Sample records for adult immune function

  1. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    PubMed Central

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  2. Independent and interactive effects of immune activation and larval diet on adult immune function, growth and development in the greater wax moth (Galleria mellonella).

    PubMed

    Kangassalo, Katariina; Valtonen, Terhi M; Sorvari, Jouni; Kecko, Sanita; Pölkki, Mari; Krams, Indrikis; Krama, Tatjana; Rantala, Markus J

    2018-06-29

    Organisms in the wild are likely to face multiple immune challenges as well as additional ecological stressors, yet their interactive effects on immune function are poorly understood. Insects are found to respond to cues of increased infection risk by enhancing their immune capacity. However, such adaptive plasticity in immune function may be limited by physiological and environmental constraints. Here, we investigated the effects of two environmental stressors - poor larval diet and an artificial parasite-like immune challenge at the pupal stage - on adult immune function, growth and development in the greater wax moth (Galleria mellonella). Males whose immune system was activated with an artificial parasite-like immune challenge had weaker immune response - measured as strength of encapsulation response - as adults compared to the control groups, but only when raised in high-nutrition larval diet. Immune activation did not negatively affect adult immune response in males reared in low-nutrition larval diet, indicating that poor larval diet improved the capacity of the insects to respond to repeated immune challenges. Low-nutrition larval diet also had a positive independent effect on immune capacity in females, yet it negatively affected development time and adult body mass in both sexes. As in the nature immune challenges are rarely isolated, and adverse nutritional environment may indicate an elevated risk of infection, resilience to repeated immune challenges as a response to poor nutritional environment could provide a significant fitness advantage. The present study highlights the importance of considering environmental context when investigating effects of immune activation in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. U.S. Immunization program adult immunization activities and resources.

    PubMed

    Woods, LaDora O; Bridges, Carolyn B; Graitcer, Samuel B; Lamont, Brock

    2016-04-02

    Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve vaccination of

  4. U.S. Immunization program adult immunization activities and resources

    PubMed Central

    Woods, LaDora O.; Bridges, Carolyn B.; Graitcer, Samuel B.; Lamont, Brock

    2016-01-01

    ABSTRACT Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve

  5. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly.

    PubMed

    Therry, L; Nilsson-Örtman, V; Bonte, D; Stoks, R

    2014-01-01

    Although a growing number of studies have documented the evolution of adult dispersal-related traits at the range edge of poleward-expanding species, we know little about evolutionary changes in immune function or traits expressed by nondispersing larvae. We investigated differentiation in larval (growth and development) and adult traits (immune function and flight-related traits) between replicated core and edge populations of the poleward-moving damselfly Coenagrion scitulum. These traits were measured on individuals reared in a common garden experiment at two different food levels, as allocation trade-offs may be easier to detect under energy shortage. Edge individuals had a faster larval life history (growth and development rates), a higher adult immune function and a nearly significant higher relative flight muscle mass. Most of the differentiation between core and edge populations remained and edge populations had a higher relative flight muscle mass when corrected for latitude-specific thermal regimes, and hence could likely be attributed to the range expansion process per se. We here for the first time document a higher immune function in individuals at the expansion front of a poleward-expanding species and documented the rarely investigated evolution of faster life histories during range expansion. The rapid multivariate evolution in these ecological relevant traits between edge and core populations is expected to translate into changed ecological interactions and therefore has the potential to generate novel eco-evolutionary dynamics at the expansion front. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  6. Impaired immune function in children and adults with Fanconi anemia.

    PubMed

    Myers, Kasiani C; Sauter, Sharon; Zhang, Xue; Bleesing, Jacob J; Davies, Stella M; Wells, Susanne I; Mehta, Parinda A; Kumar, Ashish; Marmer, Daniel; Marsh, Rebecca; Brown, Darron; Butsch Kovacic, Melinda

    2017-11-01

    Fanconi anemia (FA) is a rare genetic disorder characterized by genome instability, bone marrow failure, and cancer predisposition. Previously, small studies have reported heterogeneous immune dysfunction in FA. We performed a detailed immunologic assessment in a large FA cohort who have not undergone bone marrow transplantation or developed malignancies. Comprehensive quantitative and functional immunologic assessment of 29 FA individuals was compared to healthy age-matched controls. Compared to non-FA persons of similar ages, FA individuals showed lower absolute total B cells (P < 0.001), lower memory B cells (P < 0.001), and decreased IgM (P < 0.001) but normal IgG. NK cells (P < 0.001) and NK cytotoxicity (P < 0.001) were decreased. CD4 + T cells were decreased (P = 0.022), while CD8 + T cell and absolute T-cell numbers were comparable. Cytotoxic T cells (P < 0.003), and antigen proliferation response to tetanus (P = 0.019) and candida (P = 0.019), were diminished in FA. Phytohemagglutinin responses and plasma cytokines were normal. Within FA subjects, adults and older children (≥10 years) exhibited higher CD8 + T cells than younger children (P = 0.004). Documented atypical infections were infrequent, although oral human papilloma virus (HPV) prevalence was higher (31% positive) in FA. Overall, these results demonstrate a high rate of significant humoral and cellular immune dysfunction. Continued longitudinal study of immune function is critical to understand evolution with age, bone marrow failure, and cancer development. © 2017 Wiley Periodicals, Inc.

  7. Conditional inhibition of autophagy genes in adult Drosophila impairs immunity without compromising longevity.

    PubMed

    Ren, Chunli; Finkel, Steven E; Tower, John

    2009-03-01

    Immune function declines with age in Drosophila and humans, and autophagy is implicated in immune function. In addition, autophagy genes are required for life span extension caused by reduced insulin/IGF1-like signaling and dietary restriction in Caenorhabditiselegans. To test if the autophagy pathway might be limiting for immunity and/or life span in adult Drosophila, the Geneswitch system was used to cause conditional inactivation of the autophagy genes Atg5, Atg7 and Atg12 by RNAi. Conditional inhibition of Atg genes in adult flies reduced lysotracker staining of adult tissues, and reduced resistance to injected Escherichia coli, as evidenced by increased bacterial titers and reduced fly survival. However, survival of uninjected flies was unaffected by Atg gene inactivation. The data indicate that Atg gene activity is required for normal immune function in adult flies, and suggest that neither autophagy nor immune function are limiting for adult life span under typical laboratory conditions.

  8. Dehydroepiandrosterone and multiple measures of functional immunity in young adults.

    PubMed

    Prall, Sean P; Muehlenbein, Michael P

    2015-01-01

    Human immune function is strongly influenced by variation in hormone concentrations. The adrenal androgens dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEA-S) are thought to be beneficial to immune function and disease resistance, but physiologically interact with testosterone and cortisol. We predict that DHEA and DHEA-S will interact with these other hormones in determining immunological outcomes. Understanding the interactive effects of these hormones will aid in understanding variability in immunocompetence and clarify discrepancies in human studies of androgen-immune interactions. Thirty-eight participants collected morning saliva over three days, from which concentrations of DHEA, DHEA-S, testosterone, and cortisol were measured, as well as salivary bacteria killing ability to measure innate immune function. From blood collection, serum was collected to measure innate immune function via a hemolytic complement assay, and whole blood collected and processed to measure proliferative responses of lymphocytes in the presence of mitogens. DHEA was negatively correlated with T cell proliferation, and positively correlated with salivary bacteria killing in male participants. Additionally, using regression models, DHEA-S was negatively associated with hemolytic complement activity, but interaction variables did not yield statistically significant relationships for any other outcome measure. While interactions with other hormones did not significantly relate with immune function measures in this sample, DHEA and DHEA-S did differentially impact multiple branches of the immune system. Generally characterized as immunosupportive in action, DHEA is shown to inhibit certain facets of innate and cell-mediated immunity, suggesting a more complex role in regulating immunocompetence. © 2015 Wiley Periodicals, Inc.

  9. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    PubMed

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  10. Immunizations for adult women.

    PubMed

    Faubion, Stephanie S; Larkin, Lisa C

    2016-12-01

    Immunizations protect individual persons and contribute to public health by reducing morbidity and mortality associated with common infectious diseases. In this Practice Pearl, we review guidelines for adult immunizations and recent and potential changes in vaccines.

  11. Weakened Immune System and Adult Vaccination

    MedlinePlus

    ... Adult Vaccination Resources for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share ... with health conditions such as a weakened immune system. If you have cancer or other immunocompromising conditions, ...

  12. Immune Dysregulation and Chronic Stress Among Older Adults: A Review

    PubMed Central

    Gouin, Jean-Philippe; Hantsoo, Liisa; Kiecolt-Glaser, Janice K.

    2009-01-01

    Aging is associated with a natural dysregulation in immune functioning which may be amplified when it occurs in the context of chronic stress. Family dementia caregiving provides an excellent model to study the impact of chronic stress on immune functioning among older individuals. Empirical data suggest that the stress of caregiving dysregulate multiple components of innate and adaptive immunity. Elderly caregivers have poorer responses to vaccines, impaired control of latent viruses, exaggerated production of inflammatory mediators, and accelerated cellular aging, compared to noncaregiving older adults. The chronic stress-induced immune dysregulation observed among older caregivers appear to be of sufficient magnitude to impact health. Furthermore, evidence suggests that chronic stress lead to premature aging of the immune system. PMID:19047802

  13. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults.

    PubMed

    Lustgarten, Michael S; Fielding, Roger A

    2017-12-15

    Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and q<0.30) associated with NDM/LDM. Decreased renal function and the immune response have been previously linked with reduced muscle density, but the mechanisms underlying these connections are less clear. Metabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that

  15. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  16. Photoperiod history differentially impacts reproduction and immune function in adult Siberian hamsters.

    PubMed

    Prendergast, Brian J; Pyter, Leah M

    2009-12-01

    Seasonal changes in numerous aspects of mammalian immune function arise as a result of the annual variation in environmental day length (photoperiod), but it is not known if absolute photoperiod or relative change in photoperiod drives these changes. This experiment tested the hypothesis that an individual's history of exposure to day length determines immune responses to ambiguous, intermediate-duration day lengths. Immunological (blood leukocytes, delayed-type hypersensitivity reactions [DTH]), reproductive, and adrenocortical responses were assessed in adult Siberian hamsters (Phodopus sungorus) that had been raised initially in categorically long (15-h light/day; 15L) or short (9L) photoperiods and were subsequently transferred to 1 of 7 cardinal experimental photoperiods between 9L and 15L, inclusive. Initial photoperiod history interacted with contemporary experimental photoperiods to determine reproductive responses: 11L, 12L, and 13L caused gonadal regression in hamsters previously exposed to 15L, but elicited growth in hamsters previously in 9L. In hamsters with a 15L photoperiod history, photoperiods < or = 11L elicited sustained enhancement of DTH responses, whereas in hamsters with a 9L photoperiod history, DTH responses were largely unaffected by increases in day length. Enhancement and suppression of blood leukocyte concentrations occurred at 13L in hamsters with photoperiod histories of 15L and 9L, respectively; however, prior exposure to 9L imparted marked hysteresis effects, which suppressed baseline leukocyte concentrations. Cortisol concentrations were only enhanced in 15L hamsters transferred to 9L and, in common with DTH, were unaffected by photoperiod treatments in hamsters with a 9L photoperiod history. Photoperiod history acquired in adulthood impacts immune responses to photoperiod, but manifests in a markedly dissimilar fashion as compared to the reproductive system. Prior photoperiod exposure has an enduring impact on the ability of the

  17. A double-blind, randomized clinical trial of dietary supplementation on cognitive and immune functioning in healthy older adults.

    PubMed

    Lewis, John E; Melillo, Angelica B; Tiozzo, Eduard; Chen, Lawrence; Leonard, Susanna; Howell, Mark; Diaz, Janelle; Gonzalez, Kathy; Woolger, Judi M; Konefal, Janet; Paterson, Elaine; Barnes, David

    2014-02-04

    Declining cognitive function is relatively common and increasingly prevalent. Studies have shown that different nutrients (e.g., Ginkgo biloba and vitamin E) appear to be effective at improving memory and concentration, while less is known about their effect on immunity. This study investigated the effect of Ginkgo Synergy(®) plus Choline (n = 33) and OPC Synergy(®) plus Catalyn(®) (n = 31) versus placebo (n = 33) in a 6-month, randomized, double-blind trial on cognitive and immune functioning among English-speaking, non-smoking, healthy older adults. The Stroop Color and Word Test, Trail Making Test A and B, Controlled Oral Word Association, Hopkins Verbal Learning, Mini-Mental State Exam, and Digit Symbol were administered at baseline and 3 and 6 months follow-up to assess cognitive functioning. Cytokines and growth factors were measured at baseline and 6 months to assess inflammation and immune functioning. Data were analyzed with linear mixed modeling. No serious adverse events were noted in this study. According to time on the Trail Making Test-B, the Ginkgo Synergy(®) plus Choline arm showed improvement from baseline to 3 months follow-up (mean difference = 24.2; SE = 6.4; 95% CI: 8.6, 39.7; p = 0.01). On the Controlled Oral Word Association Trial-S, the scores significantly increased for the Ginkgo Synergy(®) plus Choline arm from baseline to 6 months follow-up (mean difference = 2.1; SE = 0.8; 95% CI: 0.2, 3.9; p < 0.05) and for the OPC Synergy(®) plus Catalyn(®) arm from baseline to 3 months follow-up (mean difference = 2.1; SE = 0.8; 95% CI: 0.2, 4.0; p < 0.05). Epidermal growth factor significantly decreased from baseline to 6 months follow-up for the Ginkgo Synergy(®) plus Choline arm (mean difference = 120.7; SE = 28.4; 95% CI: 62.6, 178.8; p < 0.001). Our study showed isolated and modest effects of a Ginkgo biloba plus choline-based formula on cognitive and immune functioning among healthy older adults with no history of significant cognitive

  18. Differential Gender Effects in the Relationship between Perceived Immune Functioning and Autistic Traits.

    PubMed

    Mackus, Marlou; Kruijff, Deborah de; Otten, Leila S; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C

    2017-04-12

    Altered immune functioning has been demonstrated in individuals with autism spectrum disorder (ASD). The current study explores the relationship between perceived immune functioning and experiencing ASD traits in healthy young adults. N = 410 students from Utrecht University completed a survey on immune functioning and autistic traits. In addition to a 1-item perceived immune functioning rating, the Immune Function Questionnaire (IFQ) was completed to assess perceived immune functioning. The Dutch translation of the Autism-Spectrum Quotient (AQ) was completed to examine variation in autistic traits, including the domains "social insights and behavior", "difficulties with change", "communication", "phantasy and imagination", and "detail orientation". The 1-item perceived immune functioning score did not significantly correlate with the total AQ score. However, a significant negative correlation was found between perceived immune functioning and the AQ subscale "difficulties with change" (r = -0.119, p = 0.019). In women, 1-item perceived immune functioning correlated significantly with the AQ subscales "difficulties with change" (r = -0.149, p = 0.029) and "communication" (r = -0.145, p = 0.032). In men, none of the AQ subscales significantly correlated with 1-item perceived immune functioning. In conclusion, a modest relationship between perceived immune functioning and several autistic traits was found.

  19. Immune biomarkers in older adults: Role of physical activity.

    PubMed

    Valdiglesias, Vanessa; Sánchez-Flores, María; Maseda, Ana; Lorenzo-López, Laura; Marcos-Pérez, Diego; López-Cortón, Ana; Strasser, Barbara; Fuchs, Dietmar; Laffon, Blanca; Millán-Calenti, José C; Pásaro, Eduardo

    2017-01-01

    Aging is associated with a decline in the normal functioning of the immune system. Several studies described the relationship between immunological alterations, including immunosenescence and inflammation, and aging or age-related outcomes, such as sarcopenia, depression, and neurodegenerative disorders. Physical activity is known to improve muscle function and to exert a number of benefits on older adult health, including reduced risk for heart and metabolic system chronic diseases. However, the positive influence of physical activity on the immune system has not been elucidated. In order to shed light on the role of physical activity in immune responses of older individuals, a number of immunological parameters comprising % lymphocyte subsets (CD3 + , CD4 + , CD8 + , CD19 + , and CD16 + 56 + ) and serum levels of neopterin and tryptophan metabolism products were evaluated in peripheral blood samples of older adults performing normal (N = 170) or reduced (N = 89) physical activity. In addition, the potential influence of other clinical and epidemiological factors was also considered. Results showed that subjects with reduced physical activity displayed significantly higher levels of CD4 + /CD8 + ratio, kynurenine/tryptophan ratio, and serum neopterin, along with lower %CD19 + cells and tryptophan concentrations. Further, some immunological biomarkers were associated with cognitive impairment and functional status. These data contribute to reinforce the postulation that physical activity supports healthy aging, particularly by helping to protect the immunological system from aging-related changes.

  20. Travel immunization update for older adults.

    PubMed

    Spain, Margaret P; Edlund, Barbara J

    2010-04-01

    Older Americans are among the most widely traveled group in our society. Recent trends point to more international travel, more travel to Third World countries, and more travel by older adults with significant health problems. Regardless of the reason for travel, older adults need to plan for healthy travel. Primary care providers need to inquire at routine visits if patients have plans for international travel. If travel to other countries or regions is being considered, patients must be advised of the importance of early travel preparation. To begin with, older adults should be up to date on all routine immunizations. Those planning on international travel may need additional required and/or recommended immunizations, depending on the individual's health status, travel itinerary, length of stay, and health risks associated with destination sites. Primary care providers should be knowledgeable about travel medicine resources in the community to make referrals for travelers requiring additional immunizations and health information. Copyright 2010, SLACK Incorporated.

  1. Hepatitis B immunization for indigenous adults, Australia

    PubMed Central

    Yin, J Kevin; Beard, Frank; Wesselingh, Steve; Cowie, Benjamin; Ward, James; Macartney, Kristine

    2016-01-01

    Abstract Objective To quantify the disparity in incidence of hepatitis B between indigenous and non-indigenous people in Australia, and to estimate the potential impact of a hepatitis B immunization programme targeting non-immune indigenous adults. Methods Using national data on persons with newly acquired hepatitis B disease notified between 2005 and 2012, we estimated incident infection rates and rate ratios comparing indigenous and non-indigenous people, with adjustments for underreporting. The potential impact of a hepatitis B immunization programme targeting non-immune indigenous adults was projected using a Markov chain Monte Carlo simulation model. Findings Of the 54 522 persons with hepatitis B disease notified between 1 January 2005 and 31 December 2012, 1953  infections were newly acquired. Acute hepatitis B infection notification rates were significantly higher for indigenous than non-indigenous Australians. The rates per 100 000 population for all ages were 3.6 (156/4 368 511) and 1.1 (1797/168 449 302) for indigenous and non-indigenous people respectively. The rate ratio of age-standardized notifications was 4.0 (95% confidence interval: 3.7–4.3). If 50% of non-immune indigenous adults (20% of all indigenous adults) were vaccinated over a 10-year programme a projected 527–549 new cases of acute hepatitis B would be prevented. Conclusion There continues to be significant health inequity between indigenous and non-indigenous Australians in relation to vaccine-preventable hepatitis B disease. An immunization programme targeting indigenous Australian adults could have considerable impact in terms of cases of acute hepatitis B prevented, with a relatively low number needed to vaccinate to prevent each case. PMID:27821885

  2. Ageing alters the impact of nutrition on immune function.

    PubMed

    Yaqoob, Parveen

    2017-08-01

    Immunosenescence during ageing is a major challenge which weakens the ability of older individuals to respond to infection or vaccination. There has been much interest in dietary strategies to improve immunity in older people, but there is an assumption that modulation of the immune response in older people will be based on the same principles as for younger adults. Recent evidence suggests that ageing fundamentally alters the impact of nutrition on immune function. As a result, interpretation of data from studies investigating the impact of diet on immune function is highly dependent on subject age. Study design is critically important when investigating the efficacy of dietary components, and most studies involving older people include rigorous inclusion/exclusion criteria based on medical history, laboratory tests, general health status and often nutritional status. However, immunological status is rarely accounted for, but can vary significantly, even amongst healthy older people. There are several clear examples of age-related changes in immune cell composition, phenotype and/or function, which can directly alter the outcome of an intervention. This review uses two case studies to illustrate how the effects of n-3 PUFA and probiotics differ markedly in young v. older subjects. Evidence from both suggests that baseline differences in immunosenescence influence the outcome of an intervention, highlighting the need for detailed immunological characterisation of subjects prior to interventions. Finally, future work elucidating alterations in metabolic regulation within cells of the immune system as a result of ageing may be important in understanding the impact of diet on immune function in older people.

  3. Integration of Immunity with Physical and Cognitive Function in Definitions of Successful Aging

    PubMed Central

    Griffin, Patricia; Michel, Joshua J.; Huysman, Kristy; Logar, Alison J.; Vallejo, Abbe N.

    2012-01-01

    Studies comparing chronologically “young” versus “old” humans document age-related decline of classical immunological functions. However, older adults aged ≥65 years have very heterogeneous health phenotypes. A significant number of them are functionally independent and are surviving well into their 8th–11th decade life, observations indicating that aging or old age is not synonymous with immune incompetence. While there are dramatic age-related changes in the immune system, not all of these changes may be considered detrimental. Here, we review evidences for novel immunologic processes that become elaborated with advancing age that complement preserved classical immune functions and promote immune homeostasis later in life. We propose that elaboration such of late life immunologic properties is indicative of beneficial immune remodeling that is an integral component of successful aging, an emerging physiologic construct associated with similar age-related physiologic adaptations underlying maintenance of physical and cognitive function. We suggest that a systems approach integrating immune, physical, and cognitive functions, rather than a strict immunodeficiency-minded approach, will be key towards innovations in clinical interventions to better promote protective immunity and functional independence among the elderly. PMID:22500270

  4. Pharmacists as immunizers: a survey of community pharmacists' willingness to administer adult immunizations.

    PubMed

    Edwards, Nicholas; Gorman Corsten, Erin; Kiberd, Mathew; Bowles, Susan; Isenor, Jennifer; Slayter, Kathryn; McNeil, Shelly

    2015-04-01

    Adult immunization rates worldwide fall below desired targets. Pharmacists are highly accessible healthcare providers with the potential to increase immunization rates among adults by administering vaccines in their practice setting. To determine the attitudes of community-based Canadian pharmacists with respect to expanding their scope of practice to include administration of immunizations. An internet-based survey was emailed to community pharmacists across Canada. The survey was piloted through focus groups for qualitative feedback, tested for content validity, and test-retest reliability prior to dissemination. There were 495 responses to the survey. The majority (88 %) agreed that pharmacists as immunizers would increase public access, improve rates (84 %), and be acceptable to the public (72 %). However, only 68 % agreed that pharmacists should be permitted to immunize. The majority of respondents (90 %) agreed that certification in vaccine administration should be required for pharmacists to administer vaccines. Pharmacists identified education, reimbursement, and negative interactions with other providers as barriers to pharmacists administering vaccines. Canadian pharmacists are willing to expand their scope of practice to include immunization. However, implementation requires professional development and certification in vaccine administration.

  5. Can probiotics enhance vaccine-specific immunity in children and adults?

    PubMed

    Kwak, J Y; Lamousé-Smith, E S N

    2017-10-13

    The growing use of probiotics by the general public has heightened the interest in understanding the role of probiotics in promoting health and preventing disease. General practitioners and specialists often receive inquiries from their patients regarding probiotic products and their use to ward off systemic infection or intestinal maladies. Enhanced immune function is among the touted health benefits conferred by probiotics but has not yet been fully established. Results from recent clinical trials in adults suggest a potential role for probiotics in enhancing vaccine-specific immunity. Although almost all vaccinations are given during infancy and childhood, the numbers of and results from studies using probiotics in pediatric subjects are limited. This review evaluates recent clinical trials of probiotics used to enhance vaccine-specific immune responses in adults and infants. We highlight meaningful results and the implications of these findings for designing translational and clinical studies that will evaluate the potential clinical role for probiotics. We conclude that the touted health claims of probiotics for use in children to augment immunity warrant further investigation. In order to achieve this goal, a consensus should be reached on common study designs that apply similar treatment timelines, compare well-characterised probiotic strains and monitor effective responses against different classes of vaccines.

  6. Immune responses to mumps vaccine in adults who were vaccinated in childhood.

    PubMed

    Hanna-Wakim, Rima; Yasukawa, Linda L; Sung, Phillip; Arvin, Ann M; Gans, Hayley A

    2008-06-15

    In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)-gamma production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (> or =3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-gamma were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-gamma concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P < or = .01). All adults were positive for mumps IgG. T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-gamma release, responses in vaccinated adults paralleled those observed in naturally immune individuals.

  7. Immune Responses to Mumps Vaccine in Adults Who Were Vaccinated in Childhood

    PubMed Central

    Hanna-Wakim, Rima; Yasukawa, Linda L.; Sung, Phillip; Arvin, Ann M.; Gans, Hayley A.

    2008-01-01

    Background In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. Methods This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)–γ production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. Results T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (≥3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-γ were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-γ concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P ≤ .01). All adults were positive for mumps IgG. Conclusion T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-γ release, responses in vaccinated adults paralleled those observed in naturally immune individuals. PMID:18419345

  8. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans

    PubMed Central

    Block, Dena H. S.; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A.; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael

    2015-01-01

    GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity. PMID:26016853

  9. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Adults Aged 19 Years or Older - United States, 2017.

    PubMed

    Kim, David K; Riley, Laura E; Harriman, Kathleen H; Hunter, Paul; Bridges, Carolyn B

    2017-02-10

    In October 2016, the Advisory Committee on Immunization Practices (ACIP) voted to approve the Recommended Adult Immunization Schedule for Adults Aged 19 Years or Older-United States, 2017. The 2017 adult immunization schedule summarizes ACIP recommendations in two figures, footnotes for the figures, and a table of contraindications and precautions for vaccines recommended for adults. These documents are available at https://www.cdc.gov/vaccines/schedules. The full ACIP recommendations for each vaccine can be found at https://www.cdc.gov/vaccines/hcp/acip-recs/index.html. The 2017 adult immunization schedule was also reviewed and approved by the American College of Physicians (https://www.acponline.org), the American Academy of Family Physicians (https://www.aafp.org), the American College of Obstetricians and Gynecologists (http://www.acog.org), and the American College of Nurse-Midwives (http://www.midwife.org).

  10. Early childhood poverty, immune-mediated disease processes, and adult productivity.

    PubMed

    Ziol-Guest, Kathleen M; Duncan, Greg J; Kalil, Ariel; Boyce, W Thomas

    2012-10-16

    This study seeks to understand whether poverty very early in life is associated with early-onset adult conditions related to immune-mediated chronic diseases. It also tests the role that these immune-mediated chronic diseases may play in accounting for the associations between early poverty and adult productivity. Data (n = 1,070) come from the US Panel Study of Income Dynamics and include economic conditions in utero and throughout childhood and adolescence coupled with adult (age 30-41 y) self-reports of health and economic productivity. Results show that low income, particularly in very early childhood (between the prenatal and second year of life), is associated with increases in early-adult hypertension, arthritis, and limitations on activities of daily living. Moreover, these relationships and particularly arthritis partially account for the associations between early childhood poverty and adult productivity as measured by adult work hours and earnings. The results suggest that the associations between early childhood poverty and these adult disease states may be immune-mediated.

  11. Poliovirus immunity in newly resettled adult refugees in Idaho, United States of America.

    PubMed

    Roscoe, Clay; Gilles, Ryan; Reed, Alex J; Messerschmidt, Matt; Kinney, Rebecca

    2015-06-12

    In the United States, vaccines have eliminated wild poliovirus (WPV) infection, though resettling refugees may lack immunity and importation of WPV remains a concern. A cross-sectional survey was performed to determine the prevalence of poliovirus immunity in adult refugees resettling in Boise, Idaho, U.S.A.; immunity was evaluated using two definitions: serotypes 1, 2 and 3 positive, or serotypes 1 and 3 positive. This survey evaluated 795 adult refugees between August 2010 and November 2012. Poliovirus immunity in adults >18 years was 55.3% for serotypes 1, 2 and 3 combined, and 60% for serotypes 1 and 3 only. This study demonstrated a WPV immunity rate of <60% in a recently resettled adult refugee population in the United States, reinforcing the need to ensure poliovirus immunity in all newly arrived adult refugees, either by expanding pre-departure immunization or by screening for immunity at resettlement and vaccinating when indicated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Adults Aged 19 Years or Older--United States, 2016.

    PubMed

    Kim, David K; Bridges, Carolyn B; Harriman, Kathleen H

    2016-02-05

    In October 2015, the Advisory Committee on Immunization Practices (ACIP)* approved the Recommended Immunization Schedule for Adults Aged 19 Years or Older, United States, 2016. This schedule provides a summary of ACIP recommendations for the use of vaccines routinely recommended for adults aged 19 years or older in two figures, footnotes for each vaccine, and a table that describes primary contraindications and precautions for commonly used vaccines for adults. Although the figures in the adult immunization schedule illustrate recommended vaccinations that begin at age 19 years, the footnotes contain information on vaccines that are recommended for adults that may begin at age younger than age 19 years. The footnotes also contain vaccine dosing, intervals between doses, and other important information and should be read with the figures.

  13. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Adults Aged 19 Years or Older - United States, 2018.

    PubMed

    Kim, David K; Riley, Laura E; Hunter, Paul

    2018-02-09

    In October 2017, the Advisory Committee on Immunization Practices (ACIP) voted to approve the Recommended Immunization Schedule for Adults Aged 19 Years or Older, United States, 2018. The 2018 adult immunization schedule summarizes ACIP recommendations in two figures and a table of contraindications and precautions for vaccines recommended for adults, and is intended is to assist health care providers in implementing the current ACIP recommendations for vaccinating adults. The schedule can be found at https://www.cdc.gov/vaccines/schedules.* The full ACIP recommendations for each vaccine are available at https://www.cdc.gov/vaccines/hcp/acip-recs/index.html. The 2018 adult immunization schedule has also been approved by the American College of Physicians (https://www.acponline.org), the American Academy of Family Physicians (https://www.aafp.org), the American College of Obstetricians and Gynecologists (https://www.acog.org), and the American College of Nurse-Midwives (http://www.midwife.org). The ACIP-recommended use of each vaccine is developed after an in-depth review of vaccine-related data, including data on disease epidemiology, vaccine efficacy and effectiveness, vaccine safety, feasibility of program implementation, and economic aspects of immunization policy (1).

  14. Effects of selenium on mallard duck reproduction and immune function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteley, P.L.; Yuill, T.M.; Fairbrother, A.

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. The objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of adult mallards were exposed for 95-99 days on streams with sodium selenite-treated water at 10 and 30 ppb, or on untreated streams. Selenium biomagnified through the food chain to the ducks. Disease resistance was decreased in ducklings hatched on the streams and challenged with duck hepatitis virus 1 (DHV1) when 15-days old. Liver selenium concentrations for these ducklings on the 10 andmore » 30 ppb streams was 3.6 and 7.6 ppm dry weight, respectively. Mortality of ducklings purchased when 7-days old, exposed to selenium for 14 days, and challenged when 22-days old was not affected. However, their selenium exposure was lower (liver selenium 4.1 ppm dry weight for the 30 ppb stream). Five parameters of immune function were measured in adult ducks. Phagocytosis of killed Pasteurella multocida by blood heterophils and monocytes, and blood monocyte concentrations were higher in adult males following 84 days exposure to 30 ppb selenium. Their liver selenium concentrations were 11.1 ppm dry weight after 95-99 days exposure.« less

  15. 78 FR 46589 - Solicitation of Written Comments on the Draft Report of the National Adult Immunization Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... the National Adult Immunization Standards of Practice for Consideration by the National Vaccine... charged the NVAC with examining the current adult immunization environment by updating adult immunization... Services, 200 Independence Ave. SW., Room 745.H.5, Washington, DC 20201, Attention: Adult Immunization...

  16. [Relationships between venomous function and innate immune function].

    PubMed

    Goyffon, Max; Saul, Frederick; Faure, Grazyna

    2015-01-01

    Venomous function is investigated in relation to innate immune function in two cases selected from scorpion venom and serpent venom. In the first case, structural analysis of scorpion toxins and defensins reveals a close interrelation between both functions (toxic and innate immune system function). In the second case, structural and functional studies of natural inhibitors of toxic snake venom phospholipases A2 reveal homology with components of the innate immune system, leading to a similar conclusion. Although there is a clear functional distinction between neurotoxins, which act by targeting membrane ion channels, and the circulating defensins which protect the organism from pathogens, the scorpion short toxins and defensins share a common protein folding scaffold with a conserved cysteine-stabilized alpha-beta motif of three disulfide bridges linking a short alpha helix and an antiparallel beta sheet. Genomic analysis suggests that these proteins share a common ancestor (long venom toxins were separated from an early gene family which gave rise to separate short toxin and defensin families). Furthermore, a scorpion toxin has been experimentally synthetized from an insect defensin, and an antibacterial scorpion peptide, androctonin (whose structure is similar to that of a cone snail venom toxin), was shown to have a similar high affinity for the postsynaptic acetylcholine receptor of Torpedo sp. Natural inhibitors of phospholipase A2 found in the blood of snakes are associated with the resistance of venomous snakes to their own highly neurotoxic venom proteins. Three classes of phospholipases A2 inhibitors (PLI-α, PLI-β, PLI-γ) have been identified. These inhibitors display diverse structural motifs related to innate immune proteins including carbohydrate recognition domains (CRD), leucine rich repeat domains (found in Toll-like receptors) and three finger domains, which clearly differentiate them from components of the adaptive immune system. Thus, in

  17. Accuracy of immunization histories provided by adults accompanying preschool children to a pediatric emergency department.

    PubMed

    Goldstein, K P; Kviz, F J; Daum, R S

    1993-11-10

    Because some have advocated the use of emergency departments to administer delayed childhood immunizations, we evaluated the accuracy of immunization histories obtained in this setting by comparison with medical records of inner-city health care facilities. Questionnaires were orally administered to adults accompanying children to the emergency department. Individual medical records were reviewed. Pediatric emergency department at Wyler Children's Hospital, University of Chicago and 68 inner-city primary care clinics. Children aged 3 to 65 months registering for medical care. Of the sample, 98% were African American; 75% were Medicaid recipients. Adults' knowledge of immunization histories, immunization cards, and medical records compared with American Academy of Pediatrics/Immunization Practices Advisory Committee recommendations. Of the accompanying adults, 64% stated that their child's general immunization status was "up-to-date"; 65% of these had clinic records confirming that status. Only 8% of specific regimens stated by these adults accurately matched those found in clinic records. Moreover, 45% of adults accompanying children at least 16 months and older provided inaccurate information regarding previous receipt of measles immunization. Information provided by accompanying adults (from recall or from immunization cards) is inadequate to determine accurately which preschoolers in the pediatric emergency department are delayed in immunizations.

  18. The immune system: a target for functional foods?

    PubMed

    Calder, Philip C; Kew, Samantha

    2002-11-01

    The immune system acts to protect the host from infectious agents that exist in the environment (bacteria, viruses, fungi, parasites) and from other noxious insults. The immune system is constantly active, acting to discriminate 'non-self' from 'self'. The immune system has two functional divisions: the innate and the acquired. Both components involve various blood-borne factors (complement, antibodies, cytokines) and cells. A number of methodologies exist to assess aspects of immune function; many of these rely upon studying cells in culture ex vivo. There are large inter-individual variations in many immune functions even among the healthy. Genetics, age, gender, smoking habits, habitual levels of exercise, alcohol consumption, diet, stage in the female menstrual cycle, stress, history of infections and vaccinations, and early life experiences are likely to be important contributors to the observed variation. While it is clear that individuals with immune responses significantly below 'normal' are more susceptible to infectious agents and exhibit increased infectious morbidity and mortality, it is not clear how the variation in immune function among healthy individuals relates to variation in susceptibility to infection. Nutrient status is an important factor contributing to immune competence: undernutrition impairs the immune system, suppressing immune functions that are fundamental to host protection. Undernutrition leading to impairment of immune function can be due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients. Often these occur in combination. Nutrients that have been demonstrated (in either animal or human studies) to be required for the immune system to function efficiently include essential amino acids, the essential fatty acid linoleic acid, vitamin A, folic acid, vitamin B6, vitamin B12, vitamin C, vitamin E, Zn, Cu, Fe and Se. Practically all forms of immunity may be affected by deficiencies

  19. Development and function of human innate immune cells in a humanized mouse model.

    PubMed

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  20. Development and function of human innate immune cells in a humanized mouse model

    PubMed Central

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  1. Medicaid provider reimbursement policy for adult immunizations.

    PubMed

    Stewart, Alexandra M; Lindley, Megan C; Cox, Marisa A

    2015-10-26

    State Medicaid programs establish provider reimbursement policy for adult immunizations based on: costs, private insurance payments, and percentage of Medicare payments for equivalent services. Each program determines provider eligibility, payment amount, and permissible settings for administration. Total reimbursement consists of different combinations of Current Procedural Terminology codes: vaccine, vaccine administration, and visit. Determine how Medicaid programs in the 50 states and the District of Columbia approach provider reimbursement for adult immunizations. Observational analysis using document review and a survey. Medicaid administrators in 50 states and the District of Columbia. Whether fee-for-service programs reimburse providers for: vaccines; their administration; and/or office visits when provided to adult enrollees. We assessed whether adult vaccination services are reimbursed when administered by a wide range of providers in a wide range of settings. Medicaid programs use one of 4 payment methods for adults: (1) a vaccine and an administration code; (2) a vaccine and visit code; (3) a vaccine code; and (4) a vaccine, visit, and administration code. Study results do not reflect any changes related to implementation of national health reform. Nine of fifty one programs did not respond to the survey or declined to participate, limiting the information available to researchers. Medicaid reimbursement policy for adult vaccines impacts provider participation and enrollee access and uptake. While programs have generally increased reimbursement levels since 2003, each program could assess whether current policies reflect the most effective approach to encourage providers to increase vaccination services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Report on WHO meeting on immunization in older adults: Geneva, Switzerland, 22–23 March 2017

    PubMed Central

    Aguado, M. Teresa; Barratt, Jane; Beard, John R.; Blomberg, Bonnie B.; Chen, Wilbur H.; Hickling, Julian; Hyde, Terri B.; Jit, Mark; Jones, Rebecca; Poland, Gregory A.; Ortiz, Justin R.

    2018-01-01

    Many industrialized countries have implemented routine immunization policies for older adults, but similar strategies have not been widely implemented in low- and middle-income countries (LMICs). In March 2017, the World Health Organization (WHO) convened a meeting to identify policies and activities to promote access to vaccination of older adults, specifically in LMICs. Participants included academic and industry researchers, funders, civil society organizations, implementers of global health interventions, and stakeholders from developing countries with adult immunization needs. These experts reviewed vaccine performance in older adults, the anticipated impact of adult vaccination programs, and the challenges and opportunities of building or strengthening an adult and older adult immunization platforms. Key conclusions of the meeting were that there is a need for discussion of new opportunities for vaccination of all adults as well as for vaccination of older adults, as reflected in the recent shift by WHO to a life-course approach to immunization; that immunization in adults should be viewed in the context of a much broader model based on an individual’s abilities rather than chronological age; and that immunization beyond infancy is a global priority that can be successfully integrated with other interventions to promote healthy ageing. As WHO is looking ahead to a global Decade of Healthy Ageing starting in 2020, it will seek to define a roadmap for interdisciplinary collaborations to integrate immunization with improving access to preventive and other healthcare interventions for adults worldwide. PMID:29336923

  3. Advisory committee on immunization practices recommended immunization schedule for adults aged 19 years or older--United States, 2015.

    PubMed

    Kim, David K; Bridges, Carolyn B; Harriman, Kathleen H

    2015-02-06

    In October 2014, the Advisory Committee on Immunization Practices (ACIP) approved the Recommended Immunization Schedule for Adults Aged 19 Years or Older, United States, 2015. This schedule provides a summary of ACIP recommendations for the use of vaccines routinely recommended for adults aged 19 years or older in two figures, footnotes for each vaccine, and a table that describes primary contraindications and precautions for commonly used vaccines for adults. Changes in the 2015 adult immunization schedule from the 2014 schedule included the August 2014 recommendation for routine administration of the 13-valent pneumococcal conjugate vaccine (PCV13) in series with the 23-valent pneumococcal polysaccharide vaccine (PPSV23) for all adults aged 65 years or older, the August 2014 revision on contraindications and precautions for the live attenuated influenza vaccine (LAIV), and the October 2014 approval by the Food and Drug Administration to expand the approved age for use of recombinant influenza vaccine (RIV). These revisions were also reviewed and approved by the American College of Physicians, American Academy of Family Physicians, American College of Obstetricians and Gynecologists, and American College of Nurse-Midwives.

  4. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system.

    PubMed

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto

    2015-01-01

    During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.

  5. Impaired functioning of immune defenses to infection in premature and term infants and their implications for vaccination.

    PubMed

    Baxter, David

    2010-06-01

    Newborn infants, particularly those born prematurely are at increased risk of infections, including vaccine preventable ones, resulting in an increased morbidity and mortality risk. Defects associated with higher mortality may involve external barriers and the innate and adaptive systems. The available evidence suggests a complex situation that ranges from pathogen/immunogen non-responsiveness to fully mature adult-equivalent functionality depending on both host and vaccine characteristics. This review considers potential qualitative and quantitative differences with respect to immune defences between premature/term infants and adults and evaluates implications of such differences for immunization outcomes.

  6. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Verhoef, Aart

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 atmore » doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of

  7. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    PubMed

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Orchestrating brain-cell renewal: the role of immune cells in adult neurogenesis in health and disease.

    PubMed

    Ziv, Yaniv; Schwartz, Michal

    2008-11-01

    Immune cells and immune molecules have recently been shown to support neurogenesis from neural stem and progenitor cells in the adult brain. This non-classical immune activity takes place constantly under normal physiological conditions and is extended under acute pathological conditions to include the attraction of progenitor cells and induction of neurogenesis in regions of the adult central nervous system (CNS) in which formation of new neurons does not normally occur. We suggest that the immune system should be viewed as a novel player in the adult neural stem cell niche and a coordinator of cell renewal processes after injury. We discuss these notions in light of the well-known facts that both immune-cell activity and cell renewal are inherently limited in the adult CNS and that immune and stem cells provide the body's mechanisms of repair.

  9. Maternal Immune Activation Leads to Selective Functional Deficits in Offspring Parvalbumin Interneurons

    PubMed Central

    Canetta, Sarah; Bolkan, Scott; Padilla-Coreano, Nancy; Song, LouJin; Sahn, Ryan; Harrison, Neil; Gordon, Joshua A.; Brown, Alan; Kellendonk, Christoph

    2015-01-01

    Summary Abnormalities in prefrontal GABAergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to maternal immune activation, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders. PMID:26830140

  10. Using information technology to improve adult immunization delivery in an integrated urban health system.

    PubMed

    Swenson, Carolyn J; Appel, Alicia; Sheehan, Moira; Hammer, Anne; Fenner, Zita; Phibbs, Stephanie; Harbrecht, Marjie; Main, Deborah S

    2012-01-01

    Adult immunizations prevent morbidity and mortality yet coverage remains suboptimal, in part due to missed opportunities. Clinical decision support systems (CDSSs) can improve immunization rates when integrated into routine work flow, implemented wherever care is delivered, and used by staff who can act on the recommendation. An adult immunization improvement project was undertaken in a large integrated, safety-net health care system. A CDSS was developed to query patient records and identify patients eligible for pneumococcal, influenza, or tetanus immunization and then generate a statement that recommends immunization or indicates a previous refusal. A new agency policy authorized medical assistants and nurses in clinics, and nurses in the hospital, to use the CDSS as a standing order. Immunization delivery work flow was standardized, and staff received feedback on immunization rates. The CDSS identified more patients than a typical paper standing order and can be easily modified to incorporate changes in vaccine indications. The intervention led to a 10% improvement in immunization rates in adults 65 years of age or older and in younger adults with diabetes or chronic obstructive pulmonary disease. Overall, the improvements were sustained beyond the project period. The CDSS was expanded to encompass additional vaccines. Interdepartmental collaboration was critical to identify needs, challenges, and solutions. Implementing the standing order policy in clinics and the hospital usually allowed immunizations to be taken out of the hands of clinicians. As an on-demand tool, CDSS must be used at each patient encounter to avoid missed opportunities. Staff retraining accompanied by ongoing assessment of immunization rates, work flow, and missed opportunities to immunize patients are critical to sustain and enhance improvements.

  11. Early Immune Function and Duration of Organ Dysfunction in Critically Ill Septic Children.

    PubMed

    Muszynski, Jennifer A; Nofziger, Ryan; Moore-Clingenpeel, Melissa; Greathouse, Kristin; Anglim, Larissa; Steele, Lisa; Hensley, Josey; Hanson-Huber, Lisa; Nateri, Jyotsna; Ramilo, Octavio; Hall, Mark W

    2018-02-22

    Late immune suppression is associated with nosocomial infection and mortality in septic adults and children. Relationships between early immune suppression and outcomes in septic children remain unclear. Prospective observational study to test the hypothesis that early innate and adaptive immune suppression are associated with longer duration of organ dysfunction in children with severe sepsis/septic shock. Methods, Measurements and Main Results: Children aged < 18 years meeting consensus criteria for severe sepsis or septic shock were sampled within 48 hours of sepsis onset. Healthy controls were sampled once. Innate immune function was quantified by whole blood ex vivo lipopolysaccharide-induced TNFα production capacity. Adaptive immune function was quantified by ex vivo phytohemagglutinin-induced IFNγ production capacity. 102 septic children and 35 healthy children were enrolled. Compared to healthy children, septic children demonstrated lower LPS-induced TNFα production (p < 0.0001) and lower PHA-induced IFNγ production (p<0.0001). Among septic children, early innate and adaptive immune suppression were associated with greater number of days with multiple organ dysfunction (MODS) and greater number of days with any organ dysfunction. On multivariable analyses, early innate immune suppression remained independently associated with increased MODS days [aRR 1.2 (1.03, 1.5)] and organ dysfunction days [aRR 1.2 (1.1, 1.3)]. Critically ill children with severe sepsis or septic shock demonstrate early innate and adaptive immune suppression. Early suppression of both innate and adaptive immunity are associated with longer duration of organ dysfunction and may be useful markers to guide investigations of immunomodulatory therapies in septic children.

  12. Thioester-Containing Protein-4 Regulates the Drosophila Immune Signaling and Function against the Pathogen Photorhabdus.

    PubMed

    Shokal, Upasana; Eleftherianos, Ioannis

    2017-01-01

    Despite important progress in identifying the molecules that participate in the immune response of Drosophila melanogaster to microbial infections, the involvement of thioester-containing proteins (TEPs) in the antibacterial immunity of the fly is not fully clarified. Previous studies mostly focused on identifying the function of TEP2, TEP3 and TEP6 molecules in the D. melanogaster immune system. Here, we investigated the role of TEP4 in the regulation and function of D. melanogaster host defense against 2 virulent pathogens from the genus Photorhabdus, i.e. the insect pathogenic bacterium Photorhabdus luminescens and the emerging human pathogen P. asymbiotica. We demonstrate that Tep4 is strongly upregulated in adult flies following the injection of Photorhabdus bacteria. We also show that Tep4 loss-of-function mutants are resistant to P. luminescens but not to P. asymbiotica infection. In addition, we find that inactivation of Tep4 results in the upregulation of the Toll and Imd immune pathways, and the downregulation of the Jak/Stat and Jnk pathways upon Photorhabdus infection. We document that loss of Tep4 promotes melanization and phenoloxidase activity in the mutant flies infected with Photorhabdus. Together, these findings generate novel insights into the immune role of TEP4 as a regulator and effector of the D. melanogaster antibacterial immune response. © 2016 S. Karger AG, Basel.

  13. Photoperiodic adjustments in immune function protect Siberian hamsters from lethal endotoxemia.

    PubMed

    Prendergast, Brian J; Hotchkiss, Andrew K; Bilbo, Staci D; Kinsey, Steven G; Nelson, Randy J

    2003-02-01

    Seasonal changes in day length enhance or suppress components of immune function in individuals of several mammalian species. Siberian hamsters (Phodopus sungorus) exhibit multiple changes in neuroendocrine, reproductive, and immune function after exposure to short days. The manner in which these changes are integrated into the host response to pathogens is not well understood. The present experiments tested the hypothesis that short-day changes in immune function alter the pathogenesis of septic shock and survival after challenge with endotoxin. Male and female Siberian hamsters raised in long-day photoperiods were transferred as adults to short days or remained in their natal photoperiod. Six to 8 weeks later, hamsters were injected i.p. with 0, 1, 2.5, 10, 25, or 50 mg/kg bacterial lipopolysaccharide (LPS) (the biologically active constituent of endotoxin), and survival was monitored for 96 h. Short days significantly improved survival of male hamsters treated with 10 or 25 mg/kg LPS and improved survival in females treated with 50 mg/kg LPS. Transfer from long to short days shifted the LD50 in males by approximately 90%, from 5.3 to 9.9 mg/kg, and in females from 11.1 to 15.0 mg/kg (+35%). Long-day females were more resistant than were males to lethal endotoxemia. In vitro production of the proinflammatory cytokine TNFalpha in response to LPS stimulation was significantly lower in macrophages extracted from short-day relative to long-day hamsters, as were circulating concentrations of TNFalpha in vivo after i.p. administration of LPS, suggesting that diminished cytokine responses to LPS in short days may mitigate the lethality of endotoxemia. Adaptation to short days induces changes in immune parameters that affect survival in the face of immune challenges.

  14. Problematic Internet Usage and Immune Function.

    PubMed

    Reed, Phil; Vile, Rebecca; Osborne, Lisa A; Romano, Michela; Truzoli, Roberto

    2015-01-01

    Problematic internet use has been associated with a variety of psychological comorbidities, but it relationship with physical illness has not received the same degree of investigation. The current study surveyed 505 participants online, and asked about their levels of problematic internet usage (Internet Addiction Test), depression and anxiety (Hospital Anxiety and Depression Scales), social isolation (UCLA Loneliness Questionnaire), sleep problems (Pittsburgh Sleep Quality Index), and their current health - General Health Questionnaire (GHQ-28), and the Immune Function Questionnaire. The results demonstrated that around 30% of the sample displayed mild or worse levels of internet addiction, as measured by the IAT. Although there were differences in the purposes for which males and females used the internet, there were no differences in terms of levels of problematic usage between genders. The internet problems were strongly related to all of the other psychological variables such as depression, anxiety, social-isolation, and sleep problems. Internet addiction was also associated with reduced self-reported immune function, but not with the measure of general health (GHQ-28). This relationship between problematic internet use and reduced immune function was found to be independent of the impact of the co-morbidities. It is suggested that the negative relationship between level of problematic internet use and immune function may be mediated by levels of stress produced by such internet use, and subsequent sympathetic nervous activity, which related to immune-supressants, such as cortisol.

  15. Problematic Internet Usage and Immune Function

    PubMed Central

    Reed, Phil; Vile, Rebecca; Osborne, Lisa A.; Romano, Michela; Truzoli, Roberto

    2015-01-01

    Problematic internet use has been associated with a variety of psychological comorbidities, but it relationship with physical illness has not received the same degree of investigation. The current study surveyed 505 participants online, and asked about their levels of problematic internet usage (Internet Addiction Test), depression and anxiety (Hospital Anxiety and Depression Scales), social isolation (UCLA Loneliness Questionnaire), sleep problems (Pittsburgh Sleep Quality Index), and their current health – General Health Questionnaire (GHQ-28), and the Immune Function Questionnaire. The results demonstrated that around 30% of the sample displayed mild or worse levels of internet addiction, as measured by the IAT. Although there were differences in the purposes for which males and females used the internet, there were no differences in terms of levels of problematic usage between genders. The internet problems were strongly related to all of the other psychological variables such as depression, anxiety, social-isolation, and sleep problems. Internet addiction was also associated with reduced self-reported immune function, but not with the measure of general health (GHQ-28). This relationship between problematic internet use and reduced immune function was found to be independent of the impact of the co-morbidities. It is suggested that the negative relationship between level of problematic internet use and immune function may be mediated by levels of stress produced by such internet use, and subsequent sympathetic nervous activity, which related to immune-supressants, such as cortisol. PMID:26244339

  16. Mental resilience, perceived immune functioning, and health.

    PubMed

    Van Schrojenstein Lantman, Marith; Mackus, Marlou; Otten, Leila S; de Kruijff, Deborah; van de Loo, Aurora Jae; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C

    2017-01-01

    Mental resilience can be seen as a trait that enables an individual to recover from stress and to face the next stressor with optimism. People with resilient traits are considered to have a better mental and physical health. However, there are limited data available assessing the relationship between resilient individuals and their perspective of their health and immune status. Therefore, this study was conducted to examine the relationship between mental resilience, perceived health, and perceived immune status. A total of 779 participants recruited at Utrecht University completed a questionnaire consisting of demographic characteristics, the brief resilience scale for the assessment of mental resilience, the immune function questionnaire (IFQ), and questions regarding their perceived health and immune status. When correcting for gender, age, height, weight, smoker status, amount of cigarettes smoked per week, alcohol consumption status, amount of drinks consumed per week, drug use, and frequency of past year drug use, mental resilience was significantly correlated with perceived health ( r =0.233, p =0.0001), perceived immune functioning ( r =0.124, p =0.002), and IFQ score ( r =-0.185, p =0.0001). A significant, albeit modest, relationship was found between mental resilience and perceived immune functioning and health.

  17. 76 FR 12117 - Call for Comments on the Draft Report of the Adult Immunization Working Group to the National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Call for Comments on the Draft Report of the Adult Immunization Working Group to the National Vaccine Advisory Committee on Adult Immunization: Complex Challenges..., national adult immunization program that will lead to vaccine-preventable disease reduction by improving...

  18. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  19. Age-dependent trade-offs between immunity and male, but not female, reproduction.

