Sample records for adsorption experiments conducted

  1. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  2. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  3. Tracer adsorption in sand-tank experiments of saltwater up-coning

    NASA Astrophysics Data System (ADS)

    Jakovovic, Danica; Post, Vincent E. A.; Werner, Adrian D.; Männicke, Oliver; Hutson, John L.; Simmons, Craig T.

    2012-01-01

    SummaryThis study aims to substantiate otherwise unresolved double-peaked plumes produced in recent saltwater up-coning experiments (see Jakovovic et al. (2011), Numerical modelling of saltwater up-coning: Comparison with experimental laboratory observations, Journal of Hydrology 402, 261-273) through additional laboratory testing and numerical modelling. Laboratory experimentation successfully reproduced the double-peaked plume demonstrating that this phenomenon was not an experimental nuance in previous experiments. Numerical modelling by Jakovovic et al. (2011) was extended by considering adsorption effects, which were needed to explain the observed up-coning double peaks of both previous and current laboratory experiments. A linear adsorption isotherm was applied in predicting dye tracer (Rhodamine WT) behaviour in the sand-tank experiments using adsorption parameters obtained experimentally. The same adsorption parameters were tested on all laboratory experiments and it was found that adsorption had insignificant effect on experiments with high pumping rates. However, low pumping rates produced pronounced spatial velocity variations within the dense salt plume beneath the pumping well, with velocities within the plume increasing from the centre of the plume towards the interface. The dye tracer was retarded relative to the salt and was transported preferentially along the higher-velocity paths (i.e. along the edges of the salt plume) towards the well forming double-peaked up-coning patterns. This illustrates the sensitive adsorptive nature of Rhodamine WT and that care should be taken when it is used in similar sand-tank experiments. Observations from this study offer insight into the separation of chemicals in natural systems due to different adsorption characteristics and under conditions of density-dependent flow.

  4. Adsorption effect on the formation of conductive path in defective TiO2: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Wenshi; Qin, Han; Yang, Jianfeng; Mao, Ling-Feng

    2017-10-01

    Although the metal/TiO2/metal junctions providing resistive switching properties have attracted lots of attention in recent decades, revealing the atomic-nature of conductive path in TiO2 active layer remains a critical challenge. Here the effects of metal adsorption on defective TiO2(1 1 0) surface are theoretically investigated via ab initio calculations. The dependence of the conductive path on the adsorption of Ti/Zr/Cu/Pt/O atoms above a lattice Ti-ion in (1 1 0) plane and at 〈1 1 0〉 direction of the defective TiO2(0 0 1) surface are compared. It is found that Ti adsorptions in both sites give larger contributions to the presence of conductive path with more stability and larger transport coefficients at Fermi level, whereas the O adsorptions at both sites fail to produce conductive path. Moreover, the adsorptions of Zr/Cu/Pt atoms reduce the existence possibility of conductive path, especially absorbed above the lattice Ti-ion at 〈1 1 0〉 direction. Thus, it is helpful to clarify the interaction of the metal electrode and oxide layer in resistive random access memory.

  5. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts

    NASA Astrophysics Data System (ADS)

    Muryanto, S.; Djatmiko Hadi, S.

    2016-11-01

    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  6. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.

  7. Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.

    PubMed

    Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing

    2018-05-15

    The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.

  8. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  9. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    PubMed

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  10. Cryogenic adsorption of nitrogen on activated carbon: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Zou, Long-Hui; Liu, Hui-Ming; Gong, Ling-Hui

    2018-03-01

    A cryo-sorption device was built based on a commercial gas sorption analyzer with its sample chamber connected to the 2nd stage of the Gifford-McMahon (GM) cryocooler (by SUMITOMO Corporation), which could provide the operation temperature ranging from 4.5 K to 300 K; The nitrogen adsorption isotherms ranging from 95 to 160 K were obtained by volumetric method on the PICATIF activated carbon. Isosteric heat of adsorption was calculated using the Clausius-Clapeyron equation and was around 8 kJ/mol. Conventional isotherm models and the artificial neural network (ANN) were applied to analyze the adsorption data, the Dual-site Langmuir and the Toth equation turned out to be the most suitable empirical isotherm model; Adsorption equilibrium data at some temperature was used to train the neural network and the rest was used to validate and predict, it turned out that the accuracy of the prediction by the ANN increased with increasing hidden-layer, and it was within ±5% for the three-hidden-layer ANN, and it showed better performance than the conventional isotherm model; Considering large time consumption and complexity of the adsorption experiment, the ANN method can be applied to get more adsorption data based on the already known experimental data.

  11. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    ERIC Educational Resources Information Center

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  12. Phosphorus recovery using pelletized adsorptive materials ...

    EPA Pesticide Factsheets

    Phosphorous (P) is one of the essential nutrients for growth and is generally the most limiting nutrient since, it cannot be fixed from the atmosphere. Methods for recovering phosphorous from water systems already exist, but advances are being made to find a more economic, efficient, effective and easy to use method that can allow for reuse of the recovered P. One area of study is in adsorption, which involves finding the best material for adsorption of phosphorous from water and for releasing it back into the environment through desorption or leaching. The goal of this research was to first optimize the capacity for a pelletized adsorptive material that was synthesized with varying amounts of a binder material from 0-20 % and then to study recovering the phosphate for reuse. The pelletized materials were studied through kinetics experiments as well as isotherm experiments to gain insight into the adsorption capacity and mechanism. Following successful adsorption, a simple leaching study was conducted to see how much phosphate would be released back into water without any added desorption aid. Desorption was then studied by changing the pH of solution. Presenting my thesis work with a poster at ACS.

  13. The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment.

    PubMed

    Farias, Ana Paula S F; Carneiro, Cristine E A; de Batista Fonseca, Inês C; Zaia, Cássia T B V; Zaia, Dimas A M

    2016-06-01

    Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis.

  14. Adsorption and Retardation of PFASs in Soil

    NASA Astrophysics Data System (ADS)

    Chen, W.; Yan, N.; Fu, X.; Carroll, K. C.; Holguin, F. O. O.; Brusseau, M. L.

    2017-12-01

    Per- and poly-fluorinated alkyl substances (PFASs) are emerging contaminants of concern that are present in the subsurface at numerous military and industrial facilities. Knowledge of the retention behavior of these compounds in the subsurface environment is critical for effective risk characterization and remediation. The objective of this research is to investigate the role of adsorption at the air-water interface on PFAS retention in vadose-zone systems. Surface tensions were measured for select PFAS to determine interfacial adsorption coefficients. Column experiments were conducted to characterize retardation and transport under saturated and unsaturated flow conditions. The impact of soil properties and groundwater constituents on surface tension, solid-phase adsorption, and interfacial adsorption was investigated.

  15. Adsorption and co-adsorption of diclofenac and Cu(II) on calcareous soils.

    PubMed

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2016-02-01

    Pharmaceuticals are emerging contaminants and their presence in different compartments of the environment has been detected in many countries. In this study, laboratory batch experiments were conducted to characterize the adsorption of diclofenac, a widely used non-steroidal anti-inflammatory drug, on six calcareous soils. The adsorption of diclofenac was relatively low, which may lead to a risk of groundwater contamination and plant uptake. A correlation between the soil-water distribution coefficient Kd and soil characteristics has been highlighted. Indeed, diclofenac adsorption as a function of soil organic matter content (% OM) and Rt=% CaCO3/% OM was successfully described through a simple empirical model, indicating the importance of considering the inhibiting effect of CaCO3 on OM retention properties for a better assessment of diclofenac fate in the specific case of calcareous soils. The simultaneous co-adsorption of diclofenac and copper - a ubiquitous pollutant in the environment - at the water/soil interface, was also investigated. It appeared quite unexpectedly that copper did not have a significant influence on diclofenac retention. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling

    DOE PAGES

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    2016-08-03

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag 0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag 0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodinemore » adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag 0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016« less

  17. Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...

  18. Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Gu, Zonglin; Yang, Zaixing; Chong, Yu; Ge, Cuicui; Weber, Jeffrey K.; Bell, David R.; Zhou, Ruhong

    2015-06-01

    The adsorption of proteins onto carbon-based nanomaterials (CBNs) is dictated by hydrophobic and π-π interactions between aliphatic and aromatic residues and the conjugated CBN surface. Accordingly, protein adsorption is highly sensitive to topological constraints imposed by CBN surface structure; in particular, adsorption capacity is thought to increase as the incident surface curvature decreases. In this work, we couple Molecular Dynamics (MD) simulations with fluorescence spectroscopy experiments to characterize this curvature dependence in detail for the model protein bovine serum albumin (BSA). By studying BSA adsorption onto carbon nanotubes of increasing radius (featuring descending local curvatures) and a flat graphene sheet, we confirm that adsorption capacity is indeed enhanced on flatter surfaces. Naïve fluorescence experiments featuring multi-walled carbon nanotubes (MWCNTs), however, conform to an opposing trend. To reconcile these observations, we conduct additional MD simulations with MWCNTs that match those prepared in experiments; such simulations indicate that increased mass to surface area ratios in multi-walled systems explain the observed discrepancies. In reduction, our work substantiates the inverse relationship between protein adsorption capacity and surface curvature and further demonstrates the need for subtle consideration in experimental and simulation design.

  19. Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, X. W.; Tian, Y. L.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Ren, J. F.; Yuan, X. B.

    2018-04-01

    Adsorption properties of methanol molecule on graphene surface are studied both theoretically and experimentally. The adsorption geometrical structures, adsorption energies, band structures, density of states and the effective masses are obtained by means of first-principles calculations. It is found that the electronic characteristics and conductivity of graphene are sensitive to the methanol molecule adsorption. After adsorption of methanol molecule, bandgap appears. With the increasing of the adsorption distance, the bandgap, adsorption energy and effective mass of the adsorption system decreased, hence the resistivity of the system decreases gradually, these results are consistent with the experimental results. All these calculations and experiments indicate that the graphene-based sensors have a wide range of applications in detecting particular molecules.

  20. Use of ferric-impregnated volcanic ash for arsenate (V) adsorption from contaminated water with various mineralization degrees.

    PubMed

    Chen, Rongzhi; Zhang, Zhenya; Yang, Yingnan; Lei, Zhongfang; Chen, Nan; Guo, Xu; Zhao, Chao; Sugiura, Norio

    2011-01-15

    Ferric-impregnated volcanic ash (FVA) which consisted mainly of different forms of iron and aluminum oxide minerals was developed for arsenate (V) removal from an aqueous medium. The adsorption experiments were conducted in both DI water samples and actual water (Lake Kasumigaura, Japan) to investigate the effects of solution mineralization degree on the As(V) removal. Kinetic and equilibrium studies conducted in actual water revealed that the mineralization of water greatly elevated the As(V) adsorption on FVA. The experiment performed in DI water indicated that the existence of multivalence metallic cations significantly enhanced the As(V) adsorption ability, whereas competing anions such as fluoride and phosphate greatly decreased the As(V) adsorption. It is suggested that FVA is a cost-effective adsorbent for As(V) removal in low-level phosphate and fluoride solution. It was important to conduct the batch experiment using the actual water to investigate the arsenic removal on adsorbents. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Adsorption kinetic and desorption studies of Cd2+ on Multi-Carboxylic-Functionalized Silica Gel

    NASA Astrophysics Data System (ADS)

    Li, Min; Wei, Jian; Meng, Xiaojing; Wu, Zhuqiang; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed cadmium (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of cadmium (II) ion didn’t present an obvious decrease after five cycles.

  2. Adsorption kinetic and desorption studies of Cu2+ on Multi-Carboxylic-Functionalized Silica Gel

    NASA Astrophysics Data System (ADS)

    Li, Min; Meng, Xiaojing; Liu, Yushuang; Hu, Xinju; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of copper (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of copper (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed copper (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of copper (II) ion didn’t present an obvious decrease after five cycles.

  3. Conducting interactive experiments online.

    PubMed

    Arechar, Antonio A; Gächter, Simon; Molleman, Lucas

    2018-01-01

    Online labor markets provide new opportunities for behavioral research, but conducting economic experiments online raises important methodological challenges. This particularly holds for interactive designs. In this paper, we provide a methodological discussion of the similarities and differences between interactive experiments conducted in the laboratory and online. To this end, we conduct a repeated public goods experiment with and without punishment using samples from the laboratory and the online platform Amazon Mechanical Turk. We chose to replicate this experiment because it is long and logistically complex. It therefore provides a good case study for discussing the methodological and practical challenges of online interactive experimentation. We find that basic behavioral patterns of cooperation and punishment in the laboratory are replicable online. The most important challenge of online interactive experiments is participant dropout. We discuss measures for reducing dropout and show that, for our case study, dropouts are exogenous to the experiment. We conclude that data quality for interactive experiments via the Internet is adequate and reliable, making online interactive experimentation a potentially valuable complement to laboratory studies.

  4. A study of metal ion adsorption at low suspended-solid concentrations

    USGS Publications Warehouse

    Chang, Cecily C.Y.; Davis, J.A.; Kuwabara, J.S.

    1987-01-01

    A procedure for conducting adsorption studies at low suspended solid concentrations in natural waters (<50 mg l-1) is described. Methodological complications previously associated with such experiments have been overcome. Adsorption of zinc ion onto synthetic colloidal titania (TiO2) was studied as a function of pH, supporting electrolyte (NaCl) concentration (0??1-0??002 m) and particle concentration (2-50 mg l-1). The lack of success of the Davis Leckie site bonding model in describing Zn(II) adsorption emphasizes the need for further studies of adsorption at low suspended-solid concentrations. ?? 1987.

  5. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

    USGS Publications Warehouse

    Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.

    1993-01-01

    The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at

  6. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory

    NASA Astrophysics Data System (ADS)

    Joshi, Nitesh; Romanias, Manolis N.; Riffault, Veronique; Thevenet, Frederic

    2017-08-01

    The adsorption of water molecules on natural mineral dusts was investigated employing in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The natural dust samples originated from North and West Africa, Saudi Arabia and Gobi desert regions. Furthermore, the hygroscopicity of commercially available Arizona Test Dusts (ATDs) and Icelandic volcanic ash were examined. N2 sorption measurements, X-ray fluorescence and diffraction (XRF and XRD), as well as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses were performed to determine the physicochemical properties of the particles. The water adsorption experiments were conducted in an optical cell, at room temperature under the relative humidity (RH) range of 1.9-95%. Results were simulated using a modified three-parameter Brunauer-Emmett-Teller (BET) equation. Water monolayer (ML) was formed in the RH range of 15-25%, while additional water layers were formed at higher RH. Besides, the standard adsorption enthalpies of water onto natural mineral dust samples were determined. A thorough comparison of two commercially available ATD samples indicated that size distribution and/or porosity should play a key role in particle hygroscopicity. Regarding the natural mineral particles, Ca/Si ratios, and to a lesser extent Al/Si, Na/Si, Mg/Si ratios, were found to impact the minimum RH level required for water monolayer formation. These results suggest that the hygroscopic properties of investigated African dusts are quite similar over the whole investigated RH range. Furthermore, one of the major conclusions is that under most atmospheric relative humidity conditions, natural mineral samples are always covered with at least one layer of adsorbed water.

  7. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.

    PubMed

    Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B

    2005-06-01

    This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.

  8. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    EPA Science Inventory

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  9. Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.

    PubMed

    Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi

    2009-07-15

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.

  10. An intrinsically shielded hydrogel for the adsorptive recovery of lysozyme.

    PubMed

    Wang, Lu; Zhang, Rongsheng; Eisenthal, Robert; Hubble, John

    2006-07-01

    The present paper addresses the selective recovery of lysozyme from egg white using CM-dextran (carboxymethyldextran)-based hydrogels containing Cibacron Blue as an affinity ligand and co-immobilized BSA intended to act as a shielding agent to reduce non-specific adsorption. Initial studies using pure lysozyme were conducted that indicated that the adsorption capacity increased with ligand density and that adsorption was well described by a Langmuir-type isotherm. The inclusion of BSA as a putative shielding agent did not decrease the adsorption capacity for lysozyme in single-adsorbate experiments. To assess the effectiveness of the shielding strategy, subsequent experiments were conducted with both defined lysozyme/ovalbumin mixtures and hen's-egg white. From these studies, the optimal operating conditions for lysozyme recovery have been determined. These include: optimal initial egg-white concentration [a 10% (v/v) solution of native egg white in the chosen buffer], affinity-ligand density (1.86 mM) and ligand-to-shielding-agent ratio (4:1). The purity of lysozyme obtained from egg white was improved from 69% with a non-shielded hydrogel to 94% with an intrinsically shielded hydrogel. Finally, the possibility of using a protein, rather than dextran-backbone-based, hydrogel was investigated. It was found that BSA could take the place of CM-dextran as the gel backbone in a simplified synthesis, producing a gel which also proved effective for lysozyme recovery with a 30% lysozyme in egg-white solution purified to approx. 92% in a single adsorption-desorption cycle.

  11. Simulations and experiments on gas adsorption in novel microporous polymers

    NASA Astrophysics Data System (ADS)

    Larsen, Gregory Steven

    Microporous materials represent a fascinating class of materials with a broad range of applications. The work presented here focuses on the use of a novel class of microporous material known as polymers of intrinsic micrioporosity, or PIMs, for use in gas separation and storage technologies. The aim of this research is to develop a detailed understanding of the relationship between the monomeric structure and the adsorptive performance of PIMs. First, a generalizable structure generation technique was developed such that simulation samples of PIM-1 recreated experimental densities, scattering, surface areas, pore size distributions, and adsorption isotherms. After validation, the simulations were applied as virtual experiments on several new PIMs with the intent to screen their capabilities as adsorbent materials and elucidate design principles for linear PIMs. The simulations are useful in understanding the unique properties such as pore size distribution and scattering observed experimentally.

  12. Anisotropic Dye Adsorption and Anhydrous Proton Conductivity in Smectic Liquid Crystal Networks: The Role of Cross-Link Density, Order, and Orientation.

    PubMed

    Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J

    2017-10-11

    In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.

  13. Adsorption of emerging contaminant metformin using graphene oxide.

    PubMed

    Zhu, Shuai; Liu, Yun-Guo; Liu, Shao-Bo; Zeng, Guang-Ming; Jiang, Lu-Hua; Tan, Xiao-Fei; Zhou, Lu; Zeng, Wei; Li, Ting-Ting; Yang, Chun-Ping

    2017-07-01

    The occurrence of emerging contaminants in our water resources poses potential threats to the livings. Due to the poor treatment in wastewater management, treatment technologies are needed to effectively remove these products for living organism safety. In this study, Graphene oxide (GO) was tested for the first time for its capacity to remove a kind of emerging wastewater contaminants, metformin. The research was conducted by using a series of systematic adsorption and kinetic experiments. The results indicated that GO could rapidly and efficiently reduce the concentration of metformin, which could provide a solution in handling this problem. The uptake of metformin on the graphene oxide was strongly dependent on temperature, pH, ionic strength, and background electrolyte. The adsorption kinetic experiments revealed that almost 80% removal of metformin was achieved within 20 min for all the doses studied, corresponding to the relatively high k 1 (0.232 min -1 ) and k 2 (0.007 g mg -1  min -1 ) values in the kinetic models. It indicated that the highest adsorption capacity in the investigated range (q m ) of GO for metformin was at pH 6.0 and 288 K. Thermodynamic study indicated that the adsorption was a spontaneous (ΔG 0  < 0) and exothermic (ΔH 0  < 0) process. The adsorption of metformin increased when the pH values changed from 4.0 to 6.0, and decreased adsorption were observed at pH 6.0-11.0. GO still exhibited excellent adsorption capacity after several desorption/adsorption cycles. Besides, both so-called π-π interactions and hydrogen bonds might be mainly responsible for the adsorption of metformin onto GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    PubMed

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  15. U(VI) adsorption on aquifer sediments at the Hanford Site.

    PubMed

    Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V

    2007-08-15

    Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.

  16. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.

    PubMed

    Xiong, Ruichang; León, Marta; Nikolakis, Vladimiros; Sandler, Stanley I; Vlachos, Dionisios G

    2014-01-01

    The adsorption of 5-hydroxymethylfurfural (HMF), DMSO, and water from binary and ternary mixtures in hydrophobic silicalite-1 and dealuminated Y (DAY) zeolites at ambient conditions was studied by experiments and molecular modeling. HMF and DMSO adsorption isotherms were measured and compared to those calculated using a combination of grand canonical Monte Carlo and expanded ensemble (GCMC-EE) simulations. A method based on GCMC-EE simulations for dilute solutions combined with the Redlich-Kister (RK) expansion (GCMC-EE-RK) is introduced to calculate the isotherms over a wide range of concentrations. The simulations, using literature force fields, are in reasonable agreement with experimental data. In HMF/water binary mixtures, large-pore hydrophobic zeolites are much more effective for HMF adsorption but less selective because large pores allow water adsorption because of H2 O-HMF attraction. In ternary HMF/DMSO/water mixtures, HMF loading decreases with increasing DMSO fraction, rendering the separation of HMF from water/DMSO mixtures by adsorption difficult. The ratio of the energetic interaction in the zeolite to the solvation free energy is a key factor in controlling separation from liquid mixtures. Overall, our findings could have an impact on the separation and catalytic conversion of HMF and the rational design of nanoporous adsorbents for liquid-phase separations in biomass processing. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ADSORPTION MECHANISMS AND TRANSPORT BEHAVIOR BETWEEN SELENATE AND SELENITE ON DIFFERENT SORBENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Michelle MV; Um, Wooyong

    Adsorption of different oxidation species of selenium (Se), selenate (SeO42-) and selenite (SeO32-), with varying pHs (2 - 10) and ionic strengths (I = 0.01 M, 0.1 M and 1.0 M NaNO3) was measured on quartz, aluminum oxide, and synthetic iron oxide (ferrihydrite) using batch reactors to obtain a more detailed understanding of the adsorption mechanisms (e.g., inner- and outer-sphere complex). In addition to the batch experiments with single minerals contained in native Hanford Site sediment, additional batch adsorption studies were conducted with native Hanford Site sediment and groundwater as a function of 1) total Se concentration (from 0.01 tomore » 10 mg L-1) and 2) soil to solution ratios (1:20 and 1:2 grams per mL). Results from these batch studies were compared to a set of saturated column experiments that were conducted with natural Hanford sediment and groundwater spiked with either selenite or selenate to observe the transport behavior of these species. Both batch and column results indicated that selenite adsorption was consistently higher than that of selenate in all experimental conditions used. These different adsorption mechanisms between selenite and selenate result in the varying mobility of Se in the subsurface environment and explain the dependence on the oxidation species.« less

  18. Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods.

    PubMed

    Lee, Sang Cheol; Park, Sunkyu

    2016-09-01

    It has been proposed to remove all potential inhibitors and sulfuric acid in biomass hydrolysates generated from dilute-acid pretreatment of biomass, based on three steps of sugar purification process. This study focused on its first step in which furan and phenolic compounds were selectively removed from the simulated hydrolysates using activated charcoal. Batch adsorption experiments demonstrated that the affinity of activated charcoal for each component was highest in the order of vanillic acid, 4-hydroxybenzoic acid, furfural, acetic acid, sulfuric acid, and xylose. The affinity of activated charcoal for furan and phenolic compounds proved to be significantly higher than that of the other three components. Four separation strategies were conducted with a combination of batch adsorption and continuous fixed-bed column adsorption methods. It was observed that xylose loss was negligible with near complete removal of furan and phenolic compounds, when at least one fixed-bed column adsorption was implemented in the strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism.

    PubMed

    Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei

    2016-02-10

    Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils

    Treesearch

    Chang Yoon Jeong; Jim J. Wang; Syam K. Dodla; Thomas L. Eberhardt; Les Groom

    2012-01-01

    The role of biochar as a soil amendment on the adsorption¨C desorption and transport of tylosin, a macrolide class of veterinary antibiotic, is little known. In this study, batch and column experiments were conducted to investigate the adsorption kinetics and transport of tylosin in forest and agricultural corn field soils amended with hardwood and softwood biochars....

  1. ADSORPTION OF CADMIUM ONTO DIFFERENT FRACTIONS OF BIOSOLID-AMENDED SOILS

    EPA Science Inventory

    We hypothesized not only organic but also inorganic fraction in biosolids controls the metal availability in soil systems. To test this hypothesis we conducted Cd adsorption experiments on different fractions of biosolids, biosolid amended soils, and unamended soils. Soils were c...

  2. Improving lead adsorption through chemical modification of wheat straw by lactic acid

    NASA Astrophysics Data System (ADS)

    Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli

    2018-01-01

    This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.

  3. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria

    PubMed Central

    Navarrete, Jesica U.; Borrok, David M.; Viveros, Marian; Ellzey, Joanne T.

    2011-01-01

    Copper isotopes may prove to be a useful tool for investigating bacteria–metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu–bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5–6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution–solid = δ65Cusolution – δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to –0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution–solid ranging from ~+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is

  4. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.

    PubMed

    Lyu, Ying; Brusseau, Mark L; Chen, Wei; Yan, Ni; Fu, Xiaori; Lin, Xueyu

    2018-06-26

    Miscible-displacement experiments are conducted with perfluorooctanoic acid (PFOA) to determine the contribution of adsorption at the air-water interface to retention during transport in water-unsaturated porous media. Column experiments were conducted with two sands of different diameter at different PFOA input concentrations, water saturations, and pore-water velocities to evaluate the impact of system variables on retardation. The breakthrough curves for unsaturated conditions exhibited greater retardation than those obtained for saturated conditions, demonstrating the significant impact of air-water interfacial adsorption on PFOA retention. Retardation was greater for lower water saturations and smaller grain diameter, consistent with the impact of system conditions on the magnitude of air-water interfacial area in porous media. Retardation was greater for lower input concentrations of PFOA for a given water saturation, consistent with the nonlinear nature of surfactant fluid-fluid interfacial adsorption. Retardation factors predicted using independently determined parameter values compared very well to the measured values. The results showed that adsorption at the air-water interface is a significant source of retention for PFOA, contributing approximately 50-75% of total retention, for the test systems. The significant magnitude of air-water interfacial adsorption measured in this work has ramifications for accurate determination of PFAS migration potential in vadose zones.

  5. COMPETITIVE ADSORPTION OF VOCS AND BOM-OXIC AND ANOXIC ENVIRONMENTS

    EPA Science Inventory

    The effect of the presence of molecular oxygen on the adsorption of volatile organic compounds (VOCs) in distilled Milli-Q water and in water supplemented with background organic matter (BOM) is evaluated. Experiments are conducted under conditions where molecular oxygen is prese...

  6. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Ruiz, Victor G.; Camarillo-Cisneros, Javier; Liu, Wei; Ferri, Nicola; Reuter, Karsten; Tkatchenko, Alexandre

    2016-05-01

    Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT + vdWsurf. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 Å and 0.16 eV, respectively. This confirms the DFT + vdWsurf method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.

  7. Adsorption of chlorine dioxide gas on activated carbons.

    PubMed

    Wood, Joseph P; Ryan, Shawn P; Snyder, Emily Gibb; Serre, Shannon D; Touati, Abderrahmane; Clayton, Matthew J

    2010-08-01

    Research and field experience with chlorine dioxide (ClO2) gas to decontaminate structures contaminated with Bacillus anthracis spores and other microorganisms have demonstrated the effectiveness of this sterilant technology. However, because of its hazardous properties, the unreacted ClO2, gas must be contained and captured during fumigation events. Although activated carbon has been used during some decontamination events to capture the ClO2 gas, no data are available to quantify the performance of the activated carbon in terms of adsorption capacity and other sorbent property operational features. Laboratory experiments were conducted to determine and compare the ClO2 adsorption capacities of five different types of activated carbon as a function of the challenge ClO2 concentration. Tests were also conducted to investigate other sorbent properties, including screening tests to determine gaseous species desorbed from the saturated sorbent upon warming (to provide an indication of how immobile the ClO2 gas and related compounds are once captured on the sorbent). In the adsorption tests, ClO2 gas was measured continuously using a photometric-based instrument, and these measurements were verified with a noncontinuous method utilizing wet chemistry analysis. The results show that the simple activated carbons (not impregnated or containing other activated sorbent materials) were the most effective, with maximum adsorption capacities of approximately 110 mg/g. In the desorption tests, there was minimal release of ClO(2) from all sorbents tested, but desorption levels of chlorine (Cl2) gas (detected as chloride) varied, with a maximum release of nearly 15% of the mass of ClO2 adsorbed.

  8. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  9. Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth.

    PubMed

    Bayram, Edip; Hoda, Numan; Ayranci, Erol

    2009-09-15

    Removal of catechol and resorcinol from aqueous solutions by adsorption and electrosorption onto high area activated carbon cloth (ACC) was investigated. Kinetics of both adsorption and electrosorption were followed by in-situ UV-spectroscopic method and the data were treated according to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the adsorption and electrosorption of these compounds onto ACC follows pseudo-second-order model. pH changes during adsorption and electrosorption were followed and discussed with regard to the interaction between ACC and adsorbate molecules, utilizing the pH(pzc) value of ACC. An electrodesorption experiment was conducted to explore the possibility of regeneration of ACC. Adsorption isotherms were derived at 25 degrees C on the basis of batch analysis. The fits of experimental isotherm data to the well-known Freundlich, Langmuir and Tempkin models were examined.

  10. Fibronectin and bovine serum albumin adsorption and conformational dynamics on inherently conducting polymers: a QCM-D study.

    PubMed

    Molino, Paul J; Higgins, Michael J; Innis, Peter C; Kapsa, Robert M I; Wallace, Gordon G

    2012-06-05

    Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.

  11. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    PubMed

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  12. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.

  13. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  14. Adsorption kinetics of surfactants on activated carbon

    NASA Astrophysics Data System (ADS)

    Arnelli; Aditama, WP; Fikriani, Z.; Astuti, Y.

    2018-04-01

    A study on the adsorption of both cationic and anionic surfactants using activated carbon as well as the investigation of the adsorption isotherms and adsorption kinetics has been conducted. The results showed that the adsorption of sodium lauryl sulfate (SLS) by activated carbon was Langmuir’s adsorption isotherm while its adsorption kinetics showed pseudo-second order with an adsorption rate constant of 2.23 x 103 g mg-1 hour-1. Meanwhile, the adsorption of HDTMA-Br by activated carbon showed that the isotherm adsorption tended to follow Freundlich’s isotherm and was pseudo-second order with an adsorption rate constant of 89.39 g mg-1 hour-1.

  15. Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.

    PubMed

    Chen, J Paul; Wang, Lin

    2004-01-01

    Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.

  16. Conducting Miller-Urey Experiments

    NASA Technical Reports Server (NTRS)

    Parker, Eric Thomas; Cleaves, Henderson James; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason; Zhou, Manshui; Bada, Jeffrey L.; Fernandez, Facundo M.

    2014-01-01

    In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200mmHg of CH4, and 200mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.

  17. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  18. Paraquat adsorption on NaX and Al-MCM-41.

    PubMed

    Rongchapo, Wina; Deekamwong, Krittanun; Loiha, Sirinuch; Prayoonpokarach, Sanchai; Wittayakun, Jatuporn

    2015-01-01

    The aim of this work is to determine paraquat adsorption capacity of zeolite NaX and Al-MCM-41. All adsorbents were synthesized by hydrothermal method using rice husk silica. For Al-MCM-41, aluminum (Al) was added to the synthesis gel of MCM-41 with Al content of 10, 15, 20 and 25 wt%. The faujasite framework type of NaX and mesoporous characteristic of Al-MCM-41 were confirmed by X-ray diffraction. Surface area of all adsorbents determined by N2 adsorption-desorption analysis was higher than 650 m2/g. Al content and geometry were determined by X-ray fluorescence and 27Al nuclear magnetic resonance, respectively. Morphology of Al-MCM-41 were studied by transmission electron microscopy; macropores and defects were observed. The paraquat adsorption experiments were conducted using a concentration range of 80-720 mg/L for NaX and 80-560 mg/L for Al-MCM-41. The paraquat adsorption isotherms from all adsorbents fit well with the Langmuir model. The adsorption capacity of NaX was 120 mg/g-adsorbent. Regarding Al-MCM-41, the 10% Al-MCM-41 exhibited the lowest capacity of 52 mg/g-adsorbent while the other samples had adsorption capacity of 66 mg/g-adsorbent.

  19. The Preparation of Porous Sol-Gel Silica with Metal Organic Framework MIL-101(Cr) by Microwave-Assisted Hydrothermal Method for Adsorption Chillers.

    PubMed

    Uma, Kasimayan; Pan, Guan-Ting; Yang, Thomas C-K

    2017-06-02

    Abst r act: Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO₂) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO₂ composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO₂ mixing ratios (ranging from 0% to 52%), the surface area and amount of Lewis and Brønsted sites were comprehensively determined through water vapor adsorption experiments and the adsorption mechanism is also explained. The BET and Langmuir results indicate that the adsorption isotherms associated with the various MIL-101(Cr)-SiO₂ ratios demonstrated Type I and IV adsorption behavior, due to the mesoporous structure of the MIL-101(Cr)-SiO₂. It was observed that the increase in the amount of Lewis and Brønsted sites on the MIL-101(Cr)-SiO₂ composites significantly improves the water vapor adsorption efficiency, for greater stability during the water vapor adsorption experiments.

  20. The Preparation of Porous Sol-Gel Silica with Metal Organic Framework MIL-101(Cr) by Microwave-Assisted Hydrothermal Method for Adsorption Chillers

    PubMed Central

    Uma, Kasimayan; Pan, Guan-Ting; Yang, Thomas C.-K.

    2017-01-01

    Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO2) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO2 composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO2 mixing ratios (ranging from 0% to 52%), the surface area and amount of Lewis and Brønsted sites were comprehensively determined through water vapor adsorption experiments and the adsorption mechanism is also explained. The BET and Langmuir results indicate that the adsorption isotherms associated with the various MIL-101(Cr)-SiO2 ratios demonstrated Type I and IV adsorption behavior, due to the mesoporous structure of the MIL-101(Cr)-SiO2. It was observed that the increase in the amount of Lewis and Brønsted sites on the MIL-101(Cr)-SiO2 composites significantly improves the water vapor adsorption efficiency, for greater stability during the water vapor adsorption experiments. PMID:28772969

  1. Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption - The Pilot and Rapid Small-Scale Column Tests

    EPA Science Inventory

    The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...

  2. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    PubMed Central

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes. PMID:26796523

  3. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    PubMed Central

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  4. Adsorption mechanism of cadmium on juniper bark and wood

    Treesearch

    Eun Woo Shin; K. G. Karthikeyan; Mandla A. Tshabalala

    2007-01-01

    In this study the capacity of sorbents prepared from juniper wood (JW) and bark (JB) to adsorb cadmium (Cd) from aqueous solutions at different pH values was compared. Adsorption behavior was characterized through adsorption kinetics, adsorption isotherms, and adsorption edge experiments. Results from kinetics and isotherm experiments showed that JB (76.3–91.6 lmol Cd...

  5. Adsorption of Anionic, Cationic and Nonionic Surfactants on Carbonate Rock in Presence of ZrO 2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, Pouriya; Bahramian, Alireza; Fakhroueian, Zahra

    The adsorption of surfactants at the solid-water interface is important for the control of wetting, lubrication, detergency and in mineral flotation.We have studied the adsorptions of different types of surfactants, cationic (Dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS) and non-anionic (lauryl alcohol-7 mole ethoxylate, LA7) on carbonate rock in presence of zirconium oxide spherical nanoparticles (17-19 nm). ZrO2 nanoparticles with tetrahedral structure have significant effect on adsorption of surfactants on the carbonate rock. We have used the measured conductivities to determine the rate of adsorption of surfactants at rock-water interfaces. The conductivity of DTAB in aqueous solutions containing calcite powder decreases more than the other surfactants in contact with ZrO2 nanoparticles. We have also investigated the adsorption of surfactants at the air-water interface. The presence of nanoparticles, as demonstrated by our experiments, enhances the surface activity and surface adsorption of the surfactants through electrostatic forces or formation of nanostructures. Dynamic light structuring data shows similar aggregation number of nanoparticles in presence of nanoparticles.

  6. High performance activated carbon for benzene/toluene adsorption from industrial wastewater.

    PubMed

    Asenjo, Natalia G; Alvarez, Patricia; Granda, Marcos; Blanco, Clara; Santamaría, Ricardo; Menéndez, Rosa

    2011-09-15

    A coal-tar-derived mesophase was chemically activated to produce a high surface area (~3200 m(2)/g) carbon with a porosity made up of both micropores and mesopores. Its adsorption capacities were found to be among the highest ever reported in literature, reaching values of 860 mg/g and 1200 mg/g for the adsorption of benzene and toluene, respectively, and 1200 mg/g for the combined adsorption of benzene and toluene from an industrial wastewater. Such high values imply that the entire pore system, including the mesopore fraction, is involved in the adsorption process. The almost complete pore filling is thought to be due to the high relative concentrations of the tested solutions, resulting from the low saturation concentration values for benzene and toluene, which were obtained by fitting the adsorption data to the BET equation in liquid phase. The kinetics of adsorption in the batch experiments which were conducted in a syringe-like adsorption chamber was observed to proceed in accordance with the pseudo-second order kinetic model. The combined presence of micropores and mesopores in the material is thought to be the key to the high kinetic performance, which was outstanding in a comparison with other porous materials reported in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Adsorption of DDT and PCB by Nanomaterials from Residual Soil.

    PubMed

    Taha, Mohd Raihan; Mobasser, Shariat

    2015-01-01

    This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-alumina used were 0.25%, 0.50%, 0.75%, 1%, 2% and 10%. The adsorption of PCBs solution onto the MWNT, nano-clay and nano-alumina was characterized by an initial rapid adsorption which eventually became constant within 22, 20, and 17 hours, respectively. The adsorption of DDT solution onto the MWNT, nano-clay and nano-alumina was also characterized by an initial rapid adsorption which gradually became constant within 22, 22 and 16 hours, respectively. Results of this study indicated that MWNT was a better adsorbent material compared to nano-clay and nano-alumina for both contaminants in this study. While at 10% of MWNT 88.9% and 77% of DDT and PCB were removed by MWNT, respectively. The effect of pH and temperature were also investigated.

  8. Adsorption of DDT and PCB by Nanomaterials from Residual Soil

    PubMed Central

    Taha, Mohd Raihan; Mobasser, Shariat

    2015-01-01

    This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-alumina used were 0.25%, 0.50%, 0.75%, 1%, 2% and 10%. The adsorption of PCBs solution onto the MWNT, nano-clay and nano-alumina was characterized by an initial rapid adsorption which eventually became constant within 22, 20, and 17 hours, respectively. The adsorption of DDT solution onto the MWNT, nano-clay and nano-alumina was also characterized by an initial rapid adsorption which gradually became constant within 22, 22 and 16 hours, respectively. Results of this study indicated that MWNT was a better adsorbent material compared to nano-clay and nano-alumina for both contaminants in this study. While at 10% of MWNT 88.9% and 77% of DDT and PCB were removed by MWNT, respectively. The effect of pH and temperature were also investigated. PMID:26659225

  9. Experiments and Modeling of Uranium Adsorption in the Presence of Other Ions in Simulated Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin; Das, Sadananda; Liao, Wei-Po

    2015-11-19

    Seawater contains uranium at an average concentration of 3.3 ppb, as well as a variety of other ions at either overwhelmingly higher or similar concentrations, which complicate the recovery of uranium. This report describes an investigation of the effects of various factors such as uranium speciation and presence of salts including sodium, calcium, magnesium, and bicarbonate, as well as trace elements such as vanadium on uranium adsorption kinetics in laboratory experiments. Adsorption models are also developed to describe the experimental data of uranium extraction from seawater. Results show that the presence of calcium and magnesium significantly slows down the uraniummore » adsorption kinetics. Vanadium can replace uranium from amidoxime-based adsorbent in the presence of sodium in the solution. Results also show that bicarbonate in the solution strongly competes with amidoxime for binding uranium, and thus slows down the uranium adsorption kinetics. Developed on the basis of the experimental findings, the model is capable of describing the effects of pH, ionic strength, temperature, and concentration of various species. The results of this work are useful in the understanding of the important factors that control the adsorbent capacity and kinetics of uranium uptake by amidoxime-based adsorbents.« less

  10. Enrichment process of biogas using simultaneous Absorption - Adsorption methods

    NASA Astrophysics Data System (ADS)

    Kusrini, Eny; Lukita, Maya; Gozan, Misri; Susanto, Bambang Heru; Nasution, Dedy Alharis; Rahman, Arif; Gunawan, Cindy

    2017-03-01

    Removal of CO2 in biogas is an essential methods to the purification and upgrading of biogas. Natural Clinoptilolite zeolites were evaluated as sorbents for purification of biogas that produced from palm oil mill effluent (POME) by anerobic-digestion method. The absorption and adsorption experiments were conducted in a fixed-bed two column adsorption unit by simultaneous absorption-adsorption method. The Ca(OH)2 solution with concentration of 0.062 M was used as absorption method. Sorbent for removal of CO2 in biogas have been prepared by modifying of Clinoptilolite zeolites with an acid (HCl, 2M) and alkaline (NaOH, 2M), calcined at 450°C and then coated using chitosan (0.5 w/v%) in order to increase their adsorption capacity. The removal of CO2 in biogas was achieved about ˜83% using 2.5 g of sorbent zeolite (2M)/chitosan dosage for each column, breakthrough time of 30 min, and flow rate of 100 mL/min. Clinoptilolite zeolites with modifications of an acid-alkaline and chitosan (zeolite (2M)/chitosan) are promising sorbents due to the amine groups from chitosan and high surface-volume ratio are one of important factors in a simultaneous absorption-adsorption method.

  11. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies.

    PubMed

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2016-02-01

    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Breakthrough Adsorption Study of Crude Oil Removal Using Buffing Dust

    NASA Astrophysics Data System (ADS)

    Setyaningsih, L. W. N.; Yuliansyah, A. T.; Prasetyo, A.; Arimanintan, S. K.; Putri, D. R.

    2018-05-01

    The utilization of leather industry solid waste as adsorbent to separate oil from water emulsions of surfactant flooding process is a solution that is relatively inexpensive. This study was conducted aiming to obtain a mathematical model that is appropriate for the adsorption process of crude oil by buffing dust in emulsion phase with a continuous adsorption method. Variations in the column adsorption experiments were carried out, such as: flow rate of feed of water-crude oil-surfactant, the concentration of crude oil in the feed, and mass of adsorbent used. Data were evaluated using three models: Adams Bohart, Thomas and Yan. Best results are obtained on the following conditions, the feed flow rate of 60 mL/minute, the crude oil concentration in feed is 1.5% volume and the mass of adsorbent used was 10 g. The values of kinetic constant and adsorption capacity obtained from Yan Model was 21.7774 mL/mg/minute and 220.9581 mg/g with the relative error obtained is 5.4424%.

  13. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    NASA Astrophysics Data System (ADS)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  14. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Sequential pH-dependent adsorption of ionic amphiphilic diblock copolymer micelles and choline oxidase onto conductive substrates: toward the design of biosensors.

    PubMed

    Sigolaeva, Larisa V; Günther, Ulrike; Pergushov, Dmitry V; Gladyr, Snezhana Yu; Kurochkin, Ilya N; Schacher, Felix H

    2014-07-01

    This work examines the fabrication regime and the properties of polymer-enzyme thin-films adsorbed onto conductive substrates (graphite or gold). The films are formed via two-steps, sequential adsorption of poly(n-butylmethacrylate)-block-poly(N,N-dimethylaminoethyl methacrylate) (PnBMA-b-PDMAEMA) diblock copolymer micelles (1st step of adsorption), followed by the enzyme choline oxidase (ChO) (2nd step of adsorption). The solution properties of both adsorbed components are studied and the pH-dependent step-by-step fabrication of polymer-enzyme biosensor coatings reveals rather drastic differences in their enzymatic activities in dependence on the pH of both adsorption steps. The resulting hybrid thin-films represent highly active biosensors for choline with a low detection limit of 30 nM and a good linearity in a range between 30 nM and 100 μM. The sensitivity is found to be 175 μA mM(-1) cm(-2) and the operational stability of the polymer-enzyme thin-films can be additionally improved via enzyme-to-enzyme crosslinking with glutaraldehyde. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Binary gaseous mixture and single component adsorption of methane and argon on exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Russell, Brice Adam

    Exfoliated graphite was used as a substrate for adsorption of argon and methane. Adsorption experiments were conducted for both equal parts mixtures of argon and methane and for each gas species independently. The purpose of this was to compare mixture adsorption to single component adsorption and to investigate theoretical predictions concerning the kinetics of adsorption made by Burde and Calbi.6 In particular, time to reach pressure equilibrium of a single dose at a constant temperature for the equal parts mixture was compared to time of adsorption for each species by itself. It was shown that mixture adsorption is a much more complex and time consuming process than single component adsorption and requires a much longer amount of time to reach equilibrium. Information about the composition evolution of the mixture during the times when pressure was going toward equilibrium was obtained using a quadrupole mass spectrometer. Evidence for initial higher rate of adsorption for the weaker binding energy species (argon) was found as well as overall composition change which clearly indicated a higher coverage of methane on the graphite sample by the time equilibration was reached. Effective specific surface area of graphite for both argon and methane was also determined using the Point-B method.2

  17. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments.

