; Collins, Matthew; Ghosh, Subhadip; Sen, Ayusman; Velegol, Darrell

    2017-11-08

    Chemotaxis provides a mechanism for directing the transport of molecules along chemical gradients. Here, we show the chemotactic migration of dye molecules in response to the gradients of several different neutral polymers. The magnitude of chemotactic response depends on the structure of the monomer, polymer molecular weight and concentration, and the nature of the solvent. The mechanism involves cross-diffusion up the polymer gradient, driven by favorable dye-polymer interaction. Modeling allows us to quantitatively evaluate the strength of the interaction and the effect of the various parameters that govern chemotaxis.

  11. Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite.

    PubMed

    Ferrarini, F; Bonetto, L R; Crespo, Janaina S; Giovanela, M

    2016-01-01

    Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer-Emmett-Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.

  12. Spin-coated Films of Squarylium Dye J-Aggregates Exhibiting Ultrafast Optical Responses

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Tian, Minquan; Furuki, Makoto; Sato, Yasuhiro; Pu, Lyong Sun; Wada, Osamu

    2000-08-01

    The formation of J-aggregates of squarylium dye derivatives in spin-coated films is reported. Squarylium dye derivatives with dipropylamino bases are found to spontaneously aggregate in a spin-coated film. Aggregation is promoted when dye molecules are dispersed in a poly(vinyl alcohol) film, and when a spin-coated film of dye molecules is heated in the presence of acid vapor. In particular, J-aggregates formed by exposure to acetic acid vapor show the narrowest spectral width. J-aggregates formed by the acid treatment method are stable at room temperature and the spectral full-width at half maximum of the J-band is 20 nm. Optical response of the acid-treated film is confirmed to exhibit a short relaxation time of bleached absorption of 300 fs.

  13. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution.

    PubMed

    Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James

    2017-11-15

    In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of molecule-adsorption kinetics by a pulsed laser desorption technique

    NASA Astrophysics Data System (ADS)

    Varakin, V. N.; Lozovskii, A. D.; Panesh, A. M.; Simonov, A. P.

    1987-02-01

    The laser thermal desorption technique is used to measure the adsorption kinetics of SO2 and CO molecules on stainless steel with the aim of investigating the initial stage of oxidation of the steel by adsorbed CO molecules. Attention is given to the dependence of the rate of establishment of the equilibrium concentration of adsorbed molecules on SO2-gas pressure; CO adsorption kinetics on stainless steel at a gas pressure of 9 x 10 to the -8th torr; and the dependence of the concentration of adsorbed CO molecules on exposure in the gas at a pressure of 9 x 10 to the -8th torr under irradiation by laser pulses with repetition periods of 1-2, 2-4, 3-6, and 4-8 min.

  15. Trapping characteristic of halloysite lumen for methyl orange

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Yan, Hua; Pei, Zhenzhao; Wu, Junyong; Li, Rongrong; Jin, Yanxian; Zhao, Jie

    2015-08-01

    The interaction of clay minerals and dyes is an area of great interest especially in the development of novel adsorbents. In this report, we demonstrated interaction of halloysite nanotubes (HNTs) and an anionic dye, methyl orange (MO), through a electrostatic attraction. Halloysite lumen has a trapping characteristic for methyl orange, which is mainly determined by the positively charged nature of the inner surface of HNTs. XRD results confirmed that intercalation of methyl orange into HNTs did not occur. SEM-EDS and photostability results showed that MO molecules were primarily in HNTs lumen. Adsorption isotherm studies revealed an interesting phenomenon, i.e., a sudden increase of adsorption capacity occurred in the initial dye concentration of about 75 mg/L, which was just the dye concentration corresponding to the onset of dye oligomer formation. This suggested dye aggregation state had a decisive influence to the adsorption behavior of MO on the halloysite. BET results demonstrated at low and high dye concentrations, single MO molecule and aggregation of several dimers through hydrophobic interaction, interacted with Al-OH2+ sites on the inner wall, respectively. Desorption experiments showed that MO in HNTs can be completely removed with deionized water, indicating halloysite is a low-cost and efficient adsorbent for anionic dye.

  16. Photosensitive function of encapsulated dye in carbon nanotubes.

    PubMed

    Yanagi, Kazuhiro; Iakoubovskii, Konstantin; Matsui, Hiroyuki; Matsuzaki, Hiroyuki; Okamoto, Hiroshi; Miyata, Yasumitsu; Maniwa, Yutaka; Kazaoui, Said; Minami, Nobutsugu; Kataura, Hiromichi

    2007-04-25

    Single-wall carbon nanotubes (SWCNTs) exhibit resonant absorption localized in specific spectral regions. To expand the light spectrum that can be utilized by SWCNTs, we have encapsulated squarylium dye into SWCNTs and clarified its microscopic structure and photosensitizing function. X-ray diffraction and polarization-resolved optical absorption measurements revealed that the encapsulated dye molecules are located at an off center position inside the tubes and aligned to the nanotube axis. Efficient energy transfer from the encapsulated dye to SWCNTs was clearly observed in the photoluminescence spectra. Enhancement of transient absorption saturation in the S1 state of the semiconducting SWCNTs was detected after the photoexcitation of the encapsulated dye, which indicates that ultrafast (<190 fs) energy transfer occurred from the dye to the SWCNTs.

  17. A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Wang; R Sha; J Birktoft

    2011-12-31

    We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal.

  18. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  19. Removal of the methyl violet 2B dye from aqueous solution using sustainable adsorbent Artocarpus odoratissimus stem axis

    NASA Astrophysics Data System (ADS)

    Kooh, Muhammad Raziq Rahimi; Dahri, Muhammad Khairud; Lim, Linda B. L.

    2017-11-01

    This study investigates the potential of the stem axis of Artocarpus odoratissimus fruit (TSA) as an adsorbent for the removal of methyl violet 2B (MV). The functional group analysis was carried out using Fourier-transform infrared spectroscopy. Investigation of the effects of pH and ionic strength provide insights on the involvement of electrostatic attraction and hydrophobic-hydrophobic attraction between the adsorbent and adsorbates. Kinetics models (pseudo-first-order, pseudo-second-order, Weber-Morris and Boyd) and isotherm models (Langmuir, Freundlich and Dubinin-Raduskevich) were used for characterising the adsorption process. The Langmuir model predicted a high q m of 263.7 mg g-1. Thermodynamics studies indicate the adsorption system is spontaneous, endothermic and physical sorption dominant. The spent adsorbent was successfully regenerated using water and obtained adsorption capacity close to the unused adsorbent even after fifth cycle of washing.

  20. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mittal, Hemant; Maity, Arjun; Ray, Suprakas Sinha

    2016-02-01

    Biodegradable hydrogel nanocomposites (HNC) of gum karaya (GK) grafted with poly(acrylic acid) (PAA) incorporated silicon carbide nanoparticles (SiC NPs) were synthesized using the in situ graft copolymerization method and tested for the adsorption of cationic dyes from aqueous solution. The structure and morphology of the HNC were characterized using different spectroscopic and microscopic techniques. The results showed that the surface area and porosity of the hydrogel polymer significantly increased after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose of 0.5 and 0.6 g l-1 in neutral medium, respectively. The adsorption process was found to be highly pH dependent and followed the pseudo-second-order rate model. The adsorption isotherm data fitted well with the Langmuir adsorption isotherm with a maximum adsorption capacity of 757.57 and 497.51 mg g-1 for MG and RhB, respectively. Furthermore, the HNC was demonstrated as a versatile adsorbent for the removal of both cationic and anionic dyes from the simulated wastewater. The HNC showed excellent regeneration capacity and was successfully used for the three cycles of adsorption-desorption. In summary, the HNC has shown its potential as an environment friendly and efficient adsorbent for the adsorption of cationic dyes from contaminated water.

  1. On the molecular interaction between lactoferrin and the dye Red HE-3B. A novel approach for docking a charged and highly flexible molecule to protein surfaces

    NASA Astrophysics Data System (ADS)

    Grasselli, Mariano; Cascone, Osvaldo; Anspach, F. Birger; Delfino, Jose M.

    2002-12-01

    Lactoferrin (Lf) is a non-heme, iron binding protein present in many physiological fluids of vertebrates where its main role is the microbicidal activity. It has been isolated by different methods, including dye-affinity chromatography. Red HE-3B is one of the most common triazinic dyes applied in protein purification, but scant knowledge is available on structural details and on the energetics of its interaction with proteins. In this work we present a computational approach useful for identifying possible binding sites for Red HE-3B in apo and holo forms of Lfs from human and bovine source. A new geometrical description of Red HE-3B is introduced which greatly simplifies the conformational analysis. This approach proved to be of particular advantage for addressing conformational ensembles of highly flexible molecules. Predictions from this analysis were correlated with experimentally observed dye-binding sites, as mapped by protection from proteolysis in Red HE-3B/Lf complexes. This method could bear relevance for the screening of possible dye-binding sites in proteins whose structure is known and as a potential tool for the design of engineered protein variants which could be purified by dye-affinity chromatography.

  2. On the molecular interaction between lactoferrin and the dye Red HE-3b. A novel approach for docking a charged and highly flexible molecule to protein surfaces.

    PubMed

    Grasselli, Mariano; Cascone, Osvaldo; Birger Anspach, F; Delfino, Jose M

    2002-12-01

    Lactoferrin (Lf) is a non-heme, iron binding protein present in many physiological fluids of vertebrates where its main role is the microbicidal activity. It has been isolated by different methods, including dye-affinity chromatography. Red HE-3B is one of the most common triazinic dyes applied in protein purification, but scant knowledge is available on structural details and on the energetics of its interaction with proteins. In this work we present a computational approach useful for identifying possible binding sites for Red HE-3B in apo and holo forms of Lfs from human and bovine source. A new geometrical description of Red HE-3B is introduced which greatly simplifies the conformational analysis. This approach proved to be of particular advantage for addressing conformational ensembles of highly flexible molecules. Predictions from this analysis were correlated with experimentally observed dye-binding sites, as mapped by protection from proteolysis in Red HE-3B/Lf complexes. This method could bear relevance for the screening of possible dye-binding sites in proteins whose structure is known and as a potential tool for the design of engineered protein variants which could be purified by dye-affinity chromatography.

  3. Electronic properties of NH{sub 4}-adsorbed graphene nanoribbon as a promising candidate for a gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Naoki, E-mail: harada.naoki@jp.fujitsu.com; Sato, Shintaro

    2016-05-15

    The electronic properties of NH{sub 4}-adsorbed N = 7 armchair graphene nanoribbons (AGNRs) were theoretically investigated using self-consistent atomistic simulations to explore the feasibility of AGNRs as a gas sensing material. Whereas a pristine AGNR has a finite band gap and is an intrinsic semiconductor, an NH{sub 4}-adsorbed AGNR exhibits heavily doped n-type properties similar to a graphene sheet with the molecules adsorbed. The electric characteristics of a back-gated AGNR gas sensor were also simulated and the drain current changed exponentially with increasing number of adsorbed molecules. We may conclude that an AGNR is promising as a highly sensitive gas-sensingmore » material with large outputs.« less

  4. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater: Effect of kaolin particles.

    PubMed

    Zhao, Chuanliang; Zheng, Huaili; Sun, Yongjun; Zhang, Shixin; Liang, Jianjun; Liu, Yongzhi; An, Yanyan

    2018-05-30

    Graft modified flocculants have recently received increasing attention in the field of water treatment as they have the combinative advantages of synthetic and natural polymeric flocculants. In this work, surface-active monomer benzyl(methacryloyloxyethyl)dimethylammonium chloride (BMDAC) was selected to graft on dextran (DX) with high molecular weight (10.3 × 10 6  g/mol) produced through enzyme-catalyzed process in order to remove dissolved dyes from wastewater. The flocculant (DAB) was fabricated by ultrasound initiated polymerization technique, and the structure characterization of FTIR, 1 H/ 12 C NMR, XRD and XPS spectrum confirmed the successful grafting. Then the Congo red (CR) removal efficiency by DAB was optimized based on the flocculation conditions, including wastewater initial pH, flocculant dosage and initial dye concentration. The effect of suspended solids on the removal of dyes was evaluated in kaolin-CR simulated wastewater. The results indicated that the optimal removal efficiency of CR was 68.1% and 88.2% in single CR and kaolin-CR flocculation system, respectively. The improvement of removal efficiency was attributed to the fact that partial CR molecules were adsorbed onto kaolin particles before flocculation, and were synergistically flocculated accompanied by kaolin particles. Finally, the flocculation mechanism was discussed by a detailed investigation of the zeta potentials, FTIR and XPS spectra of flocs, which can provide important reference for optimizing the flocculation conditions and designing novel high-performance flocculants. Copyright © 2018. Published by Elsevier B.V.

  5. Nanofiber adsorbents for high productivity downstream processing.

    PubMed

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2013-04-01

    Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area. To improve the purification productivity of biological molecules by chromatography, cellulose nanofiber adsorbents were fabricated and assembled into a cartridge and filter holder format with a volume of 0.15 mL, a bed height of 0.3 mm and diameter of 25 mm. The present study investigated the performance of diethylaminoethyl (DEAE) derivatized regenerated cellulose nanofiber adsorbents based on criteria including mass transfer and flow properties, binding capacity, and fouling effects. Our results show that nanofibers offer higher flow and mass transfer properties. The non-optimized DEAE-nanofiber adsorbents indicate a binding capacity of 10% that of packed bed systems with BSA as a single component system. However, they operate reproducibly at flowrates of a hundred times that of packed beds, resulting in a potential productivity increase of 10-fold. Lifetime studies showed that this novel adsorbent material operated reproducibly with complex feed material (centrifuged and 0.45 µm filtered yeast homogenate) and harsh cleaning-in-place conditions over multiple cycles. DEAE nanofibers showed superior operating performance in permeability and fouling over conventional adsorbents indicating their potential for bioseparation applications. Copyright © 2012 Wiley Periodicals, Inc.

  6. Charge-transfer excited state in pyrene-1-carboxylic acids adsorbed on titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Krawczyk, S.; Nawrocka, A.; Zdyb, A.