    PubMed

    McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W

    2013-01-01

    Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the

  20. Changes in Nutritional Status Impact Immune Cell Metabolism and Function.

    PubMed

    Alwarawrah, Yazan; Kiernan, Kaitlin; MacIver, Nancie J

    2018-01-01

    Immune cell function and metabolism are closely linked. Many studies have now clearly demonstrated that alterations in cellular metabolism influence immune cell function and that, conversely, immune cell function determines the cellular metabolic state. Less well understood, however, are the effects of systemic metabolism or whole organism nutritional status on immune cell function and metabolism. Several studies have demonstrated that undernutrition is associated with immunosuppression, which leads to both increased susceptibility to infection and protection against several types of autoimmune disease, whereas overnutrition is associated with low-grade, chronic inflammation that increases the risk of metabolic and cardiovascular disease, promotes autoreactivity, and disrupts protective immunity. Here, we review the effects of nutritional status on immunity and highlight the effects of nutrition on circulating cytokines and immune cell populations in both human studies and mouse models. As T cells are critical members of the immune system, which direct overall immune response, we will focus this review on the influence of systemic nutritional status on T cell metabolism and function. Several cytokines and hormones have been identified which mediate the effects of nutrition on T cell metabolism and function through the expression and action of key regulatory signaling proteins. Understanding how T cells are sensitive to both inadequate and overabundant nutrients may enhance our ability to target immune cell metabolism and alter immunity in both malnutrition and obesity.

  1. Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults.

    PubMed

    Weinberg, Adriana; Canniff, Jennifer; Rouphael, Nadine; Mehta, Aneesh; Mulligan, Mark; Whitaker, Jennifer A; Levin, Myron J

    2017-07-15

    The incidence and severity of herpes zoster (HZ) increases with age. The live attenuated zoster vaccine generates immune responses similar to HZ. We compared the immune responses to zoster vaccine in young and older to adults to increase our understanding of the immune characteristics that may contribute to the increased susceptibility to HZ in older adults. Young (25-40 y; n = 25) and older (60-80 y; n = 33) adults had similar magnitude memory responses to varicella-zoster virus (VZV) ex vivo restimulation measured by responder cell-frequency and flow cytometry, but the responses were delayed in older compared with young adults. Only young adults had an increase in dual-function VZV-specific CD4 + and CD8 + T cell effectors defined by coexpression of IFN-γ, IL-2, and CD107a after vaccination. In contrast, older adults showed marginal increases in VZV-specific CD8 + CD57 + senescent T cells after vaccination, which were already higher than those of young adults before vaccination. An increase in VZV-stimulated CD4 + CD69 + CD57 + PD1 + and CD8 + CD69 + CD57 + PD1 + T cells from baseline to postvaccination was associated with concurrent decreased VZV-memory and CD8 + effector responses, respectively, in older adults. Blocking the PD1 pathway during ex vivo VZV restimulation increased the CD4 + and CD8 + proliferation, but not the effector cytokine production, which modestly increased with TIM-3 blockade. We conclude that high proportions of senescent and exhausted VZV-specific T cells in the older adults contribute to their poor effector responses to a VZV challenge. This may underlie their inability to contain VZV reactivation and prevent the development of HZ. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Associations between immunological function and memory recall in healthy adults.

    PubMed

    Wang, Grace Y; Taylor, Tamasin; Sumich, Alexander; Merien, Fabrice; Borotkanics, Robert; Wrapson, Wendy; Krägeloh, Chris; Siegert, Richard J

    2017-12-01

    Studies in clinical and aging populations support associations between immunological function, cognition and mood, although these are not always in line with animal models. Moreover, very little is known about the relationship between immunological measures and cognition in healthy young adults. The present study tested associations between the state of immune system and memory recall in a group of relatively healthy adults. Immediate and delayed memory recall was assessed in 30 participants using the computerised cognitive battery. CD4, CD8 and CD69 subpopulations of lymphocytes, Interleukin-6 (IL-6) and cortisol were assessed with blood assays. Correlation analysis showed significant negative relationships between CD4 and the short and long delay memory measures. IL-6 showed a significant positive correlation with long-delay recall. Generalized linear models found associations between differences in all recall challenges and CD4. A multivariate generalized linear model including CD4 and IL-6 exhibited a stronger association. Results highlight the interactions between CD4 and IL-6 in relation to memory function. Further study is necessary to determine the underlying mechanisms of the associations between the state of immune system and cognitive performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice.

    PubMed

    Demas, G E; Chefer, V; Talan, M I; Nelson, R J

    1997-11-01

    Animals must balance their energy budget despite seasonal changes in both energy availability and physiological expenditures. Immunity, in addition to growth, thermoregulation, and cellular maintenance, requires substantial energy to maintain function, although few studies have directly tested the energetic cost of immunity. The present study assessed the metabolic costs of an antibody response. Adult and aged male C5BL/6J mice were implanted with either empty Silastic capsules or capsules filled with melatonin and injected with either saline or keyhole limpet hemocyanin (KLH). O2 consumption was monitored periodically throughout antibody production using indirect calorimetry. KLH-injected mice mounted significant immunoglobulin G (IgG) responses and consumed more O2 compared with animals injected with saline. Melatonin treatment increased O2 consumption in mice injected with saline but suppressed the increased metabolic rate associated with an immune response in KLH-injected animals. Melatonin had no effect on immune response to KLH. Adult and aged mice did not differ in antibody response or metabolic activity. Aged mice appear unable to maintain sufficient heat production despite comparable O2 production to adult mice. These results suggest that mounting an immune response requires significant energy and therefore requires using resources that could otherwise be allocated to other physiological processes. Energetic trade-offs are likely when energy demands are high (e.g., during winter, pregnancy, or lactation). Melatonin appears to play an adaptive role in coordinating reproductive, immunologic, and energetic processes.

  4. The effects of sex hormones on immune function: a meta-analysis.

    PubMed

    Foo, Yong Zhi; Nakagawa, Shinichi; Rhodes, Gillian; Simmons, Leigh W

    2017-02-01

    The effects of sex hormones on immune function have received much attention, especially following the proposal of the immunocompetence handicap hypothesis. Many studies, both experimental and correlational, have been conducted to test the relationship between immune function and the sex hormones testosterone in males and oestrogen in females. However, the results are mixed. We conducted four cross-species meta-analyses to investigate the relationship between sex hormones and immune function: (i) the effect of testosterone manipulation on immune function in males, (ii) the correlation between circulating testosterone level and immune function in males, (iii) the effect of oestrogen manipulation on immune function in females, and (iv) the correlation between circulating oestrogen level and immune function in females. The results from the experimental studies showed that testosterone had a medium-sized immunosuppressive effect on immune function. The effect of oestrogen, on the other hand, depended on the immune measure used. Oestrogen suppressed cell-mediated immune function while reducing parasite loads. The overall correlation (meta-analytic relationship) between circulating sex hormone level and immune function was not statistically significant for either testosterone or oestrogen despite the power of meta-analysis. These results suggest that correlational studies have limited value for testing the effects of sex hormones on immune function. We found little evidence of publication bias in the four data sets using indirect tests. There was a weak and positive relationship between year of publication and effect size for experimental studies of testosterone that became non-significant after we controlled for castration and immune measure, suggesting that the temporal trend was due to changes in these moderators over time. Graphical analyses suggest that the temporal trend was due to an increased use of cytokine measures across time. We found substantial heterogeneity

  5. Comparison of immunization rates of adults ages 65 years and older managed within two nurse practitioner-owned clinics with national immunization rates.

    PubMed

    Wright, Wendy L; Morrell, Elise; Lee, Jennie; Cuellar, Norma Graciela; White, Patricia

    2017-07-01

    Adults ages ≥65 years are at increased risk for infectious diseases. Ensuring these individuals are fully vaccinated is imperative. The purpose of this study was to assess the immunization rates of adults ages ≥65 years managed by nurse practitioners (NPs) and compare the results with national immunization rates and Healthy People 2020 goals. A convenience sample of adults ages ≥65 years was obtained from two NP-managed clinics. The vaccine records of each subject were reviewed for documentation of having received five vaccines (tetanus, diphtheria, and pertussis; influenza; pneumococcal polysaccharide vaccine 23; pneumococcal conjugate vaccine 13; and herpes zoster vaccine). One hundred and fifty females (70.8%) and 62 males (29.2%) met inclusion criteria. NP-managed patients had higher immunization rates than the national averages across all five major vaccines. The herpes zoster vaccination rates exceeded the recommendations from Healthy People 2020 whereas pneumococcal and influenza rates were below. The stocking of vaccines within the NP-managed clinics, direct billing to Medicare for Part D vaccines, and previsit care planning likely contributed to the high vaccination rates. These high immunization rates in patients managed by NPs provide support for the important role that NPs play in the care of older adults. ©2017 American Association of Nurse Practitioners.

  6. Validation of Procedures for Monitoring Crewmember Immune Function SDBI-1900, SMO-015 - Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence

    2007-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation

  7. Antibody titers against vaccine and contemporary wild poliovirus type 1 in children immunized with IPV+OPV and young adults immunized with OPV.

    PubMed

    Lukashev, Alexander N; Yarmolskaya, Maria S; Shumilina, Elena Yu; Sychev, Daniil A; Kozlovskaya, Liubov I

    2016-02-02

    In 2010, a type 1 poliovirus outbreak in Congo with 445 lethal cases was caused by a virus that was neutralized by sera of German adults vaccinated with inactivated polio vaccine with a reduced efficiency. This seroprevalence study was done in two cohorts immunized with other vaccination schedules. Russian children aged 3-6 years immunized with a combination of inactivated and live polio vaccines were reasonably well protected against any wild type poliovirus 1, including the Congolese isolate. Adults aged 20-29 years immunized only with live vaccine were apparently protected against the vaccine strain (92% seropositive), but only 50% had detectable antibodies against the Congo-2010 isolate. Both waning immunity and serological divergence of the Congolese virus could contribute to this result. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of low-dose hydrocortisone therapy on immune function in neonatal horses

    PubMed Central

    Hart, Kelsey A.; Barton, Michelle H.; Vandenplas, Michel L.; Hurley, David J.

    2011-01-01

    Low-dose hydrocortisone therapy modulates inflammatory responses in adults and improves outcomes in some septic adults and neonates, but its immunologic effects have not been evaluated in neonates. The objective of this study was to evaluate effects of low-dose hydrocortisone (LDHC) therapy on ex vivo immune function in neonatal horses (foals). We hypothesized that LDHC treatment would dampen pro-inflammatory responses without impairing neutrophil function. Hydrocortisone (1.3 mg/kg/day i.v.) was administered to foals in a tapering 3.5 day course. Peripheral blood leukocytes were collected from foals before, during and after hydrocortisone treatment. A separate group of age-matched untreated foals served as controls. Endotoxin-induced peripheral blood mononuclear cell gene expression of inflammatory cytokines was measured by real time quantitative RT-PCR. Neutrophils were incubated with labeled, killed S. aureus or E. coli for assessment of phagocytosis, and with phorbol myristate acetate, zymosan, or endotoxin for measurement of reactive oxygen species (ROS) production. Neutrophil phagocytosis and ROS production were similar in both groups. Foals receiving hydrocortisone had significantly decreased endotoxin-induced expression of TNF-α, IL-6, IL-8, and IL-1β. These data suggest that this LDHC treatment regimen ameliorates endotoxin-induced pro-inflammatory cytokine expression in neonatal foals without impairing innate immune responses needed to combat bacterial infection. PMID:21430601

  9. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans.

    PubMed

    Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten

    2016-10-01

    The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.

  10. Innate immunity is not related to the sex of adult Tree Swallows during the nestling period

    USGS Publications Warehouse

    Houdek, Bradley J.; Lombardo, Michael P.; Thorpe, Patrick A.; Hahn, D. Caldwell

    2011-01-01

    Evolutionary theory predicts that exposure to more diverse pathogens will result in the evolution of a more robust immune response. We predicted that during the breeding season the innate immune function of female Tree Swallows (Tachycineta bicolor) should be more effective than that of males because (1) the transmission of sexually transmitted microbes during copulation puts females at greater risk because ejaculates move from males to females, (2) females copulate with multiple males, exposing them to the potentially pathogenic microbes in semen, and (3) females spend more time in the nest than do males so may be more exposed to nest microbes and ectoparasites that can be vectors of bacterial and viral pathogens. In addition, elevated testosterone in males may suppress immune function. We tested our prediction during the 2009 breeding season with microbicidal assays in vitro to assess the ability of the innate immune system to kill Escherichia coli. The sexes did not differ in the ability of their whole blood to kill E. coli. We also found no significant relationships between the ability of whole blood to kill E. coli and the reproductive performance or the physical condition of males or females. These results indicate that during the nestling period there are no sexual differences in this component of the innate immune system. In addition, they suggest that there is little association between this component of innate immunity and the reproductive performance and physical condition during the nestling period of adult Tree Swallows.

  11. Exosomes Function in Tumor Immune Microenvironment.

    PubMed

    Huang, Yin; Liu, Keli; Li, Qing; Yao, Yikun; Wang, Ying

    2018-01-01

    Immune cells and mesenchymal stem/stromal cells are the major cellular components in tumor microenvironment that actively migrate to tumor sites by sensing "signals" released from tumor cells. Together with other stromal cells, they form the soil for malignant cell progression. In the crosstalk between tumor cells and its surrounded microenvironment, exosomes exert multiple functions in shaping tumor immune responses. In tumor cells, their exosomes can lead to pro-tumor immune responses, whereas in immune cells, their derived exosomes can operate on tumor cells and regulate their ability to growth, metastasis, even reaction to chemotherapy. Employing exosomes as vehicles for the delivery products to initiate anti-tumor immune responses has striking therapeutic effects on tumor progression. Thus, exosomes are potential therapeutic targets in tumor-related clinical conditions. Here we discuss the role of exosomes in regulating tumor immune microenvironment and future indications for the clinical application of exosomes.

  12. Continuous Dual Resetting of the Immune Repertoire as a Basic Principle of the Immune System Function.

    PubMed

    Balzar, Silvana

    2017-01-01

    Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function.

  13. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  14. A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees

    PubMed Central

    Bull, James C.; Ryabov, Eugene V.; Prince, Gill; Mead, Andrew; Zhang, Cunjin; Baxter, Laura A.; Pell, Judith K.; Osborne, Juliet L.; Chandler, Dave

    2012-01-01

    Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease

  15. Comics as a Medium for Providing Information on Adult Immunizations.

    PubMed

    Muzumdar, Jagannath M; Pantaleo, Nicholas L

    2017-10-01

    This study compared the following effects of two vaccine information flyers-one developed by the Centers for Disease Control and Prevention (CDC) versus one adapted from this information to a comic medium (comic)-on adults: (a) attitude toward the flyer; (b) perceived informativeness of the flyer; (c) intention to seek more information about adult immunizations after viewing the flyer; and (d) intention to get immunized after viewing the flyer. A between-group, randomized trial was used to randomly assign adults (age 18 years or older) at an ambulatory care center to review the CDC or comic flyer. Participants were asked to complete a survey to measure several outcome variables. Items were measured using a 7-point semantic differential scale. Independent-samples t-test was used for comparisons. A total of 265 surveys (CDC n = 132 vs comic n = 133) were analyzed. The comic flyer had a statistically significant effect on participants' attitudes and their perception of the flyer's informativeness compared to the CDC flyer. Flyer type did not have a statistically significant effect on intention-related variables. The study findings showed that the comic flyer was positively evaluated compared to the CDC flyer. These findings could provide a new direction for developing adult educational materials.

  16. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  17. Immune cell phenotype and function in sepsis

    PubMed Central

    Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis. The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of non extracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed. A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8 and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes and the cell function. PMID:26529661

  18. IMMUNE CELL PHENOTYPE AND FUNCTION IN SEPSIS.

    PubMed

    Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A

    2016-03-01

    Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis.The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of nonextracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed.A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes, but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8, and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes, and the cell function.

  19. Antibodies enhance CXCL10 production during RSV infection of infant and adult immune cells.

    PubMed

    Vissers, Marloes; Schreurs, Inge; Jans, Jop; Heldens, Jacco; de Groot, Ronald; de Jonge, Marien I; Ferwerda, Gerben

    2015-12-01

    Respiratory syncytial virus (RSV) bronchiolitis is a major burden in infants below three months of age, when the primary immune response is mainly dependent on innate immunity and maternal antibodies. We investigated the influence of antibodies on innate immunity during RSV infection. PBMCs from infants and adults were stimulated with live RSV and inactivated RSV in combination with antibody-containing and antibody-depleted serum. The immune response was determined by transcriptome analysis and chemokine levels were measured using ELISA and flow cytometry. Microarray data showed that CXCL10 gene transcription was RSV dependent, whereas CXCL11 and IFNα were upregulated in an antibody-dependent manner. Although the presence of antibodies reduces RSV infection rate, it enhances the innate immune response. In adult immune cells, antibodies enhance CXCL10, CXCL11, IFNα and IFNγ production in response to RSV infection. Contrary, in infant immune cells only CXCL10 was enhanced in an antibody-dependent manner. Monocytes are the main source of CXCL10 and they produce CXCL10 in both an antibody- and virus-dependent manner. This study shows that antibodies enhance CXCL10 production in infant immune cells. CXCL10 has been implicated in exuberating the inflammatory response during viral infections and antibodies could therefore play a role in the pathogenesis of RSV infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Chinese guidelines for treatment of adult primary immune thrombocytopenia.

    PubMed

    Liu, Xin-Guang; Bai, Xiao-Chuan; Chen, Fang-Ping; Cheng, Yun-Feng; Dai, Ke-Sheng; Fang, Mei-Yun; Feng, Jian-Ming; Gong, Yu-Ping; Guo, Tao; Guo, Xin-Hong; Han, Yue; Hong, Luo-Jia; Hu, Yu; Hua, Bao-Lai; Huang, Rui-Bing; Li, Yan; Peng, Jun; Shu, Mi-Mi; Sun, Jing; Sun, Pei-Yan; Sun, Yu-Qian; Wang, Chun-Sen; Wang, Shu-Jie; Wang, Xiao-Min; Wu, Cong-Ming; Wu, Wen-Man; Yan, Zhen-Yu; Yang, Feng-E; Yang, Lin-Hua; Yang, Ren-Chi; Yang, Tong-Hua; Ye, Xu; Zhang, Guang-Sen; Zhang, Lei; Zheng, Chang-Cheng; Zhou, Hu; Zhou, Min; Zhou, Rong-Fu; Zhou, Ze-Ping; Zhu, Hong-Li; Zhu, Tie-Nan; Hou, Ming

    2018-06-01

    Primary immune thrombocytopenia (ITP) is a bleeding disorder commonly encountered in clinical practice. The International Working Group (IWG) on ITP has published several landmark papers on terminology, definitions, outcome criteria, bleeding assessment, diagnosis, and management of ITP. The Chinese consensus reports for diagnosis and management of adult ITP have been updated to the 4th edition. Based on current consensus positions and new emerging clinical evidence, the thrombosis and hemostasis group of the Chinese Society of Hematology issued Chinese guidelines for management of adult ITP, which aim to provide evidence-based recommendations for clinical decision making.

  1. B cell function in the immune response to helminths

    PubMed Central

    Harris, Nicola

    2010-01-01

    Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556

  2. Serologic assessment of type 1 and type 2 immunity in healthy Japanese adults.

    PubMed

    Birmann, Brenda M; Mueller, Nancy; Okayama, Akihiko; Hsieh, Chung-Cheng; Tachibana, Nobuyoshi; Tsubouchi, Hirohito; Lennette, Evelyne T; Harn, Donald; Stuver, Sherri

    2004-08-01

    We assessed the informativeness of several serologic biomarkers of immune function using serum specimens collected in the Miyazaki Cohort Study from subjects who were seronegative for anti-human T-cell lymphotrophic virus I and anti-hepatitis C virus. To broadly characterize type 1 immune status, we measured EBV antibody titers, because titer profiles associated with cellular immune suppression are well described. We also tested for three type 2 biomarkers: total serum IgE, soluble CD23, and soluble CD30. Nonreactivity to a tuberculin purified protein derivative (PPD) skin test is indicative of diminished delayed-type hypersensitivity (type 1) responsiveness in the study population due to a history of tuberculosis exposure or Bacillus Calmette-Guérin vaccination. We therefore evaluated the serologic markers as predictors of PPD nonreactivity using logistic regression. Subjects whose EBV antibody profiles were consistent with deficient type 1 immunity were more than thrice as likely to be PPD nonreactive as persons with "normal" antibody titers. Elevated total IgE was also strongly associated with PPD nonreactivity (odds ratio 3.4, 95% confidence interval 1.2-9.9); elevated soluble CD23 had a weaker, but positive, odds ratio, whereas soluble CD30 levels were not predictive of PPD status. Therefore, PPD nonreactivity is associated, in this population, with a pattern of serum biomarkers that is indicative of diminished type 1 and elevated type 2 immunity. We conclude that, with the exception of soluble CD30, the serologic markers are informative for the characterization of type 1/type 2 immune status using archived sera from study populations of healthy adults.

  3. A human tissue-based functional assay platform to evaluate the immune function impact of small molecule inhibitors that target the immune system.

    PubMed

    St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A

    2017-01-01

    While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.

  4. [Impact of thymic function in age-related immune deterioration].

    PubMed

    Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles

    2013-01-01

    Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  5. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    PubMed

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  6. Adult immunization with 13-valent pneumococcal vaccine in Campania region, South Italy: an economic evaluation.

    PubMed

    Liguori, Giorgio; Parlato, Antonino; Zamparelli, Alessandro Sanduzzi; Belfiore, Patrizia; Gallé, Francesca; Di Onofrio, Valeria; Riganti, Carla; Zamparelli, Bruno

    2014-01-01

    Pneumococcal pneumonia has a high clinical burden in terms of morbidity, mortality and hospitalization rate, with heavy implications for worldwide health systems. In particular, higher incidence and mortality rates of community-acquired pneumonia (CAP) cases, with related costs, are registered among elderly. This study aimed to an economic evaluation about the immunization with PCV13 in the adult population in Campania region, South Italy. For this purpose we performed, considering a period of 5 y, a budget impact analysis (BIA) and a cost-effectiveness analysis which considered 2 scenarios of immunization compared with lack of immunization for 2 targeted cohorts: first, the high risk subjects aged 50-79 y, and second the high risk individuals aged 50-64 y, together with all those aged 65 y. Regarding the first group, the decrease of pneumonia could give savings equal to €29,005,660, while the immunization of the second cohort could allow savings equal to €10,006,017. The economic evaluation of pneumococcal vaccine for adult groups represents an essential instrument to support health policies. This study showed that both hypothesized immunization strategies could produce savings. Obtained results support the use of pneumococcal conjugate vaccine for adults. This strategy could represent a sustainable and savings-producer health policy.

  7. Immune function trade-offs in response to parasite threats.

    PubMed

    Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W

    2017-04-01

    Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Exercise and the Regulation of Immune Functions.

    PubMed

    Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel

    2015-01-01

    Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.

  9. Microbiota regulate the development and function of the immune cells.

    PubMed

    Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei

    2018-03-04

    Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.

  10. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells

    PubMed Central

    Jones, Russell G.; Pearce, Edward J.

    2017-01-01

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. PMID:28514674

  11. Hormones and immune function: implications of aging.

    PubMed

    Arlt, Wiebke; Hewison, Martin

    2004-08-01

    Aging is associated with a decline in immunity described as immunosenescence. This is paralleled by a decline in the production of several hormones, as typically illustrated by the menopausal loss of ovarian oestrogen production. However, other hormonal changes that occur with aging and that potentially impact on immune function include the release of the pineal gland hormone melatonin and pituitary growth hormone, adrenal production of dehydroepiandrosterone and tissue-specific availability of active vitamin D. It remains to be established whether hormonal changes with aging actually contribute to immunosenescence and this area is at the interface of fact and fiction, clearly inviting systematic research efforts. As a step in this direction, the present review summarizes established facts on the physiology of secretion and function of hormones that, in most cases, decline with aging and that are likely to affect the immune system.

  12. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: a pilot study.

    PubMed

    Bartlett, David B; Willis, Leslie H; Slentz, Cris A; Hoselton, Andrew; Kelly, Leslie; Huebner, Janet L; Kraus, Virginia B; Moss, Jennifer; Muehlbauer, Michael J; Spielmann, Guillaume; Kraus, William E; Lord, Janet M; Huffman, Kim M

    2018-06-14

    Rheumatoid arthritis (RA) is a chronic inflammatory disease in which adults have significant joint issues leading to poor health. Poor health is compounded by many factors, including exercise avoidance and increased risk of opportunistic infection. Exercise training can improve the health of patients with RA and potentially improve immune function; however, information on the effects of high-intensity interval training (HIIT) in RA is limited. We sought to determine whether 10 weeks of a walking-based HIIT program would be associated with health improvements as measured by disease activity and aerobic fitness. Further, we assessed whether HIIT was associated with improved immune function, specifically antimicrobial/bacterial functions of neutrophils and monocytes. Twelve physically inactive adults aged 64 ± 7 years with either seropositive or radiographically proven (bone erosions) RA completed 10 weeks of high-intensity interval walking. Training consisted of 3 × 30-minute sessions/week of ten ≥ 60-second intervals of high intensity (80-90% VO 2reserve ) separated by similar bouts of lower-intensity intervals (50-60% VO 2reserve ). Pre- and postintervention assessments included aerobic and physical function; disease activity as measured by Disease Activity score in 28 joints (DAS28), self-perceived health, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR); plasma interleukin (IL)-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-8, IL-10, and tumor necrosis factor (TNF)-α concentrations; and neutrophil and monocyte phenotypes and functions. Despite minimal body composition change, cardiorespiratory fitness increased by 9% (change in both relative and absolute aerobic capacity; p < 0.001), and resting blood pressure and heart rate were both reduced (both p < 0.05). Postintervention disease activity was reduced by 38% (DAS28; p = 0.001) with significant reductions in ESR and swollen joints as well as improved self

  13. Proposed method to construct Boolean functions with maximum possible annihilator immunity

    NASA Astrophysics Data System (ADS)

    Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit

    2017-07-01

    Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.

  14. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells.

    PubMed

    Jones, Russell G; Pearce, Edward J

    2017-05-16

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. Copyright © 2017. Published by Elsevier Inc.

  15. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2008-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) from prolonged immune dysregulation during exploration-class space flight has not yet been determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight status of immunity as it resolves over prolonged flight. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess immunity, latent viral reactivation and physiological stress during both short and long duration flights. Upon completion, it is expected that any clinical risks resulting from the adverse effects of space flight on the human immune system will have been determined. In addition, a flight-compatible immune monitoring strategy will have been developed with which countermeasures validation could be performed. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers' immune systems. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter R+0 assessments. The overall status of the immune system during flight

  16. Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach.

    PubMed

    Lambert, Nathaniel D; Ovsyannikova, Inna G; Pankratz, V Shane; Jacobson, Robert M; Poland, Gregory A

    2012-08-01

    Annual vaccination against seasonal influenza is recommended to decrease disease-related mortality and morbidity. However, one population that responds suboptimally to influenza vaccine is adults over the age of 65 years. The natural aging process is associated with a complex deterioration of multiple components of the host immune system. Research into this phenomenon, known as immunosenescence, has shown that aging alters both the innate and adaptive branches of the immune system. The intricate mechanisms involved in immune response to influenza vaccine, and how these responses are altered with age, have led us to adopt a more encompassing systems biology approach to understand exactly why the response to vaccination diminishes with age. Here, the authors review what changes occur with immunosenescence, and some immunogenetic factors that influence response, and outline the systems biology approach to understand the immune response to seasonal influenza vaccination in older adults.

  17. Immune functions of the garment workers.

    PubMed

    Sultana, R; Ferdous, K J; Hossain, M; Zahid, M S H; Islam, L N

    2012-10-01

    Occupational exposure to cotton dust, fibers, metal fumes and different chemicals used in the aparrel manufacturing industries cause a wide range of physical and psychological health problems in the garment workers that may also affect their immune function. To assess the immune system function in garment workers. A total of 45 workers of a garment factory, and 41 control subjects, not exposed to the garment working environment were enrolled in this study. In the study subjects, the complement system function was assessed as bactericidal activity on Escherichia coli DH5α cells using the standard plate count method. Serum complement components C3 and C4 were measured by immunoprecipitation, and IgG was measured by immunonephelometry. The bactericidal activity of serum complement in the garment workers (range: 93.5%-99.9%) was significantly (p<0.01) lower than that in the controls (range: 98.6%-100%). The heat-inactivated serum of the workers showed a significantly enhanced bactericidal activity. In the garment workers, the mean levels of complement C3, and C4 were 1.75 and 0.26 g/L, respectively that were close to those of the controls. The mean IgG level in the garment workers was 13.5 g/L that was significantly (p<0.001) higher than that in the controls. Working in a garment factory may affect the immune system.

  18. Perfluoroalkyl Substance Serum Concentrations and Immune Response to FluMist Vaccination among Healthy Adults

    PubMed Central

    Stein, Cheryl R; Ge, Yongchao; Wolff, Mary S; Ye, Xiaoyun; Calafat, Antonia M; Kraus, Thomas; Moran, Thomas M

    2016-01-01

    Perfluoroalkyl substances (PFAS) were shown to be immunotoxic in laboratory animals. There is some epidemiological evidence that PFAS exposure is inversely associated with vaccine-induced antibody concentration. We examined immune response to vaccination with FluMist intranasal live attenuated influenza vaccine in relation to four PFAS (perfluorooctanoate, perfluorononanoate, perfluorooctane sulfonate, perfluorohexane sulfonate) serum concentrations among 78 healthy adults vaccinated during the 2010 – 2011 influenza season. We measured anti-A H1N1 antibody response and cytokine and chemokine concentrations in serum pre-vaccination, 3 days post-vaccination, and 30 days post-vaccination. We measured cytokine, chemokine, and mucosal IgA concentration in nasal secretions 3 days post-vaccination and 30 days post-vaccination. Adults with higher PFAS concentrations were more likely to seroconvert after FluMist vaccination as compared to adults with lower PFAS concentrations. The associations, however, were imprecise and few participants seroconverted as measured either by hemagglutination inhibition (9%) or immunohistochemical staining (25%). We observed no readily discernable or consistent pattern between PFAS concentration and baseline cytokine, chemokine, or mucosal IgA concentration, or between PFAS concentration and change in these immune markers between baseline and FluMist-response states. The resuts of this study do not support a reduced immune response to FluMist vaccination among healthy adults in relation to serum PFAS concentration. Given the study’s many limitations, however, it does not rule out impaired vaccine response to other vaccines or vaccine components in either children or adults. PMID:27208468

  19. Does Exercise Alter Immune Function and Respiratory Infections?

    ERIC Educational Resources Information Center

    Nieman, David C.

    2001-01-01

    This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…

  20. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice.

    PubMed

    Malaisé, Yann; Ménard, Sandrine; Cartier, Christel; Lencina, Corinne; Sommer, Caroline; Gaultier, Eric; Houdeau, Eric; Guzylack-Piriou, Laurence

    2018-01-01

    The potent immunomodulatory effect of the endocrine disruptor bisphenol A during development and consequences during life span are of increasing concern. Particular interests have been raised from animal studies regarding the risk of developing food intolerance and infection. We aimed to identify immune disorders in mice triggered by perinatal exposure to bisphenol A. Gravid mice were orally exposed to bisphenol (50 μg/kg body weight/day) from day 15 of pregnancy until weaning. Gut barrier function, local and systemic immunity were assessed in adult female offspring. Mice perinatally exposed to bisphenol showed a decrease in ileal lysozyme expression and a fall of fecal antimicrobial activity. In offspring mice exposed to bisphenol, an increase in colonic permeability was observed associated with an increase in interferon-γ level and a drop of colonic IgA + cells and fecal IgA production. Interestingly, altered frequency of innate lymphoid cells type 3 occurred in the small intestine, with an increase in IgG response against commensal bacteria in sera. These effects were related to a defect in dendritic cell maturation in the lamina propria and spleen. Activated and regulatory T cells were decreased in the lamina propria. Furthermore, perinatal exposure to bisphenol promoted a sharp increase in interferon-γ and interleukin-17 production in the intestine and elicited a T helper 17 profile in the spleen. To conclude, perinatal exposure to bisphenol weakens protective and regulatory immune functions in the intestine and at systemic level in adult offspring. The increased susceptibility to inflammatory response is an interesting lead supporting bisphenol-mediated adverse consequences on food reactions and infections.

  1. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults.

    PubMed

    Qin, Ling; Jing, Xie; Qiu, Zhifeng; Cao, Wei; Jiao, Yang; Routy, Jean-Pierre; Li, Taisheng

    2016-05-01

    Aging is a major risk factor for several conditions including neurodegenerative, cardiovascular diseases and cancer. Functional impairments in cellular pathways controlling genomic stability, and immune control have been identified. Biomarker of immune senescence is needed to improve vaccine response and to develop therapy to improve immune control. To identify phenotypic signature of circulating immune cells with aging, we enrolled 1068 Chinese healthy volunteers ranging from 18 to 80 years old. The decreased naïve CD4+ and CD8+ T cells, increased memory CD4+ or CD8+ T cells, loss of CD28 expression on T cells and reverse trend of CD38 and HLA-DR, were significant for aging of immune system. Conversely, the absolute counts and percentage of NK cells and CD19+B cells maintained stable in aging individuals. The Chinese reference ranges of absolute counts and percentage of peripheral lymphocyte in this study might be useful for future clinical evaluation.

  2. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches

    NASA Astrophysics Data System (ADS)

    de Coster, Greet; Verhulst, Simon; Koetsier, Egbert; de Neve, Liesbeth; Briga, Michael; Lens, Luc

    2011-12-01

    Long-term effects of unfavourable conditions during development can be expected to depend on the quality of the environment experienced by the same individuals during adulthood. Yet, in the majority of studies, long-term effects of early developmental conditions have been assessed under favourable adult conditions only. The immune system might be particularly vulnerable to early environmental conditions as its development, maintenance and use are thought to be energetically costly. Here, we studied the interactive effects of favourable and unfavourable conditions during nestling and adult stages on innate immunity (lysis and agglutination scores) of captive male and female zebra finches ( Taeniopygia guttata). Nestling environmental conditions were manipulated by a brood size experiment, while a foraging cost treatment was imposed on the same individuals during adulthood. This combined treatment showed that innate immunity of adult zebra finches is affected by their early developmental conditions and varies between both sexes. Lysis scores, but not agglutination scores, were higher in individuals raised in small broods and in males. However, these effects were only present in birds that experienced low foraging costs. This study shows that the quality of the adult environment may shape the long-term consequences of early developmental conditions on innate immunity, as long-term effects of nestling environment were only evident under favourable adult conditions.

  3. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  4. Perfluoroalkyl substance serum concentrations and immune response to FluMist vaccination among healthy adults.

    PubMed

    Stein, Cheryl R; Ge, Yongchao; Wolff, Mary S; Ye, Xiaoyun; Calafat, Antonia M; Kraus, Thomas; Moran, Thomas M

    2016-08-01

    Perfluoroalkyl substances (PFAS) were shown to be immunotoxic in laboratory animals. There is some epidemiological evidence that PFAS exposure is inversely associated with vaccine-induced antibody concentration. We examined immune response to vaccination with FluMist intranasal live attenuated influenza vaccine in relation to four PFAS (perfluorooctanoate, perfluorononanoate, perfluorooctane sulfonate, perfluorohexane sulfonate) serum concentrations among 78 healthy adults vaccinated during the 2010-2011 influenza season. We measured anti-A H1N1 antibody response and cytokine and chemokine concentrations in serum pre-vaccination, 3 days post-vaccination, and 30 days post-vaccination. We measured cytokine, chemokine, and mucosal IgA concentration in nasal secretions 3 days post-vaccination and 30 days post-vaccination. Adults with higher PFAS concentrations were more likely to seroconvert after FluMist vaccination as compared to adults with lower PFAS concentrations. The associations, however, were imprecise and few participants seroconverted as measured either by hemagglutination inhibition (9%) or immunohistochemical staining (25%). We observed no readily discernable or consistent pattern between PFAS concentration and baseline cytokine, chemokine, or mucosal IgA concentration, or between PFAS concentration and change in these immune markers between baseline and FluMist-response states. The results of this study do not support a reduced immune response to FluMist vaccination among healthy adults in relation to serum PFAS concentration. Given the study's many limitations, however, it does not rule out impaired vaccine response to other vaccines or vaccine components in either children or adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Structure-informed insights for NLR functioning in plant immunity.

    PubMed

    Sukarta, Octavina C A; Slootweg, Erik J; Goverse, Aska

    2016-08-01

    To respond to foreign invaders, plants have evolved a cell autonomous multilayered immune system consisting of extra- and intracellular immune receptors. Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) mediate recognition of pathogen effectors inside the cell and trigger a host specific defense response, often involving controlled cell death. NLRs consist of a central nucleotide-binding domain, which is flanked by an N-terminal CC or TIR domain and a C-terminal leucine-rich repeat domain (LRR). These multidomain proteins function as a molecular switch and their activity is tightly controlled by intra and inter-molecular interactions. In contrast to metazoan NLRs, the structural basis underlying NLR functioning as a pathogen sensor and activator of immune responses in plants is largely unknown. However, the first crystal structures of a number of plant NLR domains were recently obtained. In addition, biochemical and structure-informed analyses revealed novel insights in the cooperation between NLR domains and the formation of pre- and post activation complexes, including the coordinated activity of NLR pairs as pathogen sensor and executor of immune responses. Moreover, the discovery of novel integrated domains underscores the structural diversity of NLRs and provides alternative models for how these immune receptors function in plants. In this review, we will highlight these recent advances to provide novel insights in the structural, biochemical and molecular aspects involved in plant NLR functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nutritional modulation of immune function in broilers.

    PubMed

    Kidd, M T

    2004-04-01

    Collaborative research efforts across disciplines typically result in more insight toward the hypothesis being tested due to the omnibus nature of the projects. For example, nutritional experiments evaluating a nutrient response will benefit greatly by incorporating biochemical, physiological, and immunological endpoints for measurement. Clearly, commercial poultry producers do not have the luxury of focusing on specific disciplines when field problems occur. Hence, in practice interplay exists among nutrition, genetics, management, and diseases. Dietary composition impacts immune function of the chicken. As research in the area of nutritional immunology has increased, it is becoming apparent that nutrient needs for immunity do not coincide with those for growth or skeletal tissue accretion. This review is not a comprehensive assessment of nutrient needs for immunity in the chicken. Rather, this review is concerned with nutritional modulation of immunity in broilers that offers insight for nutritionists and researchers to implement nutritional regimens to reduce the severity of disease and to test or validate nutritional regimens that heighten immunity. Nutritional modulation of the hen diet and in ovo nutrient modulation to improve chick immunity and disease resistance are discussed.

  7. Tradeoffs between immune function and childhood growth among Amazonian forager-horticulturalists.

    PubMed

    Urlacher, Samuel S; Ellison, Peter T; Sugiyama, Lawrence S; Pontzer, Herman; Eick, Geeta; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh

    2018-04-24

    Immune function is an energetically costly physiological activity that potentially diverts calories away from less immediately essential life tasks. Among developing organisms, the allocation of energy toward immune function may lead to tradeoffs with physical growth, particularly in high-pathogen, low-resource environments. The present study tests this hypothesis across diverse timeframes, branches of immunity, and conditions of energy availability among humans. Using a prospective mixed-longitudinal design, we collected anthropometric and blood immune biomarker data from 261 Amazonian forager-horticulturalist Shuar children (age 4-11 y old). This strategy provided baseline measures of participant stature, s.c. body fat, and humoral and cell-mediated immune activity as well as subsample longitudinal measures of linear growth (1 wk, 3 mo, 20 mo) and acute inflammation. Multilevel analyses demonstrate consistent negative effects of immune function on growth, with children experiencing up to 49% growth reduction during periods of mildly elevated immune activity. The direct energetic nature of these relationships is indicated by ( i ) the manifestation of biomarker-specific negative immune effects only when examining growth over timeframes capturing active competition for energetic resources, ( ii ) the exaggerated impact of particularly costly inflammation on growth, and ( iii ) the ability of children with greater levels of body fat (i.e., energy reserves) to completely avoid the growth-inhibiting effects of acute inflammation. These findings provide evidence for immunologically and temporally diverse body fat-dependent tradeoffs between immune function and growth during childhood. We discuss the implications of this work for understanding human developmental energetics and the biological mechanisms regulating variation in human ontogeny, life history, and health.

  8. Immune function biomarker QuantiFERON-monitor is associated with infection risk in cirrhotic patients

    PubMed Central

    Sood, Siddharth; Yu, Lijia; Visvanathan, Kumar; Angus, Peter William; Gow, Paul John; Testro, Adam Gareth

    2016-01-01

    AIM To investigate whether a novel immune function biomarker QuantiFERON-Monitor (QFM) can identify cirrhotic patients at greatest risk of infection. METHODS Adult cirrhotic patients on the liver transplant waiting list were recruited for this observational cohort study from a tertiary liver transplant referral unit. The immune function biomarker, QFM was performed using the same method as the widely available Quantiferon-gold assay, and measures output in interferon gamma in IU/mL after dual stimulation of the innate and adaptive immune systems. Ninety-one cirrhotic patients were recruited, with 47 (52%) transplanted on the day of their QFM. The remaining 44 (48%) were monitored for infections until transplant, death, or census date of 1st February 2014. RESULTS Cirrhotic patients express a median QFM significantly lower than healthy controls (94.5 IU/mL vs 423 IU/mL), demonstrating that they are severely immunosuppressed. Several factors including model for end stage liver disease, presence of hepatocellular carcinoma, bilirubin, international normalized ratio and haemoglobin were associated with QFM on univariate analysis. Disease aetiology did not appear to impact QFM. On multivariate analysis, only Child-Pugh score and urea were significantly associated with a patient’s immune function as objectively measured by QFM. In the 44 patients who were not transplanted immediately after their blood test and could be monitored for subsequent infection risk, 13 (29.5%) experienced a pre-transplant infection a median 20 d (range 2-182) post-test. QFM < 214 IU/mL was associated with HR = 4.1 (P = 0.01) for infection. A very low QFM < 30 IU/mL was significantly associated (P = 0.003) with death in three patients who died while awaiting transplantation (HR = 56.6). CONCLUSION QFM is lower in cirrhotics, allowing objective determinations of an individual’s unique level of immune dysfunction. Low QFM was associated with increased susceptibility to infection. PMID:28050238

  9. Dietary intake of fibers: differential effects in men and women on perceived general health and immune functioning.

    PubMed

    Fernstrand, Amanda M; Bury, Didi; Garssen, Johan; Verster, Joris C

    2017-01-01

    Background : It has been reported previously that dietary fiber intake provides health benefits. Nevertheless, only a limited number of human studies have investigated whether gender differences exist in the relationship between fiber intake and perceived health and immune status. Objective : To investigate potential gender differences in the effects of dietary fiber intake on perceived health and immune status of healthy young adults. Design : A survey was conducted among university students in Utrecht, the Netherlands. Data were collected on perceived general health status and perceived immune functioning. Dietary intake of fibers was assessed using a food frequency questionnaire. Perceived general health status and immune functioning were associated with daily intake of fibers using nonparametric (Spearman) correlations. Statistical analyses were conducted for the group as a whole, and for men and women separately. Results : N = 509 subjects completed the survey. Mean (SD) age was 20.8 (2.6) years old. 71.9% of the samples were females. Mean daily dietary fiber intake was 15.5 (6.9) g. Daily dietary fiber intake correlated significantly with general health rate (r = 0.171, p  = 0.0001) and perceived immune functioning (r = 0.124, p  = 0.008). After controlling for total caloric intake, the partial correlation between fiber intake and general health remained significant (r = 0.151, p  = 0.002). In men, dietary fiber intake correlated significantly with perceived general health status (r = 0.320, p  = 0.0001) and immune functioning (r = 0.281, p  = 0.002). After controlling for caloric intake, the association between dietary fiber intake and perceived general health (r = 0.261, p  = 0.005) remained significant. Remarkably, no significant correlations were observed in women. Conclusion : A significant association between daily dietary fiber intake and perceived general health status and immune rate was found in men, but not in women

  10. Innovative Strategies Designed to Improve Adult Pneumococcal Immunizations in Safety Net Patient-Centered Medical Homes.

    PubMed

    Park, Nina J; Sklaroff, Laura Myerchin; Gross-Schulman, Sandra; Hoang, Khathy; Tran, Helen; Campa, David; Scheib, Geoffrey; Guterman, Jeffrey J

    2016-08-01

    Streptococcus pneumoniae is a principal cause of serious illness, including bacteremia, meningitis, and pneumonia, worldwide. Pneumococcal immunization is proven to reduce morbidity and mortality in high-risk adult and elderly populations. Current pneumococcal vaccination practices are suboptimal in part because of recommendation complexity, the high cost of provider-driven immunization interventions, and outreach methods that are not patient-centric. These barriers are amplified within the safety net. This paper identifies efforts by the Los Angeles County Department of Health Services to increase pneumococcal immunization rates for adult indigent patient populations. A 4-part approach will be used to increase vaccination rates: (1) protocol driven care, (2) staff education, (3) electronic identification of eligible patients, and (4) automated patient outreach and scheduling. The proposed analytics plan and potential for scalability are described. (Population Health Management 2016;19:240-247).

  11. Advisory Committee on Immunization Practices recommended immunization schedule for adults aged 19 years or older - United States, 2014.

    PubMed

    Bridges, Carolyn B; Coyne-Beasley, Tamera

    2014-02-07

    Vaccines are recommended for adults on the basis of their age, prior vaccinations, health conditions, lifestyle, occupation, and travel. Reasons for current low levels of vaccination coverage for adult vaccines are multifactorial and include limited awareness among the public about vaccines for adults and gaps in incorporation of regular assessments of vaccine needs and vaccination into routine medical care. Updated standards for immunization of adults were approved by the National Vaccine Advisory Committee (NVAC) in September 2013. These standards acknowledge the current low levels of vaccination coverage among adults and the role that all health-care providers, including those who do not offer all recommended adult vaccines in their practices, have in ensuring that their patients are up-to-date on recommended vaccines. NVAC recommends that providers assess vaccination needs for their patients at each visit, recommend needed vaccines, and then, ideally, offer the vaccine or, if the provider does not stock the needed vaccines, refer the patient to a provider who does vaccinate. Vaccinating providers should also ensure that patients and their referring health-care providers have documentation of the vaccination.

  12. Geographical variation in parasitism shapes larval immune function in a phytophagous insect

    NASA Astrophysics Data System (ADS)

    Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme

    2013-12-01

    Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.

  13. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Heidegger, Simon; Gößl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2015-12-01

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized

  14. Evaluation of the immune status against measles, mumps, and rubella in adult allogeneic hematopoietic stem cell transplantation recipients.

    PubMed

    Kawamura, Koji; Yamazaki, Rie; Akahoshi, Yu; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Ishihara, Yuko; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Terasako-Saito, Kiriko; Kimura, Shun-ichi; Kikuchi, Misato; Nakasone, Hideki; Kanda, Junya; Kako, Shinichi; Tanihara, Aki; Nishida, Junji; Kanda, Yoshinobu

    2015-03-01

    Previous studies have shown that most patients lose immunity to measles, mumps, and rubella (MMR) during long-term follow-up after allogeneic hematopoietic stem cell transplantation (HSCT), and immunizations against them have been investigated. However, these previous studies mainly targeted pediatric patients and information in adult patients is still insufficient. We evaluated the immunity to MMR in 45 adult allogeneic HSCT patients. None of these patients received vaccination after HSCT. The seropositive rates at six years after allogeneic HSCT were estimated to be less than 44% for measles, less than 10% for mumps, and less than 36% for rubella. Thirteen of the 16 female patients who were 16-39 years old were negative or equivocal for rubella. Patients who developed grade II-IV acute graft-versus-host disease tended to become seronegative for measles and rubella at two years after HSCT, although the difference was not statistically significant. This study showed that most adult patients lost immunity to MMR after allogeneic HSCT. Although we did not evaluate the safety and efficacy of vaccination in this study, most HSCT guidelines recommend vaccination for HSCT recipients without active chronic graft-versus-host disease or ongoing immunosuppressive therapy at 24 months after HSCT. Immunization against rubella is especially important for female patients of reproductive age. Further studies will be necessary to evaluate the effect of vaccination on the antibody response in adult allogeneic HSCT recipients.

  15. Aging and Immune Function: Molecular Mechanisms to Interventions

    PubMed Central

    Ponnappan, Subramaniam

    2011-01-01

    Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed “immune senescence,” manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551–1585. PMID:20812785

  16. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity.

    PubMed

    Cissé, Yasmine M; Russart, Kathryn L G; Nelson, Randy J

    2017-03-31

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.

  17. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    PubMed Central

    Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901

  18. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons.

    PubMed

    Canetta, S; Bolkan, S; Padilla-Coreano, N; Song, L J; Sahn, R; Harrison, N L; Gordon, J A; Brown, A; Kellendonk, C

    2016-07-01

    Abnormalities in prefrontal gamma aminobutyric acid (GABA)ergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders, including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, resulted from a decrease in release probability and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to MIA, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders.

  19. The Concordance of Parent and Child Immunization.

    PubMed

    Robison, Steve G; Osborn, Andrew W

    2017-05-01

    A substantial body of work has related survey-based parental vaccine hesitancy to noncompliant childhood immunization. However little attention has been paid to the connection between parents' own immunization behavior and the immunizations their children receive. Using the Oregon ALERT Immunization Information System, we identified adult caregiver-child pairs for children between 9 months and 17 years of age. The likelihood of adult-child concordance of influenza immunization per influenza season from 2010-2011 through 2014-2015 was assessed. The utility of adult immunization as a predictor was also assessed for other, noninfluenza recommended immunizations for children and adolescents. A total of 450 687 matched adult caregiver-child pairs were included in the study. The children of immunizing adults were 2.77 times more likely to also be immunized for seasonal influenza across all seasons (95% confidence interval, 2.74-2.79), with similar results applying within each season. Adult immunization status was also significantly associated with the likelihood of children and adolescents getting other noninfluenza immunizations, such as the human papillomavirus vaccine (HPV). When adults improved their own behavior from nonimmunizing to immunizing across influenza seasons, their children if not immunized in the previous season were 5.44 times (95% confidence interval, 5.35-5.53) more likely to become immunized for influenza. Children's likelihood of following immunization recommendations is associated with the immunization behavior of their parents. Encouraging parental immunization is a potential tool for increasing children's immunization rates. Copyright © 2017 by the American Academy of Pediatrics.

  20. The multitasking organ: recent insights into skin immune function.

    PubMed

    Di Meglio, Paola; Perera, Gayathri K; Nestle, Frank O

    2011-12-23

    The skin provides the first line defense of the human body against injury and infection. By integrating recent findings in cutaneous immunology with fundamental concepts of skin biology, we portray the skin as a multitasking organ ensuring body homeostasis. Crosstalk between the skin and its microbial environment is also highlighted as influencing the response to injury, infection, and autoimmunity. The importance of the skin immune network is emphasized by the identification of several skin-resident cell subsets, each with its unique functions. Lessons learned from targeted therapy in inflammatory skin conditions, such as psoriasis, provide further insights into skin immune function. Finally, we look at the skin as an interacting network of immune signaling pathways exemplified by the development of a disease interactome for psoriasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function

    PubMed Central

    Hoeijmakers, Lianne; Lucassen, Paul J.; Korosi, Aniko

    2015-01-01

    Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity. PMID:25620909

  2. Immunization of HIV-infected adult patients — French recommendations

    PubMed Central

    Frésard, Anne; Gagneux-Brunon, Amandine; Lucht, Frédéric; Botelho-Nevers, Elisabeth; Launay, Odile

    2016-01-01

    ABSTRACT Human immunodeficiency virus (HIV)-infected patients remain at increased risk of infection including vaccine-preventable diseases. Vaccines are therefore critical components in the protection of HIV-infected patients from an increasing number of preventable diseases. However, missed opportunities for vaccination among HIV-infected patients persist and vaccine coverage in this population could be improved. This article presents the French recommendations regarding immunization of HIV-infected adults in the light of the evidence-based literature on the benefits and the potential risks of vaccines among this vulnerable population. PMID:27409293

  3. Sexual Signaling and Immune Function in the Black Field Cricket Teleogryllus commodus

    PubMed Central

    Drayton, Jean M.; Hall, Matthew D.; Hunt, John; Jennions, Michael D.

    2012-01-01

    The immunocompetence handicap hypothesis predicts that male sexual trait expression should be positively correlated with immunocompetence. Here we investigate if immune function in the cricket, Teleogryllus commodus, is related to specific individual components of male sexual signals, as well as to certain multivariate combinations of these components that females most strongly prefer. Male T. commodus produce both advertisement and courtship calls prior to mating. We measured fine-scale structural parameters of both call types and also recorded nightly advertisement calling effort. We then measured two standard indices of immune function: lysozyme-like activity of the haemolymph and haemocyte counts. We found a weak, positive relationship between advertisement calling effort and lysozyme-like activity. There was, however, little evidence that individual structural call components or the net multivariate attractiveness of either call type signalled immune function. The relationships between immunity and sexual signaling did not differ between inbred and outbred males. Our data suggest that it is unlikely that females assess overall male immune function using male calls. PMID:22808047

  4. Exercise training reveals trade-offs between endurance performance and immune function, but does not influence growth, in juvenile lizards.

    PubMed

    Husak, Jerry F; Roy, Jordan C; Lovern, Matthew B

    2017-04-15

    Acquired energetic resources allocated to a particular trait cannot then be re-allocated to a different trait. This often results in a trade-off between survival and reproduction for the adults of many species, but such a trade-off may be manifested differently in juveniles not yet capable of reproduction. Whereas adults may allocate resources to current and/or future reproduction, juveniles can only allocate to future reproduction. Thus, juveniles should allocate resources toward traits that increase survival and their chances of future reproductive success. We manipulated allocation of resources to performance, via endurance exercise training, to examine trade-offs among endurance capacity, immune function and growth in juvenile green anole lizards. We trained male and female captive anoles on a treadmill for 8 weeks, with increasing intensity, and compared traits with those of untrained individuals. Our results show that training enhanced endurance capacity equally in both sexes, but immune function was suppressed only in females. Training had no effect on growth, but males had higher growth rates than females. Previous work showed that trained adults have enhanced growth, so juvenile growth is either insensitive to stimulation with exercise, or they are already growing at maximal rates. Our results add to a growing body of literature indicating that locomotor performance is an important part of life-history trade-offs that are sex and age specific. © 2017. Published by The Company of Biologists Ltd.