    PubMed

    Kenney, Janice P L; Fein, Jeremy B

    2011-05-15

    In this study, we used potentiometric titrations and Cd adsorption experiments to determine the binding capacities of two acidophilic (A. cryptum and A. acidophilum) and two alkaliphilic (B. pseudofirmus and B. circulans) bacterial species in order to determine if any consistent trends could be observed relating bacterial growth environment to proton and Cd binding properties and to compare those binding behaviors to those of neutrophilic bacteria. All of the bacterial species studied exhibited significant proton buffering over the pH range in this study, with the alkaliphiles exhibiting significantly higher acidity constants than the acidophiles as well as the neutrophilic bacterial consortia. The calculated average site concentrations for each of the bacteria in this study are within 2σ experimental error of each other, with the exception of A. cryptum, which has a significantly higher Site 2 concentration than the other species. Despite differing acidity constants between the acidophiles and alkaliphiles, all bacteria except A. cryptum exhibited remarkably similar Cd adsorption behavior to each other, and the observed extent of adsorption was also similar to that predicted from a generalized model derived using neutrophilic bacterial consortia. This study demonstrates that bacteria that grow under extreme conditions exhibit similar proton and metal adsorption behavior to that of previously studied neutrophilic species and that a single set of proton and metal binding constants can be used to model the behavior of bacterial adsorption under a wide range of environmental conditions.

  18. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole.

    PubMed

    Chang, E-E; Wan, Jan-Chi; Kim, Hyunook; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K(ow). The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K(ow) was replaced by the one with larger K(ow). Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores.

  19. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole

    PubMed Central

    Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K ow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K ow was replaced by the one with larger K ow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989

  20. Electrical conductivity of a monolayer produced by random sequential adsorption of linear k -mers onto a square lattice

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yuri Yu.; Goltseva, Valeria A.; Laptev, Valeri V.; Lebovka, Nikolai I.

    2016-10-01

    The electrical conductivity of a monolayer produced by the random sequential adsorption (RSA) of linear k -mers (particles occupying k adjacent adsorption sites) onto a square lattice was studied by means of computer simulation. Overlapping with predeposited k -mers and detachment from the surface were forbidden. The RSA process continued until the saturation jamming limit, pj. The isotropic (equiprobable orientations of k -mers along x and y axes) and anisotropic (all k -mers aligned along the y axis) depositions for two different models—of an insulating substrate and conducting k -mers (C model) and of a conducting substrate and insulating k -mers (I model)—were examined. The Frank-Lobb algorithm was applied to calculate the electrical conductivity in both the x and y directions for different lengths (k =1 - 128) and concentrations (p =0 - pj) of the k -mers. The "intrinsic electrical conductivity" and concentration dependence of the relative electrical conductivity Σ (p ) (Σ =σ /σm for the C model and Σ =σm/σ for the I model, where σm is the electrical conductivity of substrate) in different directions were analyzed. At large values of k the Σ (p ) curves became very similar and they almost coincided at k =128 . Moreover, for both models the greater the length of the k -mers the smoother the functions Σx y(p ) ,Σx(p ) and Σy(p ) . For the more practically important C model, the other interesting findings are (i) for large values of k (k =64 ,128 ), the values of Σx y and Σy increase rapidly with the initial increase of p from 0 to 0.1; (ii) for k ≥16 , all the Σx y(p ) and Σx(p ) curves intersect with each other at the same isoconductivity points; (iii) for anisotropic deposition, the percolation concentrations are the same in the x and y directions, whereas, at the percolation point the greater the length of the k -mers the larger the anisotropy of the electrical conductivity, i.e., the ratio σy/σx (>1 ).

  1. Physico-chemical processes for landfill leachate treatment: Experiments and mathematical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, W.; Ngo, H.H.; Kim, S.H.

    2008-07-01

    In this study, the adsorption of synthetic landfill leachate onto four kinds of activated carbon has been investigated. From the equilibrium and kinetics experiments, it was observed that coal based PAC presented the highest organic pollutants removal efficiency (54%), followed by coal based GAC (50%), wood based GAC (33%) and wood based PAC (14%). The adsorption equilibrium of PAC and GAC was successfully predicted by Henry-Freundlich adsorption model whilst LDFA + Dual isotherm Kinetics model could describe well the batch adsorption kinetics. The flocculation and flocculation-adsorption experiments were also conducted. The results indicated that flocculation did not perform well onmore » organics removal because of the dominance of low molecular weight organic compounds in synthetic landfill leachate. Consequently, flocculation as pretreatment to adsorption and a combination of flocculation-adsorption could not improve much the organic removal efficiency for the single adsorption process.« less

  2. Cassidy conducts BASS Experiment Test Operations

    NASA Image and Video Library

    2013-04-05

    ISS035-E-015081 (5 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, Cassidy conducted a run of the experiment, which examined the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  3. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  4. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals.

    PubMed

    Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang

    2016-07-01

    Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process. Copyright © 2016. Published by Elsevier B.V.

  5. Mechanism of tyramine adsorption on Ca-montmorillonite.

    PubMed

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui

    2018-06-10

    Tyramine (TY) adsorption on a Ca-montmorillonite (SAz-2) was investigated with batch experiments and complementary analyses utilizing ultra-high performance liquid chromatography, ion chromatography, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetry (TG). The adsorption reached equilibrium in 8 h, complying with the pseudo-second-order rate equation, and came to an adsorption capacity of 682 mmol kg -1 at pH 6-8.1, utilizing the Langmuir isotherm model. The adsorption of TY and desorption of exchangeable cations exhibited a linear relationship with a slope of 0.9, implying that the adsorption was largely influenced by a cation exchange mechanism. The effective adsorption was further verified by the characteristic TY bands in the FTIR spectra and the signals of mass loss due to TY decomposition in the TG measurements of the clay after adsorption experiments. Intercalation of hydrated TY into the clay interlayer was confirmed by XRD and TG analyses of the heated samples loaded with TY. The adsorption reached only 0.57 cation exchange capacity of the clay which was probably limited by the low charge density of TY as compared to the negative charge density of the clay surface and by the steric effects arising from the hydration of TY that increased its molecular size. Adsorption of TY on montmorillonite can make TY more resistant to thermal decomposition and possibly better preserved in aquatic and soil environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  7. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules

    NASA Astrophysics Data System (ADS)

    Fan, Yaming; Zhuo, Yuqun; Li, Liangliang

    2017-10-01

    SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.

  8. NO adsorption on ice at low concentrations

    Treesearch

    Richard A. Sommerfeld; Martha H. Conklin; S. Kay Laird

    1992-01-01

    To better understand the properties of ice surfaces at different temperatures, the adsorption of a relatively insoluble gas, NO, was studied using a continuous-flow column experiment. Adsorption isotherms for NO on the surface of ice were measured for a temperature range of-1 to -70°C and a concentration range of 10 to 250 ppbv. Very little adsorption was measured;...

  9. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-06-15

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  10. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.

    PubMed

    Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo

    2017-06-01

    Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1  at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1  K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE PAGES

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin; ...

    2015-08-07

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  12. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  13. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  14. Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: Implications for oxidation and competition.

    PubMed

    Qi, Pengfei; Pichler, Thomas

    2016-02-01

    Antimony (Sb) is a naturally occurring element of growing environmental concern whose toxicity, adsorption behavior and other chemical properties are similar to that of arsenic (As). However, less is known about Sb compared to As. Individual and simultaneous adsorption experiments with Sb(III) and Sb(V) were conducted in batch mode with focus on the Sb speciation of the remaining liquid phase during individual Sb(III) adsorption experiments. The simultaneous adsorption and oxidation of Sb(III) was confirmed by the appearance of Sb(V) in the solution at varying Fe/Sb ratios (500, 100 and 8) and varying pH values (3.8, 7 and 9). This newly formed Sb(V) was subsequently removed from solution at a Fe/Sb ratio of 500 or at a pH of 3.8. However, more or less only Sb(V) was observed in the liquid phase at the end of the experiments at lower Fe/Sb ratios and higher pH, indicating that competition took place between the newly formed Sb(V) and Sb(III), and that Sb(III) outcompeted Sb(V). This was independently confirmed by simultaneous adsorption experiments of Sb(III) and Sb(V) in binary systems. Under such conditions, the presence of Sb(V) had no influence on the adsorption of Sb(III) while Sb(V) adsorption was significantly inhibited by Sb(III) over a wide pH range (4-10). Thus, in the presence of ferrihydrite and under redox conditions, which allow the presence of both Sb species, Sb(V) should be the dominant species in aquatic environments, since Sb(III) is adsorbed preferentially and at the same time oxidized to Sb(V). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted.more » Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42

  16. Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil.

    PubMed

    Jiang, Yu Feng; Sun, Hang; Yves, Uwamungu J; Li, Hong; Hu, Xue Fei

    2016-02-01

    The primary objective of this study was to investigate the effect of biochar, produced from wheat residue at different temperatures, on the adsorption of diesel oil by loess soil. Kinetic and equilibrium data were processed to understand the adsorption mechanism of diesel by biochar-affected loess soil; dynamic and thermodynamic adsorption experiments were conducted to characterize this adsorption. The surface features and chemical structure of biochar, modified at varying pyrolytic temperatures, were investigated using surface scanning electron microscopy and Fourier transform infrared analysis. The kinetic data showed that the adsorption of diesel oil onto loess soil could be described by a pseudo-second-order kinetic model, with the rate-controlling step being intraparticle diffusion. However, in the presence of biochar, boundary layer control and intraparticle diffusion were both involved in the adsorption. Besides, the adsorption equilibrium data were well described by the Freundlich isothermal model. The saturated adsorption capacity weakened as temperature increased, suggesting a spontaneous exothermic process. Thermodynamic parameter analysis showed that adsorption was mainly a physical process and was enhanced by chemical adsorption. The adsorption capacity of loess soil for diesel oil was weakened with increasing pH. The biochar produced by pyrolytic wheat residue increased the adsorption behavior of petroleum pollutants in loess soil.

  17. DEVELOPMENT OF THE CHARCOAL ADSORPTION TECHNIQUE FOR DETERMINATION OF RADON CONTENT IN NATURAL GAS.

    PubMed

    Paewpanchon, P; Chanyotha, S

    2017-11-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge.

    PubMed

    Chen, Tan; Zhou, Zeyu; Xu, Sai; Wang, Hongtao; Lu, Wenjing

    2015-08-01

    In this work, static equilibrium experiments were conducted to distinguish the adsorption performance between the two valence states of chromium on biochar derived from municipal sludge. The removal capacity of Cr(VI) is lower than 7mg/g at the initial chromium concentration range of 50-200mg/L, whereas that of Cr(III) higher than 20mg/g. It indicates that Cr(III) is much easier to be stabilized than Cr(VI). No significant changes in the biochar surface functional groups are observed before and after the adsorption equilibrium, demonstrating the poor contribution of organic matter in chromium adsorption. The main mechanism of heavy metal adsorption by biochar involves (1) surface precipitation through pH increase caused by biochar buffer ability, and (2) exchange between cations in solution (Cd(2+)) and in biochar matrix (e.g. Ca(2+) and Mg(2+)). The reduction of Cr(VI) to Cr(III) is necessary to improve removal efficiency of chromium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Impact of Nanoparticles and Natural Organic Matter on the Removal of Organic Pollutants by Activated Carbon Adsorption

    EPA Science Inventory

    Isotherm experiments evaluating trichloroethylene (TCE) adsorption onto powdered activated carbon (PAC) were conducted in the presence and absence of three commercially available nanomaterials— iron oxide (Fe2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2). Isotherm exp...

  20. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    PubMed

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  1. Studies on adsorption of phenol from wastewater by agricultural waste.

    PubMed

    Girish, C R; Ramachandramurty, V

    2013-07-01

    In this paper, preliminary investigation of various agricultural wastes-Rice mill residue (RM), Wheat mill reside (WM), Dall mill residue (DM) and the Banana peels (BM) was carried out to study their ability to be used as adsorbents for phenol-removal from wastewater. This study reports the feasibility of employing dal mill residue waste (DM) as an adsorbent for removing phenol from wastewater. The performance of DM was compared with the commercially available activated carbon (CAC). Batch mode experiments were conducted with activated DM to study the effects of initial concentration of phenol, pH and the temperature of aqueous solution on adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models and the isotherm data fitted well to the Freundlich isotherm with monolayer adsorption capacity of 6.189 mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first order and pseudo-second- order equation. The experimental data fitted very well with the pseudo-first-order kinetic model. The FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of phenol. Finally, the DM was found to be a promising adsorbent for phenol adsorption as compared to activated carbon.

  2. Adsorption and desorption characteristics of methamphetamine, 3,4-methylenedioxymethamphetamine, and pseudoephedrine in soils.

    PubMed

    Pal, Raktim; Megharaj, Mallavarapu; Kirkbride, K Paul; Naidu, Ravi

    2015-06-01

    This work presents, for the first time, information on the adsorption-desorption characteristics of illicit drugs and precursors in soils and an estimation of their potential bioavailability. The experiment was conducted using a batch equilibrium technique for the parent drugs methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) and the precursor pseudoephedrine in three South Australian soils varying in physiochemical properties. The individual compounds exhibited different adsorption mechanisms in the test soils, and the results fitted better with the Freundlich isotherm model (r (2) ≥ 0.99). The maximum adsorption capacity was recorded for pseudoephedrine (2,000 μg g(-1)). However, pseudoephedrine recorded lower organic carbon normalized adsorption coefficient values (<250 mL g(-1)), lower magnitudes of Gibb's free energy change, and higher percent desorption (73-92 %) compared to methamphetamine and MDMA. The results thus showed pseudoephedrine to be the most mobile compound in the soils under study, to have the highest availability for degradation of the three compounds, and to have the highest susceptibility to biotic degradation in test soils.

  3. New theoretical framework for designing nonionic surfactant mixtures that exhibit a desired adsorption kinetics behavior.

    PubMed

    Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel

    2010-12-21

    How does one design a surfactant mixture using a set of available surfactants such that it exhibits a desired adsorption kinetics behavior? The traditional approach used to address this design problem involves conducting trial-and-error experiments with specific surfactant mixtures. This approach is typically time-consuming and resource-intensive and becomes increasingly challenging when the number of surfactants that can be mixed increases. In this article, we propose a new theoretical framework to identify a surfactant mixture that most closely meets a desired adsorption kinetics behavior. Specifically, the new theoretical framework involves (a) formulating the surfactant mixture design problem as an optimization problem using an adsorption kinetics model and (b) solving the optimization problem using a commercial optimization package. The proposed framework aims to identify the surfactant mixture that most closely satisfies the desired adsorption kinetics behavior subject to the predictive capabilities of the chosen adsorption kinetics model. Experiments can then be conducted at the identified surfactant mixture condition to validate the predictions. We demonstrate the reliability and effectiveness of the proposed theoretical framework through a realistic case study by identifying a nonionic surfactant mixture consisting of up to four alkyl poly(ethylene oxide) surfactants (C(10)E(4), C(12)E(5), C(12)E(6), and C(10)E(8)) such that it most closely exhibits a desired dynamic surface tension (DST) profile. Specifically, we use the Mulqueen-Stebe-Blankschtein (MSB) adsorption kinetics model (Mulqueen, M.; Stebe, K. J.; Blankschtein, D. Langmuir 2001, 17, 5196-5207) to formulate the optimization problem as well as the SNOPT commercial optimization solver to identify a surfactant mixture consisting of these four surfactants that most closely exhibits the desired DST profile. Finally, we compare the experimental DST profile measured at the surfactant mixture condition

  4. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  5. Adsorption and attenuation behavior of 3-nitro-1,2,4-triazol-5-one (NTO) in eleven soils.

    PubMed

    Mark, Noah; Arthur, Jennifer; Dontsova, Katerina; Brusseau, Mark; Taylor, Susan

    2016-02-01

    NTO (3-nitro-1,2,4-triazol-5-one) is one of the new explosive compounds used in insensitive munitions (IM) developed to replace traditional explosives, TNT and RDX. Data on NTO fate and transport is needed to determine its environmental behavior and potential for groundwater contamination. We conducted a series of kinetic and equilibrium batch experiments to characterize the fate of NTO in soils and the effect of soil geochemical properties on NTO-soil interactions. A set of experiments was also conducted using sterilized soils to evaluate the contribution of biodegradation to NTO attenuation. Measured pH values for NTO solutions decreased from 5.98 ± 0.13 to 3.50 ± 0.06 with increase in NTO concentration from 0.78 to 100 mg L(-1). Conversely, the pH of soil suspensions was not significantly affected by NTO in this concentration range. NTO experienced minimal adsorption, with measured adsorption coefficients being less than 1 cm(3) g(-1) for all studied soils. There was a highly significant inverse relationship between the measured NTO adsorption coefficients and soil pH (P = 0.00011), indicating the role of NTO and soil charge in adsorption processes. In kinetic experiments, 1st order transformation rate constant estimates ranged between 0.0004 h(-1) and 0.0142 h(-1) (equivalent to half-lives of 72 and 2 d, respectively), and correlated positively with organic carbon in the soil. Total attenuation of NTO was higher in untreated versus sterilized samples, suggesting that NTO was being biodegraded. The information presented herein can be used to help evaluate NTO potential for natural attenuation in soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  7. Kinetic Study of Adsorption Processes in Solution: An Undergraduate Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Casado, Julio; And Others

    1985-01-01

    Background information, apparatus needed, procedures used, and results obtained are provided for a simple kinetic method for the monitoring of adsorption processes. The method, which involved adsorption of crystal violet onto activated carbon, is suitable for classroom and/or research purposes. (JN)

  8. Adsorption of Nickel (II) from Aqueous Solution by Bicarbonate Modified Coconut Oilcake Residue Carbon.

    PubMed

    Vijayakumari, N; Srinivasan, K

    2014-07-01

    The adsorption of Ni (II) on modified coconut oilcake residue carbon (bicarbonate treated coconut oilcake residue carbon-BCORC) was employed for the removal of Ni (II) from water and wastewater. The influence of various factors such as agitation time, pH and carbon dosage on the adsorption capacity has been studied. Adsorption isothermal data could be interpreted by Langmuir and Freundlich equations. In order to understand the reaction mechanism, kinetic data has been studied using reversible first order rate equation. Similar studies were carried out using commercially available activated carbon--CAC, for comparison purposes. Column studies were conducted to obtain breakthrough capacities of BCORC and CAC. Common anions and cations affecting the removal of Ni (II) on both the carbons were also studied. Experiments were also done with wastewater containing Ni (II), to assess the potential of these carbons.

  9. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    USDA-ARS?s Scientific Manuscript database

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  10. Arsenate adsorption mechanisms at the allophane - Water interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2005-01-01

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.

  11. [Characteristics of Adsorption Leaching and Influencing Factors of Dimethyl Phthalate in Purple Soil].

    PubMed

    Wang, Qiang; Song, Jiao-yan; Zeng, Wei; Wang, Fa

    2016-02-15

    The typical soil-purple soil in Three Gorges Reservoir was the tested soil, the characteristics of adsorption leaching of dimethyl phthalate (DMP) in contaminated water by the soil, and the influencing factors in the process were conducted using soil column leaching experiment. The results showed that the parabolic equation was the best equation describing adsorption kinetics of DMP by soils. The concentration of DMP in the leaching solution had significant effect on the adsorption amounts of DMP. With the increasing concentration of DMP in the leaching solution, the adsorption capacities of DMP by purple soil increased linearly. The ionic strength and pH in leaching solution had significant effects on adsorption of DMP. On the whole, increasing of the ionic strength restrained the adsorption. The adsorption amounts at pH 5.0-7.0 were more than those under other pH condition. The addition of exogenous organic matter (OM) in purple soil increased the adsorption amount of DMP by purple soil. However, the adsorption amount was less than those with other addition amounts of exogenous OM when the addition of exogenous OM was too high (> or = 30 g x kg(-1)). The addition of surfactant sodium dodecylbenzene sulfonic acid (SDBS) in purple soil increased the adsorption amount of DMP by purple soil. The adsorption amount was maximal when the addition amount of SDBS was 50 mg x kg(-1). However, the adsorption amounts decreased with increasing addition amounts of SDBS although the adsorption amounts were still more than that of the control group, and the adsorption amount was almost equal to that of the control group when the addition amount of SDBS was 800 mg x kg(-1). Continuous leaching time affected the vertical distribution of DMP in the soil column. When the leaching time was shorter, the upper soil column adsorbed more DMP, while the DMP concentrations in upper and lower soil columns became similar with the extension of leaching time.

  12. Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene.

    PubMed

    Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik; Hjortø, Gertrud Malene

    2012-04-01

    In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre-adsorption of bovine serum albumin (BSA) does not decrease the adsorption of HIS-tagged proteins onto TCPS. Our findings identify a potential problem in using HIS-tagged signalling molecule in assays with cells cultured on TCPS, since the concentration of the molecule in solution might be affected and this could critically influence the assay outcome. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Adsorption and transformation of ammonium ion in a loose-pore geothermal reservoir: Batch and column experiments.

    PubMed

    Zhao, Li; Li, Yanli; Wang, Shidong; Wang, Xinyi; Meng, Hongqi; Luo, Shaohe

    2016-09-01

    Adsorption kinetics and transformation process of ammonium ion (NH4(+)) were investigated to advance the understanding of N cycle in a low-temperature loose-pore geothermal reservoir. Firstly, batch experiments were performed in order to determine the sorption capacity and the kinetic mechanism of NH4(+) onto a loose-pore geothermal reservoir matrix. Then column experiments were carried out at temperatures from 20°C to 60°C in order to determine the transport parameters and transformation mechanism of NH4(+) in the studied matrix. The results showed that the adsorption process of NH4(+) onto the porous media well followed the pseudo-second-order model. No obvious variation of hydrodynamic dispersion coefficient (D) and retardation factor (R) was observed at different transport distances at a Darcy's flux of 2.27cm/h, at which nitrification could be neglected. The simulated D obtained by the CDE model in CXTFIT2.1 increased with temperature while R decreased with temperature, indicating that the adsorption capacity of NH4(+) onto the matrix decreased with the increasing of temperature. When the Darcy's flux was decreased to 0.014cm/h, only a little part of NH4(+) could be transformed to nitrate, suggesting that low density of nitrifiers existed in the simulated loose-pore geothermal reservoir. Although nitrification rate increased with temperature in the range of 20°C to 60°C, it was extremely low and no accumulation of nitrite was observed under the simulated low-temperature geothermal conditions without addition of biomass and oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Aminopyridine modified Spirulina platensis biomass for chromium(VI) adsorption in aqueous solution.

    PubMed

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    Chemical modification of Spirulina platensis biomass was realized by sequential treatment of algal surface with epichlorohydrin and aminopyridine. Adsorptive properties of Cr(VI) ions on native and aminopyridine modified algal biomass were investigated by varying pH, contact time, ionic strength, initial Cr(VI) concentration, and temperature. FTIR and analytical analysis indicated that carboxyl and amino groups were the major functional groups for Cr(VI) ions adsorption. The optimum adsorption was observed at pH 3.0 for native and modified algal biomasses. The adsorption capacity was found to be 79.6 and 158.7 mg g(-1), for native and modified algal biomasses, respectively. For continuous system studies, the experiments were conducted to study the effect of important design parameters such as flow rate and initial concentration of metal ions, and the maximum sorption capacity was observed at a flow rate of 50 mL h(-1), and Cr(VI) ions concentration 200 mg L(-1) with modified biomass. Experimental data fitted a pseudo-second-order equation. The regeneration performance was observed to be 89.6% and 94.3% for native and modified algal biomass, respectively.

  15. Phosphate removal from aqueous solution using iron oxides: Adsorption, desorption and regeneration characteristics.

    PubMed

    Ajmal, Zeeshan; Muhmood, Atif; Usman, Muhammad; Kizito, Simon; Lu, Jiaxin; Dong, Renjie; Wu, Shubiao

    2018-05-24

    Dynamics of phosphate (PO 4 3- ) adsorption, desorption and regeneration characteristics of three lab-synthesized iron oxides, ferrihydrite (F), goethite (G), and magnetite (M) were evaluated in this study. Batch experiments were conducted to evaluate the impact of several adsorption parameters including adsorbent dosage, reaction time, temperature, pH, and ionic strength. The results showed that PO 4 3- adsorption increased with reaction time and temperature while it decreased with an increase in solution pH. Adsorption isotherm data exhibited good agreement with the Freundlich and Langmuir model with maximum monolayer adsorption capacities of 66.6 mg·g -1 (F), 57.8 mg·g -1 (M), and 50.5 mg·g -1 (G). A thermodynamics evaluation produced ΔG < 0, ΔH > 0, and ΔS > 0, demonstrating that PO 4 3- adsorption onto tested minerals is endothermic, spontaneous, and disordered. The PO 4 3- removal mostly occurred via electrostatic attraction between the sorbate and sorbent surfaces. Moreover, the PO 4 3- sorption was reversible and could be desorbed at varying rates in both neutral and alkaline environments. The good desorption capacity has practical benefits for potential regeneration and re-use of the saturated particles in wastewater treatment systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Assessment of kinetic models on Fe adsorption in groundwater using high-quality limestone

    NASA Astrophysics Data System (ADS)

    Akbar, N. A.; Kamil, N. A. F. Mohd; Zin, N. S. Md; Adlan, M. N.; Aziz, H. A.

    2018-04-01

    During the groundwater pumping process, dissolved Fe2+ is oxidized into Fe3+ and produce rust-coloured iron mineral. Adsorption kinetic models are used to evaluate the performance of limestone adsorbent and describe the mechanism of adsorption and the diffusion processes of Fe adsorption in groundwater. This work presents the best kinetic model of Fe adsorption, which was chosen based on a higher value of coefficient correlation, R2. A batch adsorption experiment was conducted for various contact times ranging from 0 to 135 minutes. From the results of the batch study, three kinetic models were analyzed for Fe removal onto limestone sorbent, including the pseudo-first order (PFO), pseudo-second order (PSO) and intra-particle diffusion (IPD) models. Results show that the adsorption kinetic models follow the sequence: PSO > PFO > IPD, where the values of R2 are 0.997 > 0.919 > 0.918. A high value of R2 (0.997) reveals better fitted experimental data. Furthermore, the value of qe cal in the PSO kinetic model is very near to qe exp rather than that in other models. This finding therefore suggests that the PSO kinetic model has the good fitted with the experimental data which involved chemisorption process of divalent Fe removal in groundwater solution. Thus, limestone adsorbent media found to be an alternative and effective treatment of Fe removal from groundwater.

  17. Exploring the Stability of Gold Nanoparticles by Experimenting with Adsorption Interactions of Nanomaterials in an Undergraduate Lab

    ERIC Educational Resources Information Center

    Lee, Chi-Feng; You, Pei-Yun; Lin, Ying-Chiao; Hsu, Tsai-Ling; Cheng, Pi-Yun; Wu, Yu-Xuan; Tseng, Chi-Shun; Chen, Sheng-Wen; Chang, Huey-Por; Lin, Yang-Wei

    2015-01-01

    The proposed experiment can help students to understand the factors involved in the stability of gold nanoparticles (Au NPs) by exploring the adsorption interaction between Au NPs and various substances. The students in this study found that the surface plasmon resonance band of Au NP solutions underwent a red shift (i.e., from 520 to 650 nm)…

  18. Determination of adsorption parameters in numerical simulation for polymer flooding

    NASA Astrophysics Data System (ADS)

    Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu

    2018-02-01

    A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.

  19. Study on adsorption properties of synthetic materials on marine emulsified oil

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Peng, Shitao; Wang, Xiaoli; Zhou, Ran; Luo, Lei

    2018-02-01

    As an effective measure for marine oil spill recovery, adsorption treatment can be adopted in areas where mechanical recovery is not applicable. This experiment is mainly aimed at studying the adsorption properties of synthetic materials on emulsified oil. The emulsified oil was prepared by simulating the emulsification process of marine oil spill via a wave-current flume, and the adsorption weights of synthetic materials on emulsified oil were obtained by performing a field adsorption experiment. Polypropylene, nano-polypropylene and hydrophobic melamine sponge were tested by adsorbing a variety of emulsified oils according to the Adsorption Property Test Method (Version F-726) defined by ASTM. Their adsorption weights on emulsified oil (with initial thickness of 5 mm and water content of 20.86%) are 5.42 g/g, 23.5 g/g and 82.15g/g, respectively, which, compared with that on gear oil in the initial state, are respective decreases of 46.39%, 19.88% and 11.84%, demonstrating obvious decreases in their adsorption performances.

  20. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    ERIC Educational Resources Information Center

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  1. Transport of chromium and selenium in a pristine sand and gravel aquifer: Role of adsorption processes

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.

    1995-01-01

    Field transport experiments were conducted in an oxic sand and gravel aquifer using Br (bromide ion), Cr (chromium, injected as Cr(VI)), Se (selenium, injected as Se(VI)), and other tracers. The aquifer has mildly acidic pH values and low concentrations of dissolved salts. Within analytical errors, all mobile Cr was present as Cr(VI). All mobile Se was probably present as Se(VI). Adsorption of Cr and Se onto aquifer sediments caused retardation of both tracers. Breakthrough curves for Cr and Se had extensive tails, which caused large decreases in their maximum concentrations relative to the nonreactive Br tracer after only 2.0 m of transport. A surface complexation model was applied to the results of laboratory studies of Cr(VI) adsorption on aquifer solids from the site based on adsorption onto hydrous ferric oxide. The modeling results suggested that the dominant adsorbents in the aquifer solids have lower affinities for anion adsorption than pure hydrous ferric oxide. The steep rising limbs and extensive tails observed in most of the breakthrough curves are qualitatively consistent with the equilibrium surface complexation model; however, slow rates of adsorption and desorption may have contributed to these features. Variations during transport in the concentrations of Cr, Se, and other anions competing for adsorption sites likely gave rise to variations in the extent of adsorption. Adequate description of the observed retardation of Cr and Se would require a coupled transport-adsorption model that can account for these effects. Companion experiments in the mildly reducing zone of the aquifer (Kent et al., 1994) showed a loss of Cr mass, probably resulting from reduction to Cr(III), and little retardation of mobile Cr and Se during transport; this contrast illustrates the influence of aquifer chemistry on the transport of redox-sensitive solutes.

  2. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  3. Gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  4. Adsorption in single-walled carbon nanotubes by experiments and molecular simulation II: Effect of morphology and temperature on organic adsorption

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Mota, J.P.B.; Rood, M.J.

    2005-01-01

    Hexane adsorption on single-walled carbon nanotube (SWNT) bundles was studied. Hexane adsorption capacities of two purified SWNT samples was gravimetrically determined at isothermal conditions of 25??, 37??, and 50??C for 10-4 < p/po < 0.9, where p/po is hexane vapor pressure relative to its saturation pressure. Simulation of hexane adsorption under similar temperature and pressure conditions were performed on the external and internal sites of nanotube bundles of diameters same as those in experimental samples. The simulations could predict isotherms for a hypothetical scenario where all nanotubes in a sample would be open. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).

  5. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    NASA Astrophysics Data System (ADS)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  6. Metal adsorption onto bacterial surfaces: development of a predictive approach

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.; Martin, Aaron M.; Wightman, Peter G.

    2001-12-01

    Aqueous metal cation adsorption onto bacterial surfaces can be successfully modeled by means of a surface complexation approach. However, relatively few stability constants for metal-bacterial surface complexes have been measured. In order to determine the bacterial adsorption behavior of cations that have not been studied in the laboratory, predictive techniques are required that enable estimation of the stability constants of bacterial surface complexes. In this study, we use a linear free-energy approach to compare previously measured stability constants for Bacillus subtilis metal-carboxyl surface complexes with aqueous metal-organic acid anion stability constants. The organic acids that we consider are acetic, oxalic, citric, and tiron. We add to this limited data set by conducting metal adsorption experiments onto Bacillus subtilis, determining bacterial surface stability constants for Co, Nd, Ni, Sr, and Zn. The adsorption behavior of each of the metals studied here was described well by considering metal-carboxyl bacterial surface complexation only, except for the Zn adsorption behavior, which required carboxyl and phosphoryl complexation to obtain a suitable fit to the data. The best correlation between bacterial carboxyl surface complexes and aqueous organic acid anion stability constants was obtained by means of metal-acetate aqueous complexes, with a linear correlation coefficient of 0.97. This correlation applies only to unhydrolyzed aqueous cations and only to carboxyl binding of those cations, and it does not predict the binding behavior under conditions where metal binding to other bacterial surface site types occurs. However, the relationship derived in this study permits estimation of the carboxyl site adsorption behavior of a wide range of aqueous metal cations for which there is an absence of experimental data. This technique, coupled with the observation of similar adsorption behaviors across bacterial species (Yee and Fein, 2001), enables

  7. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics.

    PubMed

    Rodríguez, Araceli; García, Juan; Ovejero, Gabriel; Mestanza, María

    2009-12-30

    Activated carbon was utilized as adsorbent to remove anionic dye, Orange II (OII), and cationic dye, Methylene blue (MB), from aqueous solutions by adsorption. Batch experiments were conducted to study the effects of temperature (30-65 degrees C), initial concentration of adsorbate (300-500 mg L(-1)) and pH (3.0-9.0) on dyes adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The equilibrium experimental data were analyzed by the Langmuir, Freundlich, Toth and Redlich-Peterson models. The kinetic data obtained with different carbon mass were analyzed using a pseudo-first order, pseudo-second order, intraparticle diffusion, Bangham and Chien-Clayton equations. The best results were achieved with the Langmuir isotherm equilibrium model and with the pseudo-second order kinetic model. The activated carbon was found to be very effective as adsorbent for MB and OII from aqueous solutions.

  8. Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation.

    PubMed

    Rioja, N; Benguria, P; Peñas, F J; Zorita, S

    2014-10-01

    This work explores the competitive removal of pharmaceuticals from synthetic and environmental waters by combined adsorption-photolysis treatment. Five drugs usually present in waterways have been used as target compounds, some are pseudo-persistent pollutants (carbamazepine, clofibric acid, and sulfamethoxazole) and others are largely consumed (diclofenac and ibuprofen). The effect of the light source on adsorption of drugs onto activated carbons followed by photolysis with TiO2 was assessed, being UV-C light the most effective for drug removal in both deionized water and river water. Different composites prepared from titania nanoparticles and powdered activated carbons were tested in several combined adsorption-photocatalysis assays. The composites prepared by calcination at 400 °C exhibited much better performance than those synthesized at 500 °C, being the C400 composite the most effective one. Furthermore, some synthetic waters containing dissolved species and environmental waters were used to investigate the effect of the aqueous matrix on each drug removal. In general, photocatalyst deactivation was found in synthetic and environmental waters. This was particularly evident in the experiments performed with bicarbonate ions as well as with wastewater effluent. In contrast, tests conducted in seawater showed adsorption and photocatalytic degradation yields comparable to those obtained in deionized water. Considering the peculiarities of substrate competition in each aqueous matrix, the combined adsorption-photolysis treatment generally increased the overall elimination of drugs in water.

  9. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    PubMed

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  10. Effects of wind-wave disturbances on adsorption and desorption of tetracycline and sulfadimidine in water-sediment systems.

    PubMed

    Liao, Qianjiahua; Huang, Zheng; Li, Shu; Wang, Yi; Liu, Yuqing; Luo, Ran; Shang, Jingge

    2018-05-28

    Wind-wave disturbances frequently disperse sediment particles into overlying water, which facilitates the adsorption and desorption of contaminants in aquatic ecosystems. Tetracycline (TC) and sulfadimidine (SM2) are common antibiotics that are frequently found in aquatic environments. This study utilized microcosms, comprising sediment and water from Lake Taihu, China, to examine the adsorption and desorption of TC and SM2 under different wind-wave disturbances in a shallow lake environment. The adsorption experiments were conducted with three different concentrations (1, 5, 10 mg/L) of TC and SM2 in the overlying water, and two different (background and strong) wind-wave conditions for 72 h. Subsequently, four microcosms were employed in a 12-h desorption study. Analysis of adsorption progress showed that TC concentration in the overlying water decreased quickly, while SM2 remained almost constant. In the desorption experiments, SM2 released to the overlying water was an order of magnitude greater than TC. These results indicate that sediment particles strongly adsorb TC but weakly adsorb SM2. Compared to background conditions, the strong wind-wave conditions resulted in higher concentrations of TC and SM2 in sediment and facilitated their migration to deeper sediment during adsorption, correspondingly promoting greater release of TC and SM2 from sediment particles into the overlying water during desorption.

  11. A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10

    NASA Astrophysics Data System (ADS)

    Bekçi, Zehra; Seki, Yoldaş; Kadir Yurdakoç, M.

    2007-02-01

    The sorption behavior of K10, a type of montmorillonite for trimethoprim (TMP) drug, was studied by using batch technique under different pH and temperature. The interaction between K10 and TMP was investigated using SEM, and FTIR. It was observed that adsorption was increased between pH 2.5 and 6.3. By performing kinetic experiments, the pseudo-second-order kinetic model provides the best fit for TMP adsorption onto K10 montmorillonite. The sorption of TMP reached the equilibrium state after 6 h sorption time and has been described by using Langmuir, Freundlich and Dubinin-Radushkevich equations to obtain adsorption capacity values. The results indicate that the relative adsorption capacity values ( Kf) are decreasing with the increase of temperature in the range of 298-318 K. The sorption energy values obtained from DR isotherm show that sorption of TMP onto K10 can be explained by ion exchange mechanism at 298, 308 and 318 K. The thermodynamic studies were conducted to find the thermodynamic parameters Δ H°, Δ S° and Δ G°. It was determined that adsorption process is spontaneous and exothermic in nature.

  12. Study on Adsorption of Chromium (VI) by Activated Carbon from Cassava Sludge

    NASA Astrophysics Data System (ADS)

    Yang, Jinhui; Li, Chuanshu; Yang, Bin; Kang, Sijun; Zhang, Zhen

    2018-03-01

    In this paper, a new type of adsorbent prepared by waste sludge from alcohol production industry was used to adsorb Cr (VI) in activated carbon from cassava sludge. A series of static adsorption experiments were carried out on the initial concentration of solution Cr (VI), pH value of solution, adsorption time and dosage of adsorbent. The results of single factor experiments show that the removal rate of Cr (VI) increases with the initial concentration of Cr(VI), while the adsorption amount is opposite. When the pH value of the solution is low, the adsorption effect of activated carbon is better.The adsorption time should be controlled within 40-60min. When the activated carbon dosage is increased, the removal rate increases but the adsorption capacity decreases.

  13. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics.

    PubMed

    Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul

    2016-09-15

    A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies

    PubMed Central

    Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.

    2010-01-01

    Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106

  15. Adsorption of pharmaceuticals onto trimethylsilylated mesoporous SBA-15.

    PubMed

    Bui, Tung Xuan; Pham, Viet Hung; Le, Son Thanh; Choi, Heechul

    2013-06-15

    The adsorption of a complex mixture of 12 selected pharmaceuticals to trimethylsilylated mesoporous SBA-15 (TMS-SBA-15) has been investigated by batch adsorption experiments. The adsorption of pharmaceuticals to TMS-SBA-15 was highly dependent on the solution pH and pharmaceutical properties (i.e., hydrophobicity (logKow) and acidity (pKa)). Good log-log linear relationships between the adsorption (Kd) and pH-dependent octanol-water coefficients (Kow(pH)) were then established among the neutral, anionic, and cationic compounds, suggesting hydrophobic interaction as a primary driving force in the adsorption. In addition, the neutral species of each compound accounted for a major contribution to the overall compound adsorption onto TMS-SBA-15. The adsorption kinetics of pharmaceuticals was evaluated by the nonlinear first-order and pseudo-second-order models. The first-order model gave a better fit for five pharmaceuticals with lower adsorption capacity, whereas the pseudo-second-order model fitted better for seven pharmaceuticals having higher adsorption capacity. In the same group of properties, pharmaceuticals having higher adsorption capacity exhibited faster adsorption rates. The rate-limiting steps for adsorption of pharmaceuticals onto TMS-SBA-15 are boundary layer diffusion and intraparticle diffusion including diffusion in mesopores and micropores. In addition, the adsorption of pharmaceuticals to TMS-SBA-15 was not influenced by the change of initial pharmaceutical concentration (10-100μgL(-1)) and the presence of natural organic matter. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Mechanics of adsorption-deformation coupling in porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yida

    2018-05-01

    This work extends Coussy's macroscale theory for porous materials interacting with adsorptive fluid mixtures. The solid-fluid interface is treated as an independent phase that obeys its own mass, momentum and energy balance laws. As a result, a surface strain energy term appears in the free energy balance equation of the solid phase, which further introduces the so-called adsorption stress in the constitutive equations of the porous skeleton. This establishes a fundamental link between the adsorption characteristics of the solid-fluid interface and the mechanical response of the porous media. The thermodynamic framework is quite general in that it recovers the coupled conduction laws, Gibbs isotherm and the Shuttleworth's equation for surface stress, and imposes no constraints on the magnitude of deformation and the functional form of the adsorption isotherms. A rich variety of coupling between adsorption and deformation is recovered as a result of combining different poroelastic models (isotropic vs. anisotropic, linear vs. nonlinear) and adsorption models (unary vs. mixture adsorption, uncoupled vs. stretch-dependent adsorption). These predictions are discussed against the backdrop of recent experimental data on coal swelling subjected to CO2 and CO2sbnd CH4 injections, showing the capability and versatility of the theory in capturing adsorption-induced deformation of porous materials.

  17. Critical analysis of adsorption data statistically

    NASA Astrophysics Data System (ADS)

    Kaushal, Achla; Singh, S. K.

    2017-10-01

    Experimental data can be presented, computed, and critically analysed in a different way using statistics. A variety of statistical tests are used to make decisions about the significance and validity of the experimental data. In the present study, adsorption was carried out to remove zinc ions from contaminated aqueous solution using mango leaf powder. The experimental data was analysed statistically by hypothesis testing applying t test, paired t test and Chi-square test to (a) test the optimum value of the process pH, (b) verify the success of experiment and (c) study the effect of adsorbent dose in zinc ion removal from aqueous solutions. Comparison of calculated and tabulated values of t and χ 2 showed the results in favour of the data collected from the experiment and this has been shown on probability charts. K value for Langmuir isotherm was 0.8582 and m value for Freundlich adsorption isotherm obtained was 0.725, both are <1, indicating favourable isotherms. Karl Pearson's correlation coefficient values for Langmuir and Freundlich adsorption isotherms were obtained as 0.99 and 0.95 respectively, which show higher degree of correlation between the variables. This validates the data obtained for adsorption of zinc ions from the contaminated aqueous solution with the help of mango leaf powder.

  18. Adsorption energies and prefactor determination for CH3OH adsorption on graphite.

    PubMed

    Doronin, M; Bertin, M; Michaut, X; Philippe, L; Fillion, J-H

    2015-08-28

    In this paper, we have studied adsorption and thermal desorption of methanol CH3OH on graphite surface, with the specific aim to derive from experimental data quantitative parameters that govern the desorption, namely, adsorption energy Eads and prefactor ν of the Polanyi-Wigner law. In low coverage regime, these two values are interconnected and usually the experiments can be reproduced with any couple (Eads, ν), which makes intercomparison between studies difficult since the results depend on the extraction method. Here, we use a method for determining independently the average adsorption energy and a prefactor value that works over a large range of incident methanol coverage, from a limited set of desorption curves performed at different heating rates. In the low coverage regime the procedure is based on a first order kinetic law, and considers an adsorption energy distribution which is not expected to vary with the applied heating rate. In the case of CH3OH multilayers, Eads is determined as 430 meV with a prefactor of 5 × 10(14) s(-1). For CH3OH submonolayers on graphite, adsorption energy of 470 ± 30 meV and a prefactor of (8 ± 3) × 10(16) s(-1) have been found. These last values, which do not change between 0.09 ML and 1 ML initial coverage, suggest that the methanol molecules form island-like structure on the graphite even at low coverage.

  19. [Adsorption behavior of copper ion and methylene blue on citric acid- esterified wheat straw].

    PubMed

    Sun, Jin; Zhong, Ke-Ding; Feng, Min; Liu, Xing-Yan; Gong, Ren-Min

    2008-03-01

    A cationic adsorbent with carboxyl groups derived from citric acid- esterified wheat straw (EWS) was prepared by the method of solid phase preparation, and a batch experiment was conducted to study the adsorption behaviors of Cu (II) and methylene blue (MB) in aqueous solution on the EWS under conditions of different initial pH, adsorbent dosage, adsorbate concentration, and contact time. The results showed that the maximum adsorption of Cu (II) and MB was obtained when the initial solution pH was > or = 4.0. 96% of Cu (II) in 100 mg x L(-1) Cu solution and 99% of MB in 250 mg x L(-1) dye solution could be removed by > or = 2.0 g x L(-1) of EWS. The adsorption of Cu (II) and MB fitted the Langmuir sorption isothermal model. The maximum removal capacity (Qm) of EWS was 79.37 mg x g(-1) for Cu (II) and 312.50 mg x g(-1) for MB, and the adsorption equilibrium of Cu (II) and MB was reached within 75 min and 5 h, respectively. The adsorption processes of Cu (II) and MB could be described by pseudo-first order and pseudo-second order kinetic functions, respectively.

  20. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    PubMed

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  1. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

    NASA Astrophysics Data System (ADS)

    Kloutse, A. F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M.

    2015-12-01

    Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric-volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin-Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal-organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models' prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg-1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.

  2. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy G.; Greenhalgh, Mitchell; Rutledge, Veronica J.

