Sample records for adsorption reaction probing

  1. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].

    PubMed

    Jiang, Peng; Bao, Xinhe; Salmeron, Miquel

    2015-05-19

    Heterogeneous catalysis is of great importance for modern society. About 80% of the chemicals are produced by catalytic reactions. Green energy production and utilization as well as environmental protection also need efficient catalysts. Understanding the reaction mechanisms is crucial to improve the existing catalysts and develop new ones with better activity, selectivity, and stability. Three components are involved in one catalytic reaction: reactant, product, and catalyst. The catalytic reaction process consists of a series of elementary steps: adsorption, diffusion, reaction, and desorption. During reaction, the catalyst surface can change at the atomic level, with roughening, sintering, and segregation processes occurring dynamically in response to the reaction conditions. Therefore, it is imperative to obtain atomic-scale information for understanding catalytic reactions. Scanning probe microscopy (SPM) is a very appropriate tool for catalytic research at the atomic scale because of its unique atomic-resolution capability. A distinguishing feature of SPM, compared to other surface characterization techniques, such as X-ray photoelectron spectroscopy, is that there is no intrinsic limitation for SPM to work under realistic reaction conditions (usually high temperature and high pressure). Therefore, since it was introduced in 1981, scanning tunneling microscopy (STM) has been widely used to investigate the adsorption, diffusion, reaction, and desorption processes on solid catalyst surfaces at the atomic level. STM can also monitor dynamic changes of catalyst surfaces during reactions. These invaluable microscopic insights have not only deepened the understanding of catalytic processes, but also provided important guidance for the development of new catalysts. This Account will focus on elementary reaction processes revealed by SPM. First, we will demonstrate the power of SPM to investigate the adsorption and diffusion process of reactants on catalyst surfaces

  2. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  3. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Dong-Myung; Sun, Xin

    2013-09-01

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, causedmore » by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.« less

  4. Single-Molecule Probing of Adsorption and Diffusion on Silica Surfaces

    NASA Astrophysics Data System (ADS)

    Wirth, Mary J.; Legg, Michael A.

    2007-05-01

    Single-molecule spectroscopy has emerged as a valuable tool in probing kinetics and dynamic equilibria in adsorption because advances in instrumentation and technology have enabled researchers to obtain high signal-to-noise ratios for common dyes at room temperature. Single-molecule spectroscopy was applied to the study of an important problem in chromatography: peak broadening and asymmetry in the chromatograms of pharmaceuticals, peptides, and proteins. Using DiI, a cationic dye that exhibits the same problematic chromatographic behavior, investigators showed that the adsorption sites that cause chromatographic problems are located at defects on the silica crystal surface.

  5. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10 -5 to 2 × 10 -3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the C OH alcohol group and C Me methyl groups in a 1 : 2 ratio, respectively. Coveragemore » increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 10 3 Torr -1. The 1 : 2 ratio of C OH : C Me remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  6. Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques

    NASA Astrophysics Data System (ADS)

    Assiongbon, K. A.; Roy, D.

    2005-12-01

    Electro-catalytic oxidation of methanol is the anode reaction in direct methanol fuel cells. We have studied the adsorption characteristics of the intermediate reactants of this multistep reaction on a gold film electrode in alkaline solutions by combining surface plasmon resonance (SPR) measurements with Fourier transform electro-chemical impedance spectroscopy (FT-EIS). Methanol oxidation in this system shows no significant effects of "site poisoning" by chemisorbed CO. Our results suggest that OH - chemisorbed onto Au acts as a stabilizing agent for the surface species of electro-active methanol. Double layer charging/discharging and adsorption/desorption of OH - show more pronounced effects than adsorption/oxidation of methanol in controlling the surface charge density of the Au substrate. These effects are manifested in both the EIS and the SPR data, and serve as key indicators of the surface reaction kinetics. The data presented here describe the important role of adsorbed OH - in electro-catalysis of methanol on Au, and demonstrate how SPR and FT-EIS can be combined for quantitative probing of catalytically active metal-solution interfaces.

  7. Immobilization of ɛ-polylysine onto the probe surface for molecular adsorption type endotoxin detection system

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Tsuji, Akihito; Nishishita, Naoki; Hirano, Yoshiaki

    2007-04-01

    adsorption reaction between ɛ-polylysine and endotoxin. ɛ-polylysine has the structure of straight chain molecule composed by 25-30 residues made by lysine, and it is used as an antimicrobial agent, moreover, cellulose beads with immobilized ɛ-polylysine is used as the barrier filter for endotoxin removal. Therefore, it is expected that the endotoxin be adsorbed to the immobilized ɛ-polylysine onto the probe. As the result of this reaction, the mass of the probe is increased, and endotoxin can be detected by using of Quartz Crystal Microbalance (QCM). In our previous research, we have already acquired the proteins immobilization technique onto Au and Si surface. In this report, the proposal of molecular adsorption type endotoxin detection system, and the immobilization of ɛ-polylysine onto the probe are described. We use X-ray Photoelectron Spectroscopy (XPS) to confirm the ɛ-polylysine immobilization, and the adsorptive activity of immobilized ɛ-polylysine is measured by XPS and AFM. The purpose of this study is to bring about the realization of "Real-time endotoxin detection system".

  8. Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Favaro, Marco; Ross, Philip N.

    Understanding the surface chemistry of electrocatalysts in operando can bring insight into the reaction mechanism, and ultimately the design of more efficient materials for sustainable energy storage and conversion. Recent progress in synchrotron based X-ray spectroscopies for in operando characterization allows us to probe the solid/liquid interface directly while applying an external potential, applied here to the model system of Pt in alkaline electrolyte for the hydrogen evolution reaction (HER). We employ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the oxidation and reduction of Pt-oxides and hydroxides on the surface as a function of applied potential, and further assessmore » the potential for hydrogen adsorption and absorption (hydride formation) during and after the HER. This new window into the surface chemistry of Pt in alkaline brings insight into the nature of the rate limiting step, the extent of H ad/absorption and it’s persistence at more anodic potentials.« less

  9. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  10. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  11. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  12. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  13. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  14. Long-Term Implanted cOFM Probe Causes Minimal Tissue Reaction in the Brain

    PubMed Central

    Hochmeister, Sonja; Asslaber, Martin; Kroath, Thomas; Pieber, Thomas R.; Sinner, Frank

    2014-01-01

    This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe. PMID:24621608

  15. Complexes of DOTA-bisphosphonate conjugates: probes for determination of adsorption capacity and affinity constants of hydroxyapatite.

    PubMed

    Vitha, Tomas; Kubícek, Vojtech; Hermann, Petr; Kolar, Zvonimir I; Wolterbeek, Hubert Th; Peters, Joop A; Lukes, Ivan

    2008-03-04

    The adsorption on hydroxyapatite of three conjugates of a bisphosphonate and a macrocycle having C1, C2, and C3 spacers and their terbium complexes was studied by the radiotracer method using 160Tb as the label. The radiotracer-containing complex of the conjugate with the C3 spacer was used as a probe for the determination of the adsorption parameters of other bisphosphonates that lack a DOTA unit. A physicochemical model describing the competitive adsorption was successfully applied in the fitting of the obtained data. The maximum adsorption capacity of bisphosphonates containing bulky substituents is determined mainly by their size. For bisphosphonates having no DOTA moiety, the maximum adsorption capacity is determined by the electrostatic repulsion between negatively charged bisphosphonate groups. Compounds with a hydroxy or amino group attached to the alpha-carbon atom show higher affinities. Macrocyclic compounds containing a short spacer between the different bisphosphonic acid groups and the macrocyclic unit exhibit high affinities, indicating a synergic effect of the bisphosphonic and the macrocyclic groups during adsorption. The competition method described uses a well-characterized complex and allows a simple evaluation of the adsorption behavior of bisphosphonates. The application of the macrocycle-bisphosphonate conjugates allows easy radiolabeling via complexation of a suitable metal isotope.

  16. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    PubMed

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. On the adsorption/reaction of acetone on pure and sulfate-modified zirconias.

    PubMed

    Crocellà, Valentina; Cerrato, Giuseppina; Morterra, Claudio

    2013-08-28

    In situ FTIR spectroscopy was employed to investigate some aspects of the ambient temperature (actually, IR-beam temperature) adsorption of acetone on various pure and sulfate-doped zirconia specimens. Acetone uptake yields, on all examined systems and to a variable extent, different types of specific molecular adsorption, depending on the kind/population of available surface sites: relatively weak H-bonding interaction(s) with surface hydroxyls, medium-strong coordinative interaction with Lewis acidic sites, and strong H-bonding interaction with Brønsted acidic centres. Moreover acetone, readily and abundantly adsorbed in molecular form, is able to undergo the aldol condensation reaction (yielding, as the main reaction product, adsorbed mesityl oxide) only if the adsorbing material possesses some specific surface features. The occurrence/non-occurrence of the acetone self-condensation reaction is discussed, and leads to conclusions concerning the sites that catalyze the condensation reaction that do not agree with either of two conflicting interpretations present in the literature of acetone uptake/reaction on, mainly, zeolitic systems. In particular, what turns out to be actually necessary for the acetone aldol condensation reaction to occur on the examined zirconia systems is the presence of coordinatively unsaturated O(2-) surface sites of basicity sufficient to lead to the extraction of a proton from one of the CH3 groups of adsorbed acetone.

  18. Adsorption Behavior, Thermodynamics, and Kinetics of the Methanol Decomposition Reaction on defective graphene-supported Pt13

    NASA Astrophysics Data System (ADS)

    Gasper, Raymond; Ramasubramaniam, Ashwin

    Defective graphene has been shown experimentally to be an excellent support for transition-metal electrocatalysts in direct methanol fuel cells. Prior computational modeling has shown that the improved catalytic activity of graphene-supported metal clusters is in part due to increased resistance to catalyst sintering and CO poisoning, but the increased reaction rate for the methanol decomposition reaction (MDR) is not yet fully explained. Using DFT, we investigate the adsorption of MDR intermediates and reaction thermodynamics on defective graphene-supported Pt13 nanoclusters with realistic, low-symmetry morphologies. We find that the support-induced shifts in Pt13 electronic structure correlate well with a rigid shift in adsorption of MDR intermediates, and that adsorption energy scaling relationships perform well on the low-symmetry surface. We investigate the reaction kinetics and thermodynamics, including testing the effectiveness of scaling relationships for predicting reaction barriers on the nanoclusters. Using these fundamental data, we perform microkinetic modeling to quantify the effect of the support on the MDR, and to understand how the support influences surface coverages, CO poisoning, and the relationships between reaction pathways. Funded by U.S. Department of Energy under Award Number DE-SC0010610. Computational resources were provided by National Energy Research Scientific Computing Center.

  19. The influence of CO adsorption on the surface composition of cobalt/palladium alloys

    NASA Astrophysics Data System (ADS)

    Murdoch, A.; Trant, A. G.; Gustafson, J.; Jones, T. E.; Noakes, T. C. Q.; Bailey, P.; Baddeley, C. J.

    2016-04-01

    Segregation induced by the adsorption of gas phase species can strongly influence the composition of bimetallic surfaces and can therefore play an important role in influencing heterogeneous catalytic reactions. The addition of palladium to cobalt catalysts has been shown to promote Fischer Tropsch catalysis. We investigate the adsorption of CO onto bimetallic CoPd surfaces on Pd{111} using a combination of reflection absorption infrared spectroscopy and medium energy ion scattering. The vibrational frequency of adsorbed CO provides crucial information on the adsorption sites adopted by CO and medium energy ion scattering probes the surface composition before and after CO exposure. We show that cobalt segregation is induced by CO adsorption and rationalise these observations in terms of the strength of adsorption of CO in various surface adsorption sites.

  20. Probing surface sites of TiO2: reactions with [HRe(CO)5] and [CH3Re(CO)5].

    PubMed

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-10-04

    Two carbonyl complexes of rhenium, [HRe(CO)(5)] and [CH(3)Re(CO)(5)], were used to probe surface sites of TiO(2) (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O(2) or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti(+3)-OH and Ti(+4)-OH. IR and extended X-ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface-bound rhenium tricarbonyls, when [HRe(CO)(5)] was adsorbed, or rhenium tetracarbonyls, when [CH(3)Re(CO)(5)] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti(+3) and Ti(+4) ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO)(5)] or [CH(3)Re(CO)(5)] determined a ranking of the reactivity of the surface OH sites, with the Ti(+3)-OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.

  1. Unravelling RNA-substrate interactions in a ribozyme-catalysed reaction using fluorescent turn-on probes.

    PubMed

    Gaffarogullari, Ece Cazibe; Greulich, Peter; Kobitski, Andrei Yu; Nierth, Alexander; Nienhaus, G Ulrich; Jäschke, Andres

    2015-04-07

    The Diels-Alder reaction is one of the most important C-C bond-forming reactions in organic chemistry, and much effort has been devoted to controlling its enantio- and diastereoselectivity. The Diels-Alderase ribozyme (DAse) catalyses the reaction between anthracene dienes and maleimide dienophiles with multiple-turnover, stereoselectivity, and up to 1100-fold rate acceleration. Here, a new generation of anthracene-BODIPY-based fluorescent probes was developed to monitor catalysis by the DAse. The brightness of these probes increases up to 93-fold upon reaction with N-pentylmaleimide (NPM), making these useful tools for investigating the stereochemistry of the ribozyme-catalysed reaction. With these probes, we observed that the DAse catalyses the reaction with >91% de and >99% ee. The stereochemistry of the major product was determined unambiguously by rotating-frame nuclear Overhauser NMR spectroscopy (ROESY-NMR) and is in agreement with crystallographic structure information. The pronounced fluorescence change of the probes furthermore allowed a complete kinetic analysis, which revealed an ordered bi uni type reaction mechanism, with the dienophile binding first. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    PubMed

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  3. UV-induced photocatalytic degradation of aqueous acetaminophen: the role of adsorption and reaction kinetics.

    PubMed

    Basha, Shaik; Keane, David; Nolan, Kieran; Oelgemöller, Michael; Lawler, Jenny; Tobin, John M; Morrissey, Anne

    2015-02-01

    Nanostructured titania supported on activated carbon (AC), termed as integrated photocatalytic adsorbents (IPCAs), were prepared by ultrasonication and investigated for the photocatalytic degradation of acetaminophen (AMP), a common analgesic and antipyretic drug. The IPCAs showed high affinity towards AMP (in dark adsorption studies), with the amount adsorbed proportional to the TiO2 content; the highest adsorption was at 10 wt% TiO2. Equilibrium isotherm studies showed that the adsorption followed the Langmuir model, indicating the dependence of the reaction on an initial adsorption step, with maximum adsorption capacity of 28.4 mg/g for 10 % TiO2 IPCA. The effects of initial pH, catalyst amount and initial AMP concentration on the photocatalytic degradation rates were studied. Generally, the AMP photodegradation activity of the IPCAs was better than that of bare TiO2. Kinetic studies on the photocatalytic degradation of AMP under UV suggest that the degradation followed Langmuir-Hinshelwood (L-H) kinetics, with an adsorption rate constant (K) that was considerably higher than the photocatalytic rate constant (k r), indicating that the photocatalysis of AMP is the rate-determining step during the adsorption/photocatalysis process.

  4. Benzene Adsorption - A Significant Inhibitor for the Hydrogen Oxidation Reaction in Alkaline Conditions

    DOE PAGES

    Gonzales, Ivana; Chung, Hoon Taek; Kim, Yu Seung

    2017-09-25

    Slow hydrogen oxidation reaction (HOR) kinetics on Pt under alkaline conditions is a significant technical barrier for the development of high-performance hydroxide exchange membrane fuel cells. Here we report that benzene adsorption on Pt is a major factor responsible for the sluggish HOR. Furthermore, we demonstrate that bimetallic catalysts, such as PtMo/C, PtNi/C, and PtRu/C, can reduce the adsorption of benzene and thereby improve HOR activity. In particular, the HOR voltammogram of PtRu/C in 0.1 M benzyl ammonium showed minimal benzene adsorption. Density functional theory calculations indicate that the adsorption of benzyl ammonium on the bimetallic PtRu is endergonic formore » all four possible orientations of the cation, which explains the significantly better HOR activity observed for the bimetallic catalysts. In conclusion, the new HOR inhibition mechanism described here provides insights for the design of future polymer electrolytes and electrocatalysts for better-performing polymer membrane-based fuel cells.« less

  5. Adsorption mechanisms and surface heterogeneity in the oxidation reaction of CO

    NASA Astrophysics Data System (ADS)

    Cortés, Joaquín; Valencia, Eliana; Araya, Paulo

    1998-10-01

    A Monte Carlo simulation study is made of the sensitivity of the CO oxidation reaction to changes in the characteristics of the catalyst's surface on which the type of oxygen adsorption mechanism is dependent. Infinite rate models of the Ziff, Gulari, and Barshad (ZGB) type, and mechanisms having kinetics parameters of actual experiments from the literature are studied. It is shown that, if linear adsorption is assumed, the structural insensitivity becomes apparent in the phase diagram but not in the production of CO2. In the case of structural sensitivity it is seen that surface heterogeneity leads to a change in the character of the phase transition curve, and also allows information about the surface to be obtained from the shape of the transition curve.

  6. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration.

    PubMed

    Mira, Sara; Hill, Lisa M; González-Benito, M Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-03-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration

    PubMed Central

    Mira, Sara; Hill, Lisa M.; González-Benito, M. Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-01-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging. PMID:26956506

  8. Back reaction effects on the dynamics of heavy probes in heavy quark cloud

    NASA Astrophysics Data System (ADS)

    Chakrabortty, Shankhadeep; Dey, Tanay K.

    2016-05-01

    We holographically study the effect of back reaction on the hydrodynamical properties of {N}=4 strongly coupled super Yang-Mills (SYM) thermal plasma. The back reaction we consider arises from the presence of static heavy quarks uniformly distributed over {N}=4 SYM plasma. In order to study the hydrodynamical properties, we use heavy quark as well as heavy quark-antiquark bound state as probes and compute the jet quenching parameter, screening length and binding energy. We also consider the rotational dynamics of heavy probe quark in the back-reacted plasma and analyse associated energy loss. We observe that the presence of back reaction enhances the energy-loss in the thermal plasma. Finally, we show that there is no effect of angular drag on the rotational motion of quark-antiquark bound state probing the back reacted thermal plasma.

  9. Evaluation of the mercaptobenzothiazole degradation by combined adsorption process and Fenton reaction using iron mining residue.

    PubMed

    Martins, Adriana Lau da Silva; Teixeira, Luís Alberto César; da Fonseca, Fabiana Valéria; Yokoyama, Lídia

    2017-08-01

    The present study investigated the degradation of mercaptobenzothiazole (MBT), evaluating homogeneous and heterogeneous systems. An iron mineral residue from the desliming step of iron mining was used as a source in the Fenton-like reaction (advanced oxidation process). A granulometric analysis of the residue was performed and yielded fractions with high hematite (Fe 2 O 3 ) and low quartz content in sieves from 74 to below 44 mm. In this particle size range, the hematite content from 58.9% to 67.4% and the Brunauer-Emmett-Teller area from 0.1345 to 1.3137 m 2  g -1 were obtained. The zeta potential curves as a function of pH were obtained for the residue, the MBT solution and mixtures thereof. The adsorption of MBT in the residue and its degradation through the Fenton-like reaction were investigated. Adsorption tests and the Fenton-like reaction were carried out, where the MBT species and the residue are oppositely charged, yielding, respectively, 10% MBT adsorption on the surface of the residue and 100% MBT degradation by the Fenton-like reaction at pH 3, hydrogen peroxide concentration of 25 mg L -1 , residue concentration of 3 g L -1 , 200 rpm and 25°C, from a 100 mg L -1 MBT solution. MBT degradation was found to occur mainly by the heterogeneous Fenton-like process.

  10. Probing Electrochemical Reactions at a Plasma-Liquid Interface

    DTIC Science & Technology

    2015-03-16

    at a Plasma- Liquid Interface,” AVS International Symposium and Exhibition, Baltimore, MD , 2014. (presented by P. Rumbach) (c) Presentations Number of... liquid interfacial environment produces different solvated electron behavior than other approaches to generating solvated electrons (e.g., pulse...Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: STIR: Probing Electrochemical Reactions at a Plasma- Liquid Interface (7.2

  11. Adsorption of Bromine on Gold Nanoclusters

    NASA Astrophysics Data System (ADS)

    Salvo, Christopher; Keagy, Josiah; Yarmoff, Jory

    Small metal nanoclusters are extremely effective as catalysts, with rates that rival those of enzymes in biological systems. The first step in a catalytic reaction is the adsorption of a precursor molecule. The neutralization of alkali projectiles during low energy ion scattering (LEIS), which is acutely sensitive to the local electrostatic potential a few Å's above the surface, is used here to probe Au nanoclusters grown on SiO2 as they are reacted with Br2. Previous work had demonstrated very efficient neutralization in scattering from small catalytically active Au clusters, which was interpreted as an indication that the bare clusters are negatively charged. X-ray photoelectron spectroscopy and LEIS show little or no Br signal after exposing SiO2 and Au foil to Br2, suggesting that adsorption does not occur because the Br-Br bond does not break. Dissociative adsorption occurs rapidly, however, when small Au nanoclusters are reacted with Br2. 1.5 keV Na+ ions scattered from the Au clusters show a decrease in the neutralization probability as Br is reacted, indicating that adsorption results in charge being transferred from the cluster to the Br adatom. This material is based upon work supported by the National Science Foundation under CHE - 1611563.

  12. Correlations between reaction product yields as a tool for probing heavy-ion reaction scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawlikowicz, W.; Heavy-Ion Laboratory, Warsaw University, PL-02-093 Warsaw; Agnihotri, D. K.

    2010-01-15

    Experimental multidimensional joint distributions of neutrons and charged reaction products were analyzed for {sup 136}Xe + {sup 209}Bi reactions at E/A=28, 40, and 62 MeV and were found to exhibit several different types of prominent correlation patterns. Some of these correlations have a simple explanation in terms of the system excitation energy and pose little challenge to most statistical decay theories. However, several other types of correlation patterns are difficult to reconcile with some, but not other, possible reaction scenarios. In this respect, correlations between the average atomic numbers of intermediate-mass fragments, on the one hand, and light particle multiplicities,more » on the other, are notable. This kind of multiparticle correlation provides a useful tool for probing reaction scenarios, which is different from the traditional approach of interpreting inclusive yields of individual reaction products.« less

  13. An intramolecular crossed-benzoin reaction based KCN fluorescent probe in aqueous and biological environments.

    PubMed

    Lee, Jae Hong; Jang, Joo Hee; Velusamy, Nithya; Jung, Hyo Sung; Bhuniya, Sankarprasad; Kim, Jong Seung

    2015-05-04

    A turn-on fluorescent probe was designed for selective cyanide anion sensing in aqueous and biological environments. The probe underwent an intramolecular crossed-benzoin reaction in the presence of KCN to expel the fluorophore resorufin. This probe was sensitive to KCN concentrations as low as 4 nM in aqueous media.

  14. Fluorescence probe techniques to monitor protein adsorption-induced conformation changes on biodegradable polymers.

    PubMed

    Benesch, Johan; Hungerford, Graham; Suhling, Klaus; Tregidgo, Carolyn; Mano, João F; Reis, Rui L

    2007-08-15

    The study of protein adsorption and any associated conformational changes on interaction with biomaterials is of great importance in the area of implants and tissue constructs. This study aimed to evaluate some fluorescent techniques to probe protein conformation on a selection of biodegradable polymers currently under investigation for biomedical applications. Because of the fluorescence emanating from the polymers, the use of monitoring intrinsic protein fluorescence was precluded. A highly solvatochromic fluorescent dye, Nile red, and a well-known protein label, fluorescein isothiocyanate, were employed to study the adsorption of serum albumin to polycaprolactone and to some extent also to two starch-containing polymer blends (SPCL and SEVA-C). A variety of fluorescence techniques, steady state, time resolved, and imaging were employed. Nile red was found to leach from the protein, while fluorescein isothiocyanate proved useful in elucidating a conformational change in the protein and the observation of protein aggregates adsorbed to the polymer surface. These effects were seen by making use of the phenomenon of energy migration between the fluorescent tags to monitor interprobe distance and the use of fluorescence lifetime imaging to ascertain the surface packing of the protein on polymer.

  15. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1994-01-01

    We have prepared a [32P]-labled oligonucleotide probe carrying a free primary amine at its 3'-terminus. This probe is used to initiate polymerization of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques. We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates that we studied. The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They should greatly simplify the screening of potentially prebiotic polymerization reactions.

  16. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method

    PubMed Central

    Kusakawa, You

    2017-01-01

    Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2. PMID:28246591

  17. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    EPA Science Inventory

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  18. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome.

    PubMed

    Lessa, J H L; Araujo, A M; Silva, G N T; Guilherme, L R G; Lopes, G

    2016-12-01

    Soil management may affect selenium (Se) adsorption capacity. This study investigated adsorption and desorption of Se (VI) in selected Brazilian soils from the Cerrado biome, an area of ever increasing importance for agriculture expansion in Brazil. Soil samples were collected from cultivated and uncultivated soils, comprising clayed and sandy soils. Following chemical and mineralogical characterization, soil samples were subjected to Se adsorption and desorption tests. Adsorption was evaluated after a 72-h reaction with increasing concentrations of Se (0-2000 μg L -1 ) added as Na 2 SeO 4 in a NaCl electrolyte solution (pH 5.5; ionic strength 15 mmol L -1 ). Desorption, as well as distribution coefficients (K d ) for selenate were also assessed. Soil management affected Se adsorption capacity, i.e., Se adsorbed amounts were higher for uncultivated soils, when compared to cultivated ones. Such results were also supported by data of K d and maximum adsorption capacity of Se. This fact was attributed mainly to the presence of greater amounts of competing anions, especially phosphate, in cultivated soils, due to fertilizer application. Phosphate may compete with selenate for adsorption sites, decreasing Se retention. For the same group of soils (cultivated and uncultivated), Se adsorption was greater in the clayed soils compared to sandy ones. Our results support the idea that adding Se (VI) to the soil is a good strategy to increase Se levels in food crops (agronomic biofortification), especially when crops are grown in soils that have been cultivated over the time due to their low Se adsorption capacity (high Se availability). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Direct coupling between stress, strain and adsorption reactions - A study on coal-CO2 systems

    NASA Astrophysics Data System (ADS)

    Hol, S.; Peach, C. J.; Spiers, C. J.

    2012-12-01

    Though it is well-known that adsorption reactions frequently assist deformation of porous rocks, very little understanding exists on the direct coupling with stress state and strain. One of the materials in which adsorption plays a large role is coal, as is observed in the particular case of Enhanced Coalbed Methane Production (ECBM), which involves the geological storage of CO2 and the recovery of CH4. In this case, adsorption and the associated swelling cause significant injectivity problems, which is experienced in almost all pilot field projects to date. This suggests that indeed a strong fundamental coupling exists between CO2 sorption, changes in the mechanical state of the coal matrix and changes in the transport properties of the system, and illustrates the need to understand coupled stress-strain-sorption behaviour. In this contribution, we describe several important observations made on coal-CO2 systems that can learn us about many other natural, stressed adsorbate-adsorbent systems. In our experiments, first of all, the adsorption of CO2 in the coal matrix gave rise to swelling. Although this is well-known, we found that the total volumetric strain occurring under unconfined conditions can be realistically modelled (up to at least 100 MPa) as the sum of an adsorption-related expansion term and an elastic compression term. Second, effective in situ stresses will directly reduce the sorption capacity, and associated swelling of the coal matrix significantly. Our general thermodynamic model for the effect of a 3D stress state on adsorbed CO2 concentration supports this observation, and also shows that "self-stressing", as a result of CO2 adsorption occurring under conditions of restricted or zero strain (i.e. fully constrained conditions), will more than double the expected in situ stresses. A constitutive equation was developed to describe the full coupling between stress state, total strain (i.e. combined strain of adsorption processes and poroelasticity

  20. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.

    PubMed

    Feng, Xiong Han; Zhai, Li Mei; Tan, Wen Feng; Liu, Fan; He, Ji Zheng

    2007-05-01

    Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).

  1. Bis-reaction-trigger as a strategy to improve the selectivity of fluorescent probes.

    PubMed

    Li, Dan; Cheng, Juan; Wang, Cheng-Kun; Ying, Huazhou; Hu, Yongzhou; Han, Feng; Li, Xin

    2018-06-01

    By the strategy of equipping a fluorophore with two reaction triggers that are tailored to the specific chemistry of peroxynitrite, we have developed a highly selective probe for detecting peroxynitrite in live cells. Sequential response by the two triggers enabled the probe to reveal various degrees of nitrosative stress in live cells via a sensitive emission colour change.

  2. Ozone adsorption on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were

  3. Catalytic hydrolysis of carbonyl sulphide and carbon disulphide over Fe2O3 cluster: Competitive adsorption and reaction mechanism.

    PubMed

    Ning, Ping; Song, Xin; Li, Kai; Wang, Chi; Tang, Lihong; Sun, Xin

    2017-10-31

    The competitive adsorption and reaction mechanism for the catalytic hydrolysis of carbonyl sulphide (COS) and carbon disulphide (CS 2 ) over Fe 2 O 3 cluster was investigated. Compared with experimental results, the theoretical study was used to further investigate the competitive adsorption and effect of H 2 S in the hydrolysis reaction of COS and CS 2 . Experimental results showed that Fe 2 O 3 cluster enhanced the catalytic hydrolysis effect. Meanwhile, H 2 S was not conducive to the hydrolysis of COS and CS 2 . Theoretical calculations indicated that the order of competitive adsorption on Fe 2 O 3 is as follows: H 2 O (strong) >CS 2 (medium) >COS (weak). In the hydrolysis process, the C=S bond cleavage occurs easier than C=O bond cleavage. The hydrolysis reaction is initiated via the migration of an H-atom, which triggers C=S bond cleavage and S-H bond formation. Additionally, we find the first step of CS 2 hydrolysis to be rate limiting. The presence of H 2 S increases the reaction energy barrier, which is not favourable for COS hydrolysis. Fe 2 O 3 can greatly decrease the maximum energy barrier, which decreases the minimum energy required for hydrolysis, making it relatively facile to occur. In general, the theoretical results were consistent with experimental results, which proved that the theoretical study was reliable.

  4. Acetylene and Ethylene Adsorption on a β-Mo 2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres

    Mo 2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo 2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied in this paper on a β-Mo 2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo 2C) surfaces. The geometry andmore » electronic properties of the clean δ-MoC(001) and β-Mo 2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo 2C(100) than on δ-MoC(001). The C termination in β-Mo 2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. Finally, the results of this work suggest that the β-Mo 2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CH x fragments.« less

  5. Acetylene and Ethylene Adsorption on a β-Mo 2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions

    DOE PAGES

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...

    2017-08-18

    Mo 2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo 2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied in this paper on a β-Mo 2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo 2C) surfaces. The geometry andmore » electronic properties of the clean δ-MoC(001) and β-Mo 2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo 2C(100) than on δ-MoC(001). The C termination in β-Mo 2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. Finally, the results of this work suggest that the β-Mo 2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CH x fragments.« less

  6. Monochrome Multiplexing in Polymerase Chain Reaction by Photobleaching of Fluorogenic Hydrolysis Probes.

    PubMed

    Schuler, Friedrich; Trotter, Martin; Zengerle, Roland; von Stetten, Felix

    2016-03-01

    Multiplexing in polymerase chain reaction (PCR) is a technique widely used to save cost and sample material and to increase sensitivity compared to distributing a sample to several singleplex reactions. One of the most common methods to detect the different amplification products is the use of fluorogenic probes that emit at different wavelengths (colors). To reduce the number of detection channels, several methods for monochrome multiplexing have been suggested. However, they pose restrictions to the amplifiable target length, the sequence, or the melting temperature. To circumvent these limitations, we suggest a novel approach that uses different fluorophores with the same emission maximum. Discrimination is achieved by their different fluorescence stability during photobleaching. Atto488 (emitting at the same wavelength as 6-carboxyfluorescein, FAM) and Atto467N (emitting at the same wavelength as cyanine 5, Cy5) were found to bleach significantly less than FAM and Cy5; i.e., the final fluorescence of Atto dyes was more than tripled compared to FAM and Cy5. We successfully applied this method by performing a 4-plex PCR targeting antibiotic resistance genes in S. aureus using only 2 color channels. Confidence of discrimination between the targets was >99.9% at high copy initial copy numbers of 100 000 copies. Cases where both targets were present could be discriminated with equal confidence for Cy5 channel and reduced levels of confidence (>68%) for FAM channel. Moreover, a 2-plex digital PCR reaction in 1 color channel was shown. In the future, the degree of multiplexing may be increased by adding fluorogenic probe pairs with other emission wavelengths. The method may also be applied to other probe and assay formats, such as Förster resonance energy transfer (FRET) probes and immunoassays.

  7. Acetaldehyde Adsorption and Reaction onCeO2(100) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Albrecht, Peter M

    2013-01-01

    This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOX(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100) whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2 and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the 2-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-X(100) surface however the inability to react with surface O on the reduced surface results in H2 rather than H2O desorption and C ismore » left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption.« less

  8. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  9. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions.

    PubMed

    Li, Ying; Liu, Weimin; Zhang, Panpan; Zhang, Hongyan; Wu, Jiasheng; Ge, Jiechao; Wang, Pengfei

    2017-04-15

    A fluorescent probe (1) for distinguishing amongst biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), is developed based on different cascade reactions. The key design feature of fluorescent probe 1 is the integration of two potential reaction groups for the thiol and amino groups of biothiols in one molecule. By reacting with the halogen atom and α, β-unsaturated malonitrile in probe 1, Cys, Hcy and GSH can generate a total of three main products with distinct photophysical properties. Probe 1 shows a strong fluorescence turn-on response to Cys with blue-green emission by using an excitation wavelength of 390nm. At an excitation wavelength of 500nm, probe 1 responds to GSH over Cys and Hcy and emits strong orange fluorescence. The discrimination of biothiols can be demonstrated by cell imaging experiments, indicating that probe 1 can be a useful tool for the selective imaging of Cys and GSH in living cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Adsorption and reaction of propene on Ni(100)

    NASA Astrophysics Data System (ADS)

    Kleyna, R.; Borgmann, D.; Wedler, G.

    1998-05-01

    Photoelectron spectroscopy (UPS, XPS) and thermal desorption techniques were used to study the chemisorption and decomposition reactions of propene on Ni(100). Propene is molecularly adsorbed at temperatures below 150 K. At saturation coverage the TD spectrum shows two propene desorption peaks at 155 and 225 K and three hydrogen desorption peaks at 300, 330 and 380 K with a shoulder at 420 K. No other desorbing species could be detected. The amount of desorption of propene was determined by XPS to be 20% of the saturation coverage. The electronic structure of adsorbed propene and the chemical nature of its decomposition products were deduced from UP and XP spectra taken at saturation coverage. Adsorption at low temperatures results in a π-bonded species which is stable up to 150 K. At temperatures above 150 K the UP spectra point to a σ-bonded species which decomposes further at temperatures above 260 K.

  11. Adsorption and reactions of atmospheric constituents and pollutants on ice particles: an FTIR study

    NASA Astrophysics Data System (ADS)

    Rudakova, A. V.; Marinov, I. L.; Poretskiy, M. S.; Tsyganenko, A. A.

    2009-04-01

    Processes on icy particles attract much attention due to their importance for atmospheric science, ecology and astrophysics. In this work, adsorption and ecologically important reactions of some molecules on pure and mixed water icy films by means of FTIR spectroscopy have been investigated. The cell for spectral studies of adsorbed molecules at variable temperatures (55-370 K), described elsewhere1, enables one to run the spectra in the presence of gaseous adsorbate, and even to perform adsorption from the solution in some cryogenic solvents. For the studies of ice films, it was equipped with a device for water vapour sputtering from the heated capillaries and deposition onto the inner BaF2 or ZnSe windows of the cell, cooled by liquid nitrogen. Lower temperatures were obtained by pumping off evaporating nitrogen from the coolant volume. The estimated specific surface area of freshly deposited at 77 K water ice film was about 160 m2/g and decreases on raising the temperature together with the diminishing intensity of the bands of dangling OH (OD) groups at 3696 (2727) cm-1 until the latter disappear at 130 - 160 K when the changes of bulk absorption provide evidence for a phase transition from amorphous to polycrystalline ice. CO adsorption at 77 K results in two bands at 2153 and 2137 cm-1 assigned to molecules forming weak H-bond with the dangling hydroxyl groups and bound to unsaturated surface oxygen atoms, respectively2. The band of dangling hydroxyl groups moves to lower wavenumbers on adsorption of different molecules (hydrogen, nitrogen, methane, ozone, NO, ethane or chlorinated ethenes, etc.). The shift value depends on the nature of adsorbate. Besides this shift, spectra of adsorbed nitrogen and methane registered at 55 K reveal the adsorption intensity decrease at ~ 2650 cm-1 at the high-frequency slope of bulk adsorption, and increase at about 25 cm-1 below. We interpret this perturbation as a strengthening of H-bonds between surface water molecules

  12. The Effect of Simulated Microgravity Environment of RWV Bioreactors on Surface Reactions and Adsorption of Serum Proteins on Bone-bioactive Microcarriers

    NASA Technical Reports Server (NTRS)

    Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.

    2003-01-01

    Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.

  13. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Jiao, Li; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-08-30

    The CdS/TiO(2)-fluorescein isothiocyanate (FITC) luminescent nanoparticles (CdS/TiO(2)-FITC) with the particle size of 20 nm have been synthesized by sol-gel method. CdS/TiO(2)-FITC could emit the fluorescence of both FITC and CdS/TiO(2). The fluorescence resonance energy transfer (FRET) occurred between the donor CdS/TiO(2) and the acceptor FITC in the CdS/TiO(2)-FITC. Taking advantages of the excellent characteristics of FRET, a new CdS/TiO(2)-FITC FRET labeling reagent and a CdS/TiO(2)-FITC-wheat germ agglutinin (CdS/TiO(2)-FITC-WGA) fluorescent probe have been developed. The FRET occurring between the donor CdS/TiO(2) and the acceptor FITC in the labelled product CdS/TiO(2)-FITC-WGA-AP, formed in the affinity adsorption reaction between the WGA in this CdS/TiO(2)-FITC-WGA fluorescent probe and alkaline phosphatase (AP), sharply enhanced the fluorescence signal of FITC and quench the fluorescence signal of CdS/TiO(2). Moreover, the ΔF (the change of the fluorescence signal) of FITC and CdS/TiO(2) were proportional to the content of AP, respectively. Thus, a new method that CdS/TiO(2)-fluorescein isothiocyanate nanoparticles for the determination of trace AP based on FRET-affinity adsorption assay has been established. The limit of quantification (LOQ) of the method was 1.3×10(-17) g AP mL(-1) for CdS/TiO(2) and 1.1×10(-17) g AP mL(-1) for FITC, respectively. This sensitive, rapid, high selective and precise method has been applied to the determination of AP in human serum and the prediction of human disease with the results agreed well with enzyme-linked immunosorbent assay (ELISA) in Zhangzhou Municipal Hospital of Fujian Province. Simultaneously, the reaction mechanism for the determination of AP was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air–Water Interface

    DOE PAGES

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-07-23

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. In this paper, we report on the equilibrium properties of two common SEPs adsorbed to the air–water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated localmore » chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo 132-based SEPs are more polar than Mo 72V 30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air–water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo 132 and Mo 72V 30 SEPs, respectively, indicating a strong propensity for the fluid surface. Finally, the influence of intermolecular interactions on the surface adsorption energies is discussed.« less

  15. Investigation of Drug-Induced Hepatotoxicity and Its Remediation Pathway with Reaction-Based Fluorescent Probes.

    PubMed

    Cheng, Dan; Xu, Wang; Yuan, Lin; Zhang, Xiaobing

    2017-07-18

    Drug-induced liver injury (DILI) is considered a serious problem related to public health, due to its unpredictability and acute response. The level of peroxynitrite (ONOO - ) generated in liver has long been regarded as a biomarker for the prediction and measurement of DILI. Herein we present two reaction-based fluorescent probes (Naph-ONOO - and Rhod-ONOO - ) for ONOO - through a novel and universally applicable mechanism: ONOO - -mediated deprotection of α-keto caged fluorophores. Among them, Rhod-ONOO - can selectively accumulate and react in mitochondria, one of the main sources of ONOO - , with a substantial lower nanomolar sensitivity of 43 nM. The superior selectivity and sensitivity of two probes enable real-time imaging of peroxynitrite generation in lipopolysaccharide-stimulated live cells, with a remarkable difference from cells doped with other interfering reactive oxygen species, in either one- or two-photon imaging modes. More importantly, we elucidated the drug-induced hepatotoxicity pathway with Rhod-ONOO - and revealed that CYP450/CYP2E1-mediated enzymatic metabolism of acetaminophen leads to ONOO - generation in liver cells. This is the first time to showcase the drug-induced hepatotoxicity pathways by use of a small-molecule fluorescent probe. We hence conclude that fluorescent probes can engender a deeper understanding of reactive species and their pathological revelations. The reaction-based fluorescent probes will be a potentially useful chemical tool to assay drug-induced hepatotoxicity.

  16. Salivary α-amylase reflects change in attentional demands during postural control: comparison with probe reaction time.

    PubMed

    Akizuki, Kazunori; Ohashi, Yukari

    2014-12-01

    The influence of attention on postural control and the relationship between attention and falling has been reported in previous studies. Although a dual-task procedure is commonly used to measure attentional demand, such procedures are affected by allocation policy, which is a mental strategy to divide attention between simultaneous tasks. Therefore, we examined the effectiveness of salivary α-amylase, which is a physiological method for measuring attentional demand during postural control. Sixteen healthy participants performed a postural-control task using the Balance System, which is a device that can be calibrated to a specific stability level ("Level 1 = least stable" to "Level 8 = most stable"). Levels 1, 2, and 3 were used for this study. Dependent variables measured were overall stability index, which represents the variance of platform displacement in degrees from a horizontal plane; probe reaction time, which was measured using a sound stimulator and recorder; and salivary α-amylase, which was measured using a portable salivary amylase analyzer. As stability level of the test task decreased, both stability index and probe reaction time significantly increased. In addition, we identified a positive moderate correlation between probe reaction time and salivary α-amylase. Our results suggest that salivary α-amylase and probe reaction time reflect the change in attentional demands during a postural-control task and that salivary α-amylase may be an effective tool for evaluating attentional demands during postural control because it is noninvasive and simple to perform.

  17. Adsorption and reaction of CO and H2O on WC(0001) surface: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Tong, Yu-Jhe; Wu, Shiuan-Yau; Chen, Hsin-Tsung

    2018-01-01

    We have performed a spin-polarized density functional theory (DFT) study for understanding the detailed reaction mechanism of CO and H2O on WC (0001) surface. The adsorption properties and vibrational frequencies of H2O, OH, O, H, CO and CO2 on the WC (0001) surface were illustrated. These results are well in consistent with the experimental observations studied by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). Based on the adsorption results, potential energy profiles of H2O and OH dehydrogenation and HCO, COH, COOH, and CO2 formation on the WC (0001) surface were predicted. The calculation results demonstrated that the WC (0001) surface as Fe (110) surface exhibits significantly reaction activity toward the dehydrogenation of H2O and OH but less activity toward the formation of HCO, COH, COOH and CO2 compared to the Cu (111) and Pt (111) surfaces.

  18. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates

    PubMed Central

    Behm, R Jürgen

    2014-01-01

    Summary As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm−1 characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed. PMID:24991512

  19. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution. 2: Polycondensations

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1995-01-01

    We have prepared a (P-32)-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.

  20. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution: II. Polycondensations

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.

    1995-01-01

    We have prepared a [32P]-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.

  1. Water vapor adsorption on goethite.

    PubMed

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  2. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hagan, William J., Jr.

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite is investigated in the presence of salts and Good's zwitterion buffers, PIPES and MES. The initial concentrations of nucleotide and the percent adsorbtion are used to calculate the adsorption isotherms, and the Langmuir adsorption equation is used for the analysis of data. The adsorption coefficient was found to be three times greater in the presence of 0.2 M PIPES than in its absence. In addition, basal spacings measured by X-ray diffraction were increased by the buffer. These results are interpreted in terms of a model in which the adsorption of AMP is mediated by a Zn(2+) complex of PIPES in different orientations in the interlamellar region of the montmorillonite. Mixed ligand complexes of this type are reminiscent of the complexes observed between metal ions and biological molecules in living systems.