  5. Immunity to Diphtheria and Tetanus in Army Personnel and Adult Civilians in Mashhad, Iran.

    PubMed

    Hosseini Shokouh, Seyyed Javad; Mohammadi, Babak; Rajabi, Jalil; Mohammadian Roshan, Ghasem

    2017-03-24

    This study aimed to investigate serologic immunity to diphtheria and tetanus in army personnel and a sample population of adult civilians in Mashhad, Iran. Army personnel (n = 180) and civilians (n = 83) who presented at Mashhad army hospital participated in this study. Diphtheria and tetanus antitoxin levels were determined by enzyme-linked immunosorbent assay. Approximately 77% and 94% of army personnel aged 18-34 years had at least basic protection against diphtheria (antitoxin level ≥0.1 IU/mL) and tetanus (antitoxin level >0.1 IU/mL), respectively. For civilians in this age group, the proportions were 76% for both diseases. Antitoxin levels waned with age. Thus, participants older than 50 years had lower immunity; this decrease in immunity was more pronounced for tetanus than for diphtheria in both army personnel and civilians. For both diseases, geometric mean antitoxin titers and the proportion of participants with at least basic protection were higher in subjects with a history of vaccination in the last 10 years (P < 0.001), higher in men than women, and in army personnel than civilians in each age group. Young army personnel and civilians (18-34 years old) had adequate immunity to diphtheria and tetanus. However, the large number of susceptible older adults (>50 years old) calls for improved booster vaccination protocols.

  6. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  7. Immune and hormonal activity in adults suffering from depression.

    PubMed

    Nunes, S O V; Reiche, E M V; Morimoto, H K; Matsuo, T; Itano, E N; Xavier, E C D; Yamashita, C M; Vieira, V R; Menoli, A V; Silva, S S; Costa, F B; Reiche, F V; Silva, F L V; Kaminami, M S

    2002-05-01

    An association between depression and altered immune and hormonal systems has been suggested by the results of many studies. In the present study we carried out immune and hormonal measurements in 40 non-medicated, ambulatory adult patients with depression determined by CID-10 criteria and compared with 34 healthy nondepressed subjects. The severity of the condition was determined with the Hamilton Depression Rating Scale. Of 40 depressed patients, 31 had very severe and 9 severe or moderate depression, 29 (72.5%) were females and 11 (27.5%) were males (2.6:1 ratio). The results revealed a significant reduction of albumin and elevation of alpha-1, alpha-2 and beta-globulins, and soluble IL-2 receptor in patients with depression compared to the values obtained for nondepressed subjects (P<0.05). The decrease lymphocyte proliferation in response to a mitogen was significantly lower in severely or moderately depressed patients when compared to control (P<0.05). These data confirm the immunological disturbance of acute phase proteins and cellular immune response in patients with depression. Other results may be explained by a variety of interacting factors such as number of patients, age, sex, and the nature, severity and/or duration of depression. Thus, the data obtained should be interpreted with caution and the precise clinical relevance of these findings requires further investigation.

  8. Sleep and immune function: glial contributions and consequences of aging.

    PubMed

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  9. Sleep and immune function: glial contributions and consequences of aging

    PubMed Central

    Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.

    2013-01-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941

  10. The impact of ageing on natural killer cell function and potential consequences for health in older adults.

    PubMed

    Hazeldine, Jon; Lord, Janet M

    2013-09-01

    Forming the first line of defence against virally infected and malignant cells, natural killer (NK) cells are critical effector cells of the innate immune system. With age, significant impairments have been reported in the two main mechanisms by which NK cells confer host protection: direct cytotoxicity and the secretion of immunoregulatory cytokines and chemokines. In elderly subjects, decreased NK cell activity has been shown to be associated with an increased incidence and severity of viral infection, highlighting the clinical implications that age-associated changes in NK cell biology have on the health of older adults. However, is an increased susceptibility to viral infection the only consequence of these age-related changes in NK cell function? Recently, evidence has emerged that has shown that in addition to eliminating transformed cells, NK cells are involved in many other biological processes such as immune regulation, anti-microbial immune responses and the recognition and elimination of senescent cells, novel functions that involve NK-mediated cytotoxicity and/or cytokine production. Thus, the decrease in NK cell function that accompanies physiological ageing is likely to have wider implications for the health of older adults than originally thought. Here, we give a detailed description of the changes in NK cell biology that accompany human ageing and propose that certain features of the ageing process such as: (i) the increased reactivation rates of latent Mycobacterium tuberculosis, (ii) the slower resolution of inflammatory responses and (iii) the increased incidence of bacterial and fungal infection are attributable in part to an age-associated decline in NK cell function. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Cocoa-enriched diets modulate intestinal and systemic humoral immune response in young adult rats.

    PubMed

    Pérez-Berezo, Teresa; Franch, Angels; Ramos-Romero, Sara; Castellote, Cristina; Pérez-Cano, Francisco J; Castell, Margarida

    2011-05-01

    Previous studies have shown that a highly enriched cocoa diet affects both intestinal and systemic immune function in young rats. The aim of this study was to elucidate whether diets containing lower amounts of cocoa could also influence the systemic and intestinal humoral immune response. Fecal and serum samples were collected during the study and, at the end, intestinal washes were obtained and mesenteric lymph nodes and small-intestine walls were excised for gene expression assessment. IgA, IgM, IgG1, IgG2a, IgG2b and IgG2c concentrations were quantified in serum whereas S-IgA and S-IgM were determined in feces and intestinal washes. Animals receiving 5 and 10% cocoa for 3 wk showed no age-related increase in serum IgG1 and IgG2a concentrations, and IgG2a values were significantly lower than those in reference animals. Serum IgM was also decreased by the 10% cocoa diet. The 5 and 10% cocoa diets dramatically reduced intestinal S-IgA concentration and modified the expression of several genes involved in IgA synthesis. A diet containing 2% cocoa had no effect on most of the studied variables. The results demonstrate the downregulatory effect of a 5% or higher cocoa diet on the systemic and intestinal humoral immune response in adult rats. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The administration of probiotics and synbiotics in immune compromised adults: is it safe?

    PubMed

    Van den Nieuwboer, M; Brummer, R J; Guarner, F; Morelli, L; Cabana, M; Claasen, E

    2015-03-01

    This study aimed to systematically evaluate safety of probiotics and synbiotics in immune compromised adults (≥18 years). Safety was analysed using the Common Terminology Clinical Adverse Events (CTCAE version 4.0) classification, thereby providing an update on previous reports using the most recent available clinical data (2008-2013). Safety aspects are represented and related to number of participants per probiotic strain/culture, study duration, dosage, clinical condition and selected afflictions. Analysis of 57 clinical studies indicates that probiotic and/or synbiotic administration in immune compromised adults is safe with regard to the current evaluated probiotic strains, dosages and duration. Individuals were considered immune compromised if HIV-infected, critically ill, underwent surgery or had an organ- or an autoimmune disease. There were no major safety concerns in the study, as none of the serious adverse events (AE)s were related, or suspected to be related, to the probiotic or synbiotic product and the study products were well tolerated. Overall, AEs occurred less frequent in immune compromised subjects receiving probiotics and/or synbiotics compared to the control group. In addition, the results demonstrated a flaw in precise reporting and classification of AE in most studies. Furthermore, generalisability of conclusions are greatly limited by the inconsistent, imprecise and potentially incomplete reporting as well as the variation in probiotic strains, dosages, administration regimes, study populations and reported outcomes. We argue that standardised reporting on adverse events (CTCAE) in 'food' studies should be obligatory, thereby improving reliability of data and re-enforcing the safety profile of probiotics.

  13. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: a randomized double-blind placebo-controlled trial.

    PubMed

    Davidson, L E; Fiorino, A-M; Snydman, D R; Hibberd, P L

    2011-04-01

    Live-attenuated influenza vaccine (LAIV) protects against influenza by mucosal activation of the immune system. Studies in animals and adults have demonstrated that probiotics improve the immune response to mucosally delivered vaccines. We hypothesized that Lactobacillus GG (LGG) would function as an immune adjuvant to increase rates of seroconversion after LAIV administration. We conducted a randomized double-blind placebo-controlled pilot study to determine whether LGG improved rates of seroconversion after administration of LAIV. We studied 42 healthy adults during the 2007-2008 influenza season. All subjects received LAIV and then were randomized to LGG or placebo, twice daily for 28 days. Hemagglutinin inhibition titers were assessed at baseline, at day 28 and at day 56 to determine the rates of seroconversion. Subjects were assessed for adverse events throughout the study period. A total of 39 subjects completed the per-protocol analysis. Both LGG and LAIV were well tolerated. Protection rates against the vaccine H1N1 and B strains were suboptimal in subjects receiving LGG and placebo. For the H3N2 strain, 84% receiving LGG vs 55% receiving placebo had a protective titer 28 days after vaccination (odds of having a protective titer was 1.84 95% confidence interval 1.04-3.22, P=0.048). Lactobacillus GG is potential as an important adjuvant to improve influenza vaccine immunogenicity. Future studies of probiotics as immune adjuvants might need to specifically consider examining vaccine-naïve or sero-negative subjects, target mucosal immune responses or focus on groups known to have poor response to influenza vaccines. © 2011 Macmillan Publishers Limited All rights reserved

  14. Trade-offs between sexual advertisement and immune function in the pied flycatcher (Ficedula hypoleuca).

    PubMed

    Kilpimaa, Janne; Alatalo, Rauno V; Siitari, Heli

    2004-02-07

    Good genes models of sexual selection assume that sexual advertisement is costly and thus the level of advertisement honestly reveals heritable viability. Recently it has been suggested that an important cost of sexual advertisement might be impairment of the functioning of the immune system. In this field experiment we investigated the possible trade-offs between immune function and sexual advertisement by manipulating both mating effort and activity of immune defence in male pied flycatchers. Mating effort was increased in a non-arbitrary manner by removing females from mated males during nest building. Widowed males sustained higher haematocrit levels than control males and showed higher expression of forehead patch height, suggesting that manipulation succeeded in increasing mating effort. Males that were experimentally forced to increase mating effort had reduced humoral immune responsiveness compared with control males. In addition, experimental activation of immune defence by vaccination with novel antigens reduced the expression of male ornament dimensions. To conclude, our results indicate that causality behind the trade-off between immune function and sexual advertisement may work in both directions: sexual activity suppresses immune function but immune challenge also reduces sexual advertisement.

  15. Trade-offs between sexual advertisement and immune function in the pied flycatcher (Ficedula hypoleuca).

    PubMed Central

    Kilpimaa, Janne; Alatalo, Rauno V.; Siitari, Heli

    2004-01-01

    Good genes models of sexual selection assume that sexual advertisement is costly and thus the level of advertisement honestly reveals heritable viability. Recently it has been suggested that an important cost of sexual advertisement might be impairment of the functioning of the immune system. In this field experiment we investigated the possible trade-offs between immune function and sexual advertisement by manipulating both mating effort and activity of immune defence in male pied flycatchers. Mating effort was increased in a non-arbitrary manner by removing females from mated males during nest building. Widowed males sustained higher haematocrit levels than control males and showed higher expression of forehead patch height, suggesting that manipulation succeeded in increasing mating effort. Males that were experimentally forced to increase mating effort had reduced humoral immune responsiveness compared with control males. In addition, experimental activation of immune defence by vaccination with novel antigens reduced the expression of male ornament dimensions. To conclude, our results indicate that causality behind the trade-off between immune function and sexual advertisement may work in both directions: sexual activity suppresses immune function but immune challenge also reduces sexual advertisement. PMID:15058434

  16. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    PubMed

    Slike, Bonnie M; Creegan, Matthew; Marovich, Mary; Ngauy, Viseth

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10-20 years post vaccination. This contrasted with a comparator group of adults, ages 35-49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112-3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  17. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations

    PubMed Central

    Slike, Bonnie M.; Creegan, Matthew

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5–10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10–20 years post vaccination. This contrasted with a comparator group of adults, ages 35–49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112–3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program. PMID:28046039

  18. Developmental origins of inflammatory and immune diseases

    PubMed Central

    Chen, Ting; Liu, Han-xiao; Yan, Hui-yi; Wu, Dong-mei; Ping, Jie

    2016-01-01

    Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the ‘developmental programming’ and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic–pituitary–adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. PMID:27226490

  19. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults

    PubMed Central

    MacLennan, Calman A.; Gilchrist, James J.; Gordon, Melita A.; Cunningham, Adam F.; Cobbold, Mark; Goodall, Margaret; Kingsley, Robert A.; van Oosterhout, Joep J. G.; Msefula, Chisomo L.; Mandala, Wilson L.; Leyton, Denisse L.; Marshall, Jennifer L.; Gondwe, Esther N.; Bobat, Saeeda; López-Macías, Constantino; Doffinger, Rainer; Henderson, Ian R.; Zijlstra, Eduard E.; Dougan, Gordon; Drayson, Mark T.; MacLennan, Ian C. M.; Molyneux, Malcolm E.

    2013-01-01

    Nontyphoidal Salmonellae are a major cause of life-threatening bacteremia among HIV-infected individuals. Although cell-mediated immunity controls intracellular infection, antibody protects against Salmonella bacteremia. We report that high titer antibodies specific for Salmonella lipopolysaccharide (LPS) associate with absent Salmonella-killing in HIV-infected African adults. Killing was restored by genetically shortening LPS from target Salmonella, or removing LPS-specific antibodies from serum. Complement-mediated killing of Salmonella by healthy serum is shown to be induced specifically by antibodies against outer membrane proteins. This killing is lost when excess antibody against Salmonella LPS is added. Thus our study indicates impaired immunity against nontyphoidal Salmonella bacteremia in HIV infection results from excess inhibitory antibodies against Salmonella LPS, whilst serum killing of Salmonella is induced by antibodies against outer membrane proteins. PMID:20413503

  20. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors

    PubMed Central

    Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.

    2013-01-01

    Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304

  1. Missed opportunities for HPV immunization among young adult women

    PubMed Central

    Oliveira, Carlos R.; Rock, Robert M.; Shapiro, Eugene D.; Xu, Xiao; Lundsberg, Lisbet; Zhang, Liye B.; Gariepy, Aileen; Illuzzi, Jessica L.; Sheth, Sangini S.

    2018-01-01

    BACKGROUND Despite the availability of a safe and efficacious vaccine against human papillomavirus, uptake of the vaccine in the United States is low. Missed clinical opportunities to recommend and to administer human papillomavirus vaccine are considered one of the most important reasons for its low uptake in adolescents; however, little is known about the frequency or characteristics of missed opportunities in the young adult (18–26 years of age) population. OBJECTIVE The objective of the study was to assess both the rates of and the factors associated with missed opportunities for human papillomavirus immunization among young adult women who attended an urban obstetrics and gynecology clinic. STUDY DESIGN In this cross-sectional study, medical records were reviewed for all women 18–26 years of age who were underimmunized (<3 doses) and who sought care from Feb. 1, 2013, to January 31, 2014, at an urban, hospital-based obstetrics and gynecology clinic. A missed opportunity for human papillomavirus immunization was defined as a clinic visit at which the patient was eligible to receive the vaccine and a dose was due but not administered. Multivariable logistic regression was used to test associations between sociodemographic variables and missed opportunities. RESULTS There were 1670 vaccine-eligible visits by 1241 underimmunized women, with a mean of 1.3 missed opportunities/person. During the study period, 833 of the vaccine eligible women (67.1%) had at least 1 missed opportunity. Overall, the most common types of visits during which a missed opportunity occurred were postpartum visits (17%) or visits for either sexually transmitted disease screening (21%) or contraception (33%). Of the patients with a missed opportunity, 26.5% had a visit at which an injectable medication or a different vaccine was administered. Women who identified their race as black had higher adjusted odds of having a missed opportunity compared with white women (adjusted odds ratio, 1

  2. Understanding immune function as a pace of life trait requires environmental context.

    PubMed

    Tieleman, B Irene

    2018-01-01

    This article provides a brief historical perspective on the integration of physiology into the concept of the pace of life of birds, evaluates the fit of immune function into this framework, and asks what it will take to fruitfully understand immune functioning of birds in pace of life studies in the future. In the late 1970s, physiology started to seriously enter avian life history ecology, with energy as the main currency of interest, inspired by David Lack's work in the preceding decades emphasizing how food availability explained life history variation. In an effort to understand the trade-off between survival and reproduction, and specifically the mortality costs associated with hard work, in the 1980s and 1990s, other physiological phenomena entered the realm of animal ecologists, including endocrinology, oxidative stress, and immunology. Reviewing studies thus far to evaluate the role of immune function in a life history context and particularly to address the questions whether immune function (1) consistently varies with life history variation among free-living bird species and (2) mediates life history trade-offs in experiments with free-living bird species; I conclude that, unlike energy metabolism, the immune system does not closely covary with life history among species nor mediates the classical trade-offs within individuals. Instead, I propose that understanding the tremendous immunological variation uncovered among free-living birds over the past 25 years requires a paradigm shift. The paradigm should shift from viewing immune function as a costly trait involved in life history trade-offs to explicitly including the benefits of the immune system and placing it firmly in an environmental and ecological context. A first step forward will be to quantify the immunobiotic pressures presented by diverse environmental circumstances that both shape and challenge the immune system of free-living animals. Current developments in the fields of infectious

  3. Maternal Immune Activation Alters Nonspatial Information Processing in the Hippocampus of the Adult Offspring

    PubMed Central

    Ito, Hiroshi T.; Smith, Stephen E. P.; Hsiao, Elaine; Patterson, Paul H.

    2010-01-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. PMID:20227486

  4. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring.

    PubMed

    Ito, Hiroshi T; Smith, Stephen E P; Hsiao, Elaine; Patterson, Paul H

    2010-08-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate-early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Neutrophils are immune cells preferentially targeted by retinoic acid in elderly subjects

    PubMed Central

    2010-01-01

    Background The immune system gradually deteriorates with age and nutritional status is a major factor in immunosenescence. Of the many nutritional factors implicated in age-related immune dysfunction, vitamin A may be a good candidate, since vitamin A concentrations classically decrease during aging whereas it may possess important immunomodulatory properties via its active metabolites, the retinoic acids. This prompted us to investigate the immune response induced by retinoids in adults and elderly healthy subjects. Before and after oral supplementation with 13cis retinoic acid (0.5 mg/kg/day during 28 days), whole blood cells were phenotyped, and functions of peripheral blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN) were investigated by flow cytometry and ELISA tests. Results In both young adults (n = 20, 25 ± 4 years) and older subjects (n = 20, 65 ± 4 years), retinoic acid supplementation had no effect on the distribution of leukocyte subpopulations or on the functions of PBMC (Il-2 and sIl-2R production, membrane expression of CD25). Concerning PMN, retinoic acid induced an increase in both spontaneous migration and cell surface expression of CD11b in the two different age populations, whereas bactericidal activity and phagocytosis remained unchanged. Conclusions We demonstrated that retinoic acid induces the same intensity of immune response between adult and older subjects, and more specifically affects PMN functions, i.e. adhesion and migration, than PBMC functions. PMID:20727130

  6. Modulating the function of the immune system by thyroid hormones and thyrotropin.

    PubMed

    Jara, Evelyn L; Muñoz-Durango, Natalia; Llanos, Carolina; Fardella, Carlos; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A

    2017-04-01

    Accumulating evidence suggests a close bidirectional communication and regulation between the neuroendocrine and immune systems. Thyroid hormones (THs) can exert responses in various immune cells, e.g., monocytes, macrophages, natural killer cells, and lymphocytes, affecting several inflammation-related processes (such as, chemotaxis, phagocytosis, reactive oxygen species generation, and cytokines production). The interactions between the endocrine and immune systems have been shown to contribute to pathophysiological conditions, including sepsis, inflammation, autoimmune diseases and viral infections. Under these conditions, TH therapy could contribute to restoring normal physiological functions. Here we discuss the effects of THs and thyroid stimulating hormone (TSH) on the immune system and the contribution to inflammation and pathogen clearance, as well as the consequences of thyroid pathologies over the function of the immune system. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  7. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Sams, Clarence

    2010-01-01

    The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. To date, 18 short duration (now completed) and 8 long-duration crewmembers have completed the study. The long-duration phase of this study is ongoing. For this presentation, the final data set for the short duration subjects will be discussed.

  8. Functional analysis of PGRP-LA in Drosophila immunity.

    PubMed

    Gendrin, Mathilde; Zaidman-Rémy, Anna; Broderick, Nichole A; Paredes, Juan; Poidevin, Mickaël; Roussel, Alain; Lemaitre, Bruno

    2013-01-01

    PeptidoGlycan Recognition Proteins (PGRPs) are key regulators of the insect innate antibacterial response. Even if they have been intensively studied, some of them have yet unknown functions. Here, we present a functional analysis of PGRP-LA, an as yet uncharacterized Drosophila PGRP. The PGRP-LA gene is located in cluster with PGRP-LC and PGRP-LF, which encode a receptor and a negative regulator of the Imd pathway, respectively. Structure predictions indicate that PGRP-LA would not bind to peptidoglycan, pointing to a regulatory role of this PGRP. PGRP-LA expression was enriched in barrier epithelia, but low in the fat body. Use of a newly generated PGRP-LA deficient mutant indicates that PGRP-LA is not required for the production of antimicrobial peptides by the fat body in response to a systemic infection. Focusing on the respiratory tract, where PGRP-LA is strongly expressed, we conducted a genome-wide microarray analysis of the tracheal immune response of wild-type, Relish, and PGRP-LA mutant larvae. Comparing our data to previous microarray studies, we report that a majority of genes regulated in the trachea upon infection differ from those induced in the gut or the fat body. Importantly, antimicrobial peptide gene expression was reduced in the tracheae of larvae and in the adult gut of PGRP-LA-deficient Drosophila upon oral bacterial infection. Together, our results suggest that PGRP-LA positively regulates the Imd pathway in barrier epithelia.

  9. Selenium status alters the immune response and expulsion of adult Heligmosomodies bakeri in mice

    USDA-ARS?s Scientific Manuscript database

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri was delayed in selenium (Se) deficient mice. ...

  10. Influence of Physical Activity and Nutrition on Obesity-Related Immune Function

    PubMed Central

    Zourdos, Michael C.; Jo, Edward; Ormsbee, Michael J.

    2013-01-01

    Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF-α, CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation. PMID:24324381

  11. Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke

    2018-03-29

    Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

  12. Behavioural conditioning of immune functions: how the central nervous system controls peripheral immune responses by evoking associative learning processes.

    PubMed

    Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred

    2008-01-01

    During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.

  13. Immunization of Aged Mice with a Pneumococcal Conjugate Vaccine Combined with an Unmethylated CpG-Containing Oligodeoxynucleotide Restores Defective Immunoglobulin G Antipolysaccharide Responses and Specific CD4+-T-Cell Priming to Young Adult Levels

    DTIC Science & Technology

    2006-04-01

    aged and young adult mice made comparable levels of proinflammatory cytokines in response to CpG-ODN, although cells from aged mice secreted higher...sepsis, is significantly elevated in the elderly relative to young adults (37, 60). Defective innate immunity including diminished neutrophil and...young adult recipients (15). Exposure to inflammatory cy- tokines in vivo could restore the defective CD4-T-cell function in aged mice (20). Pn

  14. Pneumococcal Capsular Polysaccharide Immunity in the Elderly

    PubMed Central

    Ferreira, Daniela M.; Gordon, Stephen B.; Rylance, Jamie

    2017-01-01

    ABSTRACT Immunity to pneumococcal infections is impaired in older people, and current vaccines are poorly protective against pneumococcal disease in this population. Naturally acquired immunity to pneumococcal capsular polysaccharides develops during childhood and is robust in young adults but deteriorates with advanced age. In particular, antibody levels and function are reduced in older people. Pneumococcal vaccines are recommended for people >65 years old. However, the benefits of polysaccharide and protein-conjugated vaccines in this population are small, because of both serotype replacement and incomplete protection against vaccine serotype pneumococcal disease. In this review, we overview the immune mechanisms by which naturally acquired and vaccine-induced pneumococcal capsular polysaccharide immunity declines with age, including altered colonization dynamics, reduced opsonic activity of antibodies (particularly IgM), and impaired mucosal immunity. PMID:28424198

  15. Incubation period and immune function: A comparative field study among coexisting birds

    USGS Publications Warehouse

    Palacios, M.G.; Martin, T.E.

    2006-01-01

    Developmental periods are integral components of life history strategies that can have important fitness consequences and vary enormously among organisms. However, the selection pressures and mechanisms causing variation in length of developmental periods are poorly understood. Particularly puzzling are prolonged developmental periods, because their selective advantage is unclear. Here we tested the hypotheses that immune function is stronger in species that are attacked at a higher rate by parasites and that prolonged embryonic development allows the development of this stronger immune system. Through a comparative field study among 12 coexisting passerine bird species, we show that species with higher blood parasite prevalence mounted stronger cellular immune responses than species with lower prevalence. These results provide support for the hypothesis that species facing greater selection pressure from parasites invest more in immune function. However, species with longer incubation periods mounted weaker cellular immune responses than species with shorter periods. Therefore, cellular immune responses do not support the hypothesis that longer development time enhances immunocompentence. Future studies should assess other components of the immune system and test alternative causes of variation in incubation periods among bird species. ?? Springer-Verlag 2005.

  16. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model.

    PubMed

    Guilbride, D Lys; Gawlinski, Pawel; Guilbride, Patrick D L

    2010-05-19

    Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications for accelerated local eliminations of malaria, and significantly increases potential for eradication.

  17. MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer.

    PubMed

    Hirschberger, Simon; Hinske, Ludwig Christian; Kreth, Simone

    2018-09-01

    MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. At the crossroads between tolerance and aggression: Revisiting the "layered immune system" hypothesis.

    PubMed

    Mold, Jeff E; McCune, Joseph M

    2011-04-01

    "We do not grow absolutely, chronologically. We grow sometimes in one dimension, and not in another; unevenly. We grow partially. We are relative. We are mature in one realm, childish in another. The past, present and future mingle and pull us backward, forward, or fix us in the present. We are made up of layers, cells, constellations."-Anaïs NinIt has long been recognized that the developing immune system exhibits certain peculiarities when compared to the adult immune system. Nonetheless, many still regard the fetal immune system as simply being an immature version of the adult immune system. Here we discuss historical evidence as well as recent findings, which suggest that the human immune system may develop in distinct layers with specific functions at different stages of development.

  19. Early-life inflammation, immune response and ageing.

    PubMed

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  20. Early-life inflammation, immune response and ageing

    PubMed Central

    2017-01-01

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. PMID:28275145

  1. GATA-3 function in innate and adaptive immunity.

    PubMed

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury.

    PubMed

    Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming

    2018-06-28

    The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.

  3. The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity

    PubMed Central

    Longman, Randy S.; Littman, Dan R.

    2016-01-01

    Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030

  4. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages.

    PubMed

    Monahan, C M; Taylor, H W; Chapman, M R; Klei, T R

    1994-12-01

    Protection from Strongylus vulgaris infection through immunization with radiation-attenuated third-stage larvae (L3) or crude soluble homogenates from larval or adult stages was examined. Yearling ponies raised parasite-free were divided into 3 immunization groups: radiation-attenuated L3; soluble adult somatic extracts; larval somatic extracts with excretory/secretory products (E/S) from in vitro culture; and 1 medium control group. Ponies were immunized twice; attenuated larvae were administered orally and somatic extracts or controls injected intramuscularly with adjuvant. Approximately 6 wk following the second immunization, all ponies were challenged. Necrospy examinations were performed 6 wk following challenge. Irradiated larvae recipients had the fewest postchallenge clinical signs and lesions and were 91% protected from infection determined by larval recoveries from arterial dissections. Soluble antigen recipients and controls had similar larval recoveries and thus equal susceptibility to challenge. Soluble antigen recipients had more severe clinical signs and lesions than controls, suggesting that parenteral immunization exacerbated postchallenge inflammatory responses. Protection by immunization with irradiated larvae was associated with an anamnestic eosinophilia and postimmunization antibody recognition of S. vulgaris L3 surface antigens. Histologic staining of eosinophils within tissues of this group suggested that this immunization induced a cytophilic antibody response that facilitated degranulation.

  5. Immunosuppression in Early Postnatal Days Induces Persistent and Allergen-Specific Immune Tolerance to Asthma in Adult Mice

    PubMed Central

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  6. Developmental origins of inflammatory and immune diseases.

    PubMed

    Chen, Ting; Liu, Han-Xiao; Yan, Hui-Yi; Wu, Dong-Mei; Ping, Jie

    2016-08-01

    Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email

  7. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    NASA Astrophysics Data System (ADS)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  8. Low Dose Ionizing Radiation Modulates Immune Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Gregory A.

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokinemore » secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur

  9. Drosophila innate immunity: regional and functional specialization of prophenoloxidases.

    PubMed

    Dudzic, Jan P; Kondo, Shu; Ueda, Ryu; Bergman, Casey M; Lemaitre, Bruno

    2015-10-01

    The diversification of immune systems during evolution involves the expansion of particular gene families in given phyla. A better understanding of the metazoan immune system requires an analysis of the logic underlying such immune gene amplification. This analysis is now within reach due to the ease with which we can generate multiple mutations in an organism. In this paper, we analyze the contribution of the three Drosophila prophenoloxidases (PPOs) to host defense by generating single, double and triple mutants. PPOs are enzymes that catalyze the production of melanin at the site of infection and around parasites. They are the rate-limiting enzymes that contribute to the melanization reaction, a major immune mechanism of arthropods. The number of PPO-encoding genes is variable among insects, ranging from one in the bee to ten in the mosquito. By analyzing mutations alone and in combination, we ascribe a specific function to each of the three PPOs of Drosophila. Our study confirms that two PPOs produced by crystal cells, PPO1 and PPO2, contribute to the bulk of melanization in the hemolymph, upon septic or clean injury. In contrast, PPO3, a PPO restricted to the D. melanogaster group, is expressed in lamellocytes and contributes to melanization during the encapsulation process. Interestingly, another overlapping set of PPOs, PPO2 and PPO3, achieve melanization of the capsule upon parasitoid wasp infection. The use of single or combined mutations allowed us to show that each PPO mutant has a specific phenotype, and that knocking out two of three genes is required to abolish fully a particular function. Thus, Drosophila PPOs have partially overlapping functions to optimize melanization in at least two conditions: following injury or during encapsulation. Since PPO3 is restricted to the D. melanogaster group, this suggests that production of PPO by lamellocytes emerged as a recent defense mechanism against parasitoid wasps. We conclude that differences in spatial

  10. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.

    PubMed

    Goswami, Meghali; Prince, Gabrielle; Biancotto, Angelique; Moir, Susan; Kardava, Lela; Santich, Brian H; Cheung, Foo; Kotliarov, Yuri; Chen, Jinguo; Shi, Rongye; Zhou, Huizhi; Golding, Hana; Manischewitz, Jody; King, Lisa; Kunz, Lauren M; Noonan, Kimberly; Borrello, Ivan M; Smith, B Douglas; Hourigan, Christopher S

    2017-07-10

    Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy.

  11. Sex versus parthenogenesis; immune function in a facultatively parthenogenetic phasmatid (Extatosoma tiaratum).

    PubMed

    Alavi, Yasaman; Elgar, Mark Adrian; Jones, Therésa Melanie

    2017-07-01

    Facultative parthenogenetic species, in which females can alternate between sex and parthenogenesis, are useful models to investigate the costs and benefits of sex and parthenogenesis, an ongoing issue in biology. The necessary empirical studies comparing the outcomes of alternative reproductive modes on life history traits are rare and focus mainly on traits directly associated with reproductive fitness. Immune function determines the ability of individuals to defend themselves against injury and disease and is therefore likely to have a significant impact on fitness. Here, we used the facultatively parthenogenetic Australian phasmatid, Extatosoma tiaratum, to investigate the effect of both maternal and offspring mode of conception (sexual or parthenogenetic) on offspring immune function (haemocyte concentration, lytic activity and phenoloxidase activity). We show that when parthenogenesis persists beyond one generation, it has negative effects on immune response in terms of haemocyte concentration and lytic activity. Phenoloxidase activity positively correlates with the level of microsatellite heterozygosity. Moreover, immune response decreases across consecutive sampling weeks, suggesting there are physiological constraints with respect to mounting immune responses in close time intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gender, childhood and adult socioeconomic inequalities in functional disability among Chinese older adults.

    PubMed

    Zhong, Yaqin; Wang, Jian; Nicholas, Stephen

    2017-09-02

    Gender difference and life-course socioeconomic inequalities in functional disability may exist among older adults. However, the association is less well understood among Chinese older population. The objective is to provide empirical evidences on this issue by exploring the association between gender, childhood and adult socioeconomic inequalities in functional disability. Data from the 2013 wave of the China Health and Retirement Longitudinal Study (CHARLS) was utilized. Functional disability was assessed by the activities of daily living (ADL) and instrumental activities of daily living (IADL). Childhood socioeconomic status (SES) was measured by birthplace, father's education and occupation. Adult SES was measured in terms of education and household income. Multivariate logistic regressions were conducted to assess the association between gender, childhood and adult SES and functional disability. Based on a sample of 18,448 older adults aged 45 years old and above, our results showed that the prevalence of ADL and IADL disability was higher among women than men, but gender difference disappeared after adult SES and adult health were controlled. Harsh conditions during childhood were associated with functional disability but in multivariate analyses only father's education was associated with IADL disability (OR for no education = 1.198; 95% CI = 1.062-1.353). Current SES such as higher education and good economic situation are protective factors of functional disability. Childhood and adult SES were both related to functional disability among older adults. Our findings highlight the need for policies and programs aimed at decreasing social inequalities during childhood and early adulthood, which could reduce socioeconomic inequalities in functional disability in later life.

  13. Early-Life Socioeconomic Status and Adult Physiological Functioning: A Life Course Examination of Biosocial Mechanisms.

    PubMed

    Yang, Yang Claire; Gerken, Karen; Schorpp, Kristen; Boen, Courtney; Harris, Kathleen Mullan

    2017-01-01

    A growing literature has demonstrated a link between early-life socioeconomic conditions and adult health at a singular point in life. No research exists, however, that specifies the life course patterns of socioeconomic status (SES) in relation to the underlying biological processes that determine health. Using an innovative life course research design consisting of four nationally representative longitudinal datasets that collectively cover the human life span from early adolescence to old age (Add Health, MIDUS, NSHAP, and HRS), we address this scientific gap and assess how SES pathways from childhood into adulthood are associated with biophysiological outcomes in different adult life stages. For each dataset, we constructed standardized composite measures of early-life SES and adult SES and harmonized biophysiological measurements of immune and metabolic functioning. We found that the relative importance of early-life SES and adult SES varied across young, mid, and late adulthood, such that early-life SES sets a life course trajectory of socioeconomic well-being and operates through adult SES to influence health as adults age. We also documented evidence of the detrimental health effects of downward mobility and persistent socioeconomic disadvantage. These findings are the first to specify the life course patterns of SES that matter for underlying biophysiological functioning in different stages of adulthood. The study thus contributes new knowledge critical for improving population health by identifying the particular points in the life course at which interventions might be most effective in preventing disease and premature mortality.

  14. Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions

    NASA Astrophysics Data System (ADS)

    Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2014-07-01

    Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. Electronic supplementary information (ESI) available: Experimental section, structures of f-MWCNTs and uptake by human primary immune cells. See DOI: 10.1039/c4nr02711f

  15. The physician's office: can it influence adult immunization rates?

    PubMed

    Nowalk, Mary Patricia; Bardella, Inis Jane; Zimmerman, Richard Kent; Shen, Shunhua

    2004-01-01

    To determine which office and patient factors affect adult influenza and pneumococcal vaccination rates. Patient interviews and self-administered surveys of office managers. In a 2-stage random cluster sample, 22 practices in 4 strata (Veterans' Affairs, rural, urban/suburban, and inner city) and 15 patients per physician in each practice (n = 946) were selected. Office managers completed a questionnaire regarding office practices and logistics affecting immunizations. Data were examined using chi2 and regression analyses without and with patient factors in the models. Practice factors significantly related to influenza vaccination status were stratum (VA OR = 2.04; 95% CI = 1.18, 3.53; P < .05 vs inner-city), time allotted for acute care visits (16-20 min vs 10-15 min OR = 2.49; 95% CI = 1.68, 3.09; P < .001), the practice not having a source of free vaccines (OR = .43; 95% CI = .3, .62; P < .001), and the interaction between being an urban/suburban practice and having a source of free flu vaccines (OR = 4.0; 95% CI = 2.63, 6.09; P < .001). Practice factors related to pneumococcal vaccination status were the number of immunization promotion activities (> or = 3 vs 0-2 OR = 1.97; 95% CI = 1.33, 2.94; P = .002) and the time allotted for acute care visits (16-20 min vs 10-15 min OR = 1.94; 95% CI = 1.18, 3.19; P = .011). When practice and patient factors were combined in the analyses, patient factors were more important. Although patient factors are more important than practice factors, practices that allot more time for acute care visits and use more immunization promotion activities have higher vaccination rates.

  16. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2009-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation, however the nature of the phenomenon as it equilibrates over longer flights has not been determined. This dysregulation may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) for exploration-class space flight is unknown, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles (RNA, intracellular, secreted), viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. This study is currently ongoing. To date, 10 short duration and 5 long-duration crewmembers have completed the study. Technically, the study is progressing well. In-flight blood samples are being collected, and returned for analysis, including functional assays that require live cells. For all in-flight samples to date, sample viability has been acceptable. Preliminary data (n = 4/7; long/short duration, respectively) indicate that distribution of most peripheral leukocyte subsets is largely unaltered during flight. Exceptions include elevated T cells, reduced B/NK cells, increased memory T cells and increased central memory CD8+ T cells. General T cell function, early blastogenesis response to mitogenic stimulation, is markedly

  17. A Comparative Clinicopathologic Study of Collagenous Gastritis in Children and Adults: The Same Disorder With Associated Immune-mediated Diseases.

    PubMed

    Ma, Changqing; Park, Jason Y; Montgomery, Elizabeth A; Arnold, Christina A; McDonald, Oliver G; Liu, Ta-Chiang; Salaria, Safia N; Limketkai, Berkeley N; McGrath, Kevin M; Musahl, Tina; Singhi, Aatur D

    2015-06-01

    Collagenous gastritis is a rare condition characterized by surface epithelial damage, subepithelial collagen deposition, and a lamina propria inflammatory infiltrate. Previous studies have proposed 2 clinicopathologic subtypes: (1) children (18 y of age or younger) presenting with severe anemia, nodular gastric mucosa, and isolated gastric disease; and (2) adults with chronic watery diarrhea that is associated with diffuse collagenous involvement of the gastrointestinal tract. However, notable exceptions exist. In fact, broad variability in clinical presentation, etiology, treatment and disease course has been reported. To better define the clinicopathologic features of collagenous gastritis, we have collected 10 pediatric and 21 adult cases and describe their clinical, endoscopic, pathologic, and follow-up findings. Both children and adults presented with similar clinical symptoms such as anemia (50%, 35%, respectively), epigastric/abdominal pain (50%, 45%), and diarrhea (40%, 55%). Concomitant immune disorders were identified in 2 (20%) children and 3 (14%) adults. Further, 7 of 17 (41%) adults were taking medications associated with other immune-related gastrointestinal diseases including olmesartan and antidepressants. Histologically, there were no differences between children and adults with collagenous gastritis in the location of gastric involvement, mean collagenous layer thickness, and prominence of eosinophils (P>0.05). Extragastric collagenous involvement was also seen with comparable frequencies in each cohort (44%, 59%). Follow-up information was available for 22 of 31 (71%) patients and ranged from 2 to 122 months (mean, 33.6 mo). Despite medical management in most cases, persistence of symptoms or collagenous gastritis on subsequent biopsies was seen in 100% of children and 82% of adults. Of note, treatment for 1 adult patient involved cessation of olmesartan resulting in resolution of both symptoms and subepithelial collagen deposition on subsequent

  18. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells.

    PubMed

    Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian

    2017-01-01

    Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  19. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells

    PubMed Central

    Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P.; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M.; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian

    2017-01-01

    Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders. PMID:28861085

  20. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    PubMed

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration

  1. Immune function in Amazonian horticulturalists

    PubMed Central

    Blackwell, Aaron D.; Trumble, Benjamin C.; Suarez, Ivan Maldonado; Stieglitz, Jonathan; Beheim, Bret; Snodgrass, J. Josh; Kaplan, Hillard; Gurven, Michael

    2016-01-01

    Background Amazonian populations are exposed to diverse parasites and pathogens, including protozoal, bacterial, fungal, and helminthic infections. Yet much of our understanding of the immune system is based on industrialised populations where these infections are relatively rare. Aim We examine distributions and age-related differences in 22 measures of immune function for Bolivian forager-horticulturalists and US and European populations. Subjects and Methods Subjects were 6,338 Tsimane aged 0–90 years. Blood samples collected between 2004–2014 were analysed for 5-part blood differentials, C-reactive protein, erythrocyte sedimentation rate (ESR), and total immunoglobulins E, G, A, and M. Flow cytometry was used to quantify naive and non-naïve CD4 and CD8 T cells, natural killer cells, and B cells. Results Compared to reference populations, Tsimane have elevated levels of most immunological parameters, particularly immunoglobulins, eosinophils, ESR, B cells, and natural killer cells. However, monocytes and basophils are reduced and naïve CD4 cells depleted in older age groups. Conclusion Tsimane ecology leads to lymphocyte repertoires and immunoglobulin profiles that differ from those observed in industrialised populations. These differences have consequences for disease susceptibility and co-vary with patterns of other life history traits, such as growth and reproduction. PMID:27174705

  2. Immune cell functions in iron overload.

    PubMed Central

    de Sousa, M

    1989-01-01

    A number of studies done in the last 10 years demonstrate the importance of iron in regulating the expression of T lymphoid cell surface markers, in influencing the expansion of different T cell subsets and in affecting different immune cell functions in vitro. It has been argued that some of the results obtained could be explained by the formation of iron polymers in the experimental conditions used in vitro (Soyano Fernandez & Romano, 1985). In this review the results of studies of immunological function in clinical situations of iron overload are analysed. From this analysis, it is concluded that the majority of the observations made in vitro have a counterpart in vivo, thus providing additional compelling evidence for the importance of iron as an immunoregulator. PMID:2649280

  3. Hepatitis B serologic survey and review of immunization records of children, adolescents and adults in Fiji, 2008-2009.

    PubMed

    Tsukakoshi, Tatsuhiko; Samuela, Josaia; Rafai, Eric V; Rabuatoka, Uraia; Honda, Sumihisa; Kamiya, Yasuhiko; Buerano, Corazon C; Morita, Kouichi

    2015-03-03

    In Fiji, hepatitis B (HB) vaccine was introduced into childhood immunization program in 1989 and has been administered as a pentavalent since 2006. This study aimed to: (i) survey and examine the extent to which HB infection continue to occur in children, adolescents and adults in Fiji, and (ii) determine HB coverage rates and timeliness of vaccine administration to children. Serum samples of children, adolescents and adults (aged 6 months to <5 years, 16-20 years, and 21-49 years, respectively) collected between 2008-2009 were tested for serologic markers of HB virus infection namely, HB surface antigen (HBsAg), anti-HBs and anti-HB core antigen (anti-HBc). Health record card of each child was reviewed. None of the participating children (0/432) was positive for HBsAg. Overall prevalence of HBsAg among adolescents and adults was 5.6% (7/124) and 3.2% (12/370), respectively. High prevalence (98.1%) of anti-HBs was observed in children. An estimated 17.4% of adolescents and adults had evidence of past HBV infection (anti-HBc positive), of which 87.2% recovered from infection but the remaining 12.8% developed chronic infection. Percentage of children who completed at least 3 doses of HB immunization was 99.3%, and who received them on schedule was 58.5%. Although sample populations for this study is less robust compared to 1998, the prevalence of HBsAg and anti-HBc in children and adults before and after the implementation of the immunization program is much lower. The findings are a positive step in showing that Fiji's HB vaccine control program is achieving its objectives.

  4. Sexual dimorphism in immune function changes during the annual cycle in house sparrows

    NASA Astrophysics Data System (ADS)

    Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis

    2010-10-01

    Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.

  5. [Advances in the research of effects of glutamine on immune function of burn patients].

    PubMed

    Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J

    2018-04-20

    Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.

  6. [Immunization strategy of hepatitis B vaccine among adults in China: evidence based-medicine and consideration].

    PubMed

    Xu, A Q; Zhang, L

    2016-06-01

    With the effective control of hepatitis B infection among children, the adults especial the young ones become the main population for new hepatitis B virus infection. Now the adults receive hepatitis B vaccination voluntarily and at their own expense in China and the coverage is low. The high immunogenicity of hepatitis B vaccine has been proven among healthy adults. Although the safety of hepatitis B vaccination has been documented among high-risk population such as HIV-infected people, injecting drug users and patients with chronic hepatitis disease, their antibody seroconversion rate after hepatitis B vaccination is lower than the healthy adults. Hepatitis B vaccination is recommended to population at high risk officially in many countries and some effects have been achieved. It is urgent to improve the strategy of hepatitis B vaccination among adults to fasten the control of hepatitis B in China, along with the researches about the long-term efficacy of hepatitis B vaccine among adults, the immunogenicity of hepatitis B vaccination among high-risk adults and the economical evaluation about different adult immunization strategy of hepatitis B.

  7. The function of the Mediator complex in plant immunity.

    PubMed

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  8. Surface-Micromachined Microfiltration Membranes for Efficient Isolation and Functional Immunophenotyping of Subpopulations of Immune Cells

    PubMed Central

    Oh, Boram; Lam, Raymond H. W.; Fan, Rong; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping

    2015-01-01

    An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this “bulk” assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined polydimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay (“AlphaLISA”), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples. PMID:23335389

  9. Jungle Honey Enhances Immune Function and Antitumor Activity

    PubMed Central

    Fukuda, Miki; Kobayashi, Kengo; Hirono, Yuriko; Miyagawa, Mayuko; Ishida, Takahiro; Ejiogu, Emenike C.; Sawai, Masaharu; Pinkerton, Kent E.; Takeuchi, Minoru

    2011-01-01

    Jungle honey (JH) is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal). After seven injections, peritoneal cells (PC) were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2) cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS) producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW) of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261. PMID:19141489

  10. Pyridostigmine bromide (PYR) alters immune function in B6C3F1 mice.

    PubMed

    Peden-Adams, M M; Dudley, A C; EuDaly, J G; Allen, C T; Gilkeson, G S; Keil, D E

    2004-02-01

    Pyridostigmine bromide (PYR) is an anticholinesterase drug indicated for the treatment of myasthenia gravis and neuromuscular blockade reversal. It acts as a reversible cholinesterase inhibitor and was used as a pretreatment for soldiers during Operation Desert Storm to protect against possible nerve gas attacks. Since that time, PYR has been implicated as a possible causative agent contributing to Gulf War Illness. PYR's mechanism of action has been well-delineated with regards to its effects on the nervous system, yet little is known regarding potential effects on immunological function. To evaluate the effects of PYR on immunological function, adult female B6C3F1 mice were gavaged daily for 14 days with PYR (0, 1, 5, 10, or 20 mg/kg/day). Immune parameters assessed were lymphoproliferation, natural killer cell activity, the SRBC-specific antibody plaque-forming cell (PFC) response, thymus and spleen weight and cellularity, and thymic and splenic CD4/CD8 lymphocyte subpopulations. Exposure to PYR did not alter splenic and thymus weight or splenic cellularity. However, 20 mg PYR/kg/day decreased thymic cellularity with decreases in both CD4+/CD8+ (20 mg/kg/day) and CD4-/CD8- (10 and 20 mg/kg/day) cell types. Functional immune assays indicated that lymphocyte proliferative responses and natural killer cell activity were normal; whereas exposure to PYR significantly decreased primary IgM antibody responses to a T-cell dependent antigen at the 1, 5, 10 and 20 mg/kg treatment levels for 14 days. This is the first study to examine the immunotoxicological effects of PYR and demonstrate that this compound selectively suppresses humoral antibody responses.

  11. Immune function during space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Shearer, William T.

    2002-01-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  12. Spätzle-Processing Enzyme-independent Activation of the Toll Pathway in Drosophila Innate Immunity.

    PubMed

    Yamamoto-Hino, Miki; Goto, Satoshi

    2016-05-07

    The Toll pathway regulates innate immunity in insects and vertebrates. The Drosophila Toll receptor is activated by a processed form of a ligand, Spätzle. Spätzle-processing enzyme (SPE) is the only enzyme identified to date that functions in converting Spätzle to an active form during the immune response. In the present study, Toll activation induced by immune challenge was almost suppressed in spätzle mutant larvae and adults, whereas it was present in SPE mutant larvae challenged with Micrococcus luteus and adults challenged with Bacillus subtilis. Our data suggest that an unidentified protease besides SPE processes Spätzle under conditions of microbial challenge.

  13. DISTINCT FUNCTIONS OF SOCIAL SUPPORT AND COGNITIVE FUNCTION AMONG OLDER ADULTS

    PubMed Central

    Sims, Regina C.; Hosey, Megan; Levy, Shellie-Anne; Whitfield, Keith E.; Katzel, Leslie I.; Waldstein, Shari R.

    2014-01-01

    Background/Study Context Social support has been shown to buffer cognitive decline in older adults; however, few studies have examined the association of distinct functions of perceived social support and cognitive function. The current study examined the relations between distinct functions of social support and numerous cognitive domains in older adults. Methods Data were derived from a cross-sectional, correlational study of cardiovascular risk factors, cognitive function, and neuroimaging. The participants were 175 older adults with a mean age of 66.32. A number of neuropsychological tests and the Interpersonal Support Evaluation List were administered. Multiple linear regression analyses were conducted to determine cross-sectional relations of social support to cognitive function after controlling for age, gender, education, depressive symptomatology, systolic blood pressure, body-mass index, total cholesterol, and fasting glucose. Results No significant positive relations were found between distinct functions of social support and cognitive function in any domain; however, inverse relations emerged such that greater social support across several functions was associated with poorer nonverbal memory and response inhibition. Conclusion Results suggest that the receipt of social support may be a burden for some older adults. Within the current study, fluid cognitive abilities reflected this phenomenon. The mechanism through which social support is associated with poorer cognitive function in some domains deserves further exploration. PMID:24467699

  14. Immune functions of insect βGRPs and their potential application.

    PubMed

    Rao, Xiang-Jun; Zhan, Ming-Yue; Pan, Yue-Min; Liu, Su; Yang, Pei-Jin; Yang, Li-Ling; Yu, Xiao-Qiang

    2018-06-01

    Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    PubMed Central

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  16. Policing the intestinal epithelial barrier: Innate immune functions of intraepithelial lymphocytes.

    PubMed

    Hu, Madeleine D; Jia, Luo; Edelblum, Karen L

    2018-03-01

    This review will explore the contribution of IELs to mucosal innate immunity and highlight the similarities in IEL functional responses to bacteria, viruses and protozoan parasite invasion. IELs rapidly respond to microbial invasion by activating host defense responses, including the production of mucus and antimicrobial peptides to prevent microbes from reaching the epithelial surface. During active infection, IELs promote epithelial cytolysis, cytokine and chemokine production to limit pathogen invasion, replication and dissemination. Commensal-induced priming of IEL effector function or continuous surveillance of the epithelium may be important contributing factors to the rapidity of response. Impaired microbial recognition, dysregulated innate immune signaling or microbial dysbiosis may limit the protective function of IELs and increase susceptibility to disease. Further understanding of the mechanisms regulating IEL surveillance and sentinel function may provide insight into the development of more effective targeted therapies designed to reinforce the mucosal barrier.

  17. Chromatin versus pathogens: the function of epigenetics in plant immunity

    PubMed Central

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed. PMID:26388882

  18. Chromatin versus pathogens: the function of epigenetics in plant immunity.

    PubMed

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed.

  19. Routine immunization of adults by pharmacists: Attitudes and beliefs of the Canadian public and health care providers

    PubMed Central

    MacDougall, D.; Halperin, B. A.; Isenor, J.; MacKinnon-Cameron, D.; Li, L.; McNeil, S. A.; Langley, J. M.; Halperin, S. A.

    2016-01-01

    Abstract Vaccine coverage among adults for recommended vaccines is generally low. In Canada and the US, pharmacists are increasingly becoming involved in the administration of vaccines to adults. This study measured the knowledge, attitudes, beliefs, and behaviors of Canadian adults and health care providers regarding pharmacists as immunizers. Geographically representative samples of Canadian adults (n = 4023) and health care providers (n = 1167) were surveyed, and 8 focus groups each were conducted nationwide with adults and health care providers. Provision of vaccines by pharmacists was supported by 64.6% of the public, 82.3% of pharmacists, 57.4% of nurses, and 38.9% of physicians; 45.7% of physicians opposed pharmacist-delivered vaccination. Pharmacists were considered a trusted source of vaccination information by 75.0% of the public, exceeding public health officials (68.3%) and exceeded only by doctors and nurses (89.2%). Public concerns about vaccination in pharmacies centered on safety (management of adverse events), record keeping (ensuring their family physician was informed), and cost (should be no more expensive than vaccination at public health or physicians' offices). Concerns about the logistics of vaccination delivery were expressed more frequently in regions where pharmacists were not yet immunizing than in jurisdictions with existing pharmacist vaccination programs. These results suggest that the expansion of pharmacists' scope of practice to include delivery of adult vaccinations is generally accepted by Canadian health care providers and the public. Acceptance of this expanded scope of pharmacist practice may contribute to improvements in vaccine coverage rates by improving vaccine accessibility. PMID:26810485

  20. Immune Response and Function: Exercise Conditioning Versus Bed-Rest and Spaceflight Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Jackson, C. G. R.; Lawless, D.

    1994-01-01

    Immune responses measured at rest immediately or some hours after exercise training (some with and some without increase in maximal oxygen uptake) gave variable and sometimes conflicting results; therefore, no general conclusions can be drawn. On the other hand, most immune responses were either unchanged (immunoglobulin, T cells, CD4+, and natural killer activity) or decreased (blood properdin, neutrophil phagocytic activity, salivary lysozymes, brain immunoglobulin A and G, and liver B lymphocytes and phytohemagglutinin activity) during prolonged bed rest. Some data suggested that exercise training during bed rest may partially ameliorate the decreased functioning of the immune system. Exercise and change in body position, especially during prolonged bed rest with plasma fluid shifts and diuresis, may induce a change in plasma protein concentration and content, which can influence drug metabolism as well as immune function. Leukocytosis, accompanied by lymphopenia and a depressed lymphocyte response, occurs in astronauts on return to Earth from spaceflight; recovery may depend on time of exposure to microgravity. It is clear that the effect of drugs and exercise used as countermeasures for microgravity deconditioning should be evaluated for their effect on an astronaut's immune system to assure optimal health and performance on long-duration space missions.