    2018-06-01

    The electronic structure of excited photosensitizer adsorbed at the surface of a solid is the key factor in the electron transfer processes that underlie the efficiency of dye-sensitized solar cells and photocatalysts. In this work, Stark effect (electroabsorption) spectroscopy has been used to measure the polarizability and dipole moment changes in electronic transitions of pyrene-1-carboxylic (PCA), -acetic (PAA) and -butyric (PBA) acids in ethanol, both free and adsorbed on colloidal TiO2, in glassy ethanol at low temperature. The lack of appreciable increase of dipole moment in the excited state of free and adsorbed PAA and PBA points that two or more single bonds completely prevent the expansion of π-electrons from the aromatic ring towards the carboxylic group, thus excluding the possibility of direct electron injection into TiO2. In free PCA, the pyrene's forbidden S0 → S1 transition has increased intensity, exhibits a long progression in 1400 cm-1 Ag mode and is associated with |Δμ| of 2 D. Adsorption of PCA on TiO2 causes a broadening and red shift of the S0 → S1 absorption band and an increase in dipole moment change on electronic excitation to |Δμ| = 6.5 D. This value increased further to about 15 D when the content of acetic acid in the colloid was changed from 0.2% to 2%, and this effect is ascribed to the surface electric field. The large increase of |Δμ| points that the electric field effect can not only change the energetics of electron transfer from the excited sensitizer into the solid, but can also shift the molecular electronic density, thus directly influencing the electronic coupling factor relevant for electron transfer at the molecule-solid interface.

  7. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  8. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  9. Spectroscopic Studies of Abiotic and Biological Nanomaterials: Silver Nanoparticles, Rhodamine 6G Adsorbed on Graphene, and c-Type Cytochromes and Type IV Pili in Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Thrall, Elizabeth S.

    This thesis describes spectroscopic studies of three different systems: silver nanoparticles, the dye molecule rhodamine 6G adsorbed on graphene, and the type IV pili and c-type cytochromes produced by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens. Although these systems are quite different in some ways, they can all be considered examples of nanomaterials. A nanomaterial is generally defined as having at least one dimension below 100 nm in size. Silver nanoparticles, with sub-100 nm size in all dimensions, are examples of zero-dimensional nanomaterials. Graphene, a single atomic layer of carbon atoms, is the paradigmatic two-dimensional nanomaterial. And although bacterial cells are on the order of 1 μm in size, the type IV pili and multiheme c-type cytochromes produced by G. sulfurreducens can be considered to be one- and zero-dimensional nanomaterials respectively. A further connection between these systems is their strong interaction with visible light, allowing us to study them using similar spectroscopic tools. The first chapter of this thesis describes research on the plasmon-mediated photochemistry of silver nanoparticles. Silver nanoparticles support coherent electron oscillations, known as localized surface plasmons, at resonance frequencies that depend on the particle size and shape and the local dielectric environment. Nanoparticle absorption and scattering cross-sections are maximized at surface plasmon resonance frequencies, and the electromagnetic field is amplified near the particle surface. Plasmonic effects can enhance the photochemistry of silver particles alone or in conjunction with semiconductors according to several mechanisms. We study the photooxidation of citrate by silver nanoparticles in a photoelectrochemical cell, focusing on the wavelength-dependence of the reaction rate and the role of the semiconductor substrate. We find that the citrate

  10. Polylactic acid promotes healing of photodegraded disperse orange 11 molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Najee; Bridgewater, Mauricio; Stubbs, Micheala; Kabir, Amin; Crescimanno, Michael; Kuzyk, Mark G.; Dawson, Nathan J.

    2018-02-01

    We report on the recovery of a photodegraded organic molecule mediated by a biopolymer. Amplified spontaneous emission (ASE) from disperse orange 11 (DO11) dye-doped polylactic acid (PLA) was used to monitor photodegradation while the material was being damaged by a strong pump laser. The ASE signal fully recovers over two hours time when the pump beam is blocked. The fluorescence spectra was also observed to recover after partial photobleaching the dye-doped polymer. PLA is the first biopolymer known to mediate the recovery of a photodegraded organic dye molecule.

  11. Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye

    NASA Astrophysics Data System (ADS)

    Kumara, G. R. A.; Deshapriya, U.; Ranasinghe, C. S. K.; Jayaweera, E. N.; Rajapakse, R. M. G.

    2018-03-01

    Dye-sensitized solar cells (DSCs) have attracted a great deal of attention due to their low-cost and high power conversion efficiencies. They usually utilize an interconnected nanoparticle layer of TiO2 as the electron transport medium. From the fundamental point of view, faster mobility of electrons in ZnO is expected to contribute to better performance in DSCs than TiO2, though the actual practical situation is quite the opposite. In this research, we addressed this problem by first applying a dense layer of ZnO on FTO followed by a mesoporous layer of interconnected ZnO nanoparticle layer, both were prepared by spray pyrolysis technique. The best cell shows a power conversion efficiency of 5.2% when the mesoporous layer thickness is 14 μm and the concentration of the N719 dye in dye coating solution is 0.3 mM, while a cell without a dense layer shows 4.2% under identical conditions. The surface concentration of dye adsorbed in the cell with a dense layer and that without a dense layer are 5.00 × 10‑7 and 3.34 × 10‑7 mol/cm2, respectively. The cell with the dense layer has an electron lifetime of 54.81 ms whereas that without the dense layer is 11.08 ms. As such, the presence of the dense layer improves DSC characteristics of ZnO-based DSCs.

  12. Single molecule studies of solvent-dependent diffusion and entrapment in poly(dimethylsiloxane) thin films.

    PubMed

    Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A

    2008-12-15

    Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly

  13. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature.

    PubMed

    Chen, Yi-di; Lin, Yen-Chang; Ho, Shih-Hsin; Zhou, Yan; Ren, Nan-Qi

    2018-07-01

    Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of varying temperature (from 400 °C to 800 °C) on biochar characteristics was investigated. Among the biochar samples tested, macroalgae-derived biochar possessing highly porous structure, special surface chemical behavior and high thermal stability was found to be efficient in removing malachite green, crystal violet and Congo red. The biochar derived by pyrolysis at 800 °C showed the highest adsorption capacity for malachite green (5306.2 mg g -1 ). In this study, the transformation of microalgae residue into a highly efficient dye adsorbent is a promising procedure for economic and environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Adsorption of a textile dye "Indanthrene Blue RS (C.I. Vat Blue 4)" from aqueous solutions onto smectite-rich clayey rock.

    PubMed

    Chaari, Islem; Feki, Mongi; Medhioub, Mounir; Bouzid, Jalel; Fakhfakh, Emna; Jamoussi, Fakher

    2009-12-30

    The adsorption of a textile dye, namely, Indanthrene Blue RS (C.I. Vat Blue 4) onto smectite-rich clayey rock (AYD) and its sulphuric acid-activated products (AYDS) in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. The adsorbents employed were characterized by X-ray diffraction, infrared spectroscopy and specific surface area, cation exchange capacity and point of zero charge were also estimated. The effect of contact time on dye adsorption showed that the equilibrium was reached after a contact time of 40 min for the both adsorbents. The optimum pH for dye retention was found 6.0 for AYDS and 7.3 for AYD. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The adsorption capacities (Q(m)) for AYD and AYDS were found 13.92 mg/g and 17.85 mg/g, respectively. The effect of temperature on the adsorption was also investigated; adsorption of Indanthrene Blue RS is an endothermic process. This study demonstrates that all the considered adsorbents can be used as an alternative emerging technology for water treatment.

  15. Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution.

    PubMed

    Song, Kaili; Xu, Helan; Xu, Lan; Xie, Kongliang; Yang, Yiqi

    2017-05-01

    High-efficiency and recyclable three-dimensional bioadsorbents were prepared by incorporating cellulose nanocrystal (CNC) as reinforcements in keratin sponge matrix to remove dyes from aqueous solution. Adsorption performance of dyes by CNC-reinforced keratin bioadsorbent was improved significantly as a result of adding CNC as filler. Batch adsorption results showed that the adsorption capacities for Reactive Black 5 and Direct Red 80 by the bioadsorbent were 1201 and 1070mgg -1 , respectively. The isotherms and kinetics for adsorption of both dyes on bioadsorbent followed the Langmuir isotherm model and pseudo-second order model, respectively. Desorption and regeneration experiments showed that the removal efficiencies of the bioadsorbent for both dyes could remain above 80% at the fifth recycling cycles. Moreover, the bioadsorbent possessed excellent packed-bed column operation performance. Those results suggested that the adsorbent could be considered as a high-performance and promising candidate for dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of sintering time on the performance of turmeric dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Basuki, Hidajat, R. Lullus Lambang G.; Suyitno, Kristiawan, Budi; Rachmanto, Rendy Adhi

    2017-01-01

    This study reports the effect of sintering time on the performance of the dye-sensitized solar cells with turmeric dyes as sensitizers. Sintering TiO2 semiconductors were conducted at a temperature of 450°C for 30, 50, 90, 120, 150, and 180 minutes. The natural dye was extracted from dried turmeric powders with ethanol solvent. The results show that size of grains and the opening area of TiO2 semiconductor depended on the sintering time. The improvement of the properties of TiO2 semiconductor allowed more turmeric dyes were adsorbed by the semiconductors and then improved the performance of solar cells. The sintering time of 150 minutes produced large grains with an average diameter of 68.87 nm, and a porosity area of 26.51% caused the performance of DSSCs was the highest among other sintering time. The Voc, Jsc, and efficiency of DSSCs with turmeric-based natural dyes 0.64 V, 0.47 mA/cm2, and 0.2%, respectively.

  17. Radiolysis of alanine adsorbed in a clay mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role againstmore » external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.« less

  18. A hybrid sorption - Spectrometric method for determination of synthetic anionic dyes in foodstuffs.

    PubMed

    Tikhomirova, Tatyana I; Ramazanova, Gyulselem R; Apyari, Vladimir V

    2017-04-15

    A sorption-spectrometric method for determination of the anionic synthetic dyes based on their sorption on silica sorbent modified with hexadecyl groups (C16) followed by measuring the diffuse reflectance spectra on the surface of the sorbent has been proposed. Adsorption of sulfonated azo dyes Tartrazine (E102), Sunset Yellow FCF (E110), Ponceau 4R (E124) reaches maximum in acidic medium (1M HCl - pH 1). For the quinophthalone type dye Quinoline Yellow (E104), the adsorption is also maximal in an acidic medium (1M HCl - pH 2). The triphenylmethane dye Fast Green FCF (E143) is absorbed in the wider area of pH (1M HCl - pH 6). Increasing concentration of the dyes in a solution led to the increase in absorption band intensity in diffuse reflectance spectra of the adsorbent, which was used for their direct determination. The proposed method was applied to the determination of dyes in beverages and pharmaceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste.

    PubMed

    Sewu, Divine D; Boakye, Patrick; Woo, Seung H

    2017-01-01

    Biochar was produced from Korean cabbage (KC), rice straw (RS) and wood chip (WC) and the use as alternative adsorbents to activated carbon (AC) in wastewater treatment was investigated. Congo red (CR) and crystal violet (CV) were used as a model anionic and cationic dye, respectively. Initial solution pH had little effect on CR and CV adsorption onto all biochars except for AC on CR. The isotherm models and kinetic data showed that adsorption of CR and CV onto all biochars were dominantly by chemisorption. All biochars had lower adsorption capacity for CR than AC. KC showed higher Langmuir maximum adsorption capacity (1304mg/g) than AC (271.0mg/g), RS (620.3mg/g) and WC (195.6mg/g) for CV. KC may be a good alternative to conventional AC as cheap, superb and industrially viable adsorbent for removal of cationic dyes in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes.

    PubMed

    Xu, Rui; Mao, Jie; Peng, Na; Luo, Xiaogang; Chang, Chunyu

    2018-05-15

    Numerous adsorbents have been reported for efficient removal of dye from water, but the high cost raw materials and complicated fabrication process limit their practical applications. Herein, novel nanocomposite microspheres were fabricated from chitin and clay by a simple thermally induced sol-gel transition. Clay nanosheets were uniformly embedded in a nanofiber weaved chitin microsphere matrix, leading to their hierarchical architecture. Benefiting from this unique structure, microspheres could efficiently remove methylene blue (MB) through a spontaneous physic-sorption process which fit well with pseudo-second-order and Langmuir isotherm models. The maximal values of adsorption capability obtained by calculation and experiment were 152.2 and 156.7 mg g -1 , respectively. Chitin/clay microspheres (CCM2) could remove 99.99% MB from its aqueous solution (10 mg g -1 ) within 20 min. These findings provide insight into a new strategy for fabrication of dye adsorbents with hierarchical structure from low cost raw materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Molecular Structure and Equilibrium Forces of Bovine Submaxillary Mucin Adsorbed at a Solid-Liquid Interface.

    PubMed

    Zappone, Bruno; Patil, Navinkumar J; Madsen, Jan B; Pakkanen, Kirsi I; Lee, Seunghwan

    2015-04-21

    By combining dynamic light scattering, circular dichroism spectroscopy, atomic force microscopy, and surface force apparatus, the conformation of bovine submaxillary mucin in dilute solution and nanomechanical properties of mucin layers adsorbed on mica have been investigated. The samples were prepared by additional chromatographic purification of commercially available products. The mucin molecule was found to have a z-average hydrodynamic diameter of ca. 35 nm in phosphate buffered solution, without any particular secondary or tertiary structure. The contour length of the mucin is larger than, yet of the same order of magnitude as the diameter, indicating that the molecule can be modeled as a relatively rigid polymeric chain due to the large persistence length of the central glycosylated domain. Mucin molecules adsorbed abundantly onto mica from saline buffer, generating polymer-like, long-ranged, repulsive, and nonhysteretic forces upon compression of the adsorbed layers. Detailed analysis of such forces suggests that adsorbed mucins had an elongated conformation favored by the stiffness of the central domain. Acidification of aqueous media was chosen as means to reduce mucin-mucin and mucin-substrate electrostatic interactions. The hydrodynamic diameter in solution did not significantly change when the pH was lowered, showing that the large persistence length of the mucin molecule is due to steric hindrance between sugar chains, rather than electrostatic interactions. Remarkably, the force generated by an adsorbed layer with a fixed surface coverage also remained unaltered upon acidification. This observation can be linked to the surface-protective, pH-resistant role of bovine submaxillary mucin in the variable environmental conditions of the oral cavity.

  2. Giant light-harvesting nanoantenna for single-molecule detection in ambient light

    PubMed Central

    Trofymchuk, Kateryna; Reisch, Andreas; Didier, Pascal; Fras, François; Gilliot, Pierre; Mely, Yves; Klymchenko, Andrey S.