    2014-08-01

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuirmore » linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.« less

  3. On the adsorption of phloretin onto a black lipid membrane.

    PubMed Central

    de Levie, R; Rangarajan, S K; Seelig, P F; Andersen, O S

    1979-01-01

    The effect of uncharged, dipolar phloretin on anion and cation conductance through a black lipid membrane can be used to study its adsorption behavior. The adsorption of phloretin can be described by a Langmuir isotherm with weak dipole-dipole interaction. PMID:262390

  4. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  5. Adsorption kinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama

    USGS Publications Warehouse

    Gruszkiewicz, M.S.; Naney, M.T.; Blencoe, J.G.; Cole, D.R.; Pashin, J.C.; Carroll, R.E.

    2009-01-01

    Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45-150????m, 1-2??mm, and 5-10??mm) of crushed coal were performed at 40????C and 35????C over a pressure range of 1.4-6.9??MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45-150????m size fraction compared to the two coarser fractions. ?? 2008 Elsevier B.V.

  6. Study of Cs/NF3 adsorption on GaN (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-03-01

    To investigate the optoelectronics properties of Cs/NF3 adsorption on GaN (0 0 1) photocathode surface, different adsorption models of Cs-only, Cs/O, Cs/NF3 adsorption on GaN clean surface were established, respectively. Atomic structures, work function, adsorption energy, E-Mulliken charge distribution, density of states and optical properties of all these adsorption systems were calculated using first principles. Compared with Cs/O co-adsorption, Cs/NF3 co-adsorption show better stability and more decline of work function, which is more beneficial for photoemission efficiency. Besides, surface band structures of Cs/NF3 co-adsorption system exhibit metal properties, implying good conductivity. Meanwhile, near valence band minimum of Cs/NF3 co-adsorption system, more acceptor levels emerges to form a p-type emission surface, which is conductive to the escape of photoelectrons. In addition, imaginary part of dielectric function curve and absorption curve of Cs/NF3 co-adsorption system both move towards lower energy side. This work can direct the optimization of activation process of NEA GaN photocathode.

  7. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms

  8. The Effect of Pluronic 123 Surfactant concentration on The N2 Adsorption Capacity of Mesoporous Silica SBA-15: Dubinin-Astakhov Adsorption Isotherm Analysis

    NASA Astrophysics Data System (ADS)

    Dhaneswara, Donanta; Siti Agustina, A. A. A.; Dewantoro Adhy, P.; Delayori, Farhan; Fajar Fatriansyah, Jaka

    2018-04-01

    Mesoporous SBA-15 has been successfully synthesized at various concentration of Pluronic 123 surfactant (7mM, 50 mM, 54 mM, 60 mM and 66 mM) and the effect of these various concentrations on the N2 adsorption capacity has been investigated. The adsorption analysis was conducted using Dubinin-Astakhov isotherm model for multilayer adsorption phenomenon. It was found that etryat low concentration of Pluronic 123, the system exhibits type I adsorption isotherm while at high concentration, the system exhibits type IV adsorption with H1 hysteresis curve which indicates the existence of pores with cylindrical geometry, relatively uniform pore size and possibility of pore network effects. It also was found that, by using D-A isotherm model fitting, at 60 mM concentration of Pluronic 123, SBA-15 has the highest adsorption capacity which stands at 421 cm3/gram.

  9. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids. Copyright © 2011 SETAC.

  10. Chlorate adsorption from chlor-alkali plant brine stream.

    PubMed

    Lakshmanan, Shyam; Murugesan, Thanabalan

    2017-07-01

    Chlorates are present in the brine stream purged from chlor-alkali plants. Tests were conducted using activated carbon from coconut shell, coal or palm kernel shell to adsorb chlorate. The results show varying levels of adsorption with reduction ranging between 1.3 g/L and 1.8 g/L. This was higher than the chlorate generation rate of that plant, recorded at 1.22 g/L, indicating that chlorate can be adequately removed by adsorption using activated carbon. Coconut based activated carbon exhibited the best adsorption of chlorate of the three types of activated carbon tested. Introducing an adsorption step prior to purging of the brine will be able to reduce chlorate content in the brine stream. The best location for introducing the adsorption step was identified to be after dechlorination of the brine and before resaturation. Introduction of such an adsorption step will enable complete recovery of the brine and prevent brine purging, which in turn will result in less release of chlorides and chlorates to the environment.

  11. The Accelerated Late Adsorption of Pulmonary Surfactant

    PubMed Central

    2011-01-01

    Adsorption of pulmonary surfactant to an air−water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value. PMID:21417351

  12. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  13. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    PubMed

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Preparation and Characterization of Activated Cow Bone Powder for the Adsorption of Cadmium from Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    AbdulRahman, A.; Latiff, A. A. A.; Daud, Z.; Ridzuan, M. B.; D, N. F. M.; Jagaba, A. H.

    2016-07-01

    Several studies have been conducted on the removal of heavy metals from palm oil mill effluent. In this study, cow bones were developed as an adsorbent for the removal of cadmium II from POME. A batch experiment was conducted to investigate the effectiveness of the prepared activated cow bone powder for the sorption of cadmium II from raw POME. The experiment was carried out under fixed conditions using 100mg/L raw POME combined with different adsorbent dosage of CBP of 184.471 Ra(nm) surface roughness. The equilibrium adsorption capacity of the hydrophobic CBP of average contact angle 890 was determined from the relationship between the initial and equilibrium liquid phase concentrations of POME. The optimum adsorption of cadmium II on CBP was at 10g adsorbent dosage for sample 1 and 2 at 97.8% and 96.93% respectively. The least uptake was at 30g adsorbent weight for both samples at average of 95.1% for both samples. The effective removal of cadmium ion showed that CBP has a great potential for the treatment of heavy metal in POME.

  15. Adsorption of arsenic from aqueous solution using magnetic graphene oxide

    NASA Astrophysics Data System (ADS)

    Sherlala, A. I. A.; Raman, A. A.; Bello, M. M.

    2017-06-01

    A binary of graphene oxide (GO) and iron oxide (IO) was prepared and used for the removal of arsenic from aqueous solution. The synthesized compound was characterized using XRD analysis. The prepared composite was used for the adsorption of arsenic from aqueous solution. Central Composite Design was used to design the adsorption experiments and to investigate the effects of operational parameters (initial concentration of arsenic, adsorbent dosage, pH and time) on the adsorption capacity and efficiency. The adsorbent shows a high adsorption capacity for the arsenic. The adsorption efficiency ranges between 33.2 % and 99.95 %. The most significant factors affecting the adsorption capacity were found to be the initial concentration of arsenic and the adsorbent dosage. The initial pH of the solution slightly affects the adsorption capacity, with the maximum adsorption capacity occurring around pH 6 - 7. Thus, the developed adsorbent has a potential for effective removal of arsenic from aqueous solution.

  16. Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Ojha, Priyanka; Rai, Premanjali

    2013-04-01

    The research aims to develop artificial intelligence (AI)-based model to predict the adsorptive removal of 2-chlorophenol (CP) in aqueous solution by coconut shell carbon (CSC) using four operational variables (pH of solution, adsorbate concentration, temperature, and contact time), and to investigate their effects on the adsorption process. Accordingly, based on a factorial design, 640 batch experiments were conducted. Nonlinearities in experimental data were checked using Brock-Dechert-Scheimkman (BDS) statistics. Five nonlinear models were constructed to predict the adsorptive removal of CP in aqueous solution by CSC using four variables as input. Performances of the constructed models were evaluated and compared using statistical criteria. BDS statistics revealed strong nonlinearity in experimental data. Performance of all the models constructed here was satisfactory. Radial basis function network (RBFN) and multilayer perceptron network (MLPN) models performed better than generalized regression neural network, support vector machines, and gene expression programming models. Sensitivity analysis revealed that the contact time had highest effect on adsorption followed by the solution pH, temperature, and CP concentration. The study concluded that all the models constructed here were capable of capturing the nonlinearity in data. A better generalization and predictive performance of RBFN and MLPN models suggested that these can be used to predict the adsorption of CP in aqueous solution using CSC.

  17. Multilayer adsorption of Cu(II) and Cd(II) over Brazilian Orchid Tree (Pata-de-vaca) and its adsorptive properties

    NASA Astrophysics Data System (ADS)

    Jorgetto, Alexandre de O.; da Silva, Adrielli C. P.; Wondracek, Marcos H. P.; Silva, Rafael I. V.; Velini, Edivaldo D.; Saeki, Margarida J.; Pedrosa, Valber A.; Castro, Gustavo R.

    2015-08-01

    Through very simple and inexpensive processes, pata-de-vaca leaves were turned into a powder and applied as an adsorbent for the uptake of Cu(II) and Cd(II) from water. The material was characterized through SEM, EDX, FTIR and surface area measurement. The material had its point of zero charge determined (5.24), and its adsorption capacity was evaluated as a function of time, pH and metal concentration. The material presented fast adsorption kinetics, reaching adsorption equilibrium in less than 5 min and it had a good correlation with the pseudo-second order kinetic model. Optimum pH for the adsorption of Cu(II) and Cd(II) were found to be in the range from 4 to 5, approximately. In the experiment as a function of the analyte concentration, analogously to gas adsorption, the material presented a type II isotherm, indicating the formation of multilayers for both species. Such behavior was explained with basis in the alternation between cations and anions over the material's surface, and the maximum adsorption capacity, considering the formation of the multilayers were found to be 0.238 mmol L-1 for Cu(II) and 0.113 mmol L-1 for Cd(II).

  18. Kinetics of polyelectrolyte adsorption

    NASA Astrophysics Data System (ADS)

    Cohen Stuart, M. A.; Hoogendam, C. W.; de Keizer, A.

    1997-09-01

    The kinetics of polyelectrolyte adsorption has been investigated theoretically. In analogy with Kramers' rate theory for chemical reactions we present a model which is based on the assumption that a polyelectrolyte encounters a barrier in its motion towards an adsorbing surface. The height of the barrier, which is of electrostatic origin, is calculated with a self-consistent-field (SCF) model. The salt concentration strongly affects the height of the barrier. At moderate salt concentrations (0953-8984/9/37/009/img1) equilibrium in the adsorption is attained; at low salt concentration (0953-8984/9/37/009/img2) equilibrium is not reached on the time scale of experiments. The attachment process shows resemblances to the classical DLVO theory.

  19. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  20. Defluoridation of drinking water using adsorption processes.

    PubMed

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya; Naidu, Ravi

    2013-03-15

    Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Comparative evaluation of cyanide removal by adsorption, biodegradation, and simultaneous adsorption and biodegradation (SAB) process using Bacillus cereus and almond shell.

    PubMed

    Dwivedi, Naveen; Balomajumder, Chandrajit; Mondal, Prasenji

    2016-07-01

    The present study aimed to investigate the removal efficiency of cyanide from contaminated water by adsorption, biodegradation and simultaneous adsorption and biodegradation (SAB) process individually in a batch reactor. Adsorption was achieved by using almond shell granules and biodegradation was conducted with suspended cultures of Bacillus cereus, whereas SAB process was carried out using Bacillus cereus and almond shell in a batch reactor. The effect of agitation time, pH, and initial cyanide concentration on the % removal of cyanide has been discussed. Under experimental conditions, optimum removal was obtained at pH 7 with agitation time of 48 hrs and temperature of 35 degrees C. Cyanide was utilized by bacteria as sole source of nitrogen for growth. The removal efficiencies of cyanide by adsorption, biodegradation, and SAB were found to be 91.38%, 95.87%, and 99.63%, respectively, at initial cyanide concentration of 100 mg l(-1). The removal efficiency of SAB was found to be better as compared to that of biodegradation and adsorption alone.

  2. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes.

    PubMed

    Patiño, Yolanda; Díaz, Eva; Ordóñez, Salvador; Gallegos-Suarez, Esteban; Guerrero-Ruiz, Antonio; Rodríguez-Ramos, Inmaculada

    2015-10-01

    Adsorption of three representative emerging pollutants - 1,8-dichlorooctane, nalidixic acid and 2-(4-methylphenoxy)ethanol- on different carbon nanotubes was studied in order to determine the influence of the morphological and chemical properties of the materials on their adsorption properties. As adsorbents, multiwall carbon nanotubes (MWCNTs) without functionalization and with oxygen or nitrogen surface groups, as well as carbon nanotubes doped with nitrogen were used. The adsorption was studied in aqueous phase using batch adsorption experiments, results being fitted to both Langmuir and Freundlich models. The adsorption capacity is strongly dependent on both the hydrophobicity of the adsorbates and the morphology of the adsorbents. Thermodynamic parameters were determined observing strong interactions between the aromatic rings of the emerging pollutant and the nitrogen modified adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  4. Gd uptake experiments for preliminary set of functionalized adsorbents

    DOE Data Explorer

    Clinton Noack

    2015-03-16

    These data summarize adsorption experiments conducted with Gd in 0.5 M NaCl. Results represent preliminary, proof-of-concept data utilizing fine-powder silica gel as the adsorbent support. Future testing will focus on larger, application-appropriate beads.

  5. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    PubMed

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. An Experiment in Heat Conduction Using Hollow Cylinders

    ERIC Educational Resources Information Center

    Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.

    2011-01-01

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…

  7. The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic and equilibrium studies.

    PubMed

    Iriel, Analia; Bruneel, Stijn P; Schenone, Nahuel; Cirelli, Alicia Fernández

    2018-03-01

    The use of natural sorbents to remove fluoride from drinking water is a promising alternative because of its low-cost and easy implementation. In this article, fluoride adsorption on a latosol soil from Misiones province (Argentina) was studied regarding kinetic and equilibrium aspects. Experiments were conducted in batch at room temperature under controlled conditions of pH 4-8) and ionic strength (1-10mM KNO 3 ). Experimental data indicated that adsorption processes followed a PSO kinetic where initial rates have showed to be influenced by pH solution. The necessary time to reach an equilibrium state had resulted approximately 30min. Equilibrium adsorption studies were performed at pH 8 which is similar to the natural groundwater. For that, fluoride adsorption data were successfully adjusted to Dubinin-Ataskhov model determining that the fluoride adsorption onto soil particles mainly followed a physical mechanism with a removal capacity of 0.48mgg -1 . Finally, a natural groundwater was tested with laterite obtaining a reduction close to 30% from initial concentration and without changing significantly the physicochemical properties of the natural water. Therefore, it was concluded that the use of lateritic soils for fluoride removal is very promising on a domestic scale. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Adsorption of Cu(II) Ions in Aqueous Solutions by HCl Activated Carbon of Oil Palm

    NASA Astrophysics Data System (ADS)

    Muslim, A.; Syamsuddin, Y.; Salamun, A.; Abubakar; Ramadhan, D.; Peiono, D.

    2017-06-01

    Activated carbon was prepared from oil palm empty fruit bunch (OPEFB) by pyrolysis at 873.15 K in a furnace and chemical activation using 0.01 M HCl. Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and BET (Brunauer, Emmett and Teller) surface area analyses were taken into account to investigate the chemical functional group, to characterise the surface morphology and to determine total surface area the OPEFB AC, respectively. Experiments in batch mode were conducted to investigate Cu(II) adsorption capacity by the OPEFB AC whereas the system consisted of 1 g the OPEFB AC in 100 mL Cu(II) aqueous solution with initial concentration in the range of 10-70 mg/L, magnetic stirring at 75 rpm, room temperature of 300.15 K (± 2 K), at 1 atm and neutral pH over contact time in the range of 0-150 min. As the result, Cu(II) adsorption capacity increased exponentially over contact time and initial concentration. The Cu(II) adsorption kinetics followed the pseudo second order kinetics with the correlation coefficients (R 2), kinetics rate constant and equilibrium adsorption capacity being 0.98, 4.81 mg/g and 0.15/min, respectively for initial Cu(II) concentration being 58.71 mg/L. In addition, Cu(II) adsorption isotherm followed the Langmuir equation with the R2 value, the mono-layer and over-all adsorption capacity being 0.99, 5.92 mg/g and 0.17 L/mg, respectively.

  9. Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils

    NASA Astrophysics Data System (ADS)

    Arthur, Jennifer D.; Mark, Noah W.; Taylor, Susan; Šimunek, J.; Brusseau, M. L.; Dontsova, Katerina M.

    2017-04-01

    The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002 h- 1 and 0.0068 h- 1. DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3 L g- 1, and Freundlich coefficients between 1.3 and 34 mg1 - n Ln kg- 1. Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to

  10. Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils.

    PubMed

    Arthur, Jennifer D; Mark, Noah W; Taylor, Susan; Šimunek, J; Brusseau, M L; Dontsova, Katerina M

    2017-04-01

    The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002h -1 and 0.0068h -1 . DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3Lg -1 , and Freundlich coefficients between 1.3 and 34mg 1 - n L n kg -1 . Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to

  11. Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit

    NASA Astrophysics Data System (ADS)

    Yusuf, N. Y.; Masdar, M. S.; Isahak, W. N. R. W.; Nordin, D.; Husaini, T.; Majlan, E. H.; Rejab, S. A. M.; Chew, C. L.

    2017-06-01

    Biological methods for hydrogen production (biohydrogen) are known as energy intensive and can be operated at ambient temperature and pressure; however, consecutive productions such as purification and separation processes still remain challenging in the industry. Various techniques are used to purify and separate hydrogen. These techniques include the use of sorbents/solvents, membranes and cryogenic distillation. In this study, carbon dioxide (CO2) was purified and separated from biohydrogen to produce high purity hydrogen gas. CO2 capture was studied using the activated carbon (AC) modified with the ionic liquid (IL) choline chloride as adsorbent. The physical and chemical properties of the adsorbents were characterized through XRD, FTIR, SEM-EDX, TGA, and BET analyses. The effects of IL loading, flow rate, temperature, and gas mixture were also investigated based on the absorption and desorption of CO2. The CO2 level in the biohydrogen composition was analyzed using a CO2 gas analyzer. The SEM image indicated that the IL homogeneously covered the AC surface. High IL dispersion inlet enhanced the capability of the adsorbent to capture CO2 gas. The thermal stability and presence of the functionalized group of ILs on AC were analyzed by TGA and FTIR techniques, respectively. CO2 adsorption experiments were conducted using a 1 L adsorber unit. Hence, adsorption technologies exhibit potential for biohydrogen purification and mainly affected by adsorbent ability and operating parameters. This research presents an improved biohydrogen technique based on adsorption technology with novel adsorbents. Two different types of commercial CO2 adsorbents were used in the experiment. Results show that the IL/AC exhibited properties suitable for CO2 adsorption. The IL/AC sample presented a high CO2 uptake of 30 wt. % IL when treated at 30 °C for 6 h under a flow rate of 1 L/min. The presence of IL increased the selectivity of CO2 removal during the adsorption process. This IL

  12. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    PubMed

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  13. Molybdate adsorption from steel slag eluates by subsoils.

    PubMed

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    PubMed Central

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  15. Adsorption of different amphiphilic molecules onto polystyrene latices.

    PubMed

    Jódar-Reyes, A B; Ortega-Vinuesa, J L; Martín-Rodríguez, A

    2005-02-15

    In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.

  16. Mathematical modelling of cyclic pressure swing adsorption processes

    NASA Astrophysics Data System (ADS)

    Skvortsov, S. A.; Akulinin, E. I.; Golubyatnikov, O. O.; Dvoretsky, D. S.; Dvoretsky, S. I.

    2018-05-01

    The paper discusses the results of a numerical analysis of the properties and regimes of the adsorption air separation and oxygen concentration process with a purity of ∼ 40-60%, carried out in a 2-adsorption vacuum-pressure plant with a granular zeolite adsorbent 13X with a productivity of 1.6 · 10-5 m3/s. Computational experiments were carried out using the developed mathematical model and the influence of temperature, pressure, reflux ratio, the duration of the adsorption and desorption stages, the harmonic fluctuations of the inlet pressure during the adsorption stage and the outlet pressure during the desorption stage on the kinetics, and the efficiency of the air separation process by the PSA method were investigated. It is established that the specially organized harmonic fluctuations of the inlet pressure at the stage of adsorption and outlet pressure during the desorption stage lead to an increase in the purity of product oxygen by 4% (vol.).

  17. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite

    NASA Astrophysics Data System (ADS)

    Yu, Song; Yan-ming, Zhu; Wu, Li

    2017-02-01

    The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, 13C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH4s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top < Bond < Center, Up < Down. The order of average RDF better reflects the adsorption ability and that of [-COOH] is lower than those of [sbnd Cdbnd O] and [Csbnd Osbnd C]. CH4 distributed in the distance of 0.99-16 Å to functional groups in the type of monolayer adsorption and the average distance order manifest as [sbnd Cdbnd O] (1.64 Å) < [Csbnd Osbnd C] (1.89 Å) < [sbnd COOH] (3.78 Å) < [-CH3] (4.11 Å) according to the average RDF curves. CH4 enriches around [sbnd Cdbnd O] and [Csbnd O-C] whereas is rather dispersed about [-COOH] and [CH3]. Simulation and experiment data are both in strong agreement with the Langmuir and D-A isothermal adsorption model and the D-A model fit better than Langmuir model. Preferential adsorption sites and orientations in vitrinite are

  18. Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: Stirred flow chamber experiments.

    PubMed

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-09-01

    The objective of this work was to study the competitive adsorption/desorption of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) on two acid soils. We used the stirred flow chamber technique to obtain experimental data on rapid kinetic processes affecting the retention/release of the antibiotics. Both adsorption and desorption were higher on soil 1 (which showed the highest carbon, clay and Al and Fe oxides content) than on soil 2. Moreover, hysteresis affected the adsorption/desorption processes. Experimental data were fitted to a pseudo-first order equation, resulting qamax (adsorption maximum) values that were higher for soil 1 than for soil 2, and indicating that CTC competed with TC more intensely than OTC in soil 1. Regarding soil 2, the values corresponding to the adsorption kinetics constants (ka) and desorption kinetics constants for fast sites (kd1), followed a trend inverse to qamax and qdmax respectively. In conclusion, competition affected adsorption/desorption kinetics for the three antibiotics assayed, and thus retention/release and subsequent transport processes in soil and water environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Zhu, Qizhen; An, Yabin; Chen, Renjie; Sun, Ning; Wu, Feng; Xu, Bin

    2018-05-01

    To improve the cycling performance of the Li-S batteries, a 3D interwoven hollow interlayer with extremely high electrolyte adsorption capability up to 9.64 g g-1 was simply prepared by carbonization of cotton fabric (CCF). For comparison, an interlayer coated on separator was obtained by the slurry-coating method of powdery CCF. The key role of the adsorption capability is confirmed by comparing the electrochemical performance of Li-S batteries with these two interlayers. In the Li-S batteries with 3D CCF interlayer, massive dissolved polysulfides, together with the electrolyte, can be adsorbed and confined in the 3D CCF interlayer, providing substantial extra active sites and alleviating the shuttle effect effectively. As a result, the Li-S batteries with 3D CCF interlayer show much enhanced utilization of active materials (1346.9 mAh g-1 at 0.1C), prolonged cycle life (capacity retention of 80% after 100 cycles), and improved rate performance (553.2 mAh g-1 at 4C). Even for cathodes with high sulfur loading of 5 mg cm-2, the cells with 3D CCF interlayer perform a high capacity of 1085 mAh g-1 and retain 870.6 mAh g-1 after 75 cycles at 0.5 mA cm-2. These results not only provide a sustainable, low cost and easy-prepared 3D CCF interlayer, but also offer a promising strategy based on interlayer with high adsorption capability in designing high-performance Li-S batteries.

  20. Adsorption of tetracycline on soil and sediment: effects of pH and the presence of Cu(II).

    PubMed

    Zhang, Zheyun; Sun, Ke; Gao, Bo; Zhang, Guixiang; Liu, Xitao; Zhao, Ye

    2011-06-15

    Tetracycline (TC) is frequently detected in the environment, however, knowledge on the environmental fate and transport of TC is still limited. Batch adsorption experiments of TC by soil and sediment samples were conducted. The distribution of charge and electrostatic potential of individual atoms of various TC species in the aqueous solution were determined using MOPAC version 0.034 W program in ChemBio3D Ultra software. Most of the adsorption isotherms on the soil, river and marine sediments were well fitted with the Freundlich and Polanyi-Manes (PMM) models. The single point organic carbon (OC)-normalized adsorption distribution coefficients (K(OC)) and PMM saturated adsorption capacity (Q(OC)(0)) values of TC were associated with the mesopore volume and clay content to a greater extent, indicating the mesopore volume of the soil and sediments and their clay content possibly influenced the fate and transport of TC in the natural environment. The adsorption of TC on soil and sediments strongly depended on the pH and presence of Cu(II). The presence of Cu(II) facilitated TC adsorption on soil and sediments at low pH (pH<5), possibly due to the metallic complexation and surface-bridging mechanism by Cu(II) adsorption on soil and sediments. The cation exchange interaction, metallic complexation and Coulombic interaction of mechanisms for adsorption of TC to soils and sediments were further supported by quantum chemical calculation of various TC species in different pH. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Removal of carbonyl sulfide using activated carbon adsorption.

    PubMed

    Sattler, Melanie L; Rosenberk, Ranjith Samuel

    2006-02-01

    Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H2S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H2S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns, 6 in. in depth and 1 in. in diameter. Inlet COS concentrations varied from 35 to 49 ppmv (86-120 mg/m3). RHs of 17%, 30%, 50%, and 90% were tested. For competitive adsorption studies, H2S was tested at 60 ppmv, with COS at 30 ppmv. COS, RH, H2S, and ammonia concentrations were measured using an International Sensor Technology Model IQ-350 solid state sensor, Cole-Parmer humidity stick, Interscan Corp. 1000 series portable analyzer, and Drager Accuro ammonia sensor, respectively. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H2S in the gas stream. More adsorption sites appear to be available to H2S, a smaller molecule. Ammonia, which has been found to increase H2S adsorption capacity, did not increase the capacity for COS.

  2. A pressure-amplifying framework material with negative gas adsorption transitions.

    PubMed

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-21

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  3. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells

    PubMed Central

    Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498

  4. Study of gas adsorption on as-produced and modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rawat, Dinesh Singh

    Volumetric adsorption isotherm measurements were used to study the adsorption characteristics of Ethane (C2H6) and Butane (C 4H10) on as-produced single-walled carbon nanotubes. The binding energy of the adsorbed alkane molecule was found to increase with increasing carbon chain length. Two adsorption substeps were obtained for each alkane molecule. However, the size of the high pressure substep was found to be gradually smearing with the increase in size of the adsorbed molecule. This phenomenon is interpreted as size entropy effect for linear molecules. This interpretation was also verified by determining the specific surface area of the substrate using linear molecules of different sizes. Kinetics measurements of alkane adsorption on SWNTs were also conducted and their dependence on the molecular length was determined. Similar adsorption measurements were performed for Argon (Ar) on as-produced single-walled carbon nanotubes and nanotubes that were structurally modified using acid treatment. Enhancement of the sorptive capacity and the presence of two distinct kinetics of gas adsorption verified partial opening of single walled carbon nanotubes as a result of chemical treatment. Mutiwalled carbon nanotubes were exposed to oxygen plasma treatment for varying time periods. Afterwards, adsorption measurements of Methane (CH 4) were conducted on untreated and oxygen plasma treated tubes. The presence of an additional substep, after exposing multiwalled carbon nanotubes to oxygen plasma for varying time periods, suggested progressive cleaning of nanotube surface.

  5. Reservoir capacity estimates in shale plays based on experimental adsorption data

    NASA Astrophysics Data System (ADS)

    Ngo, Tan

    from different measurement techniques using representative fluids (such as CH4 and CO2) at elevated pressures, and the adsorbed density can range anywhere between the liquid and the solid state of the adsorbate. Whether these discrepancies are associated with the inherent heterogeneity of mudrocks and/or with poor data quality requires more experiments under well-controlled conditions. Nevertheless, it has been found in this study that methane GIP estimates can vary between 10-45% and 10-30%, respectively, depending on whether the free or the total amount of gas is considered. Accordingly, CO2 storage estimates range between 30-90% and 15-50%, due to the larger adsorption capacity and gas density at similar pressure and temperature conditions. A manometric system has been designed and built that allows measuring the adsorption of supercritical fluids in microporous materials. Preliminary adsorption tests have been performed using a microporous 13X zeolite and CO 2 as an adsorbing gas at a temperature of 25oC and 35oC and at pressures up to 500 psi. Under these conditions, adsorption is quantified with a precision of +/- 3%. However, relative differences up to 15-20% have been observed with respect to data published in the literature on the same adsorbent and at similar experimental conditions. While it cannot be fully explained with uncertainty analysis, this discrepancy can be reduced by improving experiment practice, thus including the application of a higher adsorbent's regeneration temperature, of longer equilibrium times and of a careful flushing of the system between the various experimental steps. Based on the results on 13X zeolite, virtual tests have been conducted to predict the performance of the manometric system to measure adsorption on less adsorbing materials, such as mudrocks. The results show that uncertainties in the estimated adsorbed amount are much more significant in shale material and they increase with increasing pressure. In fact, relative

  6. Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.

    PubMed

    Shi, Mo; Wang, Zhengfang; Zheng, Zheng

    2013-08-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  7. Adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD).

    PubMed

    Pan, Yi-Fong; Chiou, Cary T; Lin, Tsair-Fuh

    2010-09-01

    PURPOSES AND AIMS: Economically efficient methods for removing arsenic from the drinking water supply are urgently needed in many parts of the world. Iron oxides are known to have a strong affinity for arsenic in water. However, they are commonly present in the forms of fine powder or floc, which limits their utility in water treatment. In this study, a novel granular adsorbent, iron-oxide-coated diatomite (IOCD), was developed and examined for its adsorption of arsenic from water. An industrial-grade diatomite was used as the iron oxide support. The diatomite was first acidified and dried and then coated with iron oxide up to five times. The prepared IOCD samples were characterized for their morphology, composition, elemental content, and crystal properties by various instruments. Experiments of equilibrium and kinetic adsorption of As(V) on IOCD were conducted using 0.1- and 2-L polyethylene bottles, respectively, at different pH and temperatures. Iron oxide (alpha-Fe(2)O(3) hematite) coated onto diatomite greatly improves (by about 30 times) the adsorption of As(V) from water by IOCD as compared to using raw diatomite. This improvement was attributed to increases in both surface affinity and surface area of the IOCD. The surface area of IOCD increased to an optimal value. However, as the IOCD surface area (93 m(2)/g) was only 45% higher than that of raw diatomite (51 m(2)/g), the enhanced As(V) adsorption resulted primarily from the enhanced association of negatively charged As(V) ions with the partial positive surface charge of the iron oxide. The As(V) adsorption decreased when the solution pH was increased from 3.5 to 9.5, as expected from the partial charge interaction between As(V) and IOCD. The adsorption data at pH 5.5 and 7.5 could be well fitted to the Freundlich equation. A moderately high exothermic heat was observed for the As(V) adsorption, with the calculated molar isosteric heat ranging from -4 to -9 kcal/mol. The observed heats fall between those

  8. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076505 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  9. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076510 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  10. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076507 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  11. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    PubMed

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  12. Salinity Effects on the Adsorption of Nucleic Acid Compounds on Na-Montmorillonite: a Prebiotic Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Villafañe-Barajas, Saúl A.; Baú, João Paulo T.; Colín-García, María; Negrón-Mendoza, Alicia; Heredia-Barbero, Alejandro; Pi-Puig, Teresa; Zaia, Dimas A. M.

    2018-02-01

    Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive

  13. Adsorption of heavy metals by road deposited solids.

    PubMed

    Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna

    2013-01-01

    The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

  14. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.

  15. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments.

    PubMed

    Xue, J; Feng, Y

    2018-06-01

    Free DNA and its adsorption by sediment in the aquatic environment lead to ambiguity in the identification of recent faecal pollution sources. The goal of this study was to understand the mechanisms of DNA adsorption and desorption on aquatic sediment under various conditions using quantitative polymerase chain reaction (qPCR). Both raw sewage (RS) DNA and purified PCR product (PPP) were used in adsorption and desorption experiments; autoclaved freshwater and marine sediments served as sorbents. Thirty-six hours were needed for adsorption to reach equilibrium. More DNA was adsorbed on both sediments in stream water than in 5 mmol l -1 NaCl and DNA adsorption increased in the presence of Ca 2+ and Mg 2+ . Successive desorption experiments showed that between 5% and 22% of adsorbed DNA was desorbed. Organic matter and clay played a significant role in determining the DNA adsorption capacity on sediment. The data suggest the presence of multilayer adsorption. DNA molecules on sediments were mostly adsorbed through ligand binding rather than electrostatic binding. Quantitative polymerase chain reaction assays provide a better way to investigate the DNA adsorption and desorption mechanisms by sediment. DNA desorption can potentially complicate the outcomes of microbial source tracking studies. © 2018 The Society for Applied Microbiology.

  16. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures

    NASA Astrophysics Data System (ADS)

    van Zuilen, Kirsten; Müller, Thomas; Nägler, Thomas F.; Dietzel, Martin; Küsters, Tim

    2016-08-01

    Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass-dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 °C and 25 °C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in δ137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba /D134Ba =(m134 /m137) β). Values of β extracted from the transport model were in the range of 0.010-0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (α = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation processes, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.

  17. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  18. Metronidazole removal in powder-activated carbon and concrete-containing graphene adsorption systems: Estimation of kinetic, equilibrium and thermodynamic parameters and optimization of adsorption by a central composite design.

    PubMed

    Manjunath, S V; Kumar, S Mathava; Ngo, Huu Hao; Guo, Wenshan

    2017-12-06

    Metronidazole (MNZ) removal by two adsorbents, i.e., concrete-containing graphene (CG) and powder-activated carbon (PAC), was investigated via batch-mode experiments and the outcomes were used to analyze the kinetics, equilibrium and thermodynamics of MNZ adsorption. MNZ sorption on CG and PAC has followed the pseudo-second-order kinetic model, and the thermodynamic parameters revealed that MNZ adsorption was spontaneous on PAC and non-spontaneous on CG. Subsequently, two-parameter isotherm models, i.e., Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Elovich models, were applied to evaluate the MNZ adsorption capacity. The maximum MNZ adsorption capacities ([Formula: see text]) of PAC and CG were found to be between 25.5-32.8 mg/g and 0.41-0.002 mg/g, respectively. Subsequently, the effects of pH, temperature and adsorbent dosage on MNZ adsorption were evaluated by a central composite design (CCD) approach. The CCD experiments have pointed out the complete removal of MNZ at a much lower PAC dosage by increasing the system temperature (i.e., from 20°C to 40°C). On the other hand, a desorption experiment has shown 3.5% and 1.7% MNZ removal from the surface of PAC and CG, respectively, which was insignificant compared to the sorbed MNZ on the surface by adsorption. The overall findings indicate that PAC and CG with higher graphene content could be useful in MNZ removal from aqueous systems.

  19. Data on conducting the SAMEX-76 experiment

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The compilation of data on conducting the SAMEX-76 experiment is reported. This report includes many tables and graphs of the aircraft's flights and its measurements. Also given is the operation time of this equipment and the many observations that have been made by the Scientific Research Ship Akademik Korolev.

  20. Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions.

    PubMed

    Zhang, Ling; Wang, Yong; Jin, SuWan; Lu, QunZan; Ji, Jiang

    2017-10-01

    The adsorption of sulfadiazine from water by expanded graphite (EG), a low cost and environmental-friendly adsorbent, was investigated. Several adsorption parameters (including the initial sulfadiazine concentration, contact time, pH of solution, ionic strength and temperature) were studied. Results of equilibrium experiments indicated that adsorption of sulfadiazine onto EG were better described by the Langmuir and Tempkin models than by the Freundlich model. The maximum adsorption capacity is calculated to be 16.586 mg/g at 298 K. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and intraparticle models. The results indicated that the adsorption process followed pseudo-second-order kinetics and may be controlled by two steps. Moreover, the pH significantly influenced the adsorption process, with the relatively high adsorption capacity at pH 2-10. The electrostatic and hydrophobic interactions are manifested to be two main mechanisms for sulfadiazine adsorption of EG. Meanwhile, the ionic concentration of Cl - slightly impacted the removal of sulfadiazine. Results of thermodynamics analysis showed spontaneous and exothermic nature of sulfadiazine adsorption on EG. In addition, regeneration experiments imply that the saturated EG could be reused for sulfadiazine removal by immersing sodium hydroxide.

  1. Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms.

    PubMed

    Bouaziz, Fatma; Koubaa, Mohamed; Kallel, Fatma; Ghorbel, Rhoudha Ellouz; Chaabouni, Semia Ellouz

    2017-12-01

    This work aimed at investigating the potential of almond gum as low cost adsorbent for the removal of the cationic dye; malachite green from aqueous solutions. Almond gum was first analyzed by scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), and then the adsorption behavior was studied in batch system. The effects of the adsorption parameters (adsorbent dose, pH, contact time, particle size, initial dye concentration, temperature and agitation) on the dye removal have been studied. Adsorption equilibrium and isotherms were evaluated depending on temperature using the isotherms of Freundlich, Langmuir, and Tempkin. The obtained result showed that both Langmuir and Freundlich models were adapted to study the dye sorption. The maximum adsorption capacities were equal to 172.41mg/g, 181.81mg/g, and 196.07mg/g at 303.16K, 313.16K, and 323.16K, respectively. The kinetics of sorption were following the pseudo-second order model. The thermodynamic changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) indicated that the adsorption of malachite green at the surface of almond gum is endothermic and occurs spontaneously. Desorption experiments were conducted to regenerate almond gum, showing great desorption capacity when using HCl at pH 2. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Physicochemical and adsorptive characteristics of activated carbons from waste polyester textiles utilizing MgO template method.

    PubMed

    Xu, Zhihua; Zhang, Daofang; Yuan, Zhihang; Chen, Weifang; Zhang, Tianqi; Tian, Danqi; Deng, Haixuan

    2017-10-01

    Activated carbons with high specific surface areas were produced, utilizing waste polyester textiles as carbon precursor by magnesium oxide (MgO) template method. Magnesium chloride (MgCl 2 ), magnesium citrate (MgCi), and MgO were employed as MgO precursors to prepare activated carbons (AC-MgCl 2 , AC-MgCi, and AC-MgO). Thermogravimetry-differential scanning calorimetry was conducted to investigate the pore-forming mechanism, and N 2 adsorption/desorption isotherms, XRD, SEM-EDS, TEM, FTIR and pH pzc were achieved to analyze physicochemical characteristics of the samples. The specific surface areas of AC-MgCl 2 (1173 m 2 /g) and AC-MgCi (1336 m 2 /g) were much higher than that of AC-MgO (450 m 2 /g), and the pores sizes of which were micro-mesoporous, mesoporous, and macropores, respectively, due to the formation of MgO crystal with different sizes. All activated carbons had abundant acidic oxygen groups. In addition, batch adsorption experiments were carried out to investigate the adsorptive characteristics of the prepared activated carbons toward Cr(VI). The adsorption kinetics fitted well with the pseudo-second order, and the adsorptive capacity of AC-MgCl 2 (42.55 mg/g) was higher than those of AC-MgCi (40.93 mg/g) and AC-MgO (35.87 mg/g).

  3. Decrease in zinc adsorption onto soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens.

    PubMed

    Drozdova, O Yu; Pokrovsky, O S; Lapitskiy, S A; Shirokova, L S; González, A G; Demin, V V

    2014-12-01

    The adsorption of Zn onto the humic and illuvial horizons of the podzol soil in the presence of soil bacteria was studied using a batch-reactor technique as a function of the pH (from 2 to 9) and the Zn concentration in solution (from 0.076mM to 0.760mM). Exopolysaccharides-forming aerobic heterotrophs Pseudomonas aureofaciens were added at 0.1 and 1.0gwetL(-1) concentrations to two different soil horizons, and Zn adsorption was monitored as a function of the pH and the dissolved-Zn concentration. The pH-dependent adsorption edge demonstrated more efficient Zn adsorption by the humic horizon than the mineral horizon at otherwise similar soil concentrations. The Zn adsorption onto the EPS-poor strain was on slightly lower than that onto EPS-rich bacteria. Similar differences in the adsorption capacities between the soil and bacteria were also detected by "langmuirian" constant-pH experiments conducted in soil-Zn and bacteria-Zn binary systems. The addition of 0.1gwetL(-1)P. aureofaciens to a soil-bacteria system (4gdryL(-1)soil) resulted in statistically significant decrease in the adsorption yield, which was detectable from both the pH-dependent adsorption edge and the constant-pH isotherm experiments. Increasing the amount of added bacteria to 1gwetL(-1) further decreased the overall adsorption in the full range of the pH. This decrease was maximal for the EPS-rich bacteria and minimal for the EPS-poor bacteria (a factor of 2.8 and 2.2 at pH=6.9, respectively). These observations in binary and ternary systems were further rationalized by linear-programming modeling of surface equilibria that revealed the systematic differences in the number of binding sites and the surface-adsorption constant of zinc onto the two soil horizons with and without bacteria. The main finding of this work is that the adsorption of Zn onto the humic soil-bacteria system is lower than that in pure, bacteria-free soil systems. This difference is statistically significant (p<0.05). As such

  4. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon.

    PubMed

    Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R

    2014-03-25

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L(-1) SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g(-)(1)). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models. Copyright © 2013. Published by Elsevier B.V.

  5. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon

    NASA Astrophysics Data System (ADS)

    Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R.

    2014-03-01

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L-1 SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g-1). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models.

  6. Molybdenum isotope fractionation during adsorption to organic matter

    USGS Publications Warehouse

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  7. Molybdenum isotope fractionation during adsorption to organic matter

    NASA Astrophysics Data System (ADS)

    King, E. K.; Perakis, S. S.; Pett-Ridge, J. C.

    2018-02-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2-170 h) and pH (2-7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (±0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  8. Comparative study of selenite adsorption on carbon based adsorbents and activated alumina.

    PubMed

    Jegadeesan, G; Mondal, K; Lalvani, S B

    2003-08-01

    The sorption characteristics of carbon-based adsorbents such as activated carbon and chitin for the removal of selenite, Se (IV), an anionic, hazardous contaminant, are compared with those of alpha and gamma alumina. Batch experiments were conducted to determine the influence of pH, concentration of adsorbate, adsorbent loading and temperature on the sorption characteristics of the adsorbents. Generally, low pH of the solution resulted in favorable selenium removal. With the exception of activated carbon, uptakes decreased with increase in temperature. In comparison, chitin was found to be far less effective for the removal of Se (IV) from aqueous solutions. The data also showed that gamma alumina provided higher selenium removal percentages (99%) compared to alpha alumina (94%), activated carbon (87%) and chitin (49%). The selenite removal was found to decrease with increasing initial Se (IV) concentration in the solution. Adsorption capacities of the adsorbents are reported in terms of their Langmuir adsorption isotherms. The adsorption capacity (on unit mass basis) of the adsorbents for selenite is in the order: chitin (specific area (sa) = 9.58 m2 g(-1)) < activated carbon (sa = 96.37 m2 g(-1)) < alpha alumina (sa = 6 m2 g(-1)) < gamma alumina (sa = 150 m2 g(-1)).

  9. Adsorption and desorption for dynamics transport of hexavalent chromium Cr(Ⅵ) in soil column

    NASA Astrophysics Data System (ADS)

    Tong, J.

    2017-12-01

    Batch experiments have been carried out to study the adsorption of heavy metals in soils, and the migration and transformation of hexavalent chromium Cr(Ⅵ) in the soil of a vegetable base were studied by dynamic adsorption and desorption soil column experiments. The aim of this study was to investigate the effect of initial concentration and pH value on the adsorption process of Cr(Ⅵ). Breakthrough curve were used to evaluate the capacity of Cr(Ⅵ) adsorption in soil columns. The results show that the higher the initial concentration, the worse the adsorption capacity of Cr(Ⅵ). The adsorption of Cr(Ⅵ) was strongly sensitive to pH value. The capacity of Cr(Ⅵ) adsorption is maximized at very low pH value. This may be due to changes in pH that cause a series of complex reactions in Cr(Ⅵ). In a strongly acidic environment, the reaction of Cr(Ⅵ) with hydrogen ions is accompanied by the formation of Cr3+, which reacts with the soil free iron-aluminum oxide to produce hydroxide in the soil. The results of the desorption experiments indicate that Cr(Ⅵ) is more likely to leach from this soil, but if the eluent is strong acid solution, the leaching process will be slow and persistent. The program CXTFIT was used to fit the breakthrough curve to estimate parameters. The results of the calculation of the dispersion coefficient (D) can be obtained by this program. The two-site model fit the breakthrough curve data of Cr(Ⅵ) well, and the parameters calculated by CXTFIT can be used to explain the behavior of Cr(Ⅵ) migration and transformation in soil columns. When pH=2, the retardation factor (R) reach at 79.71 while the value of the R is generally around 10 in other experiments. The partitioning coefficient β shows that more than half of the adsorption sites are rate-limited in this adsorption process and non-equilibrium effects the Cr(Ⅵ) transport process in this soil.

  10. Competitive effects of humic acid and wastewater on adsorption of Methylene Blue dye by activated carbon and non-imprinted polymers.