  1. Honey bee drones maintain humoral immune competence throughout all life stages in the absence of vitellogenin production.

    PubMed

    Gätschenberger, Heike; Gimple, Olaf; Tautz, Jürgen; Beier, Hildburg

    2012-04-15

    Drones are haploid male individuals whose major social function in honey bee colonies is to produce sperm and mate with a queen. In spite of their limited tasks, the vitality of drones is of utmost importance for the next generation. The immune competence of drones - as compared to worker bees - is largely unexplored. Hence, we studied humoral and cellular immune reactions of in vitro reared drone larvae and adult drones of different age upon artificial bacterial infection. Haemolymph samples were collected after aseptic and septic injury and subsequently employed for (1) the identification of immune-responsive peptides and/or proteins by qualitative proteomic analyses in combination with mass spectrometry and (2) the detection of antimicrobial activity by inhibition-zone assays. Drone larvae and adult drones responded with a strong humoral immune reaction upon bacterial challenge, as validated by the expression of small antimicrobial peptides. Young adult drones exhibited a broader spectrum of defence reactions than drone larvae. Distinct polypeptides including peptidoglycan recognition protein-S2 and lysozyme 2 were upregulated in immunized adult drones. Moreover, a pronounced nodulation reaction was observed in young drones upon bacterial challenge. Prophenoloxidase zymogen is present at an almost constant level in non-infected adult drones throughout the entire lifespan. All observed immune reactions in drones were expressed in the absence of significant amounts of vitellogenin. We conclude that drones - like worker bees - have the potential to activate multiple elements of the innate immune response.

  2. Is vision function related to physical functional ability in older adults?

    PubMed

    West, Catherine G; Gildengorin, Ginny; Haegerstrom-Portnoy, Gunilla; Schneck, Marilyn E; Lott, Lori; Brabyn, John A

    2002-01-01

    To assess the relationship between a broad range of vision functions and measures of physical performance in older adults. Cross-sectional study. Population-based cohort of community-dwelling older adults, subset of an on-going longitudinal study. Seven hundred eighty-two adults aged 55 and older (65% of living eligible subjects) had subjective health measures and objective physical performance evaluated in 1989/91 and again in 1993/95 and a battery of vision functions tested in 1993/95. Comprehensive battery of vision tests (visual acuity, contrast sensitivity, effects of illumination level, contrast and glare on acuity, visual fields with and without attentional load, color vision, temporal sensitivity, and the impact of dimming light on walking ability) and physical function measures (self-reported mobility limitations and observed measures of walking, rising from a chair and tandem balance). The failure rate for all vision functions and physical performance measures increased exponentially with age. Standard high-contrast visual acuity and standard visual fields showed the lowest failure rates. Nonstandard vision tests showed much higher failure rates. Poor performance on many individual vision functions was significantly associated with particular individual measures of physical performance. Using constructed combination vision variables, significant associations were found between spatial vision, field integrity, binocularity and/or adaptation, and each of the functional outcomes. Vision functions other than standard visual acuity may affect day-to-day functioning of older adults. Additional studies of these other aspects of vision and how they can be treated or rehabilitated are needed to determine whether these aspects play a role in strategies for reducing disability in older adults.

  3. No Detectable Trade-Offs Among Immune Function, Fecundity, and Survival via a Juvenile Hormone Analog in the House Cricket.

    PubMed

    Nava-Sánchez, A; Munguía-Steyer, R; Córdoba-Aguilar, A

    2014-08-01

    Hormones are key regulators of resource allocation among functions and thus play an important role in resource-based trade-offs. The juvenile hormone (JH) is an insect hormone that mediates resource allocation between immunity and life history components. Here, we have tested whether this is the case using the house cricket. We investigated whether increased levels of JH (using methoprene, a JH analog) enable an enhanced survival and fecundity (via egg number) at the cost of reduced hemocyte number (a trait that is associated with immune response in insects) in the house cricket, Acheta domesticus L. We had three groups of adult crickets of both sexes: experimental (methoprene and acetone), positive control (methoprene), and negative control (no manipulation). Prior to and after experimental treatments, we counted the number of hemocytes (for the case of both sexes) and recorded the number of eggs laid and survival of females after the manipulation. There was no difference in hemocyte number, egg number, and survival. These results do not support a JH-mediated trade-off among immune ability, survival, and fecundity. We provide arguments to explain the lack of JH-mediated trade-offs in the house cricket.

  4. HIV-Exposed Infants Vaccinated with an MF59/Recombinant gp120 Vaccine Have Higher-Magnitude Anti-V1V2 IgG Responses than Adults Immunized with the Same Vaccine.

    PubMed

    McGuire, Erin P; Fong, Youyi; Toote, Christopher; Cunningham, Coleen K; McFarland, Elizabeth J; Borkowsky, William; Barnett, Susan; Itell, Hannah L; Kumar, Amit; Gray, Glenda; McElrath, M Julianna; Tomaras, Georgia D; Permar, Sallie R; Fouda, Genevieve G

    2018-01-01

    In the RV144 vaccine trial, IgG responses against the HIV envelope variable loops 1 and 2 (V1V2) were associated with decreased HIV acquisition risk. We previously reported that infants immunized with an MF59-adjuvanted rgp120 vaccine developed higher-magnitude anti-V1V2 IgG responses than adult RV144 vaccinees. To determine whether the robust antibody response in infants is due to differences in vaccine regimens or to inherent differences between the adult and infant immune systems, we compared Env-specific IgG responses in adults and infants immunized with the same MF59- and alum-adjuvanted HIV envelope vaccines. At peak immunogenicity, the magnitudes of the gp120- and V1V2-specific IgG responses were comparable between adults and infants immunized with the alum/MNrgp120 vaccine (gp120 median fluorescence intensities [FIs] in infants = 7,118 and in adults = 11,510, P = 0.070; V1V2 median MFIs of 512 [infants] and 804 [adults], P = 0.50), whereas infants immunized with the MF59/SF-2 rgp120 vaccine had higher-magnitude antibody levels than adults (gp120 median FIs of 15,509 [infants] and 2,290 [adults], P < 0.001; V1V2 median FIs of 23,926 [infants] and 1,538 [adults]; P < 0.001). Six months after peak immunogenicity, infants maintained higher levels Env-specific IgG than adults. Anti-V1V2 IgG3 antibodies that were associated with decreased HIV-1 risk in RV144 vaccinees were present in 43% of MF59/rgp120-vaccinated infants but only in 12% of the vaccinated adults ( P = 0.0018). Finally, in contrast to the rare vaccine-elicited Env-specific IgA in infants, rgp120 vaccine-elicited Env-specific IgA was frequently detected in adults. Our results suggest that vaccine adjuvants differently modulate gp120-specific antibody responses in adults and infants and that infants can robustly respond to HIV Env immunization. IMPORTANCE More than 150,000 pediatric HIV infections occur yearly, despite the availability of antiretroviral prophylaxis. A pediatric HIV vaccine could

  5. Food supplementation and testosterone interact to influence reproductive behavior and immune function in Sceloporus graciosus.

    PubMed

    Ruiz, Mayté; French, Susannah S; Demas, Gregory E; Martins, Emília P

    2010-02-01

    The energetic resources in an organism's environment are essential for executing a wide range of life-history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases, and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to Escherichia coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Food supplementation and testosterone interact to influence reproductive behavior and immune function in Sceloporous graciosus

    PubMed Central

    Ruiz, Mayté; French, Susannah S.; Demas, Gregory E.; Martins, Emília P.

    2009-01-01

    The energetic resources in an organism’s environment are essential for executing a wide range of life history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases; and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to E. coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. PMID:19800885

  7. Impact of Pharmacist Immunization Authority on Seasonal Influenza Immunization Rates Across States.

    PubMed

    Drozd, Edward M; Miller, Laura; Johnsrud, Michael

    2017-08-01

    The goal of this study was to investigate the impact on immunization rates of policy changes that allowed pharmacists to administer influenza immunizations across the United States. Influenza immunization rates across states were compared before and after policy changes permitting pharmacists to administer influenza immunizations. The study used Behavioral Risk Factor Surveillance System (BRFSS) survey data on influenza immunization rates between 2003 and 2013. Logistic regression models were constructed and incorporated adjustments for the complex sample design of the BRFSS to predict the likelihood of a person receiving an influenza immunization based on various patient health, demographic, and access to care factors. Overall, as states moved to allow pharmacists to administer influenza immunizations, the odds that an adult resident received an influenza immunization rose, with the effect increasing over time. The average percentage of people receiving influenza immunizations in states was 35.1%, rising from 32.2% in 2003 to 40.3% in 2013. The policy changes were associated with a long-term increase of 2.2% to 7.6% in the number of adults aged 25 to 59 years receiving an influenza immunization (largest for those aged 35-39 years) and no significant change for those younger or older. These findings suggest that pharmacies and other nontraditional settings may offer accessible venues for patients when implementing other public health initiatives. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Alcohol, aging, and innate immunity.

    PubMed

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  9. Reduced immunity to measles in adults with major depressive disorder.

    PubMed

    Ford, Bart N; Yolken, Robert H; Dickerson, Faith B; Teague, T Kent; Irwin, Michael R; Paulus, Martin P; Savitz, Jonathan

    2018-03-19

    Depression can impair the immunogenicity of vaccine administration in adults. Whereas many vaccinations are administered in childhood, it is not known whether adolescent or adult onset depression is associated with impairments in the maintenance of protection of childhood vaccines. This study tested the hypothesis that individuals with adolescent or adult onset mood disorders would display compromised immunity to measles, a target of childhood vaccination. IgG antibodies to measles were quantified using a solid phase immunoassay in volunteers with bipolar disorder (BD, n = 64, mean age of onset = 16.6 ± 5.6), currently depressed individuals with major depressive disorder (cMDD, n = 85, mean age of onset = 17.9 ± 7.0), remitted individuals with a history of MDD (rMDD, n = 82, mean age of onset = 19.2 ± 8.6), and non-depressed comparison controls (HC, n = 202), all born after the introduction of the measles vaccine in the USA in 1963. Relative to HC, both the cMDD group (p = 0.021, adjusted odds ratios (OR) = 0.47, confidence interval (CI) = 0.24-0.90), and the rMDD group (p = 0.038, adjusted OR = 0.50, CI = 0.26-0.97) were less likely to test seropositive for measles. Compared with unmedicated MDD participants, currently medicated MDD participants had a longer lifetime duration of illness and were less likely to test seropositive for measles. Individuals with adolescent or adult onset MDD are less likely to test seropositive for measles. Because lower IgG titers are associated with increased risk of measles infection, MDD may increase the risk and severity of infection possibly because of impaired maintenance of vaccine-related protection from measles.

  10. Executive functioning in older adults with hoarding disorder.

    PubMed

    Ayers, Catherine R; Wetherell, Julie Loebach; Schiehser, Dawn; Almklov, Erin; Golshan, Shahrokh; Saxena, Sanjaya

    2013-11-01

    Hoarding disorder (HD) is a chronic and debilitating psychiatric condition. Midlife HD patients have been found to have neurocognitive impairment, particularly in areas of executive functioning, but the extent to which this is due to comorbid psychiatric disorders has not been clear. The purpose of the present investigation was to examine executive functioning in geriatric HD patients without any comorbid Axis I disorders (n = 42) compared with a healthy older adult comparison group (n = 25). We hypothesized that older adults with HD would perform significantly worse on measures of executive functioning (Wisconsin Card Sort Task [Psychological Assessment Resources, Lutz, Florida, USA] ( Psychological Assessment Resources, 2003) and the Wechsler Adult Intelligence Scale-IV digit span and letter-number sequencing tests [Pearson, San Antonio, TX, USA]). Older adults with HD showed significant differences from healthy older controls in multiple aspects of executive functioning. Compared with healthy controls, older adults with HD committed significantly more total, non-perseverative errors and conceptual level responses on the Wisconsin Card Sort Task and had significantly worse performance on the Wechsler Adult Intelligence Scale-IV digit span and letter-number sequencing tests. Hoarding symptom severity was strongly correlated with executive dysfunction in the HD group. Compared with demographically-matched controls, older adults with HD have dysfunction in several domains of executive functioning including mental control, working memory, inhibition, and set shifting. Executive dysfunction is strongly correlated with hoarding severity and is not because of comorbid psychiatric disorders in HD patients. These results have broad clinical implications suggesting that executive functioning should be assessed and taken into consideration when developing intervention strategies for older adults with HD. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Neonatal infection produces significant changes in immune function with no associated learning deficits in juvenile rats.

    PubMed

    Osborne, Brittany F; Caulfield, Jasmine I; Solomotis, Samantha A; Schwarz, Jaclyn M

    2017-10-01

    The current experiments examined the impact of early-life immune activation and a subsequent mild immune challenge with lipopolysaccharide (LPS; 25µg/kg) on hippocampal-dependent learning, proinflammatory cytokine expression in the brain, and peripheral immune function in juvenile male and female rats at P24, an age when hippocampal-dependent learning and memory first emerges. Our results indicate that neonatal infection did not produce learning deficits in the hippocampal-dependent context pre-exposure facilitation effect paradigm in juvenile males and females, contrary to what has been observed in adults. Neonatal infection produced an increase in baseline IL-1β expression in the hippocampus (HP) and medial prefrontal cortex (mPFC) of juvenile rats. Furthermore, neonatally infected rats showed exaggerated IL-1β expression in the HP following LPS treatment as juveniles; and juvenile females, but not males, showed exaggerated IL-1β expression in the mPFC following LPS treatment. Neonatal infection attenuated the production of IL-6 expression following LPS treatment in both the brain and the spleen, and neonatal infection decreased the numbers of circulating white blood cells in juvenile males and females, an effect that was further exacerbated by subsequent LPS treatment. Together, our data indicate that the consequences of neonatal infection are detectable even early in juvenile development, though we found no concomitant hippocampal-dependent learning deficits at this young age. These findings underscore the need to consider age and associated on-going neurodevelopmental processes as important factors contributing to the emergence of cognitive and behavioral disorders linked to early-life immune activation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1221-1236, 2017. © 2017 Wiley Periodicals, Inc.

  12. Innate immune response development in nestling tree swallows

    USGS Publications Warehouse

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  13. cDNA cloning, expression and immune function analysis of a novel Rac1 gene (AjRac1) in the sea cucumber Apostichopus japonicus.

    PubMed

    Li, Kaiquan; Liu, Lin; Shang, Shengnan; Wang, Yi; Zhan, Yaoyao; Song, Jian; Zhang, Xiangxiang; Chang, Yaqing

    2017-10-01

    The ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to Ras homolog (Rho) small GTPases subfamily. As an important molecular switch, Rac1 regulates various processes in the cell, especially in cellular immune response. With attempt to clarify characters and functions of Rac1 in sea cucumbers, full length cDNA of a Rac1 homolog in the sea cucumber Apostichopus japonicus (AjRac1) was cloned by transcriptome database mining and rapid amplification of cDNA ends (RACE) techniques. The open reading frame of AjRac1 is 579 bp encoding a protein with a length of 192 aa. Sequence analysis showed that AjRac1 is highly conserved as compared to those from other eukaryotic species. Phylogenetic analysis revealed that amino acid sequence of AjRac1 closely related to those from Strongylocentrotus purpuratus. Results of expression analysis showed that AjRac1 exhibited a relative high expression in blastula stage, adult coelomocytes and respiratory tree in A. japonicus. The transcription of AjRac1 in adult coelomocytes altered significantly at 4 h- and 12 h-after Vibrio splendidus infection, respectively, which indicated that AjRac1 involved in sea cucumber innate immunity. All data presented in this study will deepen our understanding of characterizations and immunological functions of Rac1 in sea cucumbers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Equine neonates have attenuated humoral and cell-mediated immune responses to a killed adjuvanted vaccine compared to adult horses.

    PubMed

    Ryan, Clare; Giguère, Steeve

    2010-12-01

    The objectives of this study were to compare relative vaccine-specific serum immunoglobulin concentrations, vaccine-specific lymphoproliferative responses, and cytokine profiles of proliferating lymphocytes between 3-day-old foals, 3-month-old foals, and adult horses after vaccination with a killed adjuvanted vaccine. Horses were vaccinated intramuscularly twice at 3-week intervals with a vaccine containing antigens from bovine viral respiratory pathogens to avoid interference from maternal antibody. Both groups of foals and adult horses responded to the vaccine with a significant increase in vaccine-specific IgGa and IgG(T) concentrations. In contrast, only adult horses and 3-month-old foals mounted significant vaccine-specific total IgG, IgGb, and IgM responses. Vaccine-specific concentrations of IgM and IgG(T) were significantly different between all groups, with the highest concentrations occurring in adult horses, followed by 3-month-old foals and, finally, 3-day-old foals. Only the adult horses mounted significant vaccine-specific lymphoproliferative responses. Baseline gamma interferon (IFN-γ) and interleukin-4 (IL-4) concentrations were significantly lower in 3-day-old foals than in adult horses. Vaccination resulted in a significant decrease in IFN-γ concentrations in adult horses and a significant decrease in IL-4 concentrations in 3-day-old foals. After vaccination, the ratio of IFN-γ/IL-4 in both groups of foals was significantly higher than that in adult horses. The results of this study indicate that the humoral and lymphoproliferative immune responses to this killed adjuvanted vaccine are modest in newborn foals. Although immune responses improve with age, 3-month-old foals do not respond with the same magnitude as adult horses.

  15. EFFECTS OF SELENIUM ON MALLARD DUCK REPRODUCTION AND IMMUNE FUNCTION

    EPA Science Inventory

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. Our objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of a...

  16. An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors

    PubMed Central

    Takashima, Eizo; Williams, Marni; Eiglmeier, Karin; Pain, Adrien; Guelbeogo, Wamdaogo M.; Gneme, Awa; Brito-Fravallo, Emma; Holm, Inge; Lavazec, Catherine; Sagnon, N’Fale; Baxter, Richard H.; Riehle, Michelle M.; Vernick, Kenneth D.

    2015-01-01

    Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with

  17. The role of immune dysfunction in the pathophysiology of autism

    PubMed Central

    Onore, Charity; Careaga, Milo; Ashwood, Paul

    2012-01-01

    Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD. PMID:21906670

  18. Streptavidin-functionalized capillary immune microreactor for highly efficient chemiluminescent immunoassay.

    PubMed

    Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng

    2011-11-07

    A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Immune Function and Reactivation of Latent Viruses

    NASA Technical Reports Server (NTRS)

    Butel, Janet S.

    1999-01-01

    A major concern associated with long-duration space flight is the possibility of infectious diseases posing an unacceptable medical risk to crew members. One major hypothesis addressed in this project is that space flight will cause alterations in the immune system that will allow latent viruses that are endogenous in the human population to reactivate and shed to higher levels than normal, which may affect the health of crew members. The second major hypothesis being examined is that the effects of space flight will alter the mucosal immune system, the first line of defense against many microbial infections, including herpesviruses, polyomaviruses, and gastroenteritis viruses, rendering crew members more susceptible to virus infections across the mucosa. We are focusing the virus studies on the human herpesviruses and polyomaviruses, important pathogens known to establish latent infections in most of the human population. Both primary infection and reactivation from latent infection with these groups of viruses (especially certain herpesviruses) can cause a variety of illnesses that result in morbidity and, occasionally, mortality. Both herpesviruses and polyomaviruses have been associated with human cancer, as well. Effective vaccines exist for only one of the eight known human herpesviruses and available antivirals are of limited use. Whereas normal individuals display minimal consequences from latent viral infections, events which alter immune function (such as immunosuppressive therapy following solid organ transplantation) are known to increase the risk of complications as a result of viral reactivations.

  20. Evaluating the functional state of adult-born neurons in the adult dentate gyrus of the hippocampus: from birth to functional integration.

    PubMed

    Aguilar-Arredondo, Andrea; Arias, Clorinda; Zepeda, Angélica

    2015-01-01

    Hippocampal neurogenesis occurs in the adult brain in various species, including humans. A compelling question that arose when neurogenesis was accepted to occur in the adult dentate gyrus (DG) is whether new neurons become functionally relevant over time, which is key for interpreting their potential contributions to synaptic circuitry. The functional state of adult-born neurons has been evaluated using various methodological approaches, which have, in turn, yielded seemingly conflicting results regarding the timing of maturation and functional integration. Here, we review the contributions of different methodological approaches to addressing the maturation process of adult-born neurons and their functional state, discussing the contributions and limitations of each method. We aim to provide a framework for interpreting results based on the approaches currently used in neuroscience for evaluating functional integration. As shown by the experimental evidence, adult-born neurons are prone to respond from early stages, even when they are not yet fully integrated into circuits. The ongoing integration process for the newborn neurons is characterised by different features. However, they may contribute differently to the network depending on their maturation stage. When combined, the strategies used to date convey a comprehensive view of the functional development of newly born neurons while providing a framework for approaching the critical time at which new neurons become functionally integrated and influence brain function.

  1. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging.

    PubMed

    Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.

  2. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  3. Young adult's attachment style as a partial mediator between maternal functioning and young adult offsprings' functioning.

    PubMed

    Ruiz, Sarah K; Harris, Susan J; Martinez, Pedro; Gold, Philip M; Klimes-Dougan, Bonnie

    2018-05-01

    The quality of our early attachment relationships with primary caregivers is carried forward to new developmental domains, including interpersonal contexts in adulthood. One of the factors that can disrupt early attachment is maternal depression, which may be associated with less responsive care and may impede the development of a secure attachment. Moreover, this disruption in secure attachment may act as a mechanism by which offspring of depressed mothers are more likely to experience their own psychopathology. In this study we predicted that attachment anxiety and avoidance would mediate the relationship between maternal depression diagnosis and functional impairment predicting young adult offspring's functional impairment. This study utilized longitudinal data from 98 families with clinically diagnosed depressed and well mothers, and two of their young adult children, an older and younger sibling (N = 123, Female = 75, Mage = 22.09, SD = 2.57). Mother's and young adult children's functioning was based on clinical ratings on the Global Assessment Scale. Attachment was based on the young adult's self-report on the Experiences in Close Relationships. Results indicate that maternal diagnosis and functional impairment predicted offspring's functional impairment. This relationship was partially mediated through offspring's attachment anxiety, but not attachment avoidance. The mediator and outcome variable were measured concurrently, thus causal implications are limited. Our study provides critical evidence that early experiences with depressed mothers may have influence into young adulthood in typical and atypical domains of development. This work extends our understanding of the impact of early experiences in long-term development, and may have treatment implications for intervening on both maternal and romantic relationships to improve attachment. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Research on effect of ginkgo aglucone flavone to human body organs and immune function.

    PubMed

    Wang, Xiong

    2014-07-01

    Ginkgo aglucone flavone is a kind of effective natural antioxidant. Lots of researches show that ginkgo aglucone flavone has various biological activities and it is of great importance to antioxidant, anti-aging, free radial scavenging and immunoregulation. However, researches on effect of ginkgo aglucone flavone to immune function are rare so far. Thus, it is important to go into the effect of ginkgo aglucone flavone to immune function. We can find out more effective measurement that resist immunosuppression through research and provide referable science activity form and suggestion of sports nutrition supplements. It can guide people to improve habitus through supports and establish important basis for new area development of folium ginkgo extract. This paper aims to discuss the effect of ginkgo aglucone flavone to human body organs and immune function. Patients with ginkgo aglucone flavone indications are selected for experiment. Their peripheral blood T lymphocyte subsets and content of serum immunoglobin is detected before and two weeks after drug use. The result shows that specific ratio of T lymphocyte subsets CD3 and CD4 and the content of serum IgG significantly increase after pharmacy of patients. It can be concluded that ginkgo aglucone flavone have acceleration on immune system function.

  5. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera).

    PubMed

    Wilson-Rich, Noah; Dres, Stephanie T; Starks, Philip T

    2008-01-01

    Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate immune strength across developmental stages. We investigated immune strength across four developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22-30 days old adults). The immune strength of honey bees was quantified using standard immunocompetence assays: total hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. Importantly, we found that adult honey bees do not abandon cellular immunocompetence as has recently been proposed. Induced shifts in behavioral roles may increase a colony's susceptibility to disease if nurses begin foraging activity prematurely.

  6. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity.

    PubMed

    Macho, Alberto P

    2016-04-01

    Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  7. Interferon-λ: immune functions at barrier surfaces and beyond

    PubMed Central

    Lazear, Helen M.; Nice, Timothy J.; Diamond, Michael S.

    2015-01-01

    SUMMARY When type III interferon (IFN-λ; also known as interleukin-28 (IL-28) and IL-29) was discovered in 2003, its antiviral function was expected to be analogous to the type I IFNs (IFN-α and IFN-β), via the induction of IFN-stimulated genes (ISGs). While IFN-λ stimulates expression of antiviral ISGs preferentially in cells of epithelial origin, recent studies have defined additional antiviral mechanisms in other cell types and tissues. Models of viral infection using mice lacking IFN-λ signaling and single nucleotide polymorphism (SNP) associations with human disease have expanded our understanding of the contribution of IFN-λ to the antiviral response at anatomic barriers and the immune response beyond these barriers. In this review, we highlight recent insights into the functions of IFN-λ, including its ability to restrict virus spread into the brain and to clear chronic viral infections in the gastrointestinal tract. We also discuss how IFN-λ modulates innate and adaptive immunity, autoimmunity, and tumor progression and its possible therapeutic applications in human disease. PMID:26200010

  8. GENETIC VARIANTS, IMMUNE FUNCTION AND RISK OF PRE-ECLAMPSIA AMONG AMERICAN INDIANS

    PubMed Central

    Best, Lyle G.; Nadeau, Melanie; Davis, Kylie; Lamb, Felicia; Bercier, Shellee; Anderson, Cindy M.

    2011-01-01

    Objective To determine the prevalence in an American Indian population of genetic variants with putative effects on immune function and determine if they are associated with pre-eclampsia. Methods In a study of 66 cases and 130 matched controls, six single nucleotide polymorphisms (SNP) with either previously demonstrated or postulated modulating effects on the immune system were genotyped. Allele frequencies and various genetic models were evaluated by conditional logistic regression in both univariate and multiply adjusted models. Results Although most genetic variants lacked evidence of association with pre-eclampsia, the minor allele of the CRP related, rs1205 SNP in a dominant model with adjustment for age at delivery, nulliparity and body mass index, exhibited an odds ratio of 0.259 (95% CI of 0.08 – 0.81, p=0.020) in relation to severe pre-eclampsia (48 cases). The allelic prevalence of this variant was 46.1% in this population. Conclusion Of the six SNPs related to immune function in this study, a functional variant in the 3'UTR of the CRP gene was shown to be associated with severe pre-eclampsia in an American Indian population. PMID:22004660

  9. Effects of stress on immune function: the good, the bad, and the beautiful.

    PubMed

    Dhabhar, Firdaus S

    2014-05-01

    Although the concept of stress has earned a bad reputation, it is important to recognize that the adaptive purpose of a physiological stress response is to promote survival during fight or flight. While long-term stress is generally harmful, short-term stress can be protective as it prepares the organism to deal with challenges. This review discusses the immune effects of biological stress responses that can be induced by psychological, physiological, or physical (including exercise) stressors. We have proposed that short-term stress is one of the nature's fundamental but under-appreciated survival mechanisms that could be clinically harnessed to enhance immunoprotection. Short-term (i.e., lasting for minutes to hours) stress experienced during immune activation enhances innate/primary and adaptive/secondary immune responses. Mechanisms of immuno-enhancement include changes in dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function as well as local and systemic production of cytokines. In contrast, long-term stress suppresses or dysregulates innate and adaptive immune responses by altering the Type 1-Type 2 cytokine balance, inducing low-grade chronic inflammation, and suppressing numbers, trafficking, and function of immunoprotective cells. Chronic stress may also increase susceptibility to some types of cancer by suppressing Type 1 cytokines and protective T cells and increasing regulatory/suppressor T cell function. Here, we classify immune responses as being protective, pathological, or regulatory, and discuss "good" versus "bad" effects of stress on health. Thus, short-term stress can enhance the acquisition and/or expression of immunoprotective (wound healing, vaccination, anti-infectious agent, anti-tumor) or immuno-pathological (pro-inflammatory, autoimmune) responses. In contrast, chronic stress can suppress protective immune responses and/or exacerbate pathological immune responses. Studies such as the ones discussed

  10. Effects of water extract of Curcuma longa (L.) roots on immunity and telomerase function.

    PubMed

    Pan, Min-Hsiung; Wu, Jia-Ching; Ho, Chi-Tang; Badmaev, Vladimir

    2017-05-12

    Background Immunity and Longevity Methods A water extract of Curcuma longa (L.) [vern. Turmeric] roots (TurmericImmune™) standardized for a minimum 20 % of turmeric polysaccharides ukonan A, B, C and D was evaluated for its biological properties in in vitro tissue culture studies. Results The water extract of turmeric (TurP) exhibited induced-nitric oxide (NO) production in RAW264.7 macrophages. These results suggested the immunomodulatory effects of TurP. In addition, the polysaccharides up-regulated function of telomerase reverse transcriptase (TERT) equally to the phenolic compound from turmeric, curcumin. Conclusions The ukonan family of polysaccharides may assist in promoting cellular immune responses, tissue repair and lifespan by enhancing immune response and telomere function.

  11. Immunization information systems in Canada: Attributes, functionality, strengths and challenges. A Canadian Immunization Research Network study.

    PubMed

    Wilson, Sarah E; Quach, Susan; MacDonald, Shannon E; Naus, Monika; Deeks, Shelley L; Crowcroft, Natasha S; Mahmud, Salaheddin M; Tran, Dat; Kwong, Jeffrey C; Tu, Karen; Johnson, Caitlin; Desai, Shalini

    2017-03-01

    Canada does not have a national immunization registry. Diverse systems to record vaccine uptake exist, but these have not been systematically described. Our objective was to describe the immunization information systems (IISs) and non-IIS processes used to record childhood and adolescent vaccinations, and to outline the strengths and limitations of the systems and processes. We collected information from key informants regarding their provincial, territorial or federal organization's surveillance systems for assessing immunization coverage. Information collection consisted of a self-administered questionnaire and a follow-up interview. We evaluated systems against attributes derived from the literature using content analysis. Twenty-six individuals across 16 public health organizations participated over the period of April to August 2015. Twelve of Canada's 13 provinces and territories (P/Ts) and two organizations involved in health service delivery for on-reserve First Nations people participated. Across systems, there were differences in data collection processes, reporting capabilities and advanced functionality. Commonly cited challenges included timeliness and data completeness of records, particularly for physician-administered immunizations. Privacy considerations and the need for data standards were stated as challenges to the goal of information sharing across P/T systems. Many P/Ts have recently implemented new systems and, in some cases, legislation to improve timeliness and/or completeness. Considerable variability exists among IISs and non-IIS processes used to assess immunization coverage in Canada. Although some P/Ts have already pursued legislative or policy initiatives to address the completeness and timeliness of information, many additional opportunities exist in the information technology realm.

  12. Functional Classification of Immune Regulatory Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving themore » class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.« less

  13. Going outdoors and cognitive function among community-dwelling older adults: Moderating role of physical function.

    PubMed

    Harada, Kazuhiro; Lee, Sangyoon; Park, Hyuntae; Shimada, Hiroyuki; Makizako, Hyuma; Doi, Takehiko; Yoshida, Daisuke; Tsutsumimoto, Kota; Anan, Yuya; Uemura, Kazuki; Suzuki, Takao

    2016-01-01

    Identifying the risk factors of cognitive impairment is essential for implementing effective prevention strategies for dementia. Previous studies have shown that the frequency of going outdoors is inversely associated with cognitive decline. Little research has examined whether the relationship between going outdoors and cognitive decline varies with physical functioning in older adults. The aim of the present study was to examine the relationship between going outdoors and cognitive function in older adults with and without physical function limitations. The present study analyzed the data of 4450 individuals (aged 65 years or older) who participated in the Obu Study of Health Promotion for the Elderly. The measures were the Mini-Mental State Examination (MMSE), going outdoors (at least once a week or not), self-reported physical function limitations (with or without), and demographic and health-related factors as potential confounders. Analysis of covariance and post-hoc comparisons showed that although going outdoors at least once a week was associated with higher MMSE scores among older adults with limited physical function, it was not significantly associated with the MMSE scores among older adults without limited physical function. Similarly, logistic regression analyses, stratified by physical function, showed a significant association between going outdoors and MMSE (<24 points or not) among older adults with limited physical function. The results show that going outdoors less than once a week is associated with decreased cognitive function among older adults with limited physical function, but it is not associated with cognitive function among older adults without limited physical function. © 2015 Japan Geriatrics Society.

  14. Evaluation of immune functions in captive immature loggerhead sea turtles (Caretta caretta).

    PubMed

    Rousselet, Estelle; Levin, Milton; Gebhard, Erika; Higgins, Benjamin M; DeGuise, Sylvain; Godard-Codding, Céline A J

    2013-11-15

    Sea turtles face numerous environmental challenges, such as exposure to chemical pollution and biotoxins, which may contribute to immune system impairment, resulting in increased disease susceptibility. Therefore, a more thorough assessment of the host's immune response and its susceptibility is needed for these threatened and endangered animals. In this study, the innate and acquired immune functions of sixty-five clinically healthy, immature, captive loggerhead sea turtles (Caretta caretta) were assayed using non-lethal blood sample collection. Functional immune assays were developed and/or optimized for this species, including mitogen-induced lymphocyte proliferation, natural killer (NK) cell activity, phagocytosis, and respiratory burst. Peripheral blood mononuclear cells (PBMC) and phagocytes were isolated by density gradient centrifugation on Ficoll-Paque and discontinuous Percoll gradients, respectively. The T lymphocyte mitogens ConA significantly induced lymphocyte proliferation at 1 and 2 μg/mL while PHA significantly induced lymphocyte proliferation at 5 and 10 μg/mL. The B lymphocyte mitogen LPS significantly induced proliferation at 1 μg/mL. Monocytes demonstrated higher phagocytic activity than eosinophils. In addition, monocytes exhibited respiratory burst. Natural killer cell activity was higher against YAC-1 than K-562 target cells. These optimized assays may help to evaluate the integrity of loggerhead sea turtle's immune system upon exposure to environmental contaminants, as well as part of a comprehensive health assessment and monitoring program. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Disclosure of Traumas and Immune Function: Health Implications for Psychotherapy.

    ERIC Educational Resources Information Center

    Pennebaker, James W.; And Others

    1988-01-01

    Assigned 50 healthy undergraduates the task of writing about either traumatic experiences or superficial topics for four consecutive days. Examination of cellular-immune system function and health center visits suggests that confronting traumatic experiences was physically beneficial. Discusses implications of such active confrontation of…

  16. Passive Immunization with Milk Produced from an Immunized Cow Prevents Oral Recolonization by Streptococcus mutans

    PubMed Central

    Shimazaki, Yoshihiro; Mitoma, Morihide; Oho, Takahiko; Nakano, Yoshio; Yamashita, Yoshihisa; Okano, Kaoru; Nakano, Yutaka; Fukuyama, Masataka; Fujihara, Noboru; Nada, Youichi; Koga, Toshihiko

    2001-01-01

    Cell surface protein antigen (PAc) and water-insoluble glucan-synthesizing enzyme (GTF-I) produced by cariogenic Streptococcus mutans are two major factors implicated in the colonization of the human oral cavity by this bacterium. We examined the effect of bovine milk, produced after immunization with a fusion protein of functional domains of these proteins, on the recolonization of S. mutans. To prepare immune milk, a pregnant Holstein cow was immunized with the fusion protein PAcA-GB, a fusion of the saliva-binding alanine-rich region (PAcA) of PAc and the glucan-binding (GB) domain of GTF-I. After eight adult subjects received cetylpyridinium chloride (CPC) treatment, one subgroup (n = 4) rinsed their mouths with immune milk and a control group (n = 4) rinsed with nonimmune milk. S. mutans levels in saliva and dental plaque decreased after CPC treatment in both groups. Mouth rinsing with immune milk significantly inhibited recolonization of S. mutans in saliva and plaque. On the other hand, the numbers of S. mutans cells in saliva and plaque in the control group increased immediately after the CPC treatment and surpassed the baseline level 42 and 28 days, respectively, after the CPC treatment. The ratios of S. mutans to total streptococci in saliva and plaque in the group that received immune milk were lower than those in the control group. These results suggest that milk produced from immunized cow may be useful for controlling S. mutans in the human oral cavity. PMID:11687453

  17. Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome

    PubMed Central

    Dinan, Timothy G; Cryan, John F

    2017-01-01

    There is now a large volume of evidence to support the view that the immune system is a key communication pathway between the gut and brain, which plays an important role in stress-related psychopathologies and thus provides a potentially fruitful target for psychotropic intervention. The gut microbiota is a complex ecosystem with a diverse range of organisms and a sophisticated genomic structure. Bacteria within the gut are estimated to weigh in excess of 1 kg in the adult human and the microbes within not only produce antimicrobial peptides, short chain fatty acids, and vitamins, but also most of the common neurotransmitters found in the human brain. That the microbial content of the gut plays a key role in immune development is now beyond doubt. Early disruption of the host-microbe interplay can have lifelong consequences, not just in terms of intestinal function but in distal organs including the brain. It is clear that the immune system and nervous system are in continuous communication in order to maintain a state of homeostasis. Significant gaps in knowledge remain about the effect of the gut microbiota in coordinating the immune-nervous systems dialogue. However, studies using germ-free animals, infective models, prebiotics, probiotics, and antibiotics have increased our understanding of the interplay. Early life stress can have a lifelong impact on the microbial content of the intestine and permanently alter immune functioning. That early life stress can also impact adult psychopathology has long been appreciated in psychiatry. The challenge now is to fully decipher the molecular mechanisms that link the gut microbiota, immune, and central nervous systems in a network of communication that impacts behavior patterns and psychopathology, to eventually translate these findings to the human situation both in health and disease. Even at this juncture, there is evidence to pinpoint key sites of communication where gut microbial interventions either with drugs

  18. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis.

    PubMed

    Hirayama, Daisuke; Iida, Tomoya; Nakase, Hiroshi

    2017-12-29

    Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  19. Effects of Moderate Prenatal Alcohol Exposure during Early Gestation in Rats on Inflammation across the Maternal-Fetal-Immune Interface and Later-Life Immune Function in the Offspring

    PubMed Central

    Terasaki, Laurne S.; Schwarz, Jaclyn M.

    2017-01-01

    During early brain development, microglial activation can negatively impact long-term neuroimmune and cognitive outcomes. It is well-known that significant alcohol exposure during early gestation results in a number of cognitive deficits associated with fetal alcohol spectrum disorders (FASD). Additionally, microglia are activated following high levels of alcohol exposure in rodent models of FASD. We sought to examine whether moderate prenatal alcohol exposure (70 mg/dL blood alcohol concentration) activates microglia in the fetal rat brain, and whether moderate fetal alcohol exposure has long-term negative consequences for immune function and cognitive function in the rat. We also measured inflammation within the placenta and maternal serum following moderate alcohol exposure to determine whether either could be a source of cytokine production in the fetus. One week of moderate prenatal alcohol exposure produced a sex-specific increase in cytokines and chemokines within the fetal brain. Cytokines were also increased within the placenta, regardless of the sex of the fetus, and independent of the low levels of circulating cytokines within the maternal serum. Adult offspring exposed to alcohol prenatally had exaggerated cytokine production in the brain and periphery in response to lipopolysaccharide (25 μg/kg), as well as significant memory deficits precipitated by this low-level of inflammation. Thus the immune system, including microglia, may be a key link to understanding the etiology of fetal alcohol spectrum disorders and other unexplored cognitive or health risks associated with even low levels of fetal alcohol exposure. PMID:27318824

  20. Executive Function Subcomponents and their Relations to Everyday Functioning in Healthy Older Adults

    PubMed Central

    McAlister, Courtney; Schmitter-Edgecombe, Maureen

    2016-01-01

    Everyday functioning and its executive functioning cognitive correlates (i.e., switching, inhibition, and updating) were investigated in healthy older adults (HOAs) using multiple methods of functional status. In addition to whether computerized experimental tasks would better dissociate these subcomponents than neuropsychological measures of executive functioning, we were also interested in the contributions of both experimental and neuropsychological measures of executive function subcomponents to functional abilities. Seventy HOAs (45 young-old and 25 old-old) and 70 younger adults completed executive function and neuropsychological tests. In addition to self- and informant questionnaires of functional abilities, HOAs completed two performance-based measures. An aging effect was found on all executive function measures. Old-old older adults and their informants did not report more functional difficulties but demonstrated more difficulties on performance-based measures relative to young-old participants. For the HOAs, after controlling for age and education, the neuropsychological measures of executive functioning, but not experimental measures, explained a significant amount of variance in the informant-report and both performance-based measures. Updating measures differentially predicted performance-based measures, while switching was important for questionnaire and performance-based measures. The contribution of executive functioning to functional status when measured with experimental measures specifically designed to isolate the executive subcomponent was not as strong as hypothesized. Further research examining the value of isolating executive function subcomponents in neuropsychological assessment and the prediction of functional abilities in older adults is warranted. PMID:27206842

  1. Executive function subcomponents and their relations to everyday functioning in healthy older adults.

    PubMed

    McAlister, Courtney; Schmitter-Edgecombe, Maureen

    2016-10-01

    Everyday functioning and its executive functioning cognitive correlates (i.e., switching, inhibition, and updating) were investigated in healthy older adults (HOAs) using multiple methods of functional status. In addition to whether computerized experimental tasks would better dissociate these subcomponents than neuropsychological measures of executive functioning, we were also interested in the contributions of both experimental and neuropsychological measures of executive function subcomponents to functional abilities. Seventy HOAs (45 young-old and 25 old-old) and 70 younger adults completed executive function and neuropsychological tests. In addition to self- and informant questionnaires of functional abilities, HOAs completed two performance-based measures. An aging effect was found on all executive function measures. Old-old older adults and their informants did not report more functional difficulties but demonstrated more difficulties on performance-based measures than did young-old participants. For the HOAs, after controlling for age and education, the neuropsychological measures of executive functioning, but not experimental measures, explained a significant amount of variance in the informant-report and both performance-based measures. Updating measures differentially predicted performance-based measures, while switching was important for questionnaire and performance-based measures. The contribution of executive functioning to functional status when measured with experimental measures specifically designed to isolate the executive subcomponent was not as strong as hypothesized. Further research examining the value of isolating executive function subcomponents in neuropsychological assessment and the prediction of functional abilities in older adults is warranted.

  2. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b

    PubMed Central

    Lutz-Nicoladoni, Christina; Wolf, Dominik; Sopper, Sieghart

    2015-01-01

    Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies. PMID:25815272

  3. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals.

    PubMed

    Piasecka, Anna; Jedrzejczak-Rey, Nicolas; Bednarek, Paweł

    2015-05-01

    Plant secondary metabolites carry out numerous functions in interactions between plants and a broad range of other organisms. Experimental evidence strongly supports the indispensable contribution of many constitutive and pathogen-inducible phytochemicals to plant innate immunity. Extensive studies on model plant species, particularly Arabidopsis thaliana, have brought significant advances in our understanding of the molecular mechanisms underpinning pathogen-triggered biosynthesis and activation of defensive secondary metabolites. However, despite the proven significance of secondary metabolites in plant response to pathogenic microorganisms, little is known about the precise mechanisms underlying their contribution to plant immunity. This insufficiency concerns information on the dynamics of cellular and subcellular localization of defensive phytochemicals during the encounters with microbial pathogens and precise knowledge on their mode of action. As many secondary metabolites are characterized by their in vitro antimicrobial activity, these compounds were commonly considered to function in plant defense as in planta antibiotics. Strikingly, recent experimental evidence suggests that at least some of these compounds alternatively may be involved in controlling several immune responses that are evolutionarily conserved in the plant kingdom, including callose deposition and programmed cell death. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Stimulation of Innate Immune Function by Panax ginseng after Heat Processing.

    PubMed

    Shin, Myoung-Sook; Song, Ji Hoon; Choi, Pilju; Lee, Jong Hun; Kim, Song-Yi; Shin, Kwang-Soon; Ham, Jungyeob; Kang, Ki Sung

    2018-05-09

    Panax ginseng Meyer has been used for the treatment of immune diseases and for strengthening the immune function. In this study, we evaluated the innate immune-stimulating functions and action mechanisms of white ginseng (WG) and heat-processed ginseng (HPG) in RAW264.7 cells. According to LC-MS analysis results, WG contained typical ginsenosides, such as Rb1, Rc, Rb2, Rd, and Rg1, whereas HPG contained Rg3, Rk1, and Rg5 as well as typical ginsenosides. HPG, not WG, enhanced NF-κB transcriptional activity, cytokine production (IL-6 and TNF-α), and MHC class I and II expression in RAW264.7 cells. In addition, HPG phosphorylated MAPKs and NF-kB pathways. In experiments with inhibitors, the ERK inhibitor completely suppressed the effect of HPG on IL-6 and TNF-α production. HPG-induced c-Jun activation was suppressed by an ERK inhibitor and partially suppressed by JNK, p38, and IκBα inhibitors. Collectively, these results suggested that HPG containing Rg3, Rg5, and Rk1 increased macrophage activation which was regulated by the ERK/c-Jun pathway in RAW264.7 cells.

  5. Toxic effects of dietary methylmercury on immune function and hematology in American kestrels (Falco sparverius)

    USGS Publications Warehouse

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    Fifty-nine adult male American kestrels (Falco sparverius) were assigned to one of three diet formulations including 0 (control), 0.6, and 3.9 μg/g (dry wt) methylmercury (MeHg). Kestrels received their diets daily for 13 weeks to assess the effects of dietary MeHg on immunocompetence. Immunotoxic endpoints included assessment of cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and primary and secondary antibody-mediated immune responses (IR) via the sheep red blood cell (SRBC) hemagglutination assay. Select hematology and histology parameters were evaluated to corroborate the results of functional assays and to assess immunosuppression of T and B cell-dependent components in spleen tissue. Kestrels in the 0.6 and 3.9 μg/g MeHg groups exhibited suppression of CMI, including lower PHA stimulation indexes (p = 0.019) and a 42 to 45% depletion of T cell-dependent splenic lymphoid tissue (p = 0.006). Kestrels in the 0.6 μg/g group exhibited suppression of the primary IR to SRBCs (p = 0.014). MeHg did not have a noticeable effect on the secondary IR (p = 0.166). Elevation of absolute heterophil counts (p p p = 0.003) was apparent in the 3.9 μg/g group at week 12. Heterophilia, or the excess of heterophils in peripheral blood above normal ranges, was apparent in seven of 17 (41%) kestrels in the 3.9 μg/g group and was indicative of an acute inflammatory response or physiological stress. This study revealed that adult kestrels were more sensitive to immunotoxic effects of MeHg at environmentally relevant dietary concentrations than they were to reproductive effects as previously reported.

  6. Hepatoprotective and immunological functions of Nigella sativa seed oil against hypervitaminosis A in adult male rats.

    PubMed

    Al-Suhaimi, Ebtesam Abdullah

    2012-08-01

    The toxic effects of excess vitamin A (VA) intake deserve increased attention. Nigella sativa (NS) seed possesses physiological and pharmacological actions and protects against toxic agents. This work investigated the availability of NS seed oil as a protective agent against the effects of hypervitaminosis A (HVA) on liver function and immunity. Fifty adult albino rats were used and divided into five groups: (G1) control; (G2) experimental HVA rats administered extreme doses (10,000 IU/kg body weight) of VA oil orally, daily for 6 weeks; (G3) rats treated with NS seed oil (800 mg/kg) orally, daily for 6 weeks; (G4) HVA rats simultaneously treated with NS seed oil at the same doses and periods; and (G5) HVA recovery group. Liver function, immunoglobulin (IgG and IgM) levels, and lysosome activity were measured in serum. HVA rats revealed marked elevations in alanine aminotransferase and aspartate aminotransferase activities. This is the first study to demonstrate that NS seed oil possesses significant hepatoprotective activity against HVA. NS seed oil was a potent inducer of IgG and IgM in rat serum either alone or with high doses of VA. These findings may be considered the initial steps of the physiological and humoral immune responses for NS seed oil against HVA, but further studies examining longer periods are needed prior to recommending the use of NS seed oil as an alternative medicine for hepatic and immune diseases.

  7. Effects of small increases in corticosterone levels on morphology, immune function, and feather development.

    PubMed

    Butler, Michael W; Leppert, Lynda L; Dufty, Alfred M

    2010-01-01

    Stressors encountered during avian development may affect an individual's phenotype, including immunocompetence, growth, and feather quality. We examined effects of simulated chronic low-level stress on American kestrel (Falco sparverius) nestlings. Continuous release of corticosterone, a hormone involved in the stress response, can model chronic stress in birds. We implanted 13-d-old males with either corticosterone-filled implants or shams and measured their growth, immune function, and feather coloration. We found no significant differences between groups at the end of the weeklong exposure period in morphometrics (mass, tarsus, wing length, and asymmetry), immunocompetence (cutaneous immunity, heterophil/lymphocyte ratio, and humoral immunity), or feather coloration. One week subsequent to implant removal, however, differences were detected. Sham-implanted birds had significantly longer wings and a reduced level of cutaneous immune function compared with those of birds given corticosterone-filled implants. Therefore, increases of only 2 ng/mL in basal corticosterone titer can have small but measurable effects on subsequent avian development.

  8. Office manager and nurse perspectives on facilitators of adult immunization.

    PubMed

    Nowalk, Mary Patricia; Tabbarah, Melissa; Hart, Jonathan A; Fox, Dwight E; Raymund, Mahlon; Wilson, Stephen A; Zimmerman, Richard K

    2009-10-01

    To assess which characteristics of primary care practices serving low- to middle-income white and minority patients relate to pneumococcal polysaccharide vaccine (PPV) and influenza vaccination rates. In an intentional sample of 18 primary care practices, PPV and influenza vaccination rates were determined for a sample of 2289 patients >or=65 years old using medical record review. Office managers and lead nurses were surveyed about their office systems for providing adult immunizations, beliefs about PPV and influenza vaccines, and their own vaccination status. Hierarchical linear modeling (HLM) analyses were used to account for the clustered nature of the data. Sampled patients were most frequently female (61%) and white (83%), and averaged 76 years of age. Weighted vaccination rates were 61.1% for PPV and 52.5% for influenza; rates varied by practice. Using HLM, with patient age and race entered as level 1 variables and office factors entered as level 2 variables, time allotted for an annual well visit was associated with a higher likelihood of influenza vaccination (odds ratio [OR] = 1.04; 95% confidence interval [CI] = 1.02, 1.07; P = .003). Nurse influenza vaccination status was associated with a higher likelihood of PPV vaccination (OR = 3.81; 95% CI = 1.49, 9.78; P = .009). In addition to race and age, visit length and the nurses' vaccination status were associated with adult vaccination rates. Quality improvement initiatives for adult vaccination might include strengthening social influence of providers and/or ensuring that adequate time is scheduled for preventive care.

  9. Drosophila immunity: analysis of PGRP-SB1 expression, enzymatic activity and function.

    PubMed

    Zaidman-Rémy, Anna; Poidevin, Mickael; Hervé, Mireille; Welchman, David P; Paredes, Juan C; Fahlander, Carina; Steiner, Hakan; Mengin-Lecreulx, Dominique; Lemaitre, Bruno

    2011-02-18

    Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed.

  10. Barriers to Immunizations and Strategies to Enhance Immunization Rates in Adults with Autoimmune Inflammatory Diseases.

    PubMed

    Kirchner, Elizabeth; Ruffing, Victoria

    2017-02-01

    For as long as there have been immunizations, there have been barriers to them. Immunization rates in the United States are below target. Rheumatologists and rheumatology practitioners need to understand the issues of immunizations in patients with autoimmune inflammatory disease to identify and overcome barriers to immunization. Several strategies for overcoming these barriers are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Examining structural and clinical factors associated with implementation of standing orders for adult immunization.

    PubMed

    Yonas, Michael A; Nowalk, Mary Patricia; Zimmerman, Richard K; Ahmed, Faruque; Albert, Steven M

    2012-01-01

    A proven method to increase vaccination rates in primary care is a standing orders program (SOP) for nonphysician staff to assess and vaccinate eligible individuals without a specific written physician order. This study describes a mixed methods approach to examining physicians' beliefs and attitudes about and adoption of SOPs for adult immunizations, specifically, influenza and pneumococcal polysaccharide vaccine. Focus groups and in-depth interviews of physicians, nurses, practice managers, and the medical director of a managed care health plan were conducted. Results were used to enrich a concise survey based on the Awareness-to-Adherence model of physician behavior and previous research, which was mailed to 1,640 general internists and family physicians nationwide. Barriers to SOPs identified through qualitative methods were lack of interest in changing the status quo, a physician-dominated hierarchy, and fear of malpractice. Facilitators included having an electronic medical record and a practice culture that was open to change. The survey (response rate 67%) confirmed the facilitators and further identified patient, physician, and practice factors that served as barriers to establishing and maintaining SOPs. This mixed methods approach provided the opportunity to develop a tailored and practice-oriented survey for examining the contextual factors influencing clinical providers' decisions to implement SOPs for adult immunization. © 2011 National Association for Healthcare Quality.

  12. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor).

    PubMed

    Jacobs, Chris G C; Gallagher, Joe D; Evison, Sophie E F; Heckel, David G; Vilcinskas, Andreas; Vogel, Heiko

    2017-05-01

    In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Glomerular Immune Deposits Are Predictive of Poor Long-Term Outcome in Patients with Adult Biopsy-Proven Minimal Change Disease: A Cohort Study in Korea.