    2017-01-01

    Here, we explore the enhancement of single molecule emission by polymeric nano-antenna that can harvest energy from thousands of donor dyes to a single acceptor. In this nano-antenna, the cationic dyes are brought together in very close proximity using bulky counterions, thus enabling ultrafast diffusion of excitation energy (≤30 fs) with minimal losses. Our 60-nm nanoparticles containing >10,000 rhodamine-based donor dyes can efficiently transfer energy to 1-2 acceptors resulting in an antenna effect of ~1,000. Therefore, single Cy5-based acceptors become 25-fold brighter than quantum dots QD655. This unprecedented amplification of the acceptor dye emission enables observation of single molecules at illumination powers (1-10 mW cm-2) that are >10,000-fold lower than typically required in single-molecule measurements. Finally, using a basic setup, which includes a 20X air objective and a sCMOS camera, we could detect single Cy5 molecules by simply shining divergent light on the sample at powers equivalent to sunlight. PMID:28983324

  3. Dye anchored ZnO nanoparticles: The positive and negative photoluminescence quenching effects

    NASA Astrophysics Data System (ADS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Lee, Sangjin; Lee, Wonjoo; Mane, Rajaram S.; Han, Jin Wook; Han, Sung-Hwan

    2009-10-01

    The positive and negative photoluminescence quenching effects in dye [BCMoxo and BCtCM (curcumin-derived molecules)] anchored ZnO nanoparticles (NPs) are investigated using the optical and electronic properties. The photoluminescence, band gap (BCMoxo, 2.2 eV; BCtCM, 2.3 eV), and wettability studies confirm an optical quenching, well-matched electronic structure and relative hydrophobic nature, respectively, in the presence of dicarboxylic anchor groups (BCtCM) on ZnO NPs in contrast to that of keto groups (BCMoxo). Systematic change in UV-visible absorption band edge is noticeable for the BCtCM and BCMoxo-anchored ZnO NPs. The atomic absorption spectroscopy and inductively coupled-mass-spectroscopy analysis quantitatively verifies the amount of BCtCM dye molecules present on ZnO NPs surface area about three times higher than that of BCMoxo dye molecule without anchor groups.

  4. The influence of adsorbent microstructure upon adsorption equilibria: Investigations of a model system

    NASA Astrophysics Data System (ADS)

    Kaminsky, R. D.; Monson, P. A.

    1991-08-01

    We present a theoretical study of the influence of the microstructure of a porous adsorbent upon associated adsorption behavior. A model is developed which describes the interactions of adsorbed molecules with an adsorbent treated as a matrix of particles each of which is a continuum of interaction centers. The model leads to an analytic expression for the adsorbate-adsorbent particle potential which is an analog of the 9-3 potential model for adsorption on planar solid surfaces. To illustrate the utility of the approach, an application to methane adsorbed in a microporous silica gel is presented. Several adsorbent microstructures are investigated, including a variety of crystal lattices as well as structures derived from equilibrium configurations of hard spheres. Adsorption in these structures is studied through calculation of Henry's law constants and by using grand canonical Monte Carlo simulation to determine adsorption isotherms and the structure of adsorbed fluids. The results obtained are related to details of the adsorbent microstructure.

  5. Spectroscopic manifestations of hybrid association of CdS colloidal quantum dots with J-aggregates of a thiatrimethine cyanine dye

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, O. V.; Smirnov, M. S.; Shapiro, B. I.; Dedikova, A. O.; Shatskikh, T. S.

    2015-11-01

    We have found spectroscopic manifestations of hybrid association in mixtures of CdS colloidal quantum dots with an average size of 2.5-4.2 nm with J-aggregates of pyridinium salt of the 3,3'-di-(γ- sulfopropyl)-9-ethyl-4,5,4',5'-dibenzo-thiacarbocyanine betaine dye that were prepared by the sol-gel method in gelatin. Observed changes of the spectral properties of J-aggregates of dye molecules due to their hybrid association with CdS quantum dots are ensured by steric transformations of dye molecules, which lead to the formation of luminescent trans-J-aggregates. The hybrid association is accompanied by the quenching of the recombination luminescence band of CdS quantum dots (540-640 nm) and by an increase in the luminescence intensity of J-aggregates of dye molecules (670-680 nm). This regularity becomes enhanced with an increase in the ratio of the number of dye molecules to the number of quantum dots [ n dye]: [ n QD] and in the degree of overlap between the luminescence spectrum of quantum dots and the absorption spectrum of J-aggregates, which indicates that there is a resonant nonradiative transfer of the electronic excitation energy from recombination luminescence centers in CdS quantum dots to trans-J-aggregates of dye molecules conjugated to them.

  6. Manufacturing of novel low-cost adsorbent: Co-granulation of limestone and coffee waste.

    PubMed

    Iakovleva, Evgenia; Sillanpää, Mika; Maydannik, Philipp; Liu, Jiang Tao; Allen, Stephen; Albadarin, Ahmad B; Mangwandi, Chirangano

    2017-12-01

    Limestone and coffee waste were used during the wet co-granulation process for the production of efficient adsorbents to be used in the removal of anionic and cationic dyes. The adsorbents were characterized using different analytical techniques such as XRD, SEM, FTIR, organic elemental analysis, the nitrogen adsorption method, with wettability, strength and adsorption tests. The adsorption capacity of granules was determined by removal of methylene blue (MB) and orange II (OR) from single and mixed solutions. In the mixed solution, co-granules removed 100% of MB and 85% of OR. The equilibria were established after 6 and 480 h for MB and OR, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. ANALYSIS OF ANIONIC METALLIZED AZO AND FORMAZAN DYES BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis-mass spectrometry was applied to the separation of several anionic dyes containing copper(II), chromium(III), or cobalt(III) as part of the dye molecule. The dyes were separated using a 110 cmX50 mu m uncoated fused-silica capillary and a 5 mM ammonium a...

  8. Framework for scalable adsorbate–adsorbate interaction models

    DOE PAGES

    Hoffmann, Max J.; Medford, Andrew J.; Bligaard, Thomas

    2016-06-02

    Here, we present a framework for physically motivated models of adsorbate–adsorbate interaction between small molecules on transition and coinage metals based on modifications to the substrate electronic structure due to adsorption. We use this framework to develop one model for transition and one for coinage metal surfaces. The models for transition metals are based on the d-band center position, and the models for coinage metals are based on partial charges. The models require no empirical parameters, only two first-principles calculations per adsorbate as input, and therefore scale linearly with the number of reaction intermediates. By theory to theory comparison withmore » explicit density functional theory calculations over a wide range of adsorbates and surfaces, we show that the root-mean-squared error for differential adsorption energies is less than 0.2 eV for up to 1 ML coverage.« less

  9. Eragrostis plana Nees as a novel eco-friendly adsorbent for removal of crystal violet from aqueous solutions.

    PubMed

    Filho, Augusto Cezar D; Mazzocato, Ana C; Dotto, Guilherme L; Thue, Pascal S; Pavan, Flávio A

    2017-08-01

    Eragrostis plana Nees (EPN) was used as new and eco-friendly adsorbent for the removal of crystal violet dye (CV) from aqueous solution. Specific surface area (BET), scanning electron microscopy (SEM), infrared spectroscopy (ATR-FTIR), point of zero charge (pH PZC ), and modified Boehm titration method were used to characterize the EPN material. The effects of initial pH of solution, adsorbent mass, contact time and initial dye concentration, and temperature were studied in batch adsorption mode. Kinetic data were evaluated by pseudo-first-order and pseudo-second-order models. The result exhibited that pseudo-second-order model well described the adsorption kinetics of CV onto EPN. Langmuir, Freundlich, and Sips isotherm models were used for analysis of the isothermal data. The equilibrium data of adsorption of CV onto EPN was better fitted with the Sips isotherm. Based on the Sips isotherm model, the maximum adsorption capacity was 76.20 ± 1.20 mg g -1 at 333 K. A high desorption of CV from EPN was obtained using 1.00 mol L -1 of CH 3 COOH as eluent. The thermodynamic data indicated that the adsorption was spontaneous, endothermic, and physical process. EPN can be used as alternative adsorbent to remove CV from aqueous solution.

  10. Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution.

    PubMed

    Tsai, W T; Hsien, K J; Yang, J M

    2004-07-15

    The objective of this work is to study the activation regeneration of spent diatomaceous earth (SDE) for the preparation of silica adsorbents using thermal regeneration and acid/alkaline activation methods. Under the experimental conditions investigated, it was found that the alkaline activation method carried out by sodium hydroxide under controlled conditions is significantly superior to other heat and activation methods. The porosities of solids thus obtained are over 0.2, indicating that they are basically mesoporous. The optimal porous material thus prepared was used as a mineral adsorbent for methylene blue at 25 degrees C. The adsorption equilibrium revealed that the silica adsorbent can take up over 50 mg/g at relatively low concentrations in aqueous medium from the fittings of Langmuir and Freundlich isotherms with high correlations. On the other hand, the adsorption kinetic of methylene blue under various adsorbent dosages can be well described with a pseudo-second-order reaction model. Copyright 2004 Elsevier Inc.

  11. Xanthium strumarium L. seed hull as a zero cost alternative for Rhodamine B dye removal.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika Kaur

    2017-07-15

    Treatment of polluted water has been considered as one of the most important aspects in environmental sciences. Present study explores the decolorization potential of a low cost natural adsorbent Xanthium strumarium L. seed hull for the adsorption of a toxic xanthene dye, Rhodamine B (RHB). The characterization of the adsorbent revealed the presence of high amount of carbon, when exposed to Electron Dispersive Spectroscopy (EDS). Further appreciable decolorization took place which was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis noticing shift in peaks. Isothermal studies indicated multilayer adsorption following Freundlich isotherm. The rate of adsorption was supported by second order kinetics directing a chemical phenomenon during the process with dominance of film diffusion as the rate governing step. Moreover paper aims at correlating the chemical arena to the mathematical aspect providing an in-depth information of the studied treatment process. For proper assessment and validation of the observed data, experimental data has been statistically treated by applying different error functions namely, Chi-square test (χ 2 ), Sum of absolute errors (EABS) and Normalized standard deviation (NSD). Further practical applicability of the low cost adsorbent was evaluated by continuous column mode studies with 72.2% of dye recovery. Xanthium strumarium L. proved to be environment friendly low cost natural adsorbent for decolorizing RHB from aquatic system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size

    NASA Astrophysics Data System (ADS)

    Sellaoui, Lotfi; Mechi, Nesrine; Lima, Éder Cláudio; Dotto, Guilherme Luiz; Ben Lamine, Abdelmottaleb

    2017-10-01

    Based on statistical physics elements, the equilibrium adsorption of diclofenac (DFC) and nimesulide (NM) on activated carbon was analyzed by a multilayer model with saturation. The paper aimed to describe experimentally and theoretically the adsorption process and study the effect of adsorbate size using the model parameters. From numerical simulation, the number of molecules per site showed that the adsorbate molecules (DFC and NM) were mostly anchored in both sides of the pore walls. The receptor sites density increase suggested that additional sites appeared during the process, to participate in DFC and NM adsorption. The description of the adsorption energy behavior indicated that the process was physisorption. Finally, by a model parameters correlation, the size effect of the adsorbate was deduced indicating that the molecule dimension has a negligible effect on the DFC and NM adsorption.

  13. Adsorption performance of mixed dyes on alkalization loofah fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Liu, Jinyan; Li, Xingxing

    2018-02-01

    When the polyporous structures of loofah fiber is adequately exposed after alkali treatment,lignin, hemicellulose and pectin are removed. Specific surface area is increased to maximum, which means the efficiency of absorptivity is highest. In this paper, by using alkalization loofah (AL) as adsorbent, the effect of loofah fiber on waste water treatment is studied under the efficiency of loofah fiber which contain acridine yellow, methylene blue, mixed solution of the two dyes. The optimum treatment conditions of loofah fiber were studied from five aspects which include dosage, temperature, mixing time, pH and concentration. The results showed that the optimal conditions are 30°C, pH 8.0, 20mg dosage of loofah fiber in 40ml solution and mixing time 25min. The optimal treatment conditions of mixed dyes were studied from the aspects of mixing time, the dosage of AL and the molar ratio of the two components in the mixed dyes.

  14. Adsorption of methyl green on montmorillonite

    NASA Astrophysics Data System (ADS)

    Margulies, Leon; Rozen, Harel

    1986-03-01

    Adsorption of the dye methyl green (MG) on Na -montmorillonite (Clay) takes place through a cation exchange mechanism. At low and high MG loads, each MG molecule replaces approximately two and one Na + ions, respectively. Interactions between MG and Clay were studied using visible absorption and FTIR spectroscopies, and the orientation of the adsorbed molecules were determined by infrared linear dichroism and X-ray powder diffraction. The dye molecules are preferentially oriented with their plane parallel to the clay surface. The influence of MG load on the adsorption of two additional organic molecules, benzyl benzoate and benzophenone, was also studied.

  15. Combined Homogeneous Surface Diffusion Model - Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects.

    PubMed

    Muthukkumaran, A; Aravamudan, K

    2017-12-15

    Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Green Adsorbents for Wastewaters: A Critical Review

    PubMed Central

    Kyzas, George Z.; Kostoglou, Margaritis

    2014-01-01

    One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i) dyes; (ii) heavy metals; (iii) phenols; (iv) pesticides and (v) pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i) agricultural sources and by-products (fruits, vegetables, foods); (ii) agricultural residues and wastes; (iii) low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources). These “green adsorbents” are expected to be inferior (regarding their adsorption capacity) to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc.), but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful) topics such as: (i) adsorption capacity; (ii) kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes) and (iii) critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry) with economic analysis and perspectives of the use of green adsorbents. PMID:28788460

  17. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    PubMed

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Spectroscopic studies of interactions between dyes and model molecules of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Elhaddaoui, A.; Delacourte, A.; Turrell, S.

    1993-06-01

    Raman, FTIR, fluorescence, and UV-visible spectra are used to study interactions between amuloid-labelling dyes and poly-L-lysine and bovine insulin, two proteins which play the role of models of (beta) amyloid of Alzheimers disease. It is found that though the (beta) conformation of the peptide is not essential, it helps to encourage binding which appears to be stable and specific in nature, involving SO3- groups of the dyes and NH2 groups of the proteins.

  19. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces.

    PubMed

    Giacomelli, Carla E; Norde, Willem

    2005-05-23

    The conformational change of the 39-43 residues of the amyloid beta-peptide (Abeta) toward a beta-sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the self-aggregation of Abeta is related to the different pathways the peptide may take after cleavage from the amyloid precursor proteins at cellular membranes. This work is aiming at determining the conformation of the Abeta (1-40) adsorbed on hydrophobic Teflon and hydrophilic silica particles, as model sorbent surfaces mimicking the apolar transmembrane environment and the polar, charged membrane surface, respectively. The mechanism by which the Abeta interacts with solid surfaces strongly depends on the hydrophobic/hydrophilic character of the particles. Hydrophobic and electrostatic interactions contribute differently in each case, causing a completely different conformational change of the adsorbed molecules on the two surfaces. When hydrophobic interactions between the peptide and the sorbent prevail, the adsorbed Abeta (1-40) mainly adopts an alpha-helix conformation due to H-bonding in the apolar part of the peptide that is oriented towards the surface. On the other hand, when the peptide adsorbs by electrostatic interactions beta-sheet formation is promoted due to intermolecular association between the apolar parts of the adsorbed peptide. Irrespective of the characteristics of the solid sorbent, crowding the surface results in intermolecular association between adsorbed molecules leading to a strong aggregation tendency of the Abeta (1-40). [Diagram: see text] CD spectra of Abeta (1-40) at pH 7: A) in solution ([Abeta]=0.2 mg.ml(-1)) freshly prepared (line) and after overnight incubation (symbols);B) on Teflon (Gamma=0.5 mg.m(-2)).