    PubMed

    Murray, Audrey; Örmeci, Banu

    2018-04-01

    Natural organic matter (NOM), present in natural waters and wastewater, decreases adsorption of micropollutants, increasing treatment costs. This research investigated mechanisms of competition for non-imprinted polymers (NIPs) and activated carbon with humic acid and wastewater. Three different types of activated carbons (Norit PAC 200, Darco KB-M, and Darco S-51) were used for comparison with the NIP. The lower surface area and micropore to mesopore ratio of the NIP led to decreased adsorption capacity in comparison to the activated carbons. In addition, experiments were conducted for single-solute adsorption of Methylene Blue (MB) dye, simultaneous adsorption with humic acid and wastewater, and pre-loading with humic acid and wastewater followed by adsorption of MB dye using NIP and Norit PAC 200. Both the NIP and PAC 200 showed significant decreases of 27% for NIP (p=0.087) and 29% for PAC 200 (p=0.096) during simultaneous exposure to humic acid and MB dye. There was no corresponding decrease for NIP or PAC 200 pre-loaded with humic acid and then exposed to MB. In fact, for PAC 200, the adsorption capacity of the activated carbon increased when it was pre-loaded with humic acid by 39% (p=0.0005). For wastewater, the NIP showed no significant increase or decrease in adsorption capacity during either simultaneous exposure or pre-loading. The adsorption capacity of PAC 200 increased by 40% (p=0.001) for simultaneous exposure to wastewater and MB. Pre-loading with wastewater had no effect on MB adsorption by PAC 200. Copyright © 2017. Published by Elsevier B.V.

  11. Interaction between calcium and phosphate adsorption on goethite.

    PubMed

    Rietra, R P; Hiemstra, T; van Riemsdijk, W H

    2001-08-15

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in soils and sediments, but the binding behavior of PO4 in these systems often differs significantly from adsorption studies on metal hydroxides in laboratory. The interaction between PO4 and Ca adsorption was studied on goethite because Ca can influence the PO4 adsorption equilibria. Since adsorption interactions are very difficult to discriminate from precipitation reactions, conditions were chosen to prevent precipitation of Ca-PO4 solids. Adsorption experiments of PO4 and Ca, individually and in combination, show a strong interaction between adsorbed Ca and PO4 on goethite for conditions below the saturation index of apatite. It is shown that it is possible to predict the adsorption and interaction of PO4 and Ca on electrostatic arguments using the model parameter values derived from the single-ion systems and without invoking ternary complex formation or precipitation. The model enables the prediction of the Ca-PO4 interaction for environmentally relevant calcium and phosphate concentrations.

  12. Adsorption characterizations of fulvic acid fractions onto kaolinite.

    PubMed

    Li, Aimin; Xu, Minjuan; Li, Wenhui; Wang, Xuejun; Dai, Jingyu

    2008-01-01

    Fulvic acids extracted from a typical rice-production region near Taihu Lake of China were fractionated into three fractions including F4.8, F7.0 and F11.0 (eluted by pH 4.8 buffer, pH 7.0 buffer and pH 11.0 buffer, respectively). Sorption of fulvic acid (FA) fractions onto kaolinite was studied by batch adsorption experiments, and characterizations of kaolinite before and after adsorption were investigated using scanning electron microscopy (SEM). Adsorption isotherms of kaolinite for three FA fractions fit well with the Langmuir adsorption model. The adsorption density of the three fractions was positively correlated with the ratio of the amount of the alkyl carbon to that of carboxyl and carbonyl carbon in FA fractions and followed an order of F11.0 > F7.0 > F4.8. Hydrophobic interaction was one of the control mechanisms for the sorption of FA fraction onto kaolinite. SEM images confirmed that compared to blank kaolinite samples, kaolinite samples coated by a FA fraction displayed an opener and more dispersed conformation resulting from the disruption of the floc structure in complex. Dispersion of kaolinite after adsorption was due to the repulsion between negatively charged FA-coated particles, which is closely related to the amount of FA fractions absorbed on kaolinite.

  13. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite.

    PubMed

    Anizelli, Pedro R; Baú, João Paulo T; Gomes, Frederico P; da Costa, Antonio Carlos S; Carneiro, Cristine E A; Zaia, Cássia Thaïs B V; Zaia, Dimas A M

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

  14. Gas chemical adsorption characterization of lanthanide hexafluoroacetylacetonates

    DOE PAGES

    Stratz, S. Adam; Jones, Steven J.; Mullen, Austin D.; ...

    2017-03-21

    Newly-established adsorption enthalpy and entropy values of 12 lanthanide hexafluoroacetylacetonates, denoted Ln[hfac] 4, along with the experimental and theoretical methodology used to obtain these values, are presented for the first time. The results of this work can be used in conjunction with theoretical modeling techniques to optimize a large-scale gas-phase separation experiment using isothermal chromatography. The results to date indicate average adsorption enthalpy and entropy values of the 12 Ln[hfac] 4 complexes ranging from -33 to -139 kJ/mol K and -299 to -557 J/mol, respectively.

  15. Effects of resident water and non-equilibrium adsorption on the primary and enhanced coalbed methane gas recovery

    NASA Astrophysics Data System (ADS)

    Jahediesfanjani, Hossein

    The major part of the gas in coalbed methane and shale gas reservoirs is stored as the adsorbed gas in the coal and organic materials of the black shale internal surfaces. The sorption sites in both reservoirs are composed of several macropores that contain very small pore sizes. Therefore, the adsorption/desorption is very slow process and follows a non-equilibrium trend. The time-dependency of the sorption process is further affected by the reservoir resident water. Water can diffuse into the matrix and adsorption sites, plug the pores and affect the reservoir gas production. This study presents an experimental and theoretical procedure to investigate the effects of the resident water and time-dependency of the sorption process on coalbed and shale gas primary and enhanced recovery by simultaneous CO 2/N2 injection. Series of the experiments are conducted to construct both equilibrium and non-equilibrium single and multi-component isotherms with the presence of water. A novel and rapid data interpretation technique is developed based on the nonequilibrium adsorption/desorption thermodynamics, mass conservation law, and volume filling adsorption theory. The developed technique is implemented to construct both equilibrium and non-equilibrium multi-component multi-phase isotherms from the early time experimental measurements. The non-equilibrium isotherms are incorporated in the coalbed methane/shale gas reservoir simulations to account for the time-dependency of the sorption process. The experimental results indicate that the presence of water in the sorption system reduces both carbon dioxide and nitrogen adsorption rates. Reduction in the adsorption rate for carbon dioxide is more than nitrogen. The results also indicate that the resident water reduces the adsorption ability of low rank coals more than high rank ones. The results of the multi-component sorption tests indicate that increasing the initial mole fraction of the nitrogen gas in the injected CO2/N2

  16. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    PubMed

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  17. Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume.

    PubMed

    Liu, Han-Bing; Yang, Bing; Xue, Nan-Dong

    2016-11-15

    A series of hydrophobic-modified (polydimethylsiloxane (PDMS) coating) activated carbons (ACs) were developed to answer a fundamental question: what are the determinants that dominate the adsorption on ACs under humid conditions? Using column experiments, an inter-comparison among bare-AC and PDMS-coated ACs was conducted regarding the association of surface characteristics and adsorption capacity. Primary outcomes occurred in two dominating markers, hydrophobicity and total micropore volume, which played a key role in water adsorption on ACs. However, their contributions to water adsorption on ACs substantially differed under different Pwater/Pair conditions. Hydrophobicity was the only contributor in Pwater/Pair=0.1-0.6, while the two markers contributed equally in Pwater/Pair=0.7-1.0. Furthermore, PDMS-coated AC had a significant increase in benzene adsorption capacities compared to bare-AC at 0-90% relative humidity, while these differences were not significant among PDMS-coated ACs. It is thus presumed that the balance between the two markers can be shifted to favor almost unchanged benzene adsorption capacities among PDMS-coated ACs over a large range of relative humidity. These findings suggest potential benefits of PDMS coating onto ACs in enhancing selective adsorption of hydrophobic volatile organic compounds under high humid conditions. To develop new porous materials with both high total micropore volume and hydrophobicity should thus be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Role of organic matter on boron adsorption-desorption hysteresis of soils

    USDA-ARS?s Scientific Manuscript database

    In this study we evaluated the boron (B) adsorption/desorption reaction in six soils and examined the extent to which organic matter content, as well as incubation time affected B release. Six soils varying in initial pH, clay content, and were selected for the study. Adsorption experiments were c...

  19. Errors in measuring water potentials of small samples resulting from water adsorption by thermocouple psychrometer chambers.

    PubMed

    Bennett, J M; Cortes, P M

    1985-09-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.

  20. Gd uptake experiments for preliminary set of functionalized adsorbents (with content model)

    DOE Data Explorer

    Clinton Noack

    2015-03-16

    These data summarize adsorption experiments conducted with Gd in 0.5 M NaCl. Results represent preliminary, proof-of-concept data utilizing fine-powder silica gel as the adsorbent support. Future testing will focus on larger, application-appropriate beads.

  1. Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.

    2013-10-01

    Fatty acids are known to affect the friction and wear of steel contacts via adsorption onto the surface, which is one of the fundamental boundary-lubrication mechanisms. The understanding of the lubrication mechanisms of polar molecules on diamond-like carbon (DLC) is, however, still insufficient. In this work we aimed to find out whether such molecules have a similar effect on DLC coatings as they do on steel. The adsorption of hexadecanoic acid in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage of the adsorbed fatty-acid molecules was analysed. In addition, tribological tests were performed to correlate the wear and friction behaviours in tribological contacts with the adsorption of molecules on the surface under static conditions. A good correlation between the AFM results and the tribological behaviour was observed. We confirmed that fatty acids can adsorb onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for DLC coatings. The adsorption of the fatty acid onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction. Tentative adsorption mechanisms that include an environmental species effect, a temperature effect and a tribochemical effect are proposed for DLC and steel surfaces based on our results and few potential mechanisms found in literature.

  2. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.

    PubMed

    Rivera-Utrilla, J; Sánchez-Polo, M

    2003-08-01

    The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.

  3. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  4. Combining sorption experiments and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to study the adsorption of propranolol onto environmental solid matrices - Influence of copper(II).

    PubMed

    Smith, Rose-Michelle; Sayen, Stéphanie; Nuns, Nicolas; Berrier, Elise; Guillon, Emmanuel

    2018-05-23

    The bioavailability of pharmaceuticals is governed by their sorption in soils/sediments, as the retention processes determine their concentration in surface- and ground-water. The adsorption of these contaminants can involve various solid components such as organic matter, clays and metallic oxides, and their distribution among these solid components depends on contaminant and solid properties. In this paper we studied the adsorption of the pharmaceutical propranolol - a beta-blocker - on eight different solids (six soils, one sediment and one kaolinite-based sample) by batch experiments. The influence of contact time, propranolol concentration and pH was considered, as well as the presence of copper(II). The investigated solids displayed a wide variability in terms of CEC (cationic exchange capacity) and organic carbon and carbonates contents. The influence of pH was negligible in the pH range from 5.5 to 8.6. The adsorbed amounts were greatly dependent on the solid and two groups of solids were evidenced: three soils of high CEC and organic carbon contents which retained high amounts of propranolol, and three soils, the sediment and the kaolinite-based sample (low CEC and organic carbon content) displaying a low adsorption capacity for the beta-blocker. A linear model enabling the determination of the sorption parameters K d and K oc was pertinent to describe the adsorption isotherms but the K oc values showed a great variability. It was shown that organic carbon content alone could not explain propranolol adsorption. The CEC value was identified as influent parameter and a simple empirical model was proposed to describe propranolol adsorption. At microscopic and molecular scales, ToF-SIMS experiments indicated (i) a decrease of potassium on the surface upon propranolol adsorption with a distribution of the beta-blocker similarly to alumino-silicates, iron and organic carbon on the surface confirming a cation exchange mechanism and (ii) the absence of degradation

  5. Water adsorption on goethite: Application of multilayer adsorption models

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  6. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation.

    PubMed

    Moghadam, Peyman Z; Ivy, Joshua F; Arvapally, Ravi K; Dos Santos, Antonio M; Pearson, John C; Zhang, Li; Tylianakis, Emmanouil; Ghosh, Pritha; Oswald, Iain W H; Kaipa, Ushasree; Wang, Xiaoping; Wilson, Angela K; Snurr, Randall Q; Omary, Mohammad A

    2017-05-01

    FMOF-1 is a flexible, superhydrophobic metal-organic framework with a network of channels and side pockets decorated with -CF 3 groups. CO 2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg -1 (11.0 mol L -1 ) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N 2 , O 2 , and CO 2 . Neutron diffraction in situ experiments on the crystalline powder show that CO 2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N 2 and O 2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO 2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO 2 in the presence of 80% relative humidity predict that water does not influence the CO 2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO 2 capture from humid gas streams.

  7. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  8. Effect of pH on the adsorption of dodecylamine on montmorillonite: Insights from experiments and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Peng, Chenliang; Min, Fanfei; Liu, Lingyun

    2017-12-01

    The hydrophobic aggregation in cationic surfactant suspension is an effective method to enhance the dewatering of clay-rich tailing. The solution pH can affect the adsorption behavior of cationic surfactant on clay mineral. The effect of pH on the adsorption of dodecylamine (DDA) on montmorillonite was investigated by the sedimentation test and the characterization of flocs images, contact angle, adsorption quantity, and fourier transform infrared (FTIR) spectroscopy, as well as molecular dynamics (MD) simulation. It was found that DDA ions were adsorbed on montmorillonite basal surfaces mainly by physical adsorption, including the electrostatic attraction and hydrogen bonding. A certain number of neutral DDA molecules can favor the adsorption of DDA. At pH around 8, the effect of hydrophobic modification was the best because DDA molecules and ions form compact and well-organized monolayer. The MD simulation results were in good agreement with that of contact angle, adsorption quantity and FTIR.

  9. A Novel Nanocomposite as an Efficient Adsorbent for the Rapid Adsorption of Ni(II) from Aqueous Solution

    PubMed Central

    Wang, Ximing; Chen, Zhangjing

    2017-01-01

    A sulfhydryl-lignocellulose/montmorillonite (SLT) nanocomposite was prepared using a chemical intercalation reaction. The SLT nanocomposite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscopy (TEM), the results demonstrated that an intercalated-exfoliated nanostructure was formed in the SLT nanocomposite. Batch experiments were conducted to optimize parameters such as SLT nanocomposite dosage, the initial concentration of Ni(II), solution pH, temperature, and time. The results indicated that the attractive adsorption capacity reached 1134.08 mg/g with 0.05 g of SLT at an initial concentration of Ni(II) of 700 mg/L, solution pH of 5.5, adsorption temperature of 50 °C, and adsorption time of 40 min, meanwhile, the Ni(II) adsorption capacity significantly decreased with the increase in ionic strength. The pseudo-second order kinetic model could describe the whole adsorption process well, and the isotherm adsorption equilibrium conformed to the Freundlich model. The adsorption mechanism of SLT was also discussed by means of FTIR and Energy-Dispersive X-Ray (EDX). Dramatically, the introduction of sulfhydryl achieves the increased activated functional groups content of SLT nanocomposite, leading to remarkably higher adsorption amount on Ni(II). The desorption capacity of SLT was dependent on parameters such as HNO3 concentration, desorption temperature, and ultrasonic desorption time. The satisfactory desorption capacity and desorption efficiency of 458.21 mg/g and 40.40% were obtained at an HNO3 concentration, desorption temperature, and ultrasonic desorption time of 0.4 mol/L, 40 °C, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of SLT was consistent for four cycles without any appreciable loss and confirmed that the SLT was reusable. Owing to such outstanding features, the novel SLT nanocomposite proved the

  10. Selenium isotope fractionation during adsorption onto the modified clay minerals

    NASA Astrophysics Data System (ADS)

    Xu, W.; Jianming, Z.; Tan, D.; Qin, H.

    2016-12-01

    Currently, Selenium (Se) isotopes have been used as a paleoenvironmental proxy to trace Se evolution in Ancient Ocean. And many researchers considered the variation of Se isotopes in nature mainly result from the reduction of Se oxyanion, while Se isotope fractionation during adsorption onto minerals was rarely reported. Therefore, based on the previous studies [1, 2], we used three common clay minerals in supergene environment: montmorillonite, illite and kaolinite as an adsorbent to study Se isotope fractionation during adsorption. Before doing adsorption experiments, the adsorbent were modified as Na-clay minerals to remove the possibility of interference of Ca2+, Fe3+, Fe2+ as well as organic matters. A batch adsorption experiments were carried out at room temperature (23 ±2 °) under N2 atmosphere, initial Se concentration (SeO32-/ SeO42-) was respectively 200ng and 100ng, the solution ionic strength was 0.1mol/L NaCl; the ratio of liquid to solid is 2g / L, and pH = 5. Experimental results showed that adsorption reached a steady state during 48h, and the maximum adsorption for SeO32- was larger than SeO42-. The isotope data showed that SeO42- adsorbed onto three clay minerals didn't present obvious Se isotope fractionation, generally δ82/78Se is less than 0.1 ‰. Meanwhile, SeO32- during adsorption process also didn't show the significant fractionation, less than 0.3 ‰. However, interestingly, for SeO32- the δ82/78Se values of solution during adsorption onto kaolinite underwent a process of increasing by 0.5‰ compared to the initial solution and then decreasing to 0.3‰. We speculated the reason may not be related to the surface charge of the clay minerals, but mostly with the layered structure of clay minerals. Montmorillonite and illite are 2: 1; kaolinite is 1: 1 layered structure. The different layered structure may influence the isotope fraction between Se oxyanions and clay minerals. These still needs further and more experiments to definitely

  11. Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta.

    PubMed

    León, Marta; Swift, T Dallas; Nikolakis, Vladimiros; Vlachos, Dionisios G

    2013-06-04

    A comprehensive study of the adsorption of the compounds involved in the reaction of dehydration of fructose to 5-hydroxymethyl furfural (HMF) on the zeolite H-BEA with SiO2/Al2O3 = 18 has been carried out. Furthermore, a method for the estimation of the real adsorption loading from the experimentally measured excess adsorption is developed and applied to calculate the adsorption isotherms both in the case of single-solute and multisolute mixtures. It was found that zeolite H-BEA adsorbs HMF and levulinic acid from water mixtures to greater extent than sugars and formic acid, which prefer to partition in the aqueous phase. HMF and levulinic acid adsorption isotherms could be fitted in a Redlich-Peterson isotherm model, while the adsorption of formic acid is better fitted using the Freundlich model and sugars via the Henry model. Adsorption loadings decreased with increasing temperature (0, 25, and 40 °C), which is characteristic of an exothermic process. From the temperature dependence of the isotherms, the limiting heat of adsorption at zero coverage was determined using van't Hoff equation. Given the importance and the complexity of multicomponent systems, several experiments of adsorption of multisolute solutions have been carried out. In most of the cases, the ideal adsorbed solution theory (IAST) has been proven to satisfactorily predict adsorption from multisolute mixtures using as input the single-solute isotherms.

  12. Conducting real-time multiplayer experiments on the web.

    PubMed

    Hawkins, Robert X D

    2015-12-01

    Group behavior experiments require potentially large numbers of participants to interact in real time with perfect information about one another. In this paper, we address the methodological challenge of developing and conducting such experiments on the web, thereby broadening access to online labor markets as well as allowing for participation through mobile devices. In particular, we combine a set of recent web development technologies, including Node.js with the Socket.io module, HTML5 canvas, and jQuery, to provide a secure platform for pedagogical demonstrations and scalable, unsupervised experiment administration. Template code is provided for an example real-time behavioral game theory experiment which automatically pairs participants into dyads and places them into a virtual world. In total, this treatment is intended to allow those with a background in non-web-based programming to modify the template, which handles the technical server-client networking details, for their own experiments.

  13. Effect of Pore Topology and Accessibility on Gas Adsorption Capacity in Zeolitic-Imidazolate Frameworks: Bringing Molecular Simulation Close to Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarao, Ravichandar; Dai, Sheng; Jiang, Deen

    2011-01-01

    When all cages are assumed to be accessible, popular force fields such as universal force field (UFF) and DREIDING dramatically overpredicted gas adsorption capacity in two widely studied zeolitic-imidazolate frameworks (ZIFs), ZIF-68 and -69. Instead of adjusting the force-field parameters to match the experiments, herein we show that when the pore topology and accessibility are correctly taken into account, simulations with the standard force fields agree very well with the experiments. Careful inspection shows that ZIF-68 and -69 have two one-dimensional channels, which are not interaccessible to gases. The small channel consists of alternating small (HPR) and medium (GME) cages,more » while the large channel comprises the large (KNO) cages. Our analysis indicates that the small channel is not accessible to gases such as CO{sub 2}. So when the cages in the small channel are intentionally blocked in our simulation, the predicted adsorption capacities of CO{sub 2}, CH{sub 4} and N{sub 2} at room temperature from standard force-field parameters for the framework show excellent agreement with the experimental results. In the case of H{sub 2}, all cages are accessible, so simulation results without cage-blocking show excellent agreement with experiment. Due to the promising potential of ZIFs in gas storage and separation, our work here shows that pore topology and accessibility should be carefully examined to understand how gases adsorb in ZIFs.« less

  14. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  15. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  16. Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles. PMID:25815470

  17. The adsorption of argon on ZnO at 77K

    NASA Astrophysics Data System (ADS)

    Marinelli, Francis; Grillet, Yves; Pellenq, Roland J.-M.

    We have studied the adsorption of argon onto ZnO surfaces at 77K by means of quasiequilibrium adsorption volumetry coupled with high resolution microcalorimetry and Grand Canonical Monte-Carlo (GCMC) simulations. The adsorbate/surface adsorption potential function (PN type) used in the simulations, was determined on the basis of ab initio calculations (corrected for dispersion interactions). The first aspect of this work was to test the ability of a standard solid-state Hartree-Fock technique coupled with a perturbative semiempirical approach in deriving a reliable adsorption potential function. The dispersion part of the adsorbate/surface interatomic potential was derived by using perturbation theory-based equations while the repulsive and induction interactions were derived from periodic HartreeFock (CRYSTAL92) calculations. GCMC simulations based on this adsorption potential allow one to calculate adsorption isotherms and isosteric heat versus loading curves as well as singlet distribution functions at 77K for each type of ZnO (neutral and polar) faces. The combined analysis of the simulation data for all surfaces gives a good insight of the adsorption mechanism of argon onto ZnO surfaces at 77K in agreement with experiment. As far as neutral surfaces are concerned, it is shown that adsorption first takes place within the 'troughs' which cover ZnO neutral surfaces. At low chemical potentials, these semi-channels are preferential adsorption sites in which we could detect a nearly one-dimensional adsorbate freezing in a commensurate phase at 77K. The polar O faces are the most favourable surfaces for adsorption at higher chemical potentials.

  18. Kinetic and isotherm studies of bisphenol A adsorption onto orange albedo(Citrus sinensis): Sorption mechanisms based on the main albedo components vitamin C, flavones glycosides and carotenoids.

    PubMed

    Kamgaing, Theophile; Doungmo, Giscard; Melataguia Tchieno, Francis Merlin; Gouoko Kouonang, Jimmy Julio; Mbadcam, Ketcha Joseph

    2017-07-03

    Orange albedo and its adsorption capacity towards bisphenol A (BPA) were studied. Adsorption experiments were conducted in batch mode at 25-55°C. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared (FTIR) spectroscopy were used to characterise the biosorbent. The effects of various parameters including adsorption time, equilibrium pH, adsorbent dosage and initial adsorbate concentration were investigated. The optimum contact time and pH for the removal of BPA were 60 min and 2, respectively. It was found that the adsorption isotherms best matched the Freundlich model, the adsorption of BPA being multilayer and that of the albedo surface heterogeneous. From the kinetic studies, it was found that the removal of BPA best matched the pseudo-second order kinetic model. An adsorption mechanism based on the albedo surface molecules is proposed and gives a good account of π-π interactions and hydrogen bonding. Orange albedo, with a maximum BPA loading capacity of 82.36 mg g -1 (significantly higher than that of most agricultural residues), is a good candidate for BPA adsorption in aqueous media.

  19. Adsorption Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kai; Vineyard, Edward Allan

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less

  20. Temperature-dependent infrared and calorimetric studies on arsenicals adsorption from solution to hematite nanoparticles

    USDA-ARS?s Scientific Manuscript database

    To address the lack of systematic and surface sensitive studies on the adsorption energetics of arsenic compounds on metal (oxyhydr)oxides, we conducted temperature-dependent ATR-FTIR studies for the adsorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid on hematite nanoparticles a...

  1. A Photochemical Reactor for the Study of Kinetics and Adsorption Phenomena

    ERIC Educational Resources Information Center

    Poce-Fatou, J. A.; Gil, M. L. A.; Alcantara, R.; Botella, C.; Martin, J.

    2004-01-01

    The interaction between light and matter is examined with the help of a photochemical experiment. This experiment is useful for the investigation of heterogeneous catalysis, semiconductor properties and adsorption phenomena.

  2. Human fibrinogen adsorption on positively charged latex particles.

    PubMed

    Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał

    2014-09-23

    Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and

  3. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    PubMed Central

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  4. Errors in Measuring Water Potentials of Small Samples Resulting from Water Adsorption by Thermocouple Psychrometer Chambers 1

    PubMed Central

    Bennett, Jerry M.; Cortes, Peter M.

    1985-01-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios. PMID:16664367

  5. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    PubMed

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  6. Adsorption characteristics of methylene blue onto agricultural wastes lotus leaf in bath and column modes.

    PubMed

    Han, Xiuli; Wang, Wei; Ma, Xiaojian

    2011-01-01

    The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.

  7. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  8. Structure and adsorption properties of a porous cooper hexacyanoferrate polymorph

    NASA Astrophysics Data System (ADS)

    Roque-Malherbe, R.; Carballo, E.; Polanco, R.; Lugo, F.; Lozano, C.

    2015-11-01

    The key questions addressed here were: the structure elucidation and the investigation of the adsorption space and framework expansion effect of a Cu(II) hexacyanoferrate (III) polymorph (labeled Cu-PBA-I). The structural analysis was performed with a broad set of characterization methods. Additionally, a low and high pressure carbon dioxide adsorption investigation was performed, assuming, to comprehend the adsorption experiments, that the adsorbent plus the adsorbed phase were a solid solution. We concluded: that the Cu-PBA-I presented the following composition, K1/4 Cu (II)[ Fe (III)(CN)6 ] 3 / 4⋄1/4 nH2 O , exhibited an antiferromagnetic behavior and displayed a thermally stable I 4 bar m 2 space group lattice in the degassed state. Moreover, the low pressure adsorption study allowed the calculation of the micropore volume, W=0.09 cm3/g and the isosteric heat of adsorption, qiso=19 kJ/mol; further, the high pressure adsorption data revealed an extremely high adsorption capacity owing to a framework expansion effect. Finally, the DRIFTS spectrum of adsorbed CO2 displayed peaks corresponding to carbon dioxide physically adsorbed and interacting with electron accepting Lewis acid sites. Hence, was produced an excellent adsorbent which combine porosity and anti-ferromagnetism, antagonist properties rarely found together.

  9. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons.

    PubMed

    Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O

    2015-07-01

    This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    PubMed

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  11. A flow-pulse adsorption-microcalorimetry system for studies of adsorption processes on powder catalysts

    NASA Astrophysics Data System (ADS)

    You, Rui; Li, Zhaorui; Zeng, Hongyu; Huang, Weixin

    2018-06-01

    A pulse chemisorption system combining a Tian-Calvet microcalorimeter (Setaram Sensys EVO 600) and an automated chemisorption apparatus (Micromeritics Autochem II 2920) was established to accurately measure differential adsorption heats of gas molecules' chemisorption on solid surfaces in a flow-pulse mode. Owing to high sensitivity and high degree of automation in a wide range of temperatures from -100 to 600 °C, this coupled system can present adsorption heats as a function of adsorption temperature and adsorbate coverage. The functions of this system were demonstrated by successful measurements of CO adsorption heats on Pd surfaces at various temperatures and also at different CO coverages by varying the CO concentration in the pulse dose. Key parameters, including adsorption amounts, integral adsorption heats, and differential adsorption heats of CO adsorption on a Pd/CeO2 catalyst, were acquired. Our adsorption-microcalorimetry system provides a powerful technique for the investigation of adsorption processes on powder catalysts.

  12. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  13. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  14. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    NASA Astrophysics Data System (ADS)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations

  15. Critical conditions of polymer adsorption and chromatography on non-porous substrates.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-07-15

    We present a novel thermodynamic theory and Monte Carlo simulation model for adsorption of macromolecules to solid surfaces that is applied for calculating the chain partition during separation on chromatographic columns packed with non-porous particles. We show that similarly to polymer separation on porous substrates, it is possible to attain three chromatographic modes: size exclusion chromatography at very weak or no adsorption, liquid adsorption chromatography when adsorption effects prevail, and liquid chromatography at critical conditions that occurs at the critical point of adsorption. The main attention is paid to the analysis of the critical conditions, at which the retention is chain length independent. The theoretical results are verified with specially designed experiments on isocratic separation of linear polystyrenes on a column packed with non-porous particles at various solvent compositions. Without invoking any adjustable parameters related to the column and particle geometry, we describe quantitatively the observed transition between the size exclusion and adsorption separation regimes upon the variation of solvent composition, with the intermediate mode occurring at a well-defined critical point of adsorption. A relationship is established between the experimental solvent composition and the effective adsorption potential used in model simulations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Nickel adsorption onto polyurethane ethylene and vinyl acetate sorbents.

    PubMed

    Iqbal, Munawar; Ali, Zahid; Qamar, M Afzal; Ali, Abid; Hussain, Fida; Abbas, Mazhar; Nisar, Jan

    2017-07-01

    The present study was conducted to appraise the efficiencies of polyurethane ethylene sorbent (PES) and vinyl acetate sorbent (VAS) for nickel (Ni) adsorption. Process variables, i.e. Ni(II) ions initial concentration, pH, contact time and adsorbent dosage were optimized by response surface methodology (RSM) approach. The Ni(II) adsorption was fitted to the kinetic models (pseudo-first-order and pseudo-second-order) and adsorption isotherms (Freundlich and Langmuir). At optimum conditions of process variables, 171.99 mg/g (64.7%) and 388.08 mg/g (92.7%) Ni(II) was adsorbed onto PES and VAS, respectively. The RSM analysis revealed that maximum Ni(II) adsorption can be achieved at 299 mg/L Ni(II) ions initial concentration, 4.5 pH, 934 min contact time and 1.3 g adsorbent dosage levels for PES, whereas the optimum values for VAS were found to be 402 mg/L Ni(II) ions initial concentration, 4.6 pH, 881 min contact time and 1.2 g adsorbent dosage, respectively. The -OH and -C = O- were involved in the Ni(II) adsorption onto PES and VAS adsorbents. At optimum levels, up to 53.67% and 80.0% Ni(II) was removed from chemical industry wastewater using PES and VAS, respectively, which suggest that PES and VAS could possibly be used for Ni(II) adsorption from industrial wastewater.

  17. Adsorption of Acid Blue 25 dye by bentonite and surfactant modified bentonite

    NASA Astrophysics Data System (ADS)

    Jeeva, Mark; Wan Zuhairi, W. Y.

    2018-04-01

    Adsorption of Acid Blue (AB 25) from water via batch adsorption experiments onto Na-Bentonite (NB) and CTAB-modified bentonite (CTAB-Ben) was investigated. Studies concerning the factors influencing the adsorption capacities of NB and CTAB-Ben, such as initial dye concentration, adsorbent dosage, pH, contact time and temperature were investigated and discussed. The results revealed that CTAB-modified bentonite demonstrated high adsorption capacities toward acid dyes, while NB exhibited sorption capacities lower than CTAB-Ben. The maximum adsorption efficiency was found to be 50% at an AB 25 concentration of 50 mg/L, adsorbent dosage of 1.8 g/L, reaction time of 90 min and equilibrium pH of 11. The results of isotherm study fit the Langmuir and Freundlich models (R2 > 0.93) and (R2 > 0.9) respectively.

  18. Adsorption of surfactants and polymers at interfaces

    NASA Astrophysics Data System (ADS)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  19. Adsorption behavior of proteins on temperature-responsive resins.

    PubMed

    Poplewska, Izabela; Muca, Renata; Strachota, Adam; Piątkowski, Wojciech; Antos, Dorota

    2014-01-10

    The adsorption behavior of proteins on thermo-responsible resins based on poly(N-isopropylacrylamide) and its copolymer containing an anionic co-monomer has been investigated. The influence of the polymer composition, i.e., the content of the co-monomer and crosslinker on the thermo-sensitivity of the protein adsorption has been quantified. The properties of ungrafted polymer as well grafted onto the agarose matrix have been analyzed and compared. Batch and dynamic (column) experiments have been performed to measure the adsorption equilibrium of proteins and to quantify the phase transition process. As model proteins lysozyme, lactoferrin, α-chymotrypsinogen A and ovalbumin have been used. The adsorption process was found to be governed by ionic interactions between the negatively charged surface of resin and the protein, which enabled separation of proteins differing in electrostatic charge. The interactions enhanced with increase of temperature. Decrease of temperature facilitated desorption of proteins and reduced the salt usage in the desorption buffer. Grafted polymers exhibited markedly higher mechanical stability and, however, weaker temperature response compared to the ungrafted ones. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Adsorption of dextrin on hydrophobic minerals.

    PubMed

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2009-09-01

    The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.

  1. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite

    NASA Astrophysics Data System (ADS)

    Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas

    2014-04-01

    Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol

  2. Adsorption and desorption of SO2, NO and chlorobenzene on activated carbon.

    PubMed

    Li, Yuran; Guo, Yangyang; Zhu, Tingyu; Ding, Song

    2016-05-01

    Activated carbon (AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other's adsorption. A series of adsorption experiments for multicomponents, including SO2, NO, chlorobenzene and H2O, on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO2, demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO2 adsorption. The temperature-programmed desorption (TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO2>chlorobenzene > NO. The adsorption amount is independent of the binding strength. The presence of H2O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy (XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C=O groups, which explains the positive effect of chlorobenzene on SO2 adsorption and the strong NO adsorption. Copyright © 2015. Published by Elsevier B.V.

  3. Experimental investigation of cephapirin adsorption to quartz filter sands and dune sands

    NASA Astrophysics Data System (ADS)

    Peterson, Jonathan W.; O'Meara, Theresa A.; Seymour, Michael D.

    2008-08-01

    Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08-0.36 wt%). In the aqueous concentration range investigated (11-112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50-3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06-0.35 mm diameter), and the smallest quartz filter sand investigated (0.43-0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients ( K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.

  4. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    NASA Astrophysics Data System (ADS)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  5. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2.

    PubMed

    Hartmann, Martin; Kunz, Sebastian; Himsl, Dieter; Tangermann, Oliver; Ernst, Stefan; Wagener, Alex

    2008-08-19

    The metal organic framework material Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) has been synthesized using different routes: under solvothermal conditions in an autoclave, under atmospheric pressure and reflux, and by electrochemical reaction. Although the compounds display similar structural properties as evident from the powder X-ray diffraction (XRD) patterns, they differ largely in specific surface area and total pore volume. Thermogravimetric and chemical analysis support the assumption that pore blocking due to trimesic acid and/or methyltributylammoniummethylsulfate (MTBS) which has been captured in the pore system during reaction is a major problem for the electrochemically synthesized samples. Isobutane and isobutene adsorption has been studied for all samples at different temperatures in order to check the potential of Cu3(BTC)2 for the separation of small hydrocarbons. While the isobutene adsorption isotherms are of type I according to the IUPAC classification, the shape of the isobutane isotherm is markedly different and closer to type V. Adsorption experiments at different temperatures show that a somewhat higher amount of isobutene is adsorbed as compared to isobutane. Nevertheless, the differential enthalpies of adsorption are only different by about 5 kJ/mol, indicating that a strong interaction between the copper centers and isobutene does not drive the observed differences in adsorption capacity. The calculated breakthrough curves of isobutene and isobutane reveal that a low pressure separation is preferred due to the peculiar shape of the isobutane adsorption isotherms. This has been confirmed by preliminary breakthrough experiments using an equimolar mixture of isobutane and isobutene.

  6. Adsorption-desorption of oxytetracycline on marine sediments: Kinetics and influencing factors.

    PubMed

    Li, Jia; Zhang, Hua

    2016-12-01

    To reveal the kinetics and mechanisms of antibiotic adsorption/desorption processes, batch and stirred flow chamber (SFC) experiments were carried out with oxytetracycline (OTC) on two marine sediments. The OTC adsorption capacities of the marine sediments were relatively weak and related to their organic carbon (OC) and contents of fine particles. Sorption isotherms of OTC on marine sediment can be well described by both the Langmuir and Freundlich models. Langmuir adsorption maxima (q max ) and Freundlich distribution coefficients (K f ) increased with the decrease of salinity and pH, which indicated the importance of variable charged sites on sediment surfaces. A second order kinetic model successfully described adsorption and desorption kinetics of OTC and well reproduced the concentration change during stop-flow. The adsorption kinetic rates (k a ) for OTC under different experimental conditions ranged from 2.00 × 10 -4 to 1.97 × 10 -3  L (mg min) -1 . Results of SFC experiments indicated that diffusive mass transfer was the dominant mechanism of the time-dependent adsorption of OTC and its release from marine sediment was mildly hysteretic. The high desorption percentage (43-75% for LZB and 58-75% for BHB) implied that binding strength of OTC on two marine sediments was weak. In conclusion, marine sediment characteristics and environmental factors such as salinity, pH, and flow rate are critical factors determine extent of OTC sorption on marine sediment and need to be incorporated in modeling fate and transport of OTC in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds.

    PubMed

    Xiao, Feng; Pignatello, Joseph J

    2016-06-21

    This study was conducted to understand the effects of thermal air oxidation of biomass chars experienced during formation or production on their adsorptive properties toward various compounds, including five neutral nonpolar and polar compounds and seven weak acids and bases (pKa = 3-5.2) selected from among industrial chemicals and the triazine and phenoxyacetic acid herbicide classes. Post-pyrolysis air oxidation (PPAO) at 400 °C of anoxically prepared wood and pecan shell chars for up to 40 min enhanced the mass-normalized adsorption at pH ∼ 7.4 of all test compounds, especially the weak acids and bases, by up to 100-fold. Both general and specific effects were identified. The general effect results from "reaming" of pores by the oxidative removal of pore wall matter and/or tarry deposits generated during the pyrolysis step. Reaming creates new surface area and enlarges nanopores, which helps relieve steric hindrance to adsorption. The specific effect results from creation of new acidic functionality that provides sites for the formation of very strong, charge-assisted hydrogen bonds (CAHB) with solutes having comparable pKa. The CAHB hypothesis was supported by competition experiments and the finding that weak acid anion adsorption increased with surface carboxyl content, despite electrostatic repulsion from the growing negative charge. The results provide insight into the effects of air oxidation on pollutant retention.

  8. Combined Homogeneous Surface Diffusion Model - Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects.

    PubMed

    Muthukkumaran, A; Aravamudan, K

    2017-12-15

    Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  10. Adsorption of imidazolinone herbicides on smectite-humic acid and smectite-ferrihydrite associations.

    PubMed

    Leone, P; Nègre, M; Gennari, M; Boero, V; Celis, R; Cornejo, J

    2002-01-16

    Adsorption of imazapyr (IMZ), imazethapyr (IMZT), and imazaquin (IMZQ) was studied on two smectite-humic acid and two smectite-ferrihydrite binary systems prepared by treating a Wyoming smectite with a humic acid extracted from soil (4 and 8% w/w of the smectite) and with just-precipitated synthetic ferrihydrite (8 and 16% w/w of the smectite). Adsorption of the three herbicides on the smectite was not measurable at pH >4.5, presumably because of negative charges on the surface of the smectite. Adsorption on the smectite-humic acid systems was also not measurable, presumably because of negative charges on the surface, despite the high affinity of the three herbicides for humic acid, the adsorption order of which was IMZ < IMZT < IMZQ. Adsorption decreased in the order IMZ < IMZT < IMZQ on the smectite-ferrihydrite systems and IMZQ < IMZT < IMZ on ferrihydrite, although here the differences were small. These results show that even though pure smectite cannot adsorb herbicides, it modifies the adsorption capacity of ferrihydrite. The mutual interaction of active phases such as humic acid, ferrihydrite, and smectite alters the characteristics of the resulting surface and hence the adsorption process. Investigations of herbicide adsorption have been seen to produce more reliable results if conducted on polyphasic systems rather than on single soil components.

  11. Adsorption characteristics of hexavalent chromium on HCB/TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yonggang

    2014-10-01

    Sol-gel method was adopted to prepare HCB/TiO2 and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO2 was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pHpzc) characteristics of the surface of HCB/TiO2 which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25-45 °C, so Cr(VI) adsorption by HCB/TiO2 is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g-1 in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.

  12. The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization

    PubMed Central

    Ding, Yi; Liu, Le; Fang, Yaowei; Zhang, Xu; Lyu, Mingsheng; Wang, Shujun

    2018-01-01

    We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg); histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption. PMID:29562655

  13. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.

    PubMed

    Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara

    2014-01-01

    In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.

  14. Adsorption of VOCs on reduced graphene oxide.

    PubMed

    Yu, Lian; Wang, Long; Xu, Weicheng; Chen, Limin; Fu, Mingli; Wu, Junliang; Ye, Daiqi

    2018-05-01

    A modified Hummer's method was adopted for the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO). It was revealed that the modified method is effective for the production of GO and rGO from graphite. Transmission electron microscopy (TEM) images of GO and rGO showed a sheet-like morphology. Because of the presence of oxygenated functional groups on the carbon surface, the interlayer spacing of the prepared GO was higher than that of rGO. The presence of OH and CO groups in the Fourier transform infrared spectra (FTIR) spectrum and G-mode and 2D-mode in Raman spectra confirmed the synthesis of GO and rGO. rGO (292.6m 2 /g) showed higher surface area than that of GO (236.4m 2 /g). The prepared rGO was used as an adsorbent for benzene and toluene (model pollutants of volatile organic compounds (VOCs)) under dynamic adsorption/desorption conditions. rGO showed higher adsorption capacity and breakthrough times than GO. The adsorption capacity of rGO for benzene and toluene was 276.4 and 304.4mg/g, respectively. Desorption experiments showed that the spent rGO can be successfully regenerated by heating at 150.0°C. Its excellent adsorption/desorption performance for benzene and toluene makes rGO a potential adsorbent for VOC adsorption. Copyright © 2017. Published by Elsevier B.V.

  15. Synthesis of Fe3O4/Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline.

    PubMed

    Liu, Qing; Zhong, Lu-Bin; Zhao, Quan-Bao; Frear, Craig; Zheng, Yu-Ming

    2015-07-15

    Novel Fe3O4/polyacrylonitrile (PAN) composite nanofibers (NFs) were prepared by a simple two-step process, an electrospinning and solvothermal method. Characterization by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) demonstrated formation of a uniform nanoparticles coating (about 20 nm in thickness) on the PAN nanofiber backbone. The coating was constructed by well-crystallized cubic phase Fe3O4 nanoparticles as examined by X-ray diffraction spectroscopy (XRD). The coating doubled the specific surface area of NFs, from 8.4 to 17.8 m2 g(-1), as confirmed by nitrogen sorption isotherm analysis. To evaluate the feasibility of Fe3O4/PAN composite NFs as a potential adsorbent for antibiotic removal, batch adsorption experiments were conducted using tetracycline (TC) as the model antibiotic molecule. The results showed that Fe3O4/PAN composite NFs were effective in removing TC with no impactful loss of Fe in the pH regime of environmental interest (5-8). The adsorption of TC onto Fe3O4/PAN composite NFs better fitted the pseudo-second-order kinetics model, and the maximum adsorption capacity calculated from Langmuir isotherm model was 257.07 mg g(-1) at pH 6. The composite NFs also exhibited good regenerability over repeated adsorption/desorption cycles. Surface complexation between TC and the composite NFs contributed most to the adsorption as elucidated by X-ray photoelectron spectroscopy (XPS). This highly effective and novel adsorbent can be easily modularized and separated, promising its huge potential in drinking and wastewater treatment for antibiotic removal.

  16. Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies

    NASA Astrophysics Data System (ADS)

    Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.

    2006-05-01

    Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is an organo-arsenical compound, commonly used as a feed additive in the broiler poultry industry to control coccidial intestinal parasites. Roxarsone is not toxic to the birds not only because of the low dose, and also because it most likely does not convert to toxic inorganic arsenic (As) in their systems. However, upon excretion, roxarsone may undergo transformation to inorganic As, posing a serious risk of contaminating the agricultural land and water bodies via surface runoff or leaching. The use of poultry litter as fertilizer results in As accumulation rates of up to 50 metric tons per year in agricultural lands. The immediate challenge, as identified by the various regulatory bodies in recent years is to develop an efficient, yet cost-effective and environmentally sound approach to cleaning up such As- contaminated soils. Recent studies conducted by our group have suggested that the drinking water treatment residuals (WTRs) can effectively retain As, thereby decreasing its mobility in the environment. The WTRs are byproducts of drinking water treatment processes and are typically composed of amorphous Fe/Al oxides, activated C and cationic polymers. They can be obtained free-of-cost from water treatment plants. It is well demonstrated that the environmental mobility of As is controlled by adsorption/desorption reactions onto mineral surfaces. Hence, knowledge of adsorption and desorption of As onto the WTRs is of environmental relevance. The reported study examined the adsorption and desorption characteristics of As using two types of WTRs, namely the Fe-WTRs (byproduct of Fe salt treatment), and the Al-WTRs (byproduct of Al salt treatment). All adsorption experiments were carried out in batch and As retention on the WTRs was investigated as a function of solid/solution ratio (1:5, 1:10, 1:25 and 1:50), equilibration time (10 min - 48 hr), pH (2 - 10) and initial As load (100, 500, 1000 and 2000 mg As/L). The

  17. Experiments On Transparent Conductive Films For Spacecraft

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David

    1995-01-01

    Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.