  3. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    PubMed

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  4. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    PubMed

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  5. Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces

    PubMed Central

    2014-01-01

    Conspectus The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdWsurf method that accurately accounts for the collective electronic

  6. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation

    NASA Astrophysics Data System (ADS)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.

    2017-06-01

    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  7. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    PubMed

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VK Q , prepared by coupling vitamin K 3 , also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VK Q is non-emissive, while upon reduction to the hydroquinone form, B-VK QH 2 , BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VK Q as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  8. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  9. New prediction model for probe specificity in an allele-specific extension reaction for haplotype-specific extraction (HSE) of Y chromosome mixtures.

    PubMed

    Rothe, Jessica; Watkins, Norman E; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3' terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3' terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3' terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%.

  10. Chemical sensing flow probe

    DOEpatents

    Laguna, George R.; Peter, Frank J.; Butler, Michael A.

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  11. Chemical sensing flow probe

    DOEpatents

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  12. A Reaction-Based Novel Fluorescent Probe for Detection of Hydrogen Sulfide and Its Application in Wine.

    PubMed

    Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo

    2018-01-01

    A new reaction-based fluorescent probe 6-cyanonaphthalen-2-yl-2,4- dinitrobenzenesulfonate (probe 1) was designed and synthesized for detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence increased accompanied by a visual color change from colorless to yellow. Importantly, this distinct color response indicates that probe 1 could be used as a visual tool for detection of H 2 S. H 2 S can be detected quantitatively in the concentration range 0 to 25 μM and the detection limit was 30 nM. Moreover, probe 1 was successfully used as a sensor to determine H 2 S levels in red wine and beer. Fluorescent probe 1 could be employed as a visible sensor for H 2 S. Probe 1 could be used to detect H 2 S quantitatively in food simple. © 2017 Institute of Food Technologists®.

  13. Probing Aluminum Reactions in Combustion and Explosion Via the Kinetic Isotope Effect

    NASA Astrophysics Data System (ADS)

    Tappan, Bryce

    2015-06-01

    The mechanism that controls the reaction speed of aluminum in explosion and combustion is poorly understood, and experimentally difficult to measure. Recently, work in our laboratory has demonstrated that during the combustion of nanoparticulate aluminum with H2O or D2O, different reaction rates due to the kinetic isotope effect are observed. This result is the first-ever observed kinetic isotope effect in a metal combustion reaction and verifies that chemical reaction kinetics play a major role in determining the global burning rate. During or shortly after a detonation, however, the reaction rates are dramatically faster and the physical mechanism controlling Al reaction is likely different than during combustion events. To utilize the kinetic isotope effect to probe Al reactions in detonation, formulations were produced that contain powdered Al in deuterated high explosives and high-fidelity detonation velocity were determined along with PDV measurements to observe early wall velocity expansion measurements. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods, in addition of Gurney energies, which enables the elucidation of Al reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale and isotope effects in both the HE detonation and post-detonation Al reactions are discussed.

  14. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

    PubMed

    Liu, Yacui; Zhang, Jiangyan; Tian, Jingxiao; Fan, Xiaofei; Geng, Hao; Cheng, Yongqiang

    2017-01-01

    A simple, highly sensitive, and specific assay was developed for the homogeneous and multiplex detection of microRNAs (miRNAs) by combining molecular beacon (MB) probes and T7 exonuclease-assisted cyclic amplification. An MB probe with five base pairs in the stem region without special modification can effectively prevent the digestion by T7 exonuclease. Only in the presence of target miRNA is the MB probe hybridized with the target miRNA, and then digested by T7 exonuclease in the 5' to 3' direction. At the same time, the target miRNA is released and subsequently initiates the nuclease-assisted cyclic digestion process, generating enhanced fluorescence signal significantly. The results show that the combination of T7 exonuclease-assisted cyclic amplification reaction and MB probe possesses higher sensitivity for miRNA detection. Moreover, multiplex detection of miRNAs was successfully achieved by designing two MB probes labeled with FAM and Cy3, respectively. As a result, the method opens a new pathway for the sensitive and multiplex detection of miRNAs as well as clinical diagnosis. Graphical Abstract A simple, highly sensitive, and specific assay was developed for the detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

  15. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles

    PubMed Central

    Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin

    2015-01-01

    We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615

  16. New Prediction Model for Probe Specificity in an Allele-Specific Extension Reaction for Haplotype-Specific Extraction (HSE) of Y Chromosome Mixtures

    PubMed Central

    Rothe, Jessica; Watkins, Norman E.; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3′ terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3′ terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3′ terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%. PMID:23049901

  17. Surface sampling concentration and reaction probe

    DOEpatents

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  18. Use of extremely short Förster resonance energy transfer probes in real-time polymerase chain reaction

    PubMed Central

    Kutyavin, Igor V.

    2013-01-01

    Described in the article is a new approach for the sequence-specific detection of nucleic acids in real-time polymerase chain reaction (PCR) using fluorescently labeled oligonucleotide probes. The method is based on the production of PCR amplicons, which fold into dumbbell-like secondary structures carrying a specially designed ‘probe-luring’ sequence at their 5′ ends. Hybridization of this sequence to a complementary ‘anchoring’ tail introduced at the 3′ end of a fluorescent probe enables the probe to bind to its target during PCR, and the subsequent probe cleavage results in the florescence signal. As it has been shown in the study, this amplicon-endorsed and guided formation of the probe-target duplex allows the use of extremely short oligonucleotide probes, up to tetranucleotides in length. In particular, the short length of the fluorescent probes makes possible the development of a ‘universal’ probe inventory that is relatively small in size but represents all possible sequence variations. The unparalleled cost-effectiveness of the inventory approach is discussed. Despite the short length of the probes, this new method, named Angler real-time PCR, remains highly sequence specific, and the results of the study indicate that it can be effectively used for quantitative PCR and the detection of polymorphic variations. PMID:24013564

  19. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    PubMed

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  20. A Class of Multiresponsive Colorimetric and Fluorescent pH Probes via Three Different Reaction Mechanisms of Salen Complexes: A Selective and Accurate pH Measurement.

    PubMed

    Cheng, Jinghui; Gou, Fei; Zhang, Xiaohong; Shen, Guangyu; Zhou, Xiangge; Xiang, Haifeng

    2016-09-19

    We report a class of multiresponsive colorimetric and fluorescent pH probes based on three different reaction mechanisms including cation exchange, protonation, and hydrolysis reaction of K(I), Ca(II), Zn(II), Cu(II), Al(III), and Pd(II) Salen complexes. Compared with traditional pure organic pH probes, these complex-based pH probes exhibited a much better selectivity due to the shielding function of the filled-in metal ion in the complex. Their pH sensing performances were affected by the ligand structure and the central metal ion. This work is the first report of "off-on-on'-off" colorimetric and fluorescent pH probes that possess three different reaction mechanisms and should inspire the design of multiple-responsive probes for important analytes in biological systems.

  1. Photonuclear reaction as a probe for α -clustering nuclei in the quasi-deuteron region

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Ma, Y. G.; He, W. B.

    2017-03-01

    Photon-nuclear reaction in a transport model frame, namely an extended quantum molecular dynamics model, has been realized at the photon energy of 70-140 MeV in the quasi-deuteron regime. For an important application, we pay a special focus on photonuclear reactions of 12C(γ ,n p )10B where 12C is considered as different configurations including α clustering. Obvious differences for some observables have been observed among different configurations, which can be attributed to spatial-momentum correlation of a neutron-proton pair inside nucleus, and therefore it gives us a sensitive probe to distinguish the different configurations including α clustering with the help of the photonuclear reaction mechanism.

  2. Al atom on MoO3(010) surface: adsorption and penetration using density functional theory.

    PubMed

    Wu, Hong-Zhang; Bandaru, Sateesh; Wang, Da; Liu, Jin; Lau, Woon Ming; Wang, Zhenling; Li, Li-Li

    2016-03-14

    Interfacial issues, such as the interfacial structure and the interdiffusion of atoms at the interface, are fundamental to the understanding of the ignition and reaction mechanisms of nanothermites. This study employs first-principle density functional theory to model Al/MoO3 by placing an Al adatom onto a unit cell of a MoO3(010) slab, and to probe the initiation of interfacial interactions of Al/MoO3 nanothermite by tracking the adsorption and subsurface-penetration of the Al adatom. The calculations show that the Al adatom can spontaneously go through the topmost atomic plane (TAP) of MoO3(010) and reach the 4-fold hollow adsorption-site located below the TAP, with this subsurface adsorption configuration being the most preferred one among all plausible adsorption configurations. Two other plausible configurations place the Al adatom at two bridge sites located above the TAP of MoO3(010) but the Al adatom can easily penetrate below this TAP to a relatively more stable adsorption configuration, with a small energy barrier of merely 0.2 eV. The evidence of subsurface penetration of Al implies that Al/MoO3 likely has an interface with intermixing of Al, Mo and O atoms. These results provide new insights on the interfacial interactions of Al/MoO3 and the ignition/combustion mechanisms of Al/MoO3 nanothermites.

  3. Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu

    2016-07-15

    Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less

  4. A molecular investigation of adsorption onto mineral pigments

    NASA Astrophysics Data System (ADS)

    Ninness, Brian J.

    Pigment suspensions are important in several processes such as ceramics, paints, inks, and coatings. In the wet state, pigments are combined with a variety of chemical species such as polymers, surfactants, and polyelectrolytes which produce a complex colloidal system. The adsorption, desorption, and redistribution of these species at the pigment-aqueous solution interface can have an impact on the behavior in both the wet state or its final dried state. The goal of this work is to establish a molecular picture of the adsorption properties of these pigmented systems. A novel in situ infrared technique has been developed which allows the detection of adsorbed surface species on pigment particles in an aqueous environment. The technique involves the use of a polymeric binder to anchor the colloidal pigment particles to the surface of an internal reflection element (IRE). The binder only weakly perturbs about 25% of the reactive surface sites (hydroxyl groups) on silica. The reaction of succinic anhydride with an aminosilanized silica surface has been quantified using this technique. The adsorption dynamics of the cationic surfactant cetyltrimethylammonium bromide (C16TAB) at the TiO2-aqueous solution interface has been investigated using Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) and electrokinetic analysis. At low bulk concentrations, C16TAB is shown to adsorb as isolated islands with a "defective" bilayer structure. Anionic probe molecules are shown to effectively "tune" the adsorbed surfactant microstructure. The results indicate that the structure of the adsorbed surfactant layer, and not the amount of adsorbed surfactant, dictates the subsequent adsorption behavior of the system. Atomic Layer Deposition is used to deposit a TiO2 layer onto the surfaces of silica and kaolin pigments. The process involves the cyclic reaction sequence of the vapors of TiCl4 and H2O. Three complete deposition cycles are needed before the surfaces

  5. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  6. Passivation effects on quantum dots prepared by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Dai, Qilin; Maloney, Scott; Chen, Weimin; Poudyal, Uma; Wang, Wenyong

    2016-06-01

    ZnS is typically used to passivate semiconductor quantum dots (QDs) prepared by the successive ionic layer adsorption and reaction (SILAR) method for solar cell applications, while for colloidal QDs, organic ligands are usually used for this passivation purpose. In this study we utilized oleylamine and oleic acid ligands, besides ZnS, to passivate QDs prepared by the SILAR approach, and investigated their effects on the incident photon-to-current efficiency (IPCE) performance of the solar cells. It was observed that oleylamine passivation decreased device performance, while oleic acid passivation improved the IPCE of the cells. Redshift of the IPCE onset wavelength was also observed after oleic acid coating, which was attributed to the delocalization of excitons in the CdS QDs.

  7. Arbitrary-detuning asynchronous optical sampling pump-probe spectroscopy of bacterial reaction centers.

    PubMed

    Antonucci, Laura; Bonvalet, Adeline; Solinas, Xavier; Jones, Michael R; Vos, Marten H; Joffre, Manuel

    2013-09-01

    A recently reported variant of asynchronous optical sampling compatible with arbitrary unstabilized laser repetition rates is applied to pump-probe spectroscopy. This makes possible the use of a 5.1 MHz chirped pulse oscillator as the pump laser, thus extending the available time window to almost 200 ns with a time resolution as good as about 320 fs. The method is illustrated with the measurement in a single experiment of the complete charge transfer dynamics of the reaction center from Rhodobacter sphaeroides.

  8. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  9. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  10. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  11. Isotope Effects as Probes for Enzyme Catalyzed Hydrogen-Transfer Reactions

    PubMed Central

    Roston, Daniel; Islam, Zahidul; Kohen, Amnon

    2015-01-01

    Kinetic Isotope effects (KIEs) have long served as a probe for the mechanisms of both enzymatic and solution reactions. Here, we discuss various models for the physical sources of KIEs, how experimentalists can use those models to interpret their data, and how the focus of traditional models has grown to a model that includes motion of the enzyme and quantum mechanical nuclear tunneling. We then present two case studies of enzymes, thymidylate synthase and alcohol dehydrogenase, and discuss how KIEs have shed light on the C-H bond cleavages those enzymes catalyze. We will show how the combination of both experimental and computational studieshas changed our notion of how these enzymes exert their catalytic powers. PMID:23673528

  12. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases.

    PubMed

    Hu, Hongyun; Chen, Dunkui; Liu, Huan; Yang, Yuhan; Cai, Hexun; Shen, Junhao; Yao, Hong

    2017-08-01

    Arsenic emission from fuel combustion and metal smelting flue gas causes serious pollution. Addition of sorbents is a promising way for the arsenic capture from high temperature flue gas. However, it is difficult to remove arsenic from SO 2 /HCl-rich flue gas due to the competitive reaction of the sorbents with arsenic and these acid gases. To solve this problem, arsenic adsorption over γ-Al 2 O 3 was studied in this work to evaluate its adsorption mechanism, resistance to acid gases as well as regeneration behavior. The results show that γ-Al 2 O 3 had good resistance to acid gases and the arsenic adsorption by γ-Al 2 O 3 could be effectively carried out at a wide temperature range between 573 and 1023 K. Nevertheless, adsorption at higher-temperature (like 1173 K) leaded to the decrease of surface area and the rearrangement of crystal structure of γ-Al 2 O 3 , reducing the active sites for arsenic adsorption. The adsorption of arsenic was confirmed to occur at different active sites in γ-Al 2 O 3 by forming various adsorbed species. Increasing temperature facilitated arsenic transformation into more stable chemisorbed As 3+ and As 5+ which were difficult to remove through thermal treatment regeneration. Fortunately, the regeneration of spent γ-Al 2 O 3 could be well performed using NaOH solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  14. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: Influence of solution chemistry

    NASA Astrophysics Data System (ADS)

    Schlautman, Mark A.; Morgan, James J.

    1994-10-01

    The adsorption of Suwannee River humic substances (HS) on colloidal-size aluminum oxide particles was examined as a function of solution chemistry. The amount of humic acid (HA) or fulvic acid (FA) adsorbed decreased with increasing pH for all solutions of constant ionic strength. In NaCl solutions at fixed pH values, the adsorption of HA and FA increased with increasing ionic strength. The presence of Ca 2+ enhanced the adsorption of HA but had little effect on FA. For identical solution conditions, the amount (by mass) of HA adsorbed to alumina was always greater than FA. Adsorption densities for both HA and FA showed good agreement with the Langmuir equation, and interpretations of adsorption processes were made from the model parameters. For FA, ligand exchange appears to be the dominant adsorption reaction for the conditions studied here. Ligand exchange is also a major adsorption reaction for HA; however, other reactions contribute to adsorption for some solution compositions. At high pH, cation and water bridging become increasingly important for HA adsorption with increasing amounts of Na + and Ca 2+, respectively. At low to neutral pH values, increases in these same two cations make hydrophobic bonding more effective. Calculations of HS carboxyl group densities in the adsorbed layer support the proposed adsorption reactions. From the adsorption data it appears that fewer than 3.3 HS-COO - groups per nm 2 can be bound directly as inner-sphere complexes by the alumina surface. We propose that the influence of aqueous chemistry on HS adsorption reactions, and therefore on the types of HS surface complexes formed, affects the formation and nature of organic coatings on mineral surfaces.

  16. Single-particle states in ^112Cd probed with the ^111Cd(d,p) reaction

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Jamieson, D.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G. C.; Hertenberger, R.; Wirth, H.-F.; Kr"Ucken, R.; Faestermann, T.

    2009-10-01

    As part of a program of detailed spectroscopy of the Cd isotopes, the single-particle neutron states in ^112Cd have been probed with the ^111Cd(d,p) reaction. Beams of polarized 22 MeV deuterons, obtained from the LMU/TUM Tandem Accelerator, bombarded a target of ^111Cd. The protons from the reaction, corresponding to excitation energies up to 3 MeV in ^112Cd, were momentum analyzed with the Q3D spectrograph. Cross sections and analyzing powers were fit to results of DWBA calculations, and spectroscopic factors were determined. The results from the experiment, and implications for the structure of ^112Cd, will be presented.

  17. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  18. Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.

    PubMed

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin

    2017-02-08

    We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.

  19. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice.

    PubMed

    Tan, Yi; Zhang, Ling; Man, Ka Ho; Peltier, Raoul; Chen, Ganchao; Zhang, Huatang; Zhou, Liyi; Wang, Feng; Ho, Derek; Yao, Shao Q; Hu, Yi; Sun, Hongyan

    2017-03-01

    Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.

  20. Adsorption kinetics of SO2 on powder activated carbon

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Qilong; Ma, Chunyuan

    2018-02-01

    The flue gas SO2 adsorption removal by powder activated carbon is investigated based on a fixed bed reactor. The effect of SO2 inlet concentration on SO2 adsorption is investigated and the adsorption kinetics is analyzed. The results indicated that the initial SO2 adsorption rate and the amount of SO2 adsorbed have increased with increased in SO2 inlet concentration. Gas diffusion, surface adsorption and catalytic oxidation reaction are involved in SO2 adsorption on powder activated carbon, which play a different role in different stage. The Bangham kinetics model can be used to predict the kinetics of SO2 adsorption on powder activated carbon.

  1. ¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction.

    PubMed

    Bruemmer, Kevin J; Merrikhihaghi, Sara; Lollar, Christina T; Morris, Siti Nur Sarah; Bauer, Johannes H; Lippert, Alexander R

    2014-10-21

    We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO(-)) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO(-) using (19)F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO(-) formation in living lung epithelial cells stimulated with interferon-γ (IFN-γ).

  2. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    PubMed

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  3. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes.

    PubMed

    Ano, Taishi; Kishimoto, Fuminao; Sasaki, Ryo; Tsubaki, Shuntaro; Maitani, Masato M; Suzuki, Eiichi; Wada, Yuji

    2016-05-11

    We demonstrate two novel methods for the measurement of the temperatures of reaction spaces locally heated by microwaves, which have been applied here to two example systems, i.e., BaTiO3 particles covered with a SiO2 shell (BaTiO3-SiO2) and layered tungstate particles. Photoluminescent (PL) probes showing the temperature-sensitivity in their PL lifetimes are located in the nanospaces of the above systems. In the case of BaTiO3-SiO2 core-shell particles, rhodamine B is loaded into the mesopores of the SiO2 shell covering the BaTiO3 core, which generates the heat through the dielectric loss of microwaves. The inner nanospace temperature of the SiO2 shell is determined to be 28 °C higher than the bulk temperature under microwave irradiation at 24 W. On the other hand, Eu(3+) is immobilized in the interlayer space of layered tungstate as the PL probe, showing that the nanospace temperature of the interlayer is only 4 °C higher than the bulk temperature. This method for temperature-measurement is powerful for controlling microwave heating and elucidates the ambiguous mechanisms of microwave special effects often observed in chemical reactions, contributing greatly to the practical application of microwaves in chemistry and materials sciences.

  4. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  5. Modeling of Cd adsorption to goethite-bacteria composites

    DOE PAGES

    Qu, Chenchen; Ma, Mingkai; Chen, Wenli; ...

    2017-11-21

    The accurate modeling of heavy metal adsorption in complex systems is fundamental for risk assessments in soils and associated environments. Bacteria-iron (hydr)oxide associations in soils and sediments play a critical role in heavy metal immobilization. The reduced adsorption of heavy metals on these composites have been widely reported using the component additivity (CA) method. However, there is a lack of a mechanism model to account for these deviations. In this study, we established models for Cd adsorption on goethite-Pseudomonas putida composites at 1:1 and 5:1 mass ratios. Cadmium adsorption on the 5:1 composite was consistent with the additivity method. But,more » the CA method over predicted Cd adsorption by approximately 8% on the 1:1 composite at high Cd concentration. The deviation was corrected by adding the site blockage reactions between P. putida and goethite. Both CA and “CA-site masking” models for Cd adsorption onto the composites were in line with the ITC data. These results indicate that CA method in simulating Cd adsorption on bacteria-iron oxides composites is limited to low bacterial and Cd concentrations. Thus the interfacial complexation reactions that occur between iron (hydr)oxides and bacteria should be taken into account when high concentrations of bacteria and heavy metals are present.« less

  6. Modeling of Cd adsorption to goethite-bacteria composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Chenchen; Ma, Mingkai; Chen, Wenli

    The accurate modeling of heavy metal adsorption in complex systems is fundamental for risk assessments in soils and associated environments. Bacteria-iron (hydr)oxide associations in soils and sediments play a critical role in heavy metal immobilization. The reduced adsorption of heavy metals on these composites have been widely reported using the component additivity (CA) method. However, there is a lack of a mechanism model to account for these deviations. In this study, we established models for Cd adsorption on goethite-Pseudomonas putida composites at 1:1 and 5:1 mass ratios. Cadmium adsorption on the 5:1 composite was consistent with the additivity method. But,more » the CA method over predicted Cd adsorption by approximately 8% on the 1:1 composite at high Cd concentration. The deviation was corrected by adding the site blockage reactions between P. putida and goethite. Both CA and “CA-site masking” models for Cd adsorption onto the composites were in line with the ITC data. These results indicate that CA method in simulating Cd adsorption on bacteria-iron oxides composites is limited to low bacterial and Cd concentrations. Thus the interfacial complexation reactions that occur between iron (hydr)oxides and bacteria should be taken into account when high concentrations of bacteria and heavy metals are present.« less

  7. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration

    USDA-ARS?s Scientific Manuscript database

    The nature and kinetics of reactions in dry seeds determines how long they survive. We used gas chromatography to assay volatile organic compounds (VOC) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry and humid (15, 33 and 75% RH...

  8. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  9. Photochemical primary process of photo-Fries rearrangement reaction of 1-naphthyl acetate as studied by MFE probe.

    PubMed

    Gohdo, Masao; Takamasu, Tadashi; Wakasa, Masanobu

    2011-01-14

    Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.

  10. All-oxide Raman-active traps for light and matter: probing redox homeostasis model reactions in aqueous environment.

    PubMed

    Alessandri, Ivano; Depero, L E

    2014-04-09

    Core-shell colloidal crystals can act as very efficient traps for light and analytes. Here it is shown that Raman-active probes can be achieved using SiO2-TiO2 core-shell beads. These systems are successfully tested in monitoring of glutathione redox cycle at physiological concentration in aqueous environment, without need of any interfering enhancers. These materials represent a promising alternative to conventional, metal-based SERS probes for investigating chemical and biochemical reactions under real working conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  12. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  13. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    PubMed Central

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (ΔH0, ΔS0, and ΔG0) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment. PMID:22269298

  14. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    ERIC Educational Resources Information Center

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  15. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  16. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling

    DOE PAGES

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    2016-08-03

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag 0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag 0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodinemore » adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag 0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016« less

  17. Tailoring oxide properties: An impact on adsorption characteristics of molecules and metals

    NASA Astrophysics Data System (ADS)

    Honkala, Karoliina

    2014-12-01

    Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster's theoretically predicted ability to activate and dissociate O2 at the Au-MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide

  18. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  19. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI

  20. Effect of Temperature to Adsorption Capacity and Coefficient Distribution on Rare Earth Elements Adsorption (Y, Gd, Dy) Using SIR

    NASA Astrophysics Data System (ADS)

    Aziz, N.; Mindaryani, A.; Supranto; Taftazani, A.; Biyantoro, D.

    2018-04-01

    The use of REE like element of Yttrium (Y) as a superconducting material requires a purity of more than 90%, so it needs to increase the purity of Y from the settling process. The purpose of this research is to study the separation process of REE that is Y, Gd, Dy elements from REE hydroxide (REE(OH)3) using SIR method are consisting of Amberlite XAD-16 resin impregnated with Di-(2-ethylhexyl) phosphate ( D2EHPA) and Tributyl Phosphate (TBP) and determine the isotherm model on REE adsorption and determine the kinetic model of pseudo adsorption reaction. This research was started by activating XAD-16 resin and is mixed with TBP-D2EHPA solvents so it will form SIR, then it is conducted on variation of SIR composition, temperature variation of adsorption process, determination of equilibrium equation and kinetic sorption occurring in SIR adsorption based on experimental data of liquid concentration as function of time. Based on the calculation result, the most effective SIR composition for REE separation is 0.75 g, the equilibrium equation for Y, Gd and Dy follows the Henry equilibrium model and the pseudo kinetic model of the reaction order Y, Gd, and Dy is followed by the pseudo reaction of order 2 The result of separation of LTJ with SIR is said to be effective from another method because purity is obtained that is 96.73% and qualify as a super conductor material.

  1. Time scale of random sequential adsorption.

    PubMed

    Erban, Radek; Chapman, S Jonathan

    2007-04-01

    A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) The kinetics of the chemical reaction between adsorbing molecules and the surface and (ii) geometrical constraints on the surface made by molecules which are already adsorbed. The process (i) is modeled in a diffusion-driven context, i.e., the conditional probability of adsorbing a molecule provided that the molecule hits the surface is related to the macroscopic surface reaction rate. The geometrical constraint (ii) is modeled using random sequential adsorption (RSA), which is the sequential addition of molecules at random positions on a surface; one attempt to attach a molecule is made per one RSA simulation time step. By coupling RSA with the diffusion of molecules in the solution above the surface the RSA simulation time step is related to the real physical time. The method is illustrated on a model of chemisorption of reactive polymers to a virus surface.

  2. Modulation of the Foreign Body Reaction for Implants in the Subcutaneous Space: Microdialysis Probes as Localized Drug Delivery/Sampling Devices

    PubMed Central

    Mou, Xiaodun; Lennartz, Michelle R; Loegering, Daniel J; Stenken, Julie A

    2011-01-01

    Modulation of the foreign body reaction is considered to be an important step toward creation of implanted sensors with reliable long-term performance. In this work, microdialysis probes were implanted into the subcutaneous space of Sprague-Dawley rats. The probe performance was evaluated by comparing collected endogenous glucose concentrations with internal standard calibration (2-deoxyglucose, antipyrine, and vitamin B12). Probes were tested until failure, which for this work was defined as loss of fluid flow. In order to determine the effect of fibrous capsule formation on probe function, monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) was delivered locally via the probe to increase capsule thickness and dexamethasone 21-phosphate was delivered to reduce capsule thickness. Probes delivering MCP-1 had a capsule that was twice the thickness (500–600 μm) of control probes (200–225 μm) and typically failed 2 days earlier than control probes. Probes delivering dexamethasone 21-phosphate had more fragile capsules and the probes typically failed 2 days later than controls. Unexpectedly, extraction efficiency and collected glucose concentrations exhibited minor differences between groups. This is an interesting result in that the foreign body capsule formation was related to the duration of probe function but did not consistently relate to probe calibration. PMID:21722577

  3. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE PAGES

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.; ...

    2017-03-17

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  4. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  5. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  6. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  7. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    NASA Astrophysics Data System (ADS)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  8. Organic and inorganic molecules as probes of mineral surfaces (Invited)

    NASA Astrophysics Data System (ADS)

    Sverjensky, D. A.

    2010-12-01

    Although the multi-site nature of mineral surfaces is to be expected based on the underlying crystal structure, definitive evidence of the need to use more than one site in modelling proton surface charge or adsorption of a single adsorbate at the mineral-water interface is lacking. Instead, a single-site approach affords a practical way of averaging over all possible crystal planes and sites in a powdered mineral sample. Extensive analysis of published proton surface charge and adsorption of metals on oxide mineral surfaces can be undertaken with a single site density for each mineral based on tritium exchange or estimation from averages of the site densities of likely exposed surfaces. Even in systems with competing metals (e.g. Cu and Pb on hematite), the same site density as used for proton surface charge can be employed depending on the reaction stoichiometry. All of this indicates that protons and metals can bind to a great variety of sites with the same overall site density. However, simple oxyanions such as carbonate, sulfate, selenate, arsenate and arsenite require a much lower site density for a given mineral. For example, on goethite these oxyanions utilize a site density that correlates with the BET surface area of the goethite. In this way, the oxyanions can be thought of as selectively probing the available sites on the mineral. The correlation probably arises because goethites with different BET surface areas have different proportions of singly and multiply-bonded oxygens, and only the singly-bonded oxygens are useful for inner-sphere surface complexation by the ligand exchange mechanism. Small organic molecules behave in a remarkably similar way. For example, adsorption of oxalate on goethite, and aspartate, glutamate, dihydroxyphenylalanine, lysine and arginine on rutile are all consistent with a much smaller site density than those required for metals such as calcium or neodymium. Overall, these results suggest that both inorganic oxyanions and

  9. Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.

    In the low energy structures of the (TiO 2) n(H 2O) m (n ≤ 4, m ≤ 2n) and (TiO 2) 8(H 2O) m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO 2 clusters. Dissociative adsorption is the dominant reaction for the first two H 2O adsorption reactions for n = 1, 2, and 4, for the first three H 2O adsorption reactions for n = 3, and for the first four Hmore » 2O adsorption reactions for n = 8. As more H 2O’s are added to the hydrated (TiO 2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO 2 clusters: a Lewis acid–base Ti–O(H 2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H 2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H 2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH) 4 to form the monocyclic ring cluster (TiO 3H 2) n + nH 2O. E D is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO 2) n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad 2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption

  10. Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4

    DOE PAGES

    Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.

    2015-10-20

    In the low energy structures of the (TiO 2) n(H 2O) m (n ≤ 4, m ≤ 2n) and (TiO 2) 8(H 2O) m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO 2 clusters. Dissociative adsorption is the dominant reaction for the first two H 2O adsorption reactions for n = 1, 2, and 4, for the first three H 2O adsorption reactions for n = 3, and for the first four Hmore » 2O adsorption reactions for n = 8. As more H 2O’s are added to the hydrated (TiO 2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO 2 clusters: a Lewis acid–base Ti–O(H 2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H 2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H 2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH) 4 to form the monocyclic ring cluster (TiO 3H 2) n + nH 2O. E D is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO 2) n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad 2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption

  11. Embedding of polyaniline molecules on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique

    NASA Astrophysics Data System (ADS)

    Pamatmat, J. K.; Gillado, A. V.; Herrera, M. U.

    2017-05-01

    Polyaniline molecules are embedded on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique. The infrared spectrum shows the existence of molecular vibrational modes associated with the presence of polyaniline molecules on the sample. With the addition of polyaniline molecules, the conductivity of adhesive tape increases. Surface conductivity increases with number of dipping cycle until it reaches a certain value. Beyond this value, surface conductivity begins to decrease. The surface conductivity of the sample is associated with the connectivity of the embedded polyaniline molecules. The connectivity increases as the number of dipping cycle progresses. Meanwhile, the decrease in surface conductivity is attributed to the eroding of existing embedded structure at higher number of dipping cycle.

  12. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    NASA Astrophysics Data System (ADS)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  13. Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering).

    PubMed

    Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young; Lee, Jae Hyuk; Hong, Kiryong; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Kim, Tae Kyu; Ihee, Hyotcherl

    2016-03-07

    Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.

  14. NH3 adsorption on anatase-TiO2(101)

    NASA Astrophysics Data System (ADS)

    Koust, Stig; Adamsen, Kræn C.; Kolsbjerg, Esben Leonhard; Li, Zheshen; Hammer, Bjørk; Wendt, Stefan; Lauritsen, Jeppe V.

    2018-03-01

    The adsorption of ammonia on anatase TiO2 is of fundamental importance for several catalytic applications of TiO2 and for probing acid-base interactions. Utilizing high-resolution scanning tunneling microscopy (STM), synchrotron X-ray photoelectron spectroscopy, temperature-programmed desorption (TPD), and density functional theory (DFT), we identify the adsorption mode and quantify the adsorption strength on the anatase TiO2(101) surface. It was found that ammonia adsorbs non-dissociatively as NH3 on regular five-fold coordinated titanium surface sites (5f-Ti) with an estimated exothermic adsorption energy of 1.2 eV for an isolated ammonia molecule. For higher adsorbate coverages, the adsorption energy progressively shifts to smaller values, due to repulsive intermolecular interactions. The repulsive adsorbate-adsorbate interactions are quantified using DFT and autocorrelation analysis of STM images, which both showed a repulsive energy of ˜50 meV for nearest neighbor sites and a lowering in binding energy for an ammonia molecule in a full monolayer of 0.28 eV, which is in agreement with TPD spectra.

  15. [Development of a Fluorescence Probe for Live Cell Imaging].

    PubMed

    Shibata, Aya

    2017-01-01

    Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  16. Recent Progress in Fluorescent Imaging Probes

    PubMed Central

    Pak, Yen Leng; Swamy, K. M. K.; Yoon, Juyoung

    2015-01-01

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn2+, Hg2+, Cu2+ and Au3+, and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684

  17. Recent Progress in Fluorescent Imaging Probes.

    PubMed

    Pak, Yen Leng; Swamy, K M K; Yoon, Juyoung

    2015-09-22

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn(2+), Hg(2+), Cu(2+) and Au(3+), and anions including cyanide and adenosine triphosphate (ATP).

  18. Adsorption of water, sulfates and chloride on arsenopyrite surface

    NASA Astrophysics Data System (ADS)

    Silva, Juliana C. M.; dos Santos, Egon C.; de Oliveira, Aline; Heine, Thomas; De Abreu, Heitor A.; Duarte, Hélio A.

    2018-03-01

    Arsenopyrite is one of the sulfide minerals responsible for acid rock drainage (ARD) and is one of the most hazardous in regions affected by mining activities. This phenomenon involves complex reaction mechanism. Although it is intensely investigated, there is a lack of consensus concerning the reaction mechanisms and more information is still necessary. In this work, the adsorption of water, hydrochloric acid, and sulfuric acid on arsenopyrite (001) surface was investigated by means of Density Functional calculations and the results compared to other sulfides aiming to understand the mineral/water interface. The interaction of the chemical species with the (001) FeAsS surface is the first step to understand the intricate oxidation mechanism of arsenopyrite. Molecular water adsorption on (001) FeAsS is more favored than the adsorption of sulfate favoring the dissolution of sulfates and enhancing its oxidation. The estimated adsorption energies of water, sulfates and chloride on other sulfide minerals are compared with the estimated values for arsenopyrite and the chemical reactivity differences discussed in detail.

  19. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    NASA Astrophysics Data System (ADS)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  20. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111).

    PubMed

    Jhang, Jin-Hao; Schaefer, Andreas; Zielasek, Volkmar; Weaver, Jason F; Bäumer, Marcus

    2015-09-17

    We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmO x ) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED). Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmO x films, eventually leading to the desorption of CO and H₂ which desorbs at temperatures in the range 400-600 K. Small quantities of CO₂ are also detected mainly on as-prepared Sm₂O₃ thin films, but the production of CO₂ is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111) substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmO x structures influence the chemical behavior. Over repeated TPD experiments, a SmO x structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmO x films or as OH groups on the SmO x surfaces.

  1. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111)

    PubMed Central

    Jhang, Jin-Hao; Schaefer, Andreas; Zielasek, Volkmar; Weaver, Jason F.; Bäumer, Marcus

    2015-01-01

    We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmOx) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED). Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmOx films, eventually leading to the desorption of CO and H2 which desorbs at temperatures in the range 400–600 K. Small quantities of CO2 are also detected mainly on as-prepared Sm2O3 thin films, but the production of CO2 is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111) substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmOx structures influence the chemical behavior. Over repeated TPD experiments, a SmOx structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmOx films or as OH groups on the SmOx surfaces. PMID:28793562

  2. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  3. Application of surface complexation models to anion adsorption by natural materials

    USDA-ARS?s Scientific Manuscript database

    Various chemical models of ion adsorption will be presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model w...

  4. Kinetics of polyelectrolyte adsorption

    NASA Astrophysics Data System (ADS)

    Cohen Stuart, M. A.; Hoogendam, C. W.; de Keizer, A.

    1997-09-01

    The kinetics of polyelectrolyte adsorption has been investigated theoretically. In analogy with Kramers' rate theory for chemical reactions we present a model which is based on the assumption that a polyelectrolyte encounters a barrier in its motion towards an adsorbing surface. The height of the barrier, which is of electrostatic origin, is calculated with a self-consistent-field (SCF) model. The salt concentration strongly affects the height of the barrier. At moderate salt concentrations (0953-8984/9/37/009/img1) equilibrium in the adsorption is attained; at low salt concentration (0953-8984/9/37/009/img2) equilibrium is not reached on the time scale of experiments. The attachment process shows resemblances to the classical DLVO theory.

  5. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  6. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  7. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE PAGES

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.; ...

    2016-12-30

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  8. Study of rare encounters in a membrane using quenching of cascade reaction between triplet and photochrome probes with nitroxide radicals.

    PubMed

    Medvedeva, Nataly; Papper, Vladislav; Likhtenshtein, Gertz I

    2005-09-21

    Measurements of active encounters between molecules in native membranes containing ingredients, including proteins, are of prime importance. To estimate rare encounters in a high range of rate constants (rate coefficients) and distances between interacting molecules in membranes, a cascade of photochemical reactions for molecules diffusing in multilamellar liposomes was investigated. The sensitised cascade triplet cis-trans photoisomerisation of the excited stilbene involves the use of a triplet sensitiser (Erythrosin B), a photochrome stilbene-derivative probe (4-dimethylamino-4'-aminostilbene) exhibiting the phenomenon of trans-cis photoisomerisation, and nitroxide radicals (5-doxyl stearic acid) to quench the excited triplet state of the sensitiser. Measurement of the phosphorescence lifetime of Erythrosin B and the fluorescence enhancement of the stilbene-derivative photochrome probe, at various concentrations of the nitroxide probe, made it possible to calculate the quenching rate constant k(q)= 1.1 x 10(15) cm2 M(-1) s(-1) and the rate constant of the triplet-triplet energy transfer between the sensitiser and stilbene probe k(T)= 1.0 x 10(12) cm2 M(-1) s(-1). These values, together with the data on diffusion rate constant, obtained by methods utilising various theoretical characteristic times of about seven orders of magnitude and the experimental rate constants of about five orders of magnitude, were found to be in good agreement with the advanced theory of diffusion-controlled reactions in two dimensions. Because the characteristic time of the proposed cascade method is relatively large (0.1 s), it is possible to follow rare collisions between molecules and free radicals in model and biological membranes with a very sensitive fluorescence spectroscopy technique, using a relatively low concentration of probes.

  9. Interfacial adsorption in two-dimensional pure and random-bond Potts models.

    PubMed

    Fytas, Nikolaos G; Theodorakis, Panagiotis E; Malakis, Anastasios

    2017-03-01

    We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined signal-to-noise ratios.

  10. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.

    PubMed

    Wang, Jun; Chen, Zaiming; Chen, Baoliang

    2014-05-06

    The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.

  11. Ultraselective electrochemiluminescence biosensor based on locked nucleic acid modified toehold-mediated strand displacement reaction and junction-probe.

    PubMed

    Zhang, Xi; Zhang, Jing; Wu, Dongzhi; Liu, Zhijing; Cai, Shuxian; Chen, Mei; Zhao, Yanping; Li, Chunyan; Yang, Huanghao; Chen, Jinghua

    2014-12-07

    Locked nucleic acid (LNA) is applied in toehold-mediated strand displacement reaction (TMSDR) to develop a junction-probe electrochemiluminescence (ECL) biosensor for single-nucleotide polymorphism (SNP) detection in the BRCA1 gene related to breast cancer. More than 65-fold signal difference can be observed with perfectly matched target sequence to single-base mismatched sequence under the same conditions, indicating good selectivity of the ECL biosensor.

  12. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  13. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments.

    PubMed

    Xue, J; Feng, Y

    2018-06-01

    Free DNA and its adsorption by sediment in the aquatic environment lead to ambiguity in the identification of recent faecal pollution sources. The goal of this study was to understand the mechanisms of DNA adsorption and desorption on aquatic sediment under various conditions using quantitative polymerase chain reaction (qPCR). Both raw sewage (RS) DNA and purified PCR product (PPP) were used in adsorption and desorption experiments; autoclaved freshwater and marine sediments served as sorbents. Thirty-six hours were needed for adsorption to reach equilibrium. More DNA was adsorbed on both sediments in stream water than in 5 mmol l -1 NaCl and DNA adsorption increased in the presence of Ca 2+ and Mg 2+ . Successive desorption experiments showed that between 5% and 22% of adsorbed DNA was desorbed. Organic matter and clay played a significant role in determining the DNA adsorption capacity on sediment. The data suggest the presence of multilayer adsorption. DNA molecules on sediments were mostly adsorbed through ligand binding rather than electrostatic binding. Quantitative polymerase chain reaction assays provide a better way to investigate the DNA adsorption and desorption mechanisms by sediment. DNA desorption can potentially complicate the outcomes of microbial source tracking studies. © 2018 The Society for Applied Microbiology.

  14. Fluorescent probes for tracking the transfer of iron–sulfur cluster and other metal cofactors in biosynthetic reaction pathways

    DOE PAGES

    Vranish, James N.; Russell, William K.; Yu, Lusa E.; ...

    2014-12-05

    Iron–sulfur (Fe–S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe–S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe–S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe–2S] and [4Fe–4S] clusters), ligand environments ([2Fe–2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe–S clustermore » transfer reactions are monitored between two Fdx molecules that have identical Fe–S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe–2S]–DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe–S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe–S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. Lastly, we anticipate that this cluster detection methodology will transform the study of Fe–S cluster pathways and potentially other metal cofactor biosynthetic pathways.« less

  15. Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: poly-L-lysine on polystyrene sulfate microspheres.

    PubMed

    Eckenrode, Heather M; Dai, Hai-Lung

    2004-10-12

    A nonlinear optical technique--second harmonic generation (SHG)--has been applied to characterize the adsorption of poly-L-lysine on micrometer size polystyrene particles, whose surface is covered with negatively charged sulfonate groups, in aqueous solutions. Adsorption behavior of the biopolymer with two chain lengths (14 and 75 amino acid units; PL14 and PL75) has been examined. Centrifugation experiments were also performed to support the adsorption measurements made using SHG. The adsorption free energies of the two polymers PL75 and PL14 are determined as -16.57 and -14.40 kcal/mol, respectively. The small difference in the adsorption free energies of the two chain lengths, however, leads to dramatic difference in the concentration needed for saturated surface coverage: nearly 50 times higher concentration is needed for the smaller polymer. Under acidic colloidal conditions, polylysine is found to adsorb in a relatively flat conformation on the surface. The surface area that each polylysine molecule occupies is nearly 1 order of magnitude larger than the size of the molecule in its extended form. The low adsorption density is likely a result from Coulombic repulsion between the positive charges on the amino acid units of PL. The measurements demonstrate the utility of SHG as an efficient and sensitive experimental approach for measuring adsorption characteristics of bio/macromolecules on colloidal particles and define surface and colloidal conditions for achieving maximum surface coverage of a widely used biopolymer. Copyright 2004 American Chemical Society

  16. Impact of organic solvents on cytochrome P450 probe reactions: filling the gap with (S)-Warfarin and midazolam hydroxylation.