  20. Designed synthesis and stacking architecture of solid and mesoporous TiO(2) nanoparticles for enhancing the light-harvesting efficiency of dye-sensitized solar cells.

    PubMed

    Ahn, Ji Young; Moon, Kook Joo; Kim, Ji Hoon; Lee, Sang Hyun; Kang, Jae Wook; Lee, Hyung Woo; Kim, Soo Hyung

    2014-01-22

    We fabricated solid and mesoporous TiO2 nanoparticles (NPs) with relatively large primary sizes of approximately 200 nm via inorganic templates for aero-sol-gel and subsequent aqueous-washing processes. The amount of dye molecules adsorbed by the internal pores in the mesoporous TiO2 NPs was increased by creating the nanopores within the solid TiO2 NPs. Simultaneously, the light-scattering effect of the mesoporous TiO2 NPs fabricated by this approach was secured by maintaining their spherical shape and relatively large average size. By precisely accumulating the fabricated solid or mesoporous 200 nm diameter TiO2 NPs on top of a conventional 25 nm diameter TiO2 NP-based underlayer, we could systematically examine the effect of the solid and mesoporous TiO2 NPs on the photovoltaic performance of dye-sensitized solar cells (DSSCs). Consequently, the stacking architecture of the mesoporous TiO2 NP-based overlayer, which functioned as both a light-scattering and dye-supporting medium, on top of a conventional solid TiO2 NP-based underlayer in a DSSC photoelectrode (i.e., double-layer structures) was found to be very promising for significantly improving the photovoltaic properties of conventional solid TiO2 NP single-layer-based DSSCs.

  1. Structure of Irreversibly Adsorbed Star Polymers

    NASA Astrophysics Data System (ADS)

    Akgun, Bulent; Aykan, Meryem Seyma; Canavar, Seda; Satija, Sushil K.; Uhrig, David; Hong, Kunlun

    Formation of irreversibly adsorbed polymer chains on solid substrates have a huge impact on the wetting, glass transition, aging and polymer chain mobility in thin films. In recent years there has been many reports on the formation, kinetics and dynamics of these layers formed by linear homopolymers. Recent studies showed that by varying the number of polymer arms and arm molecular weight one can tune the glass transition temperature of thin polymer films. Using polymer architecture as a tool, the behavior of thin films can be tuned between the behavior of linear chains and soft colloids. We have studied the effect of polymer chain architecture on the structure of dead layer using X-ray reflectivity (XR) and atomic force microscopy. Layer thicknesses and densities of flattened and loosely adsorbed chains has been measured for linear, 4-arm, and 8-arm star polymers with identical total molecular weight as a function of substrate surface energy, annealing temperature and annealing time. Star polymers have been synthesized using anionic polymerization. XR measurements showed that 8-arm star PS molecules form the densest and the thickest dead layers among these three molecules.

  2. Probing the dynamics of 3He atoms adsorbed on MCM-41 with pulsed NMR

    NASA Astrophysics Data System (ADS)

    Huan, C.; Masuhara, N.; Adams, J.; Lewkowitz, M.; Sullivan, N. S.

    2018-03-01

    We report measurements of the nuclear spin-spin and spin-lattice relaxation times for 3He adsorbed on MCM-41 for temperatures 0.08 < T < 1.2 K. Deviations from Curie behavior are observed at low temperatures. The relaxation times exhibit a two-component behavior representing the differing dynamics of the mobile quasi-free molecules in the center of the tubes compared to the adsorbed layer on the walls. The amplitudes of the two components provide an accurate measure of the number of fluid-like molecules traveling in the center of the nanotubes.

  3. Engendering Long-Term Air and Light Stability of a TiO2-Supported Porphyrinic Dye via Atomic Layer Deposition.

    PubMed

    Hoffeditz, William L; Son, Ho-Jin; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2016-12-21

    Organic and porphyrin-based chromophores are prevalent in liquid-junction photovoltaic and photocatalytic solar-cell chemistry; however, their long-term air and light instability may limit their practicality in real world technologies. Here, we describe the protection of a zinc porphyrin dye, adsorbed on nanoparticulate TiO 2 , from air and light degradation by a protective coating of alumina grown with a previously developed post-treatment atomic layer deposition (ALD) technique. The protective Al 2 O 3 ALD layer is deposited using dimethylaluminum isopropoxide as an Al source; in contrast to the ubiquitous ALD precursor trimethylaluminum, dimethylaluminum isopropoxide does not degrade the zinc porphyrin dye, as confirmed by UV-vis measurements. The growth of this protective ALD layer around the dye can be monitored by an in-reactor quartz crystal microbalance (QCM). Furthermore, greater than 80% of porphyrin light absorption is retained over ∼1 month of exposure to air and light when the protective coating is present, whereas almost complete loss of porphyrin absorption is observed in less than 2 days in the absence of the ALD protective layer. Applying the Al 2 O 3 post-treatment technique to the TiO 2 -adsorbed dye allows the dye to remain in electronic contact with both the semiconductor surface and a surrounding electrolyte solution, the combination of which makes this technique promising for numerous other electrochemical photovoltaic and photocatalytic applications, especially those involving the dye-sensitized evolution of oxygen.

  4. The Density and Refractive Index of Adsorbing Protein Layers

    PubMed Central

    Vörös, Janos

    2004-01-01

    The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces. PMID:15240488

  5. Insights into the Mechanism of a Covalently Linked Organic Dye-Cobaloxime Catalyst System for Dye-Sensitized Solar Fuel Devices.

    PubMed

    Pati, Palas Baran; Zhang, Lei; Philippe, Bertrand; Fernández-Terán, Ricardo; Ahmadi, Sareh; Tian, Lei; Rensmo, Håkan; Hammarström, Leif; Tian, Haining

    2017-06-09

    A covalently linked organic dye-cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye-sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time-resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye-catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye-catalyst system on the photocathode is proposed on the basis of this study. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Role of Co-Sensitizers in Dye-Sensitized Solar Cells.

    PubMed

    Krishna, Narra Vamsi; Krishna, Jonnadula Venkata Suman; Mrinalini, Madoori; Prasanthkumar, Seelam; Giribabu, Lingamallu

    2017-12-08

    Co-sensitization is a popular route towards improved efficiency and stability of dye-sensitized solar cells (DSSCs). In this context, the power conversion efficiency (PCE) values of DSSCs incorporating Ru- and porphyrin-based dyes can be improved from 8-11 % to 11-14 % after the addition of additives, co-adsorbents, and co-sensitizers that reduce aggregation and charge recombination in the device. Among the three supporting material types, co-sensitizers play a major role to enhance the performance and stability of DSSCs, which is requried for commercialization. In this Minireview, we highlight the role co-sensitizers play in improving photovoltaic performance of devices containing Ru- and porphyrin-based sensitizers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Organofunctionalized Amazon smectite for dye removal from aqueous medium--kinetic and thermodynamic adsorption investigations.

    PubMed

    Guerra, Denis L; Silva, Weber L L; Oliveira, Helen C P; Viana, Rúbia R; Airoldi, Claudio

    2011-02-15

    The objective of this study is to examine the adsorption behavior of Sumifix Brilliant Orange 3R textile dye from aqueous solution on smectite sample, an abundant Amazon clay. The original smectite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine was anchored onto smectite surface by heterogeneous route. The ability of these materials to remove the Sumifix Brilliant Orange 3R textile dye from aqueous solution was followed by a series of adsorption isotherms, using a batchwise process. The maximum number of moles adsorbed was determined to be 1.26 and 2.07 mmol g(-1) for natural and modified clay samples, respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such dye-nitrogen interactions. Copyright © 2010. Published by Elsevier B.V.

  8. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues.

    PubMed

    Orlandi, Géssica; Cavasotto, Jéssica; Machado, Francisco R S; Colpani, Gustavo L; Magro, Jacir Dal; Dalcanton, Francieli; Mello, Josiane M M; Fiori, Márcio A

    2017-02-01

    One of the major problems in effluent treatment plants of the cellulose and paper industry is the large amount of residual sludge generated. Therefore, this industry is trying to develop new methods to treat such residues and to use them as new products, such as adsorbents. In this regard, the objective of this work was to develop an adsorbent using the raw activated sludge generated by the cellulose and paper industry. The activated cellulose sludge, after being dried, was chemically activated with 42.5% (v/v) phosphoric acid at 85 °C for 1 h and was charred at 500 °C, 600 °C and 700 °C for 2 h. The efficiency of the obtained adsorbent materials was evaluated using kinetic tests with methylene blue solutions. Using the adsorption kinetics, it was verified that the three adsorbents showed the capacity to adsorb dye, and the adsorbent obtained at a temperature of 600 °C showed the highest adsorption capacity of 107.1 mg g -1 . The kinetic model that best fit the experimental data was pseudo-second order. The Langmuir-Freudlich isotherm adequately described the experimental data. As a result, the cellulose sludge generated by the cellulose and paper industries could be used as an adsorbent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Combinatorial effects of charge characteristics and hydrophobicity of silk fibroin on the sorption and release of charged dyes.

    PubMed

    Wongpanit, Panya; Rujiravanit, Ratana

    2012-01-01

    The present study was designed to examine the influence of the charge characteristics of silk fibroin on the sorption and release of charged dyes by varying the pH values of the sorption and release media as well as types of charged dyes. Negatively charged dyes (phenol red and chromotrope 2R) and positively charged dyes (crystal violet and indoine blue) were used as the model compounds. Silk fibroin films were prepared by using a solution casting technique. The prepared films were then treated with an aqueous methanol solution or annealed with water to control their conformation. The sorption behavior of the model compounds made by the methanol-treated and water-annealed silk fibroin films was investigated. Compared to the water- annealed silk fibroin films, a higher hydrophobicity of the methanol-treated silk fibroin films caused a higher sorption of the hydrophobic dyes. The dye molecules had a fairly high affinity to the silk fibroin film, even though the dye and the matrix possessed the same charge. However, in the presence of two charged groups in a single dye molecule, the electrostatic repulsion become more dominant. Stronger interaction was observed when the charges of the film and the dye were opposite. The results of dye sorption and release experiments showed that the degree of synergism or competition between electrostatic and hydrophobic interactions directly depended on the charges and chemical structure of the dye molecules and the environmental pH conditions of the existing silk fibroin film.

  10. Preparation of lysine-decorated polymer-brush-grafted magnetic nanocomposite for the efficient and selective adsorption of organic dye

    NASA Astrophysics Data System (ADS)

    Jing, Shiyao; Wang, Xin; Tan, Yebang

    2018-05-01

    A novel magnetic nanocomposite (Lys-PGMA@Fe3O4) containing amphoteric polymer brushes was synthesized by combining surface-initiated atom-transfer radical polymerization and lysine modification. The chemical structure of Lys-PGMA@Fe3O4 was confirmed by multiple methods, such as FT-IR, TGA, elemental analysis. The core-brush morphology was clearly observed by transmission electron microscopy. Lys-PGMA@Fe3O4 was then used to selectively and efficiently adsorb hazardous dyes. Adsorption results showed that Lys-PGMA@Fe3O4 had considerable adsorption capacity (0.54 and 0.85 mmol·g-1 for LY and MEB, respectively) and rapid adsorption rate (within 10 min), which can be attributed to the nanosize and abundant adsorptive polymer brushes. The selective adsorption of a mixture of lemon yellow (pH = 4.0) and methylene blue (pH = 10.0) was achieved through the amphoteric polymer brushes. Similar to traditional adsorbent materials, Lys-PGMA@Fe3O4 also showed easy magnet-assisted separation property. Lys-PGMA@Fe3O4 adsorbent can also be regenerated to reduce application cost. Overall, results demonstrated that Lys-PGMA@Fe3O4 nanocomposite was an excellent adsorbent material for removing dye pollutants from wastewater.

  11. Hypercrosslinked poly(styrene-co-divinylbenzene) resin as a specific polymeric adsorbent for purification of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Cao, Ruofan; Wu, Xiaofei; Huang, Jianhan; Deng, Shuguang; Lu, Xiuyang

    2013-06-15

    A hypercrosslinked poly(styrene-co-divinylbenzene) resin (TEPA) was synthesized and characterized as a specific polymeric adsorbent for concentrating berberine hydrochloride from aqueous solutions. Three organic molecules of different sizes (2-naphthol, berberine hydrochloride, and Congo red) were used as target molecules to elucidate the molecular sieving effect of the TEPA adsorbent. Because the TEPA adsorbent has a pore structure consisting mainly of micropores and mesopores, the adsorption of 2-naphthol from aqueous solutions is very efficient due to the micropore filling effect. The adsorption of berberine hydrochloride mostly takes place in the mesopores as well as macropores, while the adsorption of Congo red mainly occurs in the macropores. The smaller adsorbate molecule (2-naphthol) reaches the adsorption equilibrium much faster than the larger ones (berberine hydrochloride and Congo red). An adsorption breakthrough experiment with an aqueous solution containing 2-naphthol and berberine hydrochloride demonstrated that the TEPA adsorbent could effectively remove 2-naphthol from berberine hydrochloride at 0-107 BV (bed volume, 1 BV=10 ml), and the berberine hydrochloride concentration was increased from 66.7% to 99.4%, suggesting that this polymeric adsorbent is promising for purifying berberine hydrochloride and similar alkaloids from herbal plant extracts. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. DNA molecules on periodically microstructured lipid membranes: Localization and coil stretching

    NASA Astrophysics Data System (ADS)

    Hochrein, Marion B.; Leierseder, Judith A.; Golubović, Leonardo; Rädler, Joachim O.

    2007-02-01

    We explore large scale conformations of DNA molecules adsorbed on curved surfaces. For that purpose, we investigate the behavior of DNA adsorbed on periodically shaped cationic lipid membranes. These unique membrane morphologies are supported on grooved, one-dimensionally periodic microstructured surfaces. Strikingly, we find that these periodically structured membranes are capable to stretch DNA coils. We elucidate this phenomenon in terms of surface curvature dependent potential energy attained by the adsorbed DNA molecules. Due to it, DNA molecules undergo a localization transition causing them to stretch by binding to highly curved sections (edges) of the supported membranes. This effect provides a new venue for controlling conformations of semiflexible polymers such as DNA by employing their interactions with specially designed biocompatible surfaces. We report the first experimental observation of semiflexible polymers unbinding transition in which DNA molecules unbind from one-dimensional manifolds (edges) while remaining bound to two-dimensional manifolds (cationic membranes).