  18. Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q.

    2017-11-01

    In order to reveal the adsorption mechanism of the ferric chloride modified humic acid on uranium, the influence of pH value and contact time of adsorption on uranium was studied through a series of batch experiments. Meanwhile, the adsorption kinetics was analyzed with pseudo-first order kinetic model and pseudo-second order kinetic model. The results show that adsorption is affected by the pH value of the solution and by contract time, and the best condition for adsorption on uranium is at pH=5 and the adsorption equilibrium time is about 80 min. Kinetics of HA-Fe adsorption on uranium accords with pseudo-second order kinetic model. The adsorption is mainly chemical adsorption, and complexes were produced by the reaction between uranium ions and the functional groups on the surface of HA-Fe, which can provide reference for further study of humic acid effecting on the migration of U(VI) in soil.

  19. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there by W. Scot Appel under the direction of Dr. John E. Finn. Modeling work was performed at the University of Virginia and at Vanderbilt University by W. Scot Appel under the direction of M. Douglas LeVan. All three participants collaborated in all of the various phases of the research. The most comprehensive document describing the research is the Ph.D. dissertation of W. Scot Appel. Results have been published in several papers and presented in talks at technical conferences. All documents have been transmitted to Dr. John E. Finn.

  20. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.

    PubMed

    Hlushak, Stepan

    2018-01-03

    the heat of adsorption by the CDFT theory at higher loadings. However, both adsorption stress and adsorption capacity appear to be much less sensitive to the differences between the models and demonstrate excellent agreement between the theory and the computer experiment.

  1. Adsorptive removal of antibiotics from water using magnetic ion exchange resin.

    PubMed

    Wang, Tianyue; Pan, Xun; Ben, Weiwei; Wang, Jianbing; Hou, Pin; Qiang, Zhimin

    2017-02-01

    The occurrence of antibiotics in the environment has recently raised serious concern regarding their potential threat to aquatic ecosystem and human health. In this study, the magnetic ion exchange (MIEX) resin was applied for removing three commonly-used antibiotics, sulfamethoxazole (SMX), tetracycline (TCN) and amoxicillin (AMX) from water. The results of batch experiments show that the maximum adsorption capacities on the MIEX resin for SMX, TCN and AMX were 789.32, 443.18 and 155.15μg/mL at 25°C, respectively, which were 2-7 times that for the powdered activated carbon. The adsorption kinetics of antibiotics on the MIEX resin could be simulated by the pseudo-second-order model (R 2 =0.99), and the adsorption isotherm data were well described by the Langmuir model (R 2 =0.97). Solution pH exhibited a remarkable impact on the adsorption process and the absorbed concentrations of the tested antibiotics were obtained around the neutral pH. The MIEX resin could be easily regenerated by 2mol/L NaCl solution and maintained high adsorption removal for the tested antibiotics after regeneration. Anion exchange mechanism mainly controlled the adsorption of antibiotic and the formation of hydrogen binding between the antibiotic and resin can also result in the increase of adsorption capacity. The high adsorption capacity, fast adsorption rate and prominent reusability make the MIEX resin a potential adsorbent in the application for removing antibiotics from water. Copyright © 2016. Published by Elsevier B.V.

  2. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.

    PubMed

    Guo, Xuejun; Wu, Zhijun; He, Mengchang; Meng, Xiaoguang; Jin, Xin; Qiu, Nan; Zhang, Jing

    2014-07-15

    Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl3, was oxidized into Sb(V) probably due to the involvement of O2 in the long duration of sample preservation. Only one Sb-Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0-1.9 attributed to bidentate mononuclear edge-sharing ((2)E) between Sb and HFO. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by langmuir adsorption isotherms alone.

    PubMed Central

    Cseh, R; Benz, R

    1998-01-01

    Phloretin and its analogs adsorb to the surfaces of lipid monolayers and bilayers and decrease the dipole potential. This reduces the conductance for anions and increases that for cations on artificial and biological membranes. The relationship between the change in the dipole potential and the aqueous concentration of phloretin has been explained previously by a Langmuir adsorption isotherm and a weak and therefore negligible contribution of the dipole-dipole interactions in the lipid surface. We demonstrate here that the Langmuir adsorption isotherm alone is not able to properly describe the effects of dipole molecule binding to lipid surfaces--we found significant deviations between experimental data and the fit with the Langmuir adsorption isotherm. We present here an alternative theoretical treatment that takes into account the strong interaction between membrane (monolayer) dipole field and the dipole moment of the adsorbed molecule. This treatment provides a much better fit of the experimental results derived from the measurements of surface potentials of lipid monolayers in the presence of phloretin. Similarly, the theory provides a much better fit of the phloretin-induced changes in the dipole potential of lipid bilayers, as assessed by the transport kinetics of the lipophilic ion dipicrylamine. PMID:9512036

  4. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Thiel, Patricia A.

    We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less

  5. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites

    DOE PAGES

    Liu, Da-Jiang; Thiel, Patricia A.

    2018-03-28

    We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less

  6. Effect of pH and Electrolytes on Adsorption of 2,4-D onto Kaolinite

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2006-12-01

    The fate and transport of pesticides in soil can be greatly influenced by adsorption onto clay minerals such as kaolinite. The ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) is one of the most commonly used herbicides. The purpose of this study is to investigate the effect of electrolytes and pH on the adsorption of 2,4- D onto kaolinite. The adsorption coefficient (Kd) of 2,4-D on two types of kaolinite was measured in batch experiments using water and 4 different electrolytes (0.005M CaSO4, 0.005M CaCl2, 0.01M KCl, and 0.01M NaCl). The experiments were carried out with 0.5 g kaolinite at a solid:liquid ratio of 1:20 and at different pH (1.9-6.3). The pH of the solution was controlled by addition of 0.2N of HCl. X-ray diffraction analysis of both kaolinite with and without adsorbed 2,4-D was also done to understand the location of 2,4-D adsorption. The effects of pH and electrolytes on Kd were compared and possible adsorption mechanisms were revealed for 2,4-D adsorption onto the two different types of kaolinite. The results implied that 2,4-D adsorption was higher for an electrolyte solution with monovalent cation than with divalent cation for one type of kaolinite, while no such trend was observed for the other kaolinite. The adsorption of 2,4-D increased significantly with decreasing pH for both types of kaolinite.

  7. Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance.

    PubMed

    Platero, Emiliano; Fernandez, Maria Emilia; Bonelli, Pablo Ricardo; Cukierman, Ana Lea

    2017-04-01

    Graphene oxide/alginate beads were prepared from lab-synthesized graphene oxide, varying its content within the beads (0.05, 0.125, and 0.25wt.%). Ethanol-drying and lyophilization were compared as drying methods to obtain suitable adsorbents which were later tested to the removal of a model organic molecule (methylene blue). The morphological and textural properties of all the beads were characterized by scanning electron microscopy and N 2 adsorption/desorption isotherms at -196°C, respectively. Limited porosity was obtained for all cases (S BET <60m 2 /g). Uniaxial compression tests were performed to assess the mechanical properties of the beads. Ethanol-dried ones exhibited higher Young's elasticity modulus (E=192kPa) than the lyophilized samples (twice at 0.25wt.% graphene oxide loading), which disclosed breakage points at lower deformation percentages. Adsorption experiments were conducted and dye adsorption isotherms were obtained for the beads with the best removal performance. The experimental data were better fitted by the Langmuir model. The highest maximum adsorption capacity (4.25mmol/g) was obtained for the lyophilized beads with the highest graphene oxide content. Mechanical properties were found to be affected also by the dye adsorption. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Adsorption and transport of methane in biochars derived from waste wood.

    PubMed

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-09-01

    Mitigation of landfill gas (LFG) is among the critical aspects considered in the design of a landfill cover in order to prevent atmospheric pollution and control global warming. In general, landfill cover soils can partially remove methane (CH4) through microbial oxidation carried out by methanotrophic bacteria present within them. The oxidizing capacity of these landfill cover soils may be improved by adding organic materials, such as biochar, which increase adsorption and promote subsequent or simultaneous oxidation of CH4. In this study, seven wood-derived biochars and granular activated carbon (GAC) were characterized for their CH4 adsorption capacity by conducting batch and small-scale column studies. The effects of influential factors, such as exposed CH4 concentration, moisture content and temperature on CH4 adsorption onto biochars, were determined. The CH4 transport was modeled using a 1-D advection-dispersion equation that accounted for sorption. The effects of LFG inflow rates and moisture content on the combined adsorption and transport properties of biochars were determined. The maximum CH4 adsorption capacity of GAC (3.21mol/kg) was significantly higher than that of the biochars (0.05-0.9mol/kg). The CH4 gas dispersion coefficients for all of the biochars ranged from 1×10(-3) to 3×10(-3)m(2)s(-1). The presence of moisture significantly suppressed the extent of methane adsorption onto the biochars and caused the methane to break through within shorter periods of time. Overall, certain biochar types have a high potential to enhance CH4 adsorption and transport properties when used as a cover material in landfills. However, field-scale studies need to be conducted in order to evaluate the performance of biochar-based cover system under a more dynamic field condition that captures the effect of seasonal and temporal changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Arsenate adsorption on three types of granular schwertmannite.

    PubMed

    Dou, Xiaomin; Mohan, Dinesh; Pittman, Charles U

    2013-06-01

    Schwertmannite was synthesized on a 2 m(3)-scale and fabricated to irregular, cylindrical and spherical shape granules using drum granulation, extrusion and spray coating, respectively. The granules were systematically evaluated for As(V) removal from drinking water in terms of both performance and safety. The irregular and cylindrical shape granules (IS and CS) had larger schwertmannite loadings, higher porosity, more abundant pore structure and larger micropore volumes than those with a spherical shape (SS). As(V) adsorption kinetics on IS, CS and SS schwertmannite granules followed a pseudo-second order rate equation and two-stages of intraparticle diffusion. The rate parameters were in an order of IS > CS > SS granules. The faster uptake kinetics of the IS granules was due to their largest pore volume and interparticle porosity. Furthermore, adsorption capacities of 34, 21 and 5 mg/g, for IS, CS and SS granular schwertmannite samples were achieved at an initial As(V) concentration of 20 mg/L and adsorbent dose of 0.5 g/L. IS and CS samples performed much better over a wide pH range versus SS samples. Except for humic acid, PO4(3-) and SiO4(4-) did not inhibit As(V) adsorption on IS and CS granular specimens. SS samples worked poorly even in the absence or presence of co-existing anions. Regeneration was achieved using 0.1 M NaOH. The recycled IS and CS granular specimens can be used for 4 different cycles with no or nominal loss of adsorption capacity. Column experiments were also conducted. The IS, CS and SS granular specimens treated 8100, 4200 and 120 bed volumes (BVs) of contaminated water. No heavy metals leached from the packed granular adsorbent and appeared in the column effluent. Furthermore, the toxicity characteristic leaching procedure (TCLP) showed that the spent IS and CS granules were inert and could safely be disposed of in landfills. In short, irregular-shaped granules (IS) fabricated by drum granulation is a good candidate for arsenic removal

  10. Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand

    USGS Publications Warehouse

    Coston, J.A.; Fuller, C.C.; Davis, J.A.

    1995-01-01

    Pb2+ and Zn2+ adsorption was studied in batch experiments with material collected from a shallow, unconfined aquifer of glacial outwash sand and gravel in Falmouth, Massachusetts, USA. The aquifer solids contain primarily quartz with minor amounts of alkali feldspars and ferromagnetic minerals. Pb2+ and Zn2+ adsorption experiments with various grain size and mineral fractions of the aquifer solids showed that: 1) Zn2+ adsorption was independent of grain size, but Pb2+ was preferentially adsorbed by the <64 ??m size fraction and 2) Pb2+ adsorption decreased after removal of the paramagnetic, Fe-bearing mineral fraction, but Zn2+ adsorption was unaffected. Pb2+ and Zn2+ adsorption on mineral separates from the aquifer material compared with metal adsorption on a purified quartz powder indicated that adsorption of both metal ions was dominated by coatings on the quartz fraction of the sediment. Characterization of the coatings by AES, SEM-EDS, and TOF-SIMS demonstrated that the natural quartz grains were extensively coated with Al- and Fe-bearing minerals of variable composition. -from Authors

  11. Study of adsorption of Neon on open Carbon nanohorns aggregates

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl Andrew

    Adsorption isotherms can be used to determine surface area of a substrate and the heat released when adsorption occurs. Our measurements are done determining the equilibrium pressures corresponding to a given amount of gas adsorbed on a substrate at constant temperature. The adsorption studies were done on aggregates of open dahlia-like carbon nanohorns. The nanohorns were oxidized for 9 hours at 550 °C to open them up and render their interior space accessible for adsorption. Volumetric adsorption measurements of Ne were performed at twelve different temperatures between 19 K and 48 K. The isotherms showed two substeps. The first substep corresponds to adsorption on the high energy binding sites in the interior of the nanohorns, near the tip. The second substep corresponds to low energy binding sites both on the outside of the nanotubes and inside the nanotube away from the tip. The isosteric heat measurements obtained from the isotherm data also shows these two distinct substeps. The effective surface area of the open nanotubes was determined from the isotherms using the point-B method. The isosteric heat and surface area data for neon on open nanohorns were compared to two similar experiments of neon adsorbed on aggregates of closed nanohorns.

  12. Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces

    PubMed Central

    2017-01-01

    Amyloid aggregates are associated with a range of human neurodegenerative disorders, and it has been shown that neurotoxicity is dependent on aggregate size. Combining molecular simulation with analytical theory, a predictive model is proposed for the adsorption of amyloid aggregates onto oppositely charged surfaces, where the interaction is governed by an interplay between electrostatic attraction and entropic repulsion. Predictions are experimentally validated against quartz crystal microbalance–dissipation experiments of amyloid beta peptides and fragmented fibrils in the presence of a supported lipid bilayer. Assuming amyloids as rigid, elongated particles, we observe nonmonotonic trends for the extent of adsorption with respect to aggregate size and preferential adsorption of smaller aggregates over larger ones. Our findings describe a general phenomenon with implications for stiff polyions and rodlike particles that are electrostatically attracted to a surface. PMID:29284092

  13. Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam

    PubMed Central

    Thi Hoa Mai, Nguyen; Postma, Dieke; Thi Kim Trang, Pham; Jessen, Søren; Hung Viet, Pham; Larsen, Flemming

    2016-01-01

    The adsorption of arsenic onto aquifer sediment from the Red River floodplain, Vietnam, was determined in a series of batch experiments. Due to water supply pumping, river water infiltrates into the aquifer at the field site and has leached the uppermost aquifer sediments. The leached sediments, remain anoxic but contain little reactive arsenic and iron, and are used in our experiments. The adsorption and desorption experiments were carried out by addition or removal of arsenic from the aqueous phase in sediment suspensions under strictly anoxic conditions. Also the effects of HCO3, Fe(II), PO4 and Si on arsenic adsorption were explored. The results show much stronger adsorption of As(V) as compared to As(III), full reversibility for As(III) adsorption and less so for As(V). The presence or absence of HCO3 did not influence arsenic adsorption. Fe(II) enhanced As(V) sorption but did not influence the adsorption of As(III) in any way. During simultaneous adsorption of As(III) and Fe(II), As(III) was found to be fully desorbable while Fe(II) was completely irreversibly adsorbed and clearly the two sorption processes are uncoupled. Phosphate was the only solute that significantly could displace As(III) from the sediment surface. Compiling literature data on arsenic adsorption to aquifer sediment in Vietnam and Bangladesh revealed As(III) isotherms to be almost identical regardless of the nature of the sediment or the site of sampling. In contrast, there was a large variation in As(V) adsorption isotherms between studies. A tentative conclusion is that As(III) and As(V) are not adsorbing onto the same sediment surface sites. The adsorption behavior of arsenic onto aquifer sediments and synthetic Fe-oxides is compared. Particularly, the much stronger adsorption of As(V) than of As(III) onto Red River as well as on most Bangladesh aquifer sediments, indicates that the perception that arsenic, phosphate and other species compete for the same surface sites of iron oxides in

  14. Phosphorus removal by electric arc furnace steel slag adsorption

    NASA Astrophysics Data System (ADS)

    Lim, J. W.; Lee, K. F.; Chong, Thomas S. Y.; Abdullah, L. C.; Razak, M. A.; Tezara, C.

    2017-10-01

    As to overcome the eutrophication in lakes and reservoirs which is resulted from excessive input of phosphorus due to rapid urbanization or uncontrolled agricultural activities, Electric Arc Furnace steel slag (EAFS), a steelmaking by-product, in which the disposal of this industrial waste considered economically unfavourable yet it’s physical and chemical properties exhibits high potential to be great P adsorbent. The objective of this study was to identify most suitable mathematical model in description of adsorption by using traditional batch experiment and to investigate the effect on Phosphorus removal efficiency and Phosphorus removal capacity by EAFS adsorption through variation of parameters such as pH, size of slag and initial concentration of Phosphorus. Result demonstrated that, Langmuir is suitable in describing Phosphorus removal mechanisms with the Maximum Adsorption Capacity, Q m of 0.166 mg/g and Langmuir Constant, KL of 0.03519 L/mg. As for effect studies, smaller size of adsorbent shows higher percentage (up to 37.8%) of Phosphorus removal compared to the larger size. Besides that, the experiment indicated a more acidic environment is favourable for Phosphorus removal and the amount of Phosphorus adsorbed at pH 3.0 was the highest. In addition, the adsorption capacity increases steadily as the initial Phosphorus concentration increases but it remained steady at 100mg P/L. Eventually, this study serves as better understanding on preliminary studies of P removal mechanisms by EAFS.

  15. Adsorption of bacterial plasmids in pure mineral mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cochran, J. P.; Seaman, J. C.; Parrott, B.

    2017-12-01

    Microorganisms play an important role in controlling the fate and transport of subsurface contaminants through the direct degradation of organic contaminants to the control of chemical redox conditions that impact the speciation and partitioning of inorganic contaminants. Genes that control these processes, including the relative tolerance associated with direct exposure to toxic contaminants, are found within the bacteria's chromosomal DNA and also within distinct, circular DNA elements called plasmids. Plasmids are mobile genetic elements that can be exchanged with other bacterial species through horizontal gene transfer (HGT). The frequency of HGT in soil is influenced by several factors, with the physicochemical characteristics of soil possibly being a primary factor. Thus, the objective for our research was to determine the movement and persistence of bacterial plasmids within soil. Our current study focuses on batch sorption experiments designed to evaluate the partitioning of bacterial plasmids in idealized mineral mixtures that represent the clay mineralogy of highly weathered soils of the Southeastern US. Specifically, we compared plasmid adsorption among pure goethite, kaolinite, and a mixture of goethite and kaolinite. We also determined the adsorption of plasmids on the above minerals over increasing pH (3 to 10). Our results show that adsorption decreased in the following order: goethite > kaolinite > mixture of goethite and kaolinite. We also found that plasmids adsorption was higher at lower pH levels, with pH 3 having the adsorption maximum. However, at pH 3, DNA denaturing may have occurred, leading to aggregation or precipitation of plasmids on the mineral surfaces. Our study was the first steps in determining the influence of soil properties on plasmid adsorption. Our future goals are to determine the adsorption in other pure minerals and in natural soils.

  16. Verification of chloride adsorption effect of mortar with salt adsorbent

    NASA Astrophysics Data System (ADS)

    Hoshina, T.; Nakajima, N.; Sudo, H.; Date, S.

    2017-11-01

    In order to investigate the chloride adsorption effect of mortar mixed with chloride adsorbent, electrophoresis test using mortar specimen and immersion dry repeated test were conducted to evaluate chloride adsorption effect. As a result, it was confirmed that soluble salt content that causes corrosion of rebar in the specimen was reduced by the chloride adsorbent and corrosion inhibiting effect of the rebar was also obtained. It was also confirmed that by increasing dosage of the chloride adsorbent, the chloride adsorbing effect becomes larger as well..

  17. Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.

    2011-12-01

    The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at p

  18. Characterization of adsorption and desorption of lawn herbicide siduron in heavy metal contaminated soils.

    PubMed

    Jiang, Rong; Wang, Meie; Chen, Weiping

    2018-08-01

    Siduron is a widely used herbicide in urban lawn and has been frequently detected in urban and suburban surface water. However, characteristics of its environmental behavior in soil are seldom reported. The combined pollution of heavy metals, especially for Cu, Pb, Cd, Zn and siduron would be common because of the widely existence of heavy metal pollution in urban soils. In this study, four soils with similar physicochemical properties but different levels of preexisting heavy metals were selected to investigate the adsorption and successive desorption of siduron using batch experiments. The results revealed a low sorption of siduron to all the tested soils. The organic carbon normalized distribution coefficient (K oc ) of siduron in the studied soils ranged from 117 to 137 L kg -1 and was not significantly correlated to heavy metal levels. No apparent desorption hysteresis was observed with the hysteresis index (HI) ranging from 0.921 to 1.11. More than 50% of the sorbed siduron was readily released into soil solution. Results suggested that siduron was highly mobile and bioavailable in the studied soils. Significant correlation was found between adsorption/desorption parameters and soil organic carbon (SOC) in four soils. soil organic matter was thus considered as the dominant factor determining the adsorption and desorption of siduron in soils. Different from most of reported studies conducted by laboratory-amended soils, the influence of preexisting heavy metals on the adsorption-desorption of siduron was not significant in this work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Adsorption and mobility of metals in build-up on road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2015-01-01

    The study investigated the adsorption and bioavailability characteristics of traffic generated metals common to urban land uses, in road deposited solids particles. To validate the outcomes derived from the analysis of field samples, adsorption and desorption experiments were undertaken. The analysis of field samples revealed that metals are selectively adsorbed to different charge sites on solids. Zinc, copper, lead and nickel are adsorbed preferentially to oxides of manganese, iron and aluminium. Lead is adsorbed to organic matter through chemisorption. Cadmium and chromium form weak bonding through cation exchange with most of the particle sizes. Adsorption and desorption experiments revealed that at high metal concentrations, chromium, copper and lead form relatively strong bonds with solids particles while zinc is adsorbed through cation exchange with high likelihood of being released back into solution. Outcomes from this study provide specific guidance for the removal of metals from stormwater based on solids removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Adsorption Behavior of Selective Recognition Functionalized Biochar to Cd(II) in Wastewater

    PubMed Central

    Zhang, Shiqiu; Yang, Xue; Liu, Le; Ju, Meiting; Zheng, Kui

    2018-01-01

    Biochar is an excellent absorbent for most heavy metal ions and organic pollutants with high specific surface area, strong aperture structure, high stability, higher cation exchange capacity and rich surface functional groups. To improve the selective adsorption capacity of biochar to designated heavy metal ions, biochar prepared by agricultural waste is modified via Ionic-Imprinted Technique. Fourier transform infrared (FT-IR) spectra analysis and X-ray photoelectron spectroscopy (XPS) analysis of imprinted biochar (IB) indicate that 3-Mercaptopropyltrimethoxysilane is grafted on biochar surface through Si–O–Si bonds. The results of adsorption experiments indicate that the suitable pH range is about 3.0–8.0, the dosage is 2.0 g·L−1, and the adsorption equilibrium is reached within 960 min. In addition, the data match pseudo-second-order kinetic model and Langmuir model well. The computation results of adsorption thermodynamics and stoichiometric displacement theory of adsorption (SDT-A) prove that the adsorption process is spontaneous and endothermic. Finally, IB possesses a higher selectivity adsorption to Cd(II) and a better reuse capacity. The functionalized biochar could solidify designated ions stably. PMID:29443954

  1. Adsorptive removal of patulin from aqueous solution using thiourea modified chitosan resin.

    PubMed

    Liu, Bingjie; Peng, Xiaoning; Chen, Wei; Li, Yang; Meng, Xianghong; Wang, Dongfeng; Yu, Guangli

    2015-09-01

    In the present paper, thiourea modified chitosan resin (TMCR) was firstly prepared through converting hydroxyl groups of chitosan resin into thiol groups, using glutaraldehyde as cross-linking agent and thiourea as modification agent. TMCR was characterized by FTIR, EDXS, SEM, XRD and AFM technologies. Batch adsorption experiments were performed to study the adsorption capacity of TMCR for patulin at different pH, temperature, contact time and patulin concentration. The result showed that TMCR was effective in removal of patulin from aqueous solution. The adsorption capacity of TMCR for patulin was 1.0 mg/g at pH 4.0, 25 °C for 24 h. Adsorption process could be well described by pseudo-first order model, Freundlich isotherm model and intraparticle diffusion model. It indicated that TMCR is expected to be a new material for patulin adsorption from aqueous solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Inventory Control. Easily Made Electronic Device for Conductivity Experiments.

    ERIC Educational Resources Information Center

    Gadek, Frank J.

    1987-01-01

    Describes how to construct an electronic device to be used in conductivity experiments using a 35 millimeter film canister, nine volt battery replacement snaps, a 200-300 ohm resistor, and a light-emitting diode. Provides a diagram and photographs of the device. (TW)

  3. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.

    PubMed

    Liu, Yan-Ling; Wang, Xiao-Mao; Yang, Hong-Wei; Xie, Yuefeng F

    2018-06-01

    Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Adsorption equilibrium and kinetics of Immunoglobulin G on a mixed-mode adsorbent in batch and packed bed configuration.

    PubMed

    Gomes, Pedro Ferreira; Loureiro, José Miguel; Rodrigues, Alírio E

    2017-11-17

    It is commonly accepted that efficient protein separation and purification to the desired level of purity is one bottleneck in pharmaceutical industries. MabDirect MM is a new type of mixed mode adsorbent, especially designed to operate in expanded bed adsorption (EBA) mode. In this study, equilibrium and kinetics experiments were carried out for the adsorption of Human Immunoglobulin G (hIgG) protein on this new adsorbent. The effects of ionic strength and pH are assessed. Langmuir isotherms parameters are obtained along with the estimation of the effective pore diffusion coefficient (D pe ) by fitting the batch adsorption kinetics experiments with the pore diffusion model. The maximum adsorption of the IgG protein on the MabDirect MM adsorbent, 149.7±7.1mg·g dry -1 , was observed from a pH 5.0 buffer solution without salt addition. Adding salt to the buffer solution, and/or increasing pH, decreases the adsorption capacity which is 4.7±0.4mg·g dry -1 for pH 7.0 with 0.4M NaCl in solution. Regarding the D pe estimation, a value of 15.4×10 -6 cm 2 ·min -1 was obtained for a pH 5.0 solution without salt. Increasing the salt concentration and/or the pH value will decrease the effective pore diffusion, the lowest D pe (0.16×10 -6 cm 2 ·min -1 ) value being observed for an IgG solution at pH 7.0 with 0.4M NaCl. Fixed bed experiments were conducted with the purpose to validate the equilibrium and kinetic parameters obtained in batch. For a feed concentration of 0.5 g·L -1 of IgG in pH 5.0 buffer solution with 0.4M NaCl, a dynamic binding capacity at 10% of breakthrough of 5.3mg·g wet -1 (15.4mg IgG ·mL resin -1 ) was obtained, representing 62% of the saturation capacity. As far as the authors know, this study is the first one concerning the adsorption of hIgG on this type of mixed mode chromatography adsorbent. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Adsorption of calcitonin to glass.

    PubMed

    Law, S L; Shih, C L

    1999-02-01

    Surface adsorption of calcitonin on soda lime silica glass was investigated. An attempt was also made to examine the effect of additives on the inhibition of calcitonin adsorption. Results showed that the adsorption isotherms were of the Langmuir and Freundlich type, depending on pH. Less adsorption was found for calcitonin at pH 4.3. The addition of nonionic surfactants such as Pluronic F68 and Tween 80 to the calcitonin solutions demonstrated inhibition of absorption and reduction of adsorption rate. The addition of chlorobutanol also showed the effect of minimizing adsorption.

  6. Studies on Vapor Adsorption Systems

    NASA Technical Reports Server (NTRS)

    Shamsundar, N.; Ramotowski, M.

    1998-01-01

    The project consisted of performing experiments on single and dual bed vapor adsorption systems, thermodynamic cycle optimization, and thermal modeling. The work was described in a technical paper that appeared in conference proceedings and a Master's thesis, which were previously submitted to NASA. The present report describes some additional thermal modeling work done subsequently, and includes listings of computer codes developed during the project. Recommendations for future work are provided.

  7. Surface Tension of Solids in the Absence of Adsorption

    PubMed Central

    2009-01-01

    A method has been recently proposed for determining the value of the surface tension of a solid in the absence of adsorption, γS0, using material properties determined from vapor adsorption experiments. If valid, the value obtained for γS0 must be independent of the vapor used. We apply the proposed method to determine the value of γS0 for four solids using at least two vapors for each solid and find results that support the proposed method for determining γS0. PMID:19719092

  8. Effect of Solution Properties on Arsenic Adsorption by Drinking Water Treatment Residuals

    NASA Astrophysics Data System (ADS)

    Nagar, R.; Sarkar, D.; Datta, R.; Sharma, S.

    2005-05-01

    Arsenic (As) is a ubiquitous element in the environment. Higher levels of As in soils may result from various anthropogenic sources such as use of arsenical pesticides, fertilizers, wood preservatives, smelter wastes, and coal combustion. This is of great environmental and human health concern due to the high toxicity and proven carcinogenicity of several arsenical species. Thus there is a need for developing cost effective technologies capable of lowering bioavailable As concentrations in soils to environmentally acceptable levels. In-situ immobilization of metals using inexpensive amendments such as minerals (apatite, zeolite, or clay minerals) or waste by-products (steel shot, beringite, and iron-rich biosolids) to reduce bioavailability is an inexpensive alternative to the more expensive ex-situ remediation methods. One such emerging in-situ technique is the application of drinking water treatment residuals (WTRs). WTRs can be classified as a byproduct of drinking water treatment plants and are generally composed of amorphous Fe/Al oxides, activated C and cationic polymers. WTRs possess amorphous structure and generally have high positive charge. Because As is chemically similar to phosphorus, the oxyanions As (V) and As (III) may have the potential of being retained by the WTRs. Thus, it is hypothesized that WTRs retain As irreversibly, thereby reducing As biavailability. As mobility of arsenic is controlled by adsorption reactions, knowledge of adsorption of As by WTRs is of primary relevance. Although the overall rate of adsorption is dependent on numerous factors, review of the literature indicates that competing ions in solution play an important role in the overall retention of As; however, little work has been conducted to identify which ions provide the most competition. As arsenic adsorption appears to be influenced by the variable pH-dependent charges developed on the soil particle surfaces, the effect of pH is also of critical importance. Hence, the

  9. [Effects of soil trituration size on adsorption of oxytetracycline on soils].

    PubMed

    Qi, Rui-Huan; Li, Zhao-Jun; Long, Jian; Fan, Fei-Fei; Liang, Yong-Chao

    2011-02-01

    In order to understand the effects of soil trituration size on adsorption of oxytetracycline (OTC) on soils, two contrasting soils including moisture soil and purplish soil were selected to investigate adsorption of OTC on these soils, at the scales of no more than 0.20 mm, 0.84 mm, 0.25 mm and 0.15 mm, using the method of batch equilibrium experiments respectively. The results presented as the following: (1) Adsorption amount of OTC on moisture soil and purplish soil increased with the sampling time, and reached to equilibration at 24 h. First-order kinetic model, second-order kinetic model, parabolic-diffusion kinetic model, Elovich kinetic model, and two-constant kinetic model could be used to fit the changes in adsorption on soils with sampling time. Adsorption of OTC on two soils consisted of two processes such as quick adsorption and slow adsorption. Quick adsorption process happened during the period of 0-0.5 h. The adsorption rates of OTC on soils were higher at the small trituration size than those at the large trituration size, and at the same trituration size, the k(f) of purplish soil was about two times higher than those of moisture soil. (2) Adsorption isotherms of OTC on two soils with different trituration sizes were deviated from the linear model. The data were fitted well to Freundlich and Langmuir models, with the correlation coefficients between 0.956 and 0.999. The values of k(f) and q(m) for purplish soil were higher than those for moisture soil. At the same soil, adsorption amount of OTC increased with the decreases of soil trituration size. The results suggested that it is important to select the appropriate trituration size, based on the physical and chemical properties such as soil particle composition and so on, when the fate of antibiotics on soils was investigated.

  10. Negligible effects of tryptophan on the aflatoxin adsorption of sodium bentonite.

    PubMed

    Magnoli, A P; Copia, P; Monge, M P; Magnoli, C E; Dalcero, A M; Chiacchiera, S M

    2014-01-01

    The main objective of this study was to determine if the competitive adsorption of tryptophan (Trp) and aflatoxin B₁ (AFB₁) could potentially affect the ability of a sodium bentonite (NaB) to prevent aflatoxicosis in monogastric animals. The adsorption of Trp and AFB₁ on this adsorbent is fast and could be operating on the same time-scale making competition feasible. In vitro competitive adsorption experiments under simulated gastrointestinal conditions were performed. A high affinity of the clay for Trp and NaB was observed. The effect of an excess of KCl to mimic the ionic strength of the physiological conditions were also investigated. A six-times decrease in the Trp surface excess at saturation was observed. A similar behaviour was previously found for AFB₁ adsorption. Taking into account the amount of Trp adsorbed by the clay and the usual adsorbent supplementation level in diets, a decrease in Trp bioavailability is not expected to occur. Tryptophan adsorption isotherms on NaB were 'S'-shaped and were adjusted by the Frumkin-Fowler-Guggenheim model. The reversibility of the adsorption processes was investigated in order to check a potential decrease in the ability of NaB to protect birds against chronic aflatoxicoses. Adsorption processes were completely reversible for Trp, while almost irreversible for AFB₁. In spite of the high affinity of the NaB for Trp, probably due to the reversible character of Trp adsorption, no changes in the AFB₁ adsorption isotherm were observed when an excess of the amino acid was added to the adsorption medium. As a consequence of the preferential and irreversible AFB₁ adsorption and the reversible weak binding of Trp to the NaB, no changes in the aflatoxin sorption ability of the clay are expected to occur in the gastrointestinal tract of birds.

  11. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Adsorption Behavior of Ferromagnetic Carbon Nanotubes for Methyl Orange from Aqueous Solution.

    PubMed

    Wang, Liping; Zhang, Mingyu; Zhao, Chenxi; Yang, Shan

    2016-03-01

    The ferromagnetic carbon nanotubes which can be easily separated from aqueous solution were prepared and characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Batch experiments were carried out to investigate the adsorption behavior of ferromagnetic carbon nanotubes for removing methyl orange (MO). The results showed that these ferromagnetic carbon nanotubes were richer in surface function groups than the carbon nanotubes did, furthermore, both γ-Fe2O3 and Fe with ferromagnetism were found on the surface of carbon nanotubes. The results also demonstrated that ferromagnetic carbon nanotubes possessed stronger adsorption ability for MO than carbon nanotubes did. The adsorption isotherms followed Langmuir isotherm equation and the adsorption kinetics could be well described with the pseudo second-order kinetic model. The adsorption process involved an intraparticle diffusion, while it was not the only rate-controlling step. The values of AG were negative and the value of ΔH is -12.37 kJ/mol, proving that the adsorption of MO onto ferromagnetic carbon nanotubes was a spontaneous and exothermic process.

  13. Tuning the conductivity along atomic chains by selective chemisorption

    NASA Astrophysics Data System (ADS)

    Edler, F.; Miccoli, I.; Stöckmann, J. P.; Pfnür, H.; Braun, C.; Neufeld, S.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2017-03-01

    Adsorption of Au on vicinal Si(111) surfaces results in growth of long-range ordered metallic quantum wires. In this paper, we utilized site-specific and selective adsorption of oxygen to modify chemically the transport via different channels in the systems Si(553)-Au and Si(557)-Au. They were analyzed by electron diffraction and four-tip STM-based transport experiments. Modeling of the adsorption process by density functional theory shows that the adatoms and rest atoms on Si(557)-Au provide energetically favored adsorption sites, which predominantly alter the transport along the wire direction. Since this structural motif is missing on Si(553)-Au, the transport channels remain almost unaffected by oxidation.

  14. ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...

  15. The Effects of Radiation on the Adsorption of CO2 by Nonice Materials Relevant to Icy Satellites

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.; Stockstill-Cahill, K.; Paranicas, C.; Wing, B. R.

    2017-12-01

    Water-ice and water-rich non-ice materials dominate the surfaces of the icy satellites of Jupiter and Saturn, with CO2 detected at trace amounts largely in the nonice materials [1,2]. Although, the mechanism by which CO2 is entrained within the nonice material has not yet been understood, one hypothesis is adsorption by van der Waals forces or induced dipole interactions, with laboratory measurements demonstrating some analog materials can stably retain adsorbed CO2 while under vacuum at the temperatures of the icy satellites [3,4]. The strength and spectral signature of the adsorbed CO2 is dependent upon the composition and temperature of the host material. So far, the most adsorptive analogs are complex expansive clays, probably because of the large microporosity and presence of charge compensating cations to act as adsorption sites. However, the surfaces of the airless Galilean and Saturnian satellites are bombarded by high-energy particles from the planetary magnetospheres, which could alter the nonice material affecting adsorptivity towards CO2 (and other volatiles). Thus, we have conducted experiments to explore the possibility that irradiation could increase the adsorptivity of other analogs more consistent with the expected composition of the satellites surfaces. This hypothesis is explored for CO2 adsorption onto pressed powder pellets that are cooled to the surface temperatures of the satellites' surfaces under solar illumination ( 125-150 K) and dosed with CO2 from directly above the surface of the pellet, while collecting spectra of the asymmetric stretch fundamental of the CO2 absorption band near 4.25 microns. After this initial spectrum, the pellet is warmed to degas any adsorbed CO2 and then recooled. The pellet is then irradiated with 40 keV electrons for 48-72 hours at a fluence of 80 microamps and the adsorption experiment is repeated. The infrared spectrum is a bidirectional reflectance measurement using a Bruker Vertex 70 FTIR with and external

  16. A First Principles Study of H2 Adsorption on LaNiO3(001) Surfaces

    PubMed Central

    Pan, Changchang; Chen, Yuhong; Wu, Na; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-01-01

    The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT) calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001)/H2 systems were calculated and indicated through the calculated surface energy that the (001) surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001) surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001) surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001)/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface. PMID:28772396

  17. Effect of stretching on the ballistic conductance of Au nanocontacts in presence of CO: A density functional study

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dal Corso, Andrea; Smogunov, Alexander

    2012-04-01

    CO adsorption on an Au monatomic chain is studied within density functional theory in nanocontact geometries as a function of the contact stretching. We compare the bridge and atop adsorption sites of CO, finding that the bridge site is energetically favored at all strains studied here. Atop adsorption gives rise to an almost complete suppression of the ballistic conductance of the nanocontact, while adsorption at the bridge site results in a conductance value close to 0.6G0, in agreement with previous experimental data. We show that only the bridge site can qualitatively account for the evolution of the conductance as a function of the contact stretching observed in the experimental conductance traces. The numerical discrepancy between the theoretical and experimental conductance slopes is rationalized through a simple model for the elastic response of the metallic leads. We also verify that our conductance values are not affected by the specific choice of the nanocontact geometry by comparing two different atomistic models for the tips.

  18. Adsorption/desorption characteristics of lead on various types of soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.W.; Shem, L.

    1994-09-01

    Laboratory studies were conducted to address the phenomena of adsorption/desorption of lead onto various types of soils, both in the absence and presence of the chelating agent, ethylenediaminetetraacetic acid (EDTA). The linear and Freundlich isotherm models provided adequate description of the adsorption/desorption behavior. Over the range of EDTA concentrations employed in the study (0.01 to 0.10M), no significant difference in the isotherm parameters was observed as a result of the applied EDTA concentration. The presence of EDTA significantly altered the adsorption/desorption behavior of lead on the soil, resulting in less of the metal being adsorbed. The soil with the highermore » silt/clay content had a greater amount of lead adsorbed onto it (as compared with the sandy soil).« less

  19. Doping and vacancy effects of graphyne on SO2 adsorption.

    PubMed

    Kim, Sunkyung; Lee, Jin Yong

    2017-05-01

    The adsorption of sulfur dioxide (SO 2 ) on pristine and modified graphyne (including boron- or nitrogen- doping and introducing a single carbon atom defect) was investigated by density functional theory calculations. The structural, electronic, and magnetic properties of graphyne were changed according to the dopant atom site of doping and vacancy. SO 2 adsorption was obviously affected by modification of graphyne. SO 2 weakly interacted with pristine and nitrogen-doped graphynes. Boron doping at the sp-hybridized carbon site and introducing a single carbon atom vacancy in graphyne brought about a dramatic enhancement in SO 2 adsorption. The strongly chemisorbed SO 2 at these active sites caused deformation of the graphyne structure and electron redistribution, which induced changes in the conductivity and magnetism of graphynes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Adsorption properties of chloropicrin on pristine and borazine-doped nanographenes: A theoretical study

    NASA Astrophysics Data System (ADS)

    Hosseinian, Akram; Vessally, Esmail; Babazadeh, Mirzaagha; Edjlali, Ladan; Es'haghi, Moosa

    2018-04-01

    Recently, nanographenes were introduced as definite segments of graphene where their end atoms are saturated with hydrogens. In this study, we explored the reactivity and electronic sensitivity of a hexa-peri-hexabenzocoronene (HBC) and newly synthesized borazine-like ring-doped nanographenes (BNG) to the chloropicrin molecule based on density functional theory. We found that chloropicrin is preferentially adsorbed via its N atoms on both HBC and BNG nanographenes. The electronic properties of HBC were predicted to be sensitive to chloropicrin but the adsorption capacity is low because of the small adsorption energy (-7.1 kcal/mol). However, chloropicrin is adsorbed somewhat more strongly on BNG, with an adsorption energy of about -29.9 kcal/mol. After the adsorption of chloropicrin, the lowest unoccupied molecular orbital (LUMO) level of BNG stabilizes and the highest occupied molecular orbital-LUMO gap is decreased by about 85.9%. Thus, BNG converts from a semiconductor into a semimetal with a higher electrical conductivity. The change in electrical conductivity can generate an electrical signal, which is helpful for detecting chloropicrin. In addition, we predicted a short recovery time of 14.6 s at 350 K for this sensor.

  1. Molecular Simulations of Adsorption and Diffusion in Silicalite.

    NASA Astrophysics Data System (ADS)

    Snurr, Randall Quentin

    The adsorption and diffusion of hydrocarbons in the zeolite silicalite have been studied using molecular simulations. The simulations use an atomistic description of zeolite/sorbate interactions and are based on principles of statistical mechanics. Emphasis was placed on developing new simulation techniques to allow complex systems relevant to industrial applications in catalysis and separations processes to be studied. Adsorption isotherms and heats of sorption for methane in silicalite were calculated from grand canonical Monte Carlo (GCMC) simulations and also from molecular dynamics (MD) simulations accompanied by Widom test particle insertions. Good agreement with experimental data from the literature was found. The adsorption thermodynamics of aromatic species in silicalite at low loading was predicted by direct evaluation of the configurational integrals. Good agreement with experiment was obtained for the Henry's constants and the heats of adsorption. Molecules were predicted to be localized in the channel intersections at low loading. At higher loading, conventional GCMC simulations were found to be infeasible. Several variations of the GCMC technique were developed incorporating biased insertion moves. These new techniques are much more efficient than conventional GCMC and allow for the prediction of adsorption isotherms of tightly-fitting aromatic molecules in silicalite. Our simulations when combined with experimental evidence of a phase change in the zeolite structure at intermediate loading provide an explanation of the characteristic steps seen in the experimental isotherms. A hierarchical atomistic/lattice model for studying these systems was also developed. The hierarchical model is more than an order of magnitude more efficient computationally than direct atomistic simulation. Diffusion of benzene in silicalite was studied using transition-state theory (TST). Such an approach overcomes the time-scale limitations of using MD simulations for

  2. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado

    USGS Publications Warehouse

    Hyun, S.P.; Fox, P.M.; Davis, J.A.; Campbell, K.M.; Hayes, K.F.; Long, P.E.

    2009-01-01

    A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using <2mm size sediment fractions, a sand-sized fraction, and artificial groundwater solutions prepared to simulate the field groundwater composition. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8 ?? 10-8 to 10-5 M in [U(VI)]tot, 7.2 to 8.0 in pH, 3.0 ?? 10-3 to 6.0 ?? 10 -3 M in [Ca2+], and 0.05 to 2.6% in partial pressure of carbon dioxide. Surface area normalized U(VI) adsorption Kd values for the sand and <2 mm sediment fraction were similar, suggesting a similar reactive surface coating on both fractions. A two-site two-reaction, nonelectrostatic generalized composite surface complexation model was developed and successfully simulated the U(VI) adsorption data. The model successfully predicted U(VI) adsorption observed from a multilevel sampling well installed at the site. A comparison of the model with the one developed previously for a uranium mill tailings site at Naturita, Colorado, indicated that possible calcite nonequilibrium of dissolved calcium concentration should be evaluated. The modeling results also illustrate the importance of the range of data used in deriving the best fit model parameters. ?? 2009 American Chemical Society.