    PubMed

    Lee, Sung Woo; Yu, Mi-Yeon; Baek, Seon Ha; Ahn, Shin-Young; Kim, Sejoong; Na, Ki Young; Chae, Dong-Wan; Chin, Ho Jun

    2016-01-01

    There has been little published information on risk factors for poor long-term outcome in adult biopsy-proven minimal change disease (MCD). Data from sixty-three adult, biopsy-proven primary MCD patients treated at a tertiary university hospital between 2003 and 2013 were analyzed. Baseline clinical and pathologic factors were assessed for the associations with composite outcome of creatinine doubling, end stage renal disease, or all-cause mortality. During a median (interquartile) 5.0 (2.8-5.0) years, the composite outcome occurred in 11.1% (7/63) of patients. The rate of glomerular immune deposits was 23.8% (15/63). Patients with glomerular immune deposits showed a significantly lower urine protein creatinine ratio than those without deposits (P = 0.033). The rate of non-responders was significantly higher in patients with glomerular immune deposits than in those without deposits (P = 0.033). In patients with deposits, 26.7% (4/15) developed the composite outcome, while only 6.3% (3/48) developed the composite outcome among those without deposits (P = 0.049). In multivariate Cox proportional hazards regression analysis, the presence of glomerular immune deposits was the only factor associated with development of the composite outcome (hazard ratio: 2.310, 95% confidence interval: 1.031-98.579, P = 0.047). Glomerular immune deposits were associated with increased risk of a composite outcome in adult MCD patients. The higher rate of non-responders in patients with deposits might be related to the poor outcome. Future study is needed.

  14. Hygiene and other early childhood influences on the subsequent function of the immune system.

    PubMed

    Rook, Graham A W; Lowry, Christopher A; Raison, Charles L

    2015-08-18

    The immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia and autism. The immune system also acts indirectly by "farming" the intestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparent inflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights

  15. Assessment of ixekizumab, an interleukin-17A monoclonal antibody, for potential effects on reproduction and development, including immune system function, in cynomolgus monkeys.

    PubMed

    Clarke, D O; Hilbish, K G; Waters, D G; Newcomb, D L; Chellman, G J

    2015-12-01

    The reproductive and developmental toxicity of ixekizumab, a selective inhibitor of interleukin-17A (IL-17A), was assessed in the following studies in cynomolgus monkeys: fertility (3-month dosing), embryo-fetal development (EFD; dosing from gestation day (GD) 20 through 139), and pre-postnatal development (PPND; dosing from GD 20 through parturition). Because IL-17A has functional roles in innate and humoral immunity, immune system modulation was evaluated in the EFD and PPND studies; immunological evaluations in infants comprised peripheral blood immunophenotyping, Natural Killer cell cytolytic activity, and T-cell-dependent antibody (IgG and IgM) primary and secondary responses to antigen challenge. Ixekizumab exposure was sustained during the dosing periods in most adult monkeys. Fetal exposure at Cesarean section (GD 140-142; EFD study) was 18-25% of maternal exposure and ixekizumab was present in infants for up to 29 weeks postpartum. There were no adverse effects attributed to ixekizumab in any study. Importantly, immune system development and maturation were unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    PubMed Central

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix

    2017-01-01

    Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066

  17. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    PubMed

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  18. Asian Citrus Psyllid Expression Profiles Suggest Candidatus Liberibacter Asiaticus-Mediated Alteration of Adult Nutrition and Metabolism, and of Nymphal Development and Immunity

    PubMed Central

    He, Ruifeng; Nelson, William; Yin, Guohua; Cicero, Joseph M.; Willer, Mark; Kim, Ryan; Kramer, Robin; May, Greg A.; Crow, John A.; Soderlund, Carol A.; Gang, David R.; Brown, Judith K.

    2015-01-01

    The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease, or Huanglongbing (HLB). The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt), classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW) (http://www.sohomoptera.org/ACPPoP/). Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas transmission. PMID

  19. Can sleep deprivation studies explain why human adults sleep?

    PubMed

    Brown, Lee K

    2012-11-01

    This review will concentrate on the consequences of sleep deprivation in adult humans. These findings form a paradigm that serves to demonstrate many of the critical functions of the sleep states. The drive to obtain food, water, and sleep constitutes important vegetative appetites throughout the animal kingdom. Unlike nutrition and hydration, the reasons for sleep have largely remained speculative. When adult humans are nonspecifically sleep-deprived, systemic effects may include defects in cognition, vigilance, emotional stability, risk-taking, and, possibly, moral reasoning. Appetite (for foodstuffs) increases and glucose intolerance may ensue. Procedural, declarative, and emotional memory are affected. Widespread alterations of immune function and inflammatory regulators can be observed, and functional MRI reveals profound changes in regional cerebral activity related to attention and memory. Selective deprivation of rapid eye movement (REM) sleep, on the contrary, appears to be more activating and to have lesser effects on immunity and inflammation. The findings support a critical need for sleep due to the widespread effects on the adult human that result from nonselective sleep deprivation. The effects of selective REM deprivation appear to be different and possibly less profound, and the functions of this sleep state remain enigmatic.

  20. Immunization against lysozyme-like proteins affect sperm function and fertility in the rat.

    PubMed

    Narmadha, Ganapathy; Yenugu, Suresh

    2016-11-01

    Proteins of the epididymal and testicular mileu contribute to sperm maturation and a vast majority of them remain uncharacterised. In this study, the role of three Lysozyme-like (LYZL) proteins, namely LYZL1, LYZL4 and LYZL6 in sperm function was assessed using in vitro neutralization and auto antibodies generation model. Rats immunized with LYZL1, LYZL4 and LYZL6 proteins had a litter size of 5.93, 8.47 and 2.10 respectively compared to 9.96 in the control rats. The litter size was further reduced to 4.53, 7.67 and 1.23 for the corresponding proteins in the second mating conducted 14 weeks after immunization. Epididymal and testicular fluids obtained from the immunized rats displayed a very high antibody titre against all the three proteins. Sperm count was significantly reduced in rats immunized with LYZL1 or LYZL6 and to a lower extent in LYZL4 group. Acrosome reaction associated calcium release was inhibited in spermatozoa obtained from LYZL1 or LYZL4 or LYZL6 immunized rats as well as in spermatozoa incubated with antiserum against the three proteins. Impairment in path velocity, progressive velocity and track speed were observed in spermatozoa obtained from LYZL6 immunized rats. Treatment of spermatozoa with LYZL6 recombinant protein did not potentiate calcium release and acrosome reaction. Results of this study indicate a role for LYZL proteins in sperm function and further studies are warranted to explore them as potential contraceptive agents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors

    PubMed Central

    Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.

    2011-01-01

    Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370

  2. Frailty and sarcopenia: The potential role of an aged immune system.

    PubMed

    Wilson, Daisy; Jackson, Thomas; Sapey, Elizabeth; Lord, Janet M

    2017-07-01

    Frailty is a common negative consequence of ageing. Sarcopenia, the syndrome of loss of muscle mass, quality and strength, is more common in older adults and has been considered a precursor syndrome or the physical manifestation of frailty. The pathophysiology of both syndromes is incompletely described with multiple causes, inter-relationships and complex pathways proposed. Age-associated changes to the immune system (both immunesenescence, the decline in immune function with ageing, and inflammageing, a state of chronic inflammation) have been suggested as contributors to sarcopenia and frailty but a direct causative role remains to be established. Frailty, sarcopenia and immunesenescence are commonly described in older adults but are not ubiquitous to ageing. There is evidence that all three conditions are reversible and all three appear to share common inflammatory drivers. It is unclear whether frailty, sarcopenia and immunesenescence are separate entities that co-occur due to coincidental or potentially confounding factors, or whether they are more intimately linked by the same underlying cellular mechanisms. This review explores these possibilities focusing on innate immunity, and in particular associations with neutrophil dysfunction, inflammation and known mechanisms described to date. Furthermore, we consider whether the age-related decline in immune cell function (such as neutrophil migration), increased inflammation and the dysregulation of the phosphoinositide 3-kinase (PI3K)-Akt pathway in neutrophils could contribute pathogenically to sarcopenia and frailty. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Impact of childhood anthropometry trends on adult lung function.

    PubMed

    Suresh, Sadasivam; O'Callaghan, Michael; Sly, Peter D; Mamun, Abdullah A

    2015-04-01

    Poor fetal growth rate is associated with lower respiratory function; however, there is limited understanding of the impact of growth trends and BMI during childhood on adult respiratory function. The current study data are from the Mater-University of Queensland Study of Pregnancy birth cohort. Prospective data were available from 1,740 young adults who performed standard spirometry at 21 years of age and whose birth weight and weight, height, and BMI at 5, 14, and 21 years of age were available. Catch-up growth was defined as an increase of 0.67 Z score in weight between measurements. The impact of catch-up growth on adult lung function and the relationship between childhood BMI trends and adult lung function were assessed using regression analyses. Lung function was higher at 21 years in those demonstrating catch-up growth from birth to 5 years (FVC, men: 5.33 L vs 5.54 L; women: 3.78 L vs 4.03 L; and FEV1, men: 4.52 L/s vs 4.64 L/s; women: 3.31 L/s vs 3.45 L/s). Subjects in the lowest quintile of birth (intrauterine growth retardation) also showed improved lung function if they had catch-up growth in the first 5 years of life. There was a positive correlation between increasing BMI and lung function at 5 years of age. However, in the later measurements when BMI increased into the obese category, a drop in lung function was observed. These data show evidence for a positive contribution of catch-up growth in early life to adult lung function. However, if weight gain or onset of obesity occurs after 5 years of age, an adverse impact on adult lung function is noted.

  4. Impaired Immune Response to Primary but Not to Booster Vaccination Against Hepatitis B in Older Adults.

    PubMed

    Weinberger, Birgit; Haks, Mariëlle C; de Paus, Roelof A; Ottenhoff, Tom H M; Bauer, Tanja; Grubeck-Loebenstein, Beatrix

    2018-01-01

    Many current vaccines are less immunogenic and less effective in elderly compared to younger adults due to age-related changes of the immune system. Most vaccines utilized in the elderly contain antigens, which the target population has had previous contact with due to previous vaccination or infection. Therefore, most studies investigating vaccine-induced immune responses in the elderly do not analyze responses to neo-antigens but rather booster responses. However, age-related differences in the immune response could differentially affect primary versus recall responses. We therefore investigated the impact of age on primary and recall antibody responses following hepatitis B vaccination in young and older adults. Focused gene expression profiling was performed before and 1 day after the vaccination in order to identify gene signatures predicting antibody responses. Young (20-40 years; n  = 24) and elderly (>60 years; n  = 17) healthy volunteers received either a primary series (no prior vaccination) or a single booster shot (documented primary vaccination more than 10 years ago). Antibody titers were determined at days 0, 7, and 28, as well as 6 months after the vaccination. After primary vaccination, antibody responses were lower and delayed in the elderly compared to young adults. Non-responders after the three-dose primary series were only observed in the elderly group. Maximum antibody concentrations after booster vaccination were similar in both age groups. Focused gene expression profiling identified 29 transcripts that correlated with age at baseline and clustered in a network centered around type I interferons and pro-inflammatory cytokines. In addition, smaller 8- and 6-gene signatures were identified at baseline that associated with vaccine responsiveness during primary and booster vaccination, respectively. When evaluating the kinetic changes in gene expression profiles before and after primary vaccination, a 33-gene signature

  5. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis.

    PubMed

    Nicholas, Dequina; Proctor, Elizabeth A; Raval, Forum M; Ip, Blanche C; Habib, Chloe; Ritou, Eleni; Grammatopoulos, Tom N; Steenkamp, Devin; Dooms, Hans; Apovian, Caroline M; Lauffenburger, Douglas A; Nikolajczyk, Barbara S

    2017-01-01

    Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96) analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.

  6. Short Term, Low Dose Simvastatin Pretreatment Alters Memory Immune Function Following Secondary Staphylococcus aureus Infection.

    PubMed

    Smelser, Lisa K; Walker, Callum; Burns, Erin M; Curry, Michael; Black, Nathanael; Metzler, Jennifer A; McDowell, Susan A; Bruns, Heather A

    Statins are potent modulators of immune responses, resulting in their ability to enhance host survival from primary bacterial infections. Alterations in primary immune responses that may be beneficial for survival following infection may also result in alterations in the generation of the immunologic memory response and subsequently affect immune responses mounted during secondary bacterial infection. In this study, we report that levels of total serum IgG2c, following primary infection, were decreased in simvastatin pretreated mice, and investigate the effect of simvastatin treatment, prior to primary infection, on immune responses activated during secondary S. aureus infection. A secondary infection model was implemented whereby simvastatin pretreated and control mice were reinfected with S. aureus 14 days after primary infection, with no additional simvastatin treatment, and assessed for survival and alterations in immune function. While survivability to secondary S. aureus infection was not different between simvastatin pretreated and control mice, memory B and T lymphocyte functions were altered. Memory B cells, isolated 14 days after secondary infection, from simvastatin pretreated mice and stimulated ex vivo produced increased levels of IgG1 compared to memory B cells isolated from control mice, while levels of IgM and IgG2c remained similar. Furthermore, memory B and T lymphocytes from simvastatin pretreated mice exhibited a decreased proliferative response when stimulated ex vivo compared to memory cells isolated from control mice. These findings demonstrate the ability of a short term, low dose simvastatin treatment to modulate memory immune function.

  7. Functional literacy of Young Guyanese Adults

    NASA Astrophysics Data System (ADS)

    Jennings, Zellyne

    2000-05-01

    Functional literacy is interpreted as the ability of the individual to apply skills in reading, writing, calculation and basic problem-solving in those activities in which literacy is required for effective functioning in his/her own group and community. The paper describes the rationale, development and administration of the test used for measuring levels (high, moderate, low) of achievement in functional literacy in three domains (document, prose and quantitative). An assumption of the study was that a high level of functional literacy was required for the individual to function effectively in his/her own group and community. The context of the study is Guyana the most underdeveloped and impoverished country in the English-speaking Caribbean. The subjects are out of school youth in Guyana aged 14-25. Amongst the main findings are: only approximately 11% of the young people show a high level of functional literacy; females tend to have a higher level of functional literacy than males: and most of those at the low level never went beyond primary and low status secondary schools and usually end up unemployed or in semi- or unskilled jobs. Attention is drawn to the difficulty of attracting funding for literacy programmes from international aid agencies, given the inflated adult literacy rate which is reported for Guyana in international statistics. While they credit Guyana with an adult literacy rate of 97.5%, the study suggests that a more realistic figure is in the 70s. The importance of adult and continuing education is underscored in view of the need to help those who are out of school to meet the ever-changing demands of society for improved skills in literacy and numeracy.

  8. Getting away with murder: how do the BCL-2 family of proteins kill with immunity?

    PubMed Central

    Renault, Thibaud T.; Chipuk, Jerry E.

    2013-01-01

    About 1 million per second is the number of white blood cells the adult human body produces. However, only a small fraction of them will survive as the majority is eliminated through a genetically controlled form of cell death referred to as apoptosis. This review places into perspective recent studies pertaining to the BCL-2 family of proteins as critical regulators of the development and function of the immune system, with particular attention on B cell and T cell biology. Here we discuss how elegant murine model systems have revealed the major contributions of the BCL-2 family in establishing an effective immune system. Moreover, we highlight some key regulatory pathways that influence the expression, function, and stability of individual BCL-2 family members, and discuss their role in immunity. From deadly methods to more gentle manners, the final portion of the review discusses the non-apoptotic functions of the BCL-2 family and how they pertain to the control of immunity. PMID:23527542

  9. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    PubMed

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail

    PubMed Central

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  11. Modulation of macrophage functions by sheeppox virus provides clues to understand interaction of the virus with host immune system.

    PubMed

    Abu-El-Saad, Abdel-Aziz S; Abdel-Moneim, Ahmed S

    2005-03-22

    Poxviruses encode a range of immunomodulatory genes to subvert or evade the challenges posed by the innate and adaptive immune responses. However, the inactivated poxviruses possessed immunostimulating capacity and were used as a prophylactic or metaphylactic application that efficiently reduced susceptibility to infectious diseases in different species. This fact is intensively studied in different genera of poxviruses. However, little is known about the basic mechanisms adopted by sheeppox virus (SPPV). SPPV causes an acute disease of sheep that recently, has been observed to reinfect its host in spite of vaccination. By injecting inactivated or attenuated sheeppox virus SPPV vaccine in adult male Swiss mice, SPPV was found to reduce macrophages' functions in a local event that occurs at the site of application 12 h after vaccine administration as indicated by increased level of IL-10 and decreased level of SOD from cultured peritoneal macrophages. In contrast increased levels of IL-12, and SOD activity from cultured splenic macrophages, lymphocyte response to PHA-P, and in-vivo response to T-dependant Ag were detected. These effects were observed in both attenuated and inactivated SPPV, but more prominent in attenuated one. The results of this study help to elucidate, the phenomenon of existence natural SPPV infections in sheep instead of vaccination and the basic mechanisms responsible for the immunostimulating capacity of sheeppox virus. Locally, SPPV shows evidence for an immune escape mechanism that alleviates the host's immune response. Later and systemically, the virus protects the host from any fatal consequences of the immune system suppression.

  12. Effects of thyroid cystectomy for primary hyperparathyroidism on immune function.

    PubMed

    Yin, Xiangdang; Hu, Liang; Wang, Xiaochun

    2016-01-01

    To evaluate the effects of thyroid cystectomy for primary hyperparathyroidism on immune function. Ninety-two patients with parathyroid cysts complicated with primary hyperparathyroidism were randomly divided into a treatment group and a control group (n=46). The treatment group received endoscopic thyroidectomy through the anterior chest wall via the areolar approach, and the control group was treated with conventional open thyroidectomy. The two groups had similar immune function indices as well as thyroid hormone, serum calcium and phosphorus levels before surgery (P>0.05). After surgery, FT3 and FT4 levels significantly increased in both groups, whereas that of TSH significantly decreased (P<0.05). The levels of the two groups differed significantly on the postoperative 5th day (P<0.05). NK%, CD3+%, CD4+% and CD8+%, which significantly fluctuated on the postoperative 1st day in both groups (P<0.05), were basically recovered on the postoperative 5th day in the treatment group that had significantly different outcomes from those of the control group (P<0.05). On the postoperative 1st and 5th days, the treatment group had significantly lower serum calcium level and significantly higher serum phosphorus level than those of the control group (P<0.05). The surgeries were successfully performed for all patients. During three months of follow-up, the treatment group was significantly less prone to complications such as surgical site infection, recurrent laryngeal nerve injury, parathyroid crisis and hoarseness than the control group (P<0.05). For treatment of primary hyperparathyroidism, endoscopic thyroidectomy through the anterior chest wall via the areolar approach decreased the incidence rate of complications, as well as promoted the recovery of serum calcium and phosphorous levels, probably by only mildly affecting immune function and thyroid hormone levels.

  13. Glomerular Immune Deposits Are Predictive of Poor Long-Term Outcome in Patients with Adult Biopsy-Proven Minimal Change Disease: A Cohort Study in Korea

    PubMed Central

    Lee, Sung Woo; YU, Mi-Yeon; Baek, Seon Ha; Ahn, Shin-Young; Kim, Sejoong; Na, Ki Young; Chae, Dong-Wan; Chin, Ho Jun

    2016-01-01

    Background and Objectives There has been little published information on risk factors for poor long-term outcome in adult biopsy-proven minimal change disease (MCD). Methods Data from sixty-three adult, biopsy-proven primary MCD patients treated at a tertiary university hospital between 2003 and 2013 were analyzed. Baseline clinical and pathologic factors were assessed for the associations with composite outcome of creatinine doubling, end stage renal disease, or all-cause mortality. Results During a median (interquartile) 5.0 (2.8–5.0) years, the composite outcome occurred in 11.1% (7/63) of patients. The rate of glomerular immune deposits was 23.8% (15/63). Patients with glomerular immune deposits showed a significantly lower urine protein creatinine ratio than those without deposits (P = 0.033). The rate of non-responders was significantly higher in patients with glomerular immune deposits than in those without deposits (P = 0.033). In patients with deposits, 26.7% (4/15) developed the composite outcome, while only 6.3% (3/48) developed the composite outcome among those without deposits (P = 0.049). In multivariate Cox proportional hazards regression analysis, the presence of glomerular immune deposits was the only factor associated with development of the composite outcome (hazard ratio: 2.310, 95% confidence interval: 1.031–98.579, P = 0.047). Conclusion Glomerular immune deposits were associated with increased risk of a composite outcome in adult MCD patients. The higher rate of non-responders in patients with deposits might be related to the poor outcome. Future study is needed. PMID:26799663

  14. Cow's Milk and Immune Function in the Respiratory Tract: Potential Mechanisms.

    PubMed

    Perdijk, Olaf; van Splunter, Marloes; Savelkoul, Huub F J; Brugman, Sylvia; van Neerven, R J Joost

    2018-01-01

    During the last decades, the world has witnessed a dramatic increase in allergy prevalence. Epidemiological evidence shows that growing up on a farm is a protective factor, which is partly explained by the consumption of raw cow's milk. Indeed, recent studies show inverse associations between raw cow's milk consumption in early life and asthma, hay fever, and rhinitis. A similar association of raw cow's milk consumption with respiratory tract infections is recently found. In line with these findings, controlled studies in infants with milk components such as lactoferrin, milk fat globule membrane, and colostrum IgG have shown to reduce respiratory infections. However, for ethical reasons, it is not possible to conduct controlled studies with raw cow's milk in infants, so formal proof is lacking to date. Because viral respiratory tract infections and aeroallergen exposure in children may be causally linked to the development of asthma, it is of interest to investigate whether cow's milk components can modulate human immune function in the respiratory tract and via which mechanisms. Inhaled allergens and viruses trigger local immune responses in the upper airways in both nasal and oral lymphoid tissue. The components present in raw cow's milk are able to promote a local microenvironment in which mucosal immune responses are modified and the epithelial barrier is enforced. In addition, such responses may also be triggered in the gut after exposure to allergens and viruses in the nasal cavity that become available in the GI tract after swallowing. However, these immune cells that come into contact with cow's milk components in the gut must recirculate into the blood and home to the (upper and lower) respiratory tract to regulate immune responses locally. Expression of the tissue homing-associated markers α4β7 and CCR9 or CCR10 on lymphocytes can be influenced by vitamin A and vitamin D3, respectively. Since both vitamins are present in milk, we speculate that raw

  15. Ionizing Radiation Selectively Reduces Skin Regulatory T Cells and Alters Immune Function

    PubMed Central

    Zhou, Yu; Ni, Houping; Balint, Klara; Sanzari, Jenine K.; Dentchev, Tzvete; Diffenderfer, Eric S.; Wilson, Jolaine M.; Cengel, Keith A.; Weissman, Drew

    2014-01-01

    The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth’s magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel. PMID:24959865

  16. Control of body temperature and immune function in patients undergoing open surgery for gastric cancer.

    PubMed

    Shao, Li; Pang, Nannan; Yan, Ping; Jia, Fengju; Sun, Qi; Ma, Wenjuan; Yang, Yi

    2018-04-09

    The influence of mild perioperative hypothermia on the immune function and incidence of postoperative wound infections has been suggested, but the specific mechanism is unclear. This study aimed to analyze the body temperature, immune function, and wound infection rates in patients receiving open surgery for gastric cancer. Body temperature was controlled in each patient using one of four different methods: wrapping limbs, head and neck; insulated blankets; warming infusion fluids and insulated blankets; and warming fluids without insulated blankets. One hundred patients were randomly divided into four groups of 25 patients each, and every group received a different intraoperative treatment for maintaining normal body temperature. Nasopharyngeal and rectal temperatures, transforming growth factor beta (TGF-β), interleukin 10 (IL-10) levels, and cluster of differentiation (CD)3+ and CD4+/CD25+ regulatory T cell (Treg) counts were measured before surgery and at 2 and 4 hours postoperatively. Patients were evaluated at one week after surgery for signs of infection. Intraoperative body temperature and measures of immune function varied significantly between the four groups, with the largest temperature changes observed in the group in which only the limbs were wrapped in cotton pads to control the body temperature. The group in which infusion fluids and transfused blood (if needed) were heated to 37℃, peritoneal irrigation fluid was heated to 37℃, and an insulation blanket was heated to 39℃ and placed under the patient, showed the lowest temperature change (i.e., close to normal temperature) and cytokine response after surgery. No intergroup differences were found in the infection rates at one week after surgery. In conclusion, body temperature variation during surgery affects the immune function of patients, and maintaining body temperature close to normal results in the least variation of immune function.

  17. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus.

    PubMed

    Vogel, H; Badapanda, C; Knorr, E; Vilcinskas, A

    2014-02-01

    The pollen beetle (Meligethes aeneus) is a major pest of oilseed rape (Brassica napus) and other cruciferous crops in Europe. Pesticide-resistant pollen beetle populations are emerging, increasing the economic impact of this species. We isolated total RNA from the larval and adult stages, the latter either naïve or immunized by injection with bacteria and yeast. High-throughput RNA sequencing (RNA-Seq) was carried out to establish a comprehensive transcriptome catalogue and to screen for developmental stage-specific and immunity-related transcripts. We assembled the transcriptome de novo by combining sequence tags from all developmental stages and treatments. Gene expression data based on normalized read counts revealed several functional gene categories that were differentially expressed between larvae and adults, particularly genes associated with digestion and detoxification that were induced in larvae, and genes associated with reproduction and environmental signalling that were induced in adults. We also identified many genes associated with microbe recognition, immunity-related signalling and defence effectors, such as antimicrobial peptides (AMPs) and lysozymes. Digital gene expression analysis revealed significant differences in the profile of AMPs expressed in larvae, naïve adults and immune-challenged adults, providing insight into the steady-state differences between developmental stages and the complex transcriptional remodelling that occurs following the induction of immunity. Our data provide insight into the adaptive mechanisms used by phytophagous insects and could lead to the development of more effective control strategies for insect pests. © 2013 The Royal Entomological Society.

  18. Immune Thrombocytopenia

    PubMed Central

    Kistanguri, Gaurav; McCrae, Keith R.

    2013-01-01

    Immune thrombocytopenia (ITP) is a common hematologic disorder characterized by isolated thrombocytopenia. ITP presents as a primary form characterized by isolated thrombocytopenia (platelet count < 100 × 109/L) in the absence of other causes or disorders that may be associated with thrombocytopenia, or a secondary form in which immune thrombocytopenia develops in association with another disorder that is usually immune or infectious. ITP may affect individuals of all ages, with peaks during childhood and in the elderly, in whom the age specific incidence of ITP is greatest. Bleeding is the most common clinical manifestation of ITP, with the risk of bleeding and related morbidity increased in elderly patients. The pathogenesis of ITP is complex, involving alterations in humoral and cellular immunity. Thrombocytopenia is caused by antibodies that react with glycoproteins expressed on platelets and megakaryocytes (glycoprotein IIb/IIIa, Ib/IX and others), causing shortened survival of circulating platelets and impairing platelet production. Diminished numbers and function of regulatory T cells, as well as the effects of cytotoxic T cells also contribute to the pathogenesis of ITP. Corticosteroids remain the most common first line therapy for ITP, occasionally in conjunction with intravenous immunoglobulin (IVIg) and anti-Rh(D). However, these agents do not lead to durable remissions in the majority of adults with ITP, and considerable heterogeneity exists in the use of second line approaches, which may include splenectomy, Rituximab, or thrombopoietin receptor agonists (TRAs). This review summarizes the classification and diagnosis of primary and secondary ITP, as well as the pathogenesis and options for treatment. Remarkable advances in the understanding and management of ITP have been achieved over the last decade, though many questions remain. PMID:23714309

  19. A trade-off between embryonic development rate and immune function of avian offspring is concealed by embryonic temperature

    USGS Publications Warehouse

    Martin, Thomas E.; Arriero, Elena; Majewska, Ania

    2011-01-01

    Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.

  20. Innate and Adaptive Immune Responses during Acute M. tuberculosis Infection in Adult Household Contacts in Kampala, Uganda

    PubMed Central

    Mahan, C. Scott; Zalwango, Sarah; Thiel, Bonnie A.; Malone, LaShaunda L.; Chervenak, Keith A.; Baseke, Joy; Dobbs, Dennis; Stein, Catherine M.; Mayanja, Harriet; Joloba, Moses; Whalen, Christopher C.; Boom, W. Henry

    2012-01-01

    Contacts of active pulmonary tuberculosis (TB) patients are at risk for Mycobacterium tuberculosis (MTB) infection. Because most infections are controlled, studies during MTB infection provide insight into protective immunity. We compared immune responses of adult household contacts that did and did not convert the tuberculin skin test (TST). Innate and adaptive immune responses were measured by whole blood assay. Responses of TST converters (TSTC) were compared with persistently TST negative contacts (PTST–) and contacts who were TST+ at baseline (TST+). TLR-2, TLR-4, and IFN-γR responses to IFN-γ did not differ between the groups, nor did γδ T cell responses. T cell responses to MTB antigens differed markedly among TSTC, PTST–, and TST+ contacts. Thus, no differences in innate responses were found among the three household contact groups. However, adaptive T cell responses to MTB antigens did differ before and during MTB infection among PTST–, TSTC, and TST+ contacts. PMID:22492155

  1. Upper functional gastrointestinal disorders in young adults.

    PubMed

    Adibi, Peyman; Behzad, Ebrahim; Shafieeyan, Mohammad; Toghiani, Ali

    2012-01-01

    Functional Gastrointestinal disorders (FGID) are common disorders in gastroenterology which are common in young adults. The aim of this study is evaluating the prevalence of upper FGID in iranian young adults. This was a cross-sectional study which was on 995 persons who were going to marry. A ROME III based questionnaire was used to determine the frequency of upper GI Syndromes among the sample population. Our results determined 74 subjects had functional dyspepsia (36 subjects diagnosed as postprandial distress syndrome patient and Epigastric pain syndrome was seen in 38 subjects). Functional heartburn was diagnosed in 52 participants. Globus was seen in 35 subjects and 41 had unspecified excessive belching. Many epidemiologic studies were done all around the world but there are different reports about prevalence and incidence of FGIDs. Our results were agreed with reported prevalence of FGIDs in Iran in adults. And our findings were agreed with some other Asian studies.

  2. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Alcorn, S.W.; Murray, A.L.; Pascho, R.J.

    2002-01-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in

  3. Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Jiang, Daqing; Alsaedi, Ahmed; Hayat, Tasawar

    2018-07-01

    A stochastic HIV viral model with both logistic target cell growth and nonlinear immune response function is formulated to investigate the effect of white noise on each population. The existence of the global solution is verified. By employing a novel combination of Lyapunov functions, we obtain the existence of the unique stationary distribution for small white noises. We also derive the extinction of the virus for large white noises. Numerical simulations are performed to highlight the effect of white noises on model dynamic behaviour under the realistic parameters. It is found that the small intensities of white noises can keep the irregular blips of HIV virus and CTL immune response, while the larger ones force the virus infection and immune response to lose efficacy.

  4. Immune Evasion by Epstein-Barr Virus.

    PubMed

    Ressing, Maaike E; van Gent, Michiel; Gram, Anna M; Hooykaas, Marjolein J G; Piersma, Sytse J; Wiertz, Emmanuel J H J

    2015-01-01

    Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.

  5. Bridging innate NK cell functions with adaptive immunity.

    PubMed

    Marcenaro, Emanuela; Carlomagno, Simona; Pesce, Silvia; Moretta, Alessandro; Sivori, Simona

    2011-01-01

    Killer Ig-like receptors (KIRs) are major human NK receptors displaying either inhibitory or activating functions which recognize allotypic determinants of HLA-class I molecules. Surprisingly, NK cell treatment with CpG-ODN (TLR9 ligands) results in selective down-modulation of KIR3DL2, its co-internalization with CpG-ODN and its translocation to TLR9-rich early endosomes. This novel KIR-associated function may offer clues to better understand the possible role of certain KIRs and also emphasizes the involvement of NK cells in the course of microbial infections. NK cells are involved not only in innate immune responses against viruses and tumors but also participate in the complex network of cell-to cell interaction that leads to the development of adaptive immune responses. In this context the interaction of NK cells with DC appears to play a crucial role in the acquisition of CCR7, a chemokine receptor that enables NK cells to migrate towards lymph nodes in response to CCL19 and/or CCL21. Analysis of NK cell clones revealed that KIR-mismatched but not KIR-matched NK cells acquire CCR7. These data have important implications in haploidentical haematopoietic stem cell transplantation (HSCT), in which KIR-mismatched NK cells may acquire the ability to migrate to secondary lymphoid compartments (SLCs), where they can kill recipient's antigen presenting cells (APCs) and T cells thus preventing graft versus host (and host vs. graft) reactions.

  6. Use of the local lymph node assay in assessment of immune function.

    PubMed

    van den Berg, Femke A; Baken, Kirsten A; Vermeulen, Jolanda P; Gremmer, Eric R; van Steeg, Harry; van Loveren, Henk

    2005-07-01

    The murine local lymph node assay (LLNA) was originally developed as a predictive test method for the identification of chemicals with sensitizing potential. In this study we demonstrated that an adapted LLNA can also be used as an immune function assay by studying the effects of orally administered immunomodulating compounds on the T-cell-dependent immune response induced by the contact sensitizer 2,4-dinitrochlorobenzene (DNCB). C57Bl/6 mice were treated with the immunotoxic compounds cyclosporin A (CsA), bis(tri-n-butyltin)oxide (TBTO) or benzo[a]pyrene, (B[a]P). Subsequently, cell proliferation and interferon-gamma (IFN-gamma) and interleukin (IL)-4 release were determined in the auricular lymph nodes (LNs) after DNCB application on both ears. Immunosuppression induced by CsA, TBTO and B[a]P was clearly detectable in this application of the LLNA. Cytokine release measurements proved valuable to confirm the results of the cell proliferation assay and to obtain an indication of the effect on Th1/Th2 balance. We believe to have demonstrated the applicability of an adapted LLNA as an immune function assay in the mouse.

  7. Toxic effects of tributyltin and its metabolites on harbour seal (Phoca vitulina) immune cells in vitro.

    PubMed

    Frouin, Héloïse; Lebeuf, Michel; Saint-Louis, Richard; Hammill, Mike; Pelletier, Emilien; Fournier, Michel

    2008-11-21

    The widespread environmental contamination, bioaccumulation and endocrine disruptor effects of butyltins (BTs) to wildlife are well documented. Although suspected, potential effects of BTs exposure on the immune system of marine mammals have been little investigated. In this study, we assessed the effects of tributyltin (TBT) and its dealkylated metabolites dibutyltin (DBT) and monobutyltin (MBT) on the immune responses of harbour seals. Peripheral blood mononuclear cells isolated from pup and adult harbour seals were exposed in vitro to varying concentrations of BTs. DBT resulted in a significant decrease at 100 and 200 nM of phagocytotic activity and reduced significantly phagocytic efficiency at 200 nM in adult seals. There was no effect in phagocytosis with TBT and MBT. In pups, the highest concentration (200 nM) of DBT inhibited phagocytic efficiency. A reduction of tumor-killing capacity of adult natural killer (NK) cells occurred when leukocytes were incubated in vitro with 50 nM DBT and 200 nM TBT for 24h. In adult seals, T-lymphocyte proliferation was significantly suppressed when the cells were exposed to 200 nM TBT and 100 nM DBT. In pups, the proliferative response increased after an exposure to 100 nM TBT and 50 nM DBT, but decreased with 200 nM TBT and 100 nM DBT. The immune functions were more affected by BTs exposure in adults than in pups, suggesting that other unsuspected mechanisms could trigger immune parameters in pups. The toxic potential of BTs followed the order of DBT>TBT>MBT. BT concentrations of harbour seal pups from the St. Lawrence Estuary (Bic National Park) ranged between 0.1-0.4 ng Sn/g wet weight (ww) and 1.2-13.4 ng Sn/g ww in blood and blubber, respectively. For these animals, DBT concentrations were consistently below the quantification limit of 0.04 ng Sn/g ww in blood and 0.2 ng Sn/g ww in blubber. Results suggest that concentrations measured in pups are considered too low to induce toxic effects to their immune system during

  8. Maturation of the immune system of the male house cricket, Acheta domesticus.

    PubMed

    Piñera, Angelica V; Charles, Heather M; Dinh, Tracy A; Killian, Kathleen A

    2013-08-01

    The immune system functions to counteract the wide range of pathogens an insect may encounter during its lifespan, ultimately maintaining fitness and increasing the likelihood of survival to reproductive maturity. In this study, we describe the maturation of the innate immune system of the male house cricket Acheta domesticus during the last two nymphal stages, and during early and late adulthood. Total hemolymph phenoloxidase enzyme activity, lysozyme-like enzyme activity, the number of circulating hemocytes, and encapsulation ability were all determined for each developmental stage or age examined. The number of circulating hemocytes and lysozyme-like enzyme activity were similar for all developmental stages examined. Nymphs and newly molted adult males, however, had significantly lower total phenoloxidase activity than later adult stages, yet nymphs were able to encapsulate a nylon thread just as well as adults. Encapsulation ability would thus appear to be independent of total phenoloxidase activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon,more » 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.« less

  10. Immune effector mechanisms against schistosomiasis: looking for a chink in the parasite's armour

    PubMed Central

    Wilson, R Alan; Coulson, Patricia S

    2009-01-01

    A recombinant antigen vaccine against Schistosoma mansoni remains elusive, in part because the parasite deploys complex defensive and offensive strategies to combat immune attack. Nevertheless, research on rodent and primate models has shown that schistosomes can be defeated when appropriate responses are elicited. Acquired protection appears to involve protracted inhibition of larval migration or key molecular processes at the adult surfaces, not rapid cytolytic killing mechanisms. A successful vaccine will likely require a cocktail of antigens rather than a single recombinant protein. In addition, ways need to be found of keeping the immune system on permanent alert, either to achieve adequate inhibition of protein function in adults, or because a trickle of incoming parasites does not amplify the secondary response. PMID:19717340

  11. Parasite-specific immune response in adult Drosophila melanogaster: a genomic study

    PubMed Central

    Roxström-Lindquist, Katarina; Terenius, Olle; Faye, Ingrid

    2004-01-01

    Insects of the order Diptera are vectors for parasitic diseases such as malaria, sleeping sickness and leishmania. In the search for genes encoding proteins involved in the antiparasitic response, we have used the protozoan parasite Octosporea muscaedomesticae for oral infections of adult Drosophila melanogaster. To identify parasite-specific response molecules, other flies were exposed to virus, bacteria or fungi in parallel. Analysis of gene expression patterns after 24 h of microbial challenge, using Affymetrix oligonucleotide microarrays, revealed a high degree of microbe specificity. Many serine proteases, key intermediates in the induction of insect immune responses, were uniquely expressed following infection of the different organisms. Several lysozyme genes were induced in response to Octosporea infection, while in other treatments they were not induced or downregulated. This suggests that lysozymes are important in antiparasitic defence. PMID:14749722

  12. Expression and Function of the Cholinergic System in Immune Cells

    PubMed Central

    Fujii, Takeshi; Mashimo, Masato; Moriwaki, Yasuhiro; Misawa, Hidemi; Ono, Shiro; Horiguchi, Kazuhide; Kawashima, Koichiro

    2017-01-01

    T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays

  13. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection

    PubMed Central

    Santos, Patrícia d‘Emery Alves; de Lorena, Virgínia Maria Barros; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; do Nascimento, Wheverton Ricardo Correia; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; de Souza, Valdênia Maria Oliveira

    2016-01-01

    Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants. PMID:26872339

  14. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection.

    PubMed

    Santos, Patrícia d'Emery Alves; Lorena, Virgínia Maria Barros de; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; Nascimento, Wheverton Ricardo Correia do; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; Souza, Valdênia Maria Oliveira de

    2016-02-01

    Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants.

  15. Long-term Durability of Immune Responses After Hepatitis A Vaccination Among HIV-Infected Adults

    PubMed Central

    Wilkins, Kenneth; Lee, Andrew W.; Grosso, Anthony; Landrum, Michael L.; Weintrob, Amy; Ganesan, Anuradha; Maguire, Jason; Klopfer, Stephanie; Brandt, Carolyn; Bradley, William P.; Wallace, Mark R.; Agan, Brian K.

    2011-01-01

    Background.  Vaccination provides long-term immunity to hepatitis A virus (HAV) among the general population, but there are no such data regarding vaccine durability among human immunodeficiency virus (HIV)–infected adults. Methods.  We retrospectively studied HIV-infected adults who had received 2 doses of HAV vaccine. We analyzed blood specimens taken at 1 year, 3 years, and, when available, 6–10 years postvaccination. HAV immunoglobulin G (IgG) values of ≥10 mIU/mL were considered seropositive. Results.  We evaluated specimens from 130 HIV-infected adults with a median age of 35 years and a median CD4 cell count of 461 cells/mm3 at or before time of vaccination. Of these, 49% had an HIV RNA load <1000 copies/mL. Initial vaccine responses were achieved in 89% of HIV-infected adults (95% confidence interval [CI], 83%–94%), compared with 100% (95% CI, 99%–100%) of historical HIV-uninfected adults. Among initial HIV-infected responders with available specimens, 90% (104 of 116; 95% CI, 83%–95%) remained seropositive at 3 years and 85% (63 of 74; 95% CI, 75%–92%) at 6–10 years. Geometric mean concentrations (GMCs) among HIV-infected adults were 154, 111, and 64 mIU/mL at 1, 3, and 6–10 years, respectively, compared with 1734, 687, and 684 mIU/mL among HIV-uninfected persons. Higher GMCs over time among HIV-infected adults were associated with lower log10 HIV RNA levels (β = −.12, P = .04). Conclusions.  Most adults with well-controlled HIV infections had durable seropositive responses up to 6–10 years after HAV vaccination. Suppressed HIV RNA levels are associated with durable HAV responses. PMID:21606540

  16. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger.

    PubMed

    López-Rull, Isabel; Hornero-Méndez, Dámaso; Frías, Óscar; Blanco, Guillermo

    2015-01-01

    Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds.

  17. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger

    PubMed Central

    López-Rull, Isabel; Hornero-Méndez, Dámaso; Frías, Óscar; Blanco, Guillermo

    2015-01-01

    Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds. PMID:26544885

  18. Long-Term Survival of Photoreceptors Transplanted into the Adult Murine Neural Retina Requires Immune Modulation

    PubMed Central

    West, Emma L.; Pearson, Rachael A.; Barker, Susie E.; Luhmann, Ulrich F. O.; Maclaren, Robert E.; Barber, Amanda C.; Duran, Yanai; Smith, Alexander J.; Sowden, Jane C.; Ali, Robin R.

    2012-01-01

    Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined. Here, we found that integrated Nrl.gfp+ve photoreceptors were present up to 12 months post-transplantation, albeit in significantly reduced numbers. Surviving cells had rod-like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post-transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post-transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell-mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H-2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective. PMID:20857496

  19. Aryl Hydrocarbon Receptor Promotes RORγt+ ILCs and Controls Intestinal Immunity and Inflammation

    PubMed Central

    Qiu, Ju; Zhou, Liang

    2013-01-01

    Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptors (RORγt)+ ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt+ ILCs (e.g., lymphoid tissue inducer-LTi cells) are required for lymphoid organogenesis. In adult mice, RORγt+ ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt+ ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt+ ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells (APCs). In this review, we will focus on the development and function of RORγt+ ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. Better understanding the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases. PMID:23975386

  20. Eosinophils mediate protective immunity against secondary nematode infection.

    PubMed

    Huang, Lu; Gebreselassie, Nebiat G; Gagliardo, Lucille F; Ruyechan, Maura C; Luber, Kierstin L; Lee, Nancy A; Lee, James J; Appleton, Judith A

    2015-01-01

    Eosinophils are versatile cells that regulate innate and adaptive immunity, influence metabolism and tissue repair, and contribute to allergic lung disease. Within the context of immunity to parasitic worm infections, eosinophils are prominent yet highly varied in function. We have shown previously that when mice undergo primary infection with the parasitic nematode Trichinella spiralis, eosinophils play an important immune regulatory role that promotes larval growth and survival in skeletal muscle. In this study, we aimed to address the function of eosinophils in secondary infection with T. spiralis. By infecting eosinophil-ablated mice, we found that eosinophils are dispensable for immunity that clears adult worms or controls fecundity in secondary infection. In contrast, eosinophil ablation had a pronounced effect on secondary infection of skeletal muscle by migratory newborn larvae. Restoring eosinophils to previously infected, ablated mice caused them to limit muscle larvae burdens. Passive immunization of naive, ablated mice with sera or Ig from infected donors, together with transfer of eosinophils, served to limit the number of newborn larvae that migrated in tissue and colonized skeletal muscle. Results from these in vivo studies are consistent with earlier findings that eosinophils bind to larvae in the presence of Abs in vitro. Although our previous findings showed that eosinophils protect the parasite in primary infection, these new data show that eosinophils protect the host in secondary infection. Copyright © 2014 by The American Association of Immunologists, Inc.

  1. Prenatal alcohol exposure, adaptive function, and entry into adult roles in a prospective study of young adults.

    PubMed

    Lynch, Mary Ellen; Kable, Julie A; Coles, Claire D

    2015-01-01

    Although many studies have demonstrated effects of prenatal alcohol exposure (PAE) on physical, cognitive, and behavioral development in children, few have focused on the long term effects on adults. In this study, data are presented on adaptive function and entry into adult roles in a community sample of young adults with PAE. The expectation was that prenatally exposed adults would show lower adaptive functioning and more difficulty with entry into adult roles than the non-exposed control group and that these effects would be related to the severity of PAE effects. The predominantly African-American, low income sample included adults with a wide range of prenatal exposure (n = 123) as well as control groups for socioeconomic (SES) (n =5 9) and disability (n = 54) status. The mothers of the alcohol-exposed and SES-control group participants were recruited before birth and offspring have been followed up periodically. The disability control group was recruited in adolescence. The adults were interviewed about adaptive function in day-to-day life and adult role entry. Collateral adults who were well-acquainted with each participant were interviewed concerning adaptive function. Results showed that adults who were dysmorphic and/or cognitively affected by PAE had difficulty with adaptive function and entry into adult roles. Males showing cognitive effects with no physical effects were the most severely affected. Results for exposed adults not showing physical or cognitive effects were similar to or more positive than those of the control group for most outcomes. PAE has long-term effects on adaptive outcomes in early adulthood. Additional research should focus on possible interventions at this transition and on factors contributing to the adjustment of the exposed, but unaffected participants. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Adult vaccination: Now is the time to realize an unfulfilled potential

    PubMed Central

    Tan, Litjen

    2015-01-01

    Each year, vaccine-preventable diseases kill thousands of adults, both in the United States and across the planet, causing a significant human toll and severe economic burden on the world's healthcare systems. In the United States, while immunization is recognized as one of the most effective primary prevention services that improves health and well-being, adult immunization rates remain low and large gaps exist between national adult immunization goals and actual adult immunization rates. Closing these gaps requires a commitment by national leaders to a multifaceted national strategy to: (1) establish the value of adult vaccines in the eyes of the public, payers, policy makers, and health care professionals; (2) improve access to recommended adult vaccinations by improving the adult vaccine infrastructure in the United States and developing public-private partnerships to facilitate effective immunization behaviors; and (3) ensure fair and appropriate payment for adult immunization. Many of the situations that result in low adult immunizations rates in the United States also exist in many other countries around the world. Successful strategies to improve adult immunization coverage rates will result in reductions in morbidity, mortality, and healthcare costs. All medical and public health stakeholders must now collaborate to realize the significant health benefits that come with a strong adult immunization program. PMID:26091249

  3. Laparoscopic versus conventional open surgery for immune function in patients with colorectal cancer.

    PubMed

    Liu, Chuanyuan; Liu, Jungang; Zhang, Sen

    2011-11-01

    To systematically evaluate the immune function in patients with colorectal cancer after laparoscopic surgery (LS) and conventional open surgery (OS). PUBMED, EMBASE, and the Cochrane library were searched and randomized controlled trials (RCTs) comparing the immunological difference between LS and OS were included. Two authors extracted data and assessed trial quality. Eleven studies including 695 patients were analysed. Immune-competent cells demonstrated no significant differences between LS and OS in six trials. Eight trials assessed various perioperative plasma cytokine concentrations with no significant differences in interleukin-6 (IL-6) and C-reactive protein (CRP) levels between LS and OS. However, meta-analysis showed higher T suppressor lymphocytes (CD8+) counts on postoperative days (POD) 1-3 and lower plasma levels of CRP on POD 0-1 in LS group compared with OS group. Although LS groups displayed higher T suppressor lymphocyte (CD8+) counts on postoperative days (POD) 1-3 and lower plasma levels of CRP on POD 0-1, there is no sufficient evidence to support superior preservation of global immune function with LS compared to OS.

  4. Impact of Sickle Cell Trait and Naturally Acquired Immunity on Uncomplicated Malaria after Controlled Human Malaria Infection in Adults in Gabon.

    PubMed

    Lell, Bertrand; Mordmüller, Benjamin; Dejon Agobe, Jean-Claude; Honkpehedji, Josiane; Zinsou, Jeannot; Mengue, Juliana Boex; Loembe, Marguerite Massinga; Adegnika, Ayola Akim; Held, Jana; Lalremruata, Albert; Nguyen, The Trong; Esen, Meral; Kc, Natasha; Ruben, Adam J; Chakravarty, Sumana; Lee Sim, B Kim; Billingsley, Peter F; James, Eric R; Richie, Thomas L; Hoffman, Stephen L; Kremsner, Peter G

    2018-02-01

    Controlled human malaria infection (CHMI) by direct venous inoculation (DVI) with 3,200 cryopreserved Plasmodium falciparum sporozoites (PfSPZ) consistently leads to parasitemia and malaria symptoms in malaria-naive adults. We used CHMI by DVI to investigate infection rates, parasite kinetics, and malaria symptoms in lifelong malaria-exposed (semi-immune) Gabonese adults with and without sickle cell trait. Eleven semi-immune Gabonese with normal hemoglobin (IA), nine with sickle cell trait (IS), and five nonimmune European controls with normal hemoglobin (NI) received 3,200 PfSPZ by DVI and were followed 28 days for parasitemia by thick blood smear (TBS) and quantitative polymerase chain reaction (qPCR) and for malaria symptoms. End points were time to parasitemia and parasitemia plus symptoms. PfSPZ Challenge was well tolerated and safe. Five of the five (100%) NI, 7/11 (64%) IA, and 5/9 (56%) IS volunteers developed parasitemia by TBS, and 5/5 (100%) NI, 9/11 (82%) IA, and 7/9 (78%) IS by qPCR, respectively. The time to parasitemia by TBS was longer in IA (geometric mean 16.9 days) and IS (19.1 days) than in NA (12.6 days) volunteers ( P = 0.016, 0.021, respectively). Five of the five, 6/9, and 1/7 volunteers with parasitemia developed symptoms ( P = 0.003, NI versus IS). Naturally adaptive immunity (NAI) to malaria significantly prolonged the time to parasitemia. Sickle cell trait seemed to prolong it further. NAI plus sickle cell trait, but not NAI alone, significantly reduced symptom rate. Twenty percent (4/20) semi-immunes demonstrated sterile protective immunity. Standardized CHMI with PfSPZ Challenge is a powerful tool for dissecting the impact of innate and naturally acquired adaptive immunity on malaria.

  5. Effects of stress in early life on immune functions in rats with asthma and the effects of music therapy.

    PubMed

    Lu, Yanxia; Liu, Meng; Shi, Shousen; Jiang, Hong; Yang, Lejin; Liu, Xin; Zhang, Qian; Pan, Fang

    2010-06-01

    Although studies have shown that psychological stress has detrimental effects on bronchial asthma, there are few objective data on whether early-life stress, as early postnatal psychosocial environment, has a long-lasting effect on adult asthma and the potential pathophysiologic mechanism. This study aims to examine the effects on immune function and hypothalamic-pituitary-adrenal (HPA) axis responses in adult asthmatic rats that experienced stress in early life and the potential ameliorative effects of music therapy on these parameters. Forty male Wistar rat pups were randomly assigned to the asthma group, the adulthood-stressed asthma group, the childhood-stressed asthma group, the music group, and the control group. Restraint stress and Mozart's Sonata K.448 were applied to ovalbumin (OVA)-induced asthmatic rats to establish psychological stress and music therapy models. The levels of serum corticosterone were examined in both childhood after stress and adulthood after OVA challenge. Immune indicators in blood, lung, and brain tissues were measured after the last OVA challenge. Stress in both childhood and adulthood resulted in increases in leukocyte and eosinophil numbers and serum interleukin (IL)-4 levels. The adulthood-stressed group demonstrated increased corticosterone levels after challenge, whereas the childhood-stressed group showed increased corticosterone concentration in childhood but decreased level in adulthood. Central IL-1beta exhibited a similar tendency. Music group rats showed reduced serum IL-4 and corticosterone. Stress in childhood and adulthood resulted in different HPA axis responsiveness in the exacerbation of markers of asthma. These data provide the first evidence of the long-term normalizing effects of music on asthmatic rats.

  6. The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.

    PubMed

    Mansourian, Azad Reza

    2010-08-15

    The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.

  7. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    PubMed

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Immune cell functions in pancreatic cancer.

    PubMed

    Plate, J M; Harris, J E

    2000-01-01

    Pancreatic cancer kills nearly 29,000 people in the United States annually-as many people as are diagnosed with the disease. Chemotherapeutic treatment is ineffective in halting progression of the disease. Yet, specific immunity to pancreatic tumor cells in subjects with pancreatic cancer has been demonstrated repeatedly during the last 24 years. Attempts to expand and enhance tumor-specific immunity with biotherapy, however, have not met with success. The question remains, "Why can't specific immunity regulate pancreatic cancer growth?" The idea that tumor cells have evolved protective mechanisms against immunity was raised years ago and has recently been revisited by a number of research laboratories. In pancreatic cancer, soluble factors produced by and for the protection of the tumor environment have been detected and are often distributed to the victim's circulatory system where they may effect a more generalized immunosuppression. Yet the nature of these soluble factors remains controversial, since some also serve as tumor antigens that are recognized by the same T cells that may become inactivated by them. Unless the problem of tumor-derived immunosuppressive products is addressed directly through basic and translational research studies, successful biotherapeutic treatment for pancreatic cancer may not be forthcoming.

  9. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults

    PubMed Central

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n = 38) or IM 15 μg (n = 42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine. PMID:25483667

  10. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults.

    PubMed

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n=38) or IM 15 μg (n=42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine.