  13. Solar generation and storage of O2 (a 1 delta g)

    NASA Technical Reports Server (NTRS)

    Twarowski, Allen J.; Dao, Phan; Good, Lisa A.

    1988-01-01

    An investigation was performed of the technical steps required to design a solar powered oxygen-iodine laser. Singlet delta oxygen is formed upon transfer of energy from selected photoexcited dye molecules to ground state molecular oxygen and then is concentrated and stored as an endoperoxide by reaction with an aromatic hydrocarbon. The endoperoxide, when heated, releases singlet oxygen in high yield thus providing a regenerable source of laser fuel. Energy transfer from dye molecules to molecular oxygen was investigated. When dye molecules were adsorbed to polymer substrates it was observed that the dye became embedded in the polymer matrix. Porphin dyes were incorporated into films of 1,4-dimethyl-2-poly(vinylnaphthalene), 2PVN. An endoperoxide was formed when porphin-doped 2PVN was exposed to visible radiation. This demonstrates the possibility of generating singlet oxygen using solar energy and concentrating and storing it in one simple step. Transport of energy by exciton migration in polycrystalline dye films was also investigated.

  14. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    PubMed

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An overview of nanomaterials applied for removing dyes from wastewater.

    PubMed

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  16. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    PubMed

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Binding affinities of cationic dyes in the presence of activated charcoal and anionic surfactant in the premicellar region

    NASA Astrophysics Data System (ADS)

    Ali, Farman; Ibrahim, Muhammad; Khan, Fawad; Bibi, Iram; Shah, Syed W. H.

    2018-03-01

    Binding preferences of cationic dyes malachite green and methylene blue in a mixed charcoal-sodium dodecyl sulfate system have been investigated using UV-visible absorption spectroscopy. The dye adsorption shows surfactant-dependent patterns, indicating diverse modes of interactions. At low surfactant concentration, a direct binding to charcoal is preferred. Comparatively greater quantities of surfactant lead to attachment of dye-surfactant complex to charcoal through hydrophobic interactions. A simple model was employed for determination of equilibrium constant K eq and concentration of dye-surfactant ion pair N DS for both dyes. The values of binding parameters revealed that malachite green was directly adsorbed onto charcoal, whereas methylene blue was bound through surfactant monomers. The model is valid for low surfactant concentrations in the premicellar region. These findings have significance for material and environmental sciences.

  18. Analysis of Chameleonic Change of Red Cabbage Depending on Broad pH Range for Dye-Sensitized Solar Cells.

    PubMed

    Park, Kyung Hee; Kim, Tae Young; Ko, Hyun Seok; Han, Eun Mi; Lee, Suk-Ho; Kim, Jung-Hun; Lee, Jae Wook

    2015-08-01

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from red cabbage as a sensitizer. In this work, we investigated the adsorption characteristics and the electrochemical behavior for harvesting sunlight and electron transfer in red cabbage DSSCs under different solvents and pH. For the red cabbage dye-sensitized electrode adsorbed at pH 3.5, the solar cell yields a short-circuit current density (Jsc) of 1.60 mA/cm2, a photovoltage (Vcc) of 0.46 V, and a fill factor of 0.55, corresponding to an energy conversion efficiency (η) of 0.41%.

  19. [Spectral and fluorescent study of the interaction of squarylium dyes, derivatives of 3H-indolium, with albumins].

    PubMed

    Tatikolov, A S; Panova, I G; Ishchenko, A A; Kudinova, M A

    2010-01-01

    Noncovalent interactions of intraionic squarylium dyes, derivatives of 3H-indolium, as well as the structurally analogous ionic indodicarbocyanine dye with serum albumins (human, bovine, rat) and, for comparison, with ovalbumin has been studied by spectral and fluorescent methods. The hydrophilic squarylium dye with sulfonate groups was found to interact with albumins more efficiently, which is probably due to the double negative charge on the dye molecule at the expense of the sulfonate groups and the ability to form hydrogen bonds with albumin. The hydrophilic indodicarbocyanine dye without the squarylium group in its structure binds to albumins much more weaker than the structurally analogous squarylium dye. The dyes bind to ovalbumin less efficiently than to serum albumins. Along with the binding of monomeric dye molecules, the aggregation of the dyes on albumins is also observed. The hydrophobic squarylium dye without sulfonate groups tends to form aggregates in aqueous solutions, which partially decompose upon the introduction of albumin into the solution. The hydrophilic squarylium dye with sulfonate groups can be recommended for tests as a spectral-fluorescent probe for serum albumins in extracellular media of living organisms.

  20. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents.

    PubMed

    Zhang, Weiming; Xu, Zhengwen; Pan, Bingcai; Hong, Changhong; Jia, Kun; Jiang, Peijuan; Zhang, Qingjian; Pan, Bingjun

    2008-09-01

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, pi-pi stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  1. Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance.

    PubMed

    Platero, Emiliano; Fernandez, Maria Emilia; Bonelli, Pablo Ricardo; Cukierman, Ana Lea

    2017-04-01

    Graphene oxide/alginate beads were prepared from lab-synthesized graphene oxide, varying its content within the beads (0.05, 0.125, and 0.25wt.%). Ethanol-drying and lyophilization were compared as drying methods to obtain suitable adsorbents which were later tested to the removal of a model organic molecule (methylene blue). The morphological and textural properties of all the beads were characterized by scanning electron microscopy and N 2 adsorption/desorption isotherms at -196°C, respectively. Limited porosity was obtained for all cases (S BET <60m 2 /g). Uniaxial compression tests were performed to assess the mechanical properties of the beads. Ethanol-dried ones exhibited higher Young's elasticity modulus (E=192kPa) than the lyophilized samples (twice at 0.25wt.% graphene oxide loading), which disclosed breakage points at lower deformation percentages. Adsorption experiments were conducted and dye adsorption isotherms were obtained for the beads with the best removal performance. The experimental data were better fitted by the Langmuir model. The highest maximum adsorption capacity (4.25mmol/g) was obtained for the lyophilized beads with the highest graphene oxide content. Mechanical properties were found to be affected also by the dye adsorption. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Influence of ɣ and ultrasonic irradiations on the physicochemical properties of CeO2-Fe2O3-Al2O3 for textile dyes removal applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Marwa M.; El-Molla, Sahar A.; Ismail, Sahar A.

    2018-04-01

    In this study highly effective adsorbent ternary mixed oxide CeO2-Fe2O3-Al2O3 was prepared by precipitation method. Various methods used to treat the mixed hydroxide like calcination, ultrasonic, hydrothermal and ɣ radiation with different doses to obtain the ternary mixed oxide. XRD, TEM, EDX, FTIR and SBET are used to study the physicochemical properties of nanoparticles. The CFAH and CFAɣ0.8 have the different morphologies and high surface area. Batch adsorption experiments were performed to remove anionic Remazol Red RB-133 dye. The experimental data showed that The CFAH and CFAɣ0.8 have high adsorption rate for removing of dye. The removal of dye is enhanced by ultrasonic radiation and high temperature. The adsorption process was fitted well for pseudo second order kinetics and followed the Freundlich isotherm model. In addition to, Thermodynamic results of adsorption process displayed that, the adsorption of dye on adsorbent was spontaneous, endothermic and chemisorptions process.

  3. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  4. Photodecomposition of Mo(CO)/sub 6/ adsorbed on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creighton, J.R.

    1986-01-15

    The photochemical properties of Mo(CO)/sub 6/ adsorbed on Si(100) were investigated using temperature programmed desorption (TPD) and Auger spectroscopy. TPD experiments indicate that Mo(CO)/sub 6/ physisorbs on silicon and desorbs at 210--230 K. At 150 K, KrF laser radiation (248 nm) partially decomposes the adsorbed Mo(CO)/sub 6/ releasing gas-phase CO in the process and TPD experiments after irradiation show that additional CO desorbs at 335 K. However, Auger analysis indicates that one CO molecule per molybdenum atom dissociates, leaving the molybdenum overlayer heavily contaminated with carbon and oxygen. The cross section for photodecomposition was measured to be 5 +- 3more » x 10/sup -17/ cm/sup 2/. Decomposition of the excited molecule must compete strongly with energy relaxation to account for the magnitude of this cross section.« less

  5. Adsorption of malachite green dye from aqueous solution on the bamboo leaf ash

    NASA Astrophysics Data System (ADS)

    Kuntari, Priwidyanjati, Dessyntha Anggiani

    2017-12-01

    Bamboo leaf ash has been developed as an adsorbent material for removal malachite green from aqueous solution. Adsorption parameters have studied are contact time and initial pH. The effect of contact time and pH were examined in the batch adsorption processes. The physicochemical characters of bamboo leaf ash were investigated by using X-Ray Diffraction (XRD) and FT-IR spectroscopy. Malachite green concentration was determined by UV-Vis spectrophotometer. FT-IR spectrogram of bamboo leaf ash shows that typical fingerprint of adsorbent material with Si-O-Si or Al-O-Al group. The X-ray diffractograms of bamboo leaf ash show that adsorbent material has a highly amorphous nature. The percentage of adsorption was showed raised with increasing contact time. The optimum removal of malachite green when the initial dye concentration, initial pH, weight of adsorbent and contact time was 20 mg/L, 7, 0.25 g and 75 minutes respectively.

  6. Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules

    NASA Astrophysics Data System (ADS)

    Simic-Glavaski, B.

    1986-02-01

    This paper discusses application of the electrically modulated and unusually strong Raman emitted light produced by an adsorbed monolayer of phthalocyanine molecules on silver electrode or silver bromide substrates and on neural membranes. The analysis of electronic energy levels in semiconducting silver bromide and the adsorbed phthalocyanine molecules suggests a lasing mechanism as a possible origin of the high enhancement factor in surface enhanced Raman scattering. Electrically modulated Raman scattering may be used as a carrier of information which is drawn fran the fast intramolecular electron transfer aN,the multiplicity of quantum wells in phthalocyanine molecules. Fast switching times on the order of 10-13 seconds have been measured at room temperature. Multilevel and multioutput optical signals have also been obtained fran such an electrically modulated adsorbed monolayer of phthalocyanine molecules which can be precisely addressed and interrogated. This may be of practical use to develop Nlecular electronic devices with high density memory and fast parallel processing systems with a typical 1020 gate Hz/cm2 capacity at room temperature for use in optical computers. The paper also discusses the electrooptical modulation of Raman signals obtained from adsorbed bio-compatible phthalocyanine molecules on nerve membranes. This optical probe of neural systems can be used in studies of complex information processing in neural nets and provides a possible method for interfacing natural and man-made information processing devices.

  7. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    NASA Astrophysics Data System (ADS)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2017-07-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  8. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.

    PubMed

    Boschloo, Gerrit; Hagfeldt, Anders

    2009-11-17

    Dye-sensitized solar cells (DSCs) have gained widespread interest because of their potential for low-cost solar energy conversion. Currently, the certified record efficiency of these solar cells is 11.1%, and measurements of their durability and stability suggest lifetimes exceeding 10 years under operational conditions. The DSC is a photoelectrochemical system: a monolayer of sensitizing dye is adsorbed onto a mesoporous TiO(2) electrode, and the electrode is sandwiched together with a counter electrode. An electrolyte containing a redox couple fills the gap between the electrodes. The redox couple is a key component of the DSC. The reduced part of the couple regenerates the photo-oxidized dye. The formed oxidized species diffuses to the counter electrode, where it is reduced. The photovoltage of the device depends on the redox couple because it sets the electrochemical potential at the counter electrode. The redox couple also affects the electrochemical potential of the TiO(2) electrode through the recombination kinetics between electrons in TiO(2) and oxidized redox species. This Account focuses on the special properties of the iodide/triiodide (I(-)/I(3)(-)) redox couple in dye-sensitized solar cells. It has been the preferred redox couple since the beginning of DSC development and still yields the most stable and efficient DSCs. Overall, the iodide/triiodide couple has good solubility, does not absorb too much light, has a suitable redox potential, and provides rapid dye regeneration. But what distinguishes I(-)/I(3)(-) from most redox mediators is the very slow recombination kinetics between electrons in TiO(2) and the oxidized part of the redox couple, triiodide. Certain dyes adsorbed at TiO(2) catalyze this recombination reaction, presumably by binding iodine or triiodide. The standard potential of the iodide/triiodide redox couple is 0.35 V (versus the normal hydrogen electrode, NHE), and the oxidation potential of the standard DSC-sensitizer (Ru(dcbpy)(2

  9. Surfactant anchoring and aggregate structure at silica nanoparticles: a persuasive facade for the adsorption of azo dye.

    PubMed

    Chaudhary, Savita; Sood, Aastha; Mehta, S K

    2014-09-01

    Nanotechnology's aptitude to silhouette matter at the scale of the nanometer has unlocked the flap to new inventions of applications in material science and nanomedicine. Engineered silica nanoparticles are key actor of this strategy. The amphitheatre of silica nanoparticles is inexplicably bilateral. Silica particles play essential function in everyday commercial purposes for instance energy storage, chemical and biological sensors, food processing and catalysis. One of the most appealing applications to emerge in the recent years is the use of silica particles for cleaning up contaminants in groundwater, soil and sediments. Herein this work, surfactant modified silica nanoparticles with unique surface and pore properties as well as high surface areas have been extensively investigated as an alternative for the dye removal. The physical and chemical characterizations of adsorbent have been studied using FTIR and scanning electron microscopy. The present investigation aims to explore the comparative effect of different surfactants during the formation of the target composite materials. The effects of various parameters like pH, adsorbent doses, dye concentration, addition of salt have also been investigated. These findings indicate that the nano silica particles are effective materials for dye removal and can be used to alleviate environmental problems.

  10. An enhanced mangiferaindica for dye sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uno, U. E., E-mail: moses.emetere@covenantuniversity.edu.ng; Emetere, M. E., E-mail: uno-essang@yahoo.co.uk; Fadipe, L. A.

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO{sub 2} conductive. The DSSC fabricated consist of 2.25 cm{sup 2} active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filledmore » with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10{sup −2}, current density (Jsc)=4.07×10{sup −2}, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.« less

  11. An enhanced mangiferaindica for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Uno, U. E.; Emetere, M. E.; Fadipe, L. A.; Oluranti, Jonathan

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10-2, current density (Jsc)=4.07×10-2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  12. Excited state characteristics of acridine dyes: acriflavine and acridine orange.