  3. Adsorption energy distribution of carbon tetrachloride on carbon nanofiber arrays prepared by template synthesis

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hsin; Shr, Jin-Fang; Wu, Chu-Fu; Hsieh, Chien-Te

    2008-02-01

    The influence of pore size distribution on adsorption energy distributions (AEDs) of aligned carbon nanofiber (CNF) arrays in vapor phase was conducted in the present study. A template-assisted synthesis was employed to fabricate aligned CNF arrays with different pore size distributions (PSDs). Adsorption isotherms of CCl 4 onto the CNF arrays were investigated within an entire pressure of 0.05-0.18 atm at 30 °C. The adsorptive surface coverage was found to decrease with the average pore size, indicating the presence of heterogeneity for gas adsorption. An AED model was postulated to describe the heterogeneous surface consisting of numerous surface pitchwises that obey a localized Langmuir model. It was found that all CNF arrays exhibit a similar Gaussian-type AED, in where the peak adsorption energy shifts to a higher energy with decreasing the pore size of CNFs. This finding can be ascribed to a fact that micropores are major providers of adsorption sites, whereas in mesopores only weaker adsorption is observed, thus resulting in the shift of energy distribution. An excellent prediction to the adsorption isotherms of CCl 4 by the AED model indicates that the PSD of CNFs acts a crucial factor in affecting the adsorptive coverage.

  4. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water)

    NASA Astrophysics Data System (ADS)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  5. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.

  6. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  7. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja

    2014-11-01

    Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly

  8. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.

    PubMed

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli

    2016-08-01

    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.

  9. Composites of ZnO nanoparticles and biomass based activated carbon: adsorption, photocatalytic and antibacterial capacities.

    PubMed

    Cruz, G J F; Gómez, M M; Solis, J L; Rimaycuna, J; Solis, R L; Cruz, J F; Rathnayake, B; Keiski, R L

    2018-05-01

    Composite material (AC-ZnO) was prepared by growing ZnO nanoparticles during the production of biomass based-activated carbon (AC) via the incorporation of zinc acetate in the process. Comprehensive analyses confirmed the presence of ZnO nanoparticles over the AC surface and described the particular nature of the composite adsorbent. Methylene blue (MB) equilibrium data fitted the Dubinin-Radushkevich model. The MB adsorption capacity was higher for the bare activated carbons (197.9-188.7 mg/g) than the activated carbons with ZnO nanoparticles (137.6-149.7 mg/g). The adsorption of the MB on the adsorbents is physical because the mean adsorption energy (E) is between 1.76 and 2.00 kJ/mol. Experiments that combine adsorption and photocatalysis were carried out with different loads of adsorbents and with and without UV-light exposure. Photocatalytic activity was identified mostly at the first stage of the adsorption process and, in the case of experiments with less load of the composite AC-ZnO, because the light obstruction effect of the activated carbon is more for higher loads. The ZnO grown over AC improves the adsorption of cations such as Pb, Al and Fe in aqueous phase (polluted river water) and provides antibacterial capacity against Escherichia coli and Salmonella typhimurium.

  10. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils.

    PubMed

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-06-23

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities ( q m ) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g -1 , respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g -1 , respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation.

  11. Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption.

    PubMed

    Yang, Huajun; Luo, Min; Chen, Xitong; Zhao, Xiang; Lin, Jian; Hu, Dandan; Li, Dongsheng; Bu, Xianhui; Feng, Pingyun; Wu, Tao

    2017-12-18

    We report here the intrinsic advantages of a special family of porous chalcogenides for CO 2 adsorption in terms of high selectivity of CO 2 /N 2 , large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO 2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO 2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs + -, Rb + -, and K + -exchanged samples demonstrated excellent CO 2 adsorption performance. Particularly, K@RWY has the superior CO 2 /N 2 selectivity with the N 2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 6.3 mmol/g (141 cm 3 /g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol -1 , the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.

  12. Kinetics of Molybdenum Adsorption and Desorption in Soils.

    PubMed

    Sun, Wenguang; Selim, H Magdi

    2018-05-01

    Much uncertainty exists in mechanisms and kinetics controlling the adsorption and desorption of molybdenum (Mo) in the soil environment. To investigate the characteristics of Mo adsorption and desorption and predict Mo behavior in the vadose zone, kinetic batch experiments were performed using three soils: Webster loam, Windsor sand and Mahan sand. Adsorption isotherms for Mo were strongly nonlinear for all three soils. Strong kinetic adsorption of Mo by all soils was also observed, where the rate of retention was rapid initially and was followed by slow retention behavior with time. The time-dependent Mo sorption rate was not influenced when constant pH was maintained. Desorption or release results indicated that there were significant fractions of Mo that appeared to be irreversible or slowly reversibly sorbed by Windsor and Mahan. X-ray absorption near edge structure (XANES) analysis for Windsor and Mahan soils indicated that most of Mo had been bound to kaolinite, whereas Webster had similar XANES features to those of Mo sorbed to montmorillonite. A sequential extraction procedure provided evidence that a significant amount of Mo was irreversibly sorbed. A multireaction model (MRM) with nonlinear equilibrium and kinetic sorption parameters was used to describe the adsorption-desorption kinetics of Mo on soils. Our results demonstrated that a formulation of MRM with two sorption sites (equilibrium and reversible) successfully described Mo adsorption-desorption data for Webster loam, and an additional irreversible reaction phase was recommended to describe Mo desorption or release with time for Windsor and Mahan soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Theoretical studies of urea adsorption on single wall boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chermahini, Alireza Najafi; Teimouri, Abbas; Farrokhpour, Hossein

    2014-11-01

    Surface modification of a boron nitride nanotube (BNNT) with urea molecule was investigated in terms of its energetic, geometric, and electronic properties using B3LYP and PW91 density functionals. In this investigation, various armchair (n,n) nanotubes, where n = 5, 6, 7 have been used. Two different interaction modes, including interaction with outer layer and inner layer of tube were studied. The results indicated that the adsorption of single urea molecule in all of its configurations is observed to be exothermic and physical in nature. Interestingly, the adsorption energy for the most stable configuration of urea was observed when the molecule located inside of the nanotube. Besides, the adsorption of urea on BNNTs changes the conductivity of nanotube.

  14. Coupled plasma filtration adsorption: rationale, technical development and early clinical experience.

    PubMed

    Ronco, Claudio; Brendolan, Alessandra; d'Intini, Vincenzo; Ricci, Zaccaria; Wratten, Mary Lou; Bellomo, Rinaldo

    2003-01-01

    The adjuvant treatment of sepsis remains a major therapeutic challenge. Blood purification is theoretically appealing if the humoral theory of sepsis is accepted as the basis for intervention. In this setting, blood purification would provide a broad-based restoration of humoral homeostasis thereby avoiding both excessive inflammation and counterinflammation. Several techniques of blood purification have been tried or are under active investigation. One of these is the so-called coupled plasma filtration adsorption (CPFA). CPFA is a novel extracorporeal blood purification therapy aimed at nonselectively reducing the circulating levels and activities of both pro- and anti-inflammatory mediators during sepsis and multiorgan failure. In vitro studies have shown CPFA to be effective in binding a broad range of such mediators proving its technical efficacy. Subsequent animal models have shown a beneficial effect on survival in endotoxemia. These studies have provided the necessary technical developments and biologic rationale for initial human studies. Two phase I/IIa clinical studies have now been performed. Both studies have shown that CPFA improves blood pressure and restores immune function in patients with severe sepsis and multiorgan dysfunction. In this article, we will discuss some of the basic principles involved in sorbent technology, and how these may contribute to treatment efficacy, review animal experiments with CPFA and finally discuss the results of recent human studies and their implications. Copyright 2003 S. Karger AG, Basel

  15. Adsorptive Removal of Cadmium (II) from Aqueous Solution by Multi-Carboxylic-Functionalized Silica Gel: Equilibrium, Kinetics and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Li, Min; Meng, Xiaojing; Yuan, Jinhai; Deng, Wenwen; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of various experimental parameters such as pH value, contact time and initial concentration on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. Equilibrium isotherms for the adsorption of cadmium (II) ion were analyzed by Freundlich and Langmuir isotherm models, the results indicate that Langmuir isotherm model was found to be credible to express the data for cadmium (II) ion from aqueous solution onto the SG-MCF. Various thermodynamics parameters of the adsorption process, including free energy of adsorption (ΔG0 ), the enthalpy of adsorption (ΔH0 ) and standard entropy changes (ΔS0 ), were calculated to predict the nature of adsorption. The positive value of the enthalpy change and the negative value of free energy change indicate that the process is endothermic and spontaneous process.

  16. Cell biology experiments conducted in space

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  17. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    PubMed

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Adsorptive removal of catalyst poisons from coal gas for methanol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, B.L.; Golden, T.C.; Hsiung, T.H.

    1991-12-01

    As an integral part of the liquid-phase methanol (LPMEOH) process development program, the present study evaluated adsorptive schemes to remove traces of catalyst poisons such as iron carbonyl, carbonyl sulfide, and hydrogen sulfide from coal gas on a pilot scale. Tests were conducted with coal gas from the Cool Water gasification plant at Daggett, California. Iron carbonyl, carbonyl sulfide, and hydrogen sulfide were effectively removed from the coal gas. The adsorption capacities of Linde H-Y zeolite and Calgon BPL carbon for Fe(CO){sub 5} compared well with previous bench-scale results at similar CO{sub 2} partial pressure. Adsorption of COS by Calgonmore » FCA carbon appeared to be chemical and nonregenerable by thermal treatment in nitrogen. A Cu/Zn catalyst removed H{sub 2}S very effectively. With the adsorption system on-line, a methanol catalyst showed stable activity during 120 h operation, demonstrating the feasibility of adsorptive removal of trace catalyst poisons from the synthesis gas. Mass transfer coefficients were estimated for Fe(CO){sub 5} and COS removal which can be directly used for design and scale up.« less

  19. psiTurk: An open-source framework for conducting replicable behavioral experiments online.

    PubMed

    Gureckis, Todd M; Martin, Jay; McDonnell, John; Rich, Alexander S; Markant, Doug; Coenen, Anna; Halpern, David; Hamrick, Jessica B; Chan, Patricia

    2016-09-01

    Online data collection has begun to revolutionize the behavioral sciences. However, conducting carefully controlled behavioral experiments online introduces a number of new of technical and scientific challenges. The project described in this paper, psiTurk, is an open-source platform which helps researchers develop experiment designs which can be conducted over the Internet. The tool primarily interfaces with Amazon's Mechanical Turk, a popular crowd-sourcing labor market. This paper describes the basic architecture of the system and introduces new users to the overall goals. psiTurk aims to reduce the technical hurdles for researchers developing online experiments while improving the transparency and collaborative nature of the behavioral sciences.

  20. Phenolic resin-based porous carbons for adsorption and energy storage applications

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Nilantha P.

    high Cu2+ ion adsorption capacities. Next, Chapter 5 is devoted to carbon materials for supercapacitors. There are mainly two types of electrochemical capacitors namely EDLC and pseudocapacitors. In EDLC, the energy is stored due to electrochemical attraction between electrode and electrolyte interface. To store more ionic charges on to the carbon electrode, it is essential to have high surface area carbon materials. In the case of pseudocapacitors, the energy is stored due to the redox reaction taking place at the electrode and electrolyte interface. Moreover, conductivity of the electrode is also important for the construction of superior electrode materials. To address these vital issues, the electrode materials has been prepared with special emphasis on the enhancement of their surface area to attract more charges at the electrode-electrolyte interface, introducing graphitic moieties to the carbon matrix to improve the conductivity and doping carbons with metal/heteroatoms to improve both capacitance through pseudocapacitive and conductivity.

  1. Effect of humic acids on the adsorption of paraquat by goethite.

    PubMed

    Brigante, Maximiliano; Zanini, Graciela; Avena, Marcelo

    2010-12-15

    The adsorption of the herbicide paraquat (PQ(2+)) on goethite and on the binary system humic acid-goethite has been studied in batch experiments by performing adsorption isotherms under different conditions of pH, supporting electrolyte concentration and temperature. The results were completed with capillary electrophoresis (CE) in order to measure the binding isotherm between PQ(2+) and humic acid (HA) molecules in solution. PQ(2+) adsorption is negligible on the bare goethite surface but important on the HA-goethite adsorbent. In this last case, the adsorption increases by increasing pH and decreasing electrolyte concentration. There are no significant effects of temperature on the adsorption. The adsorption takes place by direct binding of PQ(2+) to adsorbed HA molecules leading to the formation of surface species of the type goethite-HA-PQ(2+). The results are consistent with a mechanism where PQ(2+) binds negatively charged groups of HA (carboxylates and phenolates) forming ionic pairs or outer-sphere complexes. Since goethite in nature usually contains adsorbed HA molecules, it may act as a good adsorbent for cationic herbicides. This will not only benefit the deactivation of the herbicides but also reduce their leaching and transport through groundwater. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Coupled Plasma Filtration and Adsorption (CPFA): A Single Center Experience.

    PubMed

    Abdul Cader, Rizna; Abdul Gafor, Halim; Mohd, Rozita; Yen Kong, Wei; Arshad, Norazimah; Kong, Norella

    2013-09-01

    Coupled plasma filtration adsorption (CPFA) is a novel extracorporeal blood purification therapy for sepsis which adsorbs both proinflammatory and anti-inflammatory mediators from filtered plasma, thereby achieving early haemodynamic stability and a reduction in inotropic support requirement. The main objective was to review our centers' experience with CPFA in septic patients. A retrospective chart review of all septic patients who received CPFA was performed. All patients were initially treated according to the 'surviving sepsis care bundle' with fluid resuscitation, antibiotics, and inotropes as required. CPFA was started as soon as possible after a nephrologists' assessment. Twenty five patients with sepsis received CPFA (15 M, 10 F, mean age 49.60 ± 18.97 years). Comorbidities included hypertension (n = 10, 40%), diabetes mellitus (n = 6, 24%), ischemic heart disease (n = 6, 24%), and an immunosuppressed state (n = 10, 40%). All patients received one cycle of CPFA with median duration of 5 (1-10) hours. CPFA was well tolerated but we encountered technical problems, especially filter clotting as CPFA was performed heparin free. 14 (56%) patients died within 28 days of treatment. CRP correlated with PCT (P = 0.040) and had an inverse trend with albumin (P = 0.066). Serum albumin was a strong predictor of mortality. The high prevalence of fungaemia and mortality could be attributed to many patients on chronic immunosuppressive therapy. Nonetheless, CPFA albeit expensive, does add to our armamentarium of extracorporeal treatment for severe sepsis. Regional citrate anticoagulation with CPFA may overcome problems with filter clotting.

  3. Thermodynamic properties of rhamnolipid micellization and adsorption.

    PubMed

    Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław

    2014-07-01

    of the surface tension, density, viscosity and conductivity of aqueous solutions of rhamnolipid at natural and controlled pH were made at 293 K. On the basis of the obtained results the critical micelle concentration of rhamnolipid and its Gibbs surface excess concentration at the water-air interface were determined. The maximal surface excess concentration was considered in the light of the size of rhamnolipid molecule. Next the Gibbs standard free energy of rhamnolipid adsorption at this interface was determined on the basis of the different approaches to this energy. The standard free energy of adsorption was also deduced on the basis of the surface tension of n-hexane and water-n-hexane interface tension. Standard free energy obtained in this way was close to those determined by using the Langmuir, Szyszkowski, Aronson and Rosen, Gu and Zhu as well as modified Gamboa and Olea equations. The standard free energy of rhamnolipid adsorption at the water-air interface was compared to its standard free energy of micellization which was determined from the Philips equation taking into account the degree of rhamnolipid dissociation in the micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.

    PubMed

    Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V

    2006-09-01

    The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.

  5. Irreversible adsorption of particles on heterogeneous surfaces.

    PubMed

    Adamczyk, Zbigniew; Jaszczółt, Katarzyna; Michna, Aneta; Siwek, Barbara; Szyk-Warszyńska, Lilianna; Zembala, Maria

    2005-12-30

    evaluated by direct particle counting using the optical and electron microscopy. Adsorption kinetics was quantitatively interpreted in terms of numerical solutions of the governing diffusion equation with the non-linear boundary condition derived from Monte-Carlo simulations. It was proven that for site coverage as low as a few percent the initial flux at heterogeneous surfaces attained the maximum value pertinent to homogeneous surfaces. It also was demonstrated that the structure of larger particle monolayers, characterized in terms of the pair correlation function, showed much more short-range ordering than predicted for homogeneous surface monolayers at the same coverage. The last part of this review was devoted to detection of polyelectrolyte multilayers on various substrates via particle deposition experiments.

  6. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  7. Sorption Studies and Characterization of As (III) Adsorption over Developed Iron-Biochar Composites from Water.

    NASA Astrophysics Data System (ADS)

    Singh, P.; Mohan, D.

    2016-12-01

    Problem related to arsenic occurrence in groundwater has caused severe threat to human health in worldwide. Thus there is an increasing demand to find the chemistry and plausible mechanism of arsenic adsorption while remediating it from water. In present study iron-biochar composites are synthesised using agricultural waste materials. The rice husk iron-biochar composite (RIBC) and wheat husk iron-biochar composite (WIBC) were characterised and utilised for As (III) remediation from aqueous solution. The rice husk (RIBC) and wheat husk (WIBC) iron biochar composites were characterised. XPS, FT-IR, and XRD, were studied to analyse their elemental composition and functional group identification. While SEM, TEM, SEM-EDX were conducted to study their surface chemistry, mineralogy, porosity and crystallinity etc. Batch sorption studies were conducted for both rice husk (RIBC) and wheat husk (WIBC) iron-biochar composites to find sorption efficiency. Maximum As (III) adsorption was achieved in pH range 6-8 for both iron-biochar composites. Kinetic studies were conducted to establish the mechanism of As (III) adsorption at different dose and time. Optimum dose of 2g/L and 1g/L were reported for rice husk (RIBC) and wheat husk (WIBC) iron-biochar composites respectively. Electrostatic forces developed between arsenites and iron hydroxyl surface developed over the surface may have caused the removal of As (III). Significant amount of oxygen containing groups have been revealed through studies. Higher As (III) adsorption capacities were obtained for both iron-biochar composites to measure the amount of surface sites. Furthermore, various adsorption models are used to find the monolayer adsorption capacity. These findings suggest that developed iron-biochar composites may be used to remediate As (III) from contaminated water.

  8. Adsorption of hydraulic fracturing fluid components 2-butoxyethanol and furfural onto granular activated carbon and shale rock.

    PubMed

    Manz, Katherine E; Haerr, Gregory; Lucchesi, Jessica; Carter, Kimberly E

    2016-12-01

    The objective of this study was to understand the adsorption ability of a surfactant and a non-surfactant chemical additive used in hydraulic fracturing onto shale and GAC. Experiments were performed at varying temperatures and sodium chloride concentrations to establish these impacts on the adsorption of the furfural (a non-surfactant) and 2-Butoxyethanol (2-BE) (a surfactant). Experiments were carried out in continuously mixed batch experiments with Langmuir and Freundlich isotherm modeling. The results of the experiments showed that adsorption of these compounds onto shale does not occur, which may allow these compounds to return to the surface in flowback and produced waters. The adsorption potential for these chemicals onto GAC follows the assumptions of the Langmuir model more strongly than those of the Freundlich model. The results show uptake of furfural and 2-BE occurs within 23 h in the presence of DI water, 0.1 mol L -1 sodium chloride, and in lab synthesized hydraulic fracturing brine. Based on the data, 83% of the furfural and 62% of the 2-BE was adsorbed using GAC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Analysis of the statistical thermodynamic model for nonlinear binary protein adsorption equilibria.

    PubMed

    Zhou, Xiao-Peng; Su, Xue-Li; Sun, Yan

    2007-01-01

    The statistical thermodynamic (ST) model was used to study nonlinear binary protein adsorption equilibria on an anion exchanger. Single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin (BSA) on DEAE Spherodex M were determined by batch adsorption experiments in 10 mM Tris-HCl buffer containing a specific NaCl concentration (0.05, 0.10, and 0.15 M) at pH 7.40. The ST model was found to depict the effect of ionic strength on the single-component equilibria well, with model parameters depending on ionic strength. Moreover, the ST model gave acceptable fitting to the binary adsorption data with the fitted single-component model parameters, leading to the estimation of the binary ST model parameter. The effects of ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories. The effective charge of protein in adsorption phase can be separately calculated from the two categories of the model parameters, and the values obtained from the two methods are consistent. The results demonstrate the utility of the ST model for describing nonlinear binary protein adsorption equilibria.

  10. The phosphorus fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake, China.

    PubMed

    Wang, Xinglei; Wei, Jinxing; Bai, Na; Cha, Hancaicike; Cao, Can; Zheng, Kexuan; Liu, Ying

    2018-05-11

    The phosphorus (P) fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake were investigated through molybdenum blue/ascorbic acid method and indoor simulation experiments, respectively. The results showed that the highest total phosphorus concentration in overlying water (W-TP) was found in S1 which was in the hypereutrophic type. The mean concentration of particulate organic phosphorus (POP) was the most abundant P fraction (31.35% of the W-TP). The results of TP contents in sediments (S-TP) indicated that the most sampling sites were in the mild level of pollution. The contents of calcium-bound P (HCl-P) and residual P (Res-P) fractions together comprised 83.03-98.10% of the S-TP. Pseudo-second-order models fitted well with the adsorption-desorption kinetic of P fractions. The Langmuir and Freundlich models well described the adsorption isotherm of P fractions. The results of adsorption-desorption of P fractions indicated that the adsorption capacity was strong, the chemical adsorption was dominant, and the sediments was a source of P. Accordingly, we concluded that the Wuliangsuhai Lake was in the moderate pollution level, and the sediments as a source could desorb P in natural aquatic environment.

  11. Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification.

    PubMed

    Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L

    2007-03-06

    In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).

  12. Effect of Temperature to Adsorption Capacity and Coefficient Distribution on Rare Earth Elements Adsorption (Y, Gd, Dy) Using SIR

    NASA Astrophysics Data System (ADS)

    Aziz, N.; Mindaryani, A.; Supranto; Taftazani, A.; Biyantoro, D.

    2018-04-01

    The use of REE like element of Yttrium (Y) as a superconducting material requires a purity of more than 90%, so it needs to increase the purity of Y from the settling process. The purpose of this research is to study the separation process of REE that is Y, Gd, Dy elements from REE hydroxide (REE(OH)3) using SIR method are consisting of Amberlite XAD-16 resin impregnated with Di-(2-ethylhexyl) phosphate ( D2EHPA) and Tributyl Phosphate (TBP) and determine the isotherm model on REE adsorption and determine the kinetic model of pseudo adsorption reaction. This research was started by activating XAD-16 resin and is mixed with TBP-D2EHPA solvents so it will form SIR, then it is conducted on variation of SIR composition, temperature variation of adsorption process, determination of equilibrium equation and kinetic sorption occurring in SIR adsorption based on experimental data of liquid concentration as function of time. Based on the calculation result, the most effective SIR composition for REE separation is 0.75 g, the equilibrium equation for Y, Gd and Dy follows the Henry equilibrium model and the pseudo kinetic model of the reaction order Y, Gd, and Dy is followed by the pseudo reaction of order 2 The result of separation of LTJ with SIR is said to be effective from another method because purity is obtained that is 96.73% and qualify as a super conductor material.

  13. Adsorption of Salicylhydroxamic Acid on Selected Rare Earth Oxides and Carbonates

    NASA Astrophysics Data System (ADS)

    Galt, Greer Elaine

    Adsorption behavior of the anionic collector salicylhydroxamic acid (SHA) on a selected group of rare earth oxides (REOs) and carbonates (RECs) was studied via experimental methods and modelling software. Synthetic oxide and carbonate powders of the rare earth elements cerium (Ce), praseodymium (Pr), europium (Eu), and terbium (Tb) were tested for this research. Studies were conducted at different pH levels to analyze the kinetics of collector adsorption onto the oxide and carbonate surfaces in attempts to optimize recovery parameters for commercial flotation processes using SHA. In addition, thermodynamic software StabCal was implemented to compare theoretical adsorption behavior of collectors SHA and octylhydroxamic acid (OHA) on these four rare earth oxides and carbonates. Theoretical points of zero charge were also estimated via StabCal and compared to experimental values to establish validity. Results for oxides indicate that both the amount and rate of SHA adsorption are highest for lighter REOs, decreasing as ionic diameter increases, a chelation phenomenon common with hydroxamates. However, results for the carbonates exhibit the opposite trend: strongest SHA adsorption was seen in the heavy RECs. This pattern correlates to the increasing stability of the carbonate such that ionic diameter of the REs becomes more amenable to chelation due to differences in bonding chemistry. Overall, adsorption kinetics appear dependent on pH, coordination chemistry, and cation size.

  14. Adsorption of Ca2+ on single layer graphene oxide.

    PubMed

    Terracciano, Amalia; Zhang, Jianfeng; Christodoulatos, Christos; Wu, Fengchang; Meng, Xiaoguang

    2017-07-01

    Graphene oxide (GO) holds great promise for a broad array of applications in many fields, but also poses serious potential risks to human health and the environment. In this study, the adsorptive properties of GO toward Ca 2+ and Na + were investigated using batch adsorption experiments, zeta potential measurements, and spectroscopic analysis. When pH increased from 4 to 9, Ca 2+ adsorption by GO and the zeta potential of GO increased significantly. Raman spectra suggest that Ca 2+ was strongly adsorbed on the GO via -COOCa + formation. On the other hand, Na + was adsorbed into the electrical diffuse layer as an inert counterion to increase the diffuse layer zeta potential. While the GO suspension became unstable with increasing pH from 4 to 10 in the presence of Ca 2+ , it was more stable at higher pH in the NaCl solution. The findings of this research provide insights in the adsorption of Ca 2+ on GO and fundamental basis for prediction of its effect on the colloidal stability of GO in the environment. Copyright © 2017. Published by Elsevier B.V.

  15. Adsorption affinity and selectivity of 3-ureidopropyltriethoxysilane grafted oil palm empty fruit bunches towards mercury ions.

    PubMed

    Kunjirama, Magendran; Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Lye, Jimmy Wei Ping; Mat, Hanapi

    2017-06-01

    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Q m.exp ) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Q m.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.

  16. Formation of Manganese Oxide Coatings onto Sand for Adsorption of Trace Metals from Groundwater.

    PubMed

    Tilak, A S; Ojewole, S; Williford, C W; Fox, G A; Sobecki, T M; Larson, S L

    2013-11-01

    Manganese oxide (MnO) occurs naturally in soil and has a high affinity for trace metals adsorption. In this work, we quantified the factors (pH; flow rate; use of oxidants such as bleach, HO, and O; initial Mn(II) concentrations; and two types of geologic media) affecting MnO coatings onto Ottawa and aquifer sand using batch and column experiments. The batch experiments consisted of manual and automated titration, and the column experiments mimicked natural MnO adsorption and oxidation cycles as a strategy for in situ adsorption. A Pb solution of 50 mg L was passed through MnO-coated sand at a flow rate of 4 mL min to determine its adsorption capacity. Batch experimental results showed that MnO coatings increased from pH 6 to 8, with maximum MnO coating occurring at pH 8. Regarding MnO coatings, bleach and O were highly effective compared with HO. The Ottawa sand had approximately twice the MnO coating of aquifer sand. The sequential increase in initial Mn(II) concentrations on both sands resulted in incremental buildup of MnO. The automated procedure enhanced MnO coatings by 3.5 times compared with manual batch experiments. Column results showed that MnO coatings were highly dependent on initial Mn(II) and oxidant concentrations, pH, flow rate, number of cycles (h), and the type of geologic media used. Manganese oxide coating exceeded 1700 mg kg for Ottawa sand and 130 mg kg for aquifer sand. The Pb adsorption exceeded 2200 mg kg for the Ottawa sand and 300 mg kg for the aquifer sand. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Effect of electric field on adsorption of formaldehyde by β-cellobiose in micro-scale

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Chen, Zhenqian

    2018-05-01

    To provide a microcosmic theoretical support for the reduction of formaldehyde in building material by the effect of electric fields, the adsorption between formaldehyde molecule and β-cellobiose was studied by density function theory (DFT). Details of geometric structures, molecule bonds and adsorption energy were discussed respectively. The obtained results indicated the energy of formaldehyde molecule decreased while the energy of β-cellobiose increased with greater electric intensity. In addition, the adsorption energy between formaldehyde molecule and β-cellobiose was greatly influenced by external electric field. The adsorption energy reduced gradually with greater electric intensity, and the changing curve of adsorption energy could be fitted as an exponential function, verified by the experiment. The results of this study confirmed the external electric field would be a good strategy for decreasing formaldehyde within building materials in the microcosmic view.

  18. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils

    PubMed Central

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-01-01

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation. PMID:28644399

  19. Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.

    2014-12-01

    Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.

  20. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.

    PubMed

    Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon

    2016-06-07

    The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.

  1. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    PubMed Central

    Kristensen, Kasper; Henriksen, Jonas R.; Andresen, Thomas L.

    2015-01-01

    Cationic membrane-active peptides have been studied for years in the hope of developing them into novel types of therapeutics. In this article, we investigate an effect that might have significant experimental implications for investigators who wish to study these peptides, namely, that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membrane-active peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show that, at typical experimental peptide concentrations, 90% or more of the peptides might be lost from solution due to rapid adsorption to the walls of the sample containers. Thus, our results emphasize that investigators should always keep these adsorption effects in mind when designing and interpreting experiments on cationic membrane-active peptides. We conclude the article by discussing different strategies for reducing the experimental impact of these adsorption effects. PMID:25932639

  2. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  3. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes

    PubMed Central

    Abdel-Ghani, Nour T.; El-Chaghaby, Ghadir A.; Helal, Farag S.

    2014-01-01

    Individual and competitive adsorption studies were carried out to investigate the removal of phenol and nickel ions by adsorption onto multiwalled carbon nanotubes (MWCNTs). The carbon nanotubes were characterized by different techniques such as X-ray diffraction, scanning electron microscopy, thermal analysis and Fourier transformation infrared spectroscopy. The different experimental conditions affecting the adsorption process were investigated. Kinetics and equilibrium models were tested for fitting the adsorption experimental data. The characterization experimental results proved that the studied adsorbent possess different surface functional groups as well as typical morphological features. The batch experiments revealed that 300 min of contact time was enough to achieve equilibrium for the adsorption of both phenol and nickel at an initial adsorbate concentration of 25 mg/l, an adsorbent dosage of 5 g/l, and a solution pH of 7. The adsorption of phenol and nickel by MWCNTs followed the pseudo-second order kinetic model and the intraparticle diffusion model was quite good in describing the adsorption mechanism. The Langmuir equilibrium model fitted well the experimental data indicating the homogeneity of the adsorbent surface sites. The maximum Langmuir adsorption capacities were found to be 32.23 and 6.09 mg/g, for phenol and Ni ions, respectively. The removal efficiency of MWCNTs for nickel ions or phenol in real wastewater samples at the optimum conditions reached up to 60% and 70%, respectively. PMID:26257938

  4. Strong Selective Adsorption of Polymers.

    PubMed

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d < 1 that are characterized by the fraction of occupied adsorption sites and whether the dominant conformation of adsorbed chains is a single-end-adsorbed "mushroom" or double-end-adsorbed loop. For l / d > 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker

  5. Investigation of copper (Cu2+) adsorption performances and gamma radiation dose effect of polymeric hydrogel

    NASA Astrophysics Data System (ADS)

    Hassan, Safia; Yasin, Tariq; Imran, Zahid; Batool, Syeda Sitwat

    2018-02-01

    In present study, series of gamma irradiated poly(acrylic acid)/Penytriethoxytrisilane (PTES) based hydrogels were synthesized. The hydrogels were used for the adsorption of Cu2+ from the aqueous solution. Batch adsorption experiments were performed by varying contact time (0-10 hours), pH value (2-6), hydrogels weight (15-155 mg) and initial Cu2+ concentration (0.003-90 mg/L). The results indicated that lowering the gamma irradiation dose (30-15 kGy) and PTES amount (1.65-0.83 μmol) into hydrogel polymeric networks, improved the initial rate of adsorption and final adsorption capacity of hydrogel for Cu2+. AA40/15 had 143.4mg/g Cu2+ adsorption capacity higher than AA80/30 which is 106.0mg/g. Hydrogels exhibited maximum o adsorption capacity for Cu2+ within a wide pH range. All adsorption data was described by the pseudo—first order and second order kinetic model equations and isotherm data by Langmuir model. FTIR spectra analysis before and after adsorption of Cu2+ on the AA hydrogels gave detail analysis of adsorption mechanism. The behavior of adsorption expressed that the enhanced adsorption capacity was due to the porous structure and e presence of functional groups onto surface of adsorbate. It is expected this polymeric hydrogel has potential to work as alternative biomedical sorbents and environmental use as pH altered.

  6. Adsorption of anionic and nonionic surfactant mixtures from synthetic detergents on soils.

    PubMed

    Rao, Pinhua; He, Ming

    2006-05-01

    Adsorption of anionic surfactant (sodium dodecylbenzenesulfonate, SDBS) and nonionic surfactant (an alcohol ethoxylates with 12 carbons and 9 oxyethyl groups, A12E9) mixtures, widely used as the major constituents of synthetic detergents in China and become the most common pollutants in the environment, on soils was conducted to investigate the behavior of mixed surfactants in soils. The effects of addition order and mixing ratios of two surfactants, associated with pH and ion strength in solutions, on adsorptions were considered. The results show that saturated adsorption amount of SDBS and A12E9 on soils decreased respectively when A12E9 was added into soils firstly compared with that secondly, possibly resulting from the screening of A12E9 to part adsorption sites on soils and the hydrocarbon chain-chain interactions between SDBS and A12E9. The adsorption of SDBS and A12E9 on soils was enhanced each other at pre-plateau region of isotherms. At plateau region of isotherms, the adsorption of SDBS on soils decreased with the increase of molar fraction of A12E9 in mixed surfactant solutions, while that of A12E9 increased except the molar ratio of SDBS to A12E9 0.0:1.0. With the increase of pH in mixed surfactant solutions, adsorption amount of SDBS and A12E9 on soils decreased, respectively. The reduction of ion strength in soils resulted in the decrease of adsorption amount of SDBS and A12E9 on soils, respectively.

  7. Binary gas mixture adsorption-induced deformation of microporous carbons by Monte Carlo simulation.

    PubMed

    Cornette, Valeria; de Oliveira, J C Alexandre; Yelpo, Víctor; Azevedo, Diana; López, Raúl H

    2018-07-15

    Considering the thermodynamic grand potential for more than one adsorbate in an isothermal system, we generalize the model of adsorption-induced deformation of microporous carbons developed by Kowalczyk et al. [1]. We report a comprehensive study of the effects of adsorption-induced deformation of carbonaceous amorphous porous materials due to adsorption of carbon dioxide, methane and their mixtures. The adsorption process is simulated by using the Grand Canonical Monte Carlo (GCMC) method and the calculations are then used to analyze experimental isotherms for the pure gases and mixtures with different molar fraction in the gas phase. The pore size distribution determined from an experimental isotherm is used for predicting the adsorption-induced deformation of both pure gases and their mixtures. The volumetric strain (ε) predictions from the GCMC method are compared against relevant experiments with good agreement found in the cases of pure gases. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method.

    PubMed

    Kooh, Muhammad Raziq Rahimi; Lim, Linda B L; Lim, Lee Hoon; Dahri, Muhammad Khairud

    2016-02-01

    This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system. The kinetics modelling of the kinetics experiment showed that pseudo-second-order best represented the adsorption process. The Weber-Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limiting step, while the Boyd model suggested that film diffusion might be rate-limiting. The adsorption isotherm model, Langmuir, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 72.2 and 199.7 mg g(-1) at 25 and 65 °C, respectively. Thermodynamics study indicates spontaneity, endothermic and physisorption-dominant adsorption process. The adsorbents were regenerated to satisfactory level with distilled water, HNO3 and NaOH. Pre-treatment of adsorbent with oxalic acid, citric acid, NaOH, HCl and phosphoric acid was investigated but the adsorption capacity was less than the untreated AP.

  9. [Application of classical isothermal adsorption models in heavy metal ions/ diatomite system and related problems].

    PubMed

    Zhu, Jian; Wu, Qing-Ding; Wang, Ping; Li, Ke-Lin; Lei, Ming-Jing; Zhang, Wei-Li

    2013-11-01

    In order to fully understand adsorption nature of Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Fe3+ onto natural diatomite, and to find problems of classical isothermal adsorption models' application in liquid/solid system, a series of isothermal adsorption tests were conducted. As results indicate, the most suitable isotherm models for describing adsorption of Pb2+, Cd2+, Cu2+, Zn2+, Mn2+, Fe3+ onto natural diatomite are Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively, the adsorption of each ion onto natural diatomite is mainly a physical process, and the adsorption reaction is favorable. It also can be found that, when using classical isothermal adsorption models to fit the experimental data in liquid/solid system, the equilibrium adsorption amount q(e) is not a single function of ion equilibrium concentration c(e), while is a function of two variables, namely c(e) and the adsorbent concentration W0, q(e) only depends on c(e)/W(0). Results also show that the classical isothermal adsorption models have a significant adsorbent effect, and their parameter values are unstable, the simulation values of parameter differ greatly from the measured values, which is unhelpful for practical use. The tests prove that four-adsorption-components model can be used for describing adsorption behavior of single ion in nature diatomite-liquid system, its parameters k and q(m) have constant values, which is favorable for practical quantitative calculation in a given system.

  10. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels.

    PubMed

    Tang, Hu; Zhou, Weijie; Zhang, Lina

    2012-03-30

    A chitin hydrogel with concentration 3 wt% (CG3) was successfully prepared from chitin solution dissolved in 8 wt% NaOH/4 wt% urea aqueous system at low temperature by crosslinking with 5 wt% epichlorohydrin. The experimental results revealed that CG3 exhibited high efficiency to remove dye (malachite green) from aqueous solution, as a result of their microporous structure, large surface area and affinity on the dye. The equilibrium process was described well by the Langmuir isotherm model, showing a monolayer adsorption. From kinetic experiments, the adsorption process followed the pseudo-second-order kinetic model, indicating that the overall rate of dye uptake could be controlled by external mass transfer at the beginning of adsorption, while intraparticle diffusion controlled the overall rate of adsorption at a later stage. The activation energy calculated from Arrhenius equation and the result of SEM and FTIR indicated that the adsorption of malachite green on the CG3 was physical process. This work provided an attractive adsorbent for removing of the hazardous materials from wastewater. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Modeling the effects of variable groundwater chemistry on adsorption of molybdate

    USGS Publications Warehouse

    Stollenwerk, Kenneth G.

    1995-01-01

    Laboratory experiments were used to identify and quantify processes having a significant effect on molybdate (MoO42−) adsorption in a shallow alluvial aquifer on Cape Cod, assachusetts. Aqueous chemistry in the aquifer changes as a result of treated sewage effluent mixing with groundwater. Molybdate adsorption decreased as pH, ionic strength, and the concentration of competing anions increased. A diffuse-layer surface complexation model was used to simulate adsorption of MoO42−, phosphate (PO43−), and sulfate (SO42−) on aquifer sediment. Equilibrium constants for the model were calculated by calibration to data from batch experiments. The model was then used in a one-dimensional solute transport program to successfully simulate initial breakthrough of MoO42− from column experiments. A shortcoming of the solute transport program was the inability to account for kinetics of physical and chemical processes. This resulted in a failure of the model to predict the slow rate of desorption of MoO42− from the columns. The mobility of MoO42− ncreased with ionic strength and with the formation of aqueous complexes with calcium, magnesium, and sodium. Failure to account for MoO42− speciation and ionic strength in the model resulted in overpredicting MoO42− adsorption. Qualitatively, the laboratory data predicted the observed behavior of MoO42− in the aquifer, where retardation of MoO42− was greatest in uncontaminated roundwater having low pH, low ionic strength, and low concentrations of PO43− and SO42−.

  12. Adsorption and recognition characteristics of surface molecularly imprinted polymethacrylic acid/silica toward genistein.

    PubMed

    Zhang, Yanyan; Gao, Baojiao; An, Fuqiang; Xu, Zeqing; Zhang, Tingting

    2014-09-12

    In this paper, on the basis of surface-initiated graft polymerization, a new surface molecular imprinting technique is established by molecular design. And molecularly imprinted polymer MIP-PMAA/SiO2 is successfully prepared with genistein as template. The adsorption and recognition characteristics of MIP-PMAA/SiO2 for genistein are studied in depth by using static method, dynamic method and competitive adsorption experiment. The experimental results show that MIP-PMAA/SiO2 possesses very strong adsorption affinity and specific recognition for genistein. The saturated adsorption capacity could reach to 0.36mmolg(-1). The selectivity coefficients relative to quercetin and rutin are 5.4 and 11.8, respectively. Besides, MIP-PMAA/SiO2 is regenerated easily and exhibits excellent reusability. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Role of adsorption in liquid lubrication

    NASA Technical Reports Server (NTRS)

    Groszek, A. J.

    1973-01-01

    Changes at solid-liquid interfaces caused by adsorption from solution are discussed paying attention to the following aspects: (1) stability of adsorbed films and the structure of metal-additive-film-liquid interface and effect of adsorbate orientation. (2) chemical versus physical adsorption, (3) heat of adsorption, (4) adsorption of additives, (5) activated adsorption, effect of activating adsorbates, (6) displacement phenomena at solid-liquid interfaces, (7) competition of antiwear additives, their solvents, and water, (8) effect of adsorption on the orientation of liquid in the interfacial region, and (9) relation between the chemical nature of solid surfaces and their interaction with liquid lubricants. The relevance of the above adsorption phenomena to lubrication is discussed, referring where possible to specific examples.

  14. Adsorption of Poly(methyl methacrylate) on Concave Al2O3 Surfaces in Nanoporous Membranes

    PubMed Central

    Nunnery, Grady; Hershkovits, Eli; Tannenbaum, Allen; Tannenbaum, Rina

    2009-01-01

    The objective of this study was to determine the influence of polymer molecular weight and surface curvature on the adsorption of polymers onto concave surfaces. Poly(methyl methacrylate) (PMMA) of various molecular weights was adsorbed onto porous aluminum oxide membranes having various pore sizes, ranging from 32 to 220 nm. The surface coverage, expressed as repeat units per unit surface area, was observed to vary linearly with molecular weight for molecular weights below ~120 000 g/mol. The coverage was independent of molecular weight above this critical molar mass, as was previously reported for the adsorption of PMMA on convex surfaces. Furthermore, the coverage varied linearly with pore size. A theoretical model was developed to describe curvature-dependent adsorption by considering the density gradient that exists between the surface and the edge of the adsorption layer. According to this model, the density gradient of the adsorbed polymer segments scales inversely with particle size, while the total coverage scales linearly with particle size, in good agreement with experiment. These results show that the details of the adsorption of polymers onto concave surfaces with cylindrical geometries can be used to calculate molecular weight (below a critical molecular weight) if pore size is known. Conversely, pore size can also be determined with similar adsorption experiments. Most significantly, for polymers above a critical molecular weight, the precise molecular weight need not be known in order to determine pore size. Moreover, the adsorption developed and validated in this work can be used to predict coverage also onto surfaces with different geometries. PMID:19415910

  15. [Adsorption characteristics of proteins on membrane surface and effect of protein solution environment on permeation behavior of berberine].

    PubMed

    Li, Yi-Qun; Xu, Li; Zhu, Hua-Xu; Tang, Zhi-Shu; Li, Bo; Pan, Yong-Lan; Yao, Wei-Wei; Fu, Ting-Ming; Guo, Li-Wei

    2017-10-01

    In order to explore the adsorption characteristics of proteins on the membrane surface and the effect of protein solution environment on the permeation behavior of berberine, berberine and proteins were used as the research object to prepare simulated solution. Low field NMR, static adsorption experiment and membrane separation experiment were used to study the interaction between the proteins and ceramic membrane or between the proteins and berberine. The static adsorption capacity of proteins, membrane relative flux, rejection rate of proteins, transmittance rate of berberine and the adsorption rate of proteins and berberine were used as the evaluation index. Meanwhile, the membrane resistance distribution, the particle size distribution and the scanning electron microscope (SEM) were determined to investigate the adsorption characteristics of proteins on ceramic membrane and the effect on membrane separation process of berberine. The results showed that the ceramic membrane could adsorb the proteins and the adsorption model was consistent with Langmuir adsorption model. In simulating the membrane separation process, proteins were the main factor to cause membrane fouling. However, when the concentration of proteins was 1 g•L⁻¹, the proteins had no significant effect on membrane separation process of berberine. Copyright© by the Chinese Pharmaceutical Association.

  16. Experimental and theoretical studies of the effect of temperature on supercritical CO2 adsorption on illite

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Zhang, Y.; Prasad, M.

    2016-12-01

    Sequestration of carbon dioxide in shale has been a subject of interest as the result of the technological advancement in gas shale production. The process involves injection of CO2 to enhance methane recovery and storing CO2 in depleted shale reservoir at elevated pressures. To better understand both shale production and carbon storage one must study the physical phenomena acting at different scales that control the in situ fluid flow. Shale rocks are complex systems with heterogeneous structures and compositions. Pore structures of these systems are in nanometer scales and have significant gas storage capacity and surface area. Adsorption is prominent in nanometer sized pores due to the high attraction between gas molecules and the surface of the pores. Recent studies attempt to find correlation between storage capacity and the rock composition, particularly the clay content. This study, however, focuses on the study of supercritical adsorption of CO2 on pure clay sample. We have built an in-house manometric experimental setup that can be used to study both the equilibrium and kinetics of adsorption. The experiment is conducted at isothermal condition. The study of equilibrium of adsorption gives insight on the storage capacity of these systems, and the study of the kinetics of adsorption is essential in understanding the resistance to fluid transport. The diffusion coefficient, which can be estimated from the dynamic experimental results, is a parameter which quantify diffusion mobility, and is affected by many factors including pressure and temperature. The first part of this paper briefly discusses the study of both equilibrium and kinetics of the CO2 adsorption on illite. Both static and dynamic measurements on the system are compared to theoretical models available in the literature to estimate the storage capacity and the diffusion time constants. The main part of the paper discusses the effect of varying temperature on the static and dynamic experimental

  17. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs.