    PubMed

    González-Pérez, Vanessa; Connolly, Elizabeth A; Bridges, Arlene S; Wienkers, Larry C; Paine, Mary F

    2012-11-01

    (S)-Warfarin 7-hydroxylation and midazolam 1'-hydroxylation are among the preferred probe substrate reactions for CYP2C9 and CYP3A4/5, respectively. The impact of solvents on enzyme activity, kinetic parameters, and predicted in vivo hepatic clearance (Cl(H)) associated with each reaction has not been evaluated. The effects of increasing concentrations [0.1-2% (v/v)] of six organic solvents (acetonitrile, methanol, ethanol, dimethyl sulfoxide, acetone, isopropanol) were first tested on each reaction using human liver microsomes (HLMs), human intestinal microsomes (midazolam 1'-hydroxylation only), and recombinant enzymes. Across enzyme sources, relative to water, acetonitrile and methanol had the least inhibitory effect on (S)-warfarin 7-hydroxylation (0-58 and 9-96%, respectively); acetonitrile, methanol, and ethanol had the least inhibitory effect on midazolam 1'-hydroxylation (0-29, 0-22, and 0-20%, respectively). Using HLMs, both acetonitrile and methanol (0.1-2%) decreased the V(max) (32-60 and 24-65%, respectively) whereas methanol (2%) increased the K(m) (100%) of (S)-warfarin-hydroxylation. (S)-Warfarin Cl(H) was underpredicted by 21-65% (acetonitrile) and 13-84% (methanol). Acetonitrile, methanol, and ethanol had minimal to modest impact on both the kinetics of midazolam 1'-hydroxylation (10-24%) and predicted midazolam Cl(H) (2-20%). In conclusion, either acetonitrile or methanol at ≤0.1% is recommended as the primary organic solvent for the (S)-warfarin 7-hydroxylation reaction; acetonitrile is preferred if higher solvent concentrations are required. Acetonitrile, methanol, and ethanol at ≤2% are recommended as primary organic solvents for the midazolam 1'-hydroxylation reaction. This information should facilitate optimization of experimental conditions and improve the interpretation and accuracy of in vitro-in vivo predictions involving these two preferred cytochrome P450 probe substrate reactions.

  17. Problems affecting the fidelity of pressure measuring instruments for planetary probes

    NASA Technical Reports Server (NTRS)

    Hudson, J. B.

    1972-01-01

    Determination is made of the nature and magnitude of surface-related effects that cause errors in pressure measuring instruments, with special reference being made to instruments intended for use in planetary probes. The interaction of gases with clean surfaces of metals likely to be used as gage construction materials was studied. Special emphasis was placed on the adsorption, chemical reaction, and electron-induced desorption processes. The results indicated that all metals tested were subject to surface processes which would degrade gage fidelity. It was also found, however, that the formation of inert adsorbed layers on these metal surfaces, such as carbon on platinum, greatly reduced or eliminated these effects. This process, combined with a system design which avoids contact between reactive gases and hot filaments, appears to offer the most promising solution to the gage fidelity problem.

  18. Kinetics and mechanism of dye adsorption on WO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Adhikari, Sangeeta; Mandal, Sandip; Sarkar, Debasish; Kim, Do-Heyoung; Madras, Giridhar

    2017-10-01

    Monoclinic WO3 nanoparticles were synthesized by a simple acid catalyzed co-precipitation reaction. Spherical particles with average size ∼55 nm were confirmed from electron microscopy followed by functional, structural and optical characterizations. The adsorption of methylene blue was examined by using WO3 nanoparticles and the capacity was higher than most of the reported studies. The effect of pH and material loading on adsorption was determined. The mechanism of adsorption was examined by XPS and a detailed explanation of surface phenomena was proposed. Regeneration study was carried and a high stability of heat treated WO3 towards adsorption of methylene blue was observed.

  19. Time-resolved chromatographic analysis and mechanisms in adsorption and catalysis.

    PubMed

    Roubani-Kalantzopoulou, Fani

    2009-03-06

    The main object of this review is the study of fundamentals of adsorption and heterogeneous catalysis, a benefit for the understanding of adsorptive and catalytic properties. This work aims to define and record, with the utmost accuracy, the phenomena and the possible reactions. A new methodology for the study of the adsorption is presented, which is a version of the well-known inverse gas chromatography. This reversed-flow inverse gas chromatography (RF-IGC) is technically very simple, and it is combined with a mathematical analysis that gives the possibility for the estimation of various physicochemical parameters related to adsorbent or catalyst characterization, under conditions compatible with the operation of real adsorbents and catalysts. On this base, this methodology has been successfully applied to the study of the impact of air pollutants, volatile organic and/or inorganic, on many solids such as marbles, ceramics, oxide-pigments of works of art, building materials, authentic statues of the Greek Archaeological Museums. Moreover, this methodology proved to be a powerful tool for studying the topography of active sites of heterogeneous surfaces in the nano-scale domain. Thus, some very important local quantities for the surface chemistry have been determined experimentally for many solids including thin films. These physicochemical local quantities (among which adsorption energy and entropy, surface diffusion coefficient, probability density function) have been determined from the experimental pairs of height of extra chromatographic peaks and time by a nonlinear least-squares method, through personal computer programs written in GW BASIC and lately in FORTRAN. Through the time-resolved analysis the surface characterization of the examined materials took place. In addition, the kinetic constants responsible for adsorption/desorption and surface chemical reactions have also been calculated. Thus, important answers have been provided to the following

  20. Probing adsorption of polyacrylamide-based polymers on anisotropic Basal planes of kaolinite using quartz crystal microbalance.

    PubMed

    Alagha, Lana; Wang, Shengqun; Yan, Lujie; Xu, Zhenghe; Masliyah, Jacob

    2013-03-26

    Quartz crystal microbalance with dissipation (QCM-D) was applied to investigate the adsorption characteristics of polyacrylamide-based polymers (PAMs) on anisotropic basal planes of kaolinite. Kaolinite basal planes were differentiated by depositing kaolinite nanoparticles (KNPs) on silica and alumina sensors in solutions of controlled pH values. Adsorption of an in-house synthesized organic-inorganic Al(OH)3-PAM (Al-PAM) as an example of cationic hybrid PAM and a commercially available partially hydrolyzed polyacrylamide (MF1011) as an example of anionic PAM was studied. Cationic Al-PAM was found to adsorb irreversibly and preferentially on tetrahedral silica basal planes of kaolinite. In contrast, anionic MF1011 adsorbed strongly on aluminum-hydroxy basal planes, while its adsorption on tetrahedral silica basal planes was weak and reversible. Adsorption study revealed that both electrostatic attraction and hydrogen-bonding mechanisms contribute to adsorption of PAMs on kaolinite. The adsorbed Al-PAM layer was able to release trapped water overtime and became more compact, while MF1011 film became more dissipative as backbones stretched out from kaolinite surface with minimal overlapping. Experimental results obtained from this study provide clear insights into the phenomenon that governs flocculation-based solid-liquid separation processes using multicomponent flocculants of anionic and cationic nature.

  1. Dissociative adsorption of a multifunctional compound on a semiconductor surface: a theoretical study of the adsorption of hydroxylamine on Ge(100).

    PubMed

    Park, Hyunkyung; Kim, Do Hwan

    2018-06-06

    The adsorption behavior of hydroxylamine on a Ge(100) surface was investigated using density functional theory (DFT) calculations. These calculations predicted that hydroxylamine, a multifunctional compound consisting of a hydroxyl group and an amine group, would initially become adsorbed through N-dative bonding, or alternatively through the hydroxyl group via O-H dissociative adsorption. An N-O dissociative reaction may also occur, mainly via N-dative molecular adsorption, and the N-O dissociative product was calculated to be the most stable of all the possible adsorption structures. The calculations furthermore indicated the formation of the N-O dissociative product from the N-dative structure to be nearly barrierless and the dissociated hydroxyl and amine groups to be bonded to two Ge atoms of adjacent Ge dimers. Simulated STM images suggested the change in electron density that would occur upon adsorption of hydroxylamine in various adsorption configurations, and specifically indicated the N-O dissociative product to have greater electron density around the amine groups, and the hydroxyl groups to mainly contribute electron density to the unoccupied electronic states.

  2. Role of organic matter on boron adsorption-desorption hysteresis of soils

    USDA-ARS?s Scientific Manuscript database

    In this study we evaluated the boron (B) adsorption/desorption reaction in six soils and examined the extent to which organic matter content, as well as incubation time affected B release. Six soils varying in initial pH, clay content, and were selected for the study. Adsorption experiments were c...

  3. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    PubMed

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  4. Facile Preparation of Magnetic Graphene Oxide and Attapulgite Composite Adsorbent for the Adsorption of Ni (II)

    NASA Astrophysics Data System (ADS)

    Bigui, Wei; Xiaofei, Zhu; Xiabing, Cheng

    2017-12-01

    Graphene oxide (GO) is an excellent absorbent for heavy ion from wastewater, but it is hard to separate from water. To improve the adsorption capacity and separation performance of GO to nickel-containing wastewater, a composite magnetic GO-ATP adsorbent (MGA) was prepared by magnetizing GO and attapulgite (ATP) using ferroferric oxide and then carrying out hydrothermal reaction. The adsorption capacity and mechanism of MGA were investigated based on Ni2+ as targeted pollutant. Experimental results showed that the pH value significantly affects the removal rate of Ni2+, which is mainly due to that OH- in wastewater reacts with Ni2+, resulting in sediment that leads to the increase of removal rate. MGA can achieve max adsorption capacity of Ni2+ to 190.8 mg/g at pH = 5, and the adsorption process was mainly determined by chemical adsorption, which was in line with pseudo-secondary dynamics model. The adsorption was basically homogeneous monolayer adsorption with heat release, which was more agree with Langmuir adsorption isotherm equation. the adsorption process of Ni2+ by MGA. The adsorption process was a spontaneous process and an exothermic reaction. It can be confirmed that the prepared MGA adsorbent can realize slurry separation using magnetic separation principle and has high adsorption capacity to Ni2+.

  5. Application of surface complexation models to anion adsorption by natural materials.

    PubMed

    Goldberg, Sabine

    2014-10-01

    Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.

  6. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    PubMed

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-08-25

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.

  7. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5

    PubMed Central

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-01-01

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example. PMID:27585356

  8. Adsorption Property and Mechanism of Oxytetracycline onto Willow Residues

    PubMed Central

    Wang, Di; Xu, Haiyang; Yang, Shengke; Wang, Wenke; Wang, Yanhua

    2017-01-01

    To elucidate the adsorption property and the mechanism of plant residues to reduce oxytetracycline (OTC), the adsorption of OTC onto raw willow roots (WR-R), stems (WS-R), leaves (WL-R), and adsorption onto desugared willow roots (WR-D), stems (WS-D), and leaves (WL-D) were investigated. The structural characterization was analyzed by scanning electron microscopy, Fourier-transform infrared spectra, and an elemental analyzer. OTC adsorption onto the different tissues of willow residues was compared and correlated with their structures. The adsorption kinetics of OTC onto willow residues was found to follow the pseudo-first-order model. The isothermal adsorption process of OTC onto the different tissues of willow residues followed the Langmuir and Freundlich model and the process was also a spontaneous endothermic reaction, which was mainly physical adsorption. After the willow residues were desugared, the polarity decreased and the aromaticity increased, which explained why the adsorption amounts of the desugared willow residues were higher than those of the unmodified residues. These observations suggest that the raw and modified willow residues have great potential as adsorbents to remove organic pollutants. PMID:29271892

  9. Solid-phase microextraction/gas chromatography-mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles.

    PubMed

    Omanovic-Miklicanin, Enisa; Valzacchi, Sandro; Simoneau, Catherine; Gilliland, Douglas; Rossi, Francois

    2014-10-01

    A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671-675, 2010; Xia et al. ACS Nano 5(11):9074-9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic--and by extension biological--entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further

  10. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    PubMed

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90.

  11. The mirage effect to probe the adsorption of organic molecules on the surface of the mass standards

    NASA Astrophysics Data System (ADS)

    Taillade, F.; Silva, M. Z.; Lepoutre, F.; Lecollinet, M.; Pinot, P.

    2000-05-01

    Among all the basic SI units, the mass unit is the only one to be defined in terms of a material standard: a prototype called K. All the industrial countries possess their own standards which were compared to the K during the last international comparison showing that unknown evolution occurs, but the adsorption-desorption of cleaning products plays a relatively important role. A few years ago, several laboratories in the U.S.A., Germany, and France reported interesting results of photothermal measurements to detect desorption at normal temperature and pressure (NTP). This paper presents a mirage set-up built to detect the film of condensable gasses on metallic surfaces at NTP conditions. In order to quantify these measurements, an inverse method has been developed to determine the adsorption isotherm involved in the physical process of adsorption-desorption and the linked parameters such as absorbability, type of adsorption, and differential heat of adsorption. The results will be discussed to imagine possible tracks to reduce the instabilities of the standards in the future and for possible new definitions of standards built with silicon.

  12. Probing Trapped Ion Energies Via Ion-Molecule Reaction Kinetics: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    DTIC Science & Technology

    1992-05-28

    ORGANIZATION (if applicable) Office of Naval Research N00014-87- j - 1248 Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 800 N. Quincy St...RESEARCH Grant NOOO14-87- J -1248 R & T Code 4134052 TECHNICAL REPORT NO. 36 Probing Trapped Ion Energies Via Ion-Molecule Reaction Kinetics: Fourier...reactivity (for charge transfer with N2) of the higher energy J =1/2 state is approximately three times that of the J =3/2 state at collision energies

  13. Excited state dynamics can be used to probe donor-acceptor distances for H-tunneling reactions catalyzed by flavoproteins.

    PubMed

    Hardman, Samantha J O; Pudney, Christopher R; Hay, Sam; Scrutton, Nigel S

    2013-12-03

    In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging

    PubMed Central

    Chan, Jefferson; Dodani, Sheel C.; Chang, Christopher J.

    2014-01-01

    The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration. PMID:23174976

  15. Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays.

    PubMed

    Boyd, S A; Sheng, G; Teppen, B J; Johnston, C T

    2001-11-01

    To more fully understand the potential for transport of nitroaromatic compounds in soils and subsoils,the adsorption of a series of para- and meta-substituted nitrobenzenes (SNBs) by K-smectite clay was measured. Adsorption isotherms were fit to the Freundlich equation, and the resultant Freundlich adsorption coefficients (log(Kf) were positively correlated with the Hammett substituent constant (r2 = 0.80). This relationship and a positive reaction constant (p = 1.15) indicate that the adsorption reaction is favored by electron-withdrawing substituents. These results are consistent with an electron donor (smectite)-acceptor (substituted nitrobenzene) mechanism offered previously. However, quantum calculations did not reveal any systematic relationship between the Hammett constant and the electron density on the aromatic ring, which would explain a donor-acceptor relationship. Rather, electron density donated by a second substituent on nitrobenzene appears to be appropriated by the nitro group leaving ring electron density unchanged. Fourier transform infrared spectroscopy revealed shifts in the -NO2 vibrational modes of 1,3,5-trinitrobenzene (TNB) upon adsorption to K+-smectite that were consistent with the complexation of K+ by -NO2 groups. Such TNB vibrational shifts were not observed for SWy-1 saturated with more strongly hydrated cations (i.e., Na+, Mg2+, Ca2+, and Ba2+). The simultaneous interaction of multiple -NO2 groups with exchangeable K+ was indicated by molecular dynamic simulations. Adsorption of SNBs by smectite clays appears to result from the additive interactions of -NO2 groups and secondary substituents with interlayer K+ ions. Adsorption occurs to a greater or lesser extent depending on the abilities of substituents to complex additional interlayer cations and the water solubilities of SNBs. We conclude that the adsorption trends of SNBs on K-SAz-1 can be explained without recourse to hypothetical electron donor-acceptor complexes.

  16. Silica-promoted Diels-Alder reactions in carbon dioxide from gaseous to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, R.D.; Renslo, A.R.; Danheiser, R.L.

    1999-04-15

    Amorphous fumed silica (SiO{sub 2}) was shown to increase yields and selectivities of several Diels-Alder reactions in gaseous and supercritical CO{sub 2}. Pressure effects on the Diels-Alder reaction were explored using methyl vinyl ketone and penta-1,3-diene at 80 C. The selectivity of the reaction was not affected by pressure/density. As pressure was increased, the yield decreased. At the reaction temperature, adsorption isotherms at various pressures were obtained for the reactants and the Diels-Alder adduct. As expected when pressure is increased, the ratio of the amount of reactants adsorbed to the amount of reactants in the fluid phase decreases, thus causingmore » the yield to decrease. The Langmuir adsorption model fit the adsorption data. The Langmuir equilibrium partitioning constants all decreased with increasing pressure. The effect of temperature on adsorption was experimentally determined and traditional heats of adsorption were calculated. However, since supercritical CO{sub 2} is a highly compressible fluid, it is logical to examine the effect of temperature at constant density. In this case, entropies of adsorption were obtained. The thermodynamic properties that influence the real enthalpy and entropy of adsorption were derived. Methods of doping the silica and improving yields and selectivities were also explored.« less

  17. Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)

    NASA Astrophysics Data System (ADS)

    Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.

    2016-04-01

    The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.

  18. Adsorption and Dissociation of Molecular Hydrogen on the (0001) Surface of DHCP Americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik; Ray, Asok

    2009-03-01

    Hydrogen molecule adsorption on the (0001) surface of double hexagonal closed packed americium has been studied in detail within the framework of density functional theory. Weak molecular hydrogen adsorptions were observed. The most stable configuration corresponded to a Hor2 approach molecular adsorption at the one-fold top site where the molecule's approach is perpendicular to a lattice vector. Adsorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the hydrogen molecule will be discussed. Reaction barrier for the dissociation of hydrogen molecule will be presented. The implications of adsorption on Am 5f electron localization-delocalization will be summarized.

  19. Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules.

    PubMed

    Chayawan; Vikas

    2016-11-01

    This work forwards new insights into the risk-assessment of multi-walled carbon-nanotubes (MWCNTs) while analysing the role of quantum-mechanical interactions between the electrons in the adsorption of probe compounds and biomolecules by MWCNTs. For this, the quantitative models are developed using quantum-chemical descriptors and their electron-correlation contribution. The major quantum-chemical factors contributing to the adsorption are found to be mean polarizability, electron-correlation energy, and electron-correlation contribution to the absolute electronegativity and LUMO energy. The proposed models, based on only three quantum-chemical factors, are found to be even more robust and predictive than the previously known five or four factors based linear free-energy and solvation-energy relationships. The proposed models are employed to predict the adsorption of biomolecules including steroid hormones and DNA bases. The steroid hormones are predicted to be strongly adsorbed by the MWCNTs, with the order: hydrocortisone > aldosterone > progesterone > ethinyl-oestradiol > testosterone > oestradiol, whereas the DNA bases are found to be relatively less adsorbed but follow the order as: guanine > adenine > thymine > cytosine > uracil. Besides these, the developed electron-correlation based models predict several insecticides, pesticides, herbicides, fungicides, plasticizers and antimicrobial agents in cosmetics, to be strongly adsorbed by the carbon-nanotubes. The present study proposes that the instantaneous inter-electronic interactions may be quite significant in various physico-chemical processes involving MWCNTs, and can be used as a reliable predictor for their risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. SO2 Adsorption on CeO2(100) and CeO2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R.

    2016-09-13

    The adsorption and reaction of sulfur dioxide, SO2, was studied on oxidized and reduced CeOX(100) and compared to previous results on CeOX(111). SO2 adsorbs on oxidized CeO2(100) as sulfite, SO32-, at 200 K and sulfite is the only adsorbate observed on the surface at any temperature. The sulfite desorbs monotonically from 200 to 700 K. The adsorption and desorption of SO2 does not result in any change in the Ce4+ oxidation state. SO2 also adsorbs as sulfite on reduced CeO1.7(100) at 200 K. There is also a small amount of elemental sulfur, S0, formed. As the sample is heated themore » sulfite decomposes into sulfide, S2-. Roughly 25 % of the adsorbed S either desorbs or diffuses into the bulk of the reduced ceria. The decomposition, and resulting formation of S2- and O2-, re-oxidize some of the Ce3+ to Ce4+. Unlike what has been observed following the adsorption and reaction of many other molecules, the adsorption and reaction of SO2 is virtually identical on CeOX(100) and CeOX(111).« less

  1. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  2. Adsorption characteristics of (-)-epigallocatechin gallate and caffeine in the extract of waste tea on macroporous adsorption resins functionalized with chloromethyl, amino, and phenylamino groups.

    PubMed

    Liu, Yongfeng; Bai, Qingqing; Lou, Song; Di, Duolong; Li, Jintian; Guo, Mei

    2012-02-15

    According to the Friedel-Crafts and amination reaction, a series of macroporous adsorption resins (MARs) with novel structures were synthesized and identified by the Brunauer-Emmett-Teller (BET) method and Fourier transform infrared (FTIR) spectra, and corresponding adsorption behaviors for (-)-epigallocatechin gallate (EGCG) and caffeine (CAF) extracted from waste tea were systemically investigated. Based on evaluation of adsorption kinetics, the kinetic data were well fitted by pseudo-second-order kinetics. Langmuir, Freundlich, Temkin-Pyzhev, and Dubinin-Radushkevich isotherms were selected to illustrate the adsorption process of EGCG and CAF on the MARs. Thermodynamic parameters were adopted to explain in-depth information of inherent energetic changes associated with the adsorption process. The effect of temperature on EGCG and CAF adsorption by D101-3 was further expounded. Van der Waals force, hydrogen bonding, and electrostatic interaction were the main driving forces for the adsorption of EGCG and CAF on the MARs. This study might provide a scientific reference point to aid the industrial large-scale separation and enrichment of EGCG from the extracts of waste tea using modified MARs.

  3. Revealing the Adsorption Mechanisms of Nitroxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes

    PubMed Central

    2014-01-01

    Carbon nanotubes are a natural choice as gas sensor components given their high surface to volume ratio, electronic properties, and capability to mediate chemical reactions. However, a realistic assessment of the interaction of the tube wall and the adsorption processes during gas phase reactions has always been elusive. Making use of ultraclean single-walled carbon nanotubes, we have followed the adsorption kinetics of NO2 and found a physisorption mechanism. Additionally, the adsorption reaction directly depends on the metallic character of the samples. Franck–Condon satellites, hitherto undetected in nanotube–NOx systems, were resolved in the N 1s X-ray absorption signal, revealing a weak chemisorption, which is intrinsically related to NO dimer molecules. This has allowed us to identify that an additional signal observed in the higher binding energy region of the core level C 1s photoemission signal is due to the C=O species of ketene groups formed as reaction byproducts . This has been supported by density functional theory calculations. These results pave the way toward the optimization of nanotube-based sensors with tailored sensitivity and selectivity to different species at room temperature. PMID:24404865

  4. INFLUENCE OF THE KRAMER EFFECT ON ADSORPTION ON METALS.

    DTIC Science & Technology

    ADSORPTION, *ALLOYS, *FILMS, *METALS, *PROCESSING, ACIDS, ALCOHOLS , CYCLOHEXANES, EXCHANGE REACTIONS , FATTY ACIDS, HEAT TREATMENT , LEAD ALLOYS...LINOLENIC ACID, MACHINING , MEASUREMENT, MONOMOLECULAR FILMS, OLEIC ACID, SURFACES, TIN ALLOYS, WATER

  5. Polymerase chain reaction and DNA probe hybridization to assess the efficacy of diminazene treatment in Trypanosoma brucei-infected cattle.

    PubMed

    Clausen, P H; Waiswa, C; Katunguka-Rwakishaya, E; Schares, G; Steuber, S; Mehlitz, D

    1999-03-01

    Four of eight Ankole longhorn cattle experimentally infected with Trypanosoma brucei were treated with 7 mg/kg diminazene aceturate (Berenil, Hoechst AG, Germany) at day 71 postinfection. The trypanocidal activity was monitored using polymerase chain reaction (PCR) and DNA probe hybridization. When extracted parasite DNA (without host DNA) was used, as little as 1 fg per reaction, which is equivalent to about 1-10% of the DNA in a single trypanosome, produced a specific product that was visible as a 177-bp band in an agarose gel. In infected cattle, specific PCR products could be amplified at as early as 1 day postinfection. PCR signals remained positive during infection, except in one sample, although aparasitemic phases occurred. In cases where treatment resulted in a significant clinical improvement, PCR signals disappeared at 3-4 days after the administration of the drug. By contrast, in cattle that showed clinical signs of CNS involvement after treatment, although aparasitemic, and died before the termination of the experiment, specific products could be amplified on several occasions following treatment. The PCR signals generated after treatment could be further enhanced by subsequent slot-blot hybridization with a T. brucei-specific DNA probe. We conclude that PCR coupled with DNA probe hybridization provides a highly sensitive tool for the assessment of therapeutic efficiency and disease progression in trypanosome infections, especially in chronic infections when the level of parasitemia is low or when trypanosomes are sequestered at cryptic sites.

  6. Advanced scanning probe lithography.

    PubMed

    Garcia, Ricardo; Knoll, Armin W; Riedo, Elisa

    2014-08-01

    The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.

  7. Unique Reactivity of Transition Metal Atoms Embedded in Graphene to CO, NO, O₂ and O Adsorption: A First-Principles Investigation.

    PubMed

    Chu, Minmin; Liu, Xin; Sui, Yanhui; Luo, Jie; Meng, Changgong

    2015-10-27

    Taking the adsorption of CO, NO, O₂ and O as probes, we investigated the electronic structure of transition metal atoms (TM, TM = Fe, Co, Ni, Cu and Zn) embedded in graphene by first-principles-based calculations. We showed that these TM atoms can be effectively stabilized on monovacancy defects on graphene by forming plausible interactions with the C atoms associated with dangling bonds. These interactions not only give rise to high energy barriers for the diffusion and aggregation of the embedded TM atoms to withstand the interference of reaction environments, but also shift the energy levels of TM-d states and regulate the reactivity of the embedded TM atoms. The adsorption of CO, NO, O₂ and O correlates well with the weight averaged energy level of TM-d states, showing the crucial role of interfacial TM-C interactions on manipulating the reactivity of embedded TM atoms. These findings pave the way for the developments of effective monodispersed atomic TM composites with high stability and desired performance for gas sensing and catalytic applications.

  8. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less

  9. Mesoporous zirconium titanium oxides. Part 1: Porosity modulation and adsorption properties of xerogels.

    PubMed

    Griffith, Christopher S; Sizgek, G Devlet; Sizgek, Erden; Scales, Nicholas; Yee, Patrick J; Luca, Vittorio

    2008-11-04

    A series of zirconium titanium oxide mesophases containing 33 atom % Zr have been prepared using carboxylic acids of different alkyl chain lengths (Cy ) from y=4-18 through organic-inorganic polymer phase segregation as the gel transition is approached. Thermal treatment of these transparent gels up to 450 degrees C eliminated the organic template, and domain coarsening occurred affording stable worm-hole mesoporous materials of homogeneous composition and pore diameters varying from about 3 to 4 nm in fine increments. With such materials, it was subsequently possible to precisely study the adsorption of vanadium oxo-anions and cations from aqueous solutions and, more particularly, probe the kinetics of intraparticle mass transport as a function of the associated pore dimension. The kinetics of mass transport through the pore systems was investigated using aqueous vanadyl (VO2+) and orthovanadate (VO3(OH)2-) probe species at concentrations ranging from 10 to 200 ppm (0.2 to 4 mmol/L) and pH values of 0 and 10.5, respectively. In the case of both of these vanadium species, the zirconium titanate mesophases displayed relatively slow kinetics, taking in excess of about 500 min to achieve maximum uptake. By using a pseudo-second-order rate law, it was possible to extract the instantaneous and overall rate of the adsorption processes and then relate these to the pore diameters. Both the instantaneous and overall rates of adsorption increased with increasing surface area and pore diameter over the studied pore size range. However, the equilibrium adsorption capacity increased linearly with pore diameter only for the higher concentrations and was independent of pore diameter for the lower concentration. These results have been interpreted using a model in which discrete adsorption occurs at low concentrations and is then followed by multilayer adsorption at higher concentration.

  10. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  11. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reducedmore » silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2, very low H 2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  12. Adsorption of small molecules on the [Zn-Zn]2+ linkage in zeolite. A DFT study of ferrierite

    NASA Astrophysics Data System (ADS)

    Benco, Lubomir

    2017-02-01

    In zeolites monovalent Zn(I) forms a sub-nano particles [Zn-Zn]2+ stabilized in rings of the zeolite framework, which exhibit interesting catalytic properties. This work reports on adsorption properties of [Zn-Zn]2+ particles in zeolite ferrierite investigated for a set of probing diatomic (N2, O2, H2, CO, NO) and triatomic (CO2, N2O, NO2, H2O) molecules using dispersion-corrected DFT. Three [Zn-Zn]2+ sites are compared differing in the location and stability. On all sites molecules form physisorbed clusters with the molecule connected on-top of the Zn-Zn linkage. In physisorbed clusters adsorption induces only slight change of bonding and the geometry of the Zn-Zn linkage. Some molecules can form stable chemisorbed clusters in which the molecule is integrated between two Zn+ cations. The sandwich-like chemisorption causes pronounced changes of bonding and can lead to the transfer of the electron density between two Zn+ cations and to a change of the oxidation state. The knowledge of bonding of small molecules can help understanding of the mechanism of conversion reactions catalyzed by sub-nano [Zn-Zn] particles.

  13. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    PubMed

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  14. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    PubMed

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    PubMed

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  16. Synthesis of diethylaminoethyl dextran hydrogel and its heavy metal ion adsorption characteristics.

    PubMed

    Demirbilek, Celile; Dinç, Cemile Özdemir

    2012-10-01

    Epichlorohydrin-crosslinked diethylaminoethyl dextran (DEAE-D/ECH) hydrogel was synthesized by intermolecular side-chain reaction of DEAE-D hydroxyl groups with monomeric crosslinking agent, ECH. Swelling ability, adsorption capacity and metal removal of the hydrogel were profoundly determined and some structural parameters for the hydrogel such as volume of non-swollen gel, percentages of gellation, swelling ratio and equilibrium water content were evaluated in this study. The ability of removing heavy metal ions from Orontes River by the synthesized hydrogel, thoroughly characterized by photometric spectrometer and the adsorption characteristics of metal ions, was investigated as well as surface morphologies of the hydrogel before and after metal adsorption were examined by SEM. Structure of DEAE-D/ECH gel was analyzed by FTIR, TGA, and DSC. Gellation point of binary system reaction between DEAE-D and ECH was determined via monitoring viscosity changes during reaction. The order of affinity based on amount of metal ion uptake was found as follows: Zn(2+)>Mn(2+)>Pb(2+)>Cd(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. New method for evaluating irreversible adsorption and stationary phase bleed in gas chromatographic capillary columns.

    PubMed

    Wright, Bob W; Wright, Cherylyn W

    2012-10-26

    A novel method is described for the evaluation of irreversible adsorption and column bleed in gas chromatographic (GC) columns using a tandem GC approach. This work specifically determined the degree of irreversible adsorption behavior of specific sulfur and phosphorous containing test probe compounds at levels ranging from approximately 50 picograms (pg) to 1 nanogram (ng) on selected gas chromatographic columns. This method does not replace existing evaluation methods that characterize reversible adsorption but provides an additional tool. The test compounds were selected due to their ease of adsorption and their importance in the specific trace analytical detection methodology being developed. Replicate chromatographic columns with 5% phenylmethylpolysiloxane (PMS), polyethylene glycol (wax), trifluoropropylpolysiloxane (TFP), or 78% cyanopropylpolysiloxane stationary phases from a variety of vendors were evaluated. As expected, the results demonstrate that the different chromatographic phases exhibit differing degrees of irreversible adsorption behavior. The results also indicate that all manufacturers do not produce equally inert columns nor are columns from a given manufacturer identical. The wax-coated columns for the test probes used were more inert as a group than 5% PMS coated columns, and they were more reproducibly manufactured. Both TFP and 78% cyanopropylpolysiloxane columns displayed superior inertness to the test compounds compared to either 5% PMS- or wax-coated columns. Irreversible adsorption behavior was characterized for a limited range of stationary phase film thicknesses. In addition, the method was shown effective for characterizing column bleed and methods to remove bleed components. This method is useful in screening columns for demanding applications and to obtain diagnostic information related to improved preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Arsenate adsorption mechanisms at the allophane - Water interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2005-01-01

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.

  19. Adsorption and covalent binding of fibrinogen as a method for probing the chemical composition of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microsphere surfaces.

    PubMed

    Gosecka, Monika; Chehimi, Mohamed M; Basinska, Teresa; Slomkowski, Stanislaw; Makowski, Tomasz

    2017-12-01

    We investigated the distribution of polyglycidol and polystyrene on the surface of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres (random distribution or segregated into hydrophilic and hydrophobic patches), using fibrinogen (Fb) as a macromolecular probe. The fibrinogen was adsorbed or covalently attached to the surface of the poly(styrene-co-α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGLy)) microspheres. The P(S/PGLy) particles were prepared by emulsion copolymerization of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol (PGLy) macromonomer initiated with potassium persulfate. The polymerizations yielded P(S/PGLy) particles with various surface fractions of polyglycidol, depending on the amount of added macromonomer and the addition process. In some syntheses, the entire macromonomer amount was added once at the beginning of the polymerization, while in others, the macromonomer was added gradually after the formation of particle seeds from pure polystyrene. XPS studies revealed that the fraction of polyglycidol in the interfacial layer of the microspheres was larger when the entire amount of macromonomer was added at the beginning of the polymerization than when it was added after formation of the polystyrene seeds. Studies of fibrinogen adsorption provided the first evidence of segregation of the hydrophobic (polystyrene) and hydrophilic (polyglycidol) components at the surface of the composite P(S/PGLy) microspheres into patches. The hydrophobic patches are composed mainly of polystyrene. However, they also contain a small amount of polyglycidol chains, making the adsorption of fibrinogen weaker than the adsorption onto the pure polystyrene. Studies of covalent immobilization of fibrinogen on the microspheres via 1,3,5-trichlorotriazine confirmed these findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Complexation-Based Detection of Nickel(II) at a Graphene-Chelate Probe in the Presence of Cobalt and Zinc by Adsorptive Stripping Voltammetry

    PubMed Central

    Pokpas, Keagan; Jahed, Nazeem; Baker, Priscilla G.

    2017-01-01

    The adsorptive stripping voltammetric detection of nickel and cobalt in water samples at metal film electrodes has been extensively studied. In this work, a novel, environmentally friendly, metal-free electrochemical probe was constructed for the ultra-trace determination of Ni2+ in water samples by Adsorptive Cathodic Stripping Voltammetry (AdCSV). The electrochemical platform is based on the adsorptive accumulation of Ni2+ ions directly onto a glassy carbon electrode (GCE) modified with dimethylglyoxime (DMG) as chelating agent and a Nafion-graphene (NGr) nanocomposite to enhance electrode sensitivity. The nafion-graphene dimethylglyoxime modified glassy carbon electrode (NGr-DMG-GCE) shows superior detection capabilities as a result of the improved surface-area-to-volume ratio and enhanced electron transfer kinetics following the incorporation of single layer graphene, while limiting the toxic effects of the sensor by removal of the more common mercury, bismuth and lead films. Furthermore, for the first time the NGr-DMG-GCE, in the presence of common interfering metal ions of Co2+ and Zn2+ demonstrates good selectivity and preferential binding towards the detection of Ni2+ in water samples. Structural and morphological characterisation of the synthesised single layer graphene sheets was conducted by Raman spectrometry, HRTEM and HRSEM analysis. The instrumental parameters associated with the electrochemical response, including accumulation potential and accumulation time were investigated and optimised in addition to the influence of DMG and graphene concentrations. The NGr-DMG-GCE demonstrated well resolved, reproducible peaks, with RSD (%) below 5% and a detection limit of 1.5 µg L−1 for Ni2+ reduction at an accumulation time of 120 s. The prepared electrochemical sensor exhibited good detection and quantitation towards Ni2+ detection in tap water samples, well below 0.1 mg L−1 set by the WHO and EPA standards. This is comparable to the South African

  1. Modification of 1,2,4,5-tetrazine with cationic rhenium(I) polypyridine units to afford phosphorogenic bioorthogonal probes with enhanced reaction kinetics.

    PubMed

    Choi, Alex Wing-Tat; Tso, Karson Ka-Shun; Yim, Vicki Man-Wai; Liu, Hua-Wei; Lo, Kenneth Kam-Wing

    2015-02-25

    New phosphorogenic bioorthogonal probes derived from mononuclear and binuclear rhenium(I) polypyridine complexes containing a 1,2,4,5-tetrazine moiety were designed; these complexes displayed substantial dienophile-induced emission enhancement, and accelerated reaction kinetics and could target a protein conjugate in living cells.

  2. Interaction between calcium and phosphate adsorption on goethite.

    PubMed

    Rietra, R P; Hiemstra, T; van Riemsdijk, W H

    2001-08-15

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in soils and sediments, but the binding behavior of PO4 in these systems often differs significantly from adsorption studies on metal hydroxides in laboratory. The interaction between PO4 and Ca adsorption was studied on goethite because Ca can influence the PO4 adsorption equilibria. Since adsorption interactions are very difficult to discriminate from precipitation reactions, conditions were chosen to prevent precipitation of Ca-PO4 solids. Adsorption experiments of PO4 and Ca, individually and in combination, show a strong interaction between adsorbed Ca and PO4 on goethite for conditions below the saturation index of apatite. It is shown that it is possible to predict the adsorption and interaction of PO4 and Ca on electrostatic arguments using the model parameter values derived from the single-ion systems and without invoking ternary complex formation or precipitation. The model enables the prediction of the Ca-PO4 interaction for environmentally relevant calcium and phosphate concentrations.

  3. SPM analysis of fibrinogen adsorption on solid surfaces

    NASA Astrophysics Data System (ADS)

    Choukourov, A.; Grinevich, A.; Saito, N.; Takai, O.

    2007-09-01

    The adsorption kinetics, adhesion and orientation of human fibrinogen on solid surfaces have been studied by surface probe microscopy (SPM) and quartz crystal microbalance techniques (QCM). CF 3-, NH 2-terminated organo-silane self-assembled monolayers (SAM) and OH-terminated silicon dioxide have been used as model surfaces. Furthermore, the interaction of fibrinogen with nanocomposite Ti/hydrocarbon plasma polymer films (Ti/ppCH) deposited by dc magnetron sputtering has also been studied.

  4. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays.

    PubMed

    Brassat, Katharina; Ramakrishnan, Saminathan; Bürger, Julius; Hanke, Marcel; Doostdar, Mahnaz; Lindner, Jörg K N; Grundmeier, Guido; Keller, Adrian

    2018-05-22

    DNA origami nanostructures are versatile substrates for the controlled arrangement of molecular capture sites with nanometer precision and thus have many promising applications in single-molecule bioanalysis. Here, we investigate the adsorption of DNA origami nanostructures in nanohole arrays which represent an important class of biosensors and may benefit from the incorporation of DNA origami-based molecular probes. Nanoholes with well-defined diameter that enable the adsorption of single DNA origami triangles are fabricated in Au films on Si wafers by nanosphere lithography. The efficiency of directed DNA origami adsorption on the exposed SiO 2 areas at the bottoms of the nanoholes is evaluated in dependence of various parameters, i.e., Mg 2+ and DNA origami concentrations, buffer strength, adsorption time, and nanohole diameter. We observe that the buffer strength has a surprisingly strong effect on DNA origami adsorption in the nanoholes and that multiple DNA origami triangles with 120 nm edge length can adsorb in nanoholes as small as 120 nm in diameter. We attribute the latter observation to the low lateral mobility of once adsorbed DNA origami on the SiO 2 surface, in combination with parasitic adsorption to the Au film. Although parasitic adsorption can be suppressed by modifying the Au film with a hydrophobic self-assembled monolayer, the limited surface mobility of the adsorbed DNA origami still leads to poor localization accuracy in the nanoholes and results in many DNA origami crossing the boundary to the Au film even under optimized conditions. We discuss possible ways to minimize this effect by varying the composition of the adsorption buffer, employing different fabrication conditions, or using other substrate materials for nanohole array fabrication.

  5. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification.

    PubMed

    Li, Xia; Xu, Xiaowen; Song, Juan; Xue, Qingwang; Li, Chenzhong; Jiang, Wei

    2017-05-15

    T4 polynucleotide kinase (PNK) plays critical roles in regulating DNA phosphorylation modes during the repair of DNA lesions. The aberrant activity of T4 PNK has been proven to be associated with a variety of human pathologies. Sensitive detection of T4 PNK activity is critical to both clinical diagnosis and therapeutics. Herein, a background-eliminated fluorescence assay for sensitive detection of T4 PNK activity has been developed by multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification (HRCA). First, the streptavidin-magnetic nanobeads (MBs) were functionalized with the biotin modified hairpin probe (HP) with 3'-phosphoryl, forming multifunctional magnetic probes (HP-MBs). Then, in the presence of T4 PNK, the 3'-phosphoryl of HP-MBs was hydrolyzed to 3'-hydroxyl, thus serving as primers to initiate the polymerization extension and nicking endonuclease cleavage reaction. Next, the primers released from above "polymerization-nicking" cycles were separated out to trigger the subsequently HRCA process, producing plenty of dsDNA. Finally, the intercalating dye SYBR Green I (SG) was inserted into the dsDNA, generating enhanced fluorescence signals. In our design, the HP-MBs here serve together as the T4 PNK, DNA polymerase, and endonuclease recognition probe, and thus avoid the demands of utilizing multiple probes design. Moreover, it performed primary "polymerization-nicking" amplification and mediate secondary HRCA. In addition to, performing the separation function, the binding of HP-MBs and SG could be avoided while a low background was acquired. This method showed excellent sensitivity with a detection limit of 0.0436 mU/mL, and accomplished exceptional characterization T4 PNK activity in cell extracts, offering a powerful tool for biomedical research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    NASA Astrophysics Data System (ADS)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  7. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  8. Adsorption of Vanadium (V) from SCR Catalyst Leaching Solution and Application in Methyl Orange.

    PubMed

    Sha, Xuelong; Ma, Wei; Meng, Fanqing; Wang, Ren; Fuping, Tian; Wei, Linsen

    2016-12-01

      In this study, we explored an effective and low-cost catalyst and its adsorption capacity and catalytic capacity for Methyl Orange Fenton oxidation degradation were investigated. The catalyst was directly prepared by reuse of magnetic iron oxide (Fe3O4) after saturated adsorption of vanadium (V) from waste SCR (Selective Catalytic Reduction) catalyst. The obtained catalyst was characterized by FTIR, XPS and the results showed that vanadium (V) adsorption process of Fe3O4 nanoparticles was non-redox reaction. The effects of pH, adsorption kinetics and equilibrium isotherms of adsorption were assessed. Adsorption of vanadium (V) ions by Fe3O4 nanoparticles could be well described by the Sips isotherm model which controlled by the mixed surface reaction and diffusion (MSRDC) adsorption kinetic model. The results show that vanadium (V) was mainly adsorbed on external surface of the Fe3O4 nanoparticles. The separation-recovering tungsten (VI) and vanadium (V) from waste SCR catalyst alkaline solution through pH adjustment was also investigated in this study. The results obtained from the experiments indicated that tungsten (VI) was selectively adsorbed from vanadium (V)/tungsten (VI) mixed solution in certain acidic condition by Fe3O4 nanoparticle to realize their recovery. Tungsten (V) with some impurity can be obtained by releasing from adsorbent, which can be confirmed by ICP-AES. The Methyl Orange degradation catalytic performance illustrated that the catalyst could improve Fenton reaction effectively at pH = 3.0 compare to Fe3O4 nanoparticles alone. Therefore, Fe3O4 nanoparticle adsorbed vanadium (V) has a potential to be employed as a heterogeneous Fenton-like catalyst in the present contribution, and its catalytic activity was mainly evaluated in terms of the decoloration efficiency of Methyl Orange.

  9. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles

    USGS Publications Warehouse

    Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.

    2006-01-01

    Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.

  10. BSA adsorption onto nanospheres: Influence of surface curvature as probed by electrophoretic light scattering and UV/vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez-Pérez, Julio A.; Gallardo-Moreno, Amparo M.; González-Martín, M. Luisa; Vadillo-Rodríguez, Virginia

    2015-10-01

    The influence of surface curvature on the adsorption of bovine serum albumin (BSA) was evaluated through the combination of two fairly simple techniques: electrophoretic light scattering and UV/vis spectroscopy. Measurements were carried out for a range of protein concentrations (0-320 μg/ml) at pH 3.5, 4.5 and 7 using hydrophobic polystyrene nanospheres of 38.8, 82 and 220 nm in diameter. The results obtained demonstrate that the charge of the BSA molecules in solution dictates the pH-dependent behavior of the protein-coated nanospheres, indicating in all cases a significant adsorption of BSA molecules. At a fixed pH, however, it is the zeta potential that characterizes the uncoated nanospheres normalized by their surface area that primarily controls protein adsorption. In particular, it is found that the rate at which BSA interact with the different nanospheres increases as their negative zeta potential per unit area (or diameter) increases (decreases) regardless of the pH. Moreover, provided that adsorption occurs away from the isoelectric point of the protein, highly curved surfaces are found to stabilize the native-like conformation of BSA upon adsorption by likely reducing lateral interactions between adsorbed molecules.