    PubMed

    Sharma, Vijay K; Sahare, P D; Rastogi, Ramesh C; Ghoshal, S K; Mohan, D

    2003-06-01

    The magnitude of the Stokes shift (frequency shifts in absorption and fluorescence spectra) is observed on changing the solvents and further has been used to calculate experimentally the dipole moments (ground state and excited state) of acriflavine and acridine orange dye molecules. Theoretically, dipole moments are calculated using PM 3 Model. The dipole moments of excited states, for both molecules investigated here, are higher than the corresponding values in the ground states. The increase in the dipole moment has been explained in terms of the nature of the excited state. Acriflavine dye overcomes the non-lasing behaviour of acridine orange due to quaternization of the central nitrogen atom.

  13. Localization microscopy of DNA in situ using Vybrant{sup ®} DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei ofmore » fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.« less

  14. Removing Trypan blue dye using nano-Zn modified Luffa sponge.

    PubMed

    Nadaroglu, Hayrunnisa; Cicek, Semra; Gungor, Azize Alayli

    2017-02-05

    This study has presented specific features that are examined to remove the Trypan blue dye from the waste using Luffa sponge (LS) and modified Luffa sponge with zinc nanoparticles (ZnNPs). Peroxidase enzyme was obtained from Euphorbia amygdaloides plant and it was used with the green synthesis of Zn nanoparticles. Luffa sponge was used to be a support material for immobilized nanoparticles and it also used in remediation work. The obtained membrane forms, fibrous materials, (LS, ZnNPs-LS) were characterized with SEM and XRD. LS and ZnNPs-LS were employed as adsorbent to be used for the removal of Trypan blue dye from aqueous via batch studies. Measurements were made for the equilibrium, pH, temperature, concentration of dye with UV-visible spectrometer (590nm; for Trypan blue dye). The optimum removal of Trypan blue dye was found at pH7, the equilibrium was attained within 30min. The thermodynamic properties ΔG 0 , ΔH 0 , and ΔS 0 showed that adsorption of Trypan blue dye onto LS and ZnNPs-LS were spontaneous and endothermic. The equilibrium isotherm data were analyzed using Langmuir and Freundlich models and the sorption process was described by the Langmuir isotherm with maximum monolayer adsorption capacity of 45.32 and 47.3mg/g for LS and LS-ZnNPs at 303±1°K, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Molecular and excited state properties of isomeric scarlet disperse dyes

    NASA Astrophysics Data System (ADS)

    Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.

    2018-06-01

    This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.

  16. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    PubMed

    Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  17. Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding

    PubMed Central

    Rolfe, Daniel J.; Clarke, David T.; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion. PMID:24066121

  18. Supramolecular order following binding of the dichroic birefringent sulfonic dye Ponceau SS to collagen fibers.

    PubMed

    Vidal, B C; Mello, M L S

    2005-06-15

    The optical anisotropies (linear dichroism or LD and birefringence) of crystalline aggregates of the sulfonic azo-dye Ponceau SS and of dye complexed with chicken tendon collagen fibers were investigated in order to assess their polarizing properties and similarity to liquid crystals. In some experiments, the staining was preceded by treatment with picric acid. Crystalline fibrous aggregates of the dye had a negative LD, and their electronic transitions were oriented perpendicular to the filamentary structures. The binding of Ponceau SS molecules to the collagen fibers altered the LD signal, with variations in the fiber orientation affecting the resulting dichroic ratios. The long axis of the rod-like dye molecule was assumed to be bound in register, parallel to the collagen fiber. Picric acid did not affect the oriented binding of the azo dye to collagen fibers. There were differences in the optical anisotropy of Ponceau SS-stained tendons from 21-day-old and 41-day-old chickens, indicating that Ponceau SS was able to distinguish between different ordered states of macromolecular aggregation in chicken tendon collagen fibers. In the presence of dichroic rod-like azo-dye molecules such as Ponceau SS, collagen also formed structures with a much higher degree of orientation. The presence of LD in the Ponceau SS-collagen complex even in unpolarized light indicated that this complex can act as a polarizer. Copyright 2005 Wiley Periodicals, Inc.

  19. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System

    PubMed Central

    Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens

    2017-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution. PMID:28287526

  20. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System.

    PubMed

    Dörfler, Thilo; Eilert, Tobias; Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens

    2017-02-09

    Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution.

  1. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  2. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes.

    PubMed

    Zhang, Jingqing; Boghossian, Ardemis A; Barone, Paul W; Rwei, Alina; Kim, Jong-Ho; Lin, Dahua; Heller, Daniel A; Hilmer, Andrew J; Nair, Nitish; Reuel, Nigel F; Strano, Michael S

    2011-01-26

    We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, L-ascorbic acid, and riboflavin, d(AT)(15) imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alcohol enables no response to nitric oxide, but exhibits fluorescent enhancement to other molecules in the tested library. For AT(15)-SWNT, a stepwise fluorescence decrease is observed when the nanotubes are exposed to NO, reporting the dynamics of single-molecule NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the maximum likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estimated rate constants is less than 5% under our experimental conditions, allowing for calibration using a series of NO concentrations. As expected, the adsorption rate is found to be linearly proportional to NO concentration, and the intrinsic single-site NO adsorption rate constant is 0.001 s(-1) μM NO(-1). The ability to detect nitric oxide quantitatively at the single-molecule level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chemical signaling, as well as medical diagnostics for inflammation.

  3. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.

    PubMed

    Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V

    2006-09-01

    The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.

  4. Highly efficient volume hologram multiplexing in thick dye-doped jelly-like gelatin.

    PubMed

    Katarkevich, Vasili M; Rubinov, Anatoli N; Efendiev, Terlan Sh

    2014-08-01

    Dye-doped jelly-like gelatin is a thick-layer self-developing photosensitive medium that allows single and multiplexed volume phase holograms to be successfully recorded using pulsed laser radiation. In this Letter, we present a method for multiplexed recording of volume holograms in a dye-doped jelly-like gelatin, which provides significant increase in their diffraction efficiency. The method is based on the recovery of the photobleached dye molecule concentration in the hologram recording zone of gel, thanks to molecule diffusion from other unexposed gel areas. As an example, an optical recording of a multiplexed hologram consisting of three superimposed Bragg gratings with mean values of the diffraction efficiency and angular selectivity of ∼75% and ∼21', respectively, is demonstrated by using the proposed method.

  5. Solid Solutions of Rare Earth Cations in Mesoporous Anatase Beads and Their Performances in Dye-Sensitized Solar Cells

    PubMed Central

    Cavallo, Carmen; Salleo, Alberto; Gozzi, Daniele; Di Pascasio, Francesco; Quaranta, Simone; Panetta, Riccardo; Latini, Alessandro

    2015-01-01

    Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1–0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J–V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms. PMID:26577287

  6. Dye-doped silica-based nanoparticles for bioapplications

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong

    2013-12-01

    This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.

  7. Experimental design and modeling of ultrasound assisted simultaneous adsorption of cationic dyes onto ZnS: Mn-NPs-AC from binary mixture.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Yousefi, Fakhri; Dastkhoon, Mehdi

    2016-11-01

    The manganese impregnated zinc sulfide nanoparticles deposited on activated carbon (ZnS: Mn-NPs-AC) which fully was synthesized and characterized successfully applied for simultaneous removal of malachite green and methylene blue in binary situation. The effects of variables such as pH (2.0-10.0), sonication time (1-5min), adsorbent mass (0.005-0.025g) and MB and MG concentration (4-20mgL(-1)) on their removal efficiency was studied dy central composite design (CCD) to correlate dyes removal percentage to above mention variables that guides amongst the maximum influence was seen by changing the sonication time and adsorbent mass. Sonication time, adsorbent mass and pH in despite of dyes concentrations has positive relation with removal percentage. Multiple regression analysis of the experimental results is associated with 3-D response surface and contour plots that guide setting condition at pH of 7.0, 3min sonication time, 0.025g Mn: ZnS-NPs-AC and 15mgL(-1) of MB and MG lead to achievement of removal efficiencies of 99.87% and 98.56% for MG and MB, respectively. The pseudo-second-order model as best choice efficiency describe the dyes adsorption behavior, while MG and MB maximum adsorption capacity according to Langmuir was 202.43 and 191.57mgg(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of auxiliary group for p-type organic dyes in NiO-based dye-sensitized solar cells: The first principal study

    NASA Astrophysics Data System (ADS)

    Li, Juan; Zhang, Shijie; Shao, Di; Yang, Zhenqing; Zhang, Wansong

    2018-03-01

    Auxiliary acceptor groups play a crucial role in D-A-π-A structured organic dyes. In this paper, we designed three D-A-π-A structured organic molecules based on the prototype dye QT-1, named ME18-ME20, and further investigated their electronic and optical properties with density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated results indicate that the scope and intensity of dyes' absorption spectra have some outstanding changes by inserting auxiliary groups. ME20 has not only 152 nm redshifts to long wave orientation, but also 78% increased oscillator strength compared to QT-1, and its absorption spectrum broadens region even up to 1400 nm. Then, we studied the reason that the effect of the introduced different auxiliary acceptor groups in these dyes through their ground states geometries and energy levels, electron transfer and recombination rate.

  9. Charge-transfer photodissociation of adsorbed molecules via electron image states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, E. T.

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  10. The influence of the distance between the donor-acceptor groups of polymethine dyes on their photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Seliverstova, E.; Ibrayev, N.

    2018-01-01

    Spectral-luminescent and photovoltaic properties of polymethine dyes of various structures are studied. It is shown that an increase in the length of the methylene chain between the active chromophores leads to a red-wave shift of the absorption and fluorescence spectra. Significant changes in the absorptivity and lifetime of fluorescence do not occur in this case. The best photovoltaic parameters have cells sensitized with shorter dye molecules. It is shown, that for a longer dye the resistance associated with electron recombination on the TiO2/electrolyte surface is much higher than the electron transfer resistance in the semiconductor, which reduces the efficiency of electron transfer in the solar cell, sensitized with longer dye molecules.

  11. Pyronin Y (basic xanthene dye)-bentonite composite: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Tabak, A.; Kaya, M.; Yilmaz, N.; Meral, K.; Onganer, Y.; Caglar, B.; Sungur, O.

    2014-02-01

    The expansion by 1.43 Angstrom of basal spacing and the shift to higher frequencies of in-plane ring vibrations of the Pyronin Y molecule at 1603 and 1527 cm-1 on the formation of Pyronin Y-bentonite composite exhibited that the dye cations might be oriented as a monolayer form in the interlamellar spacing with aromatic rings parallel to clay layers. Thermal analysis results of this composite compared to those of raw bentonite signified the different outer sphere water entities associated with the replacement of inorganic cations with organic dye cations and the gradual decomposition of the organic molecule in the interlamellar spacing. Thermo-Infrared spectra of Pyronin Y-bentonite sample up to high temperatures showed the thermal stability of the dye-clay composite as a result of the presence of π interactions. The pore structure characteristics of Pyronin Y-bentonite composite exhibited the increase in the number of mesopores during formation of the composite.

  12. Dendrimer-based Nanoparticle for Dye Sensitized Solar Cells with Improved Efficiency.

    PubMed

    Ghann, William; Kang, Hyeonggon; Uddin, Jamal; Gonawala, Sunalee J; Mahatabuddin, Sheikh; Ali, Meser M

    2018-01-01

    Dye sensitized solar cells were fabricated with DyLight680 (DL680) dye and its corresponding europium conjugated dendrimer, DL680-Eu-G5PAMAM, to study the effect of europium on the current and voltage characteristics of the DL680 dye sensitized solar cell. The dye samples were characterized by using Absorption Spectroscopy, Emission Spectroscopy, Fluorescence lifetime and Fourier Transform Infrared measurements. Transmission electron microscopy imaging was carried out on the DL680-Eu-G5PAMAM dye and DL680-Eu-G5PAMAM dye sensitized titanium dioxide nanoparticles to analyze the size of the dye molecules and examine the interaction of the dye with titanium dioxide nanoparticles. The DL680-Eu-G5PAMAM dye sensitized solar cells demonstrated an enhanced solar-to-electric energy conversion of 0.32% under full light illumination (100 mWcm -2 , AM 1.5 Global) in comparison with that of DL680 dye sensitized cells which recorded an average solar-to-electric energy conversion of only 0.19%. The improvement of the efficiency could be due to the presence of the europium that enhances the propensity of dye to absorb sunlight.

  13. Spectral Fluorescence Properties of an Anionic Oxacarbocyanine Dye in Complexes with Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Pronkin, P. G.; Tatikolov, A. S.

    2015-07-01

    The spectral fluorescence properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) were studied in solutions and in complexes with human serum albumin (HSA). Interaction with HSA leads to a significant increase in the fluorescence of the dye. We studied quenching of the fluorescence of OCC in a complex with HSA by ibuprofen and warfarin. Data on quenching of fluorescence by ibuprofen indicate binding of the dye to binding site II of subdomain IIIA in the HSA molecule. Synchronous fluorescence spectra of human serum albumin in the presence of OCC showed that complexation with OCC does not lead to appreciable rearrangement of the protein molecule at the binding site.

  14. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  15. Determination of Adsorption Equations for Chloro Derivatives of Aniline on Halloysite Adsorbents Using Inverse Liquid Chromatography.

    PubMed

    Słomkiewicz, Piotr M; Szczepanik, Beata; Garnuszek, Magdalena; Rogala, Paweł; Witkiewicz, Zygfryd

    2017-11-01

    Chloro derivatives of aniline are commonly used in the production of dyes, pharmaceuticals, and agricultural agents. They are toxic compounds with a large accumulation ability and low natural biodegradability. Halloysite is known as an efficient adsorbent of toxic compounds, such as phenols or herbicides, from wastewater. Inverse LC was applied to measure the adsorption of aniline and 2-chloroaniline (2-CA), 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) on halloysite adsorbents. A peak division (PD) method was used to determine a Langmuir equation in accordance with the adsorption measurement results. The values of adsorption equilibrium constants and enthalpy were determined and compared by breakthrough curve and PD methods. The physical sense of the calculated adsorption enthalpy values was checked by applying Boudart's entropy criteria. Of note, adsorption enthalpy values for halloysite adsorbents decreased in the following order: aniline > 4-CA > 2-CA > 3-CA.

  16. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    NASA Astrophysics Data System (ADS)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  17. Degradation characteristic of monoazo, diazo and anthraquinone dye by UV / H2O2 process

    NASA Astrophysics Data System (ADS)

    Abidin, Che Zulzikrami Azner; Fahmi, Muhammad Ridwan; Fazara, Md Ali Umi; Nadhirah, Siti Nurfatin

    2014-10-01

    In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV / H2O2 process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV / H2O2 experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV / H2O2 process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H2O2 photolysis.