    PubMed

    Zhou, Li; Gao, Chao; Xu, Weijian

    2010-05-01

    A versatile and robust adsorbent with both magnetic property and very high adsorption capacity is presented on the basis of functionalization of iron oxide-silica magnetic particles with carboxylic hyperbranched polyglycerol (Fe(3)O(4)/SiO(2)/HPG-COOH). The structure of the resulting product was confirmed by Fourier transform infrared (FTIR) spectra, thermo gravimetric analysis (TGA), zeta-potential, and transmission electron microscopy (TEM). According to the TGA results, the density of the carboxylic groups on the surface of Fe(3)O(4)/SiO(2)/HPG-COOH is calculated to be as high as 3.0 mmol/g, posing a powerful base for adsorbing dyes and drugs. Five kinds of dyes and one representative anticancer drug were chosen to investigate the adsorption capacity of the as-prepared magnetic adsorbent. The adsorbent shows highly efficient adsorption performance for all of the adsorbates especially for the cationic dyes and drug. For example, the saturated adsorption capacity of the Fe(3)O(4)/SiO(2)/HPG-COOH for methyl violet (MV) can reach 0.60 mmol/g, which is much higher than the previous magnetic adsorbents (usually lower than 0.30 mmol/g). 95% of MV and 90% of R6G could be adsorbed within 5 min, and both of the adsorptions reached equilibrium in about 15 min. The adsorption kinetics and isotherm of the adsorbents were investigated in detail and found that the kinetic and equilibrium adsorptions are well-modeled using pseudo-second-order kinetics and Langmuir isotherm model, respectively. In addition, the influences of pH and ionic strength on the adsorption capacity were also examined and found that pH has much greater effect on the adsorption capacity compared with the ionic strength. Regeneration experiments showed that the Fe(3)O(4)/SiO(2)/HPG-COOH can be well-regenerated in ethanol and partially regenerated in 1 M HCl aqueous solution. After regeneration, the magnetic adsorbents can still show high adsorption capacity even for 10 cycles of desorption-adsorption. No

  18. Phosphate Removal using Modified Bayoxide®E33 Adsorption Media

    EPA Science Inventory

    The adsorption of phosphate onto modified Bayoxide® E33 (E33) and underlying mechanisms were comparatively investigated by batch kinetics, sorption isotherms, rapid small scale column tests, and material characterization. Synthesis of modified E33 was conducted by the addition of...

  19. Modelling of moisture adsorption for sugar palm (Arenga pinnata) starch film

    NASA Astrophysics Data System (ADS)

    Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Hernawan

    2017-03-01

    Sorption characteristic of food products is important for design, optimization, storage and modelling. Sugar palm starch film with two different plasticizers (sorbitol and glycerol) with varied concentration studied for its adsorption isotherm characteristic. The data of adsorption isotherm fitted with GAB, Oswin, Smith and Peleg models. All models describe the experiment data well, but Peleg model is better than the other models on both sugar palm starch film plasticized with sorbitol and glycerol. Moisture sorption of sugar palm starch increased linearly with plasticizer concentration. A new model by taking account of plasticizer concentration describes the experiment data well with an average of coefficients of determination (R2) 0.9913 and 0.9939 for film plasticized with glycerol and sorbitol respectively.

  20. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations

    PubMed Central

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.

    2014-01-01

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally. PMID:24459184

  1. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations.

    PubMed

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C; Landes, Christy F

    2014-02-11

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally.

  2. ARSENIC TREATMENT BY ADSORPTIVE TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the removal of arsenic from drinking water using the adsorptive media treatment process. Fundamental information is provided on the design and operation of adsorptive media technology including the selection of the adsorptive media. The information cites...

  3. Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution.

    PubMed

    Ma, Fengfeng; Zhao, Baowei; Diao, Jingru

    2016-09-01

    The purpose of this work is to investigate adsorption characteristic of corn stalk (CS) biochar for removal of cadmium ions (Cd 2+ ) from aqueous solution. Batch adsorption experiments were carried out to evaluate the effects of pH value of solution, adsorbent particle size, adsorbent dosage, and ionic strength of solution on the adsorption of Cd 2+ onto biochar that was pyrolytically produced from CS at 300 °C. The results showed that the initial pH value of solution played an important role in adsorption. The adsorptive amount of Cd 2+ onto the biochar decreased with increasing the adsorbent dosage, adsorbent particle size, and ionic strength, while it increased with increasing the initial pH value of solution and temperature. Cd 2+ was removed efficiently and quickly from aqueous solutions by the biochar with a maximum capacity of 33.94 mg/g. The adsorption process was well described by the pseudo-second-order kinetic model with the correlation coefficients greater than 0.986. The adsorption isotherm could be well fitted by the Langmuir model. The thermodynamic studies showed that the adsorption of Cd 2+ onto the biochar was a spontaneous and exothermic process. The results indicate that CS biochar can be considered as an efficient adsorbent.

  4. The adsorption of copper in a packed-bed of chitosan beads: modeling, multiple adsorption and regeneration.

    PubMed

    Osifo, Peter O; Neomagus, Hein W J P; Everson, Raymond C; Webster, Athena; vd Gun, Marius A

    2009-08-15

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead.

  5. Microgravimetric Analysis Method for Activation-Energy Extraction from Trace-Amount Molecule Adsorption.

    PubMed

    Xu, Pengcheng; Yu, Haitao; Li, Xinxin

    2016-05-03

    Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials.

  6. Use of hydrophilic polymer coatings for control of electroosmosis and protein adsorption

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The purpose of this project was to examine the utility of polyethylene glycol (PEG) and dextran coatings for control of electroosmosis and protein adsorption; electroosmosis is an important, deleterious process affecting electrophoretic separations, and protein adsorption is a factor which needs to be controlled during protein crystal growth to avoid multiple nucleation sites. Performance of the project required use of X-ray photoelectron spectroscopy to refine previously developed synthetic methods. The results of this spectroscopic examination are reported. Measurements of electroosmotic mobility of charged particles in appropriately coated capillaries reveals that a new, one-step route to coating capillaries gives a surface in which electroosmosis is dramatically reduced. Similarly, both PEG and dextran coatings were shown by protein adsorption measurements to be highly effective at reducing protein adsorption on solid surfaces. These results should have impact on future low-g electrophoretic and protein crystal growth experiments.

  7. Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface

    NASA Astrophysics Data System (ADS)

    Singla, Preeti; Singhal, Sonal; Goel, Neetu

    2013-10-01

    The adsorption of NO2 molecules on (8,0) zigzag single-walled boron nitride nanotube surface is investigated using density functional theory calculations. Two interaction modes, nitro (interacting atom is N) and nitrite (O interacts with BNNT) have been studied with increase in number of NO2 molecules. The adsorption of single NO2 molecule in both configurations is observed to be exothermic and physical in nature. However, in nitrite configuration, NO2 molecules are chemisorbed on the surface leading to the dissociation of NO2 molecules into NO and O. The density of states, natural bond orbital analysis and frontier orbital pictures provide rational understanding of the charge transfer involved in the process and predict significant enhancement in the conductivity of the BNNT after NO2 adsorption. The DFT calculations show that NO2 adsorption introduces new impurity states in the band gap of bare BNNT and expand their applications as NO2 molecule gas sensor and catalytic surface for Nsbnd O dissociation depending upon the mode of adsorption.

  8. Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; TeGrotenhuis, Ward E.; Drost, Kevin; Vishwanathan, Vilayanur V.

    2004-06-08

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  9. Optimal design of gas adsorption refrigerators for cryogenic cooling

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  10. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    PubMed Central

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  11. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters.

    PubMed

    Hyung, Hoon; Kim, Jae-Hong

    2008-06-15

    The effect of natural organic matter (NOM) characteristics and water quality parameters on NOM adsorption to multiwalled carbon nanotubes (MWNT) was investigated. Isotherm experiment results were fitted well with a modified Freundlich isotherm model that took into account the heterogeneous nature of NOM. The preferential adsorption of the higher molecular weight fraction of NOM was observed by size exclusion chromatographic analysis. Experiments performed with various NOM samples suggested that the degree of NOM adsorption varied greatly depending on the type of NOM and was proportional to the aromatic carbon content of NOM. The NOM adsorption to MWNT was also dependent on water quality parameters: adsorption increased as pH decreased and ionic strength increased. As a result of NOM adsorption to MWNT, a fraction of MWNT formed a stable suspension in water and the concentration of MWNT suspension depended on the amount of NOM adsorbed per unit mass of MWNT. The amount of MWNT suspended in water was also affected by ionic strength and pH. The findings in this study suggested that the fate and transport of MWNT in natural systems would be largely influenced by NOM characteristics and water quality parameters.

  12. Adsorption orientations and immunological recognition of antibodies on graphene

    NASA Astrophysics Data System (ADS)

    Vilhena, J. G.; Dumitru, A. C.; Herruzo, Elena T.; Mendieta-Moreno, Jesús I.; Garcia, Ricardo; Serena, P. A.; Pérez, Rubén

    2016-07-01

    Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors.Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our

  13. Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking.

    PubMed

    Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon

    2017-03-29

    Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption

  14. Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-11-01

    In this study, the adsorption mechanism of Cs/NF3 on the [001]-oriented GaN nanowire surface is investigated by using the density function theory based on first-principles. In the Cs/NF3 co-activation process, the system is inclined to form NF3-in structure. Through the calculation results of adsorption energy, NF3 molecule adsorption tends to take an orientation with F atoms on top and the most favorable adsorption site is BGa-N. The NF3 activation process can further cut down the work function of the Cs-covered nanowire surface only when Cs coverage is 0.75 ML and 1 ML, which can be explained by the double dipole moment theory. With increasing Cs coverage, the valence band and conduction band both shift to lower energy side, contributing to the appearance of a downward band bending region and promoting the escape of surface photoelectrons. After NF3 molecule adsorption, the peak of total density of states near Fermi level increase due to the orbital hybridization between NF3-2s, Cs-5s states and N-2p states, which strengthen the conductivity of the nanowire surface and leads to the metallic properties. All these calculations may direct the Cs/NF3 activation process of GaN nanowire optoelectronic devices.

  15. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  16. Simultaneous adsorption of Cu2+ and Acid fuchsin (AF) from aqueous solutions by CMC/bentonite composite.

    PubMed

    Gong, Ning; Liu, Yanping; Huang, Ruihua

    2018-04-21

    Carboxymethyl-chitosan (CMC)/bentonite composite was prepared by the method of membrane-forming, and characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. The simultaneous adsorption of Cu 2+ and Acid fuchsin (AF) applying CMC/bentonite composite as an adsorbent in single or binary systems was investigated. The adsorption study was conducted systematically by varying the ratio of CMC to bentonite, adsorbent dosage, initial pH value, initial Cu 2+ (or AF) concentration, contact time and the interaction of two components in binary solutions. The results showed that the presence of Cu 2+ hindered the adsorption of AF, while the presence of AF almost had no influence on the adsorption of Cu 2+ in binary systems. The adsorption data of Cu 2+ and AF were both suitable for Langmuir isotherm model, and the maximum adsorption capacities of CMC/bentonite composite, according to the Langmuir isotherm model were 81.4 mg/g for Cu 2+ and 253.2 mg/g for AF at 298 K. The pseudo-second-order model could better describe the adsorption process of Cu 2+ and AF. Thermodynamic constant values illustrated that the adsorption of Cu 2+ was endothermic, while the adsorption process of AF was exothermic. Copyright © 2018. Published by Elsevier B.V.

  17. Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Wei-fang; Pan, Ling; Chen, Li-fang; Yu, Zhe; Wang, Qiong; Yan, Chang-cheng

    2014-08-01

    Ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS) were employed to impregnate activated carbons for the purpose of lead removal. The mechanisms of surface impregnation and lead adsorption method of chemical regeneration were investigated. Results showed that the highest impregnation of EDTA and SDS on activated carbon was 0.33 and 0.96 mmol/g, respectively. Adsorption capacities for lead of EDTA and SDS impregnated activated carbons reached 0.29 and 0.24 mmol/g. Rapid small scale column tests of adsorption and regeneration were conducted. Lead adsorption was greatly enhanced by EDTA impregnation. In addition, EDTA impregnated adsorbent was able to be successful regenerated by HNO3 and thus reused.

  18. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    PubMed

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  19. Ozone adsorption on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were

  20. Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.

    PubMed

    Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G

    2016-12-01

    The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.

  1. Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Askari Ardehjani, Nastaran

    2018-06-01

    In this work, the adsorption of ozone molecule on Fe, Co and Ni doped boron nitride nanosheets (BNNSs) were investigated using density functional theory. The most stable adsorption configurations, charge transfer and adsorption energy of ozone molecule on pure and doped BNNSs are calculated. It is shown that ozone molecule has no remarkable interaction with pure boron nitride nanosheet, it tends to be chemisorbed on Fe, Co and Ni doped BNNSs with adsorption energy in the range of -249.4 to -686.1 kJ/mol. In all configurations, the adsorption of ozone molecule generates a semiconductor by reducing Eg in the pure and Fe, Co and Ni doped boron nitride nanosheet. It shows that the conductance of BNNSs change over the adsorption of ozone molecule. The obtained results in this study can be used in developing BN-based sheets for ozone molecule removal.

  2. Adsorption properties of AlN on Si(111) surface: A density functional study

    NASA Astrophysics Data System (ADS)

    Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting

    2018-04-01

    In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.

  3. Adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem in Malaysia.

    PubMed

    Ismail, B S; Ooi, K E

    2012-05-01

    Laboratory experiments were conducted to evaluate adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem consisting of the Bernam, Selangor, Rengam and Bongor soil series. The lowest adsorption of metsulfuron-methyl occurred in the Bongor soil (0.366 ml g(-1)), and the highest in the Bemam soil (2.837 ml g(-1). The K(fads) (Freundlich) values of metsulfuron-methyl were 0.366, 0.560, 1.570 and 2.837 ml g(-1) in Bongor, Rengam, Selangor and Bemam soil, respectively. The highest K(fdes) value of metsulfuron-methyl, observed in the Bemam soil, was 2.563 indicating low desorption 0.280 (relatively strong retention). In contrast, the lowest K(fdes) value of 0.564 was observed for the Bongor soil, which had the lowest organic matter (1.43%) and clay content (13.2%). Soil organic matter and clay content were the main factors affecting the adsorption of metsulfuron-methyl. The results of the soil column leaching studies suggested that metsulfuron-methyl has a moderate potential for mobility in the Bernam and Bongor soil series with 19.3% and 39%, respectively for rainfall at 200 mm. However, since metsulfuron-methyl is applied at a very low rate (the maximum field application rate used was 30 g ha(-1)) and is susceptible to biodegradation, the potential forground water contamination is low.

  4. Research of Co(II) Adsorption on Silica Gel Grafted with Dithiocarbamate (DTC-SiO2) in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Yao, Qingxu; Xu, Peng; Huo, Yonggang; Shang, Aiguo; Yu, Fengmei

    2018-01-01

    Dithiocarbamate grafted silica gel (DTC-SiO2) was prepared following two simple reaction steps. The properties of the composite were characterized by FTIR, SEM and element analysis. Its ability to remove Co2+ ions in aqueous solution with low concentration was also studied by static adsorption experiments. The effects of pH value in solution, contact time and temperature were investigated. The results show that the DTC-SiO2 exhibits excellent adsorption property for Co2+. The adsorption kinetics could be well described by pseudo-second-order model and the adsorption isotherms could be depicted by both Freundlich and Dubinin-Radushkevich models. The adsorption process belongs to chemisorption. The slightly influence of common interfering metal ions (Na+, K+, Ca2+ and Mg2+) on the adsorption capacity revealing the synthesized DTC-SiO2 performs excellent selective adsorption to Co2+.

  5. Adsorption of normal pentane on the surface of rutile. Experimental results and simulations.

    PubMed

    Rakhmatkariev, G U; Carvalho, A J Palace; Ramalho, J P Prates

    2007-07-03

    Adsorption isotherms and differential heats of normal pentane adsorption on microcrystalline rutile were measured at 303 K. The heat of adsorption of n-pentane on rutile at zero occupancy is 64 kJ/mol. The differential heats have three descending segments, corresponding to the adsorption of n-pentane on three types of surfaces. At low coverage (first segment), the adsorption is restricted to the rows A of the (110) faces along the 5-fold coordinatively unsaturated (cus) Ti(4+) ions with differential heat showing a linear decrease with increasing occupancy. The second segment is attributed to bonding with atoms of the rows along the remaining faces exposed, (101) and (100). The third segment is related to a multilayer adsorption. The mean molar adsorption entropy of n-pentane is ca. -25 J/mol K less than the entropy of the bulk liquid, thus revealing a hindered state of motion of the n-pentane molecules on the surface of rutile. Simulations of the adsorption of n-pentane on the three most abundant crystallographic faces of rutile were also performed. The adsorption isotherm obtained from the combination of each face's isotherm weighted by the respective abundance was found to be in a good agreement with the experimental data. A structural characterization of n-pentane near the surface was also conducted, and it was found that the substrate, especially for the (110) face, strongly perturbs the distribution of n-pentane conformations, compared to those found for the gas phase. Adsorbed molecules are predominantly oriented with their long axes and their backbone zigzag planes parallel to the surface and are also characterized by fewer gauche conformations than observed in the bulk phase.

  6. First Molecular Dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons

    NASA Astrophysics Data System (ADS)

    Terzyk, Artur P.; Gauden, Piotr A.; Zieliński, Wojciech; Furmaniak, Sylwester; Wesołowski, Radosław P.; Klimek, Kamil K.

    2011-10-01

    The results of 84 MD simulations showing the influence of porosity and carbon surface oxidation on adsorption of three organic compounds from aqueous solutions on carbons are reported. Based on a model of 'soft' activated carbon, three carbon structures with gradually changed microporosity were created. Next, different number of surface oxygen groups was introduced. We observe quantitative agreement between simulation and experiment i.e. the decrease in adsorption from benzene down to paracetamol. Simulation results clearly demonstrate that the balance between porosity and carbon surface chemical composition in organics adsorption on carbons, and the pore blocking determine adsorption properties of carbons.

  7. Ethanol mediated As(III) adsorption onto Zn-loaded pinecone biochar: Experimental investigation, modeling, and optimization using hybrid artificial neural network-genetic algorithm approach.

    PubMed

    Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck

    2017-04-01

    Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.

  8. Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation.

    PubMed

    Dong, Zhen; Zhao, Long

    2018-06-01

    Combining the advantages of both cellulose and ionic liquid, ionic liquid functionalized cellulose (ILFC) as adsorbent was prepared through radiation grafting glycidyl methacrylate onto cellulose microsphere following by reaction with ionic liquid 1-aminopropyl-3-methyl imidazolium nitrate. Its adsorption properties towards Cr(VI) were investigated in batch and column experiments. In batch experiments, the adsorption kinetics was well fitted with pseudo-second-order mode with equilibrium time of 2 h and the adsorption capacity reached 181.8 mg/g at pH 2 calculated from Langmuir model. In fixed column, both Yoon-Nelson and Thomas models gave satisfactory fit to experimental data and breakthrough curves, and equilibrium adsorption capacity calculated by Thomas model was 161.0 mg/g. Moreover, ILFC exhibited high selectivity towards Cr(VI) even in synthetic chrome-plating wastewater. Besides, adsorption/desorption test revealed ILFC can be regenerated and reused several times without obvious decrease in adsorbed amount. The adsorption process was demonstrated to anion exchange-reduction mechanism via XPS analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Adsorption Removal of Environmental Hormones of Dimethyl Phthalate Using Novel Magnetic Adsorbent.

    PubMed

    Chang, Chia-Chi; Tseng, Jyi-Yeong; Ji, Dar-Ren; Chiu, Chun-Yu; Lu, De-Sheng; Chang, Ching-Yuan; Yuan, Min-Hao; Chang, Chiung-Fen; Chiou, Chyow-San; Chen, Yi-Hung; Shie, Je-Lueng

    2015-01-01

    Magnetic polyvinyl alcohol adsorbent M-PVAL was employed to remove and concentrate dimethyl phthalate DMP. The M-PVAL was prepared after sequential syntheses of magnetic Fe3O4 (M) and polyvinyl acetate (M-PVAC). The saturated magnetizations of M, M-PVAC, and M-PVAL are 57.2, 26.0, and 43.2 emu g(-1) with superparamagnetism, respectively. The average size of M-PVAL by number is 0.75 μm in micro size. Adsorption experiments include three cases: (1) adjustment of initial pH (pH0) of solution to 5, (2) no adjustment of pH0 with value in 6.04-6.64, and (3) adjusted pH0 = 7. The corresponding saturated amounts of adsorption of unimolecular layer of Langmuir isotherm are 4.01, 5.21, and 4.22 mg g(-1), respectively. Values of heterogeneity factor of Freundlich isotherm are 2.59, 2.19, and 2.59 which are greater than 1, revealing the favorable adsorption of DMP/M-PVAL system. Values of adsorption activation energy per mole of Dubinin-Radushkevich isotherm are, respectively, of low values of 7.04, 6.48, and 7.19 kJ mol(-1), indicating the natural occurring of the adsorption process studied. The tiny size of adsorbent makes the adsorption take place easily while its superparamagnetism is beneficial for the separation and recovery of micro adsorbent from liquid by applying magnetic field after completion of adsorption.

  10. Investigation of Zn2+ and Cd2+ Adsorption Performanceby Different Weathering Basalts

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Shuo, Q.; Chen, H.

    2016-12-01

    Geological barriers play an important role in preventing pollution of groundwater. Basalts are common geological media; however, there have not been any studies that report the effect of basalt type on the metal ion adsorption performance. In this study, we explored the metal ion (Zn2+ and Cd2+) adsorption ability of two kinds of weathering basalts: the origin weathering basalt (WB) and the eluvial deposit (ED), both of which were derived from same basaltic formation. Characteristics of the sediments were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Barrett-Joyner-Halenda (BJH) measurement and the rapid potentiometric titration (RPT) method. Batch experiments were performed to evaluate the Zn2+ and Cd2+ adsorption performance of WB and ED and how adsorption was affected by contact time, initial metal ion concentration, pH and ionic strength. Despite WB and ED having similar chemical compositions, WB exhibited better adsorption than ED likely due to the fact that WB was rougher and had more small-sized spherical structures and stronger electrostatic forces. The adsorption process fit the Freundlich isotherm model well. The adsorption efficiency decreased with a decrease of pH (from 4 to 2) and with increasing ionic strength. These results suggest that a geological barrier composed of WB media might be able to effectively sequester metallic contaminants to prevent them from reaching groundwater.

  11. Fixed-bed adsorption study of methylene blue onto pyrolytic tire char

    NASA Astrophysics Data System (ADS)

    Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis

    2016-04-01

    In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.

  12. Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils.

    PubMed

    Kasozi, Gabriel N; Nkedi-Kizza, Peter; Agyin-Birikorang, Sampson; Zimmerman, Andrew R

    2010-01-27

    The adsorption and degradation of the pesticide diuron in carbonatic and noncarbonatic soils were investigated to better understand the fate and transport of diuron in the environment. Batch adsorption experiments yielded isotherms that were well-described by the linear model. Adsorption coefficients normalized to soil organic carbon content (K(oc)) were lowest for carbonatic soils, averaging 259 +/- 48 (95% CI), 558 +/- 109, 973 +/- 156, and 2090 +/- 1054 for carbonatic soils, Histosols, Oxisols, and Spodosols, respectively. In addition, marl-carbonatic soils had much lower K(oc) values (197 +/- 27) than nonmarl-carbonatic soils. Diuron degradation data fit a first-order reaction kinetics model, yielding half-lives in soils ranging from 40 to 267 days. There was no significant difference between the average diuron degradation rate coefficients of each of the soil groups studied. Given the low adsorption capacity of carbonatic soils, it may be advisable to lower herbicide application rates in agricultural regions with carbonatic soils such as southern Florida to protect aquatic ecosystems and water quality.

  13. Synergistic Effect of Mixed Oxide on the Adsorption of Ammonia with Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mounfield, III, William P.; Taborga Claure, Micaela; Agrawal, Pradeep K.

    A hydrotalcite-derived MgAl oxide (MMO) was evaluated in combination with the metal–organic frameworks (MOFs) UiO-66 and UiO-66-NH 2 for the adsorption of ammonia. Analysis of the materials’ textural properties after ammonia breakthrough adsorption revealed no change in the PXRD patterns or FTIR spectra; however, a slight decrease in surface area was observed, consistent with the hypothesized presence of strongly adsorbed species after adsorption. UiO-66:MMO and UiO-66-NH 2:MMO composites maintained ammonia adsorption capacity under dry conditions. An almost 2-fold increase in humid ammonia capacity was observed for the UiO-66:MMO composite, far beyond that expected through a linear combination of the twomore » materials’ capacities. As a result, the synergistic effect observed in humid conditions was further investigated with water adsorption experiments, which suggested the effect is the result of the high water affinity of MMO.« less

  14. Synergistic Effect of Mixed Oxide on the Adsorption of Ammonia with Metal–Organic Frameworks

    DOE PAGES

    Mounfield, III, William P.; Taborga Claure, Micaela; Agrawal, Pradeep K.; ...

    2016-06-08

    A hydrotalcite-derived MgAl oxide (MMO) was evaluated in combination with the metal–organic frameworks (MOFs) UiO-66 and UiO-66-NH 2 for the adsorption of ammonia. Analysis of the materials’ textural properties after ammonia breakthrough adsorption revealed no change in the PXRD patterns or FTIR spectra; however, a slight decrease in surface area was observed, consistent with the hypothesized presence of strongly adsorbed species after adsorption. UiO-66:MMO and UiO-66-NH 2:MMO composites maintained ammonia adsorption capacity under dry conditions. An almost 2-fold increase in humid ammonia capacity was observed for the UiO-66:MMO composite, far beyond that expected through a linear combination of the twomore » materials’ capacities. As a result, the synergistic effect observed in humid conditions was further investigated with water adsorption experiments, which suggested the effect is the result of the high water affinity of MMO.« less

  15. Adsorption of BTEX, MTBE and TAME on natural and modified diatomite.

    PubMed

    Aivalioti, Maria; Papoulias, Panagiotis; Kousaiti, Athanasia; Gidarakos, Evangelos

    2012-03-15

    The removal of BTEX (benzene, toluene, ethyl-benzene and m-,p-,o-xylenes), MTBE (methyl tertiary butyl ether) and TAME (tertiary amyl methyl ether) from aqueous solutions by raw, thermally, chemically and both chemically and thermally treated diatomite was studied, through batch adsorption experiments. In total, 14 different diatomite samples were created and tested. Selected physical characteristics of the adsorbents, such as specific surface area and pore volume distribution, were determined. Matrix and competitive adsorption effects were also explored. It was proved that the diatomite samples were effective in removing BTEX, MTBE and TAME from aqueous solutions, with the sample treated with HCl being the most effective, as far as its adsorption capacity and equilibrium time are concerned. Among the contaminants, BTEX appeared to have the strongest affinity, based on mass uptake by the diatomite samples. Matrix effects were proved to be strong, significantly decreasing the adsorption of the contaminants onto diatomite. The kinetics data proved a closer fit to the pseudo second order model, while the isotherm experimental data were a better fit to the Freundlich model. However, the latter produced values of the isotherm constant 1/n greater than one, indicating unfavorable adsorption. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers.

    PubMed

    Sun, Yubing; Wu, Zhen-Yu; Wang, Xiangxue; Ding, Congcong; Cheng, Wencai; Yu, Shu-Hong; Wang, Xiangke

    2016-04-19

    The adsorption mechanism of U(VI) and Eu(III) on carbonaceous nanofibers (CNFs) was investigated using batch, IR, XPS, XANES, and EXAFS techniques. The pH-dependent adsorption indicated that the adsorption of U(VI) on the CNFs was significantly higher than the adsorption of Eu(III) at pH < 7.0. The maximum adsorption capacity of the CNFs calculated from the Langmuir model at pH 4.5 and 298 K for U(VI) and Eu(III) were 125 and 91 mg/g, respectively. The CNFs displayed good recyclability and recoverability by regeneration experiments. Based on XPS and XANES analyses, the enrichment of U(VI) and Eu(III) was attributed to the abundant adsorption sites (e.g., -OH and -COOH groups) of the CNFs. IR analysis further demonstrated that -COOH groups were more responsible for U(VI) adsorption. In addition, the remarkable reducing agents of the R-CH2OH groups were responsible for the highly efficient adsorption of U(VI) on the CNFs. The adsorption mechanism of U(VI) on the CNFs at pH 4.5 was shifted from inner- to outer-sphere surface complexation with increasing initial concentration, whereas the surface (co)precipitate (i.e., schoepite) was observed at pH 7.0 by EXAFS spectra. The findings presented herein play an important role in the removal of radionuclides on inexpensive and available carbon-based nanoparticles in environmental cleanup applications.

  17. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations

    NASA Astrophysics Data System (ADS)

    Mulder, F. M.; Dingemans, T. J.; Schimmel, H. G.; Ramirez-Cuesta, A. J.; Kearley, G. J.

    2008-07-01

    Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF's) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (˜550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].

  18. Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption

    NASA Astrophysics Data System (ADS)

    Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi

    2016-08-01

    We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N‧-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6‧-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.

  19. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol.

    PubMed

    Jiang, Jun; Dai, Zhaoxia; Sun, Rui; Zhao, Zhenjie; Dong, Ying; Hong, Zhineng; Xu, Renkou

    2017-07-01

    Iron oxides are dominant effective adsorbents for arsenate in iron oxide-rich variable charge soils. Oxisol-derived paddy soils undergo intensive ferrolysis, which results in high leaching and transformation of iron oxides. However, little information is available concerning the effect of ferrolysis on arsenate adsorption by paddy soil and parent Oxisol. In the present study, we examined the arsenate affinity of soils using arsenate adsorption/desorption isotherms, zeta potential, adsorption kinetics, pH effect and phosphate competition experiments. Results showed that ferrolysis in an alternating flooding-drying Oxisol-derived paddy soil resulted in a significant decrease of free iron oxides and increase of amorphous iron oxides in the surface and subsurface layers. There were more reactive sites exposed on amorphous than on crystalline iron oxides. Therefore, disproportionate ratios of arsenate adsorption capacities and contents of free iron oxides were observed in the studied Oxisols compared with paddy soils. The Gibbs free energy values corroborated that both electrostatic and non-electrostatic adsorption mechanisms contributed to the arsenate adsorption by bulk soils, and the kinetic adsorption data further suggested that the rate-limiting step was chemisorption. The zeta potential of soil colloids decreased after arsenate was adsorbed on the surfaces, forming inner-sphere complexes and thus transferring their negative charges to the soil particle surfaces. The adsorption/desorption isotherms showed that non-electrostatic adsorption was the main mechanism responsible for arsenate binding to the Oxisol and derived paddy soils, representing 91.42-94.65% of the adsorption capacities. Further studies revealed that arsenate adsorption was greatly inhibited by increasing suspension pH and incorporation of phosphate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Activated Carbon Preparation and Modification for Adsorption

    NASA Astrophysics Data System (ADS)

    Cao, Yuhe

    compared to charcoal-based commercial AC (143.8 mg g -1). Based on the adsorption experiments of butanol vapor, we found the chemical properties of the AC surface play an important role in adsorbing molecules. The adsorption of creatinine on active carbons was also studied, which is a toxic compound generated by human. High levels of creatinine in the blood stream is normally caused by malfunction or failure of the kidneys. Activated carbons is taken by the patients orally to reduce creatinine level. In order to figure out whether chemical modification could increase the adsorption capacity of creatinine, AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb creatinine. The pore structure and surface properties of the AC samples were characterized by N 2 adsorption, temperature programmed desorption (TPD), Fourier Transform Infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). It indicated that 4M HNO3 hydrothermal modification with 180 °C was an efficient method in improvement of the creatinine adsorption. The improved adsorption capacity can be attributed mainly to an increase in the acidic oxygen-containing functional groups. The adsorption of creatinine over AC may involve an interaction with the acidic oxygen-containing groups on AC. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherm and isotherm constants. Equilibrium data fitted very well to the Freundlich model in the entire saturation range (3.58-59.08 mg L-1 ). The maximum adsorption capacities of AC modified with 180 °C is 62.5 mg g-1 according to the Langmuir model. Pseudo first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical adsorption was the rate-limiting step, instead of mass transfer. (Abstract shortened by ProQuest.).

  1. Adsorption of NO on alumina-supported oxides and oxide-hydroxides of manganese.

    PubMed

    Spasova, I; Nikolov, P; Mehandjiev, D

    2005-10-15

    The adsorption capacity for NO of alumina-supported oxides and oxide-hydroxides of manganese have been studied. Two series of samples have been prepared by precipitation on gamma-alumina and appropriate thermal treatment. The samples have been characterized by adsorption methods, magnetic methods, electronic paramagnetic resonance (EPR), transient response technique, and temperature-programmed desorption (TPD). The influence of the concentration of the initial manganese-containing solution has been investigated. The sample, prepared with a solution with Mn concentration of 4 g/100 ml, has been shown to be the best adsorbent for NO under the conditions of the experiment. It has been found that the presence mainly of Mn3+ ions on the surface of the support is probably responsible for the enhanced adsorption capacity.

  2. Microcalorimetric study of the adsorption of PEGylated lysozyme and PEG on a mildly hydrophobic resin: influence of ammonium sulfate.

    PubMed

    Werner, Albert; Blaschke, Tim; Hasse, Hans

    2012-08-07

    Adsorption of native as well as mono-, di-, and tri-PEGylated lysozyme on Toyopearl PPG-600M, a mildly hydrophobic resin is studied by isothermal titration calorimetry and by independent adsorption equilibrium measurements in sodium phosphate buffer at pH 7.0 and 25 °C. For PEGylation two different PEG sizes are used (5 and 10 kDa) which leads to six different forms of PEGylated lysozyme all of which are systematically studied. Additionally, the adsorption of five pure PEGs is explored. The ammonium sulfate concentration is varied from 600 to 1200 mM. The molar enthalpy of adsorption Δh(p)(ads) is determined from the calorimetric and the adsorption equilibrium data. It is found to be endothermic in all experiments. The comparison of the adsorption of different PEGylated forms shows that the adsorption of PEGylated lysozyme is driven by the adsorption of the PEG chain. The results provide insight into the adsorption mechanisms of polymer-modified proteins on hydrophobic chromatographic resins.

  3. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm.

    PubMed

    Yu, Yun Long; Wu, Xiao Mao; Li, Shao Nan; Fang, Hua; Zhan, Hai Yan; Yu, Jing Quan

    2006-06-01

    A study was conducted to determine the adsorption/desorption of butachlor, myclobutanil and chlorpyrifos on five soils using a batch equilibration technique and to study the relationship between bioavailability to Allolobophora caliginosa and the adsorption/desorption of these three pesticides. The results showed that the adsorption/desorption processes of the tested compounds were mainly controlled by soil organic matter content (OM) and octanol/water-partitioning coefficient (K(ow)), and that the bioavailability of the pesticides was dependent on characteristics of pesticides, properties of soils, and uptake routes of earthworms. Bioconcentration of butachlor and myclobutanil was negatively correlated with Freundlich adsorption constant K(af) and K(df). However, only a slightly positive correlation between bioconcentration and K(af) and K(df) was observed for chlorpyrifos due to its high affinity onto soil.

  4. Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals.

    PubMed

    Fang, Linchuan; Cai, Peng; Li, Pengxiang; Wu, Huayong; Liang, Wei; Rong, Xingmin; Chen, Wenli; Huang, Qiaoyun

    2010-09-15

    In order to have a better understanding of the interactions of heavy metals with bacteria and minerals in soil and associated environments, isothermal titration calorimetry (ITC), potentiometric titration and equilibrium sorption experiments were conducted to investigate the adsorption behavior of Cu(II) by Bacillus thuringiensis, Pseudomonas putida and their composites with minerals. The interaction of montmorillonite with bacteria increased the reactive sites and resulted in greater adsorption for Cu(II) on their composites, while decreased adsorption sites and capacities for Cu(II) were observed on goethite-bacteria composites. A gram-positive bacterium B. thuringiensis played a more important role than a gram-negative bacterium P. putida in determining the properties of the bacteria-minerals interfaces. The enthalpy changes (DeltaH(ads)) from endothermic (6.14 kJ mol(-1)) to slightly exothermic (-0.78 kJ mol(-1)) suggested that Cu(II) is complexed with the anionic oxygen ligands on the surface of bacteria-mineral composites. Large entropies (32.96-58.89 J mol(-1) K(-1)) of Cu(II) adsorption onto bacteria-mineral composites demonstrated the formation of inner-sphere complexes in the presence of bacteria. The thermodynamic data implied that Cu(II) mainly bound to the carboxyl and phosphoryl groups as inner-sphere complexes on bacteria and mineral-bacteria composites. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Influence of the extent of disruption of Bakers' yeast on protein adsorption in expanded beds.

    PubMed

    Balasundaram, B; Harrison, S T L

    2008-02-01

    Expanded bed adsorption chromatography is used to capture the protein product of interest from a crude biological suspension directly, thereby eliminating the need for the removal of the cell debris. While this technique may replace three or four unit operations in a typical downstream process for biological product recovery, the adsorption process is influenced by the interaction between the microbial cells or cell debris and the adsorbent as well as the presence of contaminating solutes. The influence of the extent and nature of disruption of Bakers' yeast on the adsorption of the total soluble protein and alpha-glucosidase was investigated in this study. Two different techniques were used for cell disruption: high pressure homogenisation and hydrodynamic cavitation. Two different adsorbents were chosen: anionic Streamline DEAE and cationic Streamline SP. The settled bed height and the superficial velocity were constant across all experiments. The feedstock was characterised in terms of viscosity, pH, conductivity, particle size distribution of the cell debris and the extent of protein and alpha-glucosidase released. The performance of the adsorption process was found to be influenced by the electrostatic interactions of cell debris with the anionic adsorbent Streamline DEAE and the intraparticle diffusional resistance inside the pores of the adsorbent matrix. The increase in the intensity of disruption resulted in an increase in the dynamic binding capacity (10% feed) of both the total soluble protein and the alpha-glucosidase. However, the increase in the DBC of protein and alpha-glucosidase were not proportional. The amount of protein that could be adsorbed per ml of adsorbent from the samples subjected to a lower intensity of disruption was found to exceed that obtained at a higher disruption intensity on increasing the volume of feed suggesting multilayer adsorption. In this case, selective adsorption of the model protein alpha-glucosidase was reduced

  6. Charge induced enhancement of adsorption for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Sun, Xiang

    2009-12-01

    . Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy. Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.

  7. Structural Changes in Self-Catalyzed Adsorption of Carbon Monoxide on 1,4-Phenylene Diisocyanide Modified Au(111)

    DOE PAGES

    Kestell, John; Boscoboinik, J. Anibal; Cheng, Lanxia; ...

    2015-07-23

    The self-accelerated adsorption of CO on 1,4-phenylene diisocyanide (PDI)-derived oligomers on Au(111) is explored by reflection–absorption infrared spectroscopy and scanning tunneling microscopy. PDI incorporates gold adatoms from the Au(111) surface to form one-dimensional —(Au–PDI) n— chains that can also connect between gold nanoparticles on mica to form a conductive pathway between them. CO adsorption occurs in two stages; it first adsorbs adjacent to the oligomers that move to optimize CO adsorption. Further CO exposure induces PDI decoordination to form Au–PDI adatom complexes thereby causing the conductivity of a PDI-linked gold nanoparticle array on mica to decrease to act as amore » chemically drive molecular switch. This simple system enables the adsorption process to be explored in detail. DFT calculations reveal that both the —(Au–PDI) n— oligomer chain and the Au–PDI adatom complex are stabilized by coadsorbed CO. A kinetic “foot-in-the-door” model is proposed in which fluctuations in PDI coordination allow CO to diffuse into the gap between gold adatoms to prevent the PDI from reattaching, thereby allowing additional CO to adsorb, to provide kinetic model for allosteric CO adsorption on PDI-covered gold.« less

  8. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents.

    PubMed

    Rivera-Utrilla, José; Gómez-Pacheco, Carla V; Sánchez-Polo, Manuel; López-Peñalver, Jesús J; Ocampo-Pérez, Raúl

    2013-12-15

    The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0 mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nurazar, Roghaye

    2014-03-01

    The adsorption and dissociative reaction of methanol on B12N12 fullerene-like nanocage is investigated by using density functional calculations. Equilibrium geometries, adsorption energies, and electronic properties of CH3OH adsorption on the surface of the B12N12 were identified. The calculated adsorption energies range from -1.3 to -34.9 kcal/mol. It is found that the electrical conductivity of the nanocage can be modified upon the adsorption of CH3OH. The mechanism of methanol decomposition via CO and OH bond scissions is also studied. The results indicate that OH bond scission is the most favorable pathway on the B12N12 surface.

  10. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Yang, Rongsheng

    2012-01-01

    A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro. For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C. The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.

  11. Use of combined coagulation-adsorption process as pretreatment of landfill leachate

    PubMed Central

    2013-01-01

    Landfill leachate is an important pollution factor resulting from municipal landfill sites. Physical and chemical processes are the better option for pretreatment or full treatment of landfill leachate. This article presents a combination of pre-treatment method (coagulation and adsorption) for leachate collected from municipal solid waste open dumping site. Physico chemical characteristics of stabilized and fresh leachate were examined. Coagulation process was examined by using alum and ferric chloride. A low cost adsorbent, fly ash was used for adsorption studies. Coagulation studies were carried out for fresh and stabilized leachate. Adsorption studies have been conducted for alum pre-treated stabilized leachate. Effect of coagulant dose, adsorbent dose, pH and contact time were carried out. The effective optimum coagulant dosages were 0.6 g/L and 0.7 g/L for alum and ferric chloride respectively for stabilized leachate and incase of fresh leachate 0.8 g/L and 0.6 g/L for alum and ferric chloride respectively. For the alum pretreated stabilized leachate, the maximum COD removal is 28% using fly ash adsorbent with equilibrium time of 210 min and optimum dose of 6 g/L. Overall COD removal efficiency of 82% was obtained by coagulation using alum and adsorption using fly ash for stabilized leachate. The results obtained showed that combined coagulation and adsorption process can be used effectively for stabilized leachate treatment. PMID:23517661

  12. Mineralogical and hydrochemical effects on adsorption removal of cesium-137 and strontium-90 by kaolinite.

    PubMed

    Jeong, C H

    2001-01-01

    Adsorption characteristics of the nuclides onto kaolinite were investigated by batch experiment under various pH conditions and concentrations of groundwater cations (Ca2+, Mg2+, K+ and Na+) and anions (HCO3-, CO3(2-) and SO4(2-). Adsorption removal of 137Cs and 90Sr by kaolinite greatly increased as the concentration of groundwater cations increased from 10(-5) to 10(-1) M. In contrast, the pH exerted a small effect on the adsorption of 137Cs and 90Sr onto kaolinite. The zeta potential of kaolinite particles showed a negative increase of amphoteric surface charge with increasing pH. The adsorption behavior of 90Sr was also highly dependent on the concentration of bicarbonate. The thermodynamic saturation index indicated that bicarbonate exerts great effect on strontium adsorption by the precipitation of a strontianite (SrCO3) and a change in pH.

  13. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    NASA Astrophysics Data System (ADS)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  14. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    NASA Astrophysics Data System (ADS)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2017-07-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  15. Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars

    PubMed Central

    Zhao, Nan; Yang, Xixiang; Zhang, Jing; Zhu, Ling; Lv, Yizhong

    2017-01-01

    Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer–Emmett–Teller N2 surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra, 13C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m2/g and 0.2302 cm3/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The qmax values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700. PMID:28937637

  16. Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.

    PubMed

    Zhao, Nan; Yang, Xixiang; Zhang, Jing; Zhu, Ling; Lv, Yizhong

    2017-09-22

    Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer-Emmett-Teller N₂ surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra, 13 C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m²/g and 0.2302 cm³/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The q max values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700.

  17. Adsorption of Pb2+ on Thiol-functionalized Mesoporous Silica, SH-MCM-48

    NASA Astrophysics Data System (ADS)

    Taba, P.; Mustafa, R. D. P.; Ramang, L. M.; Kasim, A. H.

    2018-03-01

    Modification of mesoporous silica, MCM-48, by using 3- mercaptopropyltrimethoxysilane has been successfully conducted. MCM-48 and SH-MCM-48 were characterized using XRD and FTIR. SH-MCM-48 was used as an adsorbent of Pb2+ ions from solution. A number of Pb2+ ions adsorbed were studied as the function of time, pH, and concentration. The concentration of the ions after adsorption was determined by an Atomic Absorption Spectrophotometer. The removal of the adsorbed ions from the SH-MCM-48 was also studied using several desorbing agents. The result showed that the optimum time was 20 minutes and optimum pH was 4. The adsorption of Pb(II) ion followed the pseudo-second-order with the rate constant of 0,2632 g•mg-1•min-1. Adsorption of Pb(II) ion fitted the Langmuir isotherm with the adsorption capacity of 0,1088 mmol/g. The best desorbing agent to remove the adsorbed ion from SH-MCM-48 was 0.3 M HCl solution with the desorption percentage of 58.6%.