  11. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2.

    PubMed

    Hartmann, Martin; Kunz, Sebastian; Himsl, Dieter; Tangermann, Oliver; Ernst, Stefan; Wagener, Alex

    2008-08-19

    The metal organic framework material Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) has been synthesized using different routes: under solvothermal conditions in an autoclave, under atmospheric pressure and reflux, and by electrochemical reaction. Although the compounds display similar structural properties as evident from the powder X-ray diffraction (XRD) patterns, they differ largely in specific surface area and total pore volume. Thermogravimetric and chemical analysis support the assumption that pore blocking due to trimesic acid and/or methyltributylammoniummethylsulfate (MTBS) which has been captured in the pore system during reaction is a major problem for the electrochemically synthesized samples. Isobutane and isobutene adsorption has been studied for all samples at different temperatures in order to check the potential of Cu3(BTC)2 for the separation of small hydrocarbons. While the isobutene adsorption isotherms are of type I according to the IUPAC classification, the shape of the isobutane isotherm is markedly different and closer to type V. Adsorption experiments at different temperatures show that a somewhat higher amount of isobutene is adsorbed as compared to isobutane. Nevertheless, the differential enthalpies of adsorption are only different by about 5 kJ/mol, indicating that a strong interaction between the copper centers and isobutene does not drive the observed differences in adsorption capacity. The calculated breakthrough curves of isobutene and isobutane reveal that a low pressure separation is preferred due to the peculiar shape of the isobutane adsorption isotherms. This has been confirmed by preliminary breakthrough experiments using an equimolar mixture of isobutane and isobutene.

  12. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism

    NASA Astrophysics Data System (ADS)

    He, Yinhai; Lin, Hai; Dong, Yingbo; Wang, Liang

    2017-12-01

    The adsorbent, where lanthanum oxide was incorporated onto porous zeolite (La-Z), of preferable adsorption towards phosphate was prepared by hydrothermal synthesis. Based on pH effect results, La-Z would effectively sequestrate phosphate over wider pH range of 3.0-7.0, alkaline conditions were unfavorable for phosphate. The adsorption of phosphate was not significantly influenced by ionic strength and by coexisting anions of chloride, nitrate and sulfate but bicarbonate showed slightly greater negative effects, indicating La-Z possessed highly selectivity to phosphate. Adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by intra-particle diffusion. Equilibrium adsorption demonstrated that Langmuir model was more suitable than Freundlich model for description phosphate adsorption and the adsorption capacity was 17.2 mg P g-1, which exhibited 95% utilization of incorporated La. Over 95% phosphate was eliminated in real effluent treatment when the dose was 2 g L-1. The underlying mechanism for phosphate capture was probed with Zeta potential and X-ray photoelectron spectroscope analysis, and the formation of La-P inner-sphere complexation was testified to be the dominant pathway. All the results suggested that the porous zeolite-supported lanthanum oxide can serve as a promising adsorbent for phosphate removal in realistic application.

  13. Tungstate adsorption onto Italian soils with different characteristics.

    PubMed

    Petruzzelli, Gianniantonio; Pedron, Francesca

    2017-08-01

    The study of tungsten in the environment is currently of considerable interest because of the growing concerns resulting from its possible toxicity and carcinogenicity. Adsorption reactions are some of the fundamental processes governing the fate and transport of tungsten compounds in soil. This paper reports data on the adsorption of tungstate ions in three different Italian soils, which are characteristic of the Mediterranean region. The results show that pH is the most important factor governing the adsorption of tungstate in these soils. The data interpreted according to the Langmuir equation show that the maximum value of adsorption is approximately 30 mmol kg -1 for the most acidic soil (pH = 4.50) and approximately 9 mmol kg -1 for the most basic soil (pH = 7.40). In addition, soil organic matter is shown to play a fundamental role in adsorption processes, which are favored in soils with a higher organic matter content. The data could contribute to a better understanding of the behavior of tungsten compounds in Italian soils for which current knowledge is very scarce, also in view of environmental regulations, which are currently lacking.

  14. Phosphate removal from aqueous solution using iron oxides: Adsorption, desorption and regeneration characteristics.

    PubMed

    Ajmal, Zeeshan; Muhmood, Atif; Usman, Muhammad; Kizito, Simon; Lu, Jiaxin; Dong, Renjie; Wu, Shubiao

    2018-05-24

    Dynamics of phosphate (PO 4 3- ) adsorption, desorption and regeneration characteristics of three lab-synthesized iron oxides, ferrihydrite (F), goethite (G), and magnetite (M) were evaluated in this study. Batch experiments were conducted to evaluate the impact of several adsorption parameters including adsorbent dosage, reaction time, temperature, pH, and ionic strength. The results showed that PO 4 3- adsorption increased with reaction time and temperature while it decreased with an increase in solution pH. Adsorption isotherm data exhibited good agreement with the Freundlich and Langmuir model with maximum monolayer adsorption capacities of 66.6 mg·g -1 (F), 57.8 mg·g -1 (M), and 50.5 mg·g -1 (G). A thermodynamics evaluation produced ΔG < 0, ΔH > 0, and ΔS > 0, demonstrating that PO 4 3- adsorption onto tested minerals is endothermic, spontaneous, and disordered. The PO 4 3- removal mostly occurred via electrostatic attraction between the sorbate and sorbent surfaces. Moreover, the PO 4 3- sorption was reversible and could be desorbed at varying rates in both neutral and alkaline environments. The good desorption capacity has practical benefits for potential regeneration and re-use of the saturated particles in wastewater treatment systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wei; Jiang, Ting; Jafari, Tahereh

    In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. Additionally, the targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlledmore » by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. Finally, after three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.« less

  16. Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

    DOE PAGES

    Zhong, Wei; Jiang, Ting; Jafari, Tahereh; ...

    2016-10-18

    In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. Additionally, the targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlledmore » by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. Finally, after three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.« less

  17. Adsorption and Wetting in Model Mesoporous Silicas and in Complex Metal Oxide Catalysts

    NASA Astrophysics Data System (ADS)

    Jayaraman, Karthik

    systematic study to explore the possibility of preparing a supported catalyst material i.e loading fluorinated metal phthalocyanines onto metal oxide surfaces by two other techniques in addition to solution adsorption. Techniques or procedures that have been used to immobilize MPcs include: i) physical adsorption (from solution) onto metal oxide surface, ii) deposition by pore filling and encapsulation and iii) mesopore entrapment or confinement. The MPcs are loaded on to metal oxides with an aim to: a) maximize the surface area of the Pcs by distributing it over the support, b) immobilize the Pcs so that they do not leach into the solution environment, c) improve the thermal stability of the Pcs and d) attempt to achieve single-site catalysis. All the immobilization techniques were carried out with F64PcZn as the model MPc, acetone as the immobilization solvent and silica or alumina as adsorbents (solid support). An understanding of gas adsorption mechanisms on metal phthalocyanines (MPcs) is essential for their practical application in biological processes, gas sensing, and catalysis. In this work, the surface characteristics were probed by performing nitrogen and water adsorption on the free-form MPcs (without immobilization on solid support) and characterization of their physical properties. The combined vapor adsorption study (developed in Chapter 3) enabled in understanding the affinity of Pcs towards water vapor i.e number of water molecules adsorbed per phthalocyanine molecule was obtained. This information is very relevant towards using Pcs as catalyst since water vapor is guaranteed to be present in most of the catalytic reaction environment.

  18. A computational study on the adsorption configurations and reactions of SiHx(x = 1-4) on clean and H-covered Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Le, Thong N.-M.; Raghunath, P.; Huynh, Lam K.; Lin, M. C.

    2016-11-01

    Possible adsorption configurations of H and SiHx (x = 1 - 4) on clean and H-covered Si(100) surfaces are determined by using spin-polarized DFT calculations. The results show that, on the clean surface, the gas-phase hydrogen atom and SiH3 radicals effectively adsorb on the top sites, while SiH and SiH2 prefer the bridge sites of the first layer. Another possibility for SiH is to reside on the hollow sites with a triple-bond configuration. For a partially H-coverd Si(100) surface, the mechanism is similar but with higher adsorption energies in most cases. This suggests that the surface species become more stable in the presence of surface hydrogens. The minimum energy paths for the adsorption/migration and reactions of H/SiHx species on the surfaces are explored using the climbing image-nudged elastic band method. The competitive surface processes for Si thin-film formation from SiHx precursors are also predicted. The study reveals that the migration of hydrogen adatom is unimportant with respect to leaving open surface sites because of its high barriers (>29.0 kcal/mol). Alternatively, the abstraction of hydrogen adatoms by H/SiHx radicals is more favorable. Moreover, the removal of hydrogen atoms from adsorbed SiHx, an essential step for forming Si layers, is dominated by abstraction rather than the decomposition processes.

  19. Adsorption of Acid Blue 25 dye by bentonite and surfactant modified bentonite

    NASA Astrophysics Data System (ADS)

    Jeeva, Mark; Wan Zuhairi, W. Y.

    2018-04-01

    Adsorption of Acid Blue (AB 25) from water via batch adsorption experiments onto Na-Bentonite (NB) and CTAB-modified bentonite (CTAB-Ben) was investigated. Studies concerning the factors influencing the adsorption capacities of NB and CTAB-Ben, such as initial dye concentration, adsorbent dosage, pH, contact time and temperature were investigated and discussed. The results revealed that CTAB-modified bentonite demonstrated high adsorption capacities toward acid dyes, while NB exhibited sorption capacities lower than CTAB-Ben. The maximum adsorption efficiency was found to be 50% at an AB 25 concentration of 50 mg/L, adsorbent dosage of 1.8 g/L, reaction time of 90 min and equilibrium pH of 11. The results of isotherm study fit the Langmuir and Freundlich models (R2 > 0.93) and (R2 > 0.9) respectively.

  20. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.

    PubMed

    Jiang, Xiqian; Wang, Lingfei; Carroll, Shaina L; Chen, Jianwei; Wang, Meng C; Wang, Jin

    2018-02-16

    The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 00, 000-000.

  1. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions.

    PubMed

    Hirosawa, Shota; Arai, Satoshi; Takeoka, Shinji

    2012-05-18

    We report a mitochondrial targeted redox probe (MitoRP) that comprises a nitroxide radical (TEMPO) moiety and coumarin 343. Using isolated mitochondria in the presence/absence of substrates and inhibitors of oxidative phosphorylation, we demonstrated that MitoRP is a useful probe to monitor the electron flow associated with complex I. This journal is © The Royal Society of Chemistry 2012

  2. Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study

    NASA Astrophysics Data System (ADS)

    Aarva, Anja; Laurila, Tomi; Caro, Miguel A.

    2017-06-01

    In this work, we study the adsorption characteristics of dopamine (DA), ascorbic acid (AA), and dopaminequinone (DAox) on carbonaceous electrodes. Our goal is to obtain a better understanding of the adsorption behavior of these analytes in order to promote the development of new carbon-based electrode materials for sensitive and selective detection of dopamine in vivo. Here we employ density functional theory-based simulations to reach a level of detail that cannot be achieved experimentally. To get a broader understanding of carbonaceous surfaces with different morphological characteristics, we compare three materials: graphene, diamond, and amorphous carbon (a-C). Effects of solvation on adsorption characteristics are taken into account via a continuum solvent model. Potential changes that take place during electrochemical measurements, such as cyclic voltammetry, can also alter the adsorption behavior. In this study, we have utilized doping as an indirect method to simulate these changes by shifting the work function of the electrode material. We demonstrate that sp2- and sp3-rich materials, as well as a-C, respond markedly different to doping. Also the adsorption behavior of the molecules studied here differs depending on the surface material and the change in the surface potential. In all cases, adsorption is spontaneous, but covalent bonding is not detected in vacuum. The aqueous medium has a large effect on the adsorption behavior of DAox, which reaches its highest adsorption energy on diamond when the potential is shifted to more negative values. In all cases, inclusion of the solvent enhances the charge transfer between the slab and DAox. Largest differences in adsorption energy between DA and AA are obtained on graphene. Gaining better understanding of the behavior of the different forms of carbon when used as electrode materials provides a means to rationalize the observed complex phenomena taking place at the electrodes during electrochemical oxidation

  3. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  4. Adsorption in zeolites using mechanically embedded ONIOM clusters

    DOE PAGES

    Patet, Ryan E.; Caratzoulas, Stavros; Vlachos, Dionisios G.

    2016-09-01

    Here, we have explored mechanically embedded three-layer QM/QM/MM ONIOM models for computational studies of binding in Al-substituted zeolites. In all the models considered, the high-level-theory layer consists of the adsorbate molecule and of the framework atoms within the first two coordination spheres of the Al atom and is treated at the M06-2X/6-311G(2df,p) level. For simplicity, flexibility and routine applicability, the outer, low-level-theory layer is treated with the UFF. We have modelled the intermediate-level layer quantum mechanically and investigated the performance of HF theory and of three DFT functionals, B3LYP, M06-2X and ωB97x-D, for different layer sizes and various basis sets,more » with and without BSSE corrections. We have studied the binding of sixteen probe molecules in H-MFI and compared the computed adsorption enthalpies with published experimental data. We have demonstrated that HF and B3LYP are inadequate for the description of the interactions between the probe molecules and the framework surrounding the metal site of the zeolite on account of their inability to capture dispersion forces. Both M06-2X and ωB97x-D on average converge within ca. 10% of the experimental values. We have further demonstrated transferability of the approach by computing the binding enthalpies of n-alkanes (C1–C8) in H-MFI, H-BEA and H-FAU, with very satisfactory agreement with experiment. The computed entropies of adsorption of n-alkanes in H-MFI are also found to be in good agreement with experimental data. Finally, we compare with published adsorption energies calculated by periodic-DFT for n-C3 to n-C6 alkanes, water and methanol in H-ZSM-5 and find very good agreement.« less

  5. Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta.

    PubMed

    León, Marta; Swift, T Dallas; Nikolakis, Vladimiros; Vlachos, Dionisios G

    2013-06-04

    A comprehensive study of the adsorption of the compounds involved in the reaction of dehydration of fructose to 5-hydroxymethyl furfural (HMF) on the zeolite H-BEA with SiO2/Al2O3 = 18 has been carried out. Furthermore, a method for the estimation of the real adsorption loading from the experimentally measured excess adsorption is developed and applied to calculate the adsorption isotherms both in the case of single-solute and multisolute mixtures. It was found that zeolite H-BEA adsorbs HMF and levulinic acid from water mixtures to greater extent than sugars and formic acid, which prefer to partition in the aqueous phase. HMF and levulinic acid adsorption isotherms could be fitted in a Redlich-Peterson isotherm model, while the adsorption of formic acid is better fitted using the Freundlich model and sugars via the Henry model. Adsorption loadings decreased with increasing temperature (0, 25, and 40 °C), which is characteristic of an exothermic process. From the temperature dependence of the isotherms, the limiting heat of adsorption at zero coverage was determined using van't Hoff equation. Given the importance and the complexity of multicomponent systems, several experiments of adsorption of multisolute solutions have been carried out. In most of the cases, the ideal adsorbed solution theory (IAST) has been proven to satisfactorily predict adsorption from multisolute mixtures using as input the single-solute isotherms.

  6. Methylamine adsorption and decomposition on B12N12 nanocage: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nurazar, Roghaye

    2014-08-01

    Density functional theory calculations are performed to investigate the adsorption and decomposition of methylamine (CH3NH2) on the surface of a B12N12 fullerene-like nanocage. Two adsorption types and two reaction channels are identified. It is found that the electrical conductivity of the nanocage can be modified upon the adsorption of CH3NH2. The pathways of CH3NH2 decomposition via bond scission of the Csbnd N and Nsbnd H bonds are examined. The results indicate that Nsbnd H bond scission is the most favorable pathway on the B12N12 surface. The side reaction that generates CH3 and NH2 fragments is endothermic by 15.6 kcal/mol with an energy-barrier height of 81.5 kcal/mol. For the CH3NH2 decomposition on the B12N12 surface, the rate-determining step appears to be as the following reaction: CH3NH → CH3N + H.

  7. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Lei; Shi, Zhenqing; Lu, Yang

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all fourmore » metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.« less

  8. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    PubMed

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  10. Cyclic Voltammetry Probe Approach Curves with Alkali Amalgams at Mercury Sphere-Cap Scanning Electrochemical Microscopy Probes.

    PubMed

    Barton, Zachary J; Rodríguez-López, Joaquín

    2017-03-07

    We report a method of precisely positioning a Hg-based ultramicroelectrode (UME) for scanning electrochemical microscopy (SECM) investigations of any substrate. Hg-based probes are capable of performing amalgamation reactions with metal cations, which avoid unwanted side reactions and positive feedback mechanisms that can prove problematic for traditional probe positioning methods. However, prolonged collection of ions eventually leads to saturation of the amalgam accompanied by irreversible loss of Hg. In order to obtain negative feedback positioning control without risking damage to the SECM probe, we implement cyclic voltammetry probe approach surfaces (CV-PASs), consisting of CVs performed between incremental motor movements. The amalgamation current, peak stripping current, and integrated stripping charge extracted from a shared CV-PAS give three distinct probe approach curves (CV-PACs), which can be used to determine the tip-substrate gap to within 1% of the probe radius. Using finite element simulations, we establish a new protocol for fitting any CV-PAC and demonstrate its validity with experimental results for sodium and potassium ions in propylene carbonate by obtaining over 3 orders of magnitude greater accuracy and more than 20-fold greater precision than existing methods. Considering the timescales of diffusion and amalgam saturation, we also present limiting conditions for obtaining and fitting CV-PAC data. The ion-specific signals isolated in CV-PACs allow precise and accurate positioning of Hg-based SECM probes over any sample and enable the deployment of CV-PAS SECM as an analytical tool for traditionally challenging conditions.

  11. Oxygen Reduction Reaction on PtCo Nanocatalyst: (Bi)sulfate Anion Poisoning

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Huang, Yan

    2018-05-01

    Pt alloy electrocatalysts are susceptible to anion adsorption in the working environment of fuel cells. In this work, the unavoidable bisulfate and sulfate ((bi)sulfate) poisoning of the oxygen reduction reaction (ORR) on a common PtCo nanocatalyst was studied by the rotating disk electrode (RDE) technique, for the first time to the best of our knowledge. The specific activity decreases linearly with the logarithm of (bi)sulfate concentration under various high potentials. This demonstrates that the (bi)sulfate adsorption does not affect the free energy of ORR activation at a given potential. Moreover, it is speculated that these two conditions, the adsorption of one O2 molecule onto two Pt sites and this adsorption as a rate-determining step of ORR reaction, are unlikely to exist simultaneously.

  12. Kinetic and Conformational Insights of Protein Adsorption onto Montmorillonite Revealed Using in Situ ATR-FTIR/2D-COS.

    PubMed

    Schmidt, Michael P; Martínez, Carmen Enid

    2016-08-09

    Protein adsorption onto clay minerals is a process with wide-ranging impacts on the environmental cycling of nutrients and contaminants. This process is influenced by kinetic and conformational factors that are often challenging to probe in situ. This study represents an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic investigation of the adsorption of a model protein (bovine serum albumin (BSA)) onto a clay mineral (montmorillonite) at four concentrations (1.50, 3.75, 7.50, and 15.0 μM) under environmentally relevant conditions. At all concentrations probed, FTIR spectra show that BSA readily adsorbs onto montmorillonite. Adsorption kinetics follow an Elovich model, suggesting that primary limitations on adsorption rates are surface-related heterogeneous energetic restrictions associated with protein rearrangement and lateral protein-protein interaction. BSA adsorption onto montmorillonite fits the Langmuir model, yielding K = 5.97 × 10(5) M(-1). Deconvolution and curve fitting of the amide I band at the end of the adsorption process (∼120 min) shows a large extent of BSA unfolding upon adsorption at 1.50 μM, with extended chains and turns increasing at the expense of α-helices. At higher concentrations/surface coverages, BSA unfolding is less pronounced and a more compact structure is assumed. Two-dimensional correlation spectroscopic (2D-COS) analysis reveals three different pathways corresponding to adsorbed conformations. At 1.50 μM, adsorption increases extended chains, followed by a loss in α-helices and a subsequent increase in turns. At 3.75 μM, extended chains decrease and then aggregated strands increase and side chains decrease, followed by a decrease in turns. With 7.50 and 15.0 μM BSA, the loss of side-chain vibrations is followed by an increase in aggregated strands and a subsequent decrease in turns and extended chains. Overall, the BSA concentration and resultant surface coverage have a profound

  13. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    PubMed

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  14. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  15. Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure-function Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Amanda K; Wu, Zili; Calaza, Florencia

    2014-01-01

    CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumptionmore » of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.« less

  16. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    NASA Astrophysics Data System (ADS)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  17. Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q.

    2017-11-01

    In order to reveal the adsorption mechanism of the ferric chloride modified humic acid on uranium, the influence of pH value and contact time of adsorption on uranium was studied through a series of batch experiments. Meanwhile, the adsorption kinetics was analyzed with pseudo-first order kinetic model and pseudo-second order kinetic model. The results show that adsorption is affected by the pH value of the solution and by contract time, and the best condition for adsorption on uranium is at pH=5 and the adsorption equilibrium time is about 80 min. Kinetics of HA-Fe adsorption on uranium accords with pseudo-second order kinetic model. The adsorption is mainly chemical adsorption, and complexes were produced by the reaction between uranium ions and the functional groups on the surface of HA-Fe, which can provide reference for further study of humic acid effecting on the migration of U(VI) in soil.

  18. DFT Studies of Adsorption of Cu7-atom Nanoclusters on TiO2 Surfaces and Application to Methanol Steam Reforming Reactions

    NASA Astrophysics Data System (ADS)

    Taft, Michael J., Sr.

    adsorbs more efficiently on TiO2-bound copper clusters than either the copper cluster alone or the surface of TiO2. Additionally, we find that the metal-oxide support plays a significant role in stabilizing the catalytic reactions of CH3OH adsorption. Here, we have shown that TiO2 clearly enhances the catalytic properties of copper clusters.

  19. Adsorption and Conformation Change of Helical Peptides on Colloidal Silica

    NASA Astrophysics Data System (ADS)

    Read, Michael; Zhang, Shuguang; Mayes, Anne; Burkett, Sandra

    2001-03-01

    Helical conformations of short peptides in solution are partly stabilized by the pattern of electrostatic charge formed by the amino acid sequence. We have studied the role of electrostatics in the adsorption and helix-coil transition of peptides on oxide surfaces. Adsorption isotherms, along with a combination of spectroscopic techniques, show that this is a reversible equilibrium process. Strong electrostatic forces between ionic side chains and charged surface sites increase the adsorbed amount, and promote a loss of helicity in the adsorbed state qualitatively different from that observed upon thermal or chemical perturbation. The electrical dipole of the peptide, arising from the amino acid side chains, serves to orient the molecules on the surface. Effects of adsorption, orientation, and conformation change on the activity of peptides in model biological reactions, as well as the relevance of this simplified system to protein adsorption, are considered.

  20. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    NASA Astrophysics Data System (ADS)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  1. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols.

    PubMed

    Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2016-07-15

    Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  3. Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source.

    PubMed

    Park, Jeong-Ann; Jung, Sung-Mok; Yi, In-Geol; Choi, Jae-Woo; Kim, Song-Bae; Lee, Sang-Hyup

    2017-06-01

    Microcystin-LR (MC-LR) is a common toxin derived from cyanobacterial blooms an effective, rapid and non-toxic method needs to be developed for its removal from drinking water treatment plants (DWTP). For an adsorption-based method, mesoporous carbon can be a promising supplemental adsorbent. The effect of mesoporous carbon (MC1, MC2, and MC3) properties and water quality parameters on the adsorption of MC-LR were investigated and the results were analyzed by kinetic, isotherm, thermodynamic, Derjaguin-Landau-Verwey-Overbeek (DLVO), and intraparticle diffusion models. MC1 was the most appropriate type for the removal of MC-LR with a maximum adsorption capacity of 35,670.49 μg/g. Adsorption of MC-LR is a spontaneous reaction dominated by van der Waals interactions. Pore sizes of 8.5-14 nm enhance the pore diffusion of MC-LR from the surface to the mesopores of MC1. The adsorption capacity was not sensitive to changes in the pH (3.2-8.0) and the existence of organic matter (2-5 mg/L). Furthermore, the final concentration of MC-LR was below the WHO guideline level after a 10-min reaction with 20 mg/L of MC1 in the Nak-Dong River, a drinking water source. The MC-LR adsorption mainly competed with humic substances (500-1000 g/mole); however, they did not have a great effect on adsorption. Copyright © 2017. Published by Elsevier Ltd.

  4. Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar.

    PubMed

    Alam, Md Samrat; Gorman-Lewis, Drew; Chen, Ning; Flynn, Shannon L; Ok, Yong Sik; Konhauser, Kurt O; Alessi, Daniel S

    2018-05-21

    While numerous studies have investigated metal uptake from solution by biochar, few of these have developed a mechanistic understanding of the adsorption reactions that occur at the biochar surface. In this study, we explore a combined modeling and spectroscopic approach for the first time to describe the molecular level adsorption of Ni(II) and Zn(II) to five types of biochar. Following thorough characterization, potentiometric titrations were carried out to measure the proton (H + ) reactivity of each biochar, and the data was used to develop protonation models. Surface complexation modeling (SCM) supported by synchrotron-based extended X-ray absorption fine structure (EXAFS) was then used to gain insights into the molecular scale metal-biochar surface reactions. The SCM approach was combined with isothermal titration calorimetry (ITC) data to determine the thermodynamic driving forces of metal adsorption. Our results show that the reactivity of biochar toward Ni(II) and Zn(II) directly relates to the site densities of biochar. EXAFS along with FT-IR analyses, suggest that Ni(II) and Zn(II) adsorption occurred primarily through proton-active carboxyl (-COOH) and hydroxyl (-OH) functional groups on the biochar surface. SCM-ITC analyses revealed that the enthalpies of protonation are exothermic and Ni(II) and Zn(II) complexes with biochar surface are slightly exothermic to slightly endothermic. The results obtained from these combined approaches contribute to the better understanding of molecular scale metal adsorption onto the biochar surface, and will facilitate the further development of thermodynamics-based, predictive approaches to biochar removal of metals from contaminated water.

  5. Adenovirus type 5 intrinsic adsorption rates measured by surface plasmon resonance.

    PubMed

    Roper, D Keith; Nakra, Shamit

    2006-01-01

    Intrinsic adsorption rates of whole adenovirus type 5 (Ad5) onto a diethylaminoethyl (DEAE) anion exchange surface are measured for the first time by surface plasmon resonance (SPR). Fitting SPR sensorgrams to a two-compartment mass transport reaction model distinguishes intrinsic adsorption rates from slow diffusive Ad5 mass transport. Ad5 is a widely used viral vector for gene therapy that binds electrostatically to surfaces of cells and synthetics such as membranes, chromatographic resins, and glass. Increasing NaCl concentration from 4.8 to 14.4mM shifts binding of whole Ad5 from diffusion control to a regime where both sorption and diffusion affect binding. Intrinsic adsorption rates for Ad5-DEAE interaction are 16 times faster than intrinsic adsorption rates for Ad5 fiber knob interacting with soluble extracellular domain of coxsackievirus adenovirus receptors (s-CAR).

  6. Double displacement: An improved bioorthogonal reaction strategy for templated nucleic acid detection.

    PubMed

    Kleinbaum, Daniel J; Miller, Gregory P; Kool, Eric T

    2010-06-16

    Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is the undesired reaction with water and other cellular nucleophiles. Here, we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectures, all possessing two fluorescence quencher/leaving groups (dabsylate groups), were synthesized and evaluated for templated reaction with nucleophile (phosphorothioate) probes both in vitro and in intact bacterial cells. All three DD probe designs provided substantially better initial quenching than a single-Dabsyl control. In isothermal templated reactions in vitro, double displacement probes yielded considerably lower background signal than previous single displacement probes; investigation into the mechanism revealed that one dabsylate acts as a sacrificial leaving group, reacting nonspecifically with water, but yielding little signal because another quencher group remains. Templated reaction with the specific nucleophile probe is required to activate a signal. The double displacement probes provided a ca. 80-fold turn-on signal and yielded a 2-4-fold improvement in signal/background over single Dabsyl probes. The best-performing probe architecture was demonstrated in a two-color, FRET-based two-allele discrimination system in vitro and was shown to be capable of discriminating between two closely related species of bacteria differing by a single nucleotide at an rRNA target site.

  7. Quantifying differences in the impact of variable chemistry on equilibrium Uranium(VI) adsorption properties of aquifer sediments.

    PubMed

    Stoliker, Deborah L; Kent, Douglas B; Zachara, John M

    2011-10-15

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO₂²⁺ + 2CO₃²⁻ = >SOUO₂(CO₃HCO₃)²⁻, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logK(c)) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logK(c) values. Using this approach, logK(c) values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (< 0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logK(c) uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  8. Effects of Dissolved Carbonate on Arsenate Adsorption and Surface Speciation at the Hematite-Water Interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2004-01-01

    Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [PCO2 = 10 -3.5 atm and ???0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L -1, [As(V)]0 = 1.5 mM and / = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L-1, [As(V)] 0 = 0.5 mM and / = 0.01 M NaCl], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (PCO2 = 10-3.5 atm)than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear (???2.8 A??) and bidentate binuclear (???3.3 A??) bonding at pH 4.5-8 and loading levels of 0.46-3.10 ??M m-2. Using the results of the pseudoequilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the PCO2 = 10-3.5 atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to

  9. Adsorption properties of congo red from aqueous solution onto N,O-carboxymethyl-chitosan.

    PubMed

    Wang, Li; Wang, Aiqin

    2008-03-01

    N,O-carboxymethyl-chitosans (N,O-CMC) with different degree of substitution (DS) were synthesized under heterogeneous conditions by controlling the reaction temperature. The factors influencing adsorption capacity of N,O-CMC such as the DS of N,O-CMC, initial pH value of the dye solution and adsorption temperature for anionic dye congo red (CR) were investigated. Compared with chitosan (78.90 mg/g), N,O-CMC with the DS of 0.35 exhibited much higher adsorption capacity (330.62 mg/g) for CR at the same adsorption conditions. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation, respectively. The adsorption mechanism of N,O-CMC was also discussed by means of IR and XPS spectra. The results in this study indicated that N,O-CMC was an attractive candidate for removing CR from the dye wastewater.

  10. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  11. Probing adsorption sites of carbon dioxide in metal organic framework of [Zn(bdc)(dpds)]n: A molecular simulation study

    NASA Astrophysics Data System (ADS)

    Lu, Shih-I.; Liao, Jian-Min; Huang, Xiao-Zhuang; Lin, Chia-Hsun; Ke, Szu-Yu; Wang, Chih-Chieh

    2017-11-01

    We used force-field based grand-canonical Monte Carlo simulation method and density functional theory to study adsorption characteristics of carbon dioxide (CO2) molecules in a metal-organic framework (MOF) compound, [Zn(bdc)(dpds)]n. The studied MOF include a metal ion (Zn(II)), an anion organic linker (dianion of benzene dicarboxylicacid, bdc2-) and a neutral organic linker (4,4‧-dipyridyldisulfide, dpds). Results from calculated adsorption isotherms and enthalpies of adsorption agree with the experimental data. The interactions between the adsorbed CO2 and the organic linkers were examined in simulations. Calculated results show available absorption sites are surrounded by two dpds ligands in which an S-S bond as an N-N‧ spacer connect two pyridines. In contrast, the bdc2- ligand does not give a significant contribution to the substantial adsorption amount even though it contains the carboxylate group that provides available bonding site to CO2.

  12. Chemical functionalization of diatom silica microparticles for adsorption of gold (III) ions.

    PubMed

    Yu, Yang; Addai-Mensah, Jonas; Losic, Dusan

    2011-12-01

    Diatom silica microparticles from natural diatomaceous earth (DE) silica have been functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) and their application for adsorption of gold (III) ions from aqueous solutions is demonstrated. Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS) analyses of the MPTMS modified diatom microparticles revealed that the silane layer with functional group (-SH) was successfully introduced to the diatom surface. The adsorption study of Au(III) ions using MPTMS-DE indicated that the process depends on initial gold (III) concentration and pH showing maximum adsorption capacity at pH = 3. The Au(III) adsorption kinetics results showed that the adsorption was very fast and followed a pseudo-second-order reaction model. The Langmuir model was used to provide a sound mechanistic basis for the theoretical of the adsorption equilibrium data. Gold recovery from MPTMS-DE structures was also investigated by using acidified thiourea solution and found to be high (> 95%). These results show that chemically modified DE microparticles can be used as a new, cost effective and environmentally benign adsorbent suitable for adsorption of gold metal ions from aqueous solutions.

  13. Improving catalytic selectivity through control of adsorption orientation

    NASA Astrophysics Data System (ADS)

    Pang, Simon H.

    In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a

  14. Volatile organic compound adsorption in a gas-solid fluidized bed.

    PubMed

    Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T

    2004-01-01

    Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas

  15. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    NASA Astrophysics Data System (ADS)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa

    2014-10-01

    Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.

  16. Whole genomic DNA probe for detection of Porphyromonas endodontalis.

    PubMed

    Nissan, R; Makkar, S R; Sela, M N; Stevens, R

    2000-04-01

    The purpose of the present study was to develop a DNA probe for Porphyromonas endodontalis. Pure cultures of P. endodontalis were grown in TYP medium, in an anaerobic chamber. DNA was extracted from the P. endodontalis and labeled using the Genius System by Boehringer Mannheim. The labeled P. endodontalis DNA was used in dot-blot hybridization reactions with homologous (P. endodontalis) and unrelated bacterial samples. To determine specificity, strains of 40 other oral bacterial species (e.g. Porphyromonas gingivalis, Porphyromonas asaccharolytica, and Prevotella intermedia) were spotted and reacted with the P. endodontalis DNA probe. None of the panel of 40 oral bacteria hybridized with the P. endodontalis probe, whereas the blot of the homologous organism showed a strong positive reaction. To determine the sensitivity of the probe, dilutions of a P. endodontalis suspension of known concentration were blotted onto a nylon membrane and reacted with the probe. The results of our investigation indicate that the DNA probe that we have prepared specifically detects only P. endodontalis and can detect at least 3 x 10(4) cells.

  17. Signal amplification of padlock probes by rolling circle replication.

    PubMed Central

    Banér, J; Nilsson, M; Mendel-Hartvig, M; Landegren, U

    1998-01-01

    Circularizing oligonucleotide probes (padlock probes) have the potential to detect sets of gene sequences with high specificity and excellent selectivity for sequence variants, but sensitivity of detection has been limiting. By using a rolling circle replication (RCR) mechanism, circularized but not unreacted probes can yield a powerful signal amplification. We demonstrate here that in order for the reaction to proceed efficiently, the probes must be released from the topological link that forms with target molecules upon hybridization and ligation. If the target strand has a nearby free 3' end, then the probe-target hybrids can be displaced by the polymerase used for replication. The displaced probe can then slip off the targetstrand and a rolling circle amplification is initiated. Alternatively, the target sequence itself can prime an RCR after its non-base paired 3' end has been removed by exonucleolytic activity. We found the Phi29 DNA polymerase to be superior to the Klenow fragment in displacing the target DNA strand, and it maintained the polymerization reaction for at least 12 h, yielding an extension product that represents several thousand-fold the length of the padlock probe. PMID:9801302

  18. Ultralow temperature synthesis and improved adsorption performance of graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Tao, Xiaojun; Wang, Xiaodong; Li, Zhiwei; Zhou, Shaomin

    2015-01-01

    In this article, we first report an ultralow temperature (-60 °C) synthesis of graphene oxide nanosheets (GONs), which is achieved via the reduction reaction of tetrachloroethylene (C2Cl4) and potassium in liquid ammonia solution at atmospheric pressure. The as-obtained multilayer GONs with a high quality exhibit a low C/O atomic ratio of approximately 2:1, indicating that GONs are rich in the oxygen-containing functional groups. In order to improve their adsorption property, GONs are reduced at 500 °C for 2 h in flowing N2, which results in the successful preparation of graphene nanosheets (GNs) with a high C/O atomic ratio of approximately 32:1. GNs show high specific surface area (508 m2/g), high adsorption capacity (Qe = 148.36 mg/g, Co = 180 mg/L), and rapid adsorption rate (>96%, 10 min) of organic dye rhodamine B (RhB) from water, suggesting that GNs have potential environmental applications as alternatives to commercial materials in wastewater treatment for the removal of organic dye. Compared with the reported methods to prepare GONs, our techniques have attractive advantages, such as low reaction temperature and being friendly to environment.

  19. Adsorption of thiophene on silica-supported Mo clusters

    NASA Astrophysics Data System (ADS)

    Komarneni, M.; Kadossov, E.; Justin, J.; Lu, M.; Burghaus, U.

    2010-07-01

    The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoS x clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H 4C 4S desorbs molecularly at 190-400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 10 13/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H 4C 4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H 2, H 2S, and mostly alkynes are detected in the gas phase as decomposition products. H 4C 4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H 4C 4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H 2 and H 2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O 2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H 2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C 4H 4S has been determined. At thermal impact energies ( Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the

  20. The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: The role of sulfhydryl sites

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Fein, Jeremy B.

    2015-10-01

    The adsorption and desorption of Cd onto Shewanella oneidensis bacterial cells with and without blocking of sulfhydryl sites was measured in order to determine the effect of metal loading and to understand the role of sulfhydryl sites in the adsorption reactions. The observed adsorption/desorption behaviors display strong dependence on metal loading. Under a high loading of 40 μmol Cd/g bacterial cells, blocking the sulfhydryl sites within the cell envelope by exposure of the biomass to monobromo(trimethylammonio)bimane bromide (qBBr) does not significantly affect the extent of Cd adsorption, and we observed fully reversible adsorption under this condition. In contrast, under a low metal loading of 1.3 μmol Cd/g bacterial cells, the extent of Cd adsorption onto sulfhydryl-blocked S. oneidensis cells was significantly lower than that onto untreated cells, and only approximately 50-60% of the adsorbed Cd desorbed from the cells upon acidification. In conjunction with previous EXAFS results, our findings demonstrate that Cd adsorption onto S. oneidensis under low metal loading conditions is dominated by sulfhydryl binding, and thus is controlled by a distinct adsorption mechanism from the non-sulfhydryl site binding which controls Cd adsorption under high metal loading conditions. We use the data to develop a surface complexation model that constrains the values of the stability constants for individual Cd-sulfhydryl and Cd-non-sulfhydryl bacterial complexes, and we use this approach to account for the Cd adsorption behavior as a function of both pH and metal loading. This approach is crucial in order to predict metal adsorption onto bacteria under environmentally relevant metal loading conditions where sulfhydryl binding sites can dominate the adsorption reaction.

  1. The synthesis of super-small nano hydroxyapatite and its high adsorptions to mixed heavy metallic ions.

    PubMed

    Jing, Nan; Zhou, An-Nan; Xu, Qing-Hong

    2018-03-01

    A "molecular cage" was possibly built in glucose alkaline solution to limit the chemical reaction in a tiny space to control the size and morphology of HA nanoparticles. A possible reaction mechanism of HA nanoparticles confined space synthesis was proposed in this work. The super-small HA nanoparticles were successfully obtained in the first time in mild and green condition which had a 7 nm diameter. The adsorptions to Pb 2+ , Zn 2+ , Ni 2+ , Cd 2+ ions in their mixture solution by the synthesized HA nanoparticles were studied. The adsorbent showed huge adsorption capacities for the targets (Pb 2+  = 3289 mg/g, Zn 2+  = 3150 mg/g, Ni 2+  = 3061 mg/g and Cd 2+  = 2784 mg/g), which indicated an excellent performance of the synthesized nano material in water treatment. Freundlich equation analysis and SEM images of the adsorption products suggested multilayer adsorptions to the targets, and a new recrystalline type adsorption on the surface of the host was found. Some Ca atoms in HA nanoparticles were also found to be substituted by the heavy metallic elements in the initial stage of the adsorptions. The synthesized nano material exhibits better application prospect in wastewater treatment field for its easy synthesis, low-cost and environmental friendly properties. Copyright © 2018. Published by Elsevier B.V.

  2. Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water.

    PubMed

    Zheng, Yingqiu; Zhu, Bicheng; Chen, Hua; You, Wei; Jiang, Chuanjia; Yu, Jiaguo

    2017-10-15

    Monodispersed hierarchical flower-like nickel(II) oxide (NiO) microspheres were fabricated by a facile solvothermal reaction with the assistance of ethanolamine and a subsequent calcination process. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, zeta potential measurement and Fourier transform infrared spectroscopy. Flower-like nickel(II) hydroxide microspheres with uniform diameters of approximate 6.3μm were obtained after the solvothermal reaction. After heat treatment at 350°C, the crystal phase transformed to NiO, but the hierarchical porous structure was maintained. The as-prepared microspheres exhibited outstanding performance for the adsorption of Congo red (CR), an anionic organic dye, from aqueous solution at circumneutral pH. The pseudo-second-order model can make a good description of the adsorption kinetics, while Langmuir model could well express the adsorption isotherms, with calculated maximum CR adsorption capacity of 534.8 and 384.6mgg -1 , respectively, for NiO and Ni(OH) 2 . The adsorption mechanism of CR onto the as-synthesized samples can be mainly attributed to electrostatic interaction between the positively charged sample surface and the anionic CR molecules. The as-prepared NiO microspheres are a promising adsorbent for CR removal in water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    PubMed Central

    Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin

    2018-01-01

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188

  4. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.

    PubMed

    Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin

    2018-04-05

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  5. Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions.

    PubMed

    Fu, Yong; Huang, Yue; Hu, Jianshe; Zhang, Zhengjie

    2018-03-01

    A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG 0 and ΔH 0 suggested that the adsorption was a spontaneous exothermic process.

  6. Surface sampling concentration and reaction probe with controller to adjust sampling position

    DOEpatents

    Van Berkel, Gary J.; ElNaggar, Mariam S.

    2016-07-19

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  7. Adsorption and desorption for dynamics transport of hexavalent chromium Cr(Ⅵ) in soil column

    NASA Astrophysics Data System (ADS)

    Tong, J.

    2017-12-01

    Batch experiments have been carried out to study the adsorption of heavy metals in soils, and the migration and transformation of hexavalent chromium Cr(Ⅵ) in the soil of a vegetable base were studied by dynamic adsorption and desorption soil column experiments. The aim of this study was to investigate the effect of initial concentration and pH value on the adsorption process of Cr(Ⅵ). Breakthrough curve were used to evaluate the capacity of Cr(Ⅵ) adsorption in soil columns. The results show that the higher the initial concentration, the worse the adsorption capacity of Cr(Ⅵ). The adsorption of Cr(Ⅵ) was strongly sensitive to pH value. The capacity of Cr(Ⅵ) adsorption is maximized at very low pH value. This may be due to changes in pH that cause a series of complex reactions in Cr(Ⅵ). In a strongly acidic environment, the reaction of Cr(Ⅵ) with hydrogen ions is accompanied by the formation of Cr3+, which reacts with the soil free iron-aluminum oxide to produce hydroxide in the soil. The results of the desorption experiments indicate that Cr(Ⅵ) is more likely to leach from this soil, but if the eluent is strong acid solution, the leaching process will be slow and persistent. The program CXTFIT was used to fit the breakthrough curve to estimate parameters. The results of the calculation of the dispersion coefficient (D) can be obtained by this program. The two-site model fit the breakthrough curve data of Cr(Ⅵ) well, and the parameters calculated by CXTFIT can be used to explain the behavior of Cr(Ⅵ) migration and transformation in soil columns. When pH=2, the retardation factor (R) reach at 79.71 while the value of the R is generally around 10 in other experiments. The partitioning coefficient β shows that more than half of the adsorption sites are rate-limited in this adsorption process and non-equilibrium effects the Cr(Ⅵ) transport process in this soil.