  11. Functional Impairment and Occupational Outcome in Adults with ADHD

    ERIC Educational Resources Information Center

    Gjervan, Bjorn; Torgersen, Terje; Nordahl, Hans M.; Rasmussen, Kirsten

    2012-01-01

    Objective: ADHD is associated with poor functional outcomes. The objectives were to investigate the prevalence of functional impairment and occupational status in a clinically referred sample of adults with ADHD and explore factors predicting occupational outcome. Method: A sample of 149 adults with a confirmed diagnosis of ADHD participated in…

  12. Use of the Carolina HPV Immunization Attitudes and Beliefs Scale (CHIAS) in young adult women.

    PubMed

    Dempsey, Amanda F; Fuhrel-Forbis, Andrea; Konrath, Sara

    2014-01-01

    Validated measures that can accurate describe young adults' HPV vaccination attitudes and how these relate to vaccination intention and receipt are needed for developing interventions to improve low HPV vaccination levels. The Carolina HPV Immunization Attitudes Scale (CHIAS) is a validated measure of these outcomes that was originally designed for parents. To assess the performance of the CHIAS among young adult women using an exploratory factor analysis. A convenience sample of 139 young adult women (age 18-26 years) were given the CHIAS measure at baseline. Factor analysis was used to determine attitudinal factor groupings and the association of these factors with HPV vaccination intention. A 6-month follow up assessment examined the stability of the CHIAS over time and the association of baseline vaccine factors with vaccine receipt. Five factors loaded on to the CHIAS in young adults - "Barriers," "Harms," "Effectiveness," "Risk Denial" and "Uncertainty," - which was similar to the factor loadings of CHIAS for parents. "Harms" was the factor most consistently associated with vaccination intention at all time points assessed. Only 5 women had received or made an appointment to receive the vaccine at the 6-month follow-up. In terms of categorizing HPV vaccination attitudes, the CHIAS appears to have similar performance among young adults as in parents. However, additional studies are needed to assess the utility of the CHIAS for predicting HPV vaccine receipt among the young adult population.

  13. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    PubMed

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  14. Age-related changes in expression and function of Toll-like receptors in human skin

    PubMed Central

    Iram, Nousheen; Mildner, Michael; Prior, Marion; Petzelbauer, Peter; Fiala, Christian; Hacker, Stefan; Schöppl, Alice; Tschachler, Erwin; Elbe-Bürger, Adelheid

    2012-01-01

    Toll-like receptors (TLRs) initiate innate immune responses and direct subsequent adaptive immunity. They play a major role in cutaneous host defense against micro-organisms and in the pathophysiology of several inflammatory skin diseases. To understand the role of TLRs in the acquisition of immunological competence, we conducted a comprehensive study to evaluate TLR expression and function in the developing human skin before and after birth and compared it with adults. We found that prenatal skin already expresses the same spectrum of TLRs as adult skin. Strikingly, many TLRs were significantly higher expressed in prenatal (TLRs 1-5) and infant and child (TLRs 1 and 3) skin than in adult skin. Surprisingly, neither dendritic cell precursors in prenatal skin nor epidermal Langerhans cells and dermal dendritic cells in adult skin expressed TLRs 3 and 6, whereas the staining pattern and intensity of both TLRs in fetal basal keratinocytes was almost comparable to those of adults. Stimulation of primary human keratinocytes from fetal, neonatal and adult donors with selected TLR agonists revealed that the synthetic TLR3 ligand poly (I:C) specifically, mimicking viral double-stranded RNA, induced a significantly enhanced secretion of CXCL8/IL8, CXCL10/IP-10 and TNFα in fetal and neonatal keratinocytes compared with adult keratinocytes. This study demonstrates quantitative age-specific modifications in TLR expression and innate skin immune reactivity in response to TLR activation. Thus, antiviral innate immunity already in prenatal skin may contribute to protect the developing human body from viral infections in utero in a scenario where the adaptive immune system is not yet fully functional. PMID:23034637

  15. Immunization Information System and Informatics to Promote Immunizations: Perspective From Minnesota Immunization Information Connection.

    PubMed

    Muscoplat, Miriam Halstead; Rajamani, Sripriya

    2017-01-01

    The vision for management of immunization information is availability of real-time consolidated data and services for all ages, to clinical, public health, and other stakeholders. This is being executed through Immunization Information Systems (IISs), which are population-based and confidential computerized systems present in most US states and territories. Immunization Information Systems offer many functionalities, such as immunization assessment reports, client follow-up, reminder/recall feature, vaccine management tools, state-supplied vaccine ordering, comprehensive immunization history, clinical decision support/vaccine forecasting and recommendations, data processing, and data exchange. This perspective article will present various informatics tools in an IIS, in the context of the Minnesota Immunization Information Connection.

  16. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems.

    PubMed

    Alzaid, Abdullah; Kim, Jin-Hyoung; Devlin, Robert H; Martin, Samuel A M; Macqueen, Daniel J

    2018-04-26

    Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon ( Oncorhynchus kisutch ) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation. © 2018. Published by The Company of Biologists Ltd.

  17. In immune defense: redefining the role of the immune system in chronic disease.

    PubMed

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  18. Functional Outcomes in the Treatment of Adults with ADHD

    ERIC Educational Resources Information Center

    Adler, Lenard A.; Spencer, Thomas J.; Levine, Louise R.; Ramsey, Janet L.; Tamura, Roy; Kelsey, Douglas; Ball, Susan G.; Allen, Albert J.; Biederman, Joseph

    2008-01-01

    Objective: ADHD is associated with significant functional impairment in adults. The present study examined functional outcomes following 6-month double-blind treatment with either atomoxetine or placebo. Method: Patients were 410 adults (58.5% male) with "DSM-IV"--defined ADHD. They were randomly assigned to receive either atomoxetine 40 mg/day to…

  19. Efficacy and safety of rituximab for systemic lupus erythematosus-associated immune cytopenias: A multicenter retrospective cohort study of 71 adults.

    PubMed

    Serris, Alexandra; Amoura, Zahir; Canouï-Poitrine, Florence; Terrier, Benjamin; Hachulla, Eric; Costedoat-Chalumeau, Nathalie; Papo, Thomas; Lambotte, Olivier; Saadoun, David; Hié, Miguel; Blanche, Philippe; Lioger, Bertrand; Gottenberg, Jacques-Eric; Godeau, Bertrand; Michel, Marc

    2018-03-01

    The aim of the study was to assess the efficacy and safety of rituximab (RTX) for treating systemic lupus erythematosus (SLE)-associated immune cytopenias. This multicenter retrospective cohort study of adults from French referral centers and networks for adult immune cytopenias and SLE involved patients ≥18 years old with a definite diagnosis of SLE treated with RTX specifically for SLE-associated immune cytopenia from 2005 to 2015. Response assessment was based on standard definitions. In total, 71 patients, 61 women (85.9%), with median age 36 years [interquartile range 31-48], were included. The median duration of SLE at the time of the first RTX administration was 6.1 years [2.6-11.6] and the reason for using RTX was immune thrombocytopenia (ITP) for 44 patients (62.0%), autoimmune hemolytic anemia (AIHA) for 16 (22.5%), Evans syndrome for 10 (14.1%), and pure red cell aplasia for one patient. Before receiving RTX, patients had received a mean of 3.1 ± 1.3 treatments that included corticosteroids (100%), and hydroxychloroquine (88.5%). The overall initial response rate to RTX was 86% (91% with ITP, 87.5% with AIHA, and 60% with Evans syndrome), including 60.5% with complete response. Median follow-up after the first injection of RTX was 26.4 months [14.3-71.2]. Among 61 initial responders, relapse occurred in 24 (39.3%); for 18, RTX retreatment was successful in 16 (88.8%). Severe infections occurred after RTX in three patients, with no fatal outcome. No cases of RTX-induced neutropenia were observed. In conclusion, RTX seems effective and relatively safe for treating SLE-associated immune cytopenias. © 2017 Wiley Periodicals, Inc.

  20. Immunity and fitness in a wild population of Eurasian kestrels Falco tinnunculus

    NASA Astrophysics Data System (ADS)

    Parejo, Deseada; Silva, Nadia

    2009-10-01

    The immune system of vertebrates consists of several components that partly interact and complement each other. Therefore, the assessment of the overall effectiveness of immune defence requires the simultaneous measurement of different immune components. In this study, we investigated intraspecific variability of innate [i.e. natural antibodies (NAb) and complement] and acquired (i.e. leucocyte profiles) immunity and its relationship with fitness correlates (i.e. blood parasite load and reproductive success in adults and body mass and survival until fledging in nestlings) in the Eurasian kestrel Falco tinnunculus. Immunity differed between nestlings and adults and also between adult males and females. Adult kestrels with higher levels of complement were less parasitised by Haemoproteus, and males with higher values of NAbs showed a higher reproductive success. In nestlings, the H/L ratio was negatively related to body mass. Survival until fledging was predicted by all measured immunological variables of nestlings as well as by their fathers' level of complement. This is the first time that innate immunity is linked to survival in a wild bird. Thus, intraspecific variation in different components of immunity predicts variation in fitness prospects in kestrels, which highlights the importance of measuring innate immune components together with components of the acquired immunity in studies assessing the effectiveness of the immune system in wild animals.

  1. MicroRNAs (MiRs) Precisely Regulate Immune System Development and Function in Immunosenescence Process.

    PubMed

    Aalaei-Andabili, Seyed Hossein; Rezaei, Nima

    2016-01-01

    Human aging is a complex process with pivotal changes in gene expression of biological pathways. Immune system dysfunction has been recognized as one of the most important abnormalities induced by senescent names immunosenescence. Emerging evidences suggest miR role in immunosenescence. We aimed to systemically review all relevant reports to clearly state miR effects on immunosenescence process. Sensitive electronic searches carried out. Quality assessment has been performed. Since majority of the included studies were laboratory works, and therefore heterogen, we discussed miR effects on immunological aging process nonstatically. Forty-six articles were found in the initial search. After exclusion of 34 articles, 12 studies enrolled to the final stage. We found that miRs have crucial roles in exact function of immune system. MiRs are involved in the regulation of the aging process in the immune system components and target certain genes, promoting or inhibiting immune system reaction to invasion. Also, miRs control life span of the immune system members by regulation of the genes involved in the apoptosis. Interestingly, we found that immunosenescence is controllable by proper manipulation of the various miRs expression. DNA methylation and histone acetylation have been discovered as novel strategies, altering NF-κB binding ability to the miR promoter sites. Effect of miRs on impairment of immune system function due to the aging is emerging. Although it has been accepted that miRs have determinant roles in the regulation of the immunosenescence; however, most of the reports are concluded from animal/laboratory works, suggesting the necessity of more investigations in human.

  2. Dim light at night increases immune function in Nile grass rats, a diurnal rodent.

    PubMed

    Fonken, Laura K; Haim, Achikam; Nelson, Randy J

    2012-02-01

    With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ∼150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ∼150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent.

  3. Chronic grouped social restriction triggers long-lasting immune system adaptations.

    PubMed

    Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei

    2017-05-16

    Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.

  4. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  5. Integrated Circuit Immunity

    NASA Technical Reports Server (NTRS)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  6. [Effect of Codonopsis Radix maintained with sulfur fumigation on immune function in mice].

    PubMed

    Liu, Cheng-song; Wang, Yu-ping; Shi, Yan-bin; Ma, Xing-ming; Li, Hui-li; Zhang, Xiao-yun; Li, Shou-tang

    2014-11-01

    To investigate the immune function of mice being given the extract of Codonopsis Radix maintained with sulfur fumigation. Mice were divided into five groups. Except the normal control group, the mice were fed with the extract of Codonopsis Radix maintained with sulfur fumigation at the high,medium and low doses, as well as medium dose of Codonopsis Radix maintained with low-temperature vacuum method, respectively. Mice were treated once a day for 10 continuous days. Weight change,organ indexes, blood cell indices, macrophage phagocytic function, and IL-2 and IFN-γ levels were measured. Compared with normal control group, Codonopsis Radix maintained with sulfur fumigation at medium and high doses inhibited body weight increase of mice; white blood cell count of high dose group was significantly increased; significant increase of macrophage phagocytosis were observed for all groups except the normal control group; and spleen index and IFN-γ level of Codonopsis Radix maintained with sulfur fumigation medium dose group were increased significantly. Codonopsis Radix maintained with sulfur fumigation can promote mouse immune function to a certain degree. There was no difference in immune effect between Codonopsis Radix maintained with sulfur fumigation and low-temperature vacuum method during experimental period. However,taking the extract of Codonopsis Radix maintained with sulfur fumigation can exert negative effect on appetite and body weight in mice.

  7. Prenatal cadmium exposure alters postnatal immune cell development and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspringmore » were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during

  8. Reproduction Alters Hydration State but Does Not Impact the Positive Effects of Dehydration on Innate Immune Function in Children's Pythons (Antaresia childreni).

    PubMed

    Brusch, George A; Billy, Gopal; Blattman, Joseph N; DeNardo, Dale F

    Resource availability can impact immune function, with the majority of studies of such influences focusing on the allocation of energy investment into immune versus other physiological functions. When energy is a limited resource, performance trade-offs can result, compromising immunity. Dehydration is also considered a physiological challenge resulting from the limitation of a vital resource, yet previous research has found a positive relationship between dehydration and innate immune performance. However, these studies did not examine the effects of dehydration on immunity when there was another concurrent, substantial physiological challenge. Thus, we examined the impact of reproduction and water deprivation, individually and in combination, on immune performance in Children's pythons (Antaresia childreni). We collected blood samples from free-ranging A. childreni to evaluate osmolality and innate immune function (lysis, agglutination, bacterial growth inhibition) during the austral dry season, when water availability is limited and this species is typically reproducing. To examine how reproduction and water imbalance, both separately and combined, impact immune function, we used a laboratory-based 2 × 2 experiment. Our results demonstrate that A. childreni experience significant dehydration during the dry season and that, overall, osmolality, regardless of the underlying cause (seasonal rainfall, water deprivation, or reproduction), is positively correlated with increased innate immune performance.

  9. Gap junctions in cells of the immune system: structure, regulation and possible functional roles.

    PubMed

    Sáez, J C; Brañes, M C; Corvalán, L A; Eugenín, E A; González, H; Martínez, A D; Palisson, F

    2000-04-01

    Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.

  10. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    PubMed Central

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  11. Translational research in immune senescence: Assessing the relevance of current models

    PubMed Central

    High, Kevin P.; Akbar, Arne N.; Nikolich-Zugich, Janko

    2014-01-01

    Advancing age is accompanied by profound changes in immune function; some are induced by the loss of critical niches that support development of naïve cells (e.g. thymic involution), others by the intrinsic physiology of long-lived cells attempting to maintain homeostasis, still others by extrinsic effects such as oxidative stress or long-term exposure to antigen due to persistent viral infections. Once compensatory mechanisms can no longer maintain a youthful phenotype the end result is the immune senescent milieu – one characterized by chronic, low grade, systemic inflammation and impaired responses to immune challenge, particularly when encountering new antigens. This state is associated with progression of chronic illnesses like atherosclerosis and dementia, and an increased risk of acute illness, disability and death in older adults. The complex interaction between immune senescence and chronic illness provides an ideal landscape for translational research with the potential to greatly affect human health. However, current animal models and even human investigative strategies for immune senescence have marked limitations, and the reductionist paradigm itself may be poorly suited to meet these challenges. A new paradigm, one that embraces complexity as a core feature of research in older adults is required to address the critical health issues facing the burgeoning senior population, the group that consumes the majority of healthcare resources. In this review, we outline the major advantages and limitations of current models and offer suggestions for how to move forward. PMID:22633440

  12. NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity

    PubMed Central

    Xu, Fang; Kapos, Paul; Cheng, Yu Ti; Li, Meng; Zhang, Yuelin; Li, Xin

    2014-01-01

    In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. PMID:25144198

  13. Use of complementary and alternative medicine for physical performance, energy, immune function, and general health among older women and men in the United States.

    PubMed

    Tait, Elizabeth M; Laditka, Sarah B; Laditka, James N; Nies, Mary A; Racine, Elizabeth F

    2012-01-01

    We examined use of complementary and alternative medicine (CAM) for health and well-being by older women and men. Data were from the 2007 National Health Interview Survey, representing 89.5 million Americans ages 50+. Multivariate logistic regression accounted for the survey design. For general health, 52 million people used CAM. The numbers for immune function, physical performance, and energy were 21.6, 15.9, and 10.1 million respectively. In adjusted results, women were much more likely than men to use CAM for all four reasons, especially energy. Older adults, particularly women, could benefit from research on CAM benefits and risks.

  14. Immune competence assessment in marine medaka (Orzyias melastigma)-a holistic approach for immunotoxicology.

    PubMed

    Ye, Roy R; Peterson, Drew R; Seemann, Frauke; Kitamura, Shin-Ichi; Lee, J S; Lau, Terrance C K; Tsui, Stephen K W; Au, Doris W T

    2017-12-01

    Many anthropogenic pollutants in coastal marine environments can induce immune impairments in wild fish and reduce their survival fitness. There is a pressing need to establish sensitive and high throughput in vivo tools to systematically evaluate the immunosuppressive effects of contaminants in marine teleosts. This study reviewed a battery of in vivo immune function detection technologies established for different biological hierarchies at molecular (immune function pathways and genes by next generation sequencing (NGS)), cellular (leukocytes profiles by flow cytometry), tissues/organ system (whole adult histo-array), and organism (host resistance assays (HRAs)) levels, to assess the immune competence of marine medaka Oryzias melastigma. This approach enables a holistic assessment of fish immune competence under different chemical exposure or environmental scenarios. The data obtained will also be useful to unravel the underlying immunotoxic mechanisms. Intriguingly, NGS analysis of hepatic immune gene expression profiles (male > female) are in support of the bacterial HRA findings, in which infection-induced mortality was consistently higher in females than in males. As such, reproductive stages and gender-specific responses must be taken into consideration when assessing the risk of immunotoxicants in the aquatic environment. The distinct phenotypic sexual dimorphism and short generation time (3 months) of marine medaka offer additional advantages for sex-related immunotoxicological investigation.

  15. Crude oil impairs immune function and increases susceptibility to pathogenic bacteria in southern flounder

    PubMed Central

    Bayha, Keith M.; Ortell, Natalie; Ryan, Caitlin N.; Griffitt, Kimberly J.; Krasnec, Michelle; Sena, Johnny; Ramaraj, Thiruvarangan; Takeshita, Ryan; Mayer, Gregory D.; Schilkey, Faye; Griffitt, Robert J.

    2017-01-01

    Exposure to crude oil or its individual constituents can have detrimental impacts on fish species, including impairment of the immune response. Increased observations of skin lesions in northern Gulf of Mexico fish during the 2010 Deepwater Horizon oil spill indicated the possibility of oil-induced immunocompromisation resulting in bacterial or viral infection. This study used a full factorial design of oil exposure and bacterial challenge to examine how oil exposure impairs southern flounder (Paralichthys lethostigma) immune function and increases susceptibility to the bacteria Vibrio anguillarum, a causative agent of vibriosis. Fish exposed to oil prior to bacterial challenge exhibited 94.4% mortality within 48 hours of bacterial exposure. Flounder challenged with V. anguillarum without prior oil exposure had <10% mortality. Exposure resulted in taxonomically distinct gill and intestine bacterial communities. Mortality strongly correlated with V. anguillarum levels, where it comprised a significantly higher percentage of the microbiome in Oil/Pathogen challenged fish and was nearly non-existent in the No Oil/Pathogen challenged fish bacterial community. Elevated V. anguillarum levels were a direct result of oil exposure-induced immunosuppression. Oil-exposure reduced expression of immunoglobulin M, the major systemic fish antibody, and resulted in an overall downregulation in transcriptome response, particularly in genes related to immune function, response to stimulus and hemostasis. Ultimately, sediment-borne oil exposure impairs immune function, leading to increased incidences of bacterial infections. This type of sediment-borne exposure may result in long-term marine ecosystem effects, as oil-bound sediment in the northern Gulf of Mexico will likely remain a contamination source for years to come. PMID:28464028

  16. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training.

    PubMed

    Cook, Marc D; Allen, Jacob M; Pence, Brandt D; Wallig, Matthew A; Gaskins, H Rex; White, Bryan A; Woods, Jeffrey A

    2016-02-01

    There is robust evidence that habitual physical activity is anti-inflammatory and protective against developing chronic inflammatory disease. Much less is known about the effects of habitual moderate exercise in the gut, the compartment that has the greatest immunological responsibility and interactions with the intestinal microbiota. The link between the two has become evident, as recent studies have linked intestinal dysbiosis, or the disproportionate balance of beneficial to pathogenic microbes, with increased inflammatory disease susceptibility. Limited animal and human research findings imply that exercise may have a beneficial role in preventing and ameliorating such diseases by having an effect on gut immune function and, recently, microbiome characteristics. Emerging data from our laboratory show that different forms of exercise training differentially impact the severity of intestinal inflammation during an inflammatory insult (for example, ulcerative colitis) and may be jointly related to gut immune cell homeostasis and microbiota-immune interactions. The evidence we review and present will provide data in support of rigorous investigations concerning the effects of habitual exercise on gut health and disease.

  17. Anthrax Immunization in the Older Warrior

    DTIC Science & Technology

    2000-08-01

    were impaired. made to relate these variables to age . It was found that older warriors were at least as likely as younger Voluntary immunization...hence, older age could not account questionnaire by post for completion and return. In for an increased prevalence of adverse reactions in order to... older adults generally have less given that previously immunized personnel were found effective immune responses to invading organisms more likely to

  18. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections

    PubMed Central

    Li, Wenfeng; Evans, Jay D.; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M.; Webster, Thomas C.; Su, Songkun

    2016-01-01

    ABSTRACT Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors

  19. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    PubMed

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  20. Comparing the Functioning of Youth and Adult Partnerships for Health Promotion.

    PubMed

    Brown, Louis D; Redelfs, Alisha H; Taylor, Thomas J; Messer, Reanna L

    2015-09-01

    Youth partnerships are a promising but understudied strategy for prevention and health promotion. Specifically, little is known about how the functioning of youth partnerships differs from that of adult partnerships. Accordingly, this study compared the functioning of youth partnerships with that of adult partnerships. Several aspects of partnership functioning, including leadership, task focus, cohesion, participation costs and benefits, and community support, were examined. Standardized partnership functioning surveys were administered to participants in three smoke-free youth coalitions (n = 44; 45 % female; 43 % non-Hispanic white; mean age = 13) and in 53 Communities That Care adult coalitions (n = 673; 69 % female; 88 % non-Hispanic white; mean age = 49). Multilevel regression analyses showed that most aspects of partnership functioning did not differ significantly between youth and adult partnerships. These findings are encouraging given the success of the adult partnerships in reducing community-level rates of substance use and delinquency. Although youth partnership functioning appears to be strong enough to support effective prevention strategies, youth partnerships faced substantially more participation difficulties than adult partnerships. Strategies that youth partnerships can use to manage these challenges, such as creative scheduling and increasing opportunities for youth to help others directly, are discussed.

  1. Priming of innate antimycobacterial immunity by heat-killed Listeria monocytogenes induces sterilizing response in the adult zebrafish tuberculosis model

    PubMed Central

    Luukinen, Hanna; Vanha-aho, Leena-Maija; Svorjova, Aleksandra; Kantanen, Laura; Järvinen, Sampsa; Dufour, Eric; Rämet, Mika; Hytönen, Vesa Pekka

    2018-01-01

    ABSTRACT Mycobacterium tuberculosis remains one of the most problematic infectious agents, owing to its highly developed mechanisms to evade host immune responses combined with the increasing emergence of antibiotic resistance. Host-directed therapies aiming to optimize immune responses to improve bacterial eradication or to limit excessive inflammation are a new strategy for the treatment of tuberculosis. In this study, we have established a zebrafish-Mycobacterium marinum natural host-pathogen model system to study induced protective immune responses in mycobacterial infection. We show that priming adult zebrafish with heat-killed Listeria monocytogenes (HKLm) at 1 day prior to M. marinum infection leads to significantly decreased mycobacterial loads in the infected zebrafish. Using rag1−/− fish, we show that the protective immunity conferred by HKLm priming can be induced through innate immunity alone. At 24 h post-infection, HKLm priming leads to a significant increase in the expression levels of macrophage-expressed gene 1 (mpeg1), tumor necrosis factor α (tnfa) and nitric oxide synthase 2b (nos2b), whereas superoxide dismutase 2 (sod2) expression is downregulated, implying that HKLm priming increases the number of macrophages and boosts intracellular killing mechanisms. The protective effects of HKLm are abolished when the injected material is pretreated with nucleases or proteinase K. Importantly, HKLm priming significantly increases the frequency of clearance of M. marinum infection by evoking sterilizing immunity (25 vs 3.7%, P=0.0021). In this study, immune priming is successfully used to induce sterilizing immunity against mycobacterial infection. This model provides a promising new platform for elucidating the mechanisms underlying sterilizing immunity and to develop host-directed treatment or prevention strategies against tuberculosis. This article has an associated First Person interview with the first author of the paper. PMID:29208761

  2. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice.

    PubMed

    Meyer, Urs; Nyffeler, Myriel; Yee, Benjamin K; Knuesel, Irene; Feldon, Joram

    2008-05-01

    Maternal infection during pregnancy increases the risk for neurodevelopmental disorders such as schizophrenia and autism in the offspring. This association appears to be critically dependent on the precise prenatal timing. However, the extent to which distinct adult psychopathological and neuropathological traits may be sensitive to the precise times of prenatal immune activation remains to be further characterized. Here, we evaluated in a mouse model of prenatal immune challenge by the viral mimic, polyriboinosinic-polyribocytidilic acid (PolyIC), whether prenatal immune activation in early/middle and late gestation may influence the susceptibility to some of the critical cognitive, pharmacological, and neuroanatomical dysfunctions implicated in schizophrenia and autism. We revealed that PolyIC-induced prenatal immune challenge on gestation day (GD) 9 but not GD17 significantly impaired sensorimotor gating and reduced prefrontal dopamine D1 receptors in adulthood, whereas prenatal immune activation specifically in late gestation impaired working memory, potentiated the locomotor reaction to the NMDA-receptor antagonist dizocilpine, and reduced hippocampal NMDA-receptor subunit 1 expression. On the other hand, potentiation of the locomotor reaction to the dopamine-receptor agonist amphetamine and reduction in Reelin- and Parvalbumin-expressing prefrontal neurons emerged independently of the precise times of prenatal immune challenge. Our findings thus highlight that prenatal immune challenge during early/middle and late fetal development in mice leads to distinct brain and behavioral pathological symptom clusters in adulthood. Further examination and evaluation of in utero immune challenge at different times of gestation may provide important new insight into the neuroimmunological and neuropathological mechanisms underlying the segregation of different symptom clusters in heterogeneous neuropsychiatric disorders such as schizophrenia and autism.

  3. Probiotics, antibiotics and the immune responses to vaccines

    PubMed Central

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  4. Probiotics, antibiotics and the immune responses to vaccines.

    PubMed

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Negative impact of urban habitat on immunity in the great tit Parus major.

    PubMed

    Bailly, Juliette; Scheifler, Renaud; Belvalette, Marie; Garnier, Stéphane; Boissier, Elena; Clément-Demange, Valérie-Anne; Gète, Maud; Leblond, Matthieu; Pasteur, Baptiste; Piget, Quentin; Sage, Mickaël; Faivre, Bruno

    2016-12-01

    Urban habitats are described as having an overall negative influence on many fitness-related traits in several bird species, but a vital function such as immunity remains poorly studied. The immune response is strongly linked to individual condition, which partly depends on resource availability and the parasitic context that often differ between urban and natural habitats. A difference between the immunity of populations dwelling in urban areas and populations from more natural habitats can, therefore, be hypothesized. We conducted a 2-year experimental study on great tits (Parus major) in urban and forest areas. We stimulated the constitutive immunity of nestlings and assessed both the inflammatory response by measuring the plasma levels of haptoglobin, an inflammatory marker, and its activation cost through the loss of body mass. In addition, we checked the nestlings for ectoparasites and assessed haemosporidian prevalence in adults. Nestlings from urban sites produced relatively less haptoglobin and lost more body mass than those from forest sites, which suggests that the activation of constitutive immunity is more costly for birds living in urban sites than for those living in the forest. We detected no ectoparasite in birds in both habitats. However, urban adults showed lower haemosporidian prevalence than forest ones, suggesting a reduced exposure to these parasites and their vectors in towns. Overall, our study provides evidence for an immune difference between urban and forest populations. Because immunity is crucial for organism fitness, it is of prime interest to identify causes and processes at the origin of this difference.

  6. Functional Literacy in the Context of Adult Education

    ERIC Educational Resources Information Center

    Convergence, 1973

    1973-01-01

    An international symposium dealing with functional literacy in the context of adult education held in West Berlin in August, 1973, concerned the government's role in establishing and financially supporting programs, the coordination of programs, institutional roles, and the identification of adult learning needs. Twenty-nine conclusions were…

  7. HLA Immune Function Genes in Autism

    PubMed Central

    Torres, Anthony R.; Westover, Jonna B.; Rosenspire, Allen J.

    2012-01-01

    The human leukocyte antigen (HLA) genes on chromosome 6 are instrumental in many innate and adaptive immune responses. The HLA genes/haplotypes can also be involved in immune dysfunction and autoimmune diseases. It is now becoming apparent that many of the non-antigen-presenting HLA genes make significant contributions to autoimmune diseases. Interestingly, it has been reported that autism subjects often have associations with HLA genes/haplotypes, suggesting an underlying dysregulation of the immune system mediated by HLA genes. Genetic studies have only succeeded in identifying autism-causing genes in a small number of subjects suggesting that the genome has not been adequately interrogated. Close examination of the HLA region in autism has been relatively ignored, largely due to extraordinary genetic complexity. It is our proposition that genetic polymorphisms in the HLA region, especially in the non-antigen-presenting regions, may be important in the etiology of autism in certain subjects. PMID:22928105

  8. Practical review of immunizations in adult patients with cancer

    PubMed Central

    Ariza-Heredia, Ella J; Chemaly, Roy F

    2015-01-01

    Compared with the general population, patients with cancer in general are more susceptible to vaccine-preventable infections, either by an increased risk due to the malignancy itself or immunosuppressive treatment. The goal of immunizations in these patients is therefore to provide protection against these infections, and to decrease the number of vulnerable patients who can disseminate these organisms. The proper timing of immunization with cancer treatment is key to achieving better vaccine protection. As the oncology field continues to advance, leading to better quality of life and longer survival, immunization and other aspects of preventive medicine ought to move to the frontline in the care of these patients. Herein, we review the vaccines most clinically relevant to patients with cancer, as well as special cases including vaccines after splenectomy, travel immunization and recommendations for family members. PMID:26110220

  9. Practical review of immunizations in adult patients with cancer.

    PubMed

    Ariza-Heredia, Ella J; Chemaly, Roy F

    2015-01-01

    Compared with the general population, patients with cancer in general are more susceptible to vaccine-preventable infections, either by an increased risk due to the malignancy itself or immunosuppressive treatment. The goal of immunizations in these patients is therefore to provide protection against these infections, and to decrease the number of vulnerable patients who can disseminate these organisms. The proper timing of immunization with cancer treatment is key to achieving better vaccine protection. As the oncology field continues to advance, leading to better quality of life and longer survival, immunization and other aspects of preventive medicine ought to move to the frontline in the care of these patients. Herein, we review the vaccines most clinically relevant to patients with cancer, as well as special cases including vaccines after splenectomy, travel immunization and recommendations for family members.

  10. How might infant and paediatric immune responses influence malaria vaccine efficacy?

    PubMed

    Moormann, A M

    2009-09-01

    Naturally acquired immunity to malaria requires repeat infections yet does not engender sterile immunity or long-lasting protective immunologic memory. This renders infants and young children the most susceptible to malaria-induced morbidity and mortality, and the ultimate target for a malaria vaccine. The prevailing paradigm is that infants initially garner protection due to transplacentally transferred anti-malarial antibodies and other intrinsic factors such as foetal haemoglobin. As these wane infants have an insufficient immune repertoire to prevent genetically diverse Plasmodium infections and an inability to control malaria-induced immunopathology. This Review discusses humoral, cell-mediated and innate immune responses to malaria and how each contributes to protection - focusing on how deficiencies in infant and paediatric immune responses might influence malaria vaccine efficacy in this population. In addition, burgeoning evidence suggests a role for inhibitory receptors that limit immunopathology and guide the development of long-lived immunity. Precisely how age or malaria infections influence the function of these regulators is unknown. Therefore the possibility that infants may not have the immune-dexterity to balance effective parasite clearance with timely immune-regulation leading to protective immunologic memory is considered. And thus, malaria vaccines tested in adults and older children may not be predictive for trials conducted in infants.

  11. Challenging Stereotypes: Sexual Functioning of Single Adults with High Functioning Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Byers, E. Sandra; Nichols, Shana; Voyer, Susan D.

    2013-01-01

    This study examined the sexual functioning of single adults (61 men, 68 women) with high functioning autism and Asperger syndrome living in the community with and without prior relationship experience. Participants completed an on-line questionnaire assessing autism symptoms, psychological functioning, and various aspects of sexual functioning. In…

  12. Committee Opinion No. 661: Integrating Immunizations Into Practice.

    PubMed

    2016-04-01

    Immunization against vaccine-preventable diseases is an essential component of women's primary and preventive health care. Despite the importance of vaccination and clear guidance from public health agencies, rates of vaccination lag behind national goals. Obstetrician-gynecologists can play a major role in reducing morbidity and mortality from a range of vaccine-preventable diseases, including pertussis, influenza, human papillomavirus, and hepatitis. Given demonstrated vaccine efficacy and safety, and the large potential for prevention of many infectious diseases that affect adults, pregnant women, and newborns, obstetrician-gynecologists should include immunizations as an integral part of their practice. To do so, they must embrace their role as important sources of information and advice on immunization for adults, adolescents, and pregnant women, and advance their patients' well-being with continued efforts to augment immunization services in their offices. Increasing awareness combined with the many suggestions in this document will work to enhance immunization uptake.

  13. Costimulatory Function of Cd58/Cd2 Interaction in Adaptive Humoral Immunity in a Zebrafish Model.

    PubMed

    Shao, Tong; Shi, Wei; Zheng, Jia-Yu; Xu, Xiao-Xiao; Lin, Ai-Fu; Xiang, Li-Xin; Shao, Jian-Zhong

    2018-01-01

    CD58 and CD2 have long been known as a pair of reciprocal adhesion molecules involved in the immune modulations of CD8 + T and NK-mediated cellular immunity in humans and several other mammals. However, the functional roles of CD58 and CD2 in CD4 + T-mediated adaptive humoral immunity remain poorly defined. Moreover, the current functional observations of CD58 and CD2 were mainly acquired from in vitro assays, and in vivo investigation is greatly limited due to the absence of a Cd58 homology in murine models. In this study, we identified cd58 and cd2 homologs from the model species zebrafish ( Danio rerio ). These two molecules share conserved structural features to their mammalian counterparts. Functionally, cd58 and cd2 were significantly upregulated on antigen-presenting cells and Cd4 + T cells upon antigen stimulation. Blockade or knockdown of Cd58 and Cd2 dramatically impaired the activation of antigen-specific Cd4 + T and mIgM + B cells, followed by the inhibition of antibody production and host defense against bacterial infections. These results indicate that CD58/CD2 interaction was required for the full activation of CD4 + T-mediated adaptive humoral immunity. The interaction of Cd58 with Cd2 was confirmed by co-immunoprecipitation and functional competitive assays by introducing a soluble Cd2 protein. This study highlights a new costimulatory mechanism underlying the regulatory network of adaptive immunity and makes zebrafish an attractive model organism for the investigation of CD58/CD2-mediated immunology and disorders. It also provides a cross-species understanding of the evolutionary history of costimulatory signals from fish to mammals as a whole.

  14. Early adaption to the antarctic environment at dome C: consequences on stress-sensitive innate immune functions.

    PubMed

    Feuerecker, Matthias; Crucian, Brian; Salam, Alex P; Rybka, Ales; Kaufmann, Ines; Moreels, Marjan; Quintens, Roel; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Sams, Clarence; Choukèr, Alexander

    2014-09-01

    Abstract Feuerecker, Matthias, Brian Crucian, Alex P. Salam, Ales Rybka, Ines Kaufmann, Marjan Moreels, Roel Quintens, Gustav Schelling, Manfred Thiel, Sarah Baatout, Clarence Sams, and Alexander Choukèr. Early adaption in the Antarctic environment at Dome C: Consequences on stress-sensitive innate immune functions. High Alt Med Biol 15:341-348, 2014.-Purpose/Aims: Medical reports of Antarctic expeditions indicate that health is affected under these extreme conditions. The present study at CONCORDIA-Station (Dome C, 3233 m) seeks to investigate the early consequences of confinement and hypobaric hypoxia on the human organism. Nine healthy male participants were included in this study. Data collection occurred before traveling to Antarctica (baseline), and at 1 week and 1 month upon arrival. Investigated parameters included basic physiological variables, psychological stress tests, cell blood count, stress hormones, and markers of innate immune functions in resting and stimulated immune cells. By testing for the hydrogen peroxide (H2O2) production of stimulated polymorphonuclear leukocytes (PMNs), the effects of the hypoxia-adenosine-sensitive immune modulatory pathways were examined. As compared to baseline data, reduced oxygen saturation, hemoconcentration, and an increase of secreted catecholamines was observed, whereas no psychological stress was seen. Upon stimulation, the activity of PMNs and L-selectin shedding was mitigated after 1 week. Endogenous adenosine concentration was elevated during the early phase. In summary, living conditions at high altitude influence the innate immune system's response. After 1 month, some of the early effects on the human organism were restored. As this early adaptation is not related to psychological stress, the changes observed are likely to be induced by environmental stressors, especially hypoxia. As hypoxia is triggering ATP-catabolism, leading to elevated endogenous adenosine concentrations, this and the increased

  15. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice

    PubMed Central

    Heine, Shannon J.; Franco-Mahecha, Olga L.; Chen, Xiaotong; Choudhari, Shyamal; Blackwelder, William C.; van Roosmalen, Maarten L.; Leenhouts, Kees; Picking, Wendy L.; Pasetti, Marcela F.

    2015-01-01

    Shigella spp. are among the enteric pathogens with the highest attributable incidence of moderate-to-severe diarrhea in children under 5 years of age living in endemic areas. There are no vaccines available to prevent this disease. In this work, we investigated a new Shigella vaccine concept consisting of non-living, self-adjuvanted, Lactococcus lactis bacterium-like particles (BLP) displaying Shigella invasion plasmid antigen (Ipa) B and IpaD and examined its immunogenicity and protective efficacy in adult and newborn/infant mice immunized via the nasal route. Unique advantages of this approach include the potential for broad protection due to the highly conserved structure of the Ipas and the safety and practicality of a probiotic-based mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool IgA in a dose-dependent manner. Immune responses and protection were enhanced by BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased survival post-challenge. Ipa-specific antibody secreting cells were detected in nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow cells produced IpaB/D-specific antibodies and contributed to protection after adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80% protection against S. flexneri and S. sonnei, respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and IpaD serum antibodies; 90% were protected against S. flexneri and 44% against S. sonnei. The BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially effective immunization of children against shigellosis. PMID:25776843

  16. Simulated Night Shift Disrupts Circadian Rhythms of Immune Functions in Humans.

    PubMed

    Cuesta, Marc; Boudreau, Philippe; Dubeau-Laramée, Geneviève; Cermakian, Nicolas; Boivin, Diane B

    2016-03-15

    Recent research unveiled a circadian regulation of the immune system in rodents, yet little is known about rhythms of immune functions in humans and how they are affected by circadian disruption. In this study, we assessed rhythms of cytokine secretion by immune cells and tested their response to simulated night shifts. PBMCs were collected from nine participants kept in constant posture over 24 h under a day-oriented schedule (baseline) and after 3 d under a night-oriented schedule. Monocytes and T lymphocytes were stimulated with LPS and PHA, respectively. At baseline, a bimodal rhythmic secretion was detected for IL-1β, IL-6, and TNF-α: a night peak was primarily due to a higher responsiveness of monocytes, and a day peak was partly due to a higher proportion of monocytes. A rhythmic release was also observed for IL-2 and IFN-γ, with a nighttime peak due to a higher cell count and responsiveness of T lymphocytes. Following night shifts, with the exception of IL-2, cytokine secretion was still rhythmic but with peak levels phase advanced by 4.5-6 h, whereas the rhythm in monocyte and T lymphocyte numbers was not shifted. This suggests distinct mechanisms of regulation between responsiveness to stimuli and cell numbers of the human immune system. Under a night-oriented schedule, only cytokine release was partly shifted in response to the change in the sleep-wake cycle. This led to a desynchronization of rhythmic immune parameters, which might contribute to the increased risk for infection, autoimmune diseases, cardiovascular and metabolic disorders, and cancer reported in shift workers. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    PubMed

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and

  18. Atypical Skeletal Muscle Profiles in Human Immunodeficiency Virus-Infected Asymptomatic Middle-Aged Adults.

    PubMed

    Tran, Thanh; Guardigni, Viola; Pencina, Karol M; Amato, Anthony A; Floyd, Michael; Brawley, Brooke; Mozeleski, Brian; McKinnon, Jennifer; Woodbury, Erin; Heckel, Emily; Li, Zhuoying; Storer, Tom; Sax, Paul E; Montano, Monty

    2018-06-01

    Human immunodeficiency virus (HIV)-infected individuals are at increased risk of age-associated functional impairment, even with effective antiretroviral therapy (ART). A concurrent characterization of skeletal muscle, physical function, and immune phenotype in aviremic middle-aged HIV-infected adults represents a knowledge gap in prognostic biomarker discovery. We undertook a prospective observational study of 170 middle-aged, HIV-infected ambulatory men and women with CD4+ T-cell counts of at least 350/µL and undetectable plasma viremia while on effective ART, and uninfected control participants. We measured biomarkers for inflammation and immune activation, fatigue, the Veterans Aging Cohort Study mortality index, and physical function. A subset also received a skeletal muscle biopsy and computed tomography scan. Compared to the uninfected participants, HIV-infected participants displayed increased immune activation (P < .001), inflammation (P = .001), and fatigue (P = .010), and in a regression model adjusting for age and sex displayed deficits in stair-climb power (P < .001), gait speed (P = .036), and predicted metabolic equivalents (P = .019). Skeletal muscle displayed reduced nuclear peroxisome proliferator-activated receptor-γ coactivator 1α-positive myonuclei (P = .006), and increased internalized myonuclei (P < .001) that correlated with immune activation (P = .003) and leukocyte infiltration (P < .001). Internalized myonuclei improved a model for HIV discrimination, increasing the C-statistic from 0.84 to 0.90. Asymptomatic HIV-infected middle-aged adults display atypical skeletal muscle profiles, subclinical deficits in physical function, and persistent inflammation and immune activation. Identifying biomarker profiles for muscle dysregulation and risk for future functional decline in the HIV-infected population will be key to developing and monitoring preventive interventions. NCT03011957.

  19. 77 FR 58843 - Advisory Committee on Immunization Practices (ACIP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ..., hepatitis B vaccine, meningococcal vaccines, influenza, measles-mumps-rubella vaccine, pertussis and vaccine...-rubella vaccine, hepatitis B vaccine, child/adolescent immunization schedule, and the adult immunization...

  20. Sex-specific life history responses to nymphal diet quality and immune status in a field cricket.

    PubMed

    Kelly, C D; Neyer, A A; Gress, B E

    2014-02-01

    Individual fitness is expected to benefit from earlier maturation at a larger body size and higher body condition. However, poor nutritional quality or high prevalence of disease make this difficult because individuals either cannot acquire sufficient resources or must divert resources to other fitness-related traits such as immunity. Under such conditions, individuals are expected to mature later at a smaller body size and in poorer body condition. Moreover, the juvenile environment can also produce longer-term effects on adult fitness by causing shifts in resource allocation strategies that could alter investment in immune function and affect adult lifespan. We manipulated diet quality and immune status of juvenile Texas field crickets, Gryllus texensis, to investigate how poor developmental conditions affect sex-specific investment in fitness-related traits. As predicted, a poor juvenile diet was related to smaller mass and body size at eclosion in both sexes. However, our results also reveal sexually dimorphic responses to different facets of the rearing environment: female life history decisions are affected more by diet quality, whereas males are affected more by immune status. We suggest that females respond to decreased nutritional income because this threatens their ability to achieve a large adult body size, whereas male fitness is more dependent on reaching adulthood and so they invest in immunity and survival to eclosion. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  1. Immunization Information Systems: A Decade of Progress in Law and Policy

    PubMed Central

    Martin, Daniel W.; Lowery, N. Elaine; Brand, Bill; Gold, Rebecca; Horlick, Gail

    2015-01-01

    This article reports on a study of laws, regulations, and policies governing Immunization Information Systems (IIS, also known as “immunization registries”) in states and selected urban areas of the United States. The study included a search of relevant statutes, administrative codes and published attorney general opinions/findings, an online questionnaire completed by immunization program managers and/or their staff, and follow-up telephone interviews. The legal/regulatory framework for IIS has changed considerably since 2000, largely in ways that improve IIS’ ability to perform their public health functions while continuing to maintain strict confidentiality and privacy controls. Nevertheless, the exchange of immunization data and other health information between care providers and public health and between entities in different jurisdictions remains difficult due in part to ongoing regulatory diversity. To continue to be leaders in health information exchange and facilitate immunization of children and adults, IIS will need to address the challenges presented by the interplay of federal and state legislation, regulations, and policies and continue to move toward standardized data collection and sharing necessary for interoperable systems. PMID:24402434

  2. Do all roads lead to Rome? The role of neuro-immune interactions before birth in the programming of offspring obesity

    PubMed Central

    Jasoni, Christine L.; Sanders, Tessa R.; Kim, Dong Won

    2015-01-01

    The functions of the nervous system can be powerfully modulated by the immune system. Although traditionally considered to be quite separate, neuro-immune interactions are increasingly recognized as critical for both normal and pathological nervous system function in the adult. However, a growing body of information supports a critical role for neuro-immune interactions before birth, particularly in the prenatal programming of later-life neurobehavioral disease risk. This review will focus on maternal obesity, as it represents an environment of pathological immune system function during pregnancy that elevates offspring neurobehavioral disease risk. We will first delineate the normal role of the immune system during pregnancy, including the role of the placenta as both a barrier and relayer of inflammatory information between the maternal and fetal environments. This will be followed by the current exciting findings of how immuno-modulatory molecules may elevate offspring risk of neurobehavioral disease by altering brain development and, consequently, later life function. Finally, by drawing parallels with pregnancy complications other than obesity, we will suggest that aberrant immune activation, irrespective of its origin, may lead to neuro-immune interactions that otherwise would not exist in the developing brain. These interactions could conceivably derail normal brain development and/or later life function, and thereby elevate risk for obesity and other neurobehavioral disorders later in the offspring's life. PMID:25691854

  3. Impairment of pneumococcal antigen specific isotype-switched Igg memory B-cell immunity in HIV infected Malawian adults.

    PubMed

    Iwajomo, Oluwadamilola H; Finn, Adam; Ogunniyi, Abiodun D; Williams, Neil A; Heyderman, Robert S

    2013-01-01

    Pneumococcal disease is associated with a particularly high morbidity and mortality amongst adults in HIV endemic countries. Our previous findings implicating a B-cell defect in HIV-infected children from the same population led us to comprehensively characterize B-cell subsets in minimally symptomatic HIV-infected Malawian adults and investigate the isotype-switched IgG memory B-cell immune response to the pneumococcus. We show that similar to vertically acquired HIV-infected Malawian children, horizontally acquired HIV infection in these adults is associated with IgM memory B-cell (CD19(+) CD27(+) IgM(+) IgD(+)) depletion, B-cell activation and impairment of specific IgG B-cell memory to a range of pneumococcal proteins. Our data suggest that HIV infection affects both T-cell independent and T-cell dependent B-cell maturation, potentially leading to impairment of humoral responses to extracellular pathogens such as the pneumococcus, and thus leaving this population susceptible to invasive disease.

  4. A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin-Specific Immune Responses and Tuberculosis.

    PubMed

    Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R

    2017-08-15

    The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG

  5. A biocultural perspective on fictive kinship in the Andes: social support and women's immune function in El Alto, Bolivia.

    PubMed

    Hicks, Kathryn

    2014-09-01

    This article examines the influence of emotional and instrumental support on women's immune function, a biomarker of stress, in the city of El Alto, Bolivia. It tests the prediction that instrumental support is protective of immune function for women living in this marginal environment. Qualitative and quantitative ethnographic methods were employed to assess perceived emotional and instrumental support and common sources of support; multiple linear regression analysis was used to model the relationship between social support and antibodies to the Epstein-Barr virus. These analyses provided no evidence that instrumental social support is related to women's health, but there is some evidence that emotional support from compadres helps protect immune function. © 2014 by the American Anthropological Association.

  6. Immune System Dysfunction in the Elderly.

    PubMed

    Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván

    2017-01-01

    Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.

  7. Functional abilities in older adults with mild cognitive impairment.

    PubMed

    Burton, Catherine L; Strauss, Esther; Bunce, David; Hunter, Michael A; Hultsch, David F

    2009-01-01

    A classification scheme and general set of criteria for diagnosing mild cognitive impairment (MCI) were recently proposed by a multidisciplinary group of experts who met at an international symposium on MCI. One of the proposed criteria included preserved basic activities of daily living and minimal impairment in complex instrumental activities of daily living (IADLs). To investigate whether older adults with MCI classified according to the subtypes identified by the Working Group (i.e. amnestic, single non-memory domain, and multiple domain with or without a memory component) differed from cognitively intact older adults on a variety of measures indexing IADLs and to examine how well measures of IADL predict concurrent MCI status. Two hundred and fifty community-dwelling older adults, ranging in age from 66 to 92, completed self-report measures of IADLs (Lawton and Brody IADL Scale, Scales of Independent Behaviour-Revised--SIB-R) and a measure of everyday problem solving indexing IADLs (Everyday Problems Test--EPT). Ratings of participants' IADL functioning were also obtained from informants (e.g. spouse, adult child and friend). Older adults with multiple-domain MCI demonstrated poorer IADL functioning than older adults with no cognitive impairment on the EPT and the SIB-R (both self- and informant-report versions). The multiple-domain MCI participants also demonstrated poorer IADLs than MCI participants with impairments in a single cognitive domain on the self-reported SIB-R and EPT. The single-domain MCI groups demonstrated poorer IADLs than older adults without cognitive impairment on the informant-reported SIB-R and EPT. No significant group differences were found on the Lawton and Brody IADL Scale. Using the EPT and SIB-R as predictors in a multinomial regression analysis, MCI group status was reliably predicted, but the classification rate was poor. Individuals with MCI demonstrated poorer IADL functioning compared to cognitively intact older adults

  8. Adult psychological functioning of individuals born with craniofacial anomalies.

    PubMed

    Sarwer, D B; Bartlett, S P; Whitaker, L A; Paige, K T; Pertschuk, M J; Wadden, T A

    1999-02-01

    This study represents an initial investigation into the adult psychological functioning of individuals born with craniofacial disfigurement. A total of 24 men and women born with a craniofacial anomaly completed paper and pencil measures of body image dissatisfaction, self-esteem, quality of life, and experiences of discrimination. An age- and gender-matched control group of 24 non-facially disfigured adults also completed the measures. As expected, craniofacially disfigured adults reported greater dissatisfaction with their facial appearance than did the control group. Craniofacially disfigured adults also reported significantly lower levels of self-esteem and quality of life. Dissatisfaction with facial appearance, self-esteem, and quality of life were related to self-ratings of physical attractiveness. More than one-third of craniofacially disfigured adults (38 percent) reported experiences of discrimination in employment or social settings. Among disfigured adults, psychological functioning was not related to number of surgeries, although the degree of residual facial deformity was related to increased dissatisfaction with facial appearance and greater experiences of discrimination. Results suggest that adults who were born with craniofacial disfigurement, as compared with non-facially disfigured adults, experience greater dissatisfaction with facial appearance and lower self-esteem and quality of life; however, these experiences do not seem to be universal.

  9. Effect of liniment levamisole on cellular immune functions of patients with chronic hepatitis B.

    PubMed

    Wang, Ke-Xia; Zhang, Li-Hua; Peng, Jiang-Long; Liang, Yong; Wang, Xue-Feng; Zhi, Hui; Wang, Xiang-Xia; Geng, Huan-Xiong

    2005-12-07

    To explore the effects of liniment levamisole on cellular immune functions of patients with chronic hepatitis B. The levels of T lymphocyte subsets and mIL-2R in peripheral blood mononuclear cells (PBMCs) were measured by biotin-streptavidin (BSA) technique in patients with chronic hepatitis B before and after the treatment with liniment levamisole. After one course of treatment with liniment levamisole, the levels of CD3(+), CD4(+), and the ratio of CD4(+)/CD8(+) increased as compared to those before the treatment but the level of CD8(+) decreased. The total expression level of mIL-2R in PBMCs increased before and after the treatment with liniment levamisole. Liniment levamisole may reinforce cellular immune functions of patients with chronic hepatitis B.

  10. Monitoring Immune System Function and Reactivation of Latent Viruses in the Artificial Gravity Pilot Study

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Crucian, Brian; Pierson, Duane L.; Sams, Clarence; Stowe, Raymond P.

    2007-01-01

    Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 degrees head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity (AG) as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system, and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of Epstein barr virus (EBV), Cytomegalovirus (CMV), and Varicella zoster virus (VZV) was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 106 PBMCs. Overall, these data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.

  11. Monitoring Immune System Function and Reactivation of Latent Viruses in the Artificial Gravity Pilot Study

    NASA Technical Reports Server (NTRS)

    Mehta, Satish; Crusian, Brian; Pierson, Duane; Sams, Clarence; Stowe, Raymond

    2007-01-01

    Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 deg. head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of EBV and CMV was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in plasma cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 10(exp 6) PBMCs. These data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.