  18. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic

  19. Optical study of xanthene-type dyes in nano-confined liquid

    NASA Astrophysics Data System (ADS)

    Mahdi Shavakandi, Seyyed; Alizadeh, Khalil; Sharifi, Soheil; Marti, Othmar; Amirkhani, Masoud

    2017-04-01

    The optical activity of dye molecules in different environments is of great interest for many applications such as laser system or biological imaging. We investigate the fluorescence and absorption spectrum of nano-confined xanthene dyes (RhB and fluorescein sodium salt) in a two-phase liquid. Each show very distinct optical behavior in the water phase of a reverse microemulsion. Their optical properties such as absorption and fluorescence for different concentrations of dye and nanodroplets are investigated. We show that for the same concentration of dye in the microemulsion the peak of fluorescence intensity is varied by altering the concentration of nanodroplets. However, the trend of the change is widely different depending on the hydrophobicity of dyes. Quantum-mechanical second order perturbation theory is used to calculate the ratio of dipole moments in the ground and excited states, which accounts for the Stokes shift in fluorescence peak. Photon correlation spectroscopy is employed to check the trace of the dye in the oil phase of the microemulsion.

  20. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation.

    PubMed

    Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha

    2018-06-18

    This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Magnetic coupling of Fe-porphyrin molecules adsorbed on clean and c(2×2) oxygen-reconstructed Co(100) investigated by spin-polarized photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Weber, A. P.; Caruso, A. N.; Vescovo, E.; Ali, Md. E.; Tarafder, K.; Janjua, S. Z.; Sadowski, J. T.; Oppeneer, P. M.

    2013-05-01

    The spin-polarized electronic structure of iron octaethylporphyrin (FeOEP) molecules adsorbed on a pristine and on a c(2×2) oxygen-reconstructed Co(100) surface has been analyzed by means of spin-polarized photoemission spectroscopy (SPPES) and first-principles density functional theory with the on-site Coulomb repulsion U term (DFT+U) calculations with and without Van der Waals corrections. The aim is to examine the magnetic exchange mechanism between the FeOEP molecules and the Co(100) substrate in the presence or absence of the oxygen mediator. The results demonstrate that the magnetic coupling from the ferromagnetic substrate to the adsorbed FeOEP molecules is ferromagnetic, whereas, the coupling is antiferromagnetic for the FeOEP on the c(2×2)O/Co(100) system. Spin-resolved partial densities of states extracted from ab initio DFT+U modeling are in fairly good comparison with the electronic spectral densities seen in angle-integrated SPPES energy dispersion curves for submonolayer coverages of FeOEP. Through combined analysis of these spectra and theoretical results, we determine that hybridization of 2p orbitals of N and O with Co 3d orbitals facilitates indirect magnetic exchange interactions between Fe and Co, whereas, a direct Fe-Co interaction involving the Fe dz2 orbital is also found for FeOEP on Co. It is observed through SPPES that the spin polarization of the photoemission-visible molecular overlayers decreases to zero as coverage is increased beyond the submonolayer regime, indicating that only interfacial magnetic coupling is at work. Microspot low-energy electron diffraction and low-energy electron microscopy were performed to characterize the physical order of the molecular coverage, revealing that FeOEP structural domains are orders of magnitude greater in size on c(2×2)O/Co(100) than on clean Co(100), which coincides with reduced scattering from the disorder and sharper features seen in SPPES.

  2. Modeling the color of natural dyes

    NASA Astrophysics Data System (ADS)

    Ge, Xiaochuan; Calzolari, Arrigo; Binnie, Simon; Baroni, Stefano

    2013-03-01

    We report on a theoretical study, based on time-dependent density-functional theory, of various factors affecting the optical properties of a few representative anthocyanins, a class of molecules responsible for the color of many fruits, flowers, and leaves, which have also aroused some interest for photovoltaic applications. We first address the influence of substituting different side groups in the phenyl ring of flavylium dyes. We find that these dyes can be classified into three broad classes, according to the number of peaks (1, 2, or 3) featured in the visible range, and give a rationale to this finding. We then examine the effects of solvent-induced thermal fluctuations and dielectric screening, by calculating the spectrum of a representative molecule in solution, for each one these classes. This is achieved by first running an ab initio molecular dynamics simulation of an explicit model for the water-solvated molecule, and then accumulating time averages of the optical spectra calculated on the fly. The effects of thermal fluctuations are shown to overshadow those of dielectric screening, and more dramatic the larger the number of peaks in the gas phase. The effects of different functionals (GGA vs. hybrids) on the calculated spectra are also addressed.

  3. Adsorbing H₂S onto a single graphene sheet: A possible gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis; Auluck, S.

    2014-09-14

    The electronic structure of pristine graphene sheet and the resulting structure of adsorbing a single molecule of H₂S on pristine graphene in three different sites (bridge, top, and hollow) are studied using the full potential linearized augmented plane wave method. Our calculations show that the adsorption of H₂S molecule on the bridge site opens up a small direct energy gap of about 0.1 eV at symmetry point M, while adsorption of H₂S on top site opens a gap of 0.3 eV around the symmetry point K. We find that adsorbed H₂S onto the hollow site of pristine graphene sheet causesmore » to push the conduction band minimum and the valence band maximum towards Fermi level resulting in a metallic behavior. Comparing the angular momentum decomposition of the atoms projected electronic density of states of pristine graphene sheet with that of H₂S–graphene for three different cases, we find a significant influence of the location of the H₂S molecule on the electronic properties especially the strong hybridization between H₂S molecule and graphene sheet.« less

  4. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  5. Black molecular adsorber coatings for spaceflight applications

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  6. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding ofmore » adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.« less

  7. Determination of dye/protein ratios in a labeling reaction between a cyanine dye and bovine serum albumin by micellar electrokinetic chromatography using a diode laser-induced fluorescence detection.

    PubMed

    Jing, Peng; Kaneta, Takashi; Imasaka, Totaro

    2002-08-01

    The degree of labeling, i.e., dye/protein ratio (D/P) is important for characterizing properties of dye labeling with proteins. A method for the determination of this ratio between a fluorescent cyanine dye and bovine serum albumin (BSA), based on the separation of the labeling mixture using micellar electrokinetic chromatography with diode laser-induced fluorescence detection, is described. Two methods for the determination of D/P were examined in this study. In these methods, a hydrolysis product and impurities, which are usually unfavorable compounds that are best excluded for protein analysis, were utilized to determine the amounts of dye bound to BSA. One is a direct method in which a ratio of the peak area of BSA to the total peak area of all the products produced in the labeling reaction was used for determining the average number of dye molecules bound to a single BSA molecule. The other is an indirect determination, which is based on diminution of all peak areas related to the products except for the labeled BSA. These methods were directly compared by means of a spectrophotometric method. The experimental results show that the indirect method is both reliable and sensitive. Therefore, D/P values can be determined at trace levels using the indirect method.

  8. Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency.

    PubMed

    Sun, Bo; Hou, Qingxi; He, Zhibin; Liu, Zehua; Ni, Yonghao

    2014-10-13

    Nanocrystalline cellulose (CNC) as a renewable/sustainable material, has received much attention. Herein we studied CNC as carriers for a hydrophobic spirooxazine (SO)-based dye, 1,3-dihydro-1,3,3-trimethylspiro[2H-indole-2,3'-[3H]naphtha[2,1-b][1,4]oxazine], which may have potential applications in reversible memory photo-devices, textiles, photo-sensitive paper coatings, and inkjet printing inks. Due to the high cost and water-insolubility of this dye, it is desirable to improve its coloration efficiency and water-dispersibility. The experimental approach was to use CNC as carriers for the SO dye, thus obtaining a stable photochromic dye in aqueous systems. Transmission electron microscope (TEM) observation confirmed that the SO dye adsorbed on the surface of the CNC, which functioned as carriers for the photochromic dye. An impregnation process was adopted to anchor the dye onto cellulosic paper. It was found that the use of CNC resulted in a significant improvement in the SO coloration efficiency. The color stability and fatigue resistance were also studied. The use of CNC as carriers for a hydrophobic compound, its enhancement of associated properties, and its subsequent application were demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    PubMed

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  10. Halo-substituted azobenzenes adsorbed at Ag(111) and Au(111) interfaces: Structures and optical properties

    NASA Astrophysics Data System (ADS)

    Hughes, Zak E.; Baev, Alexander; Prasad, Paras N.; Walsh, Tiffany R.

    2017-05-01

    The adsorption of azobenzene (AB), ortho fluoro-azobenzene (FAB) and ortho chlor-azobenzol (ClAB), in both the cis and trans isomers, at the Au(111) and Ag(111) surfaces is investigated using plane-wave density functional calculations with the revPBE-vdW-DF functional. The resulting adsorption energies and internal structures of AB adsorbed to both metal surfaces are in broad agreement with available experimental data. In the gas phase, FAB and ClAB feature a significant reduction in the energy difference between the two isomeric states, compared with AB. This relative reduction in the energy difference is still significant for the adsorbed form of FAB but is only weakly apparent for ClAB. The absorption spectra of the molecules have also been calculated, with the halogen substituents generating significant changes in the gas phase, but only a modest difference for the adsorbed molecules.

  11. Self-assembled near-infrared dye nanoparticles as a selective protein sensor by activation of a dormant fluorophore.

    PubMed

    Anees, Palapuravan; Sreejith, Sivaramapanicker; Ajayaghosh, Ayyappanpillai

    2014-09-24

    Design of selective sensors for a specific analyte in blood serum, which contains a large number of proteins, small molecules, and ions, is important in clinical diagnostics. While metal and polymeric nanoparticle conjugates have been used as sensors, small molecular assemblies have rarely been exploited for the selective sensing of a protein in blood serum. Herein we demonstrate how a nonspecific small molecular fluorescent dye can be empowered to form a selective protein sensor as illustrated with a thiol-sensitive near-IR squaraine (Sq) dye (λabs= 670 nm, λem= 700 nm). The dye self-assembles to form nonfluorescent nanoparticles (Dh = 200 nm) which selectively respond to human serum albumin (HSA) in the presence of other thiol-containing molecules and proteins by triggering a green fluorescence. This selective response of the dye nanoparticles allowed detection and quantification of HSA in blood serum with a sensitivity limit of 3 nM. Notably, the Sq dye in solution state is nonselective and responds to any thiol-containing proteins and small molecules. The sensing mechanism involves HSA specific controlled disassembly of the Sq nanoparticles to the molecular dye by a noncovalent binding process and its subsequent reaction with the thiol moiety of the protein, triggering the green emission of a dormant fluorophore present in the dye. This study demonstrates the power of a self-assembled small molecular fluorophore for protein sensing and is a simple chemical tool for the clinical diagnosis of blood serum.

  12. Interplay of polyelectrolytes with different adsorbing surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Feng

    We study the adsorption of polyelectrolytes from solution onto different adsorbing surfaces, focusing on the electrostatic interactions. Measurements of the surface excess, fractional ionization of chargeable groups, segmental orientation, and adsorption kinetics were made using Fourier transform infrared spectroscopy in the mode of attenuated total reflection. Different adsorbing surfaces, from single solid surfaces, solid surfaces modified with adsorbed polymer layer, to fluid-like surfaces-biomembranes were adopted. Both atomic force microscopy (AFM) and fluorescent techniques were employed to investigate the fluid-like surfaces in the absence and in the presence of polyelectrolytes. The work focuses on three primary issues: (i) the charge regulation of weak polyelectrolytes on both homogeneous and heterogeneous surfaces, (ii) the dynamics of adsorption when the surface possesses reciprocal mobility, i.e., biomembrane surface, and (iii) the structural and dynamical properties of the fluid-like surfaces interacting with polyelectrolytes. We find that the ionization of chargeable groups in weak polyelectrolytes is controlled by the charge balance between the adsorbates and the surfaces. A new interpretation of ionization in the adsorbed layer provides a new insight into the fundamental problem of whether ions of opposite charge associate or remain separate. Bjerrum length is found to be a criterion for the onset of surface ionization suppression, which helps to predict and control the conformation transition of proteins. In addition to the effect of different surfaces on the adsorption behavior of polyelectrolytes, we also focused on the response of the surfaces to the adsorbates. Chains that encountered sparsely-covered surfaces spread to maximize the number of segment-surface contacts at rates independent of the molar mass. Surface reconstruction rather than molar mass of the adsorbing molecules appeared to determine the rate of spreading. This contrasts starkly

  13. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    PubMed

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  14. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles.

    PubMed

    Qu, Song; Huang, Fei; Yu, Shaoning; Chen, Gang; Kong, Jilie

    2008-12-30

    The Fe2O3 nanoparticles have been introduced into the multi-walled carbon nanotubes (MWCNTs) via wet chemical method. The resulting products are characterized by TEM, EDX, XRD and VSM. The magnetic MWCNTs have been employed as adsorbent for the magnetic separation of dye contaminants from water. The adsorption test of dyes (Methylene Blue and Neutral Red) demonstrates that it only takes 60min to attain equilibrium and the adsorption capacities for Methylene Blue and Neutral Red in the concentration range studied are 42.3 and 77.5mg/g, respectively. The magnetic MWCNTs can be easily manipulated in magnetic field for desired separation, leading to the removal of dyes from polluted water. The integration of MWCNTs with Fe2O3 nanoparticles has great potential application to remove organic dyes from polluted water.

  15. Exciplex formation in blended spin-cast films of fluorene-linked dyes and bisphthalimide quenchers.

    PubMed

    Stewart, David J; Dalton, Matthew J; Swiger, Rachel N; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng

    2013-05-16

    Spin-cast films of dyes (donor-π-donor, donor-π-acceptor, and acceptor-π-acceptor type, where the donor is Ph2N-, the acceptor is 2-benzothiazoyl, and the π-linker is 9,9-diethylfluorene) blended with nonconjugated bisphthalimides were prepared. Upon visible-light excitation of the dyes, quenching of the excited state occurs by exciplex formation between dye and bisphthalimide molecules or, in some cases, by excimer formation or aggregation-induced emission between two dye molecules. The extent of exciplex formation is dependent on the driving force, which can be calculated using the energy difference between the lowest unoccupied molecular orbitals (LUMOs) of the dyes and bisphthalimides. The results show that complete exciplex formation occurs when this driving force is greater than 0.57 eV whereas partial exciplex formation occurs when the driving force is between 0.28 and 0.57 eV. The exciplex emission energies can also be predicted by calculating the difference between the LUMO level of the bisphthalimide and the highest occupied molecular orbital (HOMO) of the dye. These calculated values, which were obtained from the electrochemically determined energy levels, showed good agreement with the observed emission energies. The exciplex lifetimes were found to be significantly longer than the lifetimes of the lone dyes. These exciplexes formed from nonlinked donors and acceptors in the solid state might have potential uses in nonlinear photonics.

  16. Nanosecond to submillisecond dynamics in dye-labeled single-stranded DNA, as revealed by ensemble measurements and photon statistics at single-molecule level.

    PubMed

    Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi

    2009-10-22

    Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.