  8. Highly Efficient Multiple-Anchored Fluorescent Probe for the Detection of Aniline Vapor Based on Synergistic Effect: Chemical Reaction and PET.

    PubMed

    Jiao, Zinuo; Zhang, Yu; Xu, Wei; Zhang, Xiangtao; Jiang, Haibo; Wu, Pengcheng; Fu, Yanyan; He, Qingguo; Cao, Huimin; Cheng, Jiangong

    2017-05-26

    A multiple-anchored fluorescent probe ((((hexane-1,6-diylbis(2,7-bis(4-formyl)-phenyl)-9H-fluorine-9,9-diyl))-bis(hexane-6,1-diyl))-bis(9H-carbazole-9,3,6-triyl))-tetrakis(benzene-4,1-diyl))-tetraformyl-(8FP-2F) with eight aldehyde groups was designed and synthesized. The molecule has four branches and highly twisted structure. Furthermore, it tends to self-assemble into nanospheres, which is beneficial for gaseous analyte penetration and high fluorescence quantum efficiency. Among gaseous analytes, detection of aniline vapor is extraordinarily important in the control of environmental issues and human diseases. Herein, 8FP-2F was introduced to detect aniline vapor with distinguished sensitivity and selectivity via simple Schiff base reaction at room temperature. After exposure to saturate aniline vapor, the 89% fluorescence of 8FP-2F was quenched in 50 s and the detection limit was as low as 3 ppb. Further study showed the suitable HOMO/LUMO energy levels and matched orbital symmetry between probe and aniline molecules ensured chemical reaction and PET process work together. The synergistic effect resulted in a significant sensing performance and fluorescence quenching toward aniline vapor. Moreover, the multiple active sites structure of 8FP-2F means it could be applied for constructing many interesting structures and highly efficient organic optoelectronic functional materials.

  9. Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy.

    PubMed

    Kangur, Liina; Jones, Michael R; Freiberg, Arvi

    2017-12-01

    Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

    2011-01-01

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (Kc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  11. Recent modifications of chitosan for adsorption applications: a critical and systematic review.

    PubMed

    Kyzas, George Z; Bikiaris, Dimitrios N

    2015-01-09

    Chitosan is considered to be one of the most promising and applicable materials in adsorption applications. The existence of amino and hydroxyl groups in its molecules contributes to many possible adsorption interactions between chitosan and pollutants (dyes, metals, ions, phenols, pharmaceuticals/drugs, pesticides, herbicides, etc.). These functional groups can help in establishing positions for modification. Based on the learning from previously published works in literature, researchers have achieved a modification of chitosan with a number of different functional groups. This work summarizes the published works of the last three years (2012-2014) regarding the modification reactions of chitosans (grafting, cross-linking, etc.) and their application to adsorption of different environmental pollutants (in liquid-phase).

  12. Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review

    PubMed Central

    Kyzas, George Z.; Bikiaris, Dimitrios N.

    2015-01-01

    Chitosan is considered to be one of the most promising and applicable materials in adsorption applications. The existence of amino and hydroxyl groups in its molecules contributes to many possible adsorption interactions between chitosan and pollutants (dyes, metals, ions, phenols, pharmaceuticals/drugs, pesticides, herbicides, etc.). These functional groups can help in establishing positions for modification. Based on the learning from previously published works in literature, researchers have achieved a modification of chitosan with a number of different functional groups. This work summarizes the published works of the last three years (2012–2014) regarding the modification reactions of chitosans (grafting, cross-linking, etc.) and their application to adsorption of different environmental pollutants (in liquid-phase). PMID:25584681

  13. Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels.

    PubMed

    El-Harby, Nouf F; Ibrahim, Shaimaa M A; Mohamed, Nadia A

    2017-11-01

    Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.

  14. A dual-selective fluorescent probe for GSH and Cys detection: Emission and pH dependent selectivity.

    PubMed

    Tang, Yunqiang; Jin, Longyi; Yin, Bingzhu

    2017-11-15

    A novel fluorescent probe 1 based on acridine orange was developed for the selective detection and bioimaging of biothiols. The probe exhibits higher selectivity and turn-on fluorescence response to cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) than to other amino acids. Importantly, the probe responds to GSH and Cys/Hcy with distinct fluorescence emissions in PBS buffer at pH of 7.4. The Cys/Hcy-triggered tandem S N Ar-rearrangement reaction and GSH-induced S N Ar reaction with the probe led to the corresponding amino-acridinium and thio-acridinium dyes, respectively, which can discriminate GSH from Cys/Hcy through different emission channels. Interestingly, Cys finishes the tandem reaction with the probe and subsequently forms amino-acridinium and Hcy/GSH induces S N Ar reaction with the probe to form thio-acridiniums at weakly acidic conditions (pH 6.0), enabling Cys to be discriminated from Hcy/GSH at different emissions. Finally, we demonstrated that probe 1 can selectively probe GSH over Cys and Hcy or Cys over GSH and Hcy in HeLa cells through multicolor imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Thermodynamics of adsorption of dithiocarbamates at the hanging mercury drop.

    PubMed

    Giannakopoulos, Evangelos; Deligiannakis, Yiannis

    2007-02-27

    Two dimethyldithiocarbamate (DMDTC) pesticides, thiram and ziram, are adsorbed onto a Hg drop via an entropically driven process. The adsorption isotherms are described by the Frumkin equation. For both molecules, the adsorption is characterized by a nonlinear pseudosigmoid temperature dependence of the Gibbs free energy. For the temperature range of 273-313 K, DeltaGADS varies between -43.4 and -56.71 kJ/mol for thiram and -42.60 and -55.67 kJ/mol for ziram. This variation of DeltaGADS reveals that the adsorption strength is increased at higher temperatures. During the adsorption of either molecule, strong lateral interactions are developed between neighboring adsorbates, which are severely weakened as the temperature increases. A unified reaction scheme is suggested for both ziram and thiram that predicts the formation and adsorption of a surface complex, (DMDTC)2Hg. In the case of thiram, two DMDTC molecules are formed by the cleavage of the disulfide S-S bond near the Hg electrode. The thermodynamic and structural parameters reveal that there are two limiting thermodynamic regimes for the adsorbed (DMDTC)2Hg species that originate from two limiting adsorption conformations of the adsorbates on the Hg surface. A transition occurs between these two conformations at temperatures in the region of 285-295 K. This transition is accompanied by large entropic and enthalpic changes.

  16. In-plane conductance of thin films as a probe of surface chemical environment: Adsorbate effects on film electronic properties of indium tin oxide and gold

    NASA Astrophysics Data System (ADS)

    Swint, Amy Lynn

    Changes in the in-plane conductance of conductive thin films are observed as a result of chemical adsorption at the surface. Reaction of the indium tin oxide (ITO) surface with Bronsted acids (bases) leads to increases (decreases) in its in-plane conductance as measured by a four-point probe configuration. The conductance varies monotonically with pH suggesting that the degree of surface protonation or hydroxylation controls the surface charge density, which in turn affects the width of the n-type depletion layer, and ultimately the in-plane conductance. Measurements at constant pH with a series of tetraalkylammonium hydroxide species of varying cation size indicate that surface dipoles also affect ITO conductance by modulating the magnitude of the surface polarization. Modulating the double layer with varying aqueous salt solutions also affects ITO conductance, though not to the same degree as strong Bronsted acids and bases. Solvents of varying dielectric constant and proton donating ability (ethanol, dimethylformamide) decrease ITO conductance relative to H2O. In addition, changing solvent gives rise to thermally-derived conductance transients, which result from exothermic solvent mixing. The self-assembly of alkanethiols at the surface increases the conductance of ITO films, most likely through carrier population effects. In all cases examined the combined effects of surface charge, adsorbed dipole layer magnitude and carrier injection are responsible for altering the ITO conductance. Besides being directly applicable to the control of electronic properties, these results also point to the use of four-point probe resistance measurements in condensed phase sensing applications. Ultrasensitive conductance-based gas phase sensing of organothiol adsorption to gold nanowires is accomplished with a limit of detection in the 105 molecule range. Further refinement of the inherently low noise resistance measurement may lead to observation of single adsorption events at

  17. Adsorption behavior and mechanism of Cd(II) on loess soil from China.

    PubMed

    Wang, Yan; Tang, Xiaowu; Chen, Yunmin; Zhan, Liangtong; Li, Zhenze; Tang, Qiang

    2009-12-15

    Cadmium is a toxic heavy metal that has caused serious public health problems. It is necessary to find a cost effective method to deal with wastewater containing Cd(II). Loess soils in China have proven to be a potential adsorbent for Cd(II) removal from wastewater. The adsorption capacity of loess towards Cd(II) has been determined to be about 9.37 mg g(-1). Slurry concentration, initial solution pH, reaction time and temperature have also been found to significantly influence the efficiency of Cd(II) removal. The adsorption isotherms and kinetics of loess soil from China can be best-fit with the Langmuir model and pseudo-second order kinetics model, respectively. The thermodynamic analysis revealed that the adsorption process was spontaneous, endothermic and the system disorder increased with duration. The natural organic matter in loess soil is mainly responsible for Cd(II) removal at pH < 4.2, while clay minerals contribute to a further gradual adsorption process. Chemical precipitation dominates the adsorption stage at pH > 8.97. Further studies using X-ray diffraction, Fourier transform infrared spectra of Cd(II) laden loess soil and Cd(II) species distribution have confirmed the adsorption mechanism.

  18. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  19. Chirality in adsorption on solid surfaces.

    PubMed

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  20. Molybdate adsorption from steel slag eluates by subsoils.

    PubMed

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Correction: Reactions of metallodrugs with proteins: selective binding of phosphane-based platinum(ii) dichlorides to horse heart cytochrome c probed by ESI MS coupled to enzymatic cleavage.

    PubMed

    Mügge, Carolin; Michelucci, Elena; Boscaro, Francesca; Gabbiani, Chiara; Messori, Luigi; Weigand, Wolfgang

    2018-05-23

    Correction for 'Reactions of metallodrugs with proteins: selective binding of phosphane-based platinum(ii) dichlorides to horse heart cytochrome c probed by ESI MS coupled to enzymatic cleavage' by Carolin Mügge et al., Metallomics, 2011, 3, 987-990.

  2. Characterization and evaluation of amorphous carbon thin film (ACTF) for sodium ion adsorption

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Mousa, Mahmoud Ahmed; Moghny, Th. Abdel; Awadallah, Ahmed E.

    2017-12-01

    The removal of sodium ions from aqueous solutions by adsorption onto amorphous carbon thin film (ACTF) has been studied in batch mode. In this work, the ACTF as new adsorbent was synthesized based on rice straw, then its structure and properties were taken into consideration to study its ability to adsorb sodium ions from synthetic water. The influence of pH, contact time, and temperature of the ion adsorption on ACTF was also studied using batch tests. We found that the contact time of sodium adsorption and its isothermal adsorption studied were described by pseudo-second-order kinetic model and Langmuir isotherm, respectively. Our results indicated that the adsorption of sodium ions on ACTF become be stronger and depends on pH, furthermore, the maximum adsorption capacities of sodium on ACTF recorded 107, 120 and 135 mg g-1 at 35, 45, and 65 °C. The thermodynamic parameters explain that the adsorption of sodium ions on ACTF is a spontaneous process and endothermic reaction. According to adsorption studies, we found that the ACTF can be used effectively for ion chromatography or desalinate sodium ion using ion exchange process in the hybrid desalination process with insignificant loss of adsorption capacity. However, the ACTF has better properties than any other carbon materials obtained from an agricultural byproduct.

  3. Core-level photoemission investigation of atomic-fluorine adsorption on GaAs(110)

    NASA Astrophysics Data System (ADS)

    McLean, A. B.; Terminello, L. J.; McFeely, F. R.

    1989-12-01

    The adsorption of atomic F on the cleaved GaAs(110) surface has been studied with use of high-resolution core-level photoelectron spectroscopy by exposing the GaAs(110) surfaces to XeF2, which adsorbs dissociatively, leaving atomic F behind. This surface reaction produces two chemically shifted components in the Ga 3d core-level emission which are attributed to an interfacial monofluoride and a stable trifluoride reaction product, respectively. The As 3d core level develops only one chemically shifted component and from its exposure-dependent behavior it is attributed to an interfacial monofluoride. Least-squares analysis of the core-level line shapes revealed that (i) the F bonds to both the anion and the cation , (ii) the GaF3 component (characteristic of strong interfacial reaction) and the surface core-level shifted component (characteristic of a well ordered, atomically clean surface) are present together over a relatively large range of XeF2 exposures, and (iii) it is the initial disruption of the GaAs(110) surface that is the rate-limiting step in this surface reaction. These results are compared with similar studies of Cl and O adsorption on GaAs(110).

  4. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Adsorption contributions of graphene to sodium ion storage performance

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Xu, Zhanwei; Guan, Weiwei; Shen, Xuetao; Cao, Liyun; Huang, Jianfeng

    2018-05-01

    Graphene derivates, including graphite, graphene oxide (GO), and reduced graphene oxide (rGO), are employed as sodium ion battery anodes to investigate the effect of adsorption reactions on their electrochemical performance. GO and rGO exhibit the reversible capacity of 230, 192 mAh g‑1 at a low current density of 100 mA g‑1. However, when tested at higher current densities of 200, 500, and 1000 mA g‑1, the GO electrodes deliver 136, 76, and 38 mAh g‑1, respectively. As a comparison, rGO exhibits capacity as high as 168, 133, and 117 mAh g‑1 at the same conditions—23.5%, 75.0%, and 207.9% higher, respectively, than the capacities of GO. These analyses, based on the cyclic voltammetry curves, discharge/charge voltage profiles, rate and cycle performance, as well as infrared spectroscopy analysis, show the contributions of the capacity from reversible physical and chemical adsorption. The main behavior type of rGO is physical adsorption, which meets the requirements of the fast charge/discharge process, while the predominant behavior of GO is chemical adsorption.

  6. Kinetics of Molybdenum Adsorption and Desorption in Soils.

    PubMed

    Sun, Wenguang; Selim, H Magdi

    2018-05-01

    Much uncertainty exists in mechanisms and kinetics controlling the adsorption and desorption of molybdenum (Mo) in the soil environment. To investigate the characteristics of Mo adsorption and desorption and predict Mo behavior in the vadose zone, kinetic batch experiments were performed using three soils: Webster loam, Windsor sand and Mahan sand. Adsorption isotherms for Mo were strongly nonlinear for all three soils. Strong kinetic adsorption of Mo by all soils was also observed, where the rate of retention was rapid initially and was followed by slow retention behavior with time. The time-dependent Mo sorption rate was not influenced when constant pH was maintained. Desorption or release results indicated that there were significant fractions of Mo that appeared to be irreversible or slowly reversibly sorbed by Windsor and Mahan. X-ray absorption near edge structure (XANES) analysis for Windsor and Mahan soils indicated that most of Mo had been bound to kaolinite, whereas Webster had similar XANES features to those of Mo sorbed to montmorillonite. A sequential extraction procedure provided evidence that a significant amount of Mo was irreversibly sorbed. A multireaction model (MRM) with nonlinear equilibrium and kinetic sorption parameters was used to describe the adsorption-desorption kinetics of Mo on soils. Our results demonstrated that a formulation of MRM with two sorption sites (equilibrium and reversible) successfully described Mo adsorption-desorption data for Webster loam, and an additional irreversible reaction phase was recommended to describe Mo desorption or release with time for Windsor and Mahan soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon.

    PubMed

    Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua

    2017-07-01

    Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m 2 /g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Structural and adsorptive properties of activated carbons prepared by carbonization and activation of resins.

    PubMed

    Leboda, R; Skubiszewska-Zieba, J; Tomaszewski, W; Gun'ko, V M

    2003-07-15

    Four activated carbons (S1-S4) possessing different structural characteristics were prepared by carbonization of commercial resins (used for ion exchange) and subsequent activation. Their textural parameters were determined on the basis of nitrogen adsorption-desorption at 77.4 K, analyzed by applying several local and overall adsorption isotherm equations. The nature of carbon surface functionalities was analyzed by FTIR spectroscopy. The GC and solid-phase extraction (SPE) techniques were applied to study the influence of the texture of carbonaceous materials on their adsorptive properties. The adsorption efficiency of synthesized carbons with respect to alkylhalides used as probe compounds in the GC measurements varied over a range from 28% (C(2)H(3)Cl(3)/S2) to 85% (CHBr(3)/S1) depending on the type of adsorbates and adsorbents. The concentrating efficiency of these carbons in SPE of explosive materials changed over a larger range from 12% (trinitroglycerin/S4) and 13% (trinitrotoluene/S2) up to 100% (octogen/S1). Active carbon prepared using Zerolite 225x8 as a precursor demonstrated better results than other carbons in two types of adsorption with average values of the efficiency of 75.4% for explosives and 60.8% for alkylhalides.

  9. Swing arm profilometer: high accuracy testing for large reaction-bonded silicon carbide optics with a capacitive probe

    NASA Astrophysics Data System (ADS)

    Xiong, Ling; Luo, Xiao; Hu, Hai-xiang; Zhang, Zhi-yu; Zhang, Feng; Zheng, Li-gong; Zhang, Xue-jun

    2017-08-01

    A feasible way to improve the manufacturing efficiency of large reaction-bonded silicon carbide optics is to increase the processing accuracy in the ground stage before polishing, which requires high accuracy metrology. A swing arm profilometer (SAP) has been used to measure large optics during the ground stage. A method has been developed for improving the measurement accuracy of SAP using a capacitive probe and implementing calibrations. The experimental result compared with the interferometer test shows the accuracy of 0.068 μm in root-mean-square (RMS) and maps in 37 low-order Zernike terms show accuracy of 0.048 μm RMS, which shows a powerful capability to provide a major input in high-precision grinding.

  10. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    NASA Astrophysics Data System (ADS)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  11. Effect of Micellization on the Adsorption Kinetics of Polymeric Surfactants to the Solid/Water Interface

    NASA Astrophysics Data System (ADS)

    Toomey, Ryan; Tirrell, Matthew

    2002-03-01

    We have studied the adsorption kinetics of two classes of hydrophobic/ionic diblock copolymer surfactants in aqueous environments to understand the role that micellization plays in the adsorption process. The two systems studied were poly(t-butyl styrene)-block-poly(styrene sulfonate) (PtBS-b-PSS) and polystyrene-block-poly(acrylic acid) (PS-b-PAA). It is found that by changing the hydrophobicity of the adsorbing surface, micelle adsorption can be turned on or off. When micelle adsorption occurs, the initial adsorption rate is always slower than the supply rate of micelles to the surface, indicating “reaction-limited” adsorption. Since these micelles have essentially frozen cores, the adsorption cannot be explained by the release of unimers from the micelles. Rather, micelles directly adsorb, and they have to overcome the potential barrier imposed by their corona. Due to micellization, the adsorption rate can also be a complex function of ionic strength. A regime was found where the initial adsorption rate decreased with increasing ionic strength. This anomaly can be explained by the onset of micellization. As the salt concentration is increased, more micelles are formed. However micelles adsorb roughly an order of magnitude slower than free chains. Therefore, if increasing the ionic strength produces more micelles, the adsorption rate will simultaneously decrease.

  12. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  13. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  14. Research of Co(II) Adsorption on Silica Gel Grafted with Dithiocarbamate (DTC-SiO2) in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Yao, Qingxu; Xu, Peng; Huo, Yonggang; Shang, Aiguo; Yu, Fengmei

    2018-01-01

    Dithiocarbamate grafted silica gel (DTC-SiO2) was prepared following two simple reaction steps. The properties of the composite were characterized by FTIR, SEM and element analysis. Its ability to remove Co2+ ions in aqueous solution with low concentration was also studied by static adsorption experiments. The effects of pH value in solution, contact time and temperature were investigated. The results show that the DTC-SiO2 exhibits excellent adsorption property for Co2+. The adsorption kinetics could be well described by pseudo-second-order model and the adsorption isotherms could be depicted by both Freundlich and Dubinin-Radushkevich models. The adsorption process belongs to chemisorption. The slightly influence of common interfering metal ions (Na+, K+, Ca2+ and Mg2+) on the adsorption capacity revealing the synthesized DTC-SiO2 performs excellent selective adsorption to Co2+.

  15. Quantifying Differences in the Impact of Variable Chemistry on Equilibrium Uranium(VI) Adsorption Properties of Aquifer Sediments

    PubMed Central

    2011-01-01

    Uranium adsorption–desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500–1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2–, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors. PMID:21923109

  16. Hg(II) adsorption using amidoximated porous acrylonitrile/itaconic copolymers prepared by suspended emulsion polymerization.

    PubMed

    Ji, Chunnuan; Qu, Rongjun; Chen, Hou; Liu, Xiguang; Sun, Changmei; Ma, Caixia

    2016-01-01

    Initially, porous acrylonitrile/itaconic acid copolymers (AN/IA) were prepared by suspended emulsion polymerization. Successively, the cyano groups in AN/IA copolymers were converted to amidoxime (AO) groups by the reaction with hydroxylamine hydrochloride. The structures of the AN/IA and amidoximated AN/IA (AO AN/IA) were characterized by infrared spectroscopy, scanning electron microscopy, and porous structural analysis. The adsorption properties of AO AN/IA for Hg(II) were investigated. The results show that AO AN/IA has mesopores and macropores, and surface area of 11.71 m(2) g(-1). It was found that AO AN/IA has higher affinity for Hg(II), with the maximum adsorption capacity of 84.25 mg g(-1). The AO AN/IA also can effectively remove Hg(II) from different binary metal ion mixture systems. Furthermore, the adsorption kinetics and thermodynamics were studied in detail. The adsorption equilibrium can quickly be achieved in 4 h determined by an adsorption kinetics study. The adsorption process is found to belong to the second-order model, and can be described by the Freundlich model.

  17. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets.

    PubMed

    Chen, Xiaoxiao; Chen, Baoliang

    2015-05-19

    The surface properties and adsorption mechanisms of graphene materials are important for potential environmental applications. The adsorption of m-dinitrobenzene, nitrobenzene, and p-nitrotoluene onto graphene oxide (GO), reduced graphene oxide (RGO), and graphene (G) nanosheets was investigated using IR spectroscopy to probe the molecular interactions of graphene materials with nitroaromatic compounds (NACs). The hydrophilic GO displayed the weakest adsorption capability. The adsorption of RGO and G was significantly increased due to the recovery of hydrophobic π-conjugation carbon atoms as active sites. RGO nanosheets, which had more defect sites than did GO or G nanosheets, resulted in the highest adsorption of NACs which was 10-50 times greater than the reported adsorption of carbon nanotubes. Superior adsorption was dominated by various interaction modes including π-π electron donor-acceptor interactions between the π-electron-deficient phenyls of the NACs and the π-electron-rich matrix of the graphene nanosheets, and the charge electrostatic and polar interactions between the defect sites of graphene nanosheets and the -NO2 of the NAC. The charge transfer was initially proved by FTIR that a blue shift of asymmetric -NO2 stretching was observed with a concomitant red shift of symmetric -NO2 stretching after m-dinitrobenzene was adsorbed. The multiple interaction mechanisms of the adsorption of NAC molecule onto flat graphene nanosheets favor the adsorption, detection, and transformation of explosives.

  18. Surface reactions of ethanol over UO 2(100) thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. D. Senanayake; Mudiyanselage, K.; Burrell, A. K.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure, and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO 3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH 3CH 2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C 1s, O 1s, and U 4f to investigate the bondingmore » mode, surface composition, electronic structure, and probable chemical changes to the stoichiometric-UO 2(100) [smooth-UO 2(100)] and Ar +-sputtered UO 2(100) [rough-UO 2(100)] surfaces. Unlike UO 2(111) single crystal and UO 2 thin film, Ar-ion-sputtering of this UO 2(100) did not result in noticeable reduction of U cations. Upon ethanol adsorption (saturation occurred at 0.5 ML), only the ethoxy (CH 3CH 2O –) species is formed on smooth-UO 2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO–) on the Ar +-sputtered UO 2(100) surface. Furthermore, all ethoxy and acetate species are removed from the surface between 600 and 700 K.« less

  19. Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers

    PubMed Central

    Zhang, Yu; Cai, Xiyun; Xiong, Weina; Jiang, Hao; Zhao, Haitong; Yang, Xianhai; Li, Chao; Fu, Zhiqiang; Chen, Jingwen

    2014-01-01

    Effects of pH on adsorption and removal efficiency of ionizable organic compounds (IOCs) by environmental adsorbents are an area of debate, because of its dual mediation towards adsorbents and adsorbate. Here, we probe the pH-dependent adsorption of ionizable antibiotic oxytetracycline (comprising OTCH2 +, OTCH±, OTC−, and OTC2−) onto cyclodextrin polymers (CDPs) with the nature of molecular recognition and pH inertness. OTCH± commonly has high adsorption affinity, OTC− exhibits moderate affinity, and the other two species have negligible affinity. These species are evidenced to selectively interact with structural units (e.g., CD cavity, pore channel, and network) of the polymers and thus immobilized onto the adsorbents to different extents. The differences in adsorption affinity and mechanisms of the species account for the pH-dependent adsorption of OTC. The mathematical equations are derived from the multiple linear regression (MLR) analysis of quantitatively relating adsorption affinity of OTC at varying pH to adsorbent properties. A combination of the MLR analysis for OTC and molecular recognition of adsorption of the species illustrates the nature of the pH-dependent adsorption of OTC. Based on this finding, γ-HP-CDP is chosen to adsorb and remove OTC at pH 5.0 and 7.0, showing high removal efficiency and strong resistance to the interference of coexisting components. PMID:24465975

  20. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    PubMed

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  1. Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils.

    PubMed

    Kasozi, Gabriel N; Nkedi-Kizza, Peter; Agyin-Birikorang, Sampson; Zimmerman, Andrew R

    2010-01-27

    The adsorption and degradation of the pesticide diuron in carbonatic and noncarbonatic soils were investigated to better understand the fate and transport of diuron in the environment. Batch adsorption experiments yielded isotherms that were well-described by the linear model. Adsorption coefficients normalized to soil organic carbon content (K(oc)) were lowest for carbonatic soils, averaging 259 +/- 48 (95% CI), 558 +/- 109, 973 +/- 156, and 2090 +/- 1054 for carbonatic soils, Histosols, Oxisols, and Spodosols, respectively. In addition, marl-carbonatic soils had much lower K(oc) values (197 +/- 27) than nonmarl-carbonatic soils. Diuron degradation data fit a first-order reaction kinetics model, yielding half-lives in soils ranging from 40 to 267 days. There was no significant difference between the average diuron degradation rate coefficients of each of the soil groups studied. Given the low adsorption capacity of carbonatic soils, it may be advisable to lower herbicide application rates in agricultural regions with carbonatic soils such as southern Florida to protect aquatic ecosystems and water quality.

  2. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids. Copyright © 2011 SETAC.

  3. Investigation into adsorption and photocatalytic degradation of gaseous benzene in an annular fluidized bed photocatalytic reactor.

    PubMed

    Geng, Qijin; Tang, Shankang; Wang, Lintong; Zhang, Yunchen

    2015-01-01

    The adsorption and photocatalytic degradation of gaseous benzene were investigated considering the operating variables and kinetic mechanism using nano-titania agglomerates in an annular fluidized bed photocatalytic reactor (AFBPR) designed. The special adsorption equilibrium constant, adsorption active sites, and apparent reaction rate coefficient of benzene were determined by linear regression analysis at various gas velocities and relative humidities (RH). Based on a series of photocatalytic degradation kinetic equations, the influences of operating variables on degradation efficiency, apparent reaction rate coefficient and half-life were explored. The findings indicated that the operating variables have obviously influenced the adsorption/photocatalytic degradation and corresponding kinetic parameters. In the photocatalytic degradation process, the relationship between photocatalytic degradation efficiency and RH indicated that water molecules have a dual-function which was related to the structure characteristics of benzene. The optimal operating conditions for photocatalytic degradation of gaseous benzene in AFBPR were determined as the fluidization number at 1.9 and RH required related to benzene concentration. This investigation highlights the importance of controlling RH and benzene concentration in order to obtain the desired synergy effect in photocatalytic degradation processes.

  4. Adsorption of NH4+-N on Chinese loess: Non-equilibrium and equilibrium investigations.

    PubMed

    Xie, Haijian; Wang, Shaoyi; Qiu, Zhanhong; Jiang, Jianqun

    2017-11-01

    NH 4 + -N is a crucial pollutant in landfill leachate and can be in high concentrations for a long period of time due to anaerobic condition of landfills. The adsorption properties of NH 4 + -N on the Chinese loess were investigated using Batch test. The influences of ammonium concentration, temperature, reaction time, slurry concentration, and pH on the adsorption process are evaluated. Adsorption kinetics and isotherm behaviors were studied by applying different models to the test data to determine the adsorption parameters. The equilibrating duration was shown to be less than 60 min. The data on adsorption kinetics can be well fitted by the pseudo-second-order kinetics model. According to the Langmuir isotherm model, the adsorption capacity of Chinese loess about NH 4 + -N was predicted to be 72.30 mg g -1 . The uptake of NH 4 + -N by Chinese loess was considered to be the type of physical adsorption on the basis of D-R isotherm analysis. The optimal pH and slurry concentration are 4 and 2 g/50 ml, respectively. According to the calculated values of free energy, enthalpy and entropy change, the adsorption process is determined to be exothermic. The disorder of the system appeared lowest at temperature of 308.15 K. The predicted Gibb's free energies also indicate the adsorption process is endothermic and spontaneous. The FTIR spectrum and EDX analysis showed the adsorption process of NH 4 + involves cation exchange and dissolution of calcite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A density functional study on adsorption and dissociation of O 2 on Ir(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2011-06-01

    The adsorption and the reaction barrier for the dissociation of O 2 on Ir(1 0 0) surface are studied using periodic self-consistent density functional theory (DFT) calculations. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Parallel approaches Prl1 and Prl2 on a hollow site with the same adsorption energy of -3.93 eV for both of them are found to have the most energetically preferred sites of adsorptions among all the studied cases. Hybridization between p-O 2 and d-metal orbitals is responsible for the dissociative adsorption. The minimum energy path is determined by using the nudge elastic band method (NEB). We found that the dissociation occurs immediately and very early in the dissociation path with a small activation barrier (0.26 eV), which means that molecular adsorption of O 2 on Ir(1 0 0) surface occurs at very low temperatures; this is consistent with previous experimental and theoretical studies on Ir surfaces.

  6. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja

    2014-11-01

    Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly

  7. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.

    PubMed

    Zhang, Yingwei; Tian, Jingqi; Li, Hailong; Wang, Lei; Sun, Xuping

    2012-01-01

    We develop a novel single fluorophore-labeled double-stranded oligonucleotide (OND) probe for rapid, nanostructure-free, fluorescence-enhanced nucleic acid detection for the first time. We further demonstrate such probe is able to well discriminate single-base mutation in nucleic acid. The design takes advantage of an inherent quenching ability of guanine bases. The short strand of the probe is designed with an end-labeled fluorophore that is placed adjacent to two guanines as the quencher located on the long opposite strand, resulting in great quenching of dye fluorescence. In the presence of a target complementary to the long strand of the probe, a competitive strand-displacement reaction occurs and the long strand forms a more stable duplex with the target, resulting in the two strands of the probe being separated from each other. As a consequence of this displacement, the fluorophore and the quencher are no longer in close proximity and dye fluorescence increases, signaling the presence of target.

  8. Direct vs. indirect pathway for nitrobenzene reduction reaction on a Ni catalyst surface: a density functional study.

    PubMed

    Mahata, Arup; Rai, Rohit K; Choudhuri, Indrani; Singh, Sanjay K; Pathak, Biswarup

    2014-12-21

    Density functional theory (DFT) calculations are performed to understand and address the previous experimental results that showed the reduction of nitrobenzene to aniline prefers direct over indirect reaction pathways irrespective of the catalyst surface. Nitrobenzene to aniline conversion occurs via the hydroxyl amine intermediate (direct pathway) or via the azoxybenzene intermediate (indirect pathway). Through our computational study we calculated the spin polarized and dispersion corrected reaction energies and activation barriers corresponding to various reaction pathways for the reduction of nitrobenzene to aniline over a Ni catalyst surface. The adsorption behaviour of the substrate, nitrobenzene, on the catalyst surface was also considered and the energetically most preferable structural orientation was elucidated. Our study indicates that the parallel adsorption behaviour of the molecules over a catalyst surface is preferable over vertical adsorption behaviour. Based on the reaction energies and activation barrier of the various elementary steps involved in direct or indirect reaction pathways, we find that the direct reduction pathway of nitrobenzene over the Ni(111) catalyst surface is more favourable than the indirect reaction pathway.

  9. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  10. Iron [Fe(0)]-rich substrate based on iron-carbon micro-electrolysis for phosphorus adsorption in aqueous solutions.

    PubMed

    Deng, Shihai; Li, Desheng; Yang, Xue; Xing, Wei; Li, Jinlong; Zhang, Qi

    2017-02-01

    The phosphorus (P) adsorption properties of an iron [Fe(0)]-rich substrate (IRS) composed of iron scraps and activated carbon were investigated based on iron-carbon micro-electrolysis (IC-ME) and compared to the substrates commonly used in constructed wetlands (CWs) to provide an initial characterization of the [Fe(0)]-rich substrate. The results showed that P was precipitated by Fe(III) dissolved from the galvanic cell reactions in the IRS and the reaction was suppressed by the pH and stopped when the pH exceeded 8.90 ± 0.09. The adsorption capacity of the IRS decreased by only 4.6% in the second round of adsorption due to Fe(0) consumption in the first round. Substrates with high Ca- and Mg-oxide contents and high Fe- and Al-oxide contents had higher P adsorption capacities at high and low pH values, respectively. Substrates containing high Fe and Al concentrations and low Ca concentrations were more resistant to decreases in the P adsorption capacity resulting from organic matter (OM) accumulation. The IRS with an iron scrap to activated carbon volume ratio of 3:2 resulted in the highest P adsorption capacity (9.34 ± 0.14 g P kg -1 ), with minimal pH change and strong adaptability to OM accumulation. The Fe(0)-rich substrate has the considerable potential for being used as a CW substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  12. Fluorescent hybridization probes for nucleic acid detection.

    PubMed

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  13. Excess charge driven dissociative hydrogen adsorption on Ti2O4.

    PubMed

    Song, Xiaowei; Fagiani, Matias R; Debnath, Sreekanta; Gao, Min; Maeda, Satoshi; Taketsugu, Tetsuya; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R; Lyalin, Andrey

    2017-08-30

    The mechanism of dissociative D 2 adsorption on Ti 2 O 4 - , which serves as a model for an oxygen vacancy on a titania surface, is studied using infrared photodissociation spectroscopy in combination with density functional theory calculations and a recently developed single-component artificial force induced reaction method. Ti 2 O 4 - readily reacts with D 2 under multiple collision conditions in a gas-filled ion trap held at 16 K forming a global minimum-energy structure (DO-Ti-(O) 2 -Ti(D)-O) - . The highly exergonic reaction proceeds quasi barrier-free via several intermediate species, involving heterolytic D 2 -bond cleavage followed by D-atom migration. We show that, compared to neutral Ti 2 O 4 , the excess negative charge in Ti 2 O 4 - is responsible for the substantial lowering of the D 2 dissociation barrier, but does not affect the molecular D 2 adsorption energy in the initial physisorption step.

  14. More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor.

    PubMed

    Shen, Xiaochen; Pan, Yanbo; Liu, Bin; Yang, Jinlong; Zeng, Jie; Peng, Zhenmeng

    2017-05-24

    The reaction mechanism and properties of a catalytic process are primarily determined by the interactions between reacting species and catalysts. However, the interactions are often challenging to be experimentally measured, especially for unstable intermediates. Therefore, it is of significant importance to establish an exact relationship between chemical-catalyst interactions and catalyst parameters, which will allow calculation of these interactions and thus advance their mechanistic understanding. Herein we report the description of adsorption energy on transition metals by considering both ionic bonding and covalent bonding contributions and introduce the work function as one additional responsible parameter. We find that the adsorption energy can be more accurately described using a two-dimensional (2D) polynomial model, which shows a significant improvement compared with the current adsorption energy-d-band center linear correlation. We also demonstrate the utilization of this new 2D polynomial model to calculate oxygen binding energy of different transition metals to help understand their catalytic properties in oxygen reduction reactions.

  15. a Direct Probe for Chemical Potentials Difference Between Neutron and Protons in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Zhang, Yan-Li; Wang, Shan-Shan

    We briefly introduce the newly proposed probe to the neutron and proton chemical potential (and density) difference, which is called as the isobaric yield ratio difference (IBD). The IBD probe is related to the chemical potential difference of neutrons and protons between two reactions, at the same time, the nuclear density difference between two reactions. The relationship between the IBD probe and the isoscaling method has also been discussed.

  16. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-03-06

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase.

  17. Cesium adsorption and distribution onto crushed granite under different physicochemical conditions.

    PubMed

    Tsai, Shih-Chin; Wang, Tsing-Hai; Li, Ming-Hsu; Wei, Yuan-Yaw; Teng, Shi-Ping

    2009-01-30

    The adsorption of cesium onto crushed granite was investigated under different physicochemical conditions including contact time, Cs loading, ionic strength and temperature. In addition, the distribution of adsorbed Cs was examined by X-ray diffraction (XRD) and EDS mapping techniques. The results showed that Cs adsorption to crushed granite behaved as a first-order reaction with nice regression coefficients (R(2) > or = 0.971). Both Freundlich and Langmuir models were applicable to describe the adsorption. The maximum sorption capacity determined by Langmuir model was 80 micromol g(-1) at 25 degrees C and 10 micromol g(-1) at 55 degrees C. The reduced sorption capacity at high temperature was related to the partial enhancement of desorption from granite surface. In general, Cs adsorption was exothermic (DeltaH<0, with median of -12 kJ mol(-1)) and spontaneous (DeltaG<0, with median of -6.1 at 25 degrees C and -5.0 kJ mol(-1) at 55 degrees C). The presence of competing cations such as sodium and potassium ions in synthetic groundwater significantly reduces the Cs adsorption onto granite. The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM/EDS) mapping method provided substantial evidences that micaceous minerals (biotite in this case) dominate Cs adsorption. These adsorbed Cs ions were notably distributed onto the frayed edges of biotite minerals. More importantly, the locations of these adsorbed Cs were coincided with the potassium depletion area, implying the displacement of K by Cs adsorption. Further XRD patterns displayed a decreased intensity of signal of biotite as the Cs loading increased, revealing that the interlayer space of biotite was affected by Cs adsorption.

  18. A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nurazar, Roghaye

    2014-03-01

    The adsorption and dissociative reaction of methanol on B12N12 fullerene-like nanocage is investigated by using density functional calculations. Equilibrium geometries, adsorption energies, and electronic properties of CH3OH adsorption on the surface of the B12N12 were identified. The calculated adsorption energies range from -1.3 to -34.9 kcal/mol. It is found that the electrical conductivity of the nanocage can be modified upon the adsorption of CH3OH. The mechanism of methanol decomposition via CO and OH bond scissions is also studied. The results indicate that OH bond scission is the most favorable pathway on the B12N12 surface.

  19. Insight into the adsorption mechanisms of vanadium(V) on a high-efficiency biosorbent (Ti-doped chitosan bead).

    PubMed

    Liu, Xin; Zhang, Lingfan

    2015-08-01

    In this present study, a new chitosan bead modified with titanium ions (TiCB) was prepared and employed for the adsorption of vanadium ions from aqueous solutions. Batch adsorption experiments were performed to research the effect of various factors, including pH, temperature, contact time and initial concentration of vanadium(V) ions. The adsorption of vanadium was followed by the pseudo second-order kinetic and the Langmuir isotherm model, with a remarkable maximum adsorption capacity of 210 mg/g. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the nature of adsorption was feasible, spontaneous (ΔG°<0) and endothermic (ΔH°>0) process. FTIR, EDS, EMI and XPS studies suggested that the mechanisms of adsorption were possibly attributed to electrostatic attraction, ligand-exchange and redox reaction between TiCB and vanadium ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction.

    PubMed

    Abbas, Muhammad A; Basit, Muhammad A; Park, Tae Joo; Bang, Jin Ho

    2015-04-21

    Despite the potential of PbS quantum dots (QDs) as sensitizers for quantum-dot-sensitized solar cells (QDSSCs), achieving a high photocurrent density over 30 mA cm(-2) remains a challenging task in PbS-sensitized solar cells. In contrast to previous attempts, where Hg(2+)-doping or multi-step post-treatment is necessary, we are capable of achieving a high photocurrent exceeding 30 mA cm(-2) simply by manipulating the successive ionic layer adsorption and reaction (SILAR) method. We show that controlling temperature at which SILAR is performed is critical to obtain a higher and more uniform coverage of PbS QDs over a mesoporous TiO2 film. The deposition of a CdS inter-layer between TiO2 and PbS is found to be an effective means of ensuring high photocurrent and stability. Not only does this modification improve the light absorption capability of the photoanode, but it also has a significant effect on charge recombination and electron injection efficiency at the PbS/TiO2 interface according to our in-depth study using electrochemical impedance spectroscopy (EIS). The implication of subtle changes in the interfacial events via modified SILAR conditions for PbS-sensitized solar cells is discussed.

  1. [Application of classical isothermal adsorption models in heavy metal ions/ diatomite system and related problems].

    PubMed

    Zhu, Jian; Wu, Qing-Ding; Wang, Ping; Li, Ke-Lin; Lei, Ming-Jing; Zhang, Wei-Li

    2013-11-01

    In order to fully understand adsorption nature of Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Fe3+ onto natural diatomite, and to find problems of classical isothermal adsorption models' application in liquid/solid system, a series of isothermal adsorption tests were conducted. As results indicate, the most suitable isotherm models for describing adsorption of Pb2+, Cd2+, Cu2+, Zn2+, Mn2+, Fe3+ onto natural diatomite are Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively, the adsorption of each ion onto natural diatomite is mainly a physical process, and the adsorption reaction is favorable. It also can be found that, when using classical isothermal adsorption models to fit the experimental data in liquid/solid system, the equilibrium adsorption amount q(e) is not a single function of ion equilibrium concentration c(e), while is a function of two variables, namely c(e) and the adsorbent concentration W0, q(e) only depends on c(e)/W(0). Results also show that the classical isothermal adsorption models have a significant adsorbent effect, and their parameter values are unstable, the simulation values of parameter differ greatly from the measured values, which is unhelpful for practical use. The tests prove that four-adsorption-components model can be used for describing adsorption behavior of single ion in nature diatomite-liquid system, its parameters k and q(m) have constant values, which is favorable for practical quantitative calculation in a given system.

  2. Adsorption and Desulfurization Mechanism of Thiophene on Layered FeS(001), (011), and (111) Surfaces: A Dispersion-Corrected Density Functional Theory Study

    PubMed Central

    2017-01-01

    Layered transition-metal chalcogenides have emerged as a fascinating new class of materials for catalysis. Here, we present periodic density functional theory (DFT) calculations of the adsorption of thiophene and the direct desulfurization reaction pathways on the (001), (011), and (111) surfaces of layered FeS. The fundamental aspects of the thiophene adsorption, including the initial adsorption geometries, adsorption energies, structural parameters, and electronic properties, are presented. From the calculated adsorption energies, we show that the flat adsorption geometries, wherein the thiophene molecule forms multiple π-bonds with the FeS surfaces, are energetically more favorable than the upright adsorption geometries, with the strength of adsorption decreasing in the order FeS(111) > FeS(011) > FeS(001). The adsorption of the thiophene onto the reactive (011) and (111) surfaces is shown to be characterized by charge transfer from the interacting Fe d-band to the π-system of the thiophene molecule, which causes changes of the intramolecular structure including loss of aromaticity and elongation of the C–S bonds. The thermodynamic and kinetic analysis of the elementary steps involved in the direct desulfurization of thiophene on the reactive FeS surfaces is also presented. Direct desulfurization of thiophene occurs preferentially on the (111) surface, as reflected by the overall exothermic reaction energy calculated for the process (ER = −0.15 eV), with an activation energy of 1.58 eV. PMID:29348782

  3. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective and Sensitive Detection of H2S: Synthesis, Spectra and Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhang, Changyu; Wang, Runyu; Cheng, Longhuai; Li, Bingjie; Xi, Zhen; Yi, Long

    2016-07-01

    Hydrogen sulfide (H2S) is an important signalling molecule with multiple biological functions. The reported H2S fluorescent probes are majorly based on redox or nucleophilic reactions. The combination usage of both redox and nucleophilic reactions could improve the probe’s selectivity, sensitivity and stability. Herein we report a new dual-reactable probe with yellow turn-on fluorescence for H2S detection. The sensing mechanism of the dual-reactable probe was based on thiolysis of NBD (7-nitro-1,2,3-benzoxadiazole) amine (a nucleophilic reaction) and reduction of azide to amine (a redox reaction). Compared with its corresponding single-reactable probes, the dual-reactable probe has higher selectivity and fluorescence turn-on fold with magnitude of multiplication from that of each single-reactable probe. The highly selective and sensitive properties enabled the dual-reactable probe as a useful tool for efficiently sensing H2S in aqueous buffer and in living cells.