  12. Severe bleeding events in adults and children with primary immune thrombocytopenia: a systematic review.

    PubMed

    Neunert, C; Noroozi, N; Norman, G; Buchanan, G R; Goy, J; Nazi, I; Kelton, J G; Arnold, D M

    2015-03-01

    The burden of severe bleeding in adults and children with immune thrombocytopenia (ITP) has not been established. To describe the frequency and severity of bleeding events in patients with ITP, and the methods used to measure bleeding in ITP studies. We performed a systematic review of all prospective ITP studies that enrolled 20 or more patients. Two reviewers searched Medline, Embase, CINAHL and the Cochrane registry up to May 2014. Overall weighted proportions were estimated using a random effects model. Measurement properties of bleeding assessment tools were evaluated. We identified 118 studies that reported bleeding (n = 10 908 patients). Weighted proportions for intracerebral hemorrhage (ICH) were 1.4% for adults (95% confidence interval [CI], 0.9-2.1%) and 0.4% for children (95% CI, 0.2-0.7%; P < 0.01), most of whom had chronic ITP. The weighted proportion for severe (non-ICH) bleeding was 9.6% for adults (95% CI, 4.1-17.1%) and 20.2% for children (95% CI, 10.0-32.9%; P < 0.01) with newly-diagnosed or chronic ITP. Methods of reporting and definitions of severe bleeding were highly variable in primary studies. Two bleeding assessment tools (Buchanan 2002 for children; Page 2007 for adults) demonstrated adequate inter-rater reliability and validity in independent assessments. ICH was more common in adults and tended to occur during chronic ITP; other severe bleeds were more common in children and occurred at all stages of disease. Reporting of non-ICH bleeding was variable across studies. Further attention to ITP-specific bleeding measurement in clinical trials is needed to improve standardization of this important outcome for patients. © 2014 International Society on Thrombosis and Haemostasis.

  13. General recommendations on immunization --- recommendations of the Advisory Committee on Immunization Practices (ACIP).

    PubMed

    2011-01-28

    This report is a revision of the General Recommendations on Immunization and updates the 2006 statement by the Advisory Committee on Immunization Practices (ACIP) (CDC. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2006;55[No. RR-15]). The report also includes revised content from previous ACIP recommendations on the following topics: adult vaccination (CDC. Update on adult immunization recommendations of the immunization practices Advisory Committee [ACIP]. MMWR 1991;40[No. RR-12]); the assessment and feedback strategy to increase vaccination rates (CDC. Recommendations of the Advisory Committee on Immunization Practices: programmatic strategies to increase vaccination rates-assessment and feedback of provider-based vaccination coverage information. MMWR 1996;45:219-20); linkage of vaccination services and those of the Supplemental Nutrition Program for Women, Infants, and Children (WIC program) (CDC. Recommendations of the Advisory Committee on Immunization Practices: programmatic strategies to increase vaccination coverage by age 2 years-linkage of vaccination and WIC services. MMWR 1996;45:217-8); adolescent immunization (CDC. Immunization of adolescents: recommendations of the Advisory Committee on Immunization Practices, the American Academy of Pediatrics, the American Academy of Family Physicians, and the American Medical Association. MMWR 1996;45[No. RR-13]); and combination vaccines (CDC. Combination vaccines for childhood immunization: recommendations of the Advisory Committee on Immunization Practices [ACIP], the American Academy of Pediatrics [AAP], and the American Academy of Family Physicians [AAFP]. MMWR 1999;48[No. RR-5]). Notable revisions to the 2006 recommendations include 1) revisions to the tables of contraindications and precautions to vaccination, as well as a separate table of conditions that are commonly misperceived as contraindications and precautions; 2

  14. Improvements and decline in the physical functioning of Israeli older adults.

    PubMed

    Spalter, Tal; Brodsky, Jenny; Shnoor, Yitschak

    2014-12-01

    The current study depicts improvement and decline in functioning among 3 population groups of Israeli older adults: Jews and veteran immigrants, former Soviet Union immigrants, and Arabs. Using longitudinal data from 2005 and 2010 Survey of Health and Retirement (SHARE) in Israel (n = 982), we examined 4 functional changes in late life in mobility, movement, activities of daily living (ADL), and instrumental ADL, as a function of sociodemographic, health, and social variables The findings reveal that physical functioning among older adults can decline as well as improve over time. Older age, higher number of diseases and comorbidity, living with others (not the spouse) compared with living alone, receiving informal help and formal help with homemaking, and declined mental health and cognitive status predict deterioration in physical functioning. Also, Arab older adults are at higher risk of deterioration over time compared with Jewish older adults. Findings imply that noncompatible assistance to older adults may "save them the hassle" of doing things by themselves and thus, weakens a potential functional rehabilitation process. There is a need to guide not only professional personnel but also nonprofessional home care workers and family members on how to encourage and retain older adults' functions as much as possible in order to improve their quality of life. Another implication of investing in rehabilitation is that it might reduce the disability rate among older adults and thus save health expenditures on long-term care at the macrosocial level. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Cow’s Milk and Immune Function in the Respiratory Tract: Potential Mechanisms

    PubMed Central

    Perdijk, Olaf; van Splunter, Marloes; Savelkoul, Huub F. J.; Brugman, Sylvia; van Neerven, R. J. Joost

    2018-01-01

    During the last decades, the world has witnessed a dramatic increase in allergy prevalence. Epidemiological evidence shows that growing up on a farm is a protective factor, which is partly explained by the consumption of raw cow’s milk. Indeed, recent studies show inverse associations between raw cow’s milk consumption in early life and asthma, hay fever, and rhinitis. A similar association of raw cow’s milk consumption with respiratory tract infections is recently found. In line with these findings, controlled studies in infants with milk components such as lactoferrin, milk fat globule membrane, and colostrum IgG have shown to reduce respiratory infections. However, for ethical reasons, it is not possible to conduct controlled studies with raw cow’s milk in infants, so formal proof is lacking to date. Because viral respiratory tract infections and aeroallergen exposure in children may be causally linked to the development of asthma, it is of interest to investigate whether cow’s milk components can modulate human immune function in the respiratory tract and via which mechanisms. Inhaled allergens and viruses trigger local immune responses in the upper airways in both nasal and oral lymphoid tissue. The components present in raw cow’s milk are able to promote a local microenvironment in which mucosal immune responses are modified and the epithelial barrier is enforced. In addition, such responses may also be triggered in the gut after exposure to allergens and viruses in the nasal cavity that become available in the GI tract after swallowing. However, these immune cells that come into contact with cow’s milk components in the gut must recirculate into the blood and home to the (upper and lower) respiratory tract to regulate immune responses locally. Expression of the tissue homing-associated markers α4β7 and CCR9 or CCR10 on lymphocytes can be influenced by vitamin A and vitamin D3, respectively. Since both vitamins are present in milk, we

  16. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P

    2014-07-01

    Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  17. Functional Impacts of Adult Literacy Programme on Rural Women

    ERIC Educational Resources Information Center

    Mbah, Blessing Akaraka

    2015-01-01

    This study assessed the functional impacts of adult literacy programme among rural women participants in Ishielu Local Government Area (LGA) of Ebonyi State, Nigeria. Descriptive survey design was used for the study. The population of the study was made up of 115 adult instructors and 2,408 adult learners giving a total of 2,623. The sample…

  18. Complex multicellular functions at a unicellular eukaryote level: Learning, memory, and immunity.

    PubMed

    Csaba, György

    2017-06-01

    According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.

  19. Executive function and functional and structural brain differences in middle-age adults with autism spectrum disorder.

    PubMed

    Braden, B Blair; Smith, Christopher J; Thompson, Amiee; Glaspy, Tyler K; Wood, Emily; Vatsa, Divya; Abbott, Angela E; McGee, Samuel C; Baxter, Leslie C

    2017-12-01

    There is a rapidly growing group of aging adults with autism spectrum disorder (ASD) who may have unique needs, yet cognitive and brain function in older adults with ASD is understudied. We combined functional and structural neuroimaging and neuropsychological tests to examine differences between middle-aged men with ASD and matched neurotypical (NT) men. Participants (ASD, n = 16; NT, n = 17) aged 40-64 years were well-matched according to age, IQ (range: 83-131), and education (range: 9-20 years). Middle-age adults with ASD made more errors on an executive function task (Wisconsin Card Sorting Test) but performed similarly to NT adults on tests of delayed verbal memory (Rey Auditory Verbal Learning Test) and local visual search (Embedded Figures Task). Independent component analysis of a functional MRI working memory task (n-back) completed by most participants (ASD = 14, NT = 17) showed decreased engagement of a cortico-striatal-thalamic-cortical neural network in older adults with ASD. Structurally, older adults with ASD had reduced bilateral hippocampal volumes, as measured by FreeSurfer. Findings expand our understanding of ASD as a lifelong condition with persistent cognitive and functional and structural brain differences evident at middle-age. Autism Res 2017, 10: 1945-1959. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. We compared cognitive abilities and brain measures between 16 middle-age men with high-functioning autism spectrum disorder (ASD) and 17 typical middle-age men to better understand how aging affects an older group of adults with ASD. Men with ASD made more errors on a test involving flexible thinking, had less activity in a flexible thinking brain network, and had smaller volume of a brain structure related to memory than typical men. We will follow these older adults over time to determine if aging changes are greater for individuals with ASD. © 2017 International Society for Autism Research

  20. A conserved gene cluster as a putative functional unit in insect innate immunity.

    PubMed

    Somogyi, Kálmán; Sipos, Botond; Pénzes, Zsolt; Andó, István

    2010-11-05

    The Nimrod gene superfamily is an important component of the innate immune response. The majority of its member genes are located in close proximity within the Drosophila melanogaster genome and they lie in a larger conserved cluster ("Nimrod cluster"), made up of non-related groups (families, superfamilies) of genes. This cluster has been a part of the Arthropod genomes for about 300-350 million years. The available data suggest that the Nimrod cluster is a functional module of the insect innate immune response. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Innate immune system and tissue regeneration in planarians: an area ripe for exploration.

    PubMed

    Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J

    2014-08-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cryptic impacts of temperature variability on amphibian immune function.

    PubMed

    Terrell, Kimberly A; Quintero, Richard P; Murray, Suzan; Kleopfer, John D; Murphy, James B; Evans, Matthew J; Nissen, Bradley D; Gratwicke, Brian

    2013-11-15

    Ectothermic species living in temperate regions can experience rapid and potentially stressful changes in body temperature driven by abrupt weather changes. Yet, among amphibians, the physiological impacts of short-term temperature variation are largely unknown. Using an ex situ population of Cryptobranchus alleganiensis, an aquatic North American salamander, we tested the hypothesis that naturally occurring periods of temperature variation negatively impact amphibian health, either through direct effects on immune function or by increasing physiological stress. We exposed captive salamanders to repeated cycles of temperature fluctuations recorded in the population's natal stream and evaluated behavioral and physiological responses, including plasma complement activity (i.e. bacteria killing) against Pseudomonas aeruginosa, Escherichia coli and Aeromonas hydrophila. The best-fit model (ΔAICc=0, wi=0.9992) revealed 70% greater P. aeruginosa killing after exposure to variable temperatures and no evidence of thermal acclimation. The same model predicted 50% increased E. coli killing, but had weaker support (ΔAICc=1.8, wi=0.2882). In contrast, plasma defenses were ineffective against A. hydrophila, and other health indicators (leukocyte ratios, growth rates and behavioral patterns) were maintained at baseline values. Our data suggest that amphibians can tolerate, and even benefit from, natural patterns of rapid warming/cooling. Specifically, temperature variation can elicit increased activity of the innate immune system. This immune response may be adaptive in an unpredictable environment, and is undetectable by conventional health indicators (and hence considered cryptic). Our findings highlight the need to consider naturalistic patterns of temperature variation when predicting species' susceptibility to climate change.

  3. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function.

    PubMed

    Poulose, Shibu M; Miller, Marshall G; Scott, Tammy; Shukitt-Hale, Barbara

    2017-11-01

    Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging. © 2017 American Society for Nutrition.

  4. Roles of microRNA in the immature immune system of neonates.

    PubMed

    Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou

    2018-06-13

    Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.

  5. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses.

    PubMed

    Gao, Yanpan; Chen, Yanyu; Zhan, Shaohua; Zhang, Wenhao; Xiong, Feng; Ge, Wei

    2017-01-31

    Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses.

  6. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses

    PubMed Central

    Zhan, Shaohua; Zhang, Wenhao; Xiong, Feng; Ge, Wei

    2017-01-01

    Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses. PMID:28088779

  7. Immune function in arctic mammals: Natural killer (NK) cell-like activity in polar bear, muskox and reindeer.

    PubMed

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer; Grøndahl, Carsten; Bertelsen, Mads F; Guise, Sylvain De; Sonne, Christian; Dietz, Rune; Levin, Milton

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus maritimus), muskox (Ovibos moschatus) and reindeer (Rangifer tarandus). NK cell-like activity for all three species was most effective against the mouse lymphoma cell line YAC-1, compared to the human leukemia cell line K562; NK cell response displayed the characteristic increase in cytotoxic activity when the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  9. Burden of vaccine-preventable pneumococcal disease in hospitalized adults: A Canadian Immunization Research Network (CIRN) Serious Outcomes Surveillance (SOS) network study.

    PubMed

    LeBlanc, Jason J; ElSherif, May; Ye, Lingyun; MacKinnon-Cameron, Donna; Li, Li; Ambrose, Ardith; Hatchette, Todd F; Lang, Amanda L; Gillis, Hayley; Martin, Irene; Andrew, Melissa K; Boivin, Guy; Bowie, William; Green, Karen; Johnstone, Jennie; Loeb, Mark; McCarthy, Anne; McGeer, Allison; Moraca, Sanela; Semret, Makeda; Stiver, Grant; Trottier, Sylvie; Valiquette, Louis; Webster, Duncan; McNeil, Shelly A

    2017-06-22

    Pneumococcal community acquired pneumonia (CAP Spn ) and invasive pneumococcal disease (IPD) cause significant morbidity and mortality worldwide. Although childhood immunization programs have reduced the overall burden of pneumococcal disease, there is insufficient data in Canada to inform immunization policy in immunocompetent adults. This study aimed to describe clinical outcomes of pneumococcal disease in hospitalized Canadian adults, and determine the proportion of cases caused by vaccine-preventable serotypes. Active surveillance for CAP Spn and IPD in hospitalized adults was performed in hospitals across five Canadian provinces from December 2010 to 2013. CAP Spn were identified using sputum culture, blood culture, a commercial pan-pneumococcal urine antigen detection (UAD), or a serotype-specific UAD. The serotype distribution was characterized using Quellung reaction, and PCR-based serotyping on cultured isolates, or using a 13-valent pneumococcal conjugate vaccine (PCV13) serotype-specific UAD assay. In total, 4769 all-cause CAP cases and 81 cases of IPD (non-CAP) were identified. Of the 4769 all-cause CAP cases, a laboratory test for S. pneumoniae was performed in 3851, identifying 14.3% as CAP Spn . Of CAP cases among whom all four diagnostic test were performed, S. pneumoniae was identified in 23.2% (144/621). CAP Spn cases increased with age and the disease burden of illness was evident in terms of requirement for mechanical ventilation, intensive care unit admission, and 30-day mortality. Of serotypeable CAP Spn or IPD results, predominance for serotypes 3, 7F, 19A, and 22F was observed. The proportion of hospitalized CAP cases caused by a PCV13-type S. pneumoniae ranged between 7.0% and 14.8% among cases with at least one test for S. pneumoniae performed or in whom all four diagnostic tests were performed, respectively. Overall, vaccine-preventable pneumococcal CAP and IPD were shown to be significant causes of morbidity and mortality in hospitalized

  10. Nanosized aluminum altered immune function.

    PubMed

    Braydich-Stolle, Laura K; Speshock, Janice L; Castle, Alicia; Smith, Marcus; Murdock, Richard C; Hussain, Saber M

    2010-07-27

    On the basis of their uses in jet fuels and munitions, the most likely scenario for aluminum nanoparticle (NP) exposure is inhalation. NPs have been shown to be capable of penetrating deep into the alveolar regions of the lung, and therefore human alveolar macrophages (U937) with human type II pneumocytes (A549) were cultured together and exposed to NPs dispersed in an artificial lung surfactant to more accurately mimic the lung microenvironment. Two types of NPs were evaluated: aluminum (Al) and aluminum oxide (Al2O3). Following a 24-h incubation, cell viability was assessed using MTS, and mild toxicity was observed at higher doses with the U937 cells affected more than the A549. Since the U937 cells provided protection from NP toxicity, the cocultures were exposed to a benign concentration of NPs and infected with the respiratory pathogen community-associated methicillin-resistant Staphylococcus aureus (ca-MRSA) to determine any changes in cellular function. Phagocytosis assays demonstrated that the NPs impaired phagocytic function, and bacterial growth curves confirmed that this reduction in phagocytosis was not related to NP-bacteria interactions. Furthermore, NFkappaB PCR arrays and an IL-6 and TNF-alpha real time PCR demonstrated that both types of NPs altered immune response activation. This change was confirmed by ELISA assays that evaluated the secretion of IL-6, IL-8, IL-10, IL-1beta, and TNF-alpha and illustrated that the NPs repressed secretion of these cytokines. Therefore, although the NPs were not toxic to the cells, they did impair the cell's natural ability to respond to a respiratory pathogen regardless of NP composition.

  11. Nucleic Acid Immunity.

    PubMed

    Hartmann, G

    2017-01-01

    Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to

  12. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses.

    PubMed

    Kulinich, Anna; Liu, Li

    2016-09-02

    In order to secure the health of newborns over the period of immune immaturity during the first months of life, a mother provides her offspring with passive protection: bioactive molecules transferred through the placenta and breast milk. It is well known that human milk contains immunoglobulins (Ig), immune cells and diverse cytokines, which affect newborn directly or indirectly and contribute to the maturation of the immune system. However, in addition to the above-stated molecules, human milk oligosaccharides (HMOs), a complex mixture of free indigestible carbohydrates with multiple functions, play exceptional roles in the functioning of the infants' immune system. These biological molecules have been studied over decades, however, interest in HMOs does not seem to have abated. Although biological activities of oligosaccharides from human milk have been explicitly reviewed, information regarding the role of HMOs in inflammation remains rather fragmented. The purpose of this review is to compile existing knowledge about the role of certain species of HMOs, including fucosylated, galactosylated and sialylated oligosaccharides, and their signaling pathways in immunity and inflammation. The advances in applying this information to the treatment of diseases in infants as well as adults were also reviewed here. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  14. [Effects of electromagnetic radiation on health and immune function of operators].

    PubMed

    Li, Yan-zhong; Chen, Shao-hua; Zhao, Ke-fu; Gui, Yun; Fang, Si-xin; Xu, Ying; Ma, Zi-jian

    2013-08-01

    To investigate the effects of electromagnetic radiation on the physiological indices and immune function of operators. The general conditions and electromagnetic radiation awareness rate of 205 operators under electromagnetic radiation were evaluated using a self-designed questionnaire. Physical examination, electrocardiography, and routine urine test were performed in these operators. Peripheral blood was collected from the operators under electromagnetic radiation for blood cell counting and biochemical testing, and their peripheral blood lymphocytes were cultured for determination of chromosomal aberrant frequency and micronucleus frequency. The data from these operators (exposure group) were compared with those of 95 ordinary individuals (control group). The chief complaint of giddiness, tiredness, dizziness, and amnesia showed significant differences between the exposure group and control group (P < 0.01), and the difference in headache became larger with an increase in working years. The awareness rate of electromagnetic radiation damage was significantly higher in the exposure group than in the control group. The difference in bradycardia was significant between the two groups (P <0.01), and the incidence was higher with longer working years. Significant differences between the two groups were also found in the numbers of individuals with elevated alanine aminotransferase, total bilirubin, and direct bilirubin (P < 0.01), populations with increased lymphocyte ratio and decreased neutrophil ratio (P < 0.01), populations with positive occult blood, urobilinogen, and bilirubin tests, and the number of individuals with increased micronucleus frequency of cultured peripheral blood lymphocytes (P < 0.01). In addition, the exposure group had significantly increased complement C3 and C4 (P < 0.01), significantly increased IgG (P < 0.05), and significantly decreased IgM (P < 0.01), as compared with the control group. Electromagnetic radiation may lead to the changes

  15. Examination of immune parameters and host-resistance mechanisms in B6C3F1 mice following adult exposure to 2,3,7,8-tetrachlorodibenzo-'p'-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.V.; Lauer, L.D.; Murray, M.J.

    1990-01-01

    Adult female B6C3F1 mice were given a single IP dose of 0, 0.1, 1.0, or 10.0 micrograms/kg TCDD and examined for immune function and host resistance seven to ten days later. Exposure to TCDD resulted in a significant dose-related decrease in induction of both IgM and IgG antibody-forming cells. The suppression was noted for both T-dependent and T-independent antigens. TCDD at a dosage of 10 micrograms/kg was shown to suppress production of viral hemagglutinin. In contrast, TCDD exposure had no significant effect on natural killer cell function, production of interferon, or various parameters of macrophage function. Host resistance assessment revealedmore » a significant increase in susceptibility to fatal infection with influenza virus, but no significant alteration in susceptibility to infection with the bacterium Listeria monocytogenes.« less

  16. Immune function surveillance: association with rejection, infection and cardiac allograft vasculopathy.

    PubMed

    Heikal, N M; Bader, F M; Martins, T B; Pavlov, I Y; Wilson, A R; Barakat, M; Stehlik, J; Kfoury, A G; Gilbert, E M; Delgado, J C; Hill, H R

    2013-01-01

    Rejection, cardiac allograft vasculopathy (CAV), and infection are significant causes of mortality in heart transplantation recipients. Assessing the immune status of a particular patient remains challenging. Although endomyocardial biopsy (EMB) and angiography are effective for the identification of rejection and CAV, respectively, these are expensive, invasive, and may have numerous complications. The aim of this study was to evaluate the immune function and assess its utility in predicting rejection, CAV, and infection in heart transplantation recipients. We prospectively obtained samples at the time of routine EMB and when clinically indicated for measurement of the ImmuKnow assay (IM), 12 cytokines and soluble CD30 (sCD30). EMB specimens were evaluated for acute cellular rejection, and antibody-mediated rejection (AMR). CAV was diagnosed by the development of angiographic coronary artery disease. Infectious episodes occurring during the next 30 days after testing were identified by the presence of positive bacterial or fungal cultures and/or viremia that prompted treatment with antimicrobials. We collected 162 samples from 56 cardiac transplant recipients. There were 31 infection episodes, 7 AMR, and 4 CAV cases. The average IM value was significantly lower during infection, (P = .04). Soluble CD30 concentrations showed significantly positive correlation with infection episodes, (P = .001). Significant positive correlation was observed between interleukin-5(IL-5) and AMR episodes (P = .008). Tumor necrosis factor-α and IL-8 showed significant positive correlation with CAV (P = .001). Immune function monitoring appears promising in predicting rejection, CAV, and infection in cardiac transplantation recipients. This approach may help in more individualized immunosuppression and it may also minimize unnecessary EMBs and cardiac angiographies. Published by Elsevier Inc.

  17. Reminiscence, personality, and psychological functioning in older adults.

    PubMed

    Cully, J A; LaVoie, D; Gfeller, J D

    2001-02-01

    The present study examined the relationships between the frequency and functions of reminiscence, personality styles, and psychological functioning. There is little research on the psychological factors that correlate with reminiscence, especially in relationship to clinical constructs such as depression and anxiety. Research in the area of reminiscence functions may facilitate a better understanding of the factors affecting change in reminiscence therapies. Seventy-seven healthy older adults completed the following self-report scales: Reminiscence Functions Scale, NEO Five Factor Personality Inventory, Beck Depression Inventory-Second Edition, State-Trait Anxiety Inventory, and the Templer-McMordie Death Anxiety Scale. Using canonical correlation techniques, results indicated that individuals with negative psychological functioning frequently reminisce as a way to refresh bitter memories, reduce boredom, and prepare for death. The present study provides implications for both researchers and clinicians. Contrary to previous studies, results indicate that depressed and anxious older adults commonly use reminiscence and therefore may be appropriate candidates for reminiscence treatments.

  18. Infectious diseases and immunological responses in adult subjects with lifetime untreated, congenital GH deficiency.

    PubMed

    Campos, Viviane C; Barrios, Mônica R; Salvatori, Roberto; de Almeida, Roque Pacheco; de Melo, Enaldo V; Nascimento, Ana C S; de Jesus, Amélia Ribeiro; Aguiar-Oliveira, Manuel H

    2016-10-01

    Growth hormone is important for the development and function of the immune system, but there is controversy on whether growth hormone deficiency is associated to immune disorders. A model of isolated growth hormone deficiency may clarify if the lack of growth hormone is associated with increased susceptibility to infections, or with an altered responsiveness of the immune system. We have studied the frequency of infectious diseases and the immune function in adults with congenital, untreated isolated growth hormone deficiency. In a cross-sectional study, 35 adults with isolated growth hormone deficiency due to a homozygous mutation in the growth hormone releasing hormone receptor gene and 31 controls were submitted to a clinical questionnaire, physical examination serology for tripanosomiasis, leishmaniasis, HIV, tetanus, hepatitis B and C, and serum total immunoglobulin G, M, E and A measurement. The immune response was evaluated in a subset of these subjects by skin tests and response to vaccination for hepatitis B, tetanus, and bacillus Calmette-Guérin. There was no difference between the groups in history of infectious diseases and baseline serology. Isolated growth hormone deficiency subjects had lower total IgG, but within normal range. There was no difference in the response to any of the vaccinations or in the positivity to protein Purified Derived, streptokinase or candidin. Adult untreated isolated growth hormone deficiency does not cause an increased frequency of infectious diseases, and does not alter serologic tests, but is associated with lower total IgG levels, without detectable clinical impact.

  19. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  20. Immunomodulatory effects of linomide in animals immunized with immunopathogenic retinal antigens: dissociation between different immune functions.

    PubMed

    Shirkey, B L; Slavin, S; Vistica, B P; Podgor, M J; Gery, I

    1997-06-01

    Linomide (LS-2616, quinoline-3-carboxamide) has been reported to exert a diverse range of effects on the immune system. On one hand, this drug was found to stimulate the immune system and to enhance activities such as DTH or allograft rejection. On the other hand, linomide was shown to inhibit the induction of experimental autoimmune encephalomyelitis and myasthenia gravis, as well as the development of diabetes in non-obese diabetic (NOD) mice. Here we report the effects of linomide in animals immunized with uveitogenic retinal antigens. Treatment with linomide completely inhibited the development of experimental autoimmune uveoretinitis (EAU) in mice immunized with interphotoreceptor retinoid-binding protein and markedly suppressed EAU in rats immunized with S-antigen (S-Ag). In addition, linomide-treated rats exhibited reduced antibody production and lymphocyte proliferative response to S-Ag. In contrast to these suppressive activities, linomide treatment did not affect the development of adoptively transferred EAU in rats and moderately enhanced the DTH reactions to S-Ag in immunized rats in which EAU and other immune responses to this antigen were suppressed.

  1. Effect of liniment levamisole on cellular immune functions of patients with chronic hepatitis B

    PubMed Central

    Wang, Ke-Xia; Zhang, Li-Hua; Peng, Jiang-Long; Liang, Yong; Wang, Xue-Feng; Zhi, Hui; Wang, Xiang-Xia; Geng, Huan-Xiong

    2005-01-01

    AIM: To explore the effects of liniment levamisole on cellular immune functions of patients with chronic hepatitis B. METHODS: The levels of T lymphocyte subsets and mIL-2R in peripheral blood mononuclear cells (PBMCs) were measured by biotin-streptavidin (BSA) technique in patients with chronic hepatitis B before and after the treatment with liniment levamisole. RESULTS: After one course of treatment with liniment levamisole, the levels of CD3+, CD4+, and the ratio of CD4+/CD8+ increased as compared to those before the treatment but the level of CD8+ decreased. The total expression level of mIL-2R in PBMCs increased before and after the treatment with liniment levamisole. CONCLUSION: Liniment levamisole may reinforce cellular immune functions of patients with chronic hepatitis B. PMID:16437674

  2. No lower cognitive functioning in older adults with attention-deficit/hyperactivity disorder.

    PubMed

    Semeijn, E J; Korten, N C M; Comijs, H C; Michielsen, M; Deeg, D J H; Beekman, A T F; Kooij, J J S

    2015-09-01

    Research illustrates cognitive deficits in children and younger adults with attention-deficit/hyperactivity disorder (ADHD). Few studies have focused on the cognitive functioning in older adults. This study investigates the association between ADHD and cognitive functioning in older adults. Data were collected in a cross-sectional side study of the Longitudinal Aging Study Amsterdam (LASA). A diagnostic interview to diagnose ADHD was administered among a subsample (N = 231, age 60-94). ADHD symptoms and diagnosis were assessed with the Diagnostic Interview for ADHD in Adults (DIVA) 2.0. Cognitive functioning was assessed with tests in the domains of executive functioning, information processing speed, memory, and attention/working memory. Regression analyses indicate that ADHD diagnosis and ADHD severity were only negatively associated with cognitive functioning in the attention/working memory domain. When adjusting for depression, these associations were no longer significant. The study shows that ADHD in older adults is associated with lower cognitive functioning in the attention/working memory domain. However, this was partly explained by depressive symptoms.

  3. Autophagy genes in immunity

    PubMed Central

    Virgin, Herbert W; Levine, Beth

    2009-01-01

    In its classical form, autophagy is a pathway by which cytoplasmic constituents, including intracellular pathogens, are sequestered in a double-membrane–bound autophagosome and delivered to the lysosome for degradation. This pathway has been linked to diverse aspects of innate and adaptive immunity, including pathogen resistance, production of type I interferon, antigen presentation, tolerance and lymphocyte development, as well as the negative regulation of cytokine signaling and inflammation. Most of these links have emerged from studies in which genes encoding molecules involved in autophagy are inactivated in immune effector cells. However, it is not yet known whether all of the critical functions of such genes in immunity represent ‘classical autophagy’ or possible as-yet-undefined autophagolysosome-independent functions of these genes. This review summarizes phenotypes that result from the inactivation of autophagy genes in the immune system and discusses the pleiotropic functions of autophagy genes in immunity. PMID:19381141

  4. Cytokines in Drosophila immunity.

    PubMed

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  6. Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells.

    PubMed

    Diaz, Miguel F; Vaidya, Abishek B; Evans, Siobahn M; Lee, Hyun J; Aertker, Benjamin M; Alexander, Alexander J; Price, Katherine M; Ozuna, Joyce A; Liao, George P; Aroom, Kevin R; Xue, Hasen; Gu, Liang; Omichi, Rui; Bedi, Supinder; Olson, Scott D; Cox, Charles S; Wenzel, Pamela L

    2017-05-01

    Mesenchymal stromal cells (MSCs) are believed to mobilize from the bone marrow in response to inflammation and injury, yet the effects of egress into the vasculature on MSC function are largely unknown. Here we show that wall shear stress (WSS) typical of fluid frictional forces present on the vascular lumen stimulates antioxidant and anti-inflammatory mediators, as well as chemokines capable of immune cell recruitment. WSS specifically promotes signaling through NFκB-COX2-prostaglandin E 2 (PGE 2 ) to suppress tumor necrosis factor-α (TNF-α) production by activated immune cells. Ex vivo conditioning of MSCs by WSS improved therapeutic efficacy in a rat model of traumatic brain injury, as evidenced by decreased apoptotic and M1-type activated microglia in the hippocampus. These results demonstrate that force provides critical cues to MSCs residing at the vascular interface which influence immunomodulatory and paracrine activity, and suggest the potential therapeutic use of force for MSC functional enhancement. Stem Cells 2017;35:1259-1272. © 2017 AlphaMed Press.

  7. Nest predation risk modifies nestlings' immune function depending on the level of threat.

    PubMed

    Roncalli, Gianluca; Colombo, Elisa; Soler, Manuel; Tieleman, B Irene; Versteegh, Maaike A; Ruiz-Raya, Fran; Gómez Samblas, Mercedes; Ibáñez-Álamo, Juan Diego

    2018-05-20

    Predation risk is thought to modify the physiology of prey mainly through the stress response. However, little is known about its potential effects on the immunity of animals, particularly in young individuals, despite the importance of overcoming wounding and pathogen aggression following a predator attack. We investigated the effect of four progressive levels of nest predation risk on several components of the immune system in common blackbird ( Turdus merula ) nestlings by presenting them with four different calls during 1 h: non-predator calls, predator calls, parental alarm calls and conspecific distress calls to induce a null, moderate, high and extreme level of risk, respectively. Nest predation risk induced an increase in ovotransferrin, immunoglobulin and the number of lymphocytes and eosinophils. Thus, the perception of a potential predator per se could stimulate the mobilization of a nestling's immune function and enable the organism to rapidly respond to the immune stimuli imposed by a predator attack. Interestingly, only high and extreme levels of risk caused immunological changes, suggesting that different immunological parameters are modulated according to the perceived level of threat. We also found a mediator role of parasites (i.e. Leucocytozoon ) and the current health status of the individual, as only nestlings not parasitized or in good body condition were able to modify their immune system. This study highlights a previously unknown link between predation risk and immunity, emphasizing the complex relationship among different selective pressures (predation, parasitism) in developing organisms and accentuating the importance of studying predation from a physiological point of view. © 2018. Published by The Company of Biologists Ltd.

  8. Evaluation of olfactory function in adults with primary hypothyroidism.

    PubMed

    Günbey, Emre; Karlı, Rıfat; Gökosmanoğlu, Feyzi; Düzgün, Berkan; Ayhan, Emre; Atmaca, Hulusi; Ünal, Recep

    2015-10-01

    Sufficient clinical data are not available on the effect of hypothyroidism on olfactory function in adults. In this study, we aimed to evaluate the olfactory function of adult patients diagnosed with primary hypothyroidism. Forty-five patients aged between 18 and 60 years who were diagnosed with clinical primary hypothyroidism and 45 healthy controls who had normal thyroid function tests were included in the study. Sniffin' Sticks olfactory test results of the 2 groups were compared. The relationships between thyroid function tests and olfactory parameters were evaluated. Odor threshold, identification, and discrimination scores of the hypothyroid group were significantly lower than those of the control group (p < 0.001). A significant positive correlation was detected between free triiodothyronine (FT3) levels and odor threshold, identification, and discrimination scores (p < 0.001). There was no significant relationship between thyroid-stimulating hormone (TSH) or free thyroxine (FT4) levels and olfactory parameters. Our study revealed diminished olfactory function in adults with hypothyroidism. FT3 levels were found to have a more significant relationship with olfactory parameters than TSH or FT4 levels. © 2015 ARS-AAOA, LLC.

  9. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  10. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.

    PubMed

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L

    2016-02-04

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.

  11. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM.

    PubMed

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae

    2008-01-01

    The effect of a new herbal composition, HemoHIM, on immune functions was examined in aged mice, in which various immune responses had been impaired. The composition HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Supplementation to the aged mice with HemoHIM restored the proliferative response and cytokine production of splenocytes with a response to ConA. Also, HemoHIM recovered the NK cell activity which had been impaired in the aged mice. Meanwhile aging is known to reduce the Th1-like function, but not the Th2-like function, resulting in a Th1/Th2 imbalance. HemoHIM restored the Th1/Th2 balance in the aged mice through enhanced IFN-gamma and IgG2a production, and conversely a reduced IL-4 and IgG1 production. It was found that one factor for the Th1/Th2 imbalance in the aged mice was a lower production of IL-12p70. However, HemoHIM restored the IL-12p70 production in the aged mice. These results suggested that HemoHIM was effective for the restoration of impaired immune functions of the aged mice and therefore could be a good recommendation for immune restoration in elderly humans. Copyright (c) 2007 John Wiley & Sons, Ltd.

  12. Severe bleeding events in adults and children with primary immune thrombocytopenia: a systematic review

    PubMed Central

    NEUNERT, C.; NOROOZI, N.; NORMAN, G.; BUCHANAN, G. R.; GOY, J.; NAZI, I.; KELTON, J. G.; ARNOLD, D. M.

    2016-01-01

    Summary Background The burden of severe bleeding in adults and children with immune thrombocytopenia (ITP) has not been established. Objectives To describe the frequency and severity of bleeding events in patients with ITP, and the methods used to measure bleeding in ITP studies. Patients/Methods We performed a systematic review of all prospective ITP studies that enrolled 20 or more patients. Two reviewers searched Medline, Embase, CINAHL and the Cochrane registry up to May 2014. Overall weighted proportions were estimated using a random effects model. Measurement properties of bleeding assessment tools were evaluated. Results We identified 118 studies that reported bleeding (n = 10 908 patients). Weighted proportions for intracerebral hemorrhage (ICH) were 1.4% for adults (95% confidence interval [CI], 0.9–2.1%) and 0.4% for children (95% CI, 0.2–0.7%; P < 0.01), most of whom had chronic ITP. The weighted proportion for severe (non-ICH) bleeding was 9.6% for adults (95% CI, 4.1–17.1%) and 20.2% for children (95% CI, 10.0–32.9%; P < 0.01) with newly-diagnosed or chronic ITP. Methods of reporting and definitions of severe bleeding were highly variable in primary studies. Two bleeding assessment tools (Buchanan 2002 for children; Page 2007 for adults) demonstrated adequate interrater reliability and validity in independent assessments. Conclusions ICH was more common in adults and tended to occur during chronic ITP; other severe bleeds were more common in children and occurred at all stages of disease. Reporting of non-ICH bleeding was variable across studies. Further attention to ITP-specific bleeding measurement in clinical trials is needed to improve standardization of this important outcome for patients. PMID:25495497

  13. Brain Function Differences in Language Processing in Children and Adults with Autism

    PubMed Central

    Williams, Diane L.; Cherkassky, Vladimir L.; Mason, Robert A.; Keller, Timothy A.; Minshew, Nancy J.; Just, Marcel Adam

    2015-01-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands. Activation differences for the literal and irony conditions occurred in key language-processing regions (left middle temporal, left pars triangularis, left pars opercularis, left medial frontal, and right middle temporal). The children and adults with autism differed from each other in the use of some brain regions during the irony task, with the adults with autism having activation levels similar to those of the control groups. Overall, the children and adults with autism differed from the adult and child controls in (a) the degree of network coordination, (b) the distribution of the workload among member nodes, and (3) the dynamic recruitment of regions in response to text content. Moreover, the differences between the two autism age groups may be indicative of positive changes in the neural function related to language processing associated with maturation and/or educational experience. PMID:23495230

  14. Associations between immune function and air pollution among postmenopausal women living in the Puget Sound airshed

    NASA Astrophysics Data System (ADS)

    Williams, Lori A.

    Air pollution is associated with adverse health outcomes, and changes in the immune system may be intermediate steps between exposure and a clinically relevant adverse health outcome. We analyzed the associations between three different types of measures of air pollution exposure and five biomarkers of immune function among 115 overweight and obese postmenopausal women whose immunity was assessed as part of a year-long moderate exercise intervention trial. For air pollution metrics, we assessed: (1) residential proximity to major roads (freeways, major arterials and truck routes), (2) fine particulate matter(PM2.5) at the nearest monitor to the residence averaged over three time windows (3-days, 30-days and 60-days), and (3) nitrogen dioxide (NO2) modeled based on land use characteristics. Our immune biomarkers included three measures of inflammation---C-reactive protein, serum amyloid A and interleukin-6---and two measures of cellular immunity---natural killer cell cytotoxicity and T lymphocyte proliferation. We hypothesized that living near a major road, increased exposure to PM2.5 and increased exposure to NO2 would each be independently associated with increased inflammation and decreased immune function. We observed a 21% lower average natural killer cell cytotoxicity among women living within 150 meters of a major arterial road compared to other women. For PM2.5 , we observed changes in 3 of 4 indicators of lymphocyte proliferation stimulated by anti-CD3---an antibody to the T cell receptor associated with increases in 3-day averaged PM2.5. For 30-day averaged PM 2.5 and 60-day averaged PM2.5 we did not observe any statistically significant associations. We observed an increase in lymphocyte proliferation index stimulated by the plant protein phytohemagglutinin (PHA) at 1 of 2 PHA concentrations in association with modeled NO2. For the three inflammatory markers, we observed no notable associations with any of our measures of air pollution. If confirmed, our

  15. Incidence of Thyroid Function Test Abnormalities in Patients Receiving Immune-Checkpoint Inhibitors for Cancer Treatment.

    PubMed

    Patel, Nisha Subhash; Oury, Anais; Daniels, Gregory A; Bazhenova, Lyudmila; Patel, Sandip Pravin

    2018-05-16

    With the advent of immune-checkpoint inhibitor (ICI) therapy (anti-CTLA-4, anti-PD-1), immune-related adverse events such as thyroid function test abnormalities (TFTAs) are common, with a reported incidence range of 2%-15% depending upon the ICI used. The aim of this study is to describe the incidence of TFTAs retrospectively in patients who received ICI therapy. A total of 285 patients were reviewed (178 male, 107 female; 16-94 years of age), of whom 218 had no baseline TFTAs, 61 had baseline TFTAs, and 6 had a history of thyroidectomy (excluded). At least one dose of ipilimumab and/or nivolumab or pembrolizumab was administered. Post-ICI therapy TFTAs were classified according to standard definitions of thyroid conditions when possible. A total of 35% (76/218) patients had new-onset TFTAs on ICI therapy. Of note, 70.5% (43/61) had baseline TFTAs that were exacerbated by ICI therapy. The median times to new-onset or exacerbated baseline TFTA were 46 and 33 days, respectively. Of note, 64.5% (20/31) of patients on both ipilimumab and nivolumab had new-onset TFTAs, compared with 31.3% (15/48) on ipilimumab, 31.5% (28/89) on nivolumab, and 26% (13/50) on pembrolizumab. The incidence of TFTAs with ICI therapy was higher than previously reported. Patients with baseline TFTAs and/or who were receiving ipilimumab and nivolumab combination therapy had a higher incidence of TFTAs than patients receiving single-agent ICI therapy. We recommend more frequent evaluation of thyroid function in the first 8 weeks, especially in patients with baseline TFTAs. Increased use of immune-checkpoint inhibitors in cancer treatment has highlighted the importance of monitoring for and treating immune-related adverse events. This study was conducted to assess the incidence of thyroid function test abnormalities retrospectively in patients with cancer on immune-checkpoint inhibitors, which is not known exactly. This study is unique in that it included patients with a variety of histologic

  16. United Kingdom immune thrombocytopenia registry: retrospective evaluation of bone marrow fibrosis in adult patients with primary immune thrombocytopenia and correlation with clinical findings.

    PubMed

    Rizvi, Hasan; Butler, Tom; Calaminici, Mariarita; Doobaree, Indraraj U; Nandigam, Raghava C; Bennett, Dimitri; Provan, Drew; Newland, Adrian C

    2015-05-01

    Fibrosis has been reported in some patients with immune thrombocytopenia (ITP) treated with thrombopoietin receptor agonists (TPO-RA). However, fibrosis has also been reported in patients with various stages of ITP, who were TPO-RA treatment-naïve. In our study, we looked for fibrosis in bone marrow trephine biopsies taken at initial diagnosis from 32 adult patients with ITP. Ten of the 32 evaluated samples (31·25%) showed increased reticulin (Grade 1-2 on Bauermeister scale and Grade 0-1 on the European Consensus scale), which showed a positive correlation with ethnicity (0·3%) but did not correlate with disease severity, any clinical features or co-morbidities. © 2015 John Wiley & Sons Ltd.

  17. Prevalence and risk factors of poor immune recovery among adult HIV patients attending care and treatment centre in northwestern Tanzania following the use of highly active antiretroviral therapy: a retrospective study.

    PubMed

    Gunda, Daniel W; Kilonzo, Semvua B; Kamugisha, Erasmus; Rauya, Engelbert Z; Mpondo, Bonaventura C

    2017-06-08

    Highly Active Antiretroviral therapy (HAART) reverses the effect of Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS) by durably suppressing viral replication. This allows CD4 gain to levels that are adequate enough to restore the body's capability to fight against opportunistic infections (OIs). Patients with poor immune recovery have been shown to have higher risk of developing both AIDS and non AIDS related clinical events. This study aimed at assessing the proportions and risk factors of poor immune recovery in adult HIV-infected patients on 48 months of HAART attending care and treatment center (CTC) in northwestern Tanzania. A retrospective analysis of adult HIV patients' data attending CTC at Sekou Toure hospital and who initiated HAART between February 2004 and January 2008 was done. Poor immune recovery was defined as a CD4 count less than 350 cells/µl on follow up as used in other studies. A total of 734 patients were included in the study. In this study 50.25% of patients attending CTC at Sekou Toure hospital were found to have poor immune recovery. The risk of developing inadequate immune recovery was independently associated with male gender, age older than 50 years, low baseline CD4 counts, and advanced World Health Organization (WHO) clinical stage. Poor immune recovery is prevalent among adult HIV patients attending CTC at Sekou Toure hospital in Northwestern part of Tanzania and opportunistic infections are common in this sub group of patients. Clinicians in resource limited countries need to identify these patients timely and plan them for targeted viral assessment and close clinical follow up to improve their long term clinical outcome.

  18. Promoting pneumococcal immunizations among rural Medicare beneficiaries using multiple strategies.

    PubMed

    Johnson, Elizabeth A; Harwell, Todd S; Donahue, Peg M; Weisner, M'liss A; McInerney, Michael J; Holzman, Greg S; Helgerson, Steven D

    2003-01-01

    Vaccine-preventable diseases among adults are major contributing causes of morbidity and mortality in the United States. However, adult immunizations continue to be underutilized in both urban and rural areas. To evaluate the effectiveness of a community-wide education campaign and mailed reminders promoting pneumococcal immunizations to rural Medicare beneficiaries. We implemented a community-wide education campaign, and mailed reminders were sent to Medicare beneficiaries in 1 media market in Montana to increase pneumococcal immunizations. In a second distinct media market, mailed reminders only were sent to beneficiaries. The proportion of respondents aged 65 years and older aware of pneumococcal immunizations increased significantly from baseline to follow-up among respondents both in the education-plus-reminder (63% to 78%, P = 0.04) and the reminder-only (64% to 74%, P = 0.05) markets. Overall from 1998 to 1999, there was a 3.7-percentage-point increase in pneumococcal immunization claims for Medicare beneficiaries in the education-plus-reminder market and a 1.5-percentage-point increase in the reminder-only market. Medicare beneficiaries sent reminders in the education-plus-reminder market compared to those in the reminder-only market were more likely to have a claim for pneumococcal immunization in 1999 (odds ratio 1.18, 95% confidence interval 1.08 to 1.28). The results suggest that these quality improvement strategies (community education plus reminders and reminders alone) modestly increased pneumococcal immunization awareness and pneumococcal immunization among rural adults. Mailed reminder exposure was associated with an increased prevalence of pneumococcal immunizations between 1998 and 1999 and was augmented somewhat by the education campaign.

  19. Acute brief heat stress in late gestation alters neonatal calf innate immune functions

    USDA-ARS?s Scientific Manuscript database

    Heat stress (HS), as one of the environmental stressors affecting the dairy industry, compromises the cow's milk production, immune function, and reproductive system. However, few studies have looked at how prenatal HS affects the offspring. The objective of this study was to evaluate the effect of ...

  20. A mouse model with age-dependent immune response and immune-tolerance for HBV infection.

    PubMed

    Yi, Xuerui; Yuan, Youcheng; Li, Na; Yi, Lu; Wang, Cuiling; Qi, Ying; Gong, Liang; Liu, Guangze; Kong, Xiangping

    2018-02-01

    Viral clearance of human HBV infection largely depends on the age of exposure. Thus, a mouse model with age-dependent immune response and immune-tolerance for HBV infection was established. HBVRag1 mice were generated by crossing Rag1 -/- mice with HBV-Tg mice. Following adoptive transfer of splenocytes adult (8-9 weeks old) and young (3 weeks old) HBVRag1 mice were named as HBVRag-ReA and HBVRag-ReY mice respectively. The biochemical parameters that were associated with viral load and immune function, as well as the histological evaluation of the liver tissues between the two mouse models were detected. The immune tolerance of HBVRag-ReY mice that were reconstituted at the early stages of life was evaluated by quantitative hepatitis B core antibody assay, adoptive transfer, and modulation of gut microbiota with the addition of antibiotics. HBVRag-ReA mice indicated apparent hepatocytes damage, clearance of HBsAg and production of HBsAb and HBcAb. HBVRag-ReY mice did not develop ALT elevation, and produced HBcAb and HBsAg. A higher number of hepatic CD8 + T and B cells promoted clearance of HBsAg in HBVRag-ReA mice following 30 days of lymphocyte transfer. In contrast to HBVRag-ReA mice, HBVRag-ReY mice exhibited higher levels of Th1/Th2 cytokines. HBVRag-ReY mice exhibited significantly higher (P < .01, approximately 10-fold) serum quantitative anti-HBc levels than HBV-Tg mice, which might be similar to the phase of immune clearance and immune tolerance in human HBV infection. Furthermore, the age-related tolerance in HBVRag-ReY mice that were sensitive to antibiotic treatment was different from that noted in HBV-Tg mice. GS-9620 could inhibit the production of HBsAg, whereas HBV vaccination could induce sustained seroconversion in HBVRag-ReY mice with low levels of HBsAg. The present study described a mouse model with age-dependent immunity and immune-tolerance for HBV infection in vivo, which may mimic chronic HBV infection in humans. Copyright © 2017

  1. Use of complementary and alternative medicine among US adults with and without functional limitations.

    PubMed

    Okoro, Catherine A; Zhao, Guixiang; Li, Chaoyang; Balluz, Lina S

    2012-01-01

    This study characterizes the use of complementary and alternative medicine (CAM) among adults with and without functional limitations. We also examine the reasons for using CAM and for disclosing its use to conventional medical professionals. Data were obtained from the 2007 adult CAM supplement and components of the National Health Interview Survey (n = 20,710). Adults with functional limitations used CAM more frequently than those without (48.7% vs. 35.4%; p < 0.001). Adults with functional limitations used mind-body therapies the most (27.4%) and alternative medical systems the least (4.8%). Relaxation techniques were the most common therapy used by adults with functional limitations, and they used it more often than those without limitations (24.6% vs. 13.7%; P < 0.001). More than half of the adults with functional limitations (51.3%) discussed CAM use with conventional medical professionals, compared with 37.9% of adults without limitations (p < 0.001). The main reason for CAM use was general wellness/disease prevention among adults with and without functional limitations (59.8% vs. 63.1%; P = 0.051). CAM use among adults with functional limitations is high. Health practitioners should screen for and discuss the safety and efficacy of CAM when providing health care.

  2. Selenium Status Alters the Immune Response and Expulsion of Adult Heligmosomoides bakeri Worms in Mice

    PubMed Central

    Cheung, Lumei; Beshah, Ethiopia; Shea-Donohue, Terez; Urban, Joseph F.

    2013-01-01

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri worms from a challenge infection was delayed in selenium (Se)-deficient mice. In order to explore mechanisms associated with the delayed expulsion, 3-week-old female BALB/c mice were placed on a torula yeast-based diet with or without 0.2 ppm Se, and after 5 weeks, they were inoculated with H. bakeri infective third-stage larvae (L3s). Two weeks after inoculation, the mice were treated with an anthelmintic and then rested, reinoculated with L3s, and evaluated at various times after reinoculation. Analysis of gene expression in parasite-induced cysts and surrounding tissue isolated from the intestine of infected mice showed that the local-tissue Th2 response was decreased in Se-deficient mice compared to that in Se-adequate mice. In addition, adult worms recovered from Se-deficient mice had higher ATP levels than worms from Se-adequate mice, indicating greater metabolic activity in the face of a suboptimal Se-dependent local immune response. Notably, the process of worm expulsion was restored within 2 to 4 days after feeding a Se-adequate diet to Se-deficient mice. Expulsion was associated with an increased local expression of Th2-associated genes in the small intestine, intestinal glutathione peroxidase activity, secreted Relm-β protein, anti-H. bakeri IgG1 production, and reduced worm fecundity and ATP-dependent metabolic activity. PMID:23649095

  3. Macrophages and cellular immunity in Drosophila melanogaster

    PubMed Central

    Gold, Katrina S.; Brückner, Katja

    2016-01-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. PMID:27117654

  4. Independence of Hot and Cold Executive Function Deficits in High-Functioning Adults with Autism Spectrum Disorder.

    PubMed

    Zimmerman, David L; Ownsworth, Tamara; O'Donovan, Analise; Roberts, Jacqueline; Gullo, Matthew J

    2016-01-01

    Individuals with autistic spectrum disorder (ASD) display diverse deficits in social, cognitive and behavioral functioning. To date, there has been mixed findings on the profile of executive function deficits for high-functioning adults (IQ > 70) with ASD. A conceptual distinction is commonly made between "cold" and "hot" executive functions. Cold executive functions refer to mechanistic higher-order cognitive operations (e.g., working memory), whereas hot executive functions entail cognitive abilities supported by emotional awareness and social perception (e.g., social cognition). This study aimed to determine the independence of deficits in hot and cold executive functions for high-functioning adults with ASD. Forty-two adults with ASD (64% male, aged 18-66 years) and 40 age and gender matched controls were administered The Awareness of Social Inference Test (TASIT; emotion recognition and social inference), Letter Number Sequencing (working memory) and Hayling Sentence Completion Test (response initiation and suppression). Between-group analyses identified that the ASD group performed significantly worse than matched controls on all measures of cold and hot executive functions (d = 0.54 - 1.5). Hierarchical multiple regression analyses revealed that the ASD sample performed more poorly on emotion recognition and social inference tasks than matched controls after controlling for cold executive functions and employment status. The findings also indicated that the ability to recognize emotions and make social inferences was supported by working memory and response initiation and suppression processes. Overall, this study supports the distinction between hot and cold executive function impairments for adults with ASD. Moreover, it advances understanding of higher-order impairments underlying social interaction difficulties for this population which, in turn, may assist with diagnosis and inform intervention programs.

  5. Assessing herd immunity against rubella in Japan: a retrospective seroepidemiological analysis of age-dependent transmission dynamics

    PubMed Central

    Kinoshita, Ryo; Nishiura, Hiroshi

    2016-01-01

    Objective We aimed to epidemiologically assess rubella herd immunity as a function of time, age and gender in Japan, with reference to the recent 2012–2014 rubella epidemic. Design This study is a retrospective seroepidemiological analysis. Main outcome measures The susceptible fraction of the population was examined as a function of age and time. The age at infection was assessed using reported case data. Results Whereas 30 years ago rubella cases were seen only among children, the median (25–75th centiles) age of cases in 2014 was elevated to 32.0 (17.0–42.0) years among males and 27.0 (7.0–37.0) years among females. Susceptible pockets among male birth cohorts 1989–1993 and 1974–1978 were identified, with seropositive proportions of 70.0% and 68.0%, respectively. The majority of female age groups had greater seropositive proportions than the herd immunity threshold, with a minor susceptible pocket for those born from 1989 to 1993 (78.3% seropositive). The age-standardised seronegative proportion decreased to 18.3% (95% CI 16.8% to 19.8%) among males and 15.6% (95% CI 10.0% to 21.2%) among females in 2013, and the immune fraction was not sufficiently below the herd immunity threshold. While the number of live births born to susceptible mothers in 1983 was estimated at 171 876 across Japan, in 2013 it was reduced to 23 698. Conclusions An elevated age at rubella virus infection and the presence of susceptible pockets among adults were observed in Japan. Although, overall, the absolute number of rubella cases has steadily declined in Japan, the elevated age of rubella cases, along with increased numbers of susceptible adults, contributed to the observation of as many as 45 congenital rubella syndrome (CRS) cases, which calls for supplementary vaccination among susceptible adults. Assessing herd immunity is considered essential for routinely monitoring the risk of future rubella epidemics and CRS cases. PMID:26817640

  6. Assessing herd immunity against rubella in Japan: a retrospective seroepidemiological analysis of age-dependent transmission dynamics.

    PubMed

    Kinoshita, Ryo; Nishiura, Hiroshi

    2016-01-27

    We aimed to epidemiologically assess rubella herd immunity as a function of time, age and gender in Japan, with reference to the recent 2012-2014 rubella epidemic. This study is a retrospective seroepidemiological analysis. The susceptible fraction of the population was examined as a function of age and time. The age at infection was assessed using reported case data. Whereas 30 years ago rubella cases were seen only among children, the median (25-75th centiles) age of cases in 2014 was elevated to 32.0 (17.0-42.0) years among males and 27.0 (7.0-37.0) years among females. Susceptible pockets among male birth cohorts 1989-1993 and 1974-1978 were identified, with seropositive proportions of 70.0% and 68.0%, respectively. The majority of female age groups had greater seropositive proportions than the herd immunity threshold, with a minor susceptible pocket for those born from 1989 to 1993 (78.3% seropositive). The age-standardised seronegative proportion decreased to 18.3% (95% CI 16.8% to 19.8%) among males and 15.6% (95% CI 10.0% to 21.2%) among females in 2013, and the immune fraction was not sufficiently below the herd immunity threshold. While the number of live births born to susceptible mothers in 1983 was estimated at 171,876 across Japan, in 2013 it was reduced to 23,698. An elevated age at rubella virus infection and the presence of susceptible pockets among adults were observed in Japan. Although, overall, the absolute number of rubella cases has steadily declined in Japan, the elevated age of rubella cases, along with increased numbers of susceptible adults, contributed to the observation of as many as 45 congenital rubella syndrome (CRS) cases, which calls for supplementary vaccination among susceptible adults. Assessing herd immunity is considered essential for routinely monitoring the risk of future rubella epidemics and CRS cases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  7. Brain function differences in language processing in children and adults with autism.

    PubMed

    Williams, Diane L; Cherkassky, Vladimir L; Mason, Robert A; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam

    2013-08-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands. Activation differences for the literal and irony conditions occurred in key language-processing regions (left middle temporal, left pars triangularis, left pars opercularis, left medial frontal, and right middle temporal). The children and adults with autism differed from each other in the use of some brain regions during the irony task, with the adults with autism having activation levels similar to those of the control groups. Overall, the children and adults with autism differed from the adult and child controls in (a) the degree of network coordination, (b) the distribution of the workload among member nodes, and (3) the dynamic recruitment of regions in response to text content. Moreover, the differences between the two autism age groups may be indicative of positive changes in the neural function related to language processing associated with maturation and/or educational experience. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Immune activation and paediatric HIV-1 disease outcome.

    PubMed

    Roider, Julia M; Muenchhoff, Maximilian; Goulder, Philip J R

    2016-03-01

    The paediatric HIV epidemic is changing. Over the past decade, new infections have substantially reduced, whereas access to antiretroviral therapy (ART) has increased. Overall this success means that numbers of children living with HIV are climbing. In addition, the problems observed in adult infection resulting from chronic inflammation triggered by persistent immune activation even following ART mediated suppression of viral replication are magnified in children infected from birth. Features of immune ontogeny favour low immune activation in early life, whereas specific aspects of paediatric HIV infection tend to increase it. A subset of ART-naïve nonprogressing children exists in whom normal CD4 cell counts are maintained in the setting of persistent high viremia and yet in the context of low immune activation. This sooty mangabey-like phenotype contrasts with nonprogressing adult infection which is characterized by the expression of protective HLA class I molecules and low viral load. The particular factors contributing to raised or lowered immune activation in paediatric infection, which ultimately influence disease outcome, are discussed. Novel strategies to circumvent the unwanted long-term consequences of HIV infection may be possible in children in whom natural immune ontogeny in early life militates against immune activation. Defining the mechanisms underlying low immune activation in natural HIV infection would have applications beyond paediatric HIV.

  9. Executive functioning deficits in young adult survivors of bronchopulmonary dysplasia.

    PubMed

    Gough, Aisling; Linden, Mark A; Spence, Dale; Halliday, Henry L; Patterson, Christopher C; McGarvey, Lorcan

    2015-01-01

    To assess long-term impairments of executive functioning in adult survivors of bronchopulmonary dysplasia (BPD). Participants were assessed on measures of executive functioning, health-related quality of life (HRQoL) and social functioning. Survivors of BPD (n = 63; 34 males; mean age 24.2 years) were compared with groups comprising preterm (without BPD) (<1500 g; n = 45) and full-term controls (n = 63). Analysis of variance was used to explore differences among groups for outcome measures. Multiple regression analyzes were performed to identify factors predictive of long-term outcomes. Significantly more BPD adults, compared with preterm and term controls, showed deficits in executive functioning relating to problem solving (OR: 5.1, CI: 1.4-19.3), awareness of behavior (OR: 12.7, CI: 1.5-106.4) and organization of their environment (OR: 13.0, CI: 1.6-107.1). Birth weight, HRQoL and social functioning were predictive of deficits in executive functioning. This study represents the largest sample of survivors into adulthood of BPD and is the first to show that deficits in executive functioning persist. Children with BPD should be assessed to identify cognitive impairments and allow early intervention aimed at ameliorating their effects. Implications for Rehabilitation Adults born preterm with very-low birth weight, and particularly those who develop BPD, are at increased risk of exhibiting defects in executive functioning. Clinicians and educators should be made aware of the impact that BPD can have on the long-term development of executive functions. Children and young adults identified as having BPD should be periodically monitored to identify the need for possible intervention.

  10. Effect of a mixture of micronutrients, but not of bovine colostrum concentrate, on immune function parameters in healthy volunteers: a randomized placebo-controlled study

    PubMed Central

    Wolvers, Danielle AW; van Herpen-Broekmans, Wendy MR; Logman, Margot HGM; van der Wielen, Reggy PJ; Albers, Ruud

    2006-01-01

    Background Supplementation of nutritional deficiencies helps to improve immune function and resistance to infections in malnourished subjects. However, the suggested benefits of dietary supplementation for immune function in healthy well nourished subjects is less clear. Among the food constituents frequently associated with beneficial effects on immune function are micronutrients such as vitamin C, vitamin E, β-carotene and zinc, and colostrum. This study was designed to investigate the effects these ingredients on immune function markers in healthy volunteers. Methods In a double-blind, randomized, parallel, 2*2, placebo-controlled intervention study one hundred thirty-eight healthy volunteers aged 40–80 y (average 57 ± 10 y) received one of the following treatments: (1) bovine colostrum concentrate 1.2 g/d (equivalent to ~500 mg/d immunoglobulins), (2) micronutrient mix of 288 mg vitamin E, 375 mg vitamin C, 12 mg β-carotene and 15 mg zinc/day, (3) combination of colostrum and micronutrient mix, or (4) placebo. Several immune function parameters were assessed after 6 and 10 weeks. Data were analyzed by analysis of variance. Groups were combined to test micronutrient treatment versus no micronutrient treatment, and colostrum treatment versus no colostrum treatment. Results Overall, consumption of the micronutrient mix significantly enhanced delayed-type hypersensitivity (DTH) responses (p < 0.05). Adjusted covariance analysis showed a positive association between DTH and age. Separate analysis of younger and older age groups indicated that it was the older population that benefited from micronutrient consumption. The other immune function parameters including responses to systemic tetanus and oral typhoid vaccination, phagocytosis, oxidative burst, lymphocyte proliferation and lymphocyte subset distribution were neither affected by the consumption of micronutrients nor by the consumption of bovine colostrum concentrate. Conclusion Consumption of bovine

  11. Immune modulation following immunization with polyvalent vaccines in dogs.

    PubMed

    Strasser, Alois; May, Bettina; Teltscher, Andrea; Wistrela, Eva; Niedermüller, Hans

    2003-08-15

    A decline in T-cell-mediated immunity and transient state of immunosuppression after immunization has been reported in dogs. Nevertheless, dogs are still routinely vaccinated with polyvalent live vaccines and severe disease does not generally occur. In order to investigate these effects on the canine immune system and to elucidate possible mechanisms we determined the following immune parameters in the blood of 33 clinically sound German shepherd dogs before and after standard vaccination with a polyvalent vaccine against distemper, parvovirus, viral hepatitis, leptospirosis, kennel cough and rabies: white and differential blood cell count, the serum concentrations and/or activities of IL-1, IL-2, IFN-gamma, TNF-alpha, neopterin and IgG, natural killer (NK) cell activity, bactericidal activity and complement hemolytic activity, lymphocyte proliferation test (LPT) and nitroblue tetrazolium test (NBT). Our major findings were that significant postvaccinal decreases in T-cell mitogenic response to PHA and in neutrophil function and neopterin serum concentration were accompanied by simultaneous increase in plasma IgG and hemolytic complement activity. This suggests a transient shift in the balance between cell-mediated and humoral (T(H)1/T(H)2) immunity rather than immunosuppression. These results do not imply that dogs should not receive live vaccines, as the response to vaccines just seems to create a state of altered homeostasis when immunization elicits protection by humoral and cell-mediated immunity. However, these recognized compromises of immune function should be considered and vaccines still be applied only in healthy animals and strictly according to the rules and regulations given by the manufacturer.

  12. Implementation of pertussis immunization in health-care personnel.

    PubMed

    Walther, Kathi; Burckhardt, Marie-Anne; Erb, Thomas; Heininger, Ulrich

    2015-04-21

    Infection with Bordetella pertussis is most severe in young infants who frequently acquire it from adults. Pertussis immunization in adults 25-29 years of age and all adults in close contact with infants <6 months was introduced in Switzerland in 2012. We immediately implemented this new recommendation in our hospital with a vaccination campaign. Between April 2012 and March 2013 we provided information about the campaign to our staff through several channels and offered appointments for counseling and immunization. After checking indications and contraindications of responding health-care personnel (HCP), informed consent for tetanus-diphtheria-acellular pertussis component (Tdap) immunization was obtained. Specific adverse events (AE) were self-assessed by standardized diaries for 7 days. Statistical analyses were performed using a t-test and Mann-Whitney U-tests SPSS (V21). Of 852 HCP eligible for pertussis immunization, 427 (51%) responded. Of these, 72 (17%) had already received Tdap <10 years ago, 304 (71%) received Tdap now, 38 (9%) were scheduled for vaccination and 12 (3%) declined. Diaries were returned by 272 (89%) of 304 vaccinees; 56 HCP reported ≥1 local AE, most frequently local swelling (8%), redness (2%), redness and swelling (7%), and fever (5=2%); no serious AE occurred. Comprehensive efforts were needed to achieve pertussis immunization coverage of ≥49% among all HCP in our institution. Good tolerability of the vaccine and continuous and individual information to HCP about the rationale and benefits of pertussis immunization contributed to this partial success, but increased efforts are needed to mobilize non-responding HCP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. PCSK9 at the crossroad of cholesterol metabolism and immune function during infections.

    PubMed

    Paciullo, Francesco; Fallarino, Francesca; Bianconi, Vanessa; Mannarino, Massimo R; Sahebkar, Amirhossein; Pirro, Matteo

    2017-09-01

    Sepsis, a complex and dynamic syndrome resulting from microbial invasion and immune system dysregulation, is associated with an increased mortality, reaching up to 35% worldwide. Cholesterol metabolism is often disturbed during sepsis, with low plasma cholesterol levels being associated with poor prognosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of the low-density lipoprotein receptor (LDLR), thus regulating intracellular and plasma cholesterol levels. PCSK9 is often upregulated during sepsis and might have a detrimental effect on immune host response and survival. Accordingly, PCSK9 reduces lipopolysaccharide uptake and clearance by human hepatocytes. Moreover, PCSK9 upregulation exacerbates organ dysfunction and tissue inflammation during sepsis, whereas a protective effect of PCSK9 deficiency has been documented in septic patients. Although a possible detrimental impact of PCSK9 on survival has been described, some beneficial effects of PCSK9 on immune response may be hypothesized. First, PCSK9 is associated with increased plasma cholesterol levels, which might be protective during sepsis. Second, PCSK9, by stimulating LDLR degradation and inhibiting reverse cholesterol transport (RCT), might promote preferential cholesterol accumulation in macrophages and other immune cells; these events might improve lipid raft composition and augment toll-like receptor function thus supporting inflammatory response. Hence, a more clear definition of the role of PCSK9 in septic states might provide additional insight in the understanding of the sepsis-associated immune dysregulation and enhance therapeutic outcomes. © 2017 Wiley Periodicals, Inc.

  14. Recommendations for pneumococcal immunization outside routine childhood immunization programs in Western Europe.

    PubMed

    Castiglia, Paolo

    2014-10-01

    The global burden of pneumococcal diseases is high, with young children and adults≥50 years of age at highest risk of infection. Two types of vaccine are available for the prevention of pneumococcal diseases caused by specific Streptococcus pneumoniae serotypes: the pneumococcal polysaccharide vaccine (PPV23) and the pneumococcal conjugate vaccine (PCV7, PCV10, and PCV13). Despite pneumococcal immunization programs in adults and children, the burden in adults has remained high. Most European countries have national or local/regional vaccination recommendations. The objective of this review was to provide an overview of the government recommendations for pneumococcal vaccination outside routine childhood vaccination programs for 16 Western European countries as of August 2014. We found that recommendations for pneumococcal immunization across Europe are complex and vary greatly among countries in terms of age groups and risk groups recommended for vaccination, as well as which vaccine should be administered. Clarifying or simplifying these recommendations and improving their dissemination could help to increase pneumococcal vaccine uptake and decrease the high burden of pneumococcal diseases in adults, both through a direct effect of the vaccine and via a herd effect in unvaccinated individuals.

  15. Steroidogenesis in the skin: implications for local immune functions

    PubMed Central

    Slominski, Andrzej; Zbytek, Bazej; Nikolakis, Georgios; Manna, Pulak R.; Skobowiat, Cezary; Zmijewski, Michal; Li, Wei; Janjetovic, Zorica; Postlethwaite, Arnold; Zouboulis, Christos C.; Tuckey, Robert C.

    2013-01-01

    The skin has developed a hierarchy of systems that encompasses the skin immune and local steroidogenic activities in order to protect the body against the external environment and biological factors and to maintain local homeostasis. Most recently it has been established that skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids, androgens and estrogens either from precursors of systemic origin or, alternatively, through the conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone and estradiol. Their local production can be regulated by locally produced corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis, dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and estrogens affect functions of the epidermis and adnexal structures as well as local immune activity. Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune diseases. The cutaneous steroidogenic system can also have systemic effects, which are emphasized by significant skin contribution to circulating androgens and/or estrogens. Furthermore, local activity of CYP11A1 can produce novel 7 -steroids and secosteroids that are biologically active. Therefore, modulation of local steroidogenic activity may serve as a new therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose activity can affect its functions and the development of local or systemic inflammatory or

  16. Capture-related stressors impair immune system function in sablefish

    USGS Publications Warehouse

    Lupes, S.C.; Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2006-01-01

    The sablefish Anoplopoma fimbria is a valuable North Pacific Ocean species that, when not targeted in various commercial fisheries, is often a part of discarded bycatch. Predictions of the survival of discarded fish are dependent on understanding how a fish responds to stressful conditions. Our objective was to describe the immunological health of sablefish exposed to capture stressors. In laboratory experiments designed to simulate the capture process, we subjected sablefish to various stressors that might influence survival: towing in a net, hooking, elevated seawater and air temperatures, and air exposure time. After stress was imposed, the in vitro mitogen-stimulated proliferation of sablefish leukocytes was used to evaluate the function of the immune system in an assay we validated for this species. The results demonstrated that regardless of fishing gear type, exposure to elevated seawater temperature, or time in air, the leukocytes from stressed sablefish exhibited significantly diminished proliferative responses to the T-cell mitogen, concanavalin A, or the B-cell mitogen, lipopolysaccharide. There was no difference in the immunological responses associated with seawater or air temperature. The duration and severity of the capture stressors applied in our study were harsh enough to induce significantly elevated levels of plasma cortisol and glucose, but there was no difference in the magnitude of levels among stressor treatments. These data suggest that immunological suppression occurs in sablefish subjected to capture-related stressors. The functional impairment of the immune system after capture presents a potential reason why delayed mortality is possible in discarded sablefish. Further studies are needed to determine whether delayed mortality in discarded sablefish can be caused by increased susceptibility to infectious agents resulting from stressor-mediated immunosuppression.

  17. Impact of fatty acid status on immune function of children in low-income countries.

    PubMed

    Prentice, Andrew M; van der Merwe, Liandré

    2011-04-01

    In vitro and animal studies point to numerous mechanisms by which fatty acids, especially long-chain polyunsaturated fatty acids (LCPUFA), can modulate the innate and adaptive arms of the immune system. These data strongly suggest that improving the fatty acid supply of young children in low-income countries might have immune benefits. Unfortunately, there have been virtually no studies of fatty acid/immune interactions in such settings. Clinical trial registers list over 150 randomized controlled trials (RCTs) involving PUFAs, only one in a low-income setting (the Gambia). We summarize those results here. There was evidence for improved growth and nutritional status, but the primary end point of chronic environmental enteropathy showed no benefit, possibly because the infants were still substantially breastfed. In high-income settings, there have been RCTs with fatty acids (usually LCPUFAs) in relation to 18 disease end points, for some of which there have been numerous trials (asthma, inflammatory bowel disease and rheumatoid arthritis). For these diseases, the evidence is judged reasonable for risk reduction for childhood asthma (but not in adults), as yielding possible benefit in Crohn's disease (insufficient evidence in ulcerative colitis) and for convincing evidence for rheumatoid arthritis at sufficient dose levels, though formal meta-analyses are not yet available. This analysis suggests that fatty acid interventions could yield immune benefits in children in poor settings, especially in non-breastfed children and in relation to inflammatory conditions such as persistent enteropathy. Benefits might include improved responses to enteric vaccines, which frequently perform poorly in low-income settings, and these questions merit randomized trials. © 2011 Blackwell Publishing Ltd.

  18. CXCR3+CD4+ T cells mediate innate immune function in the pathophysiology of liver ischemia/reperfusion injury.

    PubMed

    Zhai, Yuan; Shen, Xiu-da; Hancock, Wayne W; Gao, Feng; Qiao, Bo; Lassman, Charles; Belperio, John A; Strieter, Robert M; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W

    2006-05-15

    Ischemia-reperfusion injury (IRI), an innate immune-dominated inflammatory response, develops in the absence of exogenous Ags. The recently highlighted role of T cells in IRI raises a question as to how T lymphocytes interact with the innate immune system and function with no Ag stimulation. This study dissected the mechanism of innate immune-induced T cell recruitment and activation in rat syngeneic orthotopic liver transplantation (OLT) model. Liver IRI was induced after cold storage (24-36 h) at 4 degrees C in University of Wisconsin solution. Gene products contributing to IRI were identified by cDNA microarray at 4-h posttransplant. IRI triggered increased intrahepatic expression of CXCL10, along with CXCL9 and 11. The significance of CXCR3 ligand induction was documented by the ability of neutralizing anti-CXCR3 Ab treatment to ameliorate hepatocellular damage and improve 14-day survival of 30-h cold-stored OLTs (95 vs 40% in controls; p < 0.01). Immunohistology analysis confirmed reduced CXCR3+ and CD4+ T cell infiltration in OLTs after treatment. Interestingly, anti-CXCR3 Ab did not suppress innate immune activation in the liver, as evidenced by increased levels of IL-1beta, IL-6, inducible NO synthase, and multiple neutrophil/monokine-targeted chemokine programs. In conclusion, this study demonstrates a novel mechanism of T cell recruitment and function in the absence of exogenous Ag stimulation. By documenting that the execution of innate immune function requires CXCR3+CD4+ T cells, it highlights the critical role of CXCR3 chemokine biology for the continuum of innate to adaptive immunity in the pathophysiology of liver IRI.

  19. Aryl hydrocarbon receptor promotes RORγt⁺ group 3 ILCs and controls intestinal immunity and inflammation.

    PubMed

    Qiu, Ju; Zhou, Liang

    2013-11-01

    Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptor (RORγt)⁺ group 3 ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt⁺ group 3 ILCs (e.g., lymphoid tissue inducer cells) are required for lymphoid organogenesis. In adult mice, RORγt⁺ group 3 ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt⁺ group 3 ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt⁺ group 3 ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells. In this review, we will focus on the development and function of RORγt⁺ group 3 ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. A better understanding of the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases.

  20. DEVELOPMENTAL ATRAZINE EXPOSURE SUPPRESSES IMMUNE FUNCTION IN MALE, BUT NOT FEMALE SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Developmental Atrazine Exposure Suppresses Immune Function in Male, but not Female Sprague-Dawley Rats

    Andrew A. Rooney,*,1 Raymond A. Matulka,? and Robert Luebke?

    *College of Veterinary Medicine, Anatomy, Physiological Sciences and Radiology, NCSU, Raleigh, North...

  1. Life-course origins of social inequalities in adult immune cell markers of inflammation in a developing southern Chinese population: the Guangzhou Biobank Cohort Study.

    PubMed

    West, Douglas A; Leung, Gabriel M; Jiang, Chao Q; Elwell-Sutton, Timothy M; Zhang, Wei S; Lam, Tai H; Cheng, Kar K; Schooling, C Mary

    2012-04-03

    Socioeconomic position (SEP) throughout life is associated with cardiovascular disease, though the mechanisms linking these two are unclear. It is also unclear whether there are critical periods in the life course when exposure to better socioeconomic conditions confers advantages or whether SEP exposures accumulate across the whole life course. Inflammation may be a mechanism linking socioeconomic position (SEP) with cardiovascular disease. In a large sample of older residents of Guangzhou, in southern China, we examined the association of life course SEP with inflammation. In baseline data on 9,981 adults (≥ 50 years old) from the Guangzhou Biobank Cohort Study (2006-08), we used multivariable linear regression and model fit to assess the associations of life course SEP at four stages (childhood, early adult, late adult and current) with white blood, granulocyte and lymphocyte cell counts. A model including SEP at all four life stages best explained the association of life course SEP with white blood and granulocyte cell count for men and women, with early adult SEP (education) making the largest contribution. A critical period model best explained the association of life course SEP with lymphocyte count, with sex-specific associations. Early adult SEP was negatively associated with lymphocytes for women. Low SEP throughout life may negatively impact late adult immune-inflammatory status. However, some aspects of immune-inflammatory status may be sensitive to earlier exposures, with sex-specific associations. The findings were compatible with the hypothesis that in a developing population, upregulation of the gonadotropic axis with economic development may obscure the normally protective effects of social advantage for men.

  2. Relationship of executive function and educational status with functional balance in older adults.

    PubMed

    Voos, Mariana Callil; Custódio, Elaine Bazilio; Malaquias, Joel

    2011-01-01

    The Berg Balance Scale (BBS) is frequently used to assess functional balance in older adults. The relationship of executive function and level of education with the BBS performance has not been described. The aim of this study was to determine whether (1) the performance on a task requiring executive function (part B of the Trail Making Test, TMT-B) influences results of motor and cognitive tests and (2) the number of years of formal education could be related to performance on BBS in older adults. We also explored whether there would be differences, based on performance on TMT-B (high vs low) in motor function (BBS, the timed up and go [TUG]) or cognitive function (TMT-A and TMTDELTA), the Mini Mental State Examination (MMSE), as well as years of education. Participants included 101 older adults (age range, 60-80 years) residing in São Paulo, Brazil. Functional balance was assessed using BBS and TUG. Executive function was assessed using the TMT and MMSE. Educational status was determined by self-report of participant's total number of years of formal education. The BBS scores were inversely related to TMT-A time (r = -0.63, r = 0.40, P < .001) and TMT-B time (r = -0.56, r = 0.31, P < .001). There was a similar relationship with TMTDELTA (r = -0.47, r = 0.22, P < .001). The BBS scores were positively correlated to years of formal education (r = 0.48, r = 0.23, P < .001). There was a ceiling effect on the TMT-B, with many individuals reaching maximum score of 300 seconds. Participants with high levels of executive function had higher BBS and MMSE scores, more education, and lower TMT-A, TMTDELTA and TUG scores (P < .001) than the lower functioning group. Individuals with higher capacity on tasks requiring visuospatial abilities, psychomotor speed, and executive function, such as the TMT, had better performance on BBS. Individuals with a high executive function, measured by TMT-B, also performed better on other motor and cognitive tests.

  3. Hepatitis B Virus Lacks Immune Activating Capacity, but Actively Inhibits Plasmacytoid Dendritic Cell Function

    PubMed Central

    Woltman, Andrea M.; Shi, Cui C.; Janssen, Harry L. A.

    2011-01-01

    Chronic hepatitis B virus (HBV) infection is caused by inadequate anti-viral immunity. Activation of plasmacytoid dendritic cells (pDC) leading to IFNα production is important for effective anti-viral immunity. Hepatitis B virus (HBV) infection lacks IFNα induction in animal models and patients and chronic HBV patients display impaired IFNα production by pDC. Therefore, HBV and HBV-derived proteins were examined for their effect on human pDC in vitro. In addition, the in vitro findings were compared to the function of pDC derived from chronic HBV patients ex vivo. In contrast to other viruses, HBV did not activate pDC. Moreover, HBV and HBsAg abrogated CpG-A/TLR9-induced, but not Loxoribine/TLR7-induced, mTOR-mediated S6 phosphorylation, subsequent IRF7 phosphorylation and IFNα gene transcription. HBV/HBsAg also diminished upregulation of co-stimulatory molecules, production of TNFα, IP-10 and IL-6 and pDC-induced NK cell function, whereas TLR7-induced pDC function was hardly affected. In line, HBsAg preferentially bound to TLR9-triggered pDC demonstrating that once pDC are able to bind HBV/HBsAg, the virus exerts its immune regulatory effect. HBV not only directly interfered with pDC function, but also indirectly by interfering with monocyte-pDC interaction. Also HBeAg diminished pDC function to a certain extent, but via another unknown mechanism. Interestingly, patients with HBeAg-positive chronic hepatitis B displayed impaired CpG-induced IFNα production by pDC without significant alterations in Loxoribine-induced pDC function compared to HBeAg-negative patients and healthy controls. The lack of activation and the active inhibition of pDC by HBV may both contribute to HBV persistence. The finding that the interaction between pDC and HBV may change upon activation may aid in the identification of a scavenging receptor supporting immunosuppressive effects of HBV and also in the design of novel treatment strategies for chronic HBV. PMID:21246041

  4. Immune system participates in brain regeneration and restoration of reproduction in the earthworm Dendrobaena veneta.

    PubMed

    Molnar, Laszlo; Pollak, Edit; Skopek, Zuzanna; Gutt, Ewa; Kruk, Jerzy; Morgan, A John; Plytycz, Barbara

    2015-10-01

    Earthworm decerebration causes temporary inhibition of reproduction which is mediated by certain brain-derived neurohormones; thus, cocoon production is an apposite supravital marker of neurosecretory center functional recovery during brain regeneration. The core aim of the present study was to investigate aspects of the interactions of nervous and immune systems during brain regeneration in adult Dendrobaena veneta (Annelida; Oligochaeta). Surgical brain extirpation was combined, either with (i) maintenance of immune-competent coelomic cells (coelomocytes) achieved by surgery on prilocaine-anesthetized worms or (ii) prior extrusion of fluid-suspended coelomocytes by electrostimulation. Both brain renewal and cocoon output recovery were significantly faster in earthworms with relatively undisturbed coelomocyte counts compared with individuals where coelomocyte counts had been experimentally depleted. These observations provide empirical evidence that coelomocytes and/or coelomocyte-derived factors (e.g. riboflavin) participate in brain regeneration and, by implication, that there is close functional synergy between earthworm neural and immune systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    PubMed Central

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  6. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    PubMed

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2014-12-24

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.

  7. Functional capacities of Polish adults of 60-87 years and risk of losing functional independence.

    PubMed

    Ignasiak, Zofia; Sławinska, Teresa; Skrzek, Anna; Rożek, Krystyna; Kozieł, Sławomir; Posłuszny, Pawel; Malina, Robert M

    2017-09-01

    To characterise the functional capacities of Polish men and women aged 60-87 years and evaluate their status relative to criteria for functional independence. Four hundred and thirty-one women and 125 men, aged 60-87 years, who were residents of Wrocław, southwestern Poland, were recruited. Height and weight were measured and BMI was calculated. The Fullerton Functional Fitness Test was administered to test upper and lower body strength, upper and lower body flexibility, agility-dynamic balance and aerobic endurance. The Paffenbarger physical activity questionnaire was completed. Characteristics of individuals classified by the number of tests which equalled or exceeded criterion-referenced standards for functional independence (excluding flexibility) were compared. Polish older adults compared favourably to American reference values. Percentages meeting the criteria for all four, for two or three and for one or no tests were, respectively, 21%, 54% and 25% in women and 37%, 45% and 18% in men. Adults meeting the criteria for all four tests were lighter, with a lower BMI and more physically active than those meeting the criteria on two or three tests and on one or no tests. The majority of Polish older adults were not at risk for loss of physical independence. The most functionally independent adults of both sexes had a lower BMI and less obesity, and were physically more active; the converse was true for those not meeting the criteria.

  8. Psychosocial Functioning of Adult Epileptic and MS Patients and Adult Normal Controls on the WPSI.

    ERIC Educational Resources Information Center

    Tan, Siang-Yang

    1986-01-01

    Psychosocial functioning of adult epileptic outpatients as assessed by the Washington Psychosocial Seizure Inventory (WPSI) was compared to that of adult multiple sclerosis (MS) outpatients and normal subjects. When only valid WPSI profiles were considered, the only significant finding was that the epilepsy group and the MS group had more…

  9. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function.

    PubMed

    Thompson, Matthew G; Navarro, Flor; Chitsike, Lennox; Ramirez, Luis; Kovacs, Elizabeth J; Watkins, Stephanie K

    2016-12-01

    Dendritic cells (DCs) are a critical component of anti-tumor immunity due to their ability to induce a robust immune response to antigen (Ag). Alcohol was previously shown to reduce DC ability to present foreign Ag and promote pro-inflammatory responses in situations of infection and trauma. However the impact of alcohol exposure on generation of an anti-tumor response, especially in the context of generation of an immune vaccine has not been examined. In the clinic, DC vaccines are typically generated from autologous blood, therefore prior exposure to substances such as alcohol may be a critical factor to consider regarding the effectiveness in generating an immune response. In this study, we demonstrate for the first time that ethanol differentially affects DC and tumor Ag-specific T cell responses depending on sex. Signaling pathways were found to be differentially regulated in DC in females compared to males and these differences were exacerbated by ethanol treatment. DC from female mice treated with ethanol were unable to activate Ag-specific cytotoxic T cells (CTL) as shown by reduced expression of CD44, CD69, and decreased production of granzyme B and IFNγ. Furthermore, although FOXO3, an immune suppressive mediator of DC function, was found to be upregulated in DC from female mice, ethanol related suppression was independent of FOXO3. These findings demonstrate for the first time differential impacts of alcohol on the immune system of females compared to males and may be a critical consideration for determining the effectiveness of an immune based therapy for cancer in patients that consume alcohol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Independence of Hot and Cold Executive Function Deficits in High-Functioning Adults with Autism Spectrum Disorder

    PubMed Central

    Zimmerman, David L.; Ownsworth, Tamara; O'Donovan, Analise; Roberts, Jacqueline; Gullo, Matthew J.

    2016-01-01

    Individuals with autistic spectrum disorder (ASD) display diverse deficits in social, cognitive and behavioral functioning. To date, there has been mixed findings on the profile of executive function deficits for high-functioning adults (IQ > 70) with ASD. A conceptual distinction is commonly made between “cold” and “hot” executive functions. Cold executive functions refer to mechanistic higher-order cognitive operations (e.g., working memory), whereas hot executive functions entail cognitive abilities supported by emotional awareness and social perception (e.g., social cognition). This study aimed to determine the independence of deficits in hot and cold executive functions for high-functioning adults with ASD. Forty-two adults with ASD (64% male, aged 18–66 years) and 40 age and gender matched controls were administered The Awareness of Social Inference Test (TASIT; emotion recognition and social inference), Letter Number Sequencing (working memory) and Hayling Sentence Completion Test (response initiation and suppression). Between-group analyses identified that the ASD group performed significantly worse than matched controls on all measures of cold and hot executive functions (d = 0.54 − 1.5). Hierarchical multiple regression analyses revealed that the ASD sample performed more poorly on emotion recognition and social inference tasks than matched controls after controlling for cold executive functions and employment status. The findings also indicated that the ability to recognize emotions and make social inferences was supported by working memory and response initiation and suppression processes. Overall, this study supports the distinction between hot and cold executive function impairments for adults with ASD. Moreover, it advances understanding of higher-order impairments underlying social interaction difficulties for this population which, in turn, may assist with diagnosis and inform intervention programs. PMID:26903836

  11. Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development

    PubMed Central

    Beheshti, Afshin; Wage, Justin; McDonald, J. Tyson; Lamont, Clare; Peluso, Michael; Hahnfeldt, Philip; Hlatky, Lynn

    2015-01-01

    The concept of age-dependent host control of cancer development raises the natural question of how these effects manifest across the host tissue/organ types with which a tumor interacts, one important component of which is the aging immune system. To investigate this, changes in the spleen, an immune nexus in the mouse, was examined for its age-dependent interactive influence on the carcinogenesis process. The model is the C57BL/6 male mice (adolescent, young adult, middle-aged, and old or 68, 143, 551 and 736 days old respectively) with and without a syngeneic murine tumor implant. Through global transcriptome analysis, immune-related functions were found to be key regulators in the spleen associated with tumor progression as a function of age with CD2, CD3ε, CCL19, and CCL5 being the key molecules involved. Surprisingly, other than CCL5, all key factors and immune-related functions were not active in spleens from non-tumor bearing old mice. Our findings of age-dependent tumor-spleen signaling interaction suggest the existence of a global role of the aging host in carcinogenesis. Suggested is a new avenue for therapeutic improvement that capitalizes on the pervasive role of host aging in dictating the course of this disease. PMID:26497558

  12. Neural circuitry and immunity

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  13. Profile of cognitive function in adults with duchenne muscular dystrophy.

    PubMed

    Ueda, Yukihiko; Suwazono, Shugo; Maedo, Sino; Higuchi, Itsuro

    2017-03-01

    Several studies have examined intellectual functioning of boys with duchenne muscular dystrophy (DMD). However, little is known about the remaining cognitive weaknesses in adults with DMD. The purpose of this study was to investigate the profile of cognitive functioning that is characteristics of adults with DMD. Twenty-four subscales from the Wechsler Adult Intelligence Scale III (WAIS-III), the Clinical Assessment for Attention (CAT), and the Wechsler Memory Scale Revised (WMS-R) were used to assess participants with DMD (N=15; mean age=30.4years). Scores for Picture Completion, Arithmetic, Matrix Reasoning, Symbol Search, Letter-Number Sequencing, and Digit Span of the WAIS-III; all CAT scores, and Logical Memory and Delayed Logical Memory from the WMS-R were significantly deficient in adults with DMD in comparison to the normal population. The ability to sequentially process auditory and visual information remains impaired in adults with DMD. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes.

    PubMed

    Maneerat, Sujira; Lehtinen, Markus J; Childs, Caroline E; Forssten, Sofia D; Alhoniemi, Esa; Tiphaine, Milin; Yaqoob, Parveen; Ouwehand, Arthur C; Rastall, Robert A

    2013-01-01

    Elderly adults have alterations in their gut microbiota and immune functions that are associated with higher susceptibility to infections and metabolic disorders. Probiotics and prebiotics, and their synbiotic combinations are food supplements that have been shown to improve both gut and immune function. The objective of this randomised, double-blind, placebo-controlled, cross-over human clinical trial was to study immune function and the gut microbiota in healthy elderly adults. Volunteers (n 37) consumed prebiotic galacto-oligosaccharides (GOS; 8 g/d), probiotic Bifidobacterium lactis Bi-07 (Bi-07; 10(9) colony-forming units/d), their combination (Bi-07 + GOS) and maltodextrin control (8 g/d) in four 3-week periods separated by 4-week wash-out periods. Immune function was analysed by determining the phagocytic and oxidative burst activity of monocytes and granulocytes, whole-blood response to lipopolysaccharide, plasma chemokine concentrations and salivary IgA levels. Gut microbiota composition and faecal SCFA content were determined using 16S ribosomal RNA fluorescence in situ hybridisation and HPLC, respectively. Primary statistical analyses indicated the presence of carry-over effects and thus measurements from only the first supplementation period were considered valid. Subsequent statistical analysis showed that consumption of Bi-07 improved the phagocytic activity of monocytes (P < 0·001) and granulocytes (P = 0·02). Other parameters were unchanged. We have for the first time shown that the probiotic Bi-07 may provide health benefits to elderly individuals by improving the phagocytic activity of monocytes and granulocytes. The present results also suggest that in the elderly, the effects of some probiotics and prebiotics may last longer than in adults.

  15. Yoga and immune system functioning: a systematic review of randomized controlled trials.

    PubMed

    Falkenberg, R I; Eising, C; Peters, M L

    2018-02-10

    Yoga is an ancient mind-body practice that is increasingly recognized to have health benefits in a variety of clinical and non-clinical conditions. This systematic review summarizes the findings of randomized controlled trials examining the effects of yoga on immune system functioning which is imperative to justify its application in the clinic. Fifteen RCTs were eligible for the review. Even though the existing evidence is not entirely consistent, a general pattern emerged suggesting that yoga can downregulate pro-inflammatory markers. In particular, the qualitative evaluation of RCTs revealed decreases in IL-1beta, as well as indications for reductions in IL-6 and TNF-alpha. These results imply that yoga may be implemented as a complementary intervention for populations at risk or already suffering from diseases with an inflammatory component. Beyond this, yoga practice may exert further beneficial effects by enhancing cell-mediated and mucosal immunity. It is hypothesized that longer time spans of yoga practice are required to achieve consistent effects especially on circulating inflammatory markers. Overall, this field of investigation is still young, hence the current body of evidence is small and for most immune parameters, more research is required to draw distinct conclusions.

  16. Indoor molds and lung function in healthy adults.

    PubMed

    Hernberg, Samu; Sripaiboonkij, Penpatra; Quansah, Reginald; Jaakkola, Jouni J K; Jaakkola, Maritta S

    2014-05-01

    Indoor mold exposure is common worldwide and constitutes an important health problem. There are very few studies assessing the relation between mold exposure and lung function levels among non-asthmatic adults. Our objective was to assess the relations between dampness and mold exposures at home and at work and lung function. In particular, we elaborated the importance of different exposure indicators. In a population-based study, 269 non-asthmatic adults from South Finland answered a questionnaire on indoor dampness and mold exposures at home or at work and other factors potentially influencing lung function, and performed spirometry. Multiple linear regression model was applied to study the relations between exposures and spirometric lung function levels. In linear regression adjusting for confounding, FEV1 level was reduced on average 200 ml related to mold odor at home (effect estimate -0.20, 95% CI -0.60 to 0.21) and FVC level was reduced on average 460 ml (-0.46, -0.95 to 0.03) respectively. Exposure to mold odor at home or at work or both was related to reduced FEV1 (-0.15, -0.42 to 0.12) and FVC (-0.22, -0.55 to 0.11) levels. Women had on average 510 ml reduced FEV1 levels (-0.51, -1.0 to 0.03) and 820 ml reduced FVC levels (-0.82, -1.4 to -0.20) related to mold odor exposure at home. Mold odor exposure was related to lower lung function levels among non-asthmatic adults, especially among women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Cost-Impact of Young Adults with High-Functioning Autistic Spectrum Disorder

    ERIC Educational Resources Information Center

    Jarbrink, Krister; McCrone, Paul; Fombonne, Eric; Zanden, Hakan; Knapp, Martin

    2007-01-01

    There is a general lack of information about the economic impact of autistic spectrum disorder (ASD), particularly regarding adults and those with high-functioning ASD. In this study, the societal economic consequences of ASD were investigated using a sample of young high-functioning adults in need of employment support. A methodology for the…

  18. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  19. Thermal sensitivity of immune function: evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates

    USGS Publications Warehouse

    Butler, Michael W.; Stahlschmidt, Zachary R.; Ardia, Daniel R.; Davies, Scott; Davis, Jon; Guillette, Louis J.; Johnson, Nicholas; McCormick, Stephen D.; McGraw, Kevin J.; DeNardo, Dale F.

    2013-01-01

    Animal body temperature (Tbody) varies over daily and annual cycles, affecting multiple aspects of biological performance in both endothermic and ectothermic animals. Yet a comprehensive comparison of thermal performance among animals varying in Tbody (mean and variance) and heat production is lacking. Thus, we examined the thermal sensitivity of immune function (a crucial fitness determinant) in Vertebrata, a group encompassing species of varying thermal biology. Specifically, we investigated temperature-related variation in two innate immune performance metrics, hemagglutination and hemolysis, for 13 species across all seven major vertebrate clades. Agglutination and lysis were temperature dependent and were more strongly related to the thermal biology of species (e.g., mean Tbody) than to the phylogenetic relatedness of species, although these relationships were complex and frequently surprising (e.g., heterotherms did not exhibit broader thermal performance curves than homeotherms). Agglutination and lysis performance were positively correlated within species, except in taxa that produce squalamine, a steroidal antibiotic that does not lyse red blood cells. Interestingly, we found the antithesis of a generalist-specialist trade-off: species with broader temperature ranges of immune performance also had higher peak performance levels. In sum, we have uncovered thermal sensitivity of immune performance in both endotherms and ectotherms, highlighting the role that temperature and life history play in immune function across Vertebrata.

  20. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    PubMed

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-05-01

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Perinatal stress and early life programming of lung structure and function

    PubMed Central

    Wright, Rosalind J.

    2010-01-01

    Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding. PMID:20080145

  2. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function

    PubMed Central

    Evans, Gary W.; Swain, James E.; King, Anthony P.; Wang, Xin; Javanbakht, Arash; Ho, S. Shaun; Angstadt, Michael; Phan, K. Luan; Xie, Hong; Liberzon, Israel

    2015-01-01

    Considerable work indicates that early cumulative risk exposure is aversive to human development, but very little research has examined neurological underpinnings of these robust findings. We investigated amygdala volume and reactivity to facial stimuli among adults (M = 23.7 years, n = 54) as a function of cumulative risk exposure during childhood (ages 9 and 13). In addition, we tested whether expected, cumulative risk elevations in amygdala volume would mediate functional reactivity of the amygdala during socio-emotional processing. Risks included substandard housing quality, noise, crowding, family turmoil, child separation from family, and violence. Total and left hemisphere adult amygdala volumes, respectively were positively related to cumulative risk exposure during childhood. The links between childhood cumulative risk exposure and elevated amygdala responses to emotionally neutral facial stimuli in adulthood were mediated by the respective amygdala volumes. Cumulative risk exposure in later adolescence (17 years), however, was unrelated to subsequent, adult amygdala volume or function. Physical and socioemotional risk exposures early in life appear to alter amygdala development, rendering adults more reactive to ambiguous stimuli such as neutral faces. These stress-related differences in childhood amygdala development might contribute to well-documented psychological distress as a function of early risk exposure. PMID:26469872

  3. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function.

    PubMed

    Evans, Gary W; Swain, James E; King, Anthony P; Wang, Xin; Javanbakht, Arash; Ho, S Shaun; Angstadt, Michael; Phan, K Luan; Xie, Hong; Liberzon, Israel

    2016-06-01

    Considerable work indicates that early cumulative risk exposure is aversive to human development, but very little research has examined the neurological underpinnings of these robust findings. This study investigates amygdala volume and reactivity to facial stimuli among adults (mean 23.7 years of age, n = 54) as a function of cumulative risk exposure during childhood (9 and 13 years of age). In addition, we test to determine whether expected cumulative risk elevations in amygdala volume would mediate functional reactivity of the amygdala during socioemotional processing. Risks included substandard housing quality, noise, crowding, family turmoil, child separation from family, and violence. Total and left hemisphere adult amygdala volumes were positively related to cumulative risk exposure during childhood. The links between childhood cumulative risk exposure and elevated amygdala responses to emotionally neutral facial stimuli in adulthood were mediated by the corresponding amygdala volumes. Cumulative risk exposure in later adolescence (17 years of age), however, was unrelated to subsequent adult amygdala volume or function. Physical and socioemotional risk exposures early in life appear to alter amygdala development, rendering adults more reactive to ambiguous stimuli such as neutral faces. These stress-related differences in childhood amygdala development might contribute to the well-documented psychological distress as a function of early risk exposure. © 2015 Wiley Periodicals, Inc.

  4. Functional food awareness and perceptions in relation to information sources in older adults.

    PubMed

    Vella, Meagan N; Stratton, Laura M; Sheeshka, Judy; Duncan, Alison M

    2014-05-17

    The functional food industry has experienced innovative and economic expansion, yet research into consumer perceptions of functional foods and their associated health claims is limited. Among consumers, older adults could benefit from functional foods due to age-related issues pertaining to food and health. The purpose of this research was to identify the need for information related to functional foods among older adults (≥60 years old) and to assess awareness and perceptions of health claims on functional food packages. Community-dwelling older adults (n = 200) completed a researcher administered questionnaire designed to collect information about functional foods including current consumption, motivating factors for consumption, perceived need for information, sources of information for functional foods and awareness of health claims. Prevalence of functional food consumption among participants was 93.0%. Increased awareness and knowledge was the most commonly reported factor that would promote functional food consumption (85.5%) and 63.5% of participants wanted more information about functional foods with preferred sources being newspapers/magazines/books (68.5%) and food labels (66.1%). Participants were predominately (93.5%) aware of health claims on functional foods and those with more education were more likely to report being aware of health claims (p = 0.045). Although functional food consumption among older adults in this sample is high, there is a need for further information regarding functional foods. These results inform stakeholders regarding the potential for information to influence functional food acceptance among older adult consumers.

  5. Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery

    PubMed Central

    Chauchet, Xavier; Hannani, Dalil; Djebali, Sophia; Laurin, David; Polack, Benoit; Marvel, Jacqueline; Buffat, Laurent; Toussaint, Bertrand; Le Gouëllec, Audrey

    2016-01-01

    Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuated Pseudomonas aeruginosa vectors able to deliver in vivo protein antigens into antigen-presenting cells, through Type 3 secretion system of the bacteria. Using this approach, we managed to protect immunized mice against aggressive B16 melanoma development in both a prophylactic and therapeutic setting. In this study, we further investigated the antigen-specific CD8+ T cell response, in terms of phenotypic and functional aspects, obtained after immunizations with a killed but metabolically active P. aeruginosa attenuated vector. We demonstrated that P. aeruginosa vaccine induces a highly functional pool of antigen-specific CD8+ T cell able to infiltrate the tumor. Furthermore, multiple immunizations allowed the development of a long-lasting immune response, represented by a pool of predominantly effector memory cells which protected mice against late tumor challenge. Overall, killed but metabolically active P. aeruginosa vector is a safe and promising approach for active and specific antitumor immunotherapy. PMID:28035332

  6. Lifestyle incongruity, stress and immune function in indigenous Siberians: the health impacts of rapid social and economic change.

    PubMed

    Sorensen, Mark V; Snodgrass, James J; Leonard, William R; McDade, Thomas W; Tarskaya, Larissa A; Ivanov, Kiundiul I; Krivoshapkin, Vadim G; Alekseev, Vladimir P

    2009-01-01

    The purpose of this study was to investigate the impact of economic and cultural change on immune function and psychosocial stress in an indigenous Siberian population. We examined Epstein-Barr virus antibodies (EBV), an indirect biomarker of cell-mediated immune function, in venous whole blood samples collected from 143 Yakut (Sakha) herders (45 men and 98 women) in six communities using a cross-sectional study design. We modeled economic change through the analysis of lifestyle incongruity (LI), calculated as the disparity between socioeconomic status and material lifestyle, computed with two orthogonal scales: market and subsistence lifestyle. EBV antibody level was significantly negatively associated with both a market and a subsistence lifestyle, indicating higher cell-mediated immune function associated with higher material lifestyle scores. In contrast, LI was significantly positively associated with EBV antibodies indicating lower immune function, and suggesting higher psychosocial stress, among individuals with economic status in excess of material lifestyle. Individuals with lower incongruity scores (i.e., economic status at parity with material resources, or with material resources in excess of economic status) had significantly lower EBV antibodies. The findings suggest significant health impacts of changes in material well-being and shifting status and prestige markers on health during the transition to a market economy in Siberia. The findings also suggest that relative, as opposed to absolute, level of economic status or material wealth is more strongly related to stress in the Siberian context.

  7. Intraindividual variability in physical and emotional functioning: comparison of adults with traumatic brain injuries and healthy adults.

    PubMed

    Burton, Catherine L; Hultsch, David F; Strauss, Esther; Hunter, Michael A

    2002-08-01

    Recent research has shown that individuals with certain neurological conditions demonstrate greater intraindividual variability on cognitive tasks compared to healthy controls. The present study investigated intraindividual variability in the domains of physical functioning and affect/stress in three groups: adults with mild head injuries, adults with moderate/severe head injuries, and healthy adults. Participants were assessed on 10 occasions and results indicated that (a) individuals with head injuries demonstrated greater variability in dominant finger dexterity and right grip strength than the healthy controls; (b) increased variability tended to be associated with poorer performance/report both within and across tasks; and (c) increased variability on one task was associated with increased variability on other tasks. The findings suggest that increased variability in physical function, as well as cognitive function, represents an indicator of neurological compromise.

  8. Obesity's Effects on the Onset of Functional Impairment among Older Adults

    ERIC Educational Resources Information Center

    Jenkins, Kristi Rahrig

    2004-01-01

    Purpose: This study has two purposes. First, it determines if there is a relationship between body weight and the onset of functional impairment across time among this sample of older adults. More specifically, it examines if obese older adults are more likely to experience the onset of functional impairment. Second, it explores how health…

  9. The effects of electroshock on immune function and disease progression in juvenile spring chinook salmon

    USGS Publications Warehouse

    VanderKooi, S.P.; Maule, A.G.; Schreck, C.B.

    2001-01-01

    Although much is known about the effects of electroshock on fish physiology, consequences to the immune system and disease progression have not received attention. Our objectives were to determine the effects of electroshock on selected immune function in juvenile spring chinook salmon Oncorhynchus tshawytscha, the mechanism of any observed alteration, and the effects of electroshock on disease progression. We found that the ability of anterior kidney leukocytes to generate antibody-producing cells (APC) was suppressed 3 h after a pulsed-DC electroshock (300 V, 50 Hz, 8 ms pulse width) but recovered within 24 h. This response was similar in timing and magnitude to that of fish subjected to an acute handling stress. The mechanism of suppression is hypothesized to be via an elevation of plasma cortisol concentrations in response to stress. Other monitored immune functions, skin mucous lysozyme levels, and respiratory burst activity were not affected by exposure to electroshock. The progression of a Renibacterium salmoninarum (RS) infection may have been altered after exposure to an electroshock. The electroshock did not affect infection severity or the number of mortalities, but may have accelerated the time to death. The limited duration of APC suppression and lack of effects on lysozyme and respiratory burst, as well as infection severity and mortality levels in RS-infected fish, led us to conclude that electrofishing under the conditions we tested is a safe procedure in regards to immunity and disease.

  10. Functionalized Iron Oxide Nanoparticles for Controlling the Movement of Immune Cells

    PubMed Central

    White, Ethan E; Pai, Alex; Weng, Yiming; Suresh, Anil K.; Van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M.

    2015-01-01

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed “cell box” was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain. PMID:25848983

  11. Functionalized iron oxide nanoparticles for controlling the movement of immune cells.

    PubMed

    White, Ethan E; Pai, Alex; Weng, Yiming; Suresh, Anil K; Van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M

    2015-05-07

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed "cell box" was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain.

  12. Immunity: plants as effective mediators.

    PubMed

    Sultan, M Tauseef; Butt, Masood Sadiq; Qayyum, Mir M Nasir; Suleria, Hafiz Ansar Rasul

    2014-01-01

    In the domain of nutrition, exploring the diet-health linkages is major area of research. The outcomes of such interventions led to widespread acceptance of functional and nutraceutical foods; however, augmenting immunity is a major concern of dietary regimens. Indeed, the immune system is incredible arrangement of specific organs and cells that enabled humans to carry out defense against undesired responses. Its proper functionality is essential to maintain the body homeostasis. Array of plants and their components hold immunomodulating properties. Their possible inclusion in diets could explore new therapeutic avenues to enhanced immunity against diseases. The review intended to highlight the importance of garlic (Allium sativum), green tea (Camellia sinensis), ginger (Zingiber officinale), purple coneflower (Echinacea), black cumin (Nigella sativa), licorice (Glycyrrhiza glabra), Astragalus and St. John's wort (Hypericum perforatum) as natural immune boosters. These plants are bestowed with functional ingredients that may provide protection against various menaces. Modes of their actions include boosting and functioning of immune system, activation and suppression of immune specialized cells, interfering in several pathways that eventually led to improvement in immune responses and defense system. In addition, some of these plants carry free radical scavenging and anti-inflammatory activities that are helpful against cancer insurgence. Nevertheless, interaction between drugs and