  17. Dynamics of copper-phthalocyanine molecules on Au/Ge(001).

    PubMed

    Sotthewes, K; Heimbuch, R; Zandvliet, H J W

    2015-10-07

    Spatially resolved current-time scanning tunneling spectroscopy combined with current-distance spectroscopy has been used to characterize the dynamic behavior of copper-phthalocyanine (CuPc) molecules adsorbed on a Au-modified Ge(001) surface. The analyzed CuPc molecules are adsorbed in a "molecular bridge" configuration, where two benzopyrrole groups (lobes) are connected to a Au-induced nanowire, whereas the other two lobes are connected to the adjacent nanowire. Three types of lobe configurations are found: a bright lobe, a dim lobe, and a fuzzy lobe. The dim and fuzzy lobes exhibit a well-defined switching behavior between two discrete levels, while the bright lobe shows a broad oscillation band. The observed dynamic behavior is induced by electrons that are injected into the LUMO+1 orbital of the CuPc molecule. By precisely adjusting the tip-molecule distance, the switching frequency of the lobes can be tuned accurately.

  18. A comparison of mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder for decolorization of methylene blue dye and antimicrobial activity.

    PubMed

    Sundararaman, B; Muthuramu, K L

    2016-11-01

    The waste mango seed generated from mango pulp industry in India is a major problem in handling the waste and hence, conversion of mango seed kernel. Mango seeds were collected and processed for oil extraction. Decolorization of methylene blue was achieved by mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder. Higher efficiency was attained in mango seed kernel powder when compared to mango leaf powder and Manilkara zapota seed powder. A 60 to 95 % of removal efficiency was achieved by varying concentration. Effect of pH, dye concentration, adsorbent dosage and temperature were studied. Mango seed kernel powder is a better option that can be used as an adsorbent for the removal of methylene blue and basic red dye from its aqueous solutions.

  19. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  20. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  1. Interaction of dyes CD–1 and SD–1 with the surface of oligodimethysiloxane

    NASA Astrophysics Data System (ADS)

    Chausov, D. N.

    2018-03-01

    We carried out the modeling orientation of the dyes CD–1 and SD–1 relative to the surface of oligodimethysiloxane using the atom–atom potentials method. We have discovered the dependence of the interaction energy in dyes molecules on the angles which characterizes their orientation relative to the surface of the oligodimethysiloxane crystal. It was found out that the obtained energy value of interaction with the surface can explain weak adhesive qualities of the dyes and the orientation type relative to the surface. We identified the break– loose force for the dyes on the oligodimethysiloxane crystal surface.

  2. Anisotropic Dye Adsorption and Anhydrous Proton Conductivity in Smectic Liquid Crystal Networks: The Role of Cross-Link Density, Order, and Orientation.

    PubMed

    Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J

    2017-10-11

    In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.

  3. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  4. Investigation of the pH-dependence of dye-doped protein-protein interactions.

    PubMed

    Nudelman, Roman; Gloukhikh, Ekaterina; Rekun, Antonina; Richter, Shachar

    2016-11-01

    Proteins can dramatically change their conformation under environmental conditions such as temperature and pH. In this context, Glycoprotein's conformational determination is challenging. This is due to the variety of domains which contain rich chemical characters existing within this complex. Here we demonstrate a new, straightforward and efficient technique that uses the pH-dependent properties of dyes-doped Pig Gastric Mucin (PGM) for predicting and controlling protein-protein interaction and conformation. We utilize the PGM as natural host matrix which is capable of dynamically changing its conformational shape and adsorbing hydrophobic and hydrophilic dyes under different pH conditions and investigate and control the fluorescent properties of these composites in solution. It is shown at various pH conditions, a large variety of light emission from these complexes such as red, green and white is obtained. This phenomenon is explained by pH-dependent protein folding and protein-protein interactions that induce different emission spectra which are mediated and controlled by means of dye-dye interactions and surrounding environment. This process is used to form the technologically challenging white light-emitting liquid or solid coating for LED devices. © 2016 The Protein Society.

  5. Ordered phases of ethylene adsorbed on charged fullerenes and their aggregates☆

    PubMed Central

    Zöttl, Samuel; Kaiser, Alexander; Daxner, Matthias; Goulart, Marcelo; Mauracher, Andreas; Probst, Michael; Hagelberg, Frank; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-01-01

    In spite of extensive investigations of ethylene adsorbed on graphite, bundles of nanotubes, and crystals of fullerenes, little is known about the existence of commensurate phases; they have escaped detection in almost all previous work. Here we present a combined experimental and theoretical study of ethylene adsorbed on free C60 and its aggregates. The ion yield of (C60)m(C2H4)n+ measured by mass spectrometry reveals a propensity to form a structurally ordered phase on monomers, dimers and trimers of C60 in which all sterically accessible hollow sites over carbon rings are occupied. Presumably the enhancement of the corrugation by the curvature of the fullerene surface favors this phase which is akin to a hypothetical 1 × 1 phase on graphite. Experimental data also reveal the number of molecules in groove sites of the C60 dimer through tetramer. The identity of the sites, adsorption energies and orientations of the adsorbed molecules are determined by molecular dynamics calculations based on quantum chemical potentials, as well as density functional theory. The decrease in orientational order with increasing temperature is also explored in the simulations whereas in the experiment it is impossible to vary the temperature. PMID:25843960

  6. Adsorption of Crystal Violet Dye Using Zeolite A Synthesized From Coal Fly Ash

    NASA Astrophysics Data System (ADS)

    Jumaeri; Kusumastuti, E.; Santosa, S. J.; Sutarno

    2017-02-01

    Adsorption of Crystal Violet (CV) dye using zeolite A synthesized from coal fly ash (ZA) has been done. Effect of pH, contact time, and the initial concentration of dye adsorption was studied in this adsorption. Model experimental of adsorption isotherms and adsorption kinetics were also studied. The adsorption is done in a batch reactor at room temperature. A total of 0.01 g of zeolite A was added to the Erlenmeyer flask 50 mL containing 20 mL of the dye solution of Crystal Violet in a variety of conditions of pH, contact time and initial concentration. Furthermore, Erlenmeyer flask and its contents were shaken using an orbital shaker at a speed of 200 rpm. After a specified period of adsorption, the solution was centrifuged for 2 minutes so that the solids separated from the solution. The concentration of the dye after adsorption determined using Genesis-20 Spectrophotometer. The results showed that the Zeolite A synthesized from coal fly ash could be used as an effective adsorbent for Crystal Violet dye. The optimum adsorption occurs at pH 6, and contact time 45 minutes. At the initial concentration of 2 to 6 mg/L, adsorption is reduced from 79 to 62.8%. Crystal Violet dye adsorption in zeolite A fulfilled kinetic model of pseudo-order 2 and model of Freundlich adsorption isotherm.

  7. Spectroscopic study of the interaction of styrylcyanine dyes Sbo, Sil and their derivatives with bovine serum albumin.

    PubMed

    Kurtaliev, Eldar N

    2011-07-01

    The spectral-luminescent characteristics of newly synthesized styrylcyanine dyes on the base of dyes Sbo ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]oxazol-3-ium iodide) and Sil ((E)-2-(4-(dimethylamino)styryl)-1,3,3-trimethyl-3H-indolium perchlorate) in aqueous solutions without and in the presence of bovine serum albumin (BSA) were studied. It was established that the absorption spectra of dyes Tol-6, Dbo-10 and Dil-10 with increasing amount of BSA appear new bands with λ(max)=505 nm, λ(max)=512 nm and λ(max)=566 nm, respectively, whose intensity increases in proportion to the amount of albumin. The intensity of the glow of the main band of fluorescence in the presence of BSA sharply increases. The binding constant (K) and the number of binding sites (N) of studied dyes with BSA were determined. The dependence of binding constants with BSA on the dipole moment of dye molecules was determined, which indicates that besides electrostatic forces of attraction between molecules styrylcyanine dyes with BSA, hydrophobic interactions are essential. © Springer Science+Business Media, LLC 2011

  8. [1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio

    2016-04-15

    Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.

  9. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Usingmore » the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  10. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  11. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE PAGES

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung; ...

    2017-05-02

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  12. Magnetic Fe3O4@V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation.

    PubMed

    Boruah, Purna K; Szunerits, Sabine; Boukherroub, Rabah; Das, Manash R

    2018-01-01

    Reduced graphene oxide nanosheets decorated with Fe 3 O 4 and V 2 O 5 nanoparticles as a magnetically recoverable nanocomposite (Fe 3 O 4 @V 2 O 5 /rGO) was synthesized by a simple solution chemistry approach. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier transform infrared (FTIR), fluorescence, and zeta potential measurements. The narrow band gap and different band gap energies of Fe 3 O 4 and V 2 O 5 proved to be suitable for the absorption of visible light in the solar spectrum. The Fe 3 O 4 @V 2 O 5 /rGO displayed indeed excellent photocatalytic activity towards the degradation of harmful cationic Bismarck Brown (BB) as well as anionic Acid Orange 7 (AO) dyes under direct sunlight irradiation. The photocatalytic activity of the Fe 3 O 4 @V 2 O 5 /rGO is influenced by solution pH, catalyst loading, initial dye concentration and the presence of different inorganic ions (NH 4 + , Na + , Mg 2+ , Ca 2+, SO 4 2- , Br - , NO 3 - , Cl - , HCO 3 - ). This study provides a new scientific knowledge on the sunlight driven photocatalytic degradation of dye molecules using novel mixed metal oxide/rGO nanocomposite photocatalyst. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A theoretical study on metal atom-modified BC3 sheets for effects of gas molecule adsorptions

    NASA Astrophysics Data System (ADS)

    Tang, Yanan; Cui, Xiao; Chen, Weiguang; Zhu, Dalei; Chai, Huaduo; Dai, Xianqi

    2018-06-01

    Based on the first-principle calculations, the chemical reactivity of transition metal (Fe, Co, Ni, and Cu) dopants within BC3 sheets toward toxic gas molecules (CO, NO, NO2, SO2, and HCN) is comparably investigated. First, the adsorbed gases on metal-modified BC3 sheets exhibit the different stability. Compared with other gases, the metal-modified BC3 substrates exhibit the stronger affinity toward the NO and NO2 molecules (> 1.0 eV), while the adsorbed HCN has the smallest adsorption energy, illustrating that the NO and NO2 as specific toxic gas molecule can be easily detected. Second, the adsorbed gas molecules can effectively regulate the electronic structure and magnetic property of BC3 systems. Fox example, the strong adsorption of NO and NO2 on Fe-modified BC3 systems exhibits non-magnetic property, yet these gases on Co modified BC3 systems exhibit the magnetic character. In addition, the adsorbed NO and SO2 can induce and turn the degree of magnetic moments of Ni- and Cu-modified BC3 systems. Therefore, the different kinds of adsorbed gases on metal-modified BC3 sheets can be distinguished through investigating the changed magnetic moments of system, which would provide important information for designing the functional BC3-based materials.

  14. Probes labelled with energy transfer coupled dyes

    DOEpatents

    Mathies, Richard A.; Glazer, Alexander; Ju, Jingyue

    1997-01-01

    Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids.

  15. Probes labelled with energy transfer coupled dyes

    DOEpatents

    Mathies, R.A.; Glazer, A.; Ju, J.

    1997-11-18

    Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids. 7 figs.

  16. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  17. Degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abidin, Che Zulzikrami Azner, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com; Fahmi, Muhammad Ridwan, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com; Fazara, Md Ali Umi, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com

    2014-10-24

    In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV/H{sub 2}O{sub 2} experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV/H{sub 2}O{sub 2} process is meaningful with respectmore » to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H{sub 2}O{sub 2} photolysis.« less

  18. The construction, fouling and enzymatic cleaning of a textile dye surface.

    PubMed

    Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J

    2010-11-01

    The enzymatic cleaning of a rubisco protein stain bound onto Surface Plasmon Resonance (SPR) biosensor chips having a dye-bound upper layer is investigated. This novel method allowed, for the first time, a detailed kinetic study of rubisco cleanability (defined as fraction of adsorbed protein removed from a surface) from dyed surfaces (mimicking fabrics) at different enzyme concentrations. Analysis of kinetic data using an established mathematical model able to decouple enzyme transfer and reaction processes [Onaizi, He, Middelberg, Chem. Eng. Sci. 64 (2008) 3868] revealed a striking effect of dyeing on enzymatic cleaning performance. Specifically, the absolute rate constants for enzyme transfer to and from a dye-bound rubisco stain were significantly higher than reported previously for un-dyed surfaces. These increased transfer rates resulted in higher surface cleanability. Higher enzyme mobility (i.e., higher enzyme adsorption and desorption rates) at the liquid-dye interface was observed, consistent with previous suggestions that enzyme surface mobility is likely correlated with overall enzyme cleaning performance. Our results show that reaction engineering models of enzymatic action at surfaces may provide insight able to guide the design of better stain-resistant surfaces, and may also guide efforts to improve cleaning formulations. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Dynamics of copper-phthalocyanine molecules on Au/Ge(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotthewes, K.; Heimbuch, R.; Zandvliet, H. J. W.

    2015-10-07

    Spatially resolved current-time scanning tunneling spectroscopy combined with current-distance spectroscopy has been used to characterize the dynamic behavior of copper-phthalocyanine (CuPc) molecules adsorbed on a Au-modified Ge(001) surface. The analyzed CuPc molecules are adsorbed in a “molecular bridge” configuration, where two benzopyrrole groups (lobes) are connected to a Au-induced nanowire, whereas the other two lobes are connected to the adjacent nanowire. Three types of lobe configurations are found: a bright lobe, a dim lobe, and a fuzzy lobe. The dim and fuzzy lobes exhibit a well-defined switching behavior between two discrete levels, while the bright lobe shows a broad oscillationmore » band. The observed dynamic behavior is induced by electrons that are injected into the LUMO+1 orbital of the CuPc molecule. By precisely adjusting the tip-molecule distance, the switching frequency of the lobes can be tuned accurately.« less

  20. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.

    PubMed

    Gómez-Navarro, C; Moreno-Herrero, F; de Pablo, P J; Colchero, J; Gómez-Herrero, J; Baró, A M

    2002-06-25

    A fundamental requirement for a molecule to be considered a molecular wire (MW) is the ability to transport electrical charge with a reasonably low resistance. We have carried out two experiments that measure first, the charge transfer from an electrode to the molecule, and second, the dielectric response of the MW. The latter experiment requires no contacts to either end of the molecule. From our experiments we conclude that adsorbed individual DNA molecules have a resistivity similar to mica, glass, and silicon oxide substrates. Therefore adsorbed DNA is not a conductor, and it should not be considered as a viable candidate for MW applications. Parallel studies on other nanowires, including single-walled carbon nanotubes, showed conductivity as expected.