  4. Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2017-11-28

    Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.

  5. Water adsorption on goethite: Application of multilayer adsorption models

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  6. Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes.

    PubMed

    Zhou, Tianzhu; Li, Cuiping; Jin, Huiling; Lian, Yangyang; Han, Wenmei

    2017-02-22

    Halloysite@polyaniline (HA@PANI) hybrid nanotubes are synthesized by the in situ chemical polymerization of aniline on halloysite clay nanotubes. By facilely tuning the dopant acid, pH, and apparent weight proportion for aniline (ANI) and halloysite (HA) nanotubes in the synthesis process, PANI with tuned oxidation state, doping extent, and content are in situ growing on halloysite nanotubes. The reaction system's acidity is tuned by dopant acid, such as HCl, H 2 SO 4 , HNO 3 , and H 3 PO 4 . The adsorption result shows the fabricated HA@PANI hybrid nanotubes can effectively adsorb Cr(VI) oxyanion and the adsorption ability changes according to the dopant acid, pH, and apparent weight proportion for ANI and HA in the synthesis process. Among them, the HA@PANI fabricated with HCl as dopant acid tuning the pH at 0.5 and 204% apparent weight proportion for ANI and HA (HP/0.5/204%-HCl) shows the highest adsorption capacity. The adsorption capacity is in accordance well with the doping extent of PANI in HA@PANI. Furthermore, when HP/0.5/204%-HCl is redoped with HNO 3 , H 2 SO 4 , and H 3 PO 4 , the adsorption capacity declines, implying the dopant acid in the process of redoping exhibits a marked effect on Cr(VI) oxyanion adsorption for the HA@PANI hybrid nanotubes. HP/0.5/204%-HCl and HP/0.5/204%-H 3 PO 4 have demonstrated good regenerability with an above 80% removal ratio after four cycles. Moreover, the HA@PANI adsorbent has better sedimentation ability than that of pure PANI. The adsorption behavior is in good agreement with Langmuir and pseudo second-order equations, indicating the adsorption of HA@PANI for Cr(VI) oxyanion is chemical adsorption. FT-IR and XPS of HA@PANI after Cr(VI) oxyanion adsorption indicate that the doped amine/imine groups (-NH + /═N + - groups) are the main adsorption sites for the removal of Cr(VI) oxyanion by electrostatic adsorption and reduction of the adsorbed Cr (VI) oxyanion to Cr(III) simultaneously.

  7. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    PubMed

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29 Si and 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  8. Adsorption Properties of Tetracycline onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    PubMed Central

    Ghadim, Ehsan Ezzatpour; Manouchehri, Firouzeh; Soleimani, Gholamreza; Hosseini, Hadi; Kimiagar, Salimeh; Nafisi, Shohreh

    2013-01-01

    Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π–π interaction and cation–π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742–0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin–Radushkevich (D–R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet. PMID:24302989

  9. Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies.

    PubMed

    Ghadim, Ehsan Ezzatpour; Manouchehri, Firouzeh; Soleimani, Gholamreza; Hosseini, Hadi; Kimiagar, Salimeh; Nafisi, Shohreh

    2013-01-01

    Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π-π interaction and cation-π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742-0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin-Radushkevich (D-R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet.

  10. Dissociative adsorption of O2 on unreconstructed metal (100) surfaces: Pathways, energetics, and sticking kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Evans, James W.

    An accurate description of oxygen dissociation pathways and kinetics for various local adlayer environments is key for an understanding not just of the coverage dependence of oxygen sticking, but also of reactive steady states in oxidation reactions. Density functional theory analysis for M(100) surfaces with M=Pd, Rh, and Ni, where O prefers the fourfold hollow adsorption site, does not support the traditional Brundle-Behm-Barker picture of dissociative adsorption onto second-nearest-neighbor hollow sites with an additional blocking constraint. Rather adsorption via neighboring vicinal bridge sites dominates, although other pathways can be active. The same conclusion also applies for M=Pt and Ir, wheremore » oxygen prefers the bridge adsorption site. Statistical mechanical analysis is performed based on kinetic Monte Carlo simulation of a multisite lattice-gas model consistent with our revised picture of adsorption. This analysis determines the coverage and temperature dependence of sticking for a realistic treatment of the oxygen adlayer structure.« less

  11. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  12. Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Weifeng; Tang, Yusheng; Xi, Jia; Kong, Jie

    2015-01-01

    Graphene sheets were covalently functionalized with poly(1-vinylimidazole) (PVI) type poly(ionic liquid), by utilizing a diazonium addition reaction and the subsequent grafting of PVI polymers onto the graphene sheet surface by a quaternarization reaction. The resultant modified graphene sheets showed improved dispersion property when being dissolved in DMF and ethanol. FTIR, XPS, XRD and TEM observations confirmed the success of the covalent functionalization, and thermogravimetric analysis revealed that the grafting ratio of PVI was ∼12 wt%. The obtained PVI-functionalized graphene showed a high capability for removing anionic dyes such as methyl blue (MB) from water solution. The experimental data of isotherm fitted well with the Langmuir adsorption model. The adsorption capacity of 1910 mg g-1 for methyl blue (MB) dye was observed for functionalized graphene sheets with poly(ionic liquid)s, which was higher than that of unmodified graphene. The high adsorption capacity observed in this study emphasizes that poly(ionic liquid)s-modified graphene materials have a great potential for water purification as they are highly efficient and stable adsorbents for sustainability.

  13. Reactions of SO 2 on hydrated cement particle system for atmospheric pollution reduction: A DRIFTS and XANES study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk

    An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on itsmore » adsorption capacity and reaction mechanisms was also proposed in this work.« less

  14. A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection

    PubMed Central

    Zheng, Yongping; Zhang, Tingwei; Wu, Songjie; Zhang, Jue; Fang, Jing

    2018-01-01

    Molecularly imprinted polymer (MIP) films prepared by bulk polymerization suffer from numerous deficiencies, including poor mass transfer ability and difficulty in controlling reaction rate and film thickness, which usually result in poor repeatability. However, polymer film synthesized by electropolymerization methods benefit from high reproducibility, simplicity and rapidity of preparation. In the present study, an Au film served as the refractive index-sensitive metal film to couple with the light leaked out from optical fiber core and the electrode for electropolymerizing MIP film simultaneously. The manufactured probe exhibited satisfactory sensitivity and specificity. Furthermore, the surface morphology and functional groups of the synthesized MIP film were characterized by Atomic Force Microscopy (AFM) and Fourier transform infrared microspectroscopy (FTIR) for further insights into the adsorption and desorption processes. Given the low cost, label-free test, simple preparation process and fast response, this method has a potential application to monitor substances in complicated real samples for out-of-lab test in the future. PMID:29522472

  15. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    PubMed Central

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  16. The construction, characterization, Hg(II)-sensing and removal behavior of magnetic core-shell nanospheres loaded with fluorescence "Off-On" probe

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Wei, Xiaoyan; Chen, Jie; Sun, Ping; Ouyang, Yuxia; Fan, Juhong; Liu, Rui

    2014-12-01

    The present paper constructed and discussed core-shell structured nanospheres grafted with rhodamine based probe for Hg(II) sensing and removal. Electron microscopy images, XRD curves, thermogravimetric analysis and N2 adsorption/desorption isotherms were used to identify the core-shell structure. The inner core consisted of superparamagnetic Fe3O4 nanoparticles, which made the nanocomposite magnetically removable. The outer shell was constructed with silica molecular sieve which provided large surface area and ordered tunnels for the sensing probe, accelerating analyte adsorption and transportation. The rhodamine based sensing probe emission increased with the increasing Hg(II) concentration, showing emission "Off-On" effect, which could be explained by the structural transformation from a non-emissive one to a highly emissive one. The influence from various metal ions and pH values was also investigated, which suggested this structural transformation could only be triggered by Hg(II), showing high selectivity and linear response. The Hg(II) sensing nanocomposite could be regenerated after usage. The response time was slightly compromised and could be further improved.

  17. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    PubMed

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Atomic and molecular adsorption on Fe(110)

    DOE PAGES

    Xu, Lang; Kirvassilis, Demetrios; Bai, Yunhai; ...

    2017-09-12

    Iron is the principal catalyst for the ammonia synthesis process and the Fischer–Tropsch process, as well as many other heterogeneously catalyzed reactions. It is thus of fundamental importance to understand the interactions between the iron surface and various reaction intermediates. Here in this paper, we present a systematic study of atomic and molecular adsorption behavior over Fe(110) using periodic, self-consistent density functional theory (DFT-GGA) calculations. The preferred binding sites, binding energies, and the corresponding surface deformation energies of five atomic species (H, C, N, O, and S), six molecular species (NH 3, CH 4, N 2, CO, HCN, and NO),more » and eleven molecular fragments (CH, CH 2, CH 3, NH, NH 2, OH, CN, COH, HCO, NOH, and HNO) were determined on the Fe(110) surface at a coverage of 0.25 monolayer. The binding strengths calculated using the PW91 functional decreased in the following order: C> CH > N > O > S > NH > COH > CN > CH2 > NOH > OH > HNO > HCO > NH2 > H > NO > HCN > CH 3 > CO > N 2 > NH 3. No stable binding structures were observed for CH 4. The estimated diffusion barriers and pathways, as well as the adsorbate-surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites, were identified. Using the calculated adsorption energetics, we constructed the potential energy surfaces for a few surface reactions including the decomposition of methane, ammonia, dinitrogen, carbon monoxide, and nitric oxide. These potential energy surfaces provide valuable insight into the ability of Fe(110) to catalyze common elementary steps.« less

  19. Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.

    PubMed

    Zhong, Lexuan; Lee, Chang-Seo; Haghighat, Fariborz

    2012-12-01

    The photocatalytic oxidation (PCO) technology as an alternative method for air purification has been studied for decades and a variety of PCO models indicate that the adsorption of reactants on the catalyst surface is one of the major physical and chemical processes occurring at a heterogeneous photocatalytic reaction. However, limited study explored the adsorption effect of a photocatalyst. This study carried out a systematic evaluation of adsorption performance of titanium dioxide (TiO(2)) coated fiberglass fibers (FGFs), TiO(2) coated carbon cloth fibers (CCFs), and original CCFs air filters at various relative humidity conditions for nine volatile organic compounds. TiO(2)/FGFs, TiO(2)/CCFs, and CCFs were characterized by SEM for morphology and N(2) adsorption isotherm for BET surface area and pore structure. A bench-scale adsorption test setup was constructed and adsorption tests were performed at various relative humidity conditions and four different injected concentrations for each compound. The isothermal adsorption curves at low concentration levels were obtained and they were well described by Langmuir isotherm model. It was noticed that there were significant differences between the adsorption behaviors and photocatalytic activities of TiO(2)/FGFs and TiO(2)/CCFs. It was concluded that adsorption performance is closely related to the characteristics of substrates and therefore, the development of a substrate with high adsorption ability is a promising trend for improving the performance of the UV-PCO technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A cuboctahedral platinum (Pt79) nanocluster enclosed by well defined facets favours di-sigma adsorption and improves the reaction kinetics for methanol fuel cells.

    PubMed

    Mahata, Arup; Choudhuri, Indrani; Pathak, Biswarup

    2015-08-28

    The methanol dehydrogenation steps are studied very systematically on the (111) facet of a cuboctahedral platinum (Pt79) nanocluster enclosed by well-defined facets. The various intermediates formed during the methanol decompositions are adsorbed at the edge and bridge site of the facet either vertically (through C- and O-centres) or in parallel. The di-sigma adsorption (in parallel) on the (111) facet of the nanocluster is the most stable structure for most of the intermediates and such binding improves the interaction between the substrate and the nanocluster and thus the catalytic activity. The reaction thermodynamics, activation barrier, and temperature dependent reaction rates are calculated for all the successive methanol dehydrogenation steps to understand the methanol decomposition mechanism, and these values are compared with previous studies to understand the catalytic activity of the nanocluster. We find the catalytic activity of the nanocluster is excellent while comparing with any previous reports and the methanol dehydrogenation thermodynamics and kinetics are best when the intermediates are adsorbed in a di-sigma manner.

  1. Adsorption Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kai; Vineyard, Edward Allan

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less

  2. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  3. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Piersall, Shannon D.; Anderson, James B.

    1991-07-01

    In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.

  4. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    NASA Astrophysics Data System (ADS)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the

  5. Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite

    USGS Publications Warehouse

    Bargar, John R.; Reitmeyer, Rebecca; Davis, James A.

    1999-01-01

    Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)−carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used attenuated total reflectance Fourier transform infrared (ATR-FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of ≡FeOsurface−U(VI)−carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)−carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)−carbonato complexes, which are trace constituents at pH < 6. This result indicates the inadequacy of the common modeling assumption that the compositions and predominance of adsorbed species can be inferred from aqueous species. By extension, adsorbed carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium.

  6. Dimethyl sulfoxide could be a useful probe to evaluate unusual skin angioneurotic reaction and epidermal permeability.

    PubMed

    Chen, Shuang Y; Wang, Xue M; Liu, Yan Q; Gao, Yan R; Liu, Xiao P; Li, Shu Y; Dong, Ya Q

    2014-03-01

    Dimethyl sulfoxide (DMSO) has been suggested as a traditional chemical probe for assessing skin susceptibility and barrier function. The purpose of this study was to determine the role of DMSO test for the evaluation of unusual skin angioneurotic reaction and epidermal permeability. Thirty healthy volunteers were exposed to 98% DMSO on the flexor forearm skin for three exposure durations (5 min, 10 min and 15 min). Clinical visual score and biological physical parameters were obtained. The volunteers were divided into two groups according to the clinical visual scoring. The skin parameters were subsequently analyzed. There was a significant correlation between clinical visual score and biological physical parameters. The skin color parameters (a*, oxyhemoglobin, erythema and melanin index) and blood flow values were significant between two groups regardless of duration of DMSO exposure, and a significant difference between density values could also be detected if we regrouped the volunteers according to the sting-producing score. Our results also suggested there was no correlation between questionnaire score and clinical visual score or other parameters. Application of 98% DMSO for 10 min combined with a* (at 30 min) and blood flow (at 10 min) values could help us to identify persons with a hyper-angionerotic reaction to chemical stimulus. The penetrative activity of DMSO correlated with the thickness of the individual's skin.

  7. A flow-pulse adsorption-microcalorimetry system for studies of adsorption processes on powder catalysts

    NASA Astrophysics Data System (ADS)

    You, Rui; Li, Zhaorui; Zeng, Hongyu; Huang, Weixin

    2018-06-01

    A pulse chemisorption system combining a Tian-Calvet microcalorimeter (Setaram Sensys EVO 600) and an automated chemisorption apparatus (Micromeritics Autochem II 2920) was established to accurately measure differential adsorption heats of gas molecules' chemisorption on solid surfaces in a flow-pulse mode. Owing to high sensitivity and high degree of automation in a wide range of temperatures from -100 to 600 °C, this coupled system can present adsorption heats as a function of adsorption temperature and adsorbate coverage. The functions of this system were demonstrated by successful measurements of CO adsorption heats on Pd surfaces at various temperatures and also at different CO coverages by varying the CO concentration in the pulse dose. Key parameters, including adsorption amounts, integral adsorption heats, and differential adsorption heats of CO adsorption on a Pd/CeO2 catalyst, were acquired. Our adsorption-microcalorimetry system provides a powerful technique for the investigation of adsorption processes on powder catalysts.

  8. The effect of carbon surface chemical composition on the adsorption of acetanilide.

    PubMed

    Terzyk, Artur P

    2004-04-01

    The study of acetanilide adsorption-desorption performed at three temperatures (300, 310, and 320 K) and at two pH levels (7.0 and 1.5) on the series of D43/1 carbons (initial and modified with HNO3, fuming H2SO4, and gaseous NH3) is reported. Sorption data are additionally supplemented with the results of thermal analysis and calorimetric and kinetic measurements. It is shown that, generally, acetanilide adsorption at the neutral pH level is reversible (only on the more acidic carbons and at the lowest temperature does hysteresis occur due to the formation of hydrogen bonds with surface OH groups), and it decreases for the chemically modified carbons. In contrast, at the acidic pH level acetanilide adsorption is irreversible. A mechanism of irreversibility is proposed and it is shown that hysteresis is caused by the chemical reaction between the nucleophile (carbon) and the protonized acetanilide molecules. For all studied carbons, at the acidic pH level, adsorption increases and this is caused by the weakly basic character of acetanilide molecule. Adsorption results are described applying adsorbability and Dubinin-Astakhov, quasi-Freundlich and solution analogue of the Toth adsorption isotherm equations. Using the kinetic data, the effective diffusion coefficients and the energy of diffusion are calculated. It is shown that the diffusion is mainly a surface process, and the contribution of the pore diffusion increases with the rise in temperature. By applying different correlations between the parameters obtained from the theoretical description of experimental data and those characterizing the chemical composition of the studied carbons, the role of the latter in the adsorption and kinetics of acetanilide adsorption is determined.

  9. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction.

    PubMed

    Guo, Qiuping; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Wei; Tang, Hongxing; Li, Huimin

    2009-02-01

    Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 x 10(-15) M.

  10. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  11. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  12. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes.

    PubMed

    Auta, M; Hameed, B H

    2013-05-01

    A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had <20% adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio.

    PubMed

    Cheng, Zhi-Lin; Li, Yan-Xiang; Liu, Zan

    2018-02-01

    The exploration of the relationship between zeolite composition and adsorption performance favored to facilitate its better application in removal of the hazardous substances from water. The adsorption capacity of rhodamine B (RB) onto Beta zeolite from aqueous solution was reported. The relationship between SiO 2 /Al 2 O 3 ratio and adsorption capacity of Beta zeolite for RB was explored. The structure and physical properties of Beta zeolites with various SiO 2 /Al 2 O 3 ratios were determined by XRD, FTIR, TEM, BET, UV-vis and so on characterizations. The adsorption behavior of rhodamine B onto Beta zeolite matched to Langmuir adsorption isotherm and more suitable description for the adsorption kinetics was a pseudo-second-order reaction model. The maximum adsorption capacity of the as-prepared Beta zeolite with SiO 2 /Al 2 O 3 = 18.4 was up to 27.97mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Preliminary evaluation of several disinfection/sterilization techniques for use with microdialysis probes.

    PubMed

    Huff, Jacquelyn K; Bresnahan, James F; Davies, Malonne I

    2003-06-06

    This study evaluated the suitability of some disinfection and sterilization methods for use with microdialysis probes. Disinfection or sterilization should minimize the tissue inflammatory reaction and improve the long-term health of rats on study and ensure the quality of data obtained by microdialysis sampling. Furthermore, the treatment should not negatively impact probe integrity or sampling performance. The techniques chosen for evaluation included two disinfection methods (70% ethanol and a commercial contact lens solution) and two sterilization methods (hydrogen peroxide plasma, and e-beam radiation). Linear microdialysis probes treated by these processes were compared to untreated probes removed from the manufacturer's packaging as if sterile (the control group). The probes were aseptically implanted in the livers of rats and monitored for 72 hours. The parameters chosen to evaluate probe performance were relative sample mass recovery and the relative in vivo extraction efficiency of the probe for caffeine. Post mortem bacterial counts and histopathology examination of liver tissue were also conducted. The probes remained intact and functional for the entire study period. The methods tested did not acutely alter the probes although hydrogen peroxide plasma and contact lens solution groups showed reduced extraction efficiencies. Minimal tissue damage was observed surrounding the probes and acute inflammatory reaction was mild to moderate. Low numbers of bacterial colonies from the implantation sites indicates that the health of animals in this study was not impaired. This was also true for the control group (untreated probe).

  15. Catalytic effect of soil colloids on the reaction between CrVI and p-methoxyphenol.

    PubMed

    Zhou, D M; Chen, H M; Zheng, C R; Tu, C

    2001-01-01

    Adsorption of CrVI and p-methoxyphenol (PMP) on soil colloids at different pH media was studied. The resulting k1 and n of 1.89 x 10(2) and 0.53 (r2 = 0.99) and k2 and b of 0.13 and 1.25 x 10(3) (r2 = 0.96) were obtained from Freundlich (Q = k1Caqn) and Langmuir [Q = k2bCaq/(1 + k2Caq)] simulation equations, respectively, for CrVI adsorption on soil colloids (pH 4.20). The adsorption of PMP on soil colloids in pH 5.72 media was simulated by five different equations and the results indicated that the Fritz-Schluender one (r2 = 1.00) was the most suitable among them. Adsorption quantity of CrVI and PMP on colloids increased with increasing acidity in the pH range of 3.5-9.0. Study of CrVI adsorption kinetics indicated that the adsorption equilibrium of CrVI was reached rapidly within 2 h. In pure aqueous solution, CrVI reduction by PMP was observed only when the media's pH was lower than 4.0. Oxidation and reduction reaction between CrVI and p-methoxyphenol obviously occurred when soil colloids were involved in this system, even at pH > or = 7.0, which strongly suggested that minerals in soil colloids acted as catalysts to speed the reaction of CrVI and PMP. The oxidized product of PMP by CrVI, extracted by chloroform in acid media and analyzed by gas chromatography-mass spectrometry, was identified as benzoquinone. The reaction included two steps of one electron process.

  16. Kinetics and equilibrium adsorption study of selenium oxyanions onto Al/Si and Fe/Si coprecipitates.

    PubMed

    Chan, Y T; Liu, Y T; Tzou, Y M; Kuan, W H; Chang, R R; Wang, M K

    2018-05-01

    Inappropriate treatments for the effluents from semiconductor plants might cause the releases and wide distributions of selenium (Se) into the ecosystems. In this study, Al/Si and Fe/Si coprecipitates were selected as model adsorbents as they often formed during the wastewater coagulation process, and the removal efficiency of selenite (SeO 3 ) and selenate (SeO 4 ) onto the coprecipitates were systematically examined. The removal efficiency of SeO 3 and SeO 4 was highly related to surface properties of Al/Si and Fe/Si coprecipitates. The surface-attached Al shell of Al/Si coprecipitates shielded a portion of negative charges from the core SiO 2 , resulting in a higher point of zero charge than that of Fe/Si coprecipitates. Thus, adsorption of SeO 3 /SeO 4 was favorable on the Al/Si coprecipitates. Adsorptions of both SeO 3 and SeO 4 on Al/Si coprecipitates were exothermic reactions. On Fe/Si coprecipitates, while SeO 3 adsorption also showed the exothermic behavior, SeO 4 adsorption occurred as an endothermic reaction. The kinetic adsorption data of SeO 3 /SeO 4 on Al/Si and Fe/Si coprecipitates were described well by the pseudo-second-order kinetic model. SeO 4 and SeO 3 adsorption on Fe/Si or Al/Si were greatly inhibited by the strong PO 4 ligand, whereas the weak ligand such as SO 4 only significantly affected SeO 4 adsorption. The weakest complex between SeO 4 and Al was implied by the essentially SeO 4 desorption as SeO 4 /PO 4 molar ratios decreased from 0.5 to 0.2. These results were further confirmed by the less SeO 4 desorption (41%) from Fe/Si coprecipitates than that from Al/Si coprecipitates (78%) while PO 4 was added sequentially. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Salience Is Only Briefly Represented: Evidence from Probe-Detection Performance

    ERIC Educational Resources Information Center

    Donk, Mieke; Soesman, Leroy

    2010-01-01

    Salient objects in the visual field tend to capture attention. The present study aimed to examine the time-course of salience effects using a probe-detection task. Eight experiments investigated how the salience of different orientation singletons affected probe reaction time as a function of stimulus onset asynchrony (SOA) between the…

  18. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes.

    PubMed

    Sumalinog, Divine Angela G; Capareda, Sergio C; de Luna, Mark Daniel G

    2018-03-15

    The adsorption potential and governing mechanisms of emerging contaminants, i.e. acetaminophen or acetyl-para-aminophenol (APAP) and methylene blue (MB) dye, on activated carbon derived from municipal solid waste were investigated in this work. Results showed that MB adsorption was significantly more effective, with a maximum removal of 99.9%, than APAP adsorption (%R max  = 63.7%). MB adsorption was found to be unaffected by pH change, while the adsorption capacity of APAP drastically dropped by about 89% when the pH was adjusted from pH 2 to 12. Surface reactions during APAP adsorption was dominated by both physical and chemical interactions, with the kinetic data showing good fit in both pseudo-first order (R 2  = 0.986-0.997) and pseudo-second order (R 2 >0.998) models. On the other hand, MB adsorption was best described by the pseudo-second order model, with R 2 >0.981, denoting that chemisorption controlled the process. Electrostatic attractions and chemical reactions with oxygenated surface functional groups (i.e., -OH and -COOH) govern the adsorption of APAP and MB on the activated biochar. Thermodynamic study showed that APAP and MB adsorption were endothermic with positive ΔH° values of 16.5 and 74.7 kJ mol -1 , respectively. Negative ΔG° values obtained for APAP (-3.7 to -5.1 kJ mol -1 ) and MB (-11.4 to -17.1 kJ mol -1 ) implied that the adsorption onto the activated biochar was spontaneous and feasible. Overall, the study demonstrates the effectiveness of activated biochar from municipal solid wastes as alternative adsorbent for the removal of acetaminophen and methylene blue dye from contaminated waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Adsorption behavior of benzenesulfonic acid by novel weakly basic anion exchange resins.

    PubMed

    Sun, Yue; Zuo, Peng; Luo, Junfen; Singh, Rajendra Prasad

    2017-04-01

    Two novel weakly basic anion exchange resins (SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene (Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid (BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution pH, temperature and coexisting competitive inorganic salts (Na 2 SO 4 and NaCl) on adsorption behavior were investigated and the optimum desorption agent was obtained. Adsorption isotherms of BA were found to be well represented by the Langmuir model. Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by NaCl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1 possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1 for potential industrial application. Copyright © 2016. Published by Elsevier B.V.

  20. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    PubMed Central

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-01-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics. PMID:23687400

  1. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.

    PubMed

    Rupenyan, Alisa; van Stokkum, Ivo H M; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Groot, Marie Louise

    2009-12-17

    Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The application of a pump pulse initiates the photocycle, and with an appropriately tuned dump pulse applied at a time delay after the dump, the molecules in the initial stages of the photochemical process can be de-excited and driven back to the ground state. In this way, we were able to resolve an intermediate on the electronic ground state that represents chromophores that are unsuccessful in isomerization. In particular, the fractions of molecules that undergo slow isomerization (20 ps) have a high probability to enter this state rather than the isomerized K-state. On the ground state reaction surface, return to the stable ground state conformation via a structural or vibrational relaxation occurs in 2-3 ps. Inclusion of this intermediate in the kinetic scheme led to more consistent spectra of the retinal-excited state, and to a more accurate estimation of the quantum yield of isomerization (Phi = 0.4 at pH 6).

  2. Rhodamine B removal on A-rGO/cobalt oxide nanoparticles composite by adsorption from contaminated water

    NASA Astrophysics Data System (ADS)

    Alwan, Salam H.; Alshamsi, Hassan A. Habeeb; Jasim, Layth S.

    2018-06-01

    Cobalt oxide nanoparticles@rGO composite is prepared by using graphene oxide (GO) as a supporting substance. GO is first treated with ascorbic acid to form rGO. Finally, cobalt oxide nanoparticles reaction with rGO sheets and using as the adsorbent to removal Rh.B dye from wastewater. The morphology and chemical structure of prepared samples were characterized by FTIR, X-ray spectroscopy, SEM-EDX, TEM, AFM and TGA. The adsorption of Rh.B dye on the A-rGO/Co3O4 composite was accomplished under different conditions that are equilibrium time, pH solution, ionic strength, and temperature. The adsorption isotherms of Rh.B dye on the A-rGO/Co3O4 composite could be illustrated well by the Langmuir, Freundlich and Tempkin model. The thermodynamic factors (ΔHo, ΔSo, and ΔGo) estimated from the temperature-dependent isotherms revealed that the adsorption reaction of Rh.B dye on the A-rGO/Co3O4 composite was an endothermic and spontaneous process.

  3. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite

    NASA Astrophysics Data System (ADS)

    Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas

    2014-04-01

    Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol

  4. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties

    PubMed Central

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-01-01

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5–11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm3 g−1 (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g−1) and P7 (1388.8 mg g−1) samples reveal that these two particular samples can absorb even more water than their own weights. PMID:26964638

  5. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties.

    PubMed

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-03-11

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5-11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm(3) g(-1) (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g(-1)) and P7 (1388.8 mg g(-1)) samples reveal that these two particular samples can absorb even more water than their own weights.

  6. Enhancing adsorption of U(VI) onto EDTA modified L. cylindrica using epichlorohydrin and ethylenediamine as a bridge

    PubMed Central

    Su, Shouzheng; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Jing, Xiaoyan; Wang, Jun

    2017-01-01

    Benefiting from strong coordination ability and unique vascular structure, EDTA modified L. cylindrica opens up an alternative way for uranium recovery from seawater. However, limitations, such as poor adsorption capacity and slow adsorption rate due to low graft ratio of EDTA via one-step esterification block its practical application. Here, a strategy for increasing the graft ratio is proposed in order to improve the adsorption performance. The strategy initially involves immobilization of epichlorohydrin (EPI) onto L. cylindrica and then ethylenediamine (EDA) is introduced via facile ring-opening reaction. EPI and EDA serve as a bridge between L. cylindrica and EDTA. The graft ratio is promoted (15.01 to 21.44%) contributing to the smaller steric hindrance of EPI and EDA than EDTA and improvement in adsorption performance. In addition, the adsorbent prepared by the new strategy exhibits excellent adsorption properties in simulated seawater. PMID:28272435

  7. Probing Electrochemical Adsorbate Structure and Reactions with In-Situ Atomic-Resolution Scanning Microscopy: Some Progress and Prospects

    DTIC Science & Technology

    1992-10-01

    organized into hexagonal patterns, but unlike the monoatomic iodine adlayers noted above the close-packed atomic strings tend to lie along the gold ...adsorbate systems. Illustrative results of the former type are presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The...presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The virtues of acquiring "composite-domain" STM images, where

  8. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface

    USGS Publications Warehouse

    Power, L.E.; Arai, Y.; Sparks, D.L.

    2005-01-01

    Arsenite is more toxic and mobile than As(V) in soil and sediment environments, and thus it is advantageous to explore factors that enhance oxidation of As(III) to As(V). Previous studies showed that manganese oxides, such as birnessite (??-MnO2), directly oxidized As(III). However, these studies did not explore the role that cation adsorption has on As(III) oxidation. Accordingly, the effects of adsorbed and nonadsorbed Zn on arsenite (As(III)) oxidation kinetics at the birnessite-water interface were investigated using batch adsorption experiments (0.1 g L-1; pH 4.5 and 6.0; I = 0.01 M NaCl). Divalent Zn adsorption on synthetic ??-MnO 2 in the absence of As(III) increased with increasing pH and caused positive shifts in electrophoretic mobility values at pH 4-6, indirectly suggesting inner-sphere Zn adsorption mechanisms. Arsenite was readily oxidized on birnessite in the absence of Zn. The initial As(III) oxidation rate constant decreased with increasing pH from 4.5 to 6.0 and initial As(III) concentrations from 100 to 300 ??M. Similar pH and initial As(III) concentration effects were observed in systems when Zn was present (i.e., presorbed Zn prior to As(III) addition and simultaneously added Zn-As(III) systems), but As(III) oxidation reactions were suppressed compared to the respective control systems. The suppression was more pronounced when Zn was presorbed on the ??-MnO 2 surfaces as opposed to added simultaneously with As(III). This study provides further understanding of As(III) oxidation reactions on manganese oxide surfaces under environmentally applicable conditions where metals compete for reactive sites.

  9. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification

    PubMed Central

    Schouten, Jan P.; McElgunn, Cathal J.; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-01-01

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down’s syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50–70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences. PMID:12060695

  10. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification.

    PubMed

    Schouten, Jan P; McElgunn, Cathal J; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-06-15

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down's syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50-70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.

  11. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    PubMed

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid.

  12. Immobilization of Candida rugosa lipase by adsorption-crosslinking onto corn husk

    NASA Astrophysics Data System (ADS)

    Nuraliyah, A.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Corn husk is one of the agricutural waste that has not been used optimally. corn husk waste allows to be used as immobilized support for biocatalyst because it is easy to obtain, available abundant, renewable and easy to decompose. This research was conducted in two phases, namely the adsorption of enzyme immobilization on the support, followed by cross- linking between the enzyme and support through the addition of glutaraldehyde. The optimum conditions for cross-linked adsorption immobilization using support of corn husk were achieved at concentrations of 0,75 mg / ml at 4 hour reaction time. The biggest unit activity value is obtained at 2,37 U / g support through 0.5% glutaraldehyde addition.

  13. FRET study of G-quadruplex forming fluorescent oligonucleotide probes at the lipid monolayer interface.

    PubMed

    Swiatkowska, Angelika; Kosman, Joanna; Juskowiak, Bernard

    2016-01-05

    Spectral properties and G-quadruplex folding ability of fluorescent oligonucleotide probes at the cationic dioctadecyldimethylammonium bromide (DODAB) monolayer interface are reported. Two oligonucleotides, a 19-mer bearing thrombin binding aptamer sequence and a 21-mer with human telomeric sequence, were end-labeled with fluorescent groups (FAM and TAMRA) to give FRET probes F19T and F21T, respectively. The probes exhibited abilities to fold into a quadruplex structure and to bind metal cations (Na(+) and K(+)). Fluorescence spectra of G-quadruplex FRET probes at the monolayer interface are reported for the first time. Investigations included film balance measurements (π-A isotherms) and fluorescence spectra recording using a fiber optic accessory interfaced with a spectrofluorimeter. The effect of the presence of DODAB monolayer, metal cations and the surface pressure of monolayer on spectral behavior of FRET probes were examined. Adsorption of probe at the cationic monolayer interface resulted in the FRET signal enhancement even in the absence of metal cations. Variation in the monolayer surface pressure exerted rather modest effect on the spectral properties of probes. The fluorescence energy transfer efficiency of monolayer adsorbed probes increased significantly in the presence of sodium or potassium ion in subphase, which indicated that the probes retained their cation binding properties when adsorbed at the monolayer interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 {micro}L samples of a 50 mM probe solution were injected into C{sub 18}-bonded columns using a series of five buffered mobile phases at {sub W}{sup S}pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account themore » simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1 g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C{sub 18}-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C{sub 18}-bonded layer and

  15. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    NASA Astrophysics Data System (ADS)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  16. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  17. Adsorptive removal of antibiotics from aqueous solution using carbon materials.

    PubMed

    Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie

    2016-06-01

    Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Coverage-dependent adsorption and desorption of oxygen on Pd(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra

    2016-06-28

    We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediatemore » temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.« less

  19. Removal of textile dyes by carbon nanotubes: A comparison between adsorption and UV assisted photocatalysis

    NASA Astrophysics Data System (ADS)

    Dutta, Arun Kumar; Ghorai, Uttam Kumar; Chattopadhyay, Kalyan Kumar; Banerjee, Diptonil

    2018-05-01

    Amorphous carbon nanotubes were synthesized using low temperature solid state reaction. The as synthesized a-CNTs were used to remove two different textile dyes, Methyl Orange and Rhodamine B from water. Two ways of removal were followed; i.e. Adsorption and UV assisted catalysis. Adsorption experiment was carried out under various conditions. Analysis of the adsorption data was performed using Langmuir, Freundlich and Temkin models. It has been shown that the as prepared samples can effectively be used as adsorbent of textile dyes. Exposure of visible or UV light can make no significant additional effect to the removal efficiency. The mechanism of the adsorption has been found to be following a pseudo 1st order mechanism with corresponding correlation factor >0.95. Also it has been shown that presence of impurities can drastically kill the performance of the sample. This detail comparative study has been reported for the first time.

  20. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa

    2016-08-01

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  1. Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines.

    PubMed

    Li, Baoyin; Fan, Kun; Ma, Xin; Liu, Yang; Chen, Teng; Cheng, Zheng; Wang, Xu; Jiang, Jiaxing; Liu, Xiangyang

    2016-09-15

    A mild, operationally simple and controllable protocol for preparing graphene-based porous materials is essential to achieve a good pore-design development. In this paper, graphene-based porous materials with tunable surface area were constructed by the intercalation of fluorinated graphene (FG) based on the reaction of reactive CF bonds attached to graphene sheets with various amine-terminated molecules. In the porous materials, graphene sheets are like building blocks, and the diamines covalently grafted onto graphene framework act as pillars. Various diamines are successfully grafted onto graphene sheets, but the grafting ratio of diamines and reduction degree of FG differ greatly and depend on the chemical reactivity of diamines. Pillared diamine molecules chemically anchor at one end and are capable of undergoing a different reaction on the other end, resulting in three different conformations of graphene derivatives. Nitrogen sorption isotherms revealed that the surface area and pore distribution of the obtained porous materials depend heavily on the size and structure of diamine pillars. CO2 uptake capacity characterization showed that ethylenediamine intercalated FG achieved a high CO2 uptake density of 18.0 CO2 molecules per nm(2) at 0°C and 1.1bars, and high adsorption heat, up to 46.1kJmol(-1) at zero coverage. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Trends in Adsorption Energies of the Oxygenated Species on Single Platinum Atom Embedded in Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siahrostami, Samira; Li, Guo-Ling; Nørskov, Jens K.

    Herein we study the effect of strain on the catalytic activity of different Pt-doped single wall metallic carbon nanotubes (SWCNT) towards the oxygen reduction reaction (ORR). We consider the possibility of the Pt-doped at single vacancy inside the SWCNT to investigate the effect of confinement on the reaction mechanism. Density functional theory calculations indicate that for the SWCNTs with tube diameters below 7 Å, the strain energy varies significantly influencing the adsorption energies of the key intermediates of the ORR reaction. For the SWCNTs with tube diameters above 7 Å, on the other hand, both the calculated strain and themore » adsorption energies are almost constant. We furthermore find that the adsorption energies are strongly affected by confinement effects as shown for Pt-doped systems that are located inside the SWCNT. We show that the Pt-doped at single vacancy of the SWCNT strongly binds the oxygenated species under ORR potentials and therefore the active species is covered by oxo- or hydroxo group. Because the presence of Pt atoms doped at the single and double vacancies of the SWCNT is equivalently probable we also studied the Pt-doped at double vacancy. We find that the most active motif is the Pt-doped at double vacancy of SWCNT with 0.24V overpotenital.« less

  3. Trends in Adsorption Energies of the Oxygenated Species on Single Platinum Atom Embedded in Carbon Nanotubes

    DOE PAGES

    Siahrostami, Samira; Li, Guo-Ling; Nørskov, Jens K.; ...

    2017-09-30

    Herein we study the effect of strain on the catalytic activity of different Pt-doped single wall metallic carbon nanotubes (SWCNT) towards the oxygen reduction reaction (ORR). We consider the possibility of the Pt-doped at single vacancy inside the SWCNT to investigate the effect of confinement on the reaction mechanism. Density functional theory calculations indicate that for the SWCNTs with tube diameters below 7 Å, the strain energy varies significantly influencing the adsorption energies of the key intermediates of the ORR reaction. For the SWCNTs with tube diameters above 7 Å, on the other hand, both the calculated strain and themore » adsorption energies are almost constant. We furthermore find that the adsorption energies are strongly affected by confinement effects as shown for Pt-doped systems that are located inside the SWCNT. We show that the Pt-doped at single vacancy of the SWCNT strongly binds the oxygenated species under ORR potentials and therefore the active species is covered by oxo- or hydroxo group. Because the presence of Pt atoms doped at the single and double vacancies of the SWCNT is equivalently probable we also studied the Pt-doped at double vacancy. We find that the most active motif is the Pt-doped at double vacancy of SWCNT with 0.24V overpotenital.« less

  4. Solvent effects on adsorption of CO over CuCl(1 1 1) surface: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhang, Riguang; Ling, Lixia; Wang, Baojun; Huang, Wei

    2010-09-01

    DFT calculations have been performed to investigate the effect of dielectric responses of the solvent environment on the CO adsorption over CuCl(1 1 1) surface by using COSMO (conductor-like solvent model) model in Dmol 3. Different dielectric constants, including vacuum, liquid paraffin, methylene chloride, methanol and water solution, are considered. The effects of solvent model on the structural parameters, adsorption energies and vibrational frequency of CO adsorption over CuCl(1 1 1) surface have been investigated. The calculation results suggest that solvent effects can improve the stability of CO adsorption and reduce the intensity of C-O bond, which might mean that solvent is in favor of C-O bond activation and improve the reaction activity of oxidative carbonylation in a slurry reactor.

  5. Adsorption of tuberculin PPD to glass and plastic surfaces

    PubMed Central

    Landi, S.; Held, H. R.; Hauschild, A. H. W.; Hilsheimer, R.

    1966-01-01

    For some time it has been known that the adsorption of tuberculin to glass is a source of practical difficulties in tuberculin testing; for example, it leads to a loss of potency in diluted tuberculin PPD preparations used in the intracutaneous method of skin testing. The authors have correlated decreasing biological potency with decreasing radioactivity in solutions of tuberculin PPD labelled with 14C. The decrease in radioactivity is due to adsorption of PPD-14C to the glass or plastic surface of containers; it can be prevented by the addition of 0.0005% Tween 80. The extent of the decrease is affected by the type and size of the containers, the volume of solution used and the storage temperature. It is the same in the presence of 0.3% phenol or 0.01% Chinosol used as preservatives. The concentration of Tween 80 does not affect the size of the tuberculin skin reactions in BCG-sensitized guinea-pigs. It is recommended that an anti-adsorption agent be added to all dilute solutions of tuberculin PPD; in solutions for intracutaneous use containing 50 TU per ml, Tween 80 at a concentration of 0.0005% is satisfactory. PMID:5297556

  6. Free energy landscape of dissociative adsorption of methane on ideal and defected graphene from ab initio simulations

    NASA Astrophysics Data System (ADS)

    Wlazło, M.; Majewski, J. A.

    2018-03-01

    We study the dissociative adsorption of methane at the surface of graphene. Free energy profiles, which include activation energies for different steps of the reaction, are computed from constrained ab initio molecular dynamics. At 300 K, the reaction barriers are much lower than experimental bond dissociation energies of gaseous methane, strongly indicating that the graphene surface acts as a catalyst of methane decomposition. On the other hand, the barriers are still much higher than on the nickel surface. Methane dissociation therefore occurs at a higher rate on nickel than on graphene. This reaction is a prerequisite for graphene growth from a precursor gas. Thus, the growth of the first monolayer should be a fast and efficient process while subsequent layers grow at a diminished rate and in a more controllable manner. Defects may also influence reaction energetics. This is evident from our results, in which simple defects (Stone-Wales defect and nitrogen substitution) lead to different free energy landscapes at both dissociation and adsorption steps of the process.

  7. Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects

    NASA Astrophysics Data System (ADS)

    Grover, Valerie Ann

    The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.

  8. Adsorption of hexavalent chromium on modified corn stalk using different cross-linking agents

    NASA Astrophysics Data System (ADS)

    Chen, Suhong; Zhu, Yi; Han, Zhijun; Feng, Gao; Jia, Yuling; Fu, Kaifang; Yue, Qinyan

    2017-12-01

    In this study, four different types of adsorbents modified from corn stalk were synthesized after the reaction with epichlorohydrin, N,N-dimethylformamide, triethylamine and different cross-linking agents. The surface functional groups and thermal stability of modified corn stalk (MCSs) were characterized using FTIR and TG analysis, respectively. The feasibility of using MCSs to remove Cr(VI) were evaluated. Adsorption isotherms were determined and modeled with Langmuir, Freundlich and Temkin equations. The experimental results showed that MCS modified using diethylenetriamine (DETA) had the best modification effect, and the adsorption capacity of Cr(VI) reached as high as 227.27 mg/g at 323 K. Thermodynamic study showed that the Cr(VI) adsorption onto MCSs was endothermic processes. As a result, MCS by using DETA as cross-linking agent has good potential for the removal of Cr(VI) from aqueous solutions.