  18. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA)

    PubMed Central

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-01-01

    Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357

  19. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    PubMed

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  20. Adsorption of antibiotics on microplastics.

    PubMed

    Li, Jia; Zhang, Kaina; Zhang, Hua

    2018-06-01

    Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (K d ) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg -1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with K f correlated positively with octanol-water partition coefficients (Log K ow ). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Removing polycyclic aromatic hydrocarbons from water using granular activated carbon: kinetic and equilibrium adsorption studies.

    PubMed

    Eeshwarasinghe, Dinushika; Loganathan, Paripurnanda; Kalaruban, Mahatheva; Sounthararajah, Danious Pratheep; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2018-05-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log K ow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.

  2. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    PubMed

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  3. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.

    PubMed

    Jung, Chanil; Park, Junyeong; Lim, Kwang Hun; Park, Sunkyu; Heo, Jiyong; Her, Namguk; Oh, Jeill; Yun, Soyoung; Yoon, Yeomin

    2013-12-15

    Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0-45 ppm), methoxyl (45-63 ppm), O-alkyl (63-108 ppm), and carboxyl carbon (165-187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (Kow) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property of adsorbates steadily throughout the study. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  5. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  6. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2017-09-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  7. Insight into the adsorption mechanisms of vanadium(V) on a high-efficiency biosorbent (Ti-doped chitosan bead).

    PubMed

    Liu, Xin; Zhang, Lingfan

    2015-08-01

    In this present study, a new chitosan bead modified with titanium ions (TiCB) was prepared and employed for the adsorption of vanadium ions from aqueous solutions. Batch adsorption experiments were performed to research the effect of various factors, including pH, temperature, contact time and initial concentration of vanadium(V) ions. The adsorption of vanadium was followed by the pseudo second-order kinetic and the Langmuir isotherm model, with a remarkable maximum adsorption capacity of 210 mg/g. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the nature of adsorption was feasible, spontaneous (ΔG°<0) and endothermic (ΔH°>0) process. FTIR, EDS, EMI and XPS studies suggested that the mechanisms of adsorption were possibly attributed to electrostatic attraction, ligand-exchange and redox reaction between TiCB and vanadium ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. An investigative study of polymer adsorption onto montmorillonite clay

    NASA Astrophysics Data System (ADS)

    McConnell Boykin, Cheri Lynn

    For colloidal systems with adsorbed polymer, the mechanisms governing stabilization and flocculation are defined by the critical overlap concentration, c*. Below c*, steric stabilization or bridging flocculation are viable mechanisms of adsorption, while above c* associative thickening stabilization, depletion stabilization or depletion flocculation may occur. While these types of systems have been described by their mechanism of interaction, few studies have been geared towards evaluating and actually defining these interactions. This research focuses on elucidating the mechanisms of interaction for a series of polyacrylamide copolymers adsorbed onto montmorillonite clay. The well-defined copolymers synthesized and characterized for these studies include: nonionic polyacrylamide, (PAm); cationic poly(acrylamide-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), (PAmMaap Quat); nonionic/anionic poly(acrylamide-co-acrylic acid), (PAmAA); and anionic poly(acrylamide-co-[2-acrylamido-2-methylpropane sulfonic acid]), (PAmAmps). By combining the results from the following experiments it was possible to determine the mechanisms of interaction for each of the clay/polymer systems at pH 3, 7 and 10. The adsorption capacity of each of the copolymers was determined from constructing adsorption isotherms while the polymer conformation was determined from 13C NMR line-broadening experiments. FTIR spectroscopy verified which surface of the clay was involved in adsorption along with the polymer moiety bound to the surface. Finally, the stabilization behavior was evaluated from statistically designed phase diagrams as a function of polymer and clay concentrations. By evaluating the phase behavior as well as c* for the polymer/solvent systems, it was determined that there was no direct correlation between c* for a polymer/solvent system and the mechanism of interaction for colloid/polymer/solvent systems previously defined by Vincent, Sato and Napper. In general, the

  9. A Multifaceted Study of Methane Adsorption in Metal-Organic Frameworks by Using Three Complementary Techniques.

    PubMed

    Zhang, Yue; Lucier, Bryan E G; Fischer, Michael; Gan, Zhehong; Boyle, Paul D; Desveaux, Bligh; Huang, Yining

    2018-03-25

    Methane is a promising clean and inexpensive energy alternative to traditional fossil fuels, however, its low volumetric energy density at ambient conditions has made devising viable, efficient methane storage systems very challenging. Metal-organic frameworks (MOFs) are promising candidates for methane storage. In order to improve the methane storage capacity of MOFs, a better understanding of the methane adsorption, mobility, and host-guest interactions within MOFs must be realized. In this study, methane adsorption within α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and M-MOF-74 (M=Mg, Zn, Ni, Co) has been comprehensively examined. Single-crystal X-ray diffraction (SCXRD) experiments and DFT calculations of the methane adsorption locations were performed for α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , and SIFSIX-3-Zn. The SCXRD thermal ellipsoids indicate that methane possesses significant mobility at the adsorption sites in each system. 2 H solid-state NMR (SSNMR) experiments targeting deuterated CH 3 D guests in α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and MOF-74 yield an interesting finding: the 2 H SSNMR spectra of methane adsorbed in these MOFs are significantly influenced by the chemical shielding anisotropy in addition to the quadrupolar interaction. The chemical shielding anisotropy contribution is likely due mainly to the nuclear independent chemical shift effect on the MOF surfaces. In addition, the 2 H SSNMR results and DFT calculations strongly indicate that the methane adsorption strength is linked to the MOF pore size and that dispersive forces are responsible for the methane adsorption in these systems. This work lays a very promising foundation for future studies of methane adsorption locations and dynamics within adsorbent MOF materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phosphate Adsorption from Membrane Bioreactor Effluent Using Dowex 21K XLT and Recovery as Struvite and Hydroxyapatite

    PubMed Central

    Nur, Tanjina; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2016-01-01

    Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P) resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0–7.5, 20, 35 mg phosphate/L) produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg·P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers. PMID:26950136

  11. Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang

    2014-06-15

    Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Column displacement experiments to evaluate electrical conductivity effects on electromagnetic soil water sensing

    USDA-ARS?s Scientific Manuscript database

    Bulk electrical conductivity (EC) in superactive soils has been shown to strongly influence electromagnetic sensing of permittivity. However, these effects are dependent on soil water content and temperature as well as the pore water conductivity. We carried out isothermal column displacement experi...

  13. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.

    PubMed

    Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank

    2017-12-01

    Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.

  14. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior

    NASA Astrophysics Data System (ADS)

    Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank

    2017-12-01

    Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.

  15. Adsorption of SOx and NOx in activated viscose fibers.

    PubMed

    Plens, Ana Carolina O; Monaro, Daniel L G; Coutinho, Aparecido R

    2015-01-01

    SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF) were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.

  16. Experimental Evaluation of pH and Temperature Effects on the Adsorption of Boron onto Clay Minerals

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Marone, D.; Ruprecht, J.

    2017-12-01

    Modeling the secular evolution of the concentration [B] and isotopic composition (δ11B) of boron in seawater is hampered by limited constraints on the relative sources (i.e. riverine input of weathering products, hydrothermal convection at mid-ocean ridges and fluids expelled from accretionary prisms) and sinks (i.e. alteration of the oceanic crust, adsorption onto clays, and co-precipitation in carbonates) of boron to and from the ocean. Clays remove approximately 28% of total boron from the ocean and quantification of this sink thus represents a major factor for reconstructing the secular evolution of seawater [B] and δ11B over the Cenozoic. However, the relative strength of the clay sink could have been much smaller in the early Cenozoic compared to today, because borate ion as the charged species is preferentially adsorbed onto detrital clays over boric acid, and because the relative abundance of borate in seawater should have been lower under the more acidic conditions of the early Cenozoic. In addition, different clay minerals tend to fractionate boron isotopes differentially, and the relative composition of clay minerals has varied in the past with the dominant climate and weathering patterns on the continents. We have conducted a range of pH (7.5-8.4) and temperature (3-32°C) experiments with four clay minerals (Kaolinite, Illite, Montmorillonite and Chlorite), to build on previously published but limited experimental data. Similar to a previous study and as expected based on the relative abundance of borate ion in seawater, boron adsorption onto these clays increases at higher pH and lower temperatures, but whereas Montmorillonite and Illite absorb similar quantities of boron, Kaolinite is most and Chlorite least efficient in this process. We are now in the process of characterizing the boron isotope fractionation associated with these adsorption experiments.

  17. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    PubMed

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  18. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  19. Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes

    NASA Astrophysics Data System (ADS)

    Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang

    2018-03-01

    Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.

  20. Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning.

    PubMed

    Li, Yanhui; Sun, Jiankun; Du, Qiuju; Zhang, Luhui; Yang, Xiaoxia; Wu, Shaoling; Xia, Yanzhi; Wang, Zonghua; Xia, Linhua; Cao, Anyuan

    2014-02-15

    Graphene oxide/chitosan composite fibers were prepared by a wet spinning method, and their mechanical properties were investigated. Experimental results showed that the introduction of graphene oxide at 4 wt% loading can improve the tensile strengths of chitosan fibers. Batch adsorption experiments were carried out to study the effect of various parameters, such as the initial pH value, adsorbent dosage, contact time and temperature on adsorption of fuchsin acid dye. The Langmuir model was used to fit the experimental data of adsorption isotherm, and kinetic studies showed that the adsorption data followed the pseudo-second order model. Thermodynamic studies indicated that the adsorption of fuchsin acid dye on graphene oxide/chitosan fibers was a spontaneous and exothermic process. Our results indicate that the graphene oxide/chitosan fibers have excellent mechanical properties and can serve as a promising adsorbent for the removal of dyes from aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M., E-mail: neekamal@srttu.edu

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energymore » of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.« less

  2. A chemical equilibrium model for metal adsorption onto bacterial surfaces

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.; Daughney, Christopher J.; Yee, Nathan; Davis, Thomas A.

    1997-08-01

    This study quantifies metal adsorption onto cell wall surfaces of Bacillus subtilis by applying equilibrium thermodynamics to the specific chemical reactions that occur at the water-bacteria interface. We use acid/base titrations to determine deprotonation constants for the important surface functional groups, and we perform metal-bacteria adsorption experiments, using Cd, Cu, Pb, and Al, to yield site-specific stability constants for the important metal-bacteria surface complexes. The acid/base properties of the cell wall of B. subtilis can best be characterized by invoking three distinct types of surface organic acid functional groups, with pK a values of 4.82 ± 0.14, 6.9 ± 0.5, and 9.4 ± 0.6. These functional groups likely correspond to carboxyl, phosphate, and hydroxyl sites, respectively, that are displayed on the cell wall surface. The results of the metal adsorption experiments indicate that both the carboxyl sites and the phosphate sites contribute to metal uptake. The values of the log stability constants for metal-carboxyl surface complexes range from 3.4 for Cd, 4.2 for Pb, 4.3 for Cu, to 5.0 for Al. These results suggest that the stabilities of the metal-surface complexes are high enough for metal-bacterial interactions to affect metal mobilities in many aqueous systems, and this approach enables quantitative assessment of the effects of bacteria on metal mobilities.

  3. An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles.

    PubMed

    Rivas, Manuel; Casanovas, Jordi; del Valle, Luis J; Bertran, Oscar; Revilla-López, Guillermo; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2015-06-07

    The adsorption of orthophosphate, pyrophosphate, triphosphate and a trisphosphonate onto hydroxyapatite has been examined using experiments and quantum mechanical calculations. Adsorption studies with FTIR and X-ray photoelectron spectroscopies have been performed considering both crystalline hydroxyapatite (HAp) and amorphous calcium phosphate particles, which were specifically prepared and characterized for this purpose. Density functional theory (DFT) calculations have been carried out considering the (100) and (001) surfaces of HAp, which were represented using 1 × 2 × 2 and 3 × 3 × 1 slab models, respectively. The adsorption of phosphate onto the two crystallographic surfaces is very much favored from an energetic point of view, which is fully consistent with current interpretations of the HAp growing process. The structures calculated for the adsorption of pyrophosphate and triphosphate evidence that this process is easier for the latter than for the former. Thus, the adsorption of pyrophosphate is severely limited by the surface geometry while the flexibility of triphosphate allows transforming repulsive electrostatic interactions into molecular strain. On the other hand, calculations predict that the trisphosphonate only adsorbs onto the (001) surface of HAp. Theoretical predictions are fully consistent with experimental data. Thus, comparison of DFT results and spectroscopic data suggests that the experimental conditions used to prepare HAp particles promote the predominance of the (100) surface. Accordingly, experimental identification of the adsorption of trisphosphonate onto such crystalline particles is unclear while the adsorption of pyrophosphate and triphosphate is clearly observed.

  4. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    PubMed

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.

  5. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  6. Characterization and evaluation of the novel agarose-nickel composite matrix for possible use in expanded bed adsorption of bio-products.

    PubMed

    Rezvani, Azita; Jahanshahi, Mohsen; Najafpour, Ghasem D

    2014-02-28

    Agarose-nickel (Ag-Ni) composite matrix was evaluated for its use in expanded bed adsorption (EBA). Bovine serum albumin (BSA) and lysozyme were used as model proteins in batch and column adsorption studies. Accordingly, Reactive Green 19 (RG19) dye-ligand was covalently immobilized onto the support matrix to prepare affinity adsorbent for protein adsorption. Results were then compared with data obtained from Streamline commercial matrix. In batch experiments RG19 derivatives of Ag-Ni (RG19-Ag-Ni) exhibited high adsorption rate; and also a higher binding capacity of BSA (31.4mg/ml adsorbent) was observed for Ag-Ni compared to the commercial adsorbent. More than 70% of the adsorption capacity was achieved within 30min which is a reasonable contact time for EBA operations. The equilibrium adsorption data well agreed with Langmuir isotherm model. The expanded bed adsorption studies showed a reasonable breakthrough behavior at high flow rates and a higher dynamic binding capacity (DBC) was obtained for novel matrix in compare to streamline at the same fluid velocity. DBC at 10% breakthrough reached 66% of the saturated adsorption capacity at the high flow velocity of 450cm/h which indicates the favorable column efficiency. Additionally, two different Ag-Ni size fractions (75-150 and 150-300μm) were examined to investigate the expanded bed performance dependency on the adsorbent particle size with respect to the hydrodynamic stability and adsorption properties using lysozyme as model protein. Interestingly, the small ones showed less axial dispersion coefficient (<1.0×10(-5)m(2)/s) which resulted in higher bed stability in high fluid viscosities. Overall, the adsorption experiments results demonstrated that small size fraction of Ag-Ni matrices acts more effectively for expanded bed adsorption of bio-molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  8. The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI)

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Han, Shaoke; Dong, Yingbo; He, Yinhai

    2017-08-01

    A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25-45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, qmax, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.

  9. Salience Network Connectivity Modulates Skin Conductance Responses in Predicting Arousal Experience

    PubMed Central

    Xia, Chenjie; Touroutoglou, Alexandra; Quigley, Karen S.; Barrett, Lisa Feldman; Dickerson, Bradford C.

    2017-01-01

    Individual differences in arousal experience have been linked to differences in resting-state salience network connectivity strength. In this study, we investigated how adding task-related skin conductance responses (SCR), a measure of sympathetic autonomic nervous system activity, can predict additional variance in arousal experience. Thirty-nine young adults rated their subjective experience of arousal to emotionally evocative images while SCRs were measured. They also underwent a separate resting-state fMRI scan. Greater SCR reactivity (an increased number of task-related SCRs) to emotional images and stronger intrinsic salience network connectivity independently predicted more intense experiences of arousal. Salience network connectivity further moderated the effect of SCR reactivity: In individuals with weak salience network connectivity, SCR reactivity more significantly predicted arousal experience, whereas in those with strong salience network connectivity, SCR reactivity played little role in predicting arousal experience. This interaction illustrates the degeneracy in neural mechanisms driving individual differences in arousal experience and highlights the intricate interplay between connectivity in central visceromotor neural circuitry and peripherally expressed autonomic responses in shaping arousal experience. PMID:27991182

  10. Adsorption of Used Cooking Oil (UCO) by using Raw and Modified Kapok Fibre through Esterification

    NASA Astrophysics Data System (ADS)

    Alias, N. H.; Hasan, S. I. Z.

    2018-05-01

    UCO is one of the domestic wastes in our daily life. Normally, UCO are produced by hawkers, restaurants and household in a large quantity. The UCO usually exist in water mixture and eventually can cause water drainage problem which can lead to the environmental problem. Therefore, in order to overcome this problem, a study was conducted to test the adsorption of RKF and MKF towards the UCO. As for the MKF, the adsorption was tested by using different concentrations of Calcium Oxide (CaO) in percentage during the esterification. The oil removal percentages were calculated for RKF and MKF. Based on the results, it was found that the RKF has adsorbed 25.32g of UCO with a 50.64% of adsorption. As compared to MKF, it was able to increase the hydrophobic properties which resulted more UCO adsorption by 26.78g of UCO with the increment in the adsorption of 53.56% by using CaO of 5 wt% of RKF mass. However, when the percentage of CaO was increased, the UCO adsorption was also increased. The results showed that by using CaO of 10 wt% and 15 wt% of RKF mass, the UCO adsorption was increased to 28.50g (56.84%) and 31.73g (63.46%), respectively. Thus, MKF has higher adsorption of UCO compared to RKF. The highest amount of UCO adsorption has been achieved by using CaO of 15 wt% in the esterification, which was 31.73g corresponded to 63.46%.

  11. Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption.

    PubMed

    Liu, Jiancong; Yu, Yang; Zhu, Suiyi; Yang, Jiakuan; Song, Jian; Fan, Wei; Yu, Hongbin; Bian, Dejun; Huo, Mingxin

    2018-01-01

    With increasing awareness of reduction of energy and CO2 footprint, more waste is considered recyclable for generating value-added products. Here we reported the negatively-valued iron mud, a waste from groundwater treatment plant, was successfully converted into magnetic adsorbent. Comparing with the conventional calcination method under the high temperature and pressure, the synthesis of the magnetic particles (MPs) by Fe2+/Fe3+ coprecipitation was conducted at environment-friendly condition using ascorbic acid (H2A) as reduction reagent and nitric acid (or acid wastewater) as leaching solution. The MPs with major component of Fe3O4 were synthesized at the molar ratio (called ratio subsequently) of H2A to Fe3+ of iron mud ≥ 0.1; while amorphous ferrihydrite phase was formed at the ratio ≤ 0.05, which were confirmed by vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). With the ratio increased, the crystalline size and the crystallization degree of MPs increased, and thus the Brunauer-Emmett-Teller (BET) surface and the cation-exchange capacity (CEC) decreased. MPs-3 prepared with H2A to Fe3+ ratio of 0.1 demonstrated the highest methylene blue (MB) adsorption of 87.3 mg/g and good magnetic response. The adsorption of MB onto MPs agreed well with the non-linear Langmuir isotherm model and the pseudo-second-order model. Pilot-scale experiment showed that 99% of MB was removed by adding 10 g/L of MPs-3. After five adsorption-desorption cycles, MPs-3 still showed 62% removal efficiency for MB adsorption. When nitric acid was replaced by acid wastewater from a propylene plant, the synthesized MPs-3w showed 3.7 emu/g of saturation magnetization (Ms) and 56.7 mg/g of MB adsorption capacity, 2.8 times of the widely used commercial adsorbent of granular active carbon (GAC). The major mechanism of MPs adsorption for MB was electrostatic attraction and cation exchange. This study synthesized a magnetic adsorbent from

  12. Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption

    PubMed Central

    Liu, Jiancong; Yu, Yang; Yang, Jiakuan; Song, Jian; Fan, Wei; Yu, Hongbin; Bian, Dejun; Huo, Mingxin

    2018-01-01

    With increasing awareness of reduction of energy and CO2 footprint, more waste is considered recyclable for generating value-added products. Here we reported the negatively-valued iron mud, a waste from groundwater treatment plant, was successfully converted into magnetic adsorbent. Comparing with the conventional calcination method under the high temperature and pressure, the synthesis of the magnetic particles (MPs) by Fe2+/Fe3+ coprecipitation was conducted at environment-friendly condition using ascorbic acid (H2A) as reduction reagent and nitric acid (or acid wastewater) as leaching solution. The MPs with major component of Fe3O4 were synthesized at the molar ratio (called ratio subsequently) of H2A to Fe3+ of iron mud ≥ 0.1; while amorphous ferrihydrite phase was formed at the ratio ≤ 0.05, which were confirmed by vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). With the ratio increased, the crystalline size and the crystallization degree of MPs increased, and thus the Brunauer-Emmett-Teller (BET) surface and the cation-exchange capacity (CEC) decreased. MPs-3 prepared with H2A to Fe3+ ratio of 0.1 demonstrated the highest methylene blue (MB) adsorption of 87.3 mg/g and good magnetic response. The adsorption of MB onto MPs agreed well with the non-linear Langmuir isotherm model and the pseudo-second-order model. Pilot-scale experiment showed that 99% of MB was removed by adding 10 g/L of MPs-3. After five adsorption-desorption cycles, MPs-3 still showed 62% removal efficiency for MB adsorption. When nitric acid was replaced by acid wastewater from a propylene plant, the synthesized MPs-3w showed 3.7 emu/g of saturation magnetization (Ms) and 56.7 mg/g of MB adsorption capacity, 2.8 times of the widely used commercial adsorbent of granular active carbon (GAC). The major mechanism of MPs adsorption for MB was electrostatic attraction and cation exchange. This study synthesized a magnetic adsorbent from

  13. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    NASA Astrophysics Data System (ADS)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  14. Highly enhanced adsorption of Congo red by functionalized finger-citron-leaf-based porous carbon.

    PubMed

    Zhao, Gui-Hua; Fang, Yao-Yao; Dai, Wei; Ma, Na

    2018-01-01

    A novel high-performance porous carbon material, lanthanum(III)-doped finger-citron-leaf-based porous carbon (La/FPC), has been synthesized and used as an adsorbent for anion dye Congo red (CR). The La/FPC was characterized by nitrogen adsorption and desorption isotherms, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The adsorption performance of CR by the FPC and La/FPC composites with different contents of lanthanum(III) were evaluated in fixed-bed breakthrough experiments and batch tests at room temperature (298 K). The La/FPC had a high CR uptake capacity, which was superior to those previously reported for other adsorbents. The La/FPC sorbents can be easily regenerated using an ethanol elution technique, and after five cycles the reused La/FPC maintained about 98% of its original CR adsorption capacity. The adsorption kinetics of CR onto the lanthanum(III)-doped FPCs followed a pseudo-second-order kinetic model and fitted well with a Langmuir adsorption isotherm. La/FPC is a promising adsorbent for the removal of the anionic dyes from wastewater.

  15. IMPLICATION OF BIOSOLIDS ON ADSORPTION AND DESORPTION OF CD IN SOILS

    EPA Science Inventory

    Adsorption isotherms for soils from long-term biosolids-field experiments and their inorganic fractions were obtained by equilibration of the samples with cadmium nitrate. The cadmium nitrate solution was replaced with a calcium nitrate solution to obtain desorbed Cd. Results sho...

  16. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    PubMed

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content.

  17. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    PubMed

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Adsorption--from theory to practice.

    PubMed

    Dabrowski, A

    2001-10-08

    Adsorption at various interfaces has concerned scientists since the beginning of this century. This phenomenon underlies a number of extremely important processes of utilitarian significance. The technological, environmental and biological importance of adsorption can never be in doubt. Its practical applications in industry and environmental protection are of paramount importance. The adsorption of substrates is the first stage in many catalytic processes. The methods for separation of mixtures on a laboratory and on an industrial scale are increasingly based on utilising the change in concentration of components at the interface. Moreover, such vital problems as purification of water, sewages, air and soil are involved here too. On the other hand, many areas in which technological innovation has covered adsorption phenomena have been expanded more through art and craft than through science. A basic understanding of the scientific principles is far behind; in part because the study of interfaces requires extremely careful experimentation if meaningful and reproducible results are to be obtained. In recent years, however, considerable effort has been increasingly directed toward closing the gap between theory and practice. Crucial progress in theoretical description of the adsorption has been achieved, mainly through the development of new theoretical approaches formulated on a molecular level, by means of computer simulation methods and owing to new techniques which examine surface layers or interfacial regions. Moreover, during the last 15 years new classes of solid adsorbents have been developed, such as activated carbon fibres and carbon molecular sieves, fullerenes and heterofullerenes, microporous glasses and nanoporous--both carbonaceous and inorganic--materials. Nanostructured solids are very popular in science and technology and have gained extreme interest due to their sorption, catalytic, magnetic, optical and thermal properties. Although the development

  20. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  1. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Hyun Woo; Kim, Jeongmin; Sung, Bong June, E-mail: jjpark@chonnam.ac.kr, E-mail: bjsung@sogang.ac.kr

    We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs uponmore » uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.« less

  2. Perfluorooctane sulfonate adsorption on powder activated carbon: Effect of phosphate (P) competition, pH, and temperature.

    PubMed

    Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Li, Kun; Liu, Jingjing; Lu, Bianhe; Tian, Xin

    2017-09-01

    Powdered activated carbon (PAC), as an adsorbent, was applied to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Laboratory batch experiments were performed to investigate the influences of phosphate (P) competition, temperature, and pH for PFOS adsorption onto PAC. The results showed that higher temperature favored PFOS adsorption in single and binary systems. The kinetic data fitted very well to the pseudo second-order kinetic model. Thermodynamically, the endothermic enthalpy of the PFOS adsorption in single and binary systems were 125.07 and 21.25 kJ mol -1 , respectively. The entropy of the PFOS adsorption in single and binary systems were 0.479 and 0.092 kJ mol -1  K -1 , respectively. And the Gibbs constants were negative. These results indicated that the adsorption processes were spontaneous. The adsorption isotherms of PFOS agreed well with the Langmuir model. In the single system, PFOS adsorption decreased with increased pH value. The difference in the amount of PFOS adsorption between the single and binary systems increased at higher pH. Frustrated total internal reflection (FTIR) demonstrated that P competition increased the hydrophilicity of the PAC and the electrostatic repulsion between PFOS and PAC, then the PFOS adsorption amount decreased. It also demonstrated that, at higher temperature, increased PFOS adsorption was mainly due to the higher diffusion rate of PFOS molecules and greater number of active sites opened on the PAC surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Preparation of surface molecularly imprinted polymers for penicilloic acid, and its adsorption properties].

    PubMed

    Zheng, Penglei; Luo, Zhimin; Chang, Ruimiao; Ge, Yanhui; Du, Wei; Chang, Chun; Fu, Qiang

    2015-09-01

    On account of the specificity and reproducibility for the determination of penicilloic acid in penicillin, this study aims to prepare penicilloic acid imprinted polymers (PEOA-MIPs) by surface polymerization method at the surface of modified silica particles by using penicilloic acid (PEOA) as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate ( EGDMA) as the cross linker, and methanol/acetonitrile as the solvents. The synthesis conditions were optimized, and PEOA-MIPs had the best adsorption capacity when the molar ratio of template molecule/functional monomer was 1 :4, cross linking degree was 85% and the solvent ratio of methanol/acetonitrile was 1 :1 (v/v). The adsorption properties were evaluated by adsorption experiments, including the adsorption isotherms, kinetics and selectivity. The adsorption process between PEOA-MIPs and PEOA fitted the Langmuir adsorption isotherm with the maximum adsorption capacity of 122. 78 mg/g and the pseudo-second-order reaction kinetics with fast adsorption kinetics (the equilibrium time of 45 min). The as-synthesized PEOA-MIPs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results indicated that the MIPs layer has been successfully grafted on the surface of SiO2 microparticles and the PEOA-MIPs had the excellent thermal stability. The PEOA-MIPs showed the highest selective recognition for PEOA. The PEOA-MIPs possess a high adsorption capacity, rapid mass-transfer rate and high selectivity to PEOA when compared with non-imprinted polymers (PEOA-NIPs). The PEOA-MIPs was expected to be used as the solid phase extraction medium and this study provides the potential applications for fast recognition and analysis of the penicilloic acid in penicillin.

  4. CR-100 synthetic zeolite adsorption characteristics toward Northern Banat groundwater ammonia.

    PubMed

    Tomić, Željko; Kukučka, Miroslav; Stojanović, Nikoleta Kukučka; Kukučka, Andrej; Jokić, Aleksandar

    2016-10-14

    The adsorption characteristics of synthetic zeolite CR-100 in a fixed-bed system using continuous flow of groundwater containing elevated ammonia concentration were examined. The possibilities for adsorbent mass calculation throughout mass transfer zone using novel mathematical approach as well as zeolite adsorption capacity at every sampling point in time or effluent volume were determined. The investigated adsorption process consisted of three clearly separated steps indicated to sorption kinetics. The first step was characterized by decrease and small changes in effluent ammonia concentration vs. experiment time and quantity of adsorbed ammonia per mass unit of zeolite. The consequences of this phenomenon were showed in the plots of the Freundlich and the Langmuir isotherm models through a better linear correlation according as graphical points contingent to the first step were not accounted. The Temkin and the Dubinin-Radushkevich isotherm models showed the opposite tendency with better fitting for overall measurements. According to the obtained isotherms parameter data, the investigated process was found to be multilayer physicochemical adsorption, and also that synthetic zeolite CR-100 is a promising material for removal of ammonia from Northern Banat groundwater with an ammonia removal efficiency of 90%.

  5. Adsorption of octylamine on titanium dioxide

    NASA Astrophysics Data System (ADS)

    Siwińska, Daria; Kołodziejczak-Radzimska, Agnieszka; Krysztafkiewicz, Andrzej; Jesionowski, Teofil

    2009-05-01

    Processes of adsorption and desorption of a model active substance (octylamine) on the surface of unmodified titanium dioxide (E 171) have been performed. The effects of concentration of octylamine and time of the process on the character of adsorption have been studied and the efficiency of the adsorption/desorption has been determined. The samples obtained have been studied by X-ray diffraction. The nitrogen adsorption/desorption isotherms, particle size distribution and absorption capacities of water, dibutyl phthalate and paraffin oil have been determined. The efficiency of octylamine adsorption on the surface of the titanium dioxide has been found positively correlated with the concentration of octylamine in the initial solution. The desorption of octylamine has decreased with increasing concentration of this compound adsorbed. For octylamine in low concentrations the physical adsorption has been found to dominate, which is desirable when using TiO 2 in the production of pharmaceuticals.

  6. Video of Miscible Fluid Experiment Conducted on NASA Low Gravity Airplane

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a video of dyed water being injected into glycerin in a 2.2 centimeter (cm) diameter test tube. The experiment was conducted on the KC-135 aircraft, a NASA plane that creates microgravity and 2g conditions as it maneuvers through multiple parabolas. The water is less dense and so it rises to the top of the glycerin. The goal of the experiment was to determine if a blob of a miscible fluid would spontaneously become spherical in a microgravity environment.

  7. Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica.

    PubMed

    Bui, Tung Xuan; Choi, Heechul

    2010-08-01

    The adsorption of four wide-use pharmaceuticals (carbamazepine, diclofenac, ibuprofen, and ketoprofen) onto a porous silica was investigated under varied ionic strengths, different anions, divalent cations (Ca(2+) and Mg(2+)), trivalent cations (Al(3+) and Fe(3+)), and natural organic matter (NOM). The experiments demonstrated that at a given pH the adsorption was most affected by ionic strength, trivalent cations, and properties of pharmaceuticals. The increase of ionic strength resulted in an increase in the adsorption of ketoprofen, but a decrease in the adsorption of carbamazepine. Trivalent metal cations made intense increases in the adsorption of three acidic pharmaceuticals, which could be due to the formation of inner-sphere complex of the cations on the surface and/or complexation of the pharmaceuticals with both surface and aqueous metal species. It was found that the adsorption of carbamazepine was not affected by divalent and trivalent cations, whereas the adsorption of diclofenac was solely impacted by the presence of Al(3+). Moreover, divalent cations at low concentration could slightly enhance the adsorption of ibuprofen and ketoprofen, whereas NOM caused a reduction in the adsorption of the tested pharmaceuticals except for diclofenac. These results suggest that ionic strength, divalent cations, trivalent cations, and NOM are notable factors affecting the adsorption of pharmaceuticals and thus the ultimate fate of pharmaceuticals in the aqueous environment. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  9. Conductance bistability of gold nanowires at room temperature

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Konishi, Tatsuya; Murakoshi, Kei

    2006-03-01

    Quantized conductance behavior of gold nanowires was studied under electrochemical potential control. We fabricated 1-nm -long monoatomic wires in solution at room temperature. Electrochemical potential significantly affected the stability of the monoatomic wire and fractional conductance peak occurrence in the conductance histogram. We revealed that the hydrogen adsorption on gold monoatomic wires was a decisive factor of the fractional peak, which was originated from the dynamic structural transition between two bistable states of the monoatomic wire showing the unit and the fractional values of the conductance. We could tune the stability of these bistable states to make the fractional conductance state preferable.

  10. Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions.

    PubMed

    Arias Arias, Fabian E; Beneduci, Amerigo; Chidichimo, Francesco; Furia, Emilia; Straface, Salvatore

    2017-08-01

    WHO has declared mercury as one of the most dangerous pollutants for human health. Unfortunately, several cases of rivers and aquifers contaminated by mercury inevitably poses the problem on how to remediate them. Considerable efforts are being addressed to develop cost-effective methodologies, among which the use of low-cost adsorbing materials. In this paper, the adsorption performances of an alternative lignocellulosic material derived from the Spanish broom plant, are presented. This plant is widely diffused in the world and its usage for Hg(II) removal from water in real working conditions requires only minimal pretreatment steps. A thoroughly investigation on the kinetics and thermodynamics of Hg(II) adsorption on Spanish broom is presented, by using Hg(II) polluted aqueous solutions specifically prepared in order to simulate typical groundwater conditions. Several batch experiments, under static conditions, were carried out in order to evaluate the effect of pH, contact time, adsorbent dosage, initial concentration, temperature. A maximum adsorption capacity of 20 mg L -1 can be obtained at pH 5, following a pseudo second order kinetics. Moreover, adsorption experiments in dynamic conditions were carried out using Spanish broom filters. Interestingly, a systematic, unconventional double S-shape breakthrough curve was observed under different experimental conditions, revealing the occurrence of two adsorption processes with different time scales. This behavior has been fitted by a bimodal Thomas model which, unlike the single Thomas fitting, gives satisfactory results with the introduction of a new parameter related to the fraction of surface active sites involved in the adsorption processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Treatment of organic waste gas by adsorption rotor].

    PubMed

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  12. Comparison of Adsorption/Desorption of Volatile Organic Compounds (VOCs) on Electrospun Nanofibers with Tenax TA for Potential Application in Sampling

    PubMed Central

    Chu, Lanling; Deng, Siwei; Zhao, Renshan; Deng, Jianjun; Kang, Xuejun

    2016-01-01

    The objective of this study was to compare the adsorption/desorption of target compounds on homemade electrospun nanofibers, polystyrene (PS) nanofibers, acrylic resin (AR) nanofibers and PS-AR composite nanofibers with Tenax TA. Ten volatile organic compounds (VOCs) were analyzed by preconcentration onto different sorbents followed by desorption (thermal and solvent orderly) and analysis by capillary gas chromatography. In comparison to Tenax TA, the electrospun nanofibers displayed a significant advantage in desorption efficiency and adsorption selectivity. Stability studies were conducted as a comparative experiment between PS-AR nanofibers and Tenax TA using toluene as the model compound. No stability problems were observed upon storage of toluene on both PS-AR nanofibers and Tenax TA over 60 hours period when maintained in an ultra-freezer (−80°C). The nanofibers provided slightly better stability for the adsorbed analytes than Tenax TA under other storage conditions. In addition, the nanofibers also provided slightly better precision than Tenax TA. The quantitative adsorption of PS-AR nanofibers exhibited a good linearity, as evidenced by the 0.988–0.999 range of regression coefficients (R). These results suggest that for VOCs sampling the electrospun nanofibers can be a potential ideal adsorbent. PMID:27776140

  13. Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Okumura, Masahiko; Rosso, Kevin M.

    2016-08-16

    A better understanding of the thermodynamics of radioactive cesium uptake at the surfaces of phyllosilicate minerals is needed to understand mechanisms of its selective adsorption and help guide the development of practical and inexpensive decontamination techniques. In this work, molecular dynamics simulations were carried out to determine the thermodynamics of adsorption of Cs + at the basal surface of six 2:1 phyllosilicate minerals, namely pyrophyllite, illite, muscovite, phlogopite, celadonite, and margarite. These minerals were selected to isolate the effects of the magnitude of the permanent layer charge (≤ 2), its location (tetrahedral versus octahedral sheet), and the structure of themore » octahedral sheet (dioctahedral versus trioctahedral). Good agreement was obtained with experiment in terms of the hydration free energy of Cs + and the structure and thermodynamics of Cs + adsorption at the muscovite basal surface, for which published data were available for comparison. With the exception of pyrophyllite, which did not exhibit an inner-sphere free energy minimum, all phyllosilicate minerals showed similar behavior with respect to Cs + adsorption; notably, Cs + adsorption was predominantly inner-sphere whereas outer-sphere adsorption was very weak with the simulations predicting the formation of an extended outer-sphere complex. For a given location of the layer charge, the free energy of adsorption as an inner-sphere complex was found to vary linearly with the magnitude of the layer charge. For a given location and magnitude of the layer charge, adsorption at phlogopite (trioctahedral sheet structure) was much less favorable than at muscovite (dioctahedral sheet structure) due to the electrostatic repulsion between the adsorbed Cs + and the hydrogen atom of the hydroxyl group directly below the six-membered siloxane ring cavity. For a given magnitude of the layer charge and structure of the octahedral sheet, adsorption at celadonite (layer charge

  14. Modeling the effect of adsorption on the degradation rate of propiconazole in profiles of Polish Luvisols.

    PubMed

    Paszko, Tadeusz; Jankowska, Monika

    2018-06-18

    Laboratory adsorption and degradation studies were carried out to determine the effect of time-dependent adsorption on propiconazole degradation rates in samples from three Polish Luvisols. Strong propiconazole adsorption (organic carbon normalized adsorption coefficients K oc in the range of 1217-7777 mL/g) was observed in batch experiments, with a typical biphasic mechanism with a fast initial step followed by the time-dependent step, which finished within 48 h in the majority of soils. The time-dependent step observed in incubation experiments was longer (duration from 5 to 23 d), and its contribution to total adsorption was from 20% to 34%. The half-lives obtained at 25 °C and 40% maximum water holding capacity of soil, were in the range of 34.7-112.9 d in the Ap horizon and in the range of 42.3-448.8 d for subsoils. The very strong correlations, between degradation rates in pore water and soil organic carbon and soil microbial activity, indicated that microbial degradation of propiconazole was most likely the only significant process responsible for the decay of this compound under aerobic conditions for the whole of the examined soil profiles. Modeling of the processes showed that only models coupling adsorption and degradation were able to correctly describe the experimental data. The analysis of the bioavailability factor values showed that degradation was not limited by the rate of propiconazole desorption from soil, but sorption affected the degradation rate by decreasing its availability for microorganisms. Copyright © 2018. Published by Elsevier Inc.

  15. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation

    NASA Astrophysics Data System (ADS)

    Shafeeyan, Mohammad Saleh; Daud, Wan Mohd Ashri Wan; Houshmand, Amirhossein; Arami-Niya, Arash

    2011-02-01

    A commercial granular activated carbon (GAC) was subjected to thermal treatment with ammonia for obtaining an efficient carbon dioxide (CO2) adsorbent. In general, CO2 adsorption capacity of activated carbon can be increased by introduction of basic nitrogen functionalities onto the carbon surface. In this work, the effect of oxygen surface groups before introduction of basic nitrogen functionalities to the carbon surface on CO2 adsorption capacity was investigated. For this purpose two different approaches of ammonia treatment without preliminary oxidation and amination of oxidized samples were studied. Modified carbons were characterized by elemental analysis and Fourier Transform Infrared spectroscopy (FT-IR) to study the impact of changes in surface chemistry and formation of specific surface groups on adsorption properties. The texture of the samples was characterized by conducting N2 adsorption/desorption at -196 °C. CO2 capture performance of the samples was investigated using a thermogravimetric analysis (TGA). It was found that in both modification techniques, the presence of nitrogen functionalities on carbon surface generally increased the CO2 adsorption capacity. The results indicated that oxidation followed by high temperature ammonia treatment (800 °C) considerably enhanced the CO2 uptake at higher temperatures.

  16. Selectivity of adsorption of gases on doped graphene

    NASA Astrophysics Data System (ADS)

    Nnabugwu, Jordan; Maiga, Sidi; Gatica, Silvina

    We report our results on the selectivity of carbon dioxide being adsorbed onto doped graphene. Using the Ideal Adsorption Solution theory (IAST) we calculate the selectivity using the uptake pressures of pure gases. We focus on the adsorption of atmospheric gases such as carbon dioxide (CO2) , Nitrogen (N2) , and Methane (CH4) on a pure and doped monolayer graphene slab placed at the bottom of a simulation cell. Grand Canonical Monte Carlo (GCMC) simulations allow us to calculate the amount of gases adsorbed at a given temperature and pressure of the system. We found that including impurities of varying strength and concentration can increase significantly the selectivity at room temperature. Financial support from the National Science Foundation Research Experiences for Undergraduates Program for the REU Site in Physics at Howard University (NSF Award No. PHY-1358727) is gratefully acknowledged.

  17. [Elimination of carbendazim from fruit conditioning waters by adsorption on different materials].

    PubMed

    Giry, G; Ayele, J; Gauthier, C

    2001-07-01

    The main aim of this work is to test different materials (activated carbon and other more "rustic" materials like clay and coal) as potential adsorbents in order to evaluate their adsorption capacity for carbendazime. The experiments were realized with certified carbendazim or with benlate solutions left to change long enough to suppose all the benomyl converted into carbendazim. The results were introduced through adsorption kinetic and isotherm forms or interpreted according to the Langmuir model. They pointed out that final elimination percentages of certified carbendazim don't exceed 55%. But even the activated carbon remains the most effective adsorbent, clay and coal present an interesting adsorption capacity, 45% for clay (but its performance is varied), 35% for coal. The presence of formulation additives has an inhibitive effect whatever the materials is. Some adsorption attempts with clay and coal mixtures (100 mg l(-1) of each one) were realized, there isn't a cumulative adsorption, final percentages of elimination are about 45%. Characterization attempts of the adsorbents pointed out that all the materials have a negative global surface charge. But clay possesses a surface charge far more negative than coal, sodipolary lap of carbendazim can further the adsorption. The measures of surface functions according to Boehm titration and capillary rising technique showed that coal differentiates from the other materials by its high capacity to establish Lifshitz-Van der Waals interactions. Carbendazim molecule can present a dipolary moment which could lead to the formation of hydrogen bonds. But results of capillary rising are to be considered by surface unities that could explain the superior adsorption capacity of clay (internal surface: 800m2 g(-1)).

  18. Measuring and understanding radon adsorption in microporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Raymond, E-mail: noel@cppm.in2p3.fr; CINaM, Aix-Marseille Université, CNRS, Marseille; Busto, José, E-mail: busto@cppm.in2p3.fr

    The background from the radon decay chain is the strongest constraint for many experiments working at low energy and very low counting rate. A facility for studying the optimum radon capture by very selective porous materials was developed at CPPM in the context of the SuperNEM O project. In collaboration with Institut Jean Lamour, studies were carried out for better understanding radon adsorption in carbon adsorbents.

  19. Adsorption of gluconate and uranyl on C-S-H phases: Combination of wet chemistry experiments and molecular dynamics simulations for the binary systems

    NASA Astrophysics Data System (ADS)

    Androniuk, Iuliia; Landesman, Catherine; Henocq, Pierre; Kalinichev, Andrey G.

    2017-06-01

    As a first step in developing better molecular scale understanding of the effects of organic additives on the adsorption and mobility of radionuclides in cement under conditions of geological nuclear waste repositories, two complementary approaches, wet chemistry experiments and molecular dynamics (MD) computer simulations, were applied to study the sorption behaviour of two simple model systems: gluconate and uranyl on calcium silicate hydrate phases (C-S-H) - the principal mineral component of hardened cement paste (HCP). Experimental data on sorption and desorption kinetics and isotherms of adsorption for gluconate/C-S-H and U(VI)/C-S-H binary systems were collected and quantitatively analysed for C-S-H samples synthesised with various Ca/Si ratios (0.83, 1.0, 1.4) corresponding to various stages of HCP aging and degradation. Gluconate labelled with 14C isotope was used in order to improve the sensitivity of analytical detection technique (LSC) at particularly low concentrations (10-8-10-5 mol/L). There is a noticeable effect of Ca/Si ratio on the gluconate sorption on C-S-H, with stronger sorption at higher Ca/Si ratios. Sorption of organic anions on C-S-H is mediated by the presence of Ca2+ at the interface and strongly depends on the surface charge and Ca2+ concentration. In parallel, classical MD simulations of the same model systems were performed in order to identify specific surface sorption sites most actively involved in the sorption of gluconate and uranyl on C-S-H and to clarify molecular mechanisms of adsorption.

  20. A new mechanism for selective adsorption of rubber on carbon black surface caused by nano-confinement in SBR/NBR solution

    NASA Astrophysics Data System (ADS)

    Kawazoe, Masayuki

    A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.