  9. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.

    PubMed

    Guo, Xuejun; Wu, Zhijun; He, Mengchang; Meng, Xiaoguang; Jin, Xin; Qiu, Nan; Zhang, Jing

    2014-07-15

    Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl3, was oxidized into Sb(V) probably due to the involvement of O2 in the long duration of sample preservation. Only one Sb-Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0-1.9 attributed to bidentate mononuclear edge-sharing ((2)E) between Sb and HFO. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [Preparation of surface molecularly imprinted polymers for penicilloic acid, and its adsorption properties].

    PubMed

    Zheng, Penglei; Luo, Zhimin; Chang, Ruimiao; Ge, Yanhui; Du, Wei; Chang, Chun; Fu, Qiang

    2015-09-01

    On account of the specificity and reproducibility for the determination of penicilloic acid in penicillin, this study aims to prepare penicilloic acid imprinted polymers (PEOA-MIPs) by surface polymerization method at the surface of modified silica particles by using penicilloic acid (PEOA) as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate ( EGDMA) as the cross linker, and methanol/acetonitrile as the solvents. The synthesis conditions were optimized, and PEOA-MIPs had the best adsorption capacity when the molar ratio of template molecule/functional monomer was 1 :4, cross linking degree was 85% and the solvent ratio of methanol/acetonitrile was 1 :1 (v/v). The adsorption properties were evaluated by adsorption experiments, including the adsorption isotherms, kinetics and selectivity. The adsorption process between PEOA-MIPs and PEOA fitted the Langmuir adsorption isotherm with the maximum adsorption capacity of 122. 78 mg/g and the pseudo-second-order reaction kinetics with fast adsorption kinetics (the equilibrium time of 45 min). The as-synthesized PEOA-MIPs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results indicated that the MIPs layer has been successfully grafted on the surface of SiO2 microparticles and the PEOA-MIPs had the excellent thermal stability. The PEOA-MIPs showed the highest selective recognition for PEOA. The PEOA-MIPs possess a high adsorption capacity, rapid mass-transfer rate and high selectivity to PEOA when compared with non-imprinted polymers (PEOA-NIPs). The PEOA-MIPs was expected to be used as the solid phase extraction medium and this study provides the potential applications for fast recognition and analysis of the penicilloic acid in penicillin.

  11. Water dissociative adsorption on NiO(111): Energetics and structure of the hydroxylated surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Wei; Bajdich, Michal; Carey, Spencer

    The energetics of the reactions of water with metal oxide surfaces are of tremendous interest for catalysis, electrocatalysis, and geochemistry, yet the energy for the dissociative adsorption of water was only previously measured on one well-defined oxide surface, iron oxide. In the present paper, the enthalpy of the dissociative adsorption of water is measured on NiO(111)-2 × 2 at 300 K using single-crystal adsorption calorimetry. The differential heat of dissociative adsorption decreases with coverage from 170 to 117 kJ/mol in the first 0.25 ML of coverage. Water adsorbs molecularly on top of that, with a heat of ~92 kJ/mol. Densitymore » functional theory (DFT) calculations reproduce the measured energies well (all within 17 kJ/mol) and provide insight into the atomic-level structure of the surfaces studied experimentally. They show that the oxygen-terminated O-octo(2 × 2) structure is the most stable NiO(111)-2 × 2 termination and gives reaction energies with water that are more consistent with the calorimetry results than the metal-terminated surface. They show that water adsorbs dissociatively on this (2 × 2)-O-octo surface to produce a hydroxyl-covered surface with a heat of adsorption of 171 ± 5 kJ/mol in the low-coverage limit (very close to 170 kJ/mol experimentally) and an integral heat that decreases by 14 kJ/mol up to saturation (compared to ~30 kJ/mol experimentally). As a result, sensitivity of this reaction’s energy to choice of DFT method is tested using a variety of different exchange correlation functionals, including HSE06, and found to be quite weak.« less

  12. Water dissociative adsorption on NiO(111): Energetics and structure of the hydroxylated surface

    DOE PAGES

    Zhao, Wei; Bajdich, Michal; Carey, Spencer; ...

    2016-09-19

    The energetics of the reactions of water with metal oxide surfaces are of tremendous interest for catalysis, electrocatalysis, and geochemistry, yet the energy for the dissociative adsorption of water was only previously measured on one well-defined oxide surface, iron oxide. In the present paper, the enthalpy of the dissociative adsorption of water is measured on NiO(111)-2 × 2 at 300 K using single-crystal adsorption calorimetry. The differential heat of dissociative adsorption decreases with coverage from 170 to 117 kJ/mol in the first 0.25 ML of coverage. Water adsorbs molecularly on top of that, with a heat of ~92 kJ/mol. Densitymore » functional theory (DFT) calculations reproduce the measured energies well (all within 17 kJ/mol) and provide insight into the atomic-level structure of the surfaces studied experimentally. They show that the oxygen-terminated O-octo(2 × 2) structure is the most stable NiO(111)-2 × 2 termination and gives reaction energies with water that are more consistent with the calorimetry results than the metal-terminated surface. They show that water adsorbs dissociatively on this (2 × 2)-O-octo surface to produce a hydroxyl-covered surface with a heat of adsorption of 171 ± 5 kJ/mol in the low-coverage limit (very close to 170 kJ/mol experimentally) and an integral heat that decreases by 14 kJ/mol up to saturation (compared to ~30 kJ/mol experimentally). As a result, sensitivity of this reaction’s energy to choice of DFT method is tested using a variety of different exchange correlation functionals, including HSE06, and found to be quite weak.« less

  13. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.

    2017-06-01

    Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.

  14. Design strategies of fluorescent probes for selective detection among biothiols.

    PubMed

    Niu, Li-Ya; Chen, Yu-Zhe; Zheng, Hai-Rong; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2015-10-07

    Simple thiol derivatives, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play key roles in biological processes, and the fluorescent probes to detect such thiols in vivo selectively with high sensitivity and fast response times are critical for understanding their numerous functions. However, the similar structures and reactivities of these thiols pose considerable challenges to the development of such probes. This review focuses on various strategies for the design of fluorescent probes for the selective detection of biothiols. We classify the fluorescent probes for discrimination among biothiols according to reaction types between the probes and thiols such as cyclization with aldehydes, conjugate addition-cyclization with acrylates, native chemical ligation, and aromatic substitution-rearrangement.

  15. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, J.; Sears, J.; Schael, I.P.

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated frommore » field studies.« less

  16. Influence of surface features of hydroxyapatite on the adsorption of proteins relevant to bone regeneration.

    PubMed

    Fernández-Montes Moraleda, Belén; San Román, Julio; Rodríguez-Lorenzo, Luís M

    2013-08-01

    Protein-surface interaction may determine the success or failure of an implanted device. Not much attention have been paid to the specific surface parametes of hydroxyapatite (OHAp) that modulates and determines the formation and potential activity of the layer of proteins that is first formed when the material get in contact with the host tissue. the influence of specific surface area (SSA), crystallite size (CS) and particle size (PS) of OHAp on the adsorption of proteins relevant for bone regeneration is evaluated in this article. OHAp have been prepared by a wet chemical reaction of Ca(OH)2 with H3PO4. One set of reactions included poly acrylic acid in the reactant solution to modify the properties of the powder. Fibrinogen (Fg) Fraction I, type I: from Human plasma, (67% Protein), and Fibronectin (Fn) from Human plasma were selected to perform the adsorption experiments. The analysis of protein adsorption was carried out by UV/Vis spectrometry. A lower SSA and a different aspect ratio are obtained when the acrylic acid is included in the reaction badge. The deconvolution of the amide I band on the Raman spectra of free and adsorbed proteins reveals that the interaction apatite-protein happens through the carboxylate groups of the proteins. The combined analysis of CS, SSA and PS should be considered on the design of OHAp materials intended to interact with proteins. Copyright © 2013 Wiley Periodicals, Inc.

  17. Adsorption of guaiacol on Fe (110) and Pd (111) from first principles

    NASA Astrophysics Data System (ADS)

    Hensley, Alyssa J. R.; Wang, Yong; McEwen, Jean-Sabin

    2016-06-01

    The catalytic properties of surfaces are highly dependent upon the effect said surfaces have on the geometric and electronic structure of adsorbed reactants, products, and intermediates. It is therefore crucial to have a surface-level understanding of the adsorption of the key species in a reaction in order to design active and selective catalysts. Here, we study the adsorption of guaiacol on Fe (110) and Pd (111) using dispersion-corrected density functional theory calculations as both of these metals are of interest as hydrodeoxygenation catalysts for the conversion of bio-oils to useable biofuels. Both vertical (via the oxygen functional groups) and horizontal (via the aromatic ring) adsorption configurations were examined and the resulting adsorption and molecular distortion energies showed that the vertical sites were only physisorbed while the horizontal sites were chemisorbed on both metal surfaces. A comparison of guaiacol's horizontal adsorption on Fe (110) and Pd (111) showed that guaiacol had a stronger adsorption on Pd (111) while the Fe (110) surface distorted the Csbnd O bonds to a greater degree. Electronic analyses on the horizontal systems showed that the greater adsorption strength for guaiacol on Pd (111) was likely due to the greater charge transfer between the aromatic ring and the surface Pd atoms. Additionally, the greater distortion of the Csbnd O bonds in adsorbed guaiacol on Fe (110) is likely due to the greater degree of interaction between the oxygen and surface Fe atoms. Overall, our results show that the Fe (110) surface has a greater degree of interaction with the functional groups and the Pd (111) surface has a greater degree of interaction with the aromatic ring.

  18. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes).

    PubMed

    Xu, Yan; Liu, Yunguo; Liu, Shaobo; Tan, Xiaofei; Zeng, Guangming; Zeng, Wei; Ding, Yang; Cao, Weicheng; Zheng, Bohong

    2016-12-01

    In this work, a novel potential adsorbent, citric acid (CA)-modified biochar, named as CAWB, was obtained from water hyacinth biomass by slow pyrolysis in a N 2 environment at 300 °C. The CA modification focused on enhancing the contaminants adsorption capacity of biochar pyrolyzed at relatively low temperature. Over 90 % of the total methylene blue (MB) could be removed at the first 60 min by CAWB, and the maximum MB adsorption capacity could reach to 395 mg g -1 . The physicochemical properties of CAWB was examined by FTIR, XPS, SEM, and BET analysis. The results indicated that the additional carboxyl groups were introduced to the surface of CAWB via the esterification reaction with CA, which played a significant role in the adsorption of MB. Batch adsorption studies showed that the initial MB concentration, solution pH, background ionic strength, and temperature could affect the removal efficiency obviously. The adsorption process could be well described by the pseudo-second-order kinetic model and Langmuir isotherm. Thermodynamic analysis revealed that the MB adsorption onto CAWB was an endothermic and spontaneous process. The regeneration study revealed that CAWB still exhibited an excellent regeneration and adsorption performance after multiple cycle adsorptions. The adsorption experiments of actual dye wastewater by CAWB suggested that it had a great potential in environmental application.

  19. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    PubMed

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions.

  20. Molecular-Scale Study of Aspartate Adsorption on Goethite and Competition with Phosphate.

    PubMed

    Yang, Yanli; Wang, Shengrui; Xu, Yisheng; Zheng, Binghui; Liu, Jingyang

    2016-03-15

    Knowledge of the interfacial interactions between aspartate and minerals, especially its competition with phosphate, is critical to understanding the fate and transport of amino acids in the environment. Adsorption reactions play important roles in the mobility, bioavailability, and degradation of aspartate and phosphate. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements and density functional theory (DFT) calculations were used to investigate the interfacial structures and their relative contributions in single-adsorbate and competition systems. Our results suggest three dominant mechanisms for aspartate: bidentate inner-sphere coordination involving both α- and γ-COO(-), outer-sphere complexation via electrostatic attraction and H-bonding between aspartate NH2 and goethite surface hydroxyls. The interfacial aspartate is mainly governed by pH and is less sensitive to changes of ionic strength and aspartate concentration. The phosphate competition significantly reduces the adsorption capacity of aspartate on goethite. Whereas phosphate adsorption is less affected by the presence of aspartate, including the relative contributions of diprotonated monodentate, monoprotonated bidentate, and nonprotonated bidentate structures. The adsorption process facilitates the removal of bioavailable aspartate and phosphate from the soil solution as well as from the sediment pore water and the overlying water.

  1. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.

    PubMed

    Zhang, Jian; Lv, Yanlin; Zhang, Wei; Ding, Hui; Liu, Rongji; Zhao, Yongsheng; Zhang, Guangjin; Tian, Zhiyuan

    2016-01-01

    A new type of flavone-based fluorescent probe (DMAF) capable of cysteine (Cys)/homocysteine (Hcy) sensing with high selectivity over other amino acids was developed. Such type of probe undergoes Cys/Hcy-mediated cyclization reaction with the involvement of its aldehyde group, which suppresses of the photoinduced electron transfer (PET) process of the probe molecule and consequently leads to the enhancement of fluorescence emission upon excitation using visible light. The formation of product of the Cys/Hcy-mediated cyclization reaction was confirmed and the preliminary fluorescence imaging experiments revealed the biocompatibility of the as-prepared probe and validated its practicability for intracellular Cys/Hcy sensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    PubMed

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  3. A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples.

    PubMed

    Wang, Jialin; Wang, Hao; Hao, Yanfeng; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo

    2018-10-01

    A novel fluorescent probe 3'-hydroxy-3-oxo-3H-spiro [isobenzofuran-1,9'-xanthene]-6'-yl-2,4-dinitrobenzenesulfonate (probe 1) was designed and synthesized as a visual sensor for the detection of cysteine levels in milk and water samples. The addition of cysteine to the solution of probe 1 resulted in an increase in fluorescence intensity and color change, from light yellow to yellow-green. The distinct color response indicated that probe 1 could be used as a visual sensor for cysteine. Cysteine can be detected quantitatively at concentrations between 0 and 400 μM and the detection limit of the fluorescence response to the probe was 6.5 μM. This suggests that probe 1 could be used as a signaling tool to determine the cysteine levels in samples, such as milk and water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Experimental study on removal of NO using adsorption of activated carbon/reduction decomposition of microwave heating.

    PubMed

    Shuang-Chen, Ma; Yao, Juan-Juan; Gao, Li

    2012-01-01

    Experimental studies were carried out on flue gas denitrification using activated carbon irradiated by microwave. The effects of microwave irradiation power (reaction temperature), the flow rate of flue gas, the concentration of NO and the flue gas coexisting compositions on the adsorption property of activated carbon and denitrification efficiency were investigated. The results show that: the higher of microwave power, the higher of denitrification efficiency; denitrification efficiency would be greater than 99% and adsorption capacity of NO is relatively stable after seven times regeneration if the microwave power is more than 420 W; adsorption capacity of NO in activated carbon bed is 33.24 mg/g when the space velocity reaches 980 per hour; adsorption capacity declines with increasing of the flow rate of flue gas; the change in denitrification efficiency is not obvious with increasing oxygen content in the flue gas; and the maximum adsorption capacity of NO was observed when moisture in flue gas was about 5.88%. However, the removal efficiency of NO reduces with increasing moisture, and adsorption capacity and removal efficiency of NO reduce with increasing of SO2 concentration in the flue gas.

  5. Comparative study on the effect of H2 pre-adsorption on CO oxidation in O2-poor atmosphere over Au/TiO2 and TiO2: Temperature programmed surface reaction by a multiplexed mass spectrometer testing

    NASA Astrophysics Data System (ADS)

    Si, Ruiru; Liu, Junfeng; Zhang, Yujuan; Chen, Xun; Dai, Wenxin; Fu, Xianzhi

    2016-11-01

    The behaviors of H2 pre-adsorption on CO oxidation in an O2-poor stream containing a trace H2O over Au/TiO2 and TiO2 have been investigated by a temperature programmed surface reaction testing, respectively. It was found that the H2 pre-adsorption could keep CO oxidation without H2O consumption over Au/TiO2, but suppress CO oxidation over TiO2. The chemisorption testing showed that the H2 adsorption at Au/TiO2 could benefit to the formation of Ti-bonded hydroxyl species (Ti4+-OH), while the H2 adsorption at TiO2 would consume the Ti-bonded hydroxyl species and form the bridge hydroxyl species (Ti4+-OH-Ti4+). These results show that only the Ti-bonded hydroxyl species (not all kinds of hydroxyl species) could act as the active species of oxidizing CO. Furthermore, it is suggested that the dissociative hydrogen adsorbed at Au sites could activate the lattice oxygen of TiO2 to form the active Ti-bonded hydroxyl species (hydrogen spillover from Au to TiO2), which exhibit a strong reducibility than the H directly adsorbed at TiO2.

  6. Microcalorimetric, {sup 13}C NMR spectroscopic, and reaction kinetic studies of silica- and L-zeolite-supported platinum catalysts for n-hexane conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.B.; Ouraipryvan, P.; Nair, H.A.

    Reaction kinetics measurement of n-hexane conversion over 4% Pt/SiO{sub 2} and 1% Pt/SiO{sub 2} and 1% Pt/K(Ba)-L catalysts were made at a pressure of 3 atm and temperatures from 698 to 750 K. The rates of benzene and methylcyclopentane formation decrease with time during reaction over Pt/SiO{sub 2}, while 1% Pt/K(Ba)-L does not deactivate significantly. Microcalorimetric measurements at 353 K show that the heat of carbon monoxide adsorption is the same on freshly reduced Pt/SiO{sub 2} and Pt/K(Ba)-L catalysts; however, carbonaceous species that accumulate on Pt/SiO{sub 2} during n-hexane conversion decrease the total number of adsorption sites and the numbermore » of sites that adsorb carbon monoxide strongly. The 1% Pt/K(Ba)-L catalyst retains the adsorptive properties of the freshly reduced catalyst. Nuclear magnetic resonance studies of {sup 13}CO adsorption show that cluster-sized platinum particles are more resistant to deactivation by self-poisoning reactions than larger platinum particles. The greater catalyst stability and higher steady-state activity of L-zeolite-supported platinum catalysts may be attributed to the ability of L-zeolite to stabilize cluster-sized particles under reaction conditions. Differences in dehydrocyclization activity between catalysts may be related to differences in the number of strong adsorption sites that are present under reaction conditions. 31 refs., 7 figs., 4 tabs.« less

  7. Understanding structure, metal distribution, and water adsorption in mixed-metal MOF-74

    DOE PAGES

    Howe, Joshua D.; Morelock, Cody R.; Jiao, Yang; ...

    2016-11-30

    We present a joint computational and experimental study of Mg–Ni-MOF-74 and Mg–Cd-MOF-74 to gain insight into the mixing of metals and understand how metal mixing affects the structure of the undercoordinated open-metal sites. Our calculations predict that metal mixing is energetically preferred in these materials. Recent experimental work has demonstrated that Mg–Ni-MOF-74 shows a much greater surface area retention in the presence of water than Mg-MOF-74. To probe this effect, we study H 2O adsorption in Mg–Ni-MOF-74, finding that the adsorption energetics and electronic structure do not change significantly at the metal sites when compared to Mg-MOF-74 and Ni-MOF-74, respectively.more » Lastly, we conclude that the increased stability of Mg–Ni-MOF-74 is a result of a M–O bond length distortion in mixed-metal MOF-74, consistent with recent work on the stability of MOF-74 under water exposure.« less

  8. Adsorption of calcitonin to glass.

    PubMed

    Law, S L; Shih, C L

    1999-02-01

    Surface adsorption of calcitonin on soda lime silica glass was investigated. An attempt was also made to examine the effect of additives on the inhibition of calcitonin adsorption. Results showed that the adsorption isotherms were of the Langmuir and Freundlich type, depending on pH. Less adsorption was found for calcitonin at pH 4.3. The addition of nonionic surfactants such as Pluronic F68 and Tween 80 to the calcitonin solutions demonstrated inhibition of absorption and reduction of adsorption rate. The addition of chlorobutanol also showed the effect of minimizing adsorption.

  9. A batch adsorption study on bentonite clay Pertinence to transport modeling?

    NASA Astrophysics Data System (ADS)

    BOURG, I.; BOURG, A. C.; SPOSITO, G.

    2001-12-01

    Bentonite clay is often used as a component of engineered barriers for the isolation of high-level toxic wastes. This swelling clay is used for its physical (impermeability, self-healing) but also for its chemical properties, mostly a high cation exchange capacity (CEC). The adsorbed cations being temporarily immobilized, this should slow down the release of cations from the waste to the surrounding environment. In order to assess the performance of the engineered barrier, the partitioning of solutes between the liquid and solid phases needs to be quantified for use in transport models. The usual method for characterizing the adsorption is through batch adsorption experiments on dispersed suspensions of the solid, yielding an adsorption isotherm (adsorbed concentration vs. dissolved concentration). This isotherm however should be a function of various environmental variables (e.g., pH, ionic strength, concentrations of various ligands and competing adsorbents), so that extrapolation of lab data to performance assessment in the field is problematic. We present results from a study of the adsorption of cesium, strontium, cadmium and lead on dispersed suspensions of the standard BX-80 bentonite. Through a wide range of experimental parameters (pH, ionic strength, reaction time, reactor open or closed to the atmosphere, study of a range of cations of differing properties), we seek a mechanistic interpretation of the results instead of an empirical determination of adsorption parameters. Depending on the mechanisms that control the adsorption in different experimental ranges, we discuss the degree to which the partitioning coefficient (Kd) obtained in the lab can be extrapolated to a transport model through compacted bentonite in a natural environment.

  10. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Michael E.

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are manymore » unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new

  11. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Probing the (110)-Oriented plane of rutile ZnF2: A DFT investigation

    NASA Astrophysics Data System (ADS)

    Tamijani, Ali Abbaspour; Ebrahimiaqda, Elham

    2017-12-01

    For many years, rutile-like crystals have given rise to pronounced enthusiasm amongst mineralogists. In this context, rutile-type ZnF2 has found numerous applications across a variety of disciplines, ranging from material sciences to optoelectronics. Surprisingly, very limited literature is concerned with the molecular adsorption on ZnF2 surfaces and related energetics. Additionally, surface probing with small particles is a well-entrenched technique to analyze the interfacial properties. In this regard, small organic species are valuable picks. In the present work, we have employed electronic structure calculations to simulate the adsorption of methane, chloroform, pyrrole, benzene, naphthalene, anthracene, tetracene and pentacene at the (110) plane of rutile ZnF2. Dispersion-corrected DFT method was chosen to predict the binding energies and structures of molecule-adsorbed surfaces. Interestingly, a linear proportionality relationship was found between the binding energies of aromatic adsorbates and their respective molecular lengths. By applying this relationship, we were able to predict the adsorption energy of pentacene on ZnF2 to within 2% of our DFT-based result.

  13. Reduction of non-specific adsorption of drugs to plastic containers used in bioassays or analyses.

    PubMed

    Fukazawa, Tominaga; Yamazaki, Yuri; Miyamoto, Yohei

    2010-01-01

    Non-specific adsorption (NSA) of drugs to plastic or glass containers used in clinical use is well known, but methods for reducing NSA have been rarely reported. We assessed the NSA to various containers and then investigated methods to reduce NSA. Probe drugs (methotrexate, warfarin, chloroquine, propranolol, verapamil, digoxin and paclitaxel) dissolved in water were incubated in conventional or low-adsorption containers for 4h at 4 degrees C and the NSA was determined by HPLC. They were also dissolved in aqueous methanol or acetonitrile and the NSA to a conventional polypropylene microplate was determined. Finally, tissue culture microplates were coated with silane coupling agents and the effects of the coatings were evaluated. Hydrophobic drugs (paclitaxel, verapamil and digoxin) were highly adsorbed to conventional plastic microplates, but in addition to hydrophobic drugs, positively charged drugs were well adsorbed to the tissue culture microplate. Low-adsorption microplates could reduce NSA below 15%, but positively charged or neutral hydrophobic drugs showed relatively higher adsorption. Acetonitrile showed stronger NSA inhibition than that of methanol, but the peak shapes of methotrexate and chloroquine were broadened and split. Among the silane coupling agents, GPTMS suppressed the NSA below 10%. Also, AATMS resembled the NSA pattern of GPTMS, but it increased the adsorption of methotrexate to 29%. On conventional plastic microplates, NSA is mainly driven by hydrophobic interactions, but on tissue culture microplates and low-adsorption microplates, in addition to hydrophobic interactions, ionic interactions play a role in the NSA. Therefore, to reduce the NSA to plastic containers, both hydrophobic and ionic interactions should be reduced using amphiphilic organic solvents or neutral and hydrophilic coatings. 2010 Elsevier Inc. All rights reserved.

  14. Adsorption dynamics of CVD graphene investigated by a contactless microwave method

    NASA Astrophysics Data System (ADS)

    Black, N. C. G.; Rungger, I.; Li, B.; Maier, S. A.; Cohen, L. F.; Gallop, J. C.; Hao, L.

    2018-07-01

    We use a contactless microwave dielectric resonator gas sensing platform to study the adsorption dynamics of NO2 gas present in air onto a graphene surface. The use of microwaves removes the need for metal contacts that would otherwise be necessary for traditional conductivity measurements, and therefore allows non-invasive determination of NO2 concentrations to sub parts per million. As a result, gas‑metal interactions and localised graphene doping in the vicinity of metal contacts are eliminated, with the advantage that only graphene‑gas adsorbate interactions are responsible for the measured signal. We show that the sensor response for all considered concentrations can be described using a surface coverage dependent Langmuir model. We demonstrate that the possible variation of the NO2 binding energy, which is frequently considered as the main parameter, plays only a secondary role compared to the rising adsorption energy barrier with increasing NO2 coverage. The continuous distribution of the properties of the graphene adsorption sites used in the theoretical model is supported by our Kelvin probe and Raman surface analysis. Our results demonstrate that the non-invasive microwave method is a promising alternative platform for gas sensing. Moreover it provides valuable insights towards the understanding of the microscopic processes occurring in graphene based gas sensors, which is a key factor in the realization of reproducible and optimized device properties.

  15. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    PubMed

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. On the Henry constant and isosteric heat at zero loading in gas phase adsorption.

    PubMed

    Do, D D; Nicholson, D; Do, H D

    2008-08-01

    The Henry constant and the isosteric heat of adsorption at zero loading are commonly used as indicators of the strength of the affinity of an adsorbate for a solid adsorbent. It is assumed that (i) they are observable in practice, (ii) the Van Hoff's plot of the logarithm of the Henry constant versus the inverse of temperature is always linear and the slope is equal to the heat of adsorption, and (iii) the isosteric heat of adsorption at zero loading is either constant or weakly dependent on temperature. We show in this paper that none of these three points is necessarily correct, first because these variables might not be observable since they are outside the range of measurability; second that the linearity of the Van Hoff plot breaks down at very high temperature, and third that the isosteric heat versus loading is a strong function of temperature. We demonstrate these points using Monte Carlo integration and Monte Carlo simulation of adsorption of various gases on a graphite surface. Another issue concerning the Henry constant is related to the way the adsorption excess is defined. The most commonly used equation is the one that assumes that the void volume is the volume extended all the way to a boundary passing through the centres of the outermost solid atoms. With this definition the Henry constant can become negative at high temperatures. Although adsorption at these temperatures may not be practical because of the very low value of the Henry constant, it is more useful to define the Henry constant in such a way that it is always positive at all temperatures. Here we propose the use of the accessible volume; the volume probed by the adsorbate when it is in nonpositive regions of the potential, to calculate the Henry constant.

  17. Synthesis, characterization, and potential application of Mn2+-intercalated bentonite in fluoride removal: adsorption modeling and mechanism evaluation

    NASA Astrophysics Data System (ADS)

    Mudzielwana, Rabelani; Gitari, Wilson M.; Akinyemi, Segun A.; Msagati, Titus A. M.

    2017-12-01

    The study synthesizes a low-cost adsorbent made from Mn2+-modified bentonite clay for groundwater defluoridation. The clays were characterized using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and Fourier transform infrared techniques. The fluoride adsorption capacity of the modified clay was evaluated using batch experiments. The adsorption kinetics results showed that the optimum fluoride (F-) uptake was achieved within the 30 min' contact time. The data fitted well to pseudo-second-order of reaction kinetics indicating that adsorption of F- occurred via chemisorption. In addition, the adsorption isotherm data fitted well to Langmuir isotherm model indicating that adsorption occurred on a mono-layered surface. Maximum F- removal of 57% was achieved from groundwater with an initial F- concentration of 5.4 mg L-1 and natural pH of 8.6 using adsorbent dosage of 1 g/100 mL. Fluoride adsorption occurred through ligands and ion exchange mechanisms. The synthesized adsorbent was successfully regenerated for up to five times. The study shows that Mn2+-intercalated bentonite clay has potential for application in defluoridation of groundwater.

  18. DFT simulations of water adsorption and activation on low-index α-Ga2O3 surfaces.

    PubMed

    Zhou, Xin; Hensen, Emiel J M; van Santen, Rutger A; Li, Can

    2014-06-02

    Density functional theory (DFT) calculations are used to explore water adsorption and activation on different α-Ga2O3 surfaces, namely (001), (100), (110), and (012). The geometries and binding energies of molecular and dissociative adsorption are studied as a function of coverage. The simulations reveal that dissociative water adsorption on all the studied low-index surfaces are thermodynamically favorable. Analysis of surface energies suggests that the most preferentially exposed surface is (012). The contribution of surface relaxation to the respective surface energies is significant. Calculations of electron local density of states indicate that the electron-energy band gaps for the four investigated surfaces appears to be less related to the difference in coordinative unsaturation of the surface atoms, but rather to changes in the ionicity of the surface chemical bonds. The electrochemical computation is used to investigate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on α-Ga2O3 surfaces. Our results indicate that the (100) and (110) surfaces, which have low stability, are the most favorable ones for HER and OER, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanism of the reaction, CH4+O(1D2)→CH3+OH, studied by ultrafast and state-resolved photolysis/probe spectroscopy of the CH4ṡO3 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Miller, C. Cameron; van Zee, Roger D.; Stephenson, John C.

    2001-01-01

    The mechanism of the reaction CH4+O(1D2)→CH3+OH was investigated by ultrafast, time-resolved and state-resolved experiments. In the ultrafast experiments, short ultraviolet pulses photolyzed ozone in the CH4ṡO3 van der Waals complex to produce O(1D2). The ensuing reaction with CH4 was monitored by measuring the appearance rate of OH(v=0,1;J,Ω,Λ) by laser-induced fluorescence, through the OH A←X transition, using short probe pulses. These spectrally broad pulses, centered between 307 and 316 nm, probe many different OH rovibrational states simultaneously. At each probe wavelength, both a fast and a slow rise time were evident in the fluorescence signal, and the ratio of the fast-to-slow signal varied with probe wavelength. The distribution of OH(v,J,Ω,Λ) states, Pobs(v,J,Ω,Λ), was determined by laser-induced fluorescence using a high-resolution, tunable dye laser. The Pobs(v,J,Ω,Λ) data and the time-resolved data were analyzed under the assumption that different formation times represent different reaction mechanisms and that each mechanism produces a characteristic rovibrational distribution. The state-resolved and the time-resolved data can be fit independently using a two-mechanism model: Pobs(v,J,Ω,Λ) can be decomposed into two components, and the appearance of OH can be fit by two exponential rise times. However, these independent analyses are not mutually consistent. The time-resolved and state-resolved data can be consistently fit using a three-mechanism model. The OH appearance signals, at all probe wavelengths, were fit with times τfast≈0.2 ps, τinter≈0.5 ps and τslow≈5.4 ps. The slowest of these three is the rate for dissociation of a vibrationally excited methanol intermediate (CH3OH*) predicted by statistical theory after complete intramolecular energy redistribution following insertion of O(1D2) into CH4. The Pobs(v,J,Ω,Λ) was decomposed into three components, each with a linear surprisal, under the assumption that the

  20. Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a potential adsorbent for removing cationic organic dye from aqueous solution.

    PubMed

    Pei, Ying; Chu, Shan; Chen, Yue; Li, Zhidong; Zhao, Jin; Liu, Shuqi; Wu, Xingjun; Liu, Jie; Zheng, Xuejing; Tang, Keyong

    2017-10-01

    Tannin-immobilized cellulose (CT) hydrogels were successfully fabricated by homogeneous immobilization and crosslinking reaction via a simple method. The structures and properties of hydrogels were characterized by SEM and mechanical test. Methlyene Blue (MB) was selected as a cationic dye model, and the adsorption ability of CT hydrogel was evaluated. Tannins immobilized acted as adsorbent sites which combined MB by electrostatic attraction, resulting in the attractive adsorption ability of CT hydrogel. Adsorption kinetics could be better described by the pseudo-second-order model, and the absorption behaviors were in agreement with a Langmuir isotherm. The adsorption-desorption cycle of CT hydrogel was repeated six times without significant loss of adsorption capacity. In this work, both tannin immobilization and hydrogel formation were achieved simultaneously by a facile homogeneous reaction, providing a new pathway to fabricate tannin-immobilized materials for water treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Density functional theory study on the interactions of l-cysteine with graphene: adsorption stability and magnetism

    NASA Astrophysics Data System (ADS)

    Luo, Huijuan; Li, Hejun; Fu, Qiangang; Chu, Yanhui; Cao, Xiaoyu; Sun, Can; Yuan, Xiaoyan; Liu, Lei

    2013-12-01

    Understanding the interactions between graphene and biomolecules is of fundamental relevance to the area of nanobiotechnology. Herein, we take l-cysteine as the probe biomolecule and investigate its adsorption on pristine graphene and B-, N-, Al-, Ni-, Ga-, Pd-doped graphene using density functional theory calculations. Three kinds of upright adsorption configurations, via unprotonated functional groups (-SH, -NH2, -COOH), are considered. The calculations reveal pristine graphene physically adsorbs l-cysteine. N-doped graphene shows physisorption towards the S-end and N-end l-cysteine, and chemisorption towards the O-end radical. Strong chemisorption, with site-specific preference, occurs on Al-, Ni-, Ga- and Pd-doped graphene, accompanied by severe structural changes. Spin polarization with an unusual mirror symmetry on Ni- and Pd-doped graphene is induced by chemisorption of unprotonated l-cysteine, except for O-end adsorption on Pd-doped graphene. The magnetization arises mainly from spin polarization of the C 2pz orbital, with a minor magnetism located on Ni or Pd. The influence of van der Waals forces is also evaluated. A thorough analysis of the adsorption stability and magnetism of these systems would be beneficial to facilitate applications in graphene-based biosensing, biomolecule immobilization, magnetic bio-separation and other fields in bionanotechnology.

  2. Adsorption of Nickel (II) from Aqueous Solution by Bicarbonate Modified Coconut Oilcake Residue Carbon.

    PubMed

    Vijayakumari, N; Srinivasan, K

    2014-07-01

    The adsorption of Ni (II) on modified coconut oilcake residue carbon (bicarbonate treated coconut oilcake residue carbon-BCORC) was employed for the removal of Ni (II) from water and wastewater. The influence of various factors such as agitation time, pH and carbon dosage on the adsorption capacity has been studied. Adsorption isothermal data could be interpreted by Langmuir and Freundlich equations. In order to understand the reaction mechanism, kinetic data has been studied using reversible first order rate equation. Similar studies were carried out using commercially available activated carbon--CAC, for comparison purposes. Column studies were conducted to obtain breakthrough capacities of BCORC and CAC. Common anions and cations affecting the removal of Ni (II) on both the carbons were also studied. Experiments were also done with wastewater containing Ni (II), to assess the potential of these carbons.

  3. Differential adsorption of CHON isomers at interstellar grain surfaces

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Ellinger, Y.; Ceccarelli, C.

    2015-06-01

    Context. The CHON generic chemical formula covers different isomers such as isocyanic acid (HNCO), cyanic acid (HOCN), fulminic acid (HCNO), and isofulminic acid (HONC); the first three have been identified in a large variety of environments in the interstellar medium (ISM). Several phenomena could be at the origin of the observed abundances, such as different pathways of formation and destruction involving gas phase reactions with different possible activation barriers and/or surface processes depending on the local temperature and the nature of the support. Aims: The scope of this article is to shed some light on the interaction of the CHON isomers with interstellar grains as a function of the nature of the surface and to determine the corresponding adsorption energies in order to find whether this phenomenon could play a role in the abundances observed in the ISM. Methods: The question was addressed by means of numerical simulations using first principle periodic density functional theory (DFT) to represent the grain support as a solid of infinite dimension. Results: Regardless of the nature of the model surface (water ice, graphene, silica), two different classes of isomers were identified: weakly bound (HNCO and HCNO) and strongly bound (HOCN and HONC), with the adsorption energies of the latter group being about twice those of the former. The range of the adsorption energies is (from highest to lowest) HOCN > HONC > HNCO > HCNO. They are totally disconnected from the relative stabilities, which range from HNCO > HOCN > HCNO > HONC. Conclusions: The possibility of hydrogen bonding is the discriminating factor in the trapping of CHON species on grain surfaces. Whatever the environment, differential adsorption is effective and its contribution to the molecular abundances should not be ignored. The theoretical adsorption energies provided here could be profitably used for a more realistic modeling of molecule-surfaces interactions.

  4. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    PubMed

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Investigating the Heavy Metal Adsorption of Mesoporous Silica Materials Prepared by Microwave Synthesis

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjie; Wang, Jingxuan; Wu, Di; Li, Xitong; Luo, Yongming; Han, Caiyun; Ma, Wenhui; He, Sufang

    2017-05-01

    Mesoporous silica materials (MSMs) of the MCM-41 type were rapidly synthesized by microwave heating using silica fume as silica source and evaluated as adsorbents for the removal of Cu2+, Pb2+, and Cd2+ from aqueous solutions. The effects of microwave heating times on the pore structure of the resulting MSMs were investigated as well as the effects of different acids which were employed to adjust the solution pH during the synthesis. The obtained MCM-41 samples were characterized by nitrogen adsorption-desorption analyses, X-ray powder diffraction, and transmission electron microscopy. The results indicated that microwave heating method can significantly reduce the synthesis time of MCM-41 to 40 min. The MCM-41 prepared using citric acid (c-MCM-41(40)) possessed more ordered hexagonal mesostructure, higher pore volume, and pore diameter. We also explored the ability of c-MCM-41(40) for removing heavy metal ions (Cu2+, Pb2+, and Cd2+) from aqueous solution and evaluated the influence of pH on its adsorption capacity. In addition, the adsorption isotherms were fitted by Langmuir and Freundlich models, and the adsorption kinetics were assessed using pseudo-first-order and pseudo-second-order models. The intraparticle diffusion model was studied to understand the adsorption process and mechanism. The results confirmed that the as-synthesized adsorbent could efficiently remove the heavy metal ions from aqueous solution at pH range of 5-7. The adsorption isotherms obeyed the Langmuir model, and the maximum adsorption capacities of the adsorbent for Cu2+, Pb2+, and Cd2+ were 36.3, 58.5, and 32.3 mg/g, respectively. The kinetic data were well fitted to the pseudo-second-order model, and the results of intraparticle diffusion model showed complex chemical reaction might be involved during adsorption process.

  6. Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth.

    PubMed

    Tsai, W T; Hsien, K J; Chang, Y M; Lo, C C

    2005-04-01

    A spent diatomaceous earth from the beer brewery has been tentatively activated by sodium hydroxide at about 100 degrees C. The resulting product was used as a novel adsorbent for the adsorption of herbicide paraquat from an aqueous solution in a continuously stirred adsorber and batch flasks, respectively. The results showed that the adsorption process could be well described by the pseudo-second-order reaction model. From the view of the negatively charged surface of diatomaceous earth and cationic property of paraquat, the results were also reasonable to be explained by physical adsorption in the ion-exchange process under the effects of pH and temperature. Further, it was found that the Freundlich model appeared to fit the isotherm data better than the Langmuir model.

  7. Destructive adsorption of Diazinon pesticide by activated carbon nanofibers containing Al2O3 and MgO nanoparticles.

    PubMed

    Behnam, Roghaye; Morshed, Mohammad; Tavanai, Hossein; Ghiaci, Mehran

    2013-10-01

    We report the destructive adsorption of Diazinon pesticide by porous webs of activated carbon nanofibers containing Al2O3 and MgO nanoparticles. The results show that, the presence of Al2O3 and MgO nanoparticles in the activated carbon nanofibers increases the amount of destructively adsorbed Diazinon pesticide by activated carbon nanofibers. Moreover, type, amount, and specific surface area of metal oxide nanoparticles affect the adsorption rate as well as the total destructively adsorbed Diazinon. Liquid chromatography proved the degradation of Diazinon by chemical reaction with Al2O3 and MgO nanoparticles. Liquid chromatography-mass spectrometry showed that the main product of reaction between Diazinon and the metal oxides is 2-isopropyl-6-methyl-4-pyrimidinol with less toxicity than Diazinon.

  8. Optimization and adsorption kinetic studies of aqueous manganese ion removal using chitin extracted from shells of edible Philippine crabs

    NASA Astrophysics Data System (ADS)

    Quimque, Mark Tristan J.; Jimenez, Marvin C.; Acas, Meg Ina S.; Indoc, Danrelle Keth L.; Gomez, Enjelyn C.; Tabuñag, Jenny Syl D.

    2017-01-01

    Manganese is a common contaminant in drinking water along with other metal pollutants. This paper investigates the use of chitin, extracted from crab shells obtained as restaurant throwaway, as an adsorbent in removing manganese ions from aqueous medium. In particular, this aims to optimize the adsorption parameters and look into the kinetics of the process. The adsorption experiments done in this study employed the batch equilibration method. In the optimization, the following parameters were considered: pH and concentration of Mn (II) sorbate solution, particle size and dosage of adsorbent chitin, and adsorbent-adsorbate contact time. At the optimal condition, the order of the adsorption reaction was estimated using kinetic models which describes the process best. It was found out that the adsorption of aqueous Mn (II) ions onto chitin obeys the pseudo-second order model. This model assumes that the adsorption occurred via chemisorption

  9. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  10. Application of low energy ion blocking for adsorption site determination of Na Atoms on a Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Makarenko, B.; Bahrim, B.; Rabalais, J. W.

    2010-07-01

    Ion blocking in the low keV energy range is demonstrated to be a sensitive method for probing surface adsorption sites by means of the technique of time-of-flight scattering and recoiling spectroscopy (TOF-SARS). Adsorbed atoms can block the nearly isotropic backscattering of primary ions from surface atoms in the outmost layers of a crystal. The relative adsorption site position can be derived unambiguously by simple geometrical constructs between the adsorbed atom site and the surface atom sites. Classical ion trajectory simulations using the scattering and recoiling imaging code (SARIC) and molecular dynamics (MD) simulations provide the detailed ion trajectories. Herein we present a quantitative analysis of the blocking effects produced by sub-monolayer Na adsorbed on a Cu(111) surface at room temperature. The results show that the Na adsorption site preferences are different at different Na coverages. At a coverage θ = 0.25 monolayer, Na atoms preferentially populate the fcc threefold surface sites with a height of 2.7 ± 0.1 Å above the 1st layer Cu atoms. At a lower coverage of θ = 0.10 monolayer, there is no adsorption site preference for the Na atoms on the Cu(111) surface.

  11. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    PubMed

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.

  12. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    PubMed

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  13. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    PubMed

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea

    PubMed Central

    Narihiro, Takashi; Sekiguchi, Yuji

    2011-01-01

    Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721

  15. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel.

    PubMed

    Ren, Xiaohua; Guo, Huanhuan; Feng, Jinkui; Si, Pengchao; Zhang, Lin; Ci, Lijie

    2018-01-01

    3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m 2 /g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min -1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO 4 · - ) by transferring electrons to N-rGO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.

    PubMed

    Song, Jinsuk; Kim, Mahn Won

    2010-03-11

    Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.

  17. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    PubMed Central

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  18. Quantum chemical study of arsenic (III, V) adsorption on Mn-oxides: implications for arsenic(III) oxidation.

    PubMed

    Zhu, Mengqiang; Paul, Kristian W; Kubicki, James D; Sparks, Donald L

    2009-09-01

    Density functional theory (DFT) calculations were used to investigate As(V) and As(III) surface complex structures and reaction energies on both Mn(III) and Mn(IV) sites in an attempt to better understand As(III) oxidation bybirnessite, a layered Mn-dioxide mineral. Edge-sharing dioctahedral Mn(III) and Mn(IV) clusters with different combinations of surface functional groups (>MnOH and >MnOH2) were employed to mimic pH variability. Results show that As(V) adsorption was more thermodynamically favorable than As(III) adsorption on both Mn(III) and Mn(IV) surface sites under simulated acidic pH conditions. Therefore, we propose that As(V) adsorption inhibits As(III) oxidation by blocking adsorption sites. Under simulated acidic pH conditions, Mn(IV) sites exhibited stronger adsorption affinity than Mn(III) sites for both As(III) and As(V). Overall, we hypothesize that Mn(III) sites are less reactive in terms of As(III) oxidation due to their lower affinity for As(III) adsorption, higher potential to be blocked by As(V) complexes, and slower electron transfer rates with adsorbed As(III). Results from this study offer an explanation regarding the experimental observations of Mn(III) accumulation on birnessite and the long residence time of As(III) adsorption complexes on manganite (r-MnOOH) during As(III) oxidation.

  19. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.

  20. Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions

    PubMed Central

    Tsai, Yi-Ting; Patty, Kaitlen M; Weng, Hong; Tang, Ewin N.; Nair, Ashwin; Hu, Wen-Jing; Tang, Liping

    2014-01-01

    Plasticity of macrophages (MΦ) phenotypes exist in a spectrum from classically activated (M1) cells, to alternatively activated (M2) cells, contributing to both the normal healing of tissues and the pathogenesis of implant failure. Here, folate- and mannose-based optical probes were fabricated to simultaneously determine the degree of MΦ polarization. In vitro tests show the ability of these probes to specifically target M1 and M2 cells. In an in vivo murine model, they were able to distinguish between M1-dominated inflammatory response to infection and M2-dominated regenerative response to particle implants. Finally, the probes were used to assess the inflammatory/ regenerative property of biomaterial implants. Our results show that these probes can be used to monitor and quantify the dynamic processes of MΦ polarization and their role in cellular responses in real time. PMID:24726956

  1. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    DOE PAGES

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; ...

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd 9Au nanowires, which have been previouslymore » shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.« less

  2. Role of the Edge Properties in the Hydrogen Evolution Reaction on MoS2.

    PubMed

    Lazar, Petr; Otyepka, Michal

    2017-04-06

    Molybdenum disulfide, in particular its edges, has attracted considerable attention as possible substitute for platinum catalysts in the hydrogen evolution reaction (HER). The complex nature of the reaction complicates its detailed experimental investigations, which are mostly indirect and sample dependent. Therefore, density functional theory calculations were employed to study how the properties of the MoS 2 Mo-edge influence the thermodynamics of hydrogen adsorption onto the edge. The effect of the computational model (one-dimensional nanostripe), border symmetry imposed by its length, sulfur saturation of the edge, and dimensionality of the material are discussed. Hydrogen adsorption was found to depend critically on the coverage of extra sulfur at the Mo edge. The bare Mo-edge and fully sulfur-covered Mo-edge are catalytically inactive. The most favorable hydrogen binding towards HER was found for the Mo-edge covered by sulfur monomers. This edge provides hydrogen adsorption free energies positioned around -0.25 eV at up to 50 % hydrogen coverage, close to the experimental values of overpotential needed for the HER reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of DNA probes for Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves.more » It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.« less

  4. Aqueous adsorption and removal of organic contaminants by carbon nanotubes.

    PubMed

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Chemoselective covalent coupling of oligonucleotide probes to self-assembled monolayers.

    PubMed

    Devaraj, Neal K; Miller, Gregory P; Ebina, Wataru; Kakaradov, Boyko; Collman, James P; Kool, Eric T; Chidsey, Christopher E D

    2005-06-22

    A chemoselective route to routinely and rapidly attach oligonucleotide probes to well-defined surfaces is presented. Cu(I) tris(benzyltriazolylmethyl)amine-catalyzed coupling of terminal acetylenes to azides on a self-assembled monolayer is used instead of traditional nucleophilic-electrophilic coupling reactions. The reaction proceeds well even in the presence of purposely introduced nucleophilic and electrophilic impurities. The density of oligonucleotide probes can be controlled by controlling the amount of azide functionality. Although most of our work was done on gold surfaces, this technique should be readily applicable to any surface on which an azide-containing monolayer can be assembled as we have preliminarily demonstrated by derivatizing azidotrimethoxysilane-modified glass slides with fluorescein-containing oligonucleotides.

  6. pH profile of the adsorption of nucleotides onto montmorillonite. II - Adsorption and desorption of 5-prime-AMP in iron-calcium montmorillonite systems

    NASA Technical Reports Server (NTRS)

    Banin, A.; Lawless, J. G.; Mazzurco, J.; Church, F. M.; Margulies, L.; Orenberg, J. B.

    1985-01-01

    The interaction of 5-prime-AMP with montmorillonite saturated with various ratios of two metals found ubiquitously on the surface of earth, that is, iron and calcium, is investigated. Adsorption and desorption of the nucleotide were studied in the pH range of 2-12 at three levels of addition: 0.080, 0.268 and 0.803 mmole 5-prime-AMP per gram of clay. Two desorption stages were employed - H2O wash and NaOH extraction (pH = 12.0). 5-prime-AMP was preferentially adsorbed on the Fe-containing clays relative to the Ca clay. The nucleotide was fully recovered by the two desorption stages, mostly by the NaOH extraction. The evidence at hand indicates that 5-prime-AMP reaction with clay is affected by electrostatic interactions involving both attraction and repulsion forces. Some specific adsorption, possibly the result of covalent bonding and complex formation with the adsorbed ion, cannot be ruled out for iron but does not appear to operate for calcium. Changes in pH cause varying degrees of attaction and repulsion of 5-prime-AMP and may have been operating on the primitive earth, leading to sequences of adsorption and release of this biomolecule.

  7. Acid-Activatable Michael-Type Fluorescent Probes for Thiols and for Labeling Lysosomes in Live Cells.

    PubMed

    Dai, Chun-Guang; Du, Xiao-Jiao; Song, Qin-Hua

    2015-12-18

    A Michael addition is usually taken as a base-catalyzed reaction. Most fluorescent probes have been designed to detect thiols in slightly alkaline solutions (pH 7-9). The sensing reactions of almost all Michael-type fluorescent probes for thiols are faster in a high pH solution than in a low pH solution. In this work, we synthesized a series of 7-substituted 2-(quinolin-2-ylmethylene)malonic acids (QMAs, substituents: NEt2, OH, H, Cl, or NO2) and their ethyl esters (QMEs) as Michael-type fluorescent probes for thiols. The sensing reactions of QMAs and QMEs occur in distinct pH ranges, pH < 7 for QMAs and pH > 7 for QMEs. On the basis of experimental and theoretic studies, we have clarified the distinct pH effects on the sensing reactivity between QMAs and QMEs and demonstrated that two QMAs (NEt2, OH) are highly sensitive and selective fluorescent probes for thiols in acidic solutions (pH < 7) and promising dyes that can label lysosomes in live cells.

  8. Miniature probe for the delivery and monitoring of a photopolymerizable material

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas; Khoushabi, Azadeh; Schizas, Constantin; Bourban, Pierre-Etienne; Pioletti, Dominique P.; Moser, Christophe

    2015-12-01

    Photopolymerization is a common method to cure materials initially in a liquid state, such as dental implants or bone or tissue fillers. Recent advances in the development of biocompatible gel- and cement-systems open up an avenue for in situ photopolymerization. For minimally invasive surgery, such procedures require miniaturized surgical endoscopic probes to activate and control photopolymerization in situ. We present a miniaturized light probe in which a photoactive material can be (1) mixed, pressurized, and injected, (2) photopolymerized/photoactivated, and (3) monitored during the chemical reaction. The device is used to implant and cure poly(ethylene glycol) dimethacrylate-hydrogel-precursor in situ with ultraviolet A (UVA) light (365 nm) while the polymerization reaction is monitored in real time by collecting the fluorescence and Raman signals generated by the 532-nm excitation light source. Hydrogels could be delivered, photopolymerized, and monitored by the probe up to a curing depth of 4 cm. The size of the photopolymerized samples could be correlated to the fluorescent signal collected by the probe, and the reproducibility of the procedure could be demonstrated. The position of the probe tip inside a bovine caudal intervertebral disc could be estimated in vitro based on the collected fluorescence and Raman signal.

  9. Universality of crossover scaling for the adsorption transition of lattice polymers

    NASA Astrophysics Data System (ADS)

    Bradly, C. J.; Owczarek, A. L.; Prellberg, T.

    2018-02-01

    Recently, it has been proposed that the adsorption transition for a single polymer in dilute solution, modeled by lattice walks in three dimensions, is not universal with respect to intermonomer interactions. Moreover, it has been conjectured that key critical exponents ϕ , measuring the growth of the contacts with the surface at the adsorption point, and 1 /δ , which measures the finite-size shift of the critical temperature, are not the same. However, applying standard scaling arguments the two key critical exponents should rather be identical, hence pointing to a potential breakdown of these standard scaling arguments. Both of these conjectures are in contrast to the well-studied situation in two dimensions, where there are exact results from conformal field theory: these exponents are both accepted to be 1 /2 and universal. We use the flatPERM algorithm to simulate self-avoiding walks and trails on the hexagonal, square, and simple cubic lattices up to length 1024 to investigate these claims. Walks can be seen as a repulsive limit of intermonomer interaction for trails, allowing us to probe the universality of adsorption. For each lattice model we analyze several thermodynamic properties to produce different methods of estimating the critical temperature and the key exponents. We test our methodology on the two-dimensional cases, and the resulting spread in values for ϕ and 1 /δ indicates that there is a systematic error which can far exceed the statistical error usually reported. We further suggest a methodology for consistent estimation of the key adsorption exponents which gives ϕ =1 /δ =0.484 (4 ) in three dimensions. Hence, we conclude that in three dimensions these critical exponents indeed differ from the mean-field value of 1 /2 , as had previously been calculated, but cannot find evidence that they differ from each other. Importantly, we also find no substantive evidence of any nonuniversality in the polymer adsorption transition.

  10. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane; Mousseau, Normand

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structuralmore » defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free

  11. Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation

    NASA Astrophysics Data System (ADS)

    Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad

    2018-03-01

    This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.

  12. Rice husk grafted PMAA by ATRP in aqueous phase and its adsorption for Ce3+

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Luo, Wenjun; Chen, Jindong; Zhou, Qi

    2017-12-01

    A monolithic biomass adsorbent, rice husk grafted poly (methyl acrylic acid) (RH-g-PMAA), was successfully synthesized via surface-initiated atom transfer radical polymerization (ATRP) through heterogeneous reactions in aqueous phase. Its adsorption capacity for Ce3+ reaches 122.51 mg g-1, which is about 12 times higher than that of raw rice husk. The experimental result on desorption and reusability shows that the adsorption capacity is still higher than 100 mg g-1 after six cycles and the desorption rate is almost 100% in every cycle. RH-g-PMAA can be separated from water easily because of its integrity.

  13. A Critical Evaluation of Studies Employing Alkenyl Halide ’Mechanistic Probe’ as Indicators of Single Electron Transfer Processes.

    DTIC Science & Technology

    1987-07-07

    College Station, TX 77843 Pittsburgh, PA 15260 Introduction: Chemical reactions come about through the reorganization of valence electrons. The notion...Contmnue on reverie of necessary and odentify 0)’ Wooc ,7umor r) Recently it has been suggested that many reaction traditionally classed in polar terms may...evaluates the utility of these alkenyl halide probes as mechanistic probes for SET. Reactions which interfere with the standard analysis ~ include the

  14. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Wu, Yiren; Su, Dong; Qin, Dong

    2017-02-22

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  15. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yiren; Su, Dong; Qin, Dong

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  16. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites.

    PubMed

    Fang, Linchuan; Huang, Qiaoyun; Wei, Xing; Liang, Wei; Rong, Xinming; Chen, Wenli; Cai, Peng

    2010-08-01

    Equilibrium adsorption experiments, isothermal titration calorimetry and potentiometric titration techniques were employed to investigate the adsorption of Cu(II) by extracellular polymeric substances (EPS) extracted from Pseudomonas putida X4, minerals (montmorillonite and goethite) and their composites. Compared with predicted values of Cu(II) adsorption on composites, the measured values of Cu(II) on EPS-montmorillonite composite increased, however, those on EPS-goethite composite decreased. Potentiometric titration results also showed that more surface sites were observed on EPS-montmorillonite composite and less reactive sites were found on EPS-goethite composite. The adsorption of Cu(II) on EPS molecules and their composites with minerals was an endothermic reaction, while that on minerals was exothermic. The positive values of enthalpy change (Delta H) and entropy change (DeltaS) for Cu(II) adsorption on EPS and mineral-EPS composites indicated that Cu(II) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules and their composites with minerals. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Evaluating the Adsorptive Capabilites of Chemsorb 1000 and Chemsorb 1425

    NASA Technical Reports Server (NTRS)

    Mejia, Oscar Alberto Monje; Surma, Jan M.; Johnsey, Marissa; Melendez, Orlando

    2014-01-01

    gases (e.g. HCl, SO2, formaldehyde, and NH3) are not removed by physisorption and typically require chemisorption for removal. Treated activated carbons (e.g. Chemsorb 1425) are impregnated with a a chemical agent (e.g. phosphoric acid) that reacts with those gases, converting them to solids or salts within the carbon and removes them from the air stream. This process occurs via neutralization or catalysis reactions and adsorption capacity is exhaustedwhen the available impregnated chemicals are consumed. Moisture affects removal performance since adsorption sites within the pores are filled with water. The performance of impregnated carbons may be enhanced by moisture content because the mechanisms of contaminant removal are chemical reactions that occur in reagents contained within the pores. The adsorptive capacity data (mol/kg) of Chemsorb 1000 and 1425 for gas mixtures (ethanol, acetone, toluene, acetaldehyde, dichloromethane, and xylene) was measured with 40% relative humidity at 23 deg C air temperature. The adsorptive capacity data (mol/kg) of Chemsorb 1425 was measured using NH3 gas streams.

  18. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Kim, Eric; Meggo, Anika; Gandhi, Sachin; Luo, Hao; Kallakuri, Srinivas; Xu, Yong; Zhang, Jinsheng

    2017-04-01

    Objective. Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. Approach. We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. Main results. The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. Significance. The new design will help enhance the long-term stability of the implantable devices.

  19. Adsorption kinetics of surfactants on activated carbon

    NASA Astrophysics Data System (ADS)

    Arnelli; Aditama, WP; Fikriani, Z.; Astuti, Y.

    2018-04-01

    A study on the adsorption of both cationic and anionic surfactants using activated carbon as well as the investigation of the adsorption isotherms and adsorption kinetics has been conducted. The results showed that the adsorption of sodium lauryl sulfate (SLS) by activated carbon was Langmuir’s adsorption isotherm while its adsorption kinetics showed pseudo-second order with an adsorption rate constant of 2.23 x 103 g mg-1 hour-1. Meanwhile, the adsorption of HDTMA-Br by activated carbon showed that the isotherm adsorption tended to follow Freundlich’s isotherm and was pseudo-second order with an adsorption rate constant of 89.39 g mg-1 hour-1.

  20. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    DOE PAGES

    Kneebone, Jared L.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; ...

    2017-07-06

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O 2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O 2 or O 2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe activemore » sites in complex ORR catalysts that combines an effective probe molecule (NO (g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO (g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO (g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO (g) probe molecules. Moreover, such sites are likely also reactive to O 2, possibly serving as the ORR active sites in the synthesized materials.« less

  1. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneebone, Jared L.; Daifuku, Stephanie L.; Kehl, Jeffrey A.

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O 2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O 2 or O 2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe activemore » sites in complex ORR catalysts that combines an effective probe molecule (NO (g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO (g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO (g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO (g) probe molecules. Moreover, such sites are likely also reactive to O 2, possibly serving as the ORR active sites in the synthesized materials.« less

  2. An Iodine Fluorescence Quenching Clock Reaction

    NASA Astrophysics Data System (ADS)

    Weinberg, Richard B.

    2007-05-01

    A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.

  3. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion.

    PubMed

    Sloufová, Ivana; Sisková, Karolína; Vlcková, Blanka; Stepánek, Josef

    2008-04-28

    Changes in morphology, surface reactivity and surface-enhancement of Raman scattering induced by modification of borate-stabilized Ag nanoparticles by adsorbed chlorides have been explored using TEM, EDX analysis and SERS spectra of probing adsorbate 2,2'-bipyridine (bpy) excited at 514.5 nm and evaluated by factor analysis. At fractional coverages of the parent Ag nanoparticles by adsorbed chlorides <0.6, the Ag colloid/Cl(-)/bpy systems were found to be constituted by fractal aggregates of Ag nanoparticles fairly uniform in size (10 +/- 2 nm) and SERS spectra of Ag(+)-bpy surface species were detected. The latter result was interpreted in terms of the presence of oxidized Ag(+) and/or Ag(n)(+) adsorption sites, which have been encountered also in systems with the chemically untreated Ag nanoparticles. At chloride coverages >0.6, a fusion of fractal aggregates into the compact aggregates of touching and/or interpenetrating Ag nanoparticles has been observed and found to be accompanied by the formation of another surface species, Ag-bpy, as well as by the increase of the overall SERS enhancement of bpy by factor of 40. The same Ag-bpy surface species has been detected under the strongly reducing conditions of reduction of silver nitrate by sodium borohydride in the presence of bpy. The formation of Ag-bpy is thus interpreted in terms of the stabilization of reduced Ag(0) adsorption sites by adsorbed bpy. The formation of reduced adsorption sites on Ag nanoparticle surfaces at chloride coverages >0.6 is discussed in terms of local changes in the work function of Ag. Finally, the SERS spectral detection of Ag-bpy species is proposed as a tool for probing the presence of reduced Ag(0) adsorption sites in systems with chemically modified Ag nanoparticles.

  4. Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions.

    PubMed

    Baker, David W; Zhou, Jun; Tsai, Yi-Ting; Patty, Kaitlen M; Weng, Hong; Tang, Ewin N; Nair, Ashwin; Hu, Wen-Jing; Tang, Liping

    2014-07-01

    Plasticity of macrophage (MΦ) phenotypes exist in a spectrum from classically activated (M1) cells, to alternatively activated (M2) cells, contributing to both the normal healing of tissues and the pathogenesis of implant failure. Here, folate- and mannose-based optical probes were fabricated to simultaneously determine the degree of MΦ polarization. In vitro tests show the ability of these probes to specifically target M1 and M2 cells. In an in vivo murine model, they were able to distinguish between the M1-dominated inflammatory response to infection and the M2-dominated regenerative response to particle implants. Finally, the probes were used to assess the inflammatory/regenerative properties of biomaterial implants. Our results show that these probes can be used to monitor and quantify the dynamic processes of MΦ polarization and their role in cellular responses in real time. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  6. Formation of Germa-ketenimine on the Ge(100) Surface by Adsorption of tert-Butyl Isocyanide.

    PubMed

    Shong, Bonggeun; Yoo, Jong Suk; Sandoval, Tania E; Bent, Stacey F

    2017-06-28

    Reactions of the (100) surfaces of Ge and Si with organic molecules have been generally understood within the concept of "dimers" formed by the 2 × 1 surface reconstruction. In this work, the adsorption of tert-butyl isocyanide on the Ge(100)-2 × 1 surface at large exposures is investigated under ultrahigh vacuum conditions. A combination of infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption experiments along with dispersion-corrected density functional theory calculations is used to determine the surface products. Upon adsorption of a dense monolayer of tert-butyl isocyanide, a product whose structure resembles a germa-ketenimine (N=C=Ge) with σ donation toward and π back-donation from the Ge(100) surface appears. Formation of this structure involves divalent-type surface Ge atoms that arise from cleavage of the Ge(100)-2 × 1 surface dimers. Our results reveal an unprecedented class of reactions of organic molecules at the Ge(100) surface.

  7. Strong Selective Adsorption of Polymers.

    PubMed

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d < 1 that are characterized by the fraction of occupied adsorption sites and whether the dominant conformation of adsorbed chains is a single-end-adsorbed "mushroom" or double-end-adsorbed loop. For l / d > 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker

  8. One-pot solvothermal synthesis of dual-phase titanate/titania Nanoparticles and their adsorption and photocatalytic Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yu Hua; Gong, Dangguo; Tang, Yuxin

    2014-06-01

    Dual phase titanate/titania nanoparticles undergo phase transformation gradually with the increase of solvothermal synthesis temperature from 100 °C to 200 °C, and eventually are fully transformed into anatase TiO{sub 2}. The crystal structure change results in the changes of optical absorption, sensitizer/dopant formation and surface area of the materials which finally affect the overall dye removal ability. Reactions under dark and light have been conducted to distinguish the contributions of surface adsorption from photocatalytic degradation. The sample synthesized at 160 °C (S160) shows the best performances for both adsorption under dark and photocatalytic degradation of methylene blue (MB) under visiblemore » light irradiation. The adsorption mechanism for S160 is determined as monolayer adsorption based on the adsorption isotherm test under dark condition, and an impressive adsorption capacity of 162.19 mg/g is achieved. For the photocatalytic application, this sample at 0.1 g/L loading is also able to degrade 20 ppm MB within 6 hours under the visible light (>420 nm) condition. - Graphical abstract: The effect of solvothermal synthesis temperature on the formation and dye removal performance of dual phase titanate/titania nanoparticles was unveiled and optimized. - Highlights: • Low temperature one-pot solvothermal synthesis of dual-phase photocatalysts. • Correlation of the synthesis temperature is made with the phase composition. • Adsorption isotherm, kinetics, photocatalytic degradation were studied. • Synthesis at 160 °C yields the best material for adsorption of MB in dark. • The same sample also shows the best visible light degradation of MB.« less

  9. Density Functional Theory Simulations of Water Adsorption and Activation on the (-201) β-Ga2 O3 Surface.

    PubMed

    Anvari, Roozbeh; Spagnoli, Dino; Parish, Giacinta; Nener, Brett

    2018-03-09

    Density functional theory calculations are used to study the molecular and dissociative adsorption of water on the (-201) β-Ga 2 O 3 surface. The effect of adsorption of different water-like species on the geometry, binding energies, vibrational spectra and the electronic structure of the surface are discussed. The study shows that although the hydrogen evolution reaction requires a small amount of energy to become energetically favourable, the over potential for activating the oxygen evolution reaction is quite high. The results of our calculations provide insight as to why a high voltage is required in experiments to activate the water-splitting reaction, whereas previous studies of gallium oxide predicted very low activation energies for other energetically more favourable facets. Application of this work to studies of GaN-based chemical sensors with gallium oxide surfaces shows that it is possible to select the gate bias so that the sensors are not influenced by water-splitting reactions. It was also found that in the region where water splitting does not occur, the surface can exist in two states, that is, water or hydroxyl terminated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    PubMed

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  11. Water Adsorption and Dissociation on Ceria-Supported Single-Atom Catalysts: A First-Principles DFT+U Investigation.

    PubMed

    Han, Zhong-Kang; Gao, Yi

    2016-02-01

    Single-atom catalysts have attracted wide attention owing to their extremely high atom efficiency and activities. In this paper, we applied density functional theory with the inclusion of the on-site Coulomb interaction (DFT+U) to investigate water adsorption and dissociation on clean CeO 2 (111) surfaces and single transition metal atoms (STMAs) adsorbed on the CeO 2 (111) surface. It is found that the most stable water configuration is molecular adsorption on the clean CeO 2 (111) surface and dissociative adsorption on STMA/CeO 2 (111) surfaces, respectively. In addition, our results indicate that the more the electrons that transfer from STMA to the ceria substrate, the stronger the binding energies between the STMA and ceria surfaces. A linear relationship is identified between the water dissociation barriers and the d band centers of STMA, known as the generalized Brønsted-Evans-Polanyi principle. By combining the oxygen spillovers, single-atom dispersion stabilities, and water dissociation barriers, Zn, Cr, and V are identified as potential candidates for the future design of ceria-supported single-atom catalysts for reactions in which the dissociation of water plays an important role, such as the water-gas shift reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Role of adsorption in liquid lubrication

    NASA Technical Reports Server (NTRS)

    Groszek, A. J.

    1973-01-01

    Changes at solid-liquid interfaces caused by adsorption from solution are discussed paying attention to the following aspects: (1) stability of adsorbed films and the structure of metal-additive-film-liquid interface and effect of adsorbate orientation. (2) chemical versus physical adsorption, (3) heat of adsorption, (4) adsorption of additives, (5) activated adsorption, effect of activating adsorbates, (6) displacement phenomena at solid-liquid interfaces, (7) competition of antiwear additives, their solvents, and water, (8) effect of adsorption on the orientation of liquid in the interfacial region, and (9) relation between the chemical nature of solid surfaces and their interaction with liquid lubricants. The relevance of the above adsorption phenomena to lubrication is discussed, referring where possible to specific examples.

  13. Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation.

    PubMed

    Dong, Zhen; Zhao, Long

    2018-06-01

    Combining the advantages of both cellulose and ionic liquid, ionic liquid functionalized cellulose (ILFC) as adsorbent was prepared through radiation grafting glycidyl methacrylate onto cellulose microsphere following by reaction with ionic liquid 1-aminopropyl-3-methyl imidazolium nitrate. Its adsorption properties towards Cr(VI) were investigated in batch and column experiments. In batch experiments, the adsorption kinetics was well fitted with pseudo-second-order mode with equilibrium time of 2 h and the adsorption capacity reached 181.8 mg/g at pH 2 calculated from Langmuir model. In fixed column, both Yoon-Nelson and Thomas models gave satisfactory fit to experimental data and breakthrough curves, and equilibrium adsorption capacity calculated by Thomas model was 161.0 mg/g. Moreover, ILFC exhibited high selectivity towards Cr(VI) even in synthetic chrome-plating wastewater. Besides, adsorption/desorption test revealed ILFC can be regenerated and reused several times without obvious decrease in adsorbed amount. The adsorption process was demonstrated to anion exchange-reduction mechanism via XPS analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Marrying the mussel inspired chemistry and Kabachnik-Fields reaction for preparation of SiO2 polymer composites and enhancement removal of methylene blue

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Liu, Meiying; Chen, Junyu; Wan, Qing; Tian, Jianwen; Huang, Long; Jiang, Ruming; Deng, Fengjie; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    The removal of organic dyes using functionalization SiO2 composites (denoted as SiO2-PDA-CSH) were prepared via a facile method that combined with mussel inspired chemistry and Kabachnik-Fields (KF) reaction. The size and surface morphology, chemical structure, thermal stability, surface charging property, and elemental composition were evaluated by means of transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), zeta potential, and X-ray photoelectron spectroscopy (XPS), respectively. The results demonstrated that the organic functional groups can be successfully introduced onto the surface of SiO2 microspheres through the combination of mussel inspired chemistry and KF reaction. The removal of cationic dye methylene blue (MB) by the raw SiO2 and SiO2-PDA-CSH composites was examined and compared using a series of batch adsorption experiments. The results suggested that SiO2-PDA-CSH composites had a 3-fold increase in the adsorption capacity towards MB than that of pure SiO2 microspheres and the adsorption process was dependent on the solution pH. According to the adsorption kinetics, the adsorption of MB onto SiO2-PDA-CSH composites was well described by pseudo-second-order kinetic model. The equilibrium data were fitted with Langmuir and Freundlich isotherm models with R2 = 0.9981 and R2 = 0.9982, respectively. The maximum adsorption capacity from Langmuir isotherm was found to be 688.85 mg/g. The adsorption thermodynamics was also investigated in detailed. The parameters revealed that the adsorption process was spontaneous and endothermic in nature. The adsorption mechanism might be the synergistic action of physical adsorption of SiO2-PDA-CSH particles and electrostatic interaction between the MB and functional groups on the surface of SiO2-PDA-CSH composites, including sulfydryl, amino, aromatic moieties, and phosphate groups. Taken together, we developed a novel and facile strategy for the

  15. The adsorption of methyl iodide on uranium and uranium dioxide: Surface characterization using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES)

    NASA Astrophysics Data System (ADS)

    Dillard, J. G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H. J.

    1984-09-01

    The adsorption of methyl iodide on uranium and on uranium dioxide has been studied at 25 °C. Surfaces of the substrates were characterized before and after adsorption by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The XPS binding energy results indicate that CH 3I adsorption on uranium yields a carbide-type carbon, UC, and uranium iodide, UI 3. On uranium dioxide the carbon electron binding energy measurements are consistent with the formation of a hydrocarbon, —CH 3-type moiety. The interpretation of XPS and AES spectral features for CH 3I adsorption on uranium suggest that a complex dissociative adsorption reaction takes place. Adsorption of CH 3I on UO 2 occurs via a dissociative process. Saturation coverage occurs on uranium at approximately two langmuir (1 L = 10 -6 Torr s) exposure whereas saturation coverage on uranium dioxide is found at about five langmuir.

  16. Constructing New Bioorthogonal Reagents and Reactions.

    PubMed

    Row, R David; Prescher, Jennifer A

    2018-05-15

    Chemical tools are transforming our understanding of biomolecules and living systems. Included in this group are bioorthogonal reagents-functional groups that are inert to most biological species, but can be selectively ligated with complementary probes, even in live cells and whole organisms. Applications of these tools have revealed fundamental new insights into biomolecule structure and function-information often beyond the reach of genetic approaches. In many cases, the knowledge gained from bioorthogonal probes has enabled new questions to be asked and innovative research to be pursued. Thus, the continued development and application of these tools promises to both refine our view of biological systems and facilitate new discoveries. Despite decades of achievements in bioorthogonal chemistry, limitations remain. Several reagents are too large or insufficiently stable for use in cellular environments. Many bioorthogonal groups also cross-react with one another, restricting them to singular tasks. In this Account, we describe our work to address some of the voids in the bioorthogonal toolbox. Our efforts to date have focused on small reagents with a high degree of tunability: cyclopropenes, triazines, and cyclopropenones. These motifs react selectively with complementary reagents, and their unique features are enabling new pursuits in biology. The Account is organized by common themes that emerged in our development of novel bioorthogonal reagents and reactions. First, natural product structures can serve as valuable starting points for probe design. Cyclopropene, triazine, and cyclopropenone motifs are all found in natural products, suggesting that they would be metabolically stable and compatible with a variety of living systems. Second, fine-tuning bioorthogonal reagents is essential for their successful translation to biological systems. Different applications demand different types of probes; thus, generating a collection of tools that span a continuum of

  17. Density functional study of H2O molecule adsorption on α-U(001) surface.

    PubMed

    Huang, Shanqisong; Zeng, Xiu-Lin; Zhao, Feng-Qi; Ju, Xuehai

    2016-04-01

    Periodic density functional theory (DFT) calculations were performed to investigate the adsorption of H2O on U(001) surface. The metallic nature of uranium atom and different adsorption sites of U(001) surface play key roles in the H2O molecular dissociate reaction. The long-bridge site is the most favorable site of H2O-U(001) adsorption configuration. The triangle-center site of the H atom is the most favorable site of HOH-U(001) adsorption configuration. The interaction between H2O and U surface is more evident on the first layer than that on any other two sub-layers. The dissociation energy of one hydrogen atom from H2O is -1.994 to -2.215 eV on U(001) surface, while the dissociating energy decreases to -3.351 to -3.394 eV with two hydrogen atoms dissociating from H2O. These phenomena also indicate that the Oads can promote the dehydrogenation of H2O. A significant charge transfer from the first layer of the uranium surface to the H and O atoms is also found to occur, making the bonding partly ionic.

  18. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H 2 O 2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H 2 O 2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H 2 O 2 -free conditions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ARSENIC TREATMENT BY ADSORPTIVE TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the removal of arsenic from drinking water using the adsorptive media treatment process. Fundamental information is provided on the design and operation of adsorptive media technology including the selection of the adsorptive media. The information cites...

  20. Two Successive Reactions on a DNA Template: A Strategy for Improving Background and Specificity in Nucleic Acid Detection

    PubMed Central

    Franzini, Raphael M.

    2015-01-01

    We report a new strategy for template-mediated fluorogenic chemistry that results in enhanced performance for the fluorescence detection of nucleic acids. In this approach, two successive templated reactions are required to induce a fluorescence signal, rather than only one. These novel fluorescein-labeled oligonucleotide probes, termed 2-STAR probes, contain two quencher groups tethered by separate reductively cleavable linkers. When a 2-STAR quenched probe binds adjacent to either two successive mono triphenyl-phosphine (TPP)-DNAs or a dual TPP-DNA, the two quenchers are released, resulting in a fluorescence signal. Because of the requirement for two consecutive reactions, 2-STAR probes display an unprecedented level of sequence-specificity for template-mediated probe designs. At the same time, background emission generated by off-template reactions or incomplete quenching is among the lowest of any fluorogenic reactive probes for the detection of DNA or RNA. PMID:21294182

  1. A Cu-free clickable fluorescent probe for intracellular targeting of small biomolecules.

    PubMed

    Yamagishi, Kento; Sawaki, Kazuaki; Murata, Atsushi; Takeoka, Shinji

    2015-05-07

    We synthesized a novel cyclooctyne-based clickable fluorescent probe with versatile properties such as high cell-membrane permeability and free diffusibility in the cell. Our probe "FC-DBCO" was conjugated to an azide-modified mannose via a Cu-free click reaction in living HeLa cells and displayed intracellular specific fluorescence imaging with low background signals.

  2. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.

    2014-02-05

    Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO 2 2+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO 2Cl 2 ,more » 0.1 M NaCl). We find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si 4Al 2 rings near aluminum substitution sites.« less

  3. Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; TeGrotenhuis, Ward E.; Drost, Kevin; Vishwanathan, Vilayanur V.

    2004-06-08

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  4. Discovery of a novel calcium-sensitive fluorescent probe for α-ketoglutarate.

    PubMed

    Gan, Lin-Lin; Chen, Lin-Hai; Nan, Fa-Jun

    2017-12-01

    α-Ketoglutarate (α-KG), a pivotal metabolite in energy metabolism, has been implicated in nonalcoholic fatty liver disease (NAFLD) and several cancers. It is recently proposed that plasma α-KG is a surrogate biomarker of NAFLD. Here, we report the development of a novel "turn-on" chemosensor for α-KG that contains a coumarin moiety as a fluorophore. Using benzothiazole-coumarin (BTC) as inspiration, we designed a probe for calcium ion recognition that possesses a unique fluorophore compared with previously reported probes for α-KG measurement. This chemosensor is based on the specific Schiff base reaction and the calcium ion recognition property of the widely used calcium indicator BTC. The probe was synthesized, and a series of parallel experiments were conducted to optimize the chemical recognition process. Compared to the initial weak fluorescence, a remarkable 7.6-fold enhancement in fluorescence intensity (I/I 0 at 495 nm) was observed for the conditions in which the probe (1 μmol/L), α-KG (50 μmol/L), and Ca 2+ (100 μmol/L) were incubated at 30 °C in EtOH. The probe displayed good selectivity for α-KG even in an environment with an abundance of amino acids and other interfering species such as glutaric acid. We determined that the quantitative detection range of α-KG in EtOH was between 5 and 50 μmol/L. Finally, probe in serum loaded with α-KG (10 mmol/L) showed a 7.4-fold fluorescence enhancement. In summary, a novel probe for detecting the biomarker α-KG through a typical Schiff base reaction has been discovered. With further optimization, this probe may be a good alternative for detecting the physiological metabolite α-KG.

  5. Adsorption properties of regenerative materials for removal of low concentration of toluene.

    PubMed

    Xie, Zhen-Zhen; Wang, Lin; Cheng, Ge; Shi, Lei; Zhang, Yi-Bo

    2016-12-01

    A specific type of material, activated carbon fiber (ACF), was modified by SiO 2 , and the final products ACF-x were obtained as ACF-12.5, ACF-20, ACF-40, and ACF-80 according to different dosages of tetraethoxysilane (TEOS). The modified material on the ACF surface had a significant and smooth cover layer with low content of silica from scanning electron microscope (SEM) image. The modified ACF-x showed the stronger hydrophobicity, thermal stability, and adsorption capacity, which had almost no effect in the presence of water vapor and no destruction in multiple cycles. ACF-20 was proven as the most efficient adsorbent in humid conditions. The dual-function system composed of the regenerative adsorbents and the combustion catalyst would be efficient in consecutive toluene adsorption/oxidation cycles, in which the combustion catalyst was prepared by the displacement reaction of H 2 PtCl 6 with foam Ni. Therefore, the adsorption/catalytic oxidation could be a promising technique in the indoor air purification, especially in the case of very low volatile organic compound (VOC; toluene) concentration levels. Exploring highly effective adsorptive materials with less expensive costs becomes an urgent issue in the indoor air protection. ACF-20 modified by SiO 2 with Pt/Ni catalysts shows stronger hydrophobicity, thermal stability, and adsorption capacity. This dual-function system composed of the regenerative materials and the combustion catalyst would be a promising technique in the indoor air purification, especially in the case of removal of very low concentration of toluene.

  6. Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes

    PubMed Central

    Klymchenko, Andrey S.; Duportail, Guy; Mély, Yves; Demchenko, Alexander P.

    2003-01-01

    The principle of electrochromic modulation of excited-state intramolecular proton-transfer reaction was applied for the design of fluorescence probes with high two-color sensitivity to dipole potential, Ψd, in phospholipid bilayers. We report on the effect of Ψd variation on excitation and fluorescence spectra of two new 3-hydroxyflavone probes, which possess opposite orientations of the fluorescent moiety in the lipid bilayer. The dipole potential in the bilayer was modulated by the addition of 6-ketocholestanol or phloretin and by substitution of dimyristoyl phosphatidylcholine lipid with its ether analog 1,2-di-o-tetradecyl-sn-glycero-3-phosphocholine, and its value was estimated by the reference styryl dye 1-(3-sulfonatopropyl)-4-{β[2-(di-n-octylamino)-6-naphthyl]vinyl}pyridinium betaine. We demonstrate that after Ψd changes, the probe orienting in the bilayer similarly to the reference dye shows similar shifts in the excitation spectra, whereas the probe with the opposite orientation shows the opposite shifts. The new observation is that the response of 3-hydroxyflavone probes to Ψd in excitation spectra is accompanied by and quantitatively correlated with dramatic changes of relative intensities of the two well separated emission bands that belong to the initial normal and the product tautomer forms of the excited-state intramolecular proton-transfer reaction. This provides a strong response to Ψd by change in emission color. PMID:12972636

  7. Probing neutron-skin thickness with total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Suzuki, Y.; Inakura, T.

    2014-01-01

    We analyze total reaction cross sections, σR, to explore their sensitivity to the neutron-skin thickness of nuclei. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. The cross sections are calculated in the Glauber theory using the density distributions obtained with the Skyrme-Hartree-Fock method in three-dimensional coordinate space. Defining a reaction radius, aR=√σR/π , to characterize the nuclear size and target (proton or 12C) dependence, we find an empirical formula for expressing aR with the point matter radius and the skin thickness, and assess two practical ways of determining the skin thickness from proton-nucleus σR values measured at different energies or from σR values measured for different targets.

  8. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir, Showkat H.; Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of themore » boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.« less

  9. Fabrication of CMC-g-PAM superporous polymer monoliths via eco-friendly Pickering-MIPEs for superior adsorption of methyl violet and methylene blue

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-06-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide) (CMC-g-PAM) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14% and 3%, respectively. The porous monolith can rapidly adsorb 1585 mg/g of methyl violet (MV) and 1625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for 5 times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontimination of dye-containing wastewater.

  10. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  11. Adsorption and Dissociation of Molecular Oxygen on the (0001) Surface of Double Hexagonal Close Packed Americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik; Atta-Fynn, Raymond; Ray, Asok

    2008-03-01

    Oxygen molecule adsorption on (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method. The most stable configuration corresponded to molecular dissociation with the oxygen atoms occupying neighboring three-fold hollow h3 sites. Chemisorption energies and adsorption geometries for the adsorbed species, and change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the oxygen molecule will be discussed. The effects of chemisorption on Am 5f electron localization-delocalization in the vicinity of the Fermi level and the reaction barrier calculation for the dissociation of oxygen molecule to the most stable h3 sites will be discussed.

  12. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography

    DOE PAGES

    Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; ...

    2016-08-03

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less

  13. Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate

    DOE PAGES

    Zhao, Wei; Doyle, Andrew D.; Morgan, Sawyer E.; ...

    2017-11-21

    Here, the dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differentialmore » heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily dissociates on both the oxygen and Ni terminations of the octapolar NiO(111) surfaces, donating its acid H to a surface lattice oxygen, while HCOO adsorbs preferentially with bridging-type geometry near the M-O 3/O-M 3 sites. The calculated energetics at low coverages agrees well with experimental data, while larger differences are observed at high coverage (0.25 ML). The large decrease in experimental heat of adsorption with coverage can be brought into agreement with the DFT energies if we assume that both types of octapolar surface terminations (O- and Ni-) are present on the starting surface.« less

  14. Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Wei; Doyle, Andrew D.; Morgan, Sawyer E.

    Here, the dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differentialmore » heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily dissociates on both the oxygen and Ni terminations of the octapolar NiO(111) surfaces, donating its acid H to a surface lattice oxygen, while HCOO adsorbs preferentially with bridging-type geometry near the M-O 3/O-M 3 sites. The calculated energetics at low coverages agrees well with experimental data, while larger differences are observed at high coverage (0.25 ML). The large decrease in experimental heat of adsorption with coverage can be brought into agreement with the DFT energies if we assume that both types of octapolar surface terminations (O- and Ni-) are present on the starting surface.« less

  15. Use of synthetic oligonucleotide DNA probes for the identification of Bacteroides gingivalis.

    PubMed Central

    Moncla, B J; Braham, P; Dix, K; Watanabe, S; Schwartz, D

    1990-01-01

    Six different oligonucleotide probes complementary to the hypervariable regions of 16S rRNA of Bacteroides gingivalis were tested for specificity and sensitivity against 77 field strains of B. gingivalis and 105 strains of 12 other Bacteroides species. The data demonstrated that these probes were very specific (range, 0.85 to 1.00) and sensitive (1.00). Some limited cross-reactions with other Bacteroides species were observed. Four of these probes should be useful for rapid detection and identification of B. gingivalis. Images PMID:1690217

  16. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation.

    PubMed

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE.

  17. The correlation of adsorption behavior between ciprofloxacin hydrochloride and the active sites of Fe-doped MCM-41

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Tang, Yiming; Li, Laisheng; Liu, Peihong; Li, Xukai; Chen, Weirui; Xue, Ying

    2018-02-01

    Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80 and 160) were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms and infrared spectroscopy (FT-IR). Effects of silicon–iron ratio, adsorbent dosage, pH and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g-1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions and π-π electron donor–acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb and Cd) were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of Fe-MCM-41 to remove CPX in water.

  18. Controlled Immobilization Strategies to Probe Short Hyaluronan-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Antoni, Christiane H.; Boehm, Heike

    2016-02-01

    Well-controlled grafting of small hyaluronan oligosaccharides (sHA) enables novel approaches to investigate biological processes such as angiogenesis, immune reactions and cancer metastasis. We develop two strategies for covalent attachment of sHA, a fast high-density adsorption and a two-layer system that allows tuning the density and mode of immobilization. We monitored the sHA adlayer formation and subsequent macromolecular interactions by label-free quartz crystal microbalance with dissipation (QCM-D). The modified surfaces are inert to unspecific protein adsorption, and yet retain the specific binding capacity of sHA. Thus they are an ideal tool to study the interactions of hyaluronan-binding proteins and short hyaluronan molecules as demonstrated by the specific recognition of LYVE-1 and aggrecan. Both hyaladherins recognize sHA and the binding is independent to the presence of the reducing end.

  19. Modeling of the oxygen reduction reaction for dense LSM thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Liu, Jian; Yu, Yang

    In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less

  20. Modeling of the oxygen reduction reaction for dense LSM thin films

    DOE PAGES

    Yang, Tao; Liu, Jian; Yu, Yang; ...

    2017-10-17

    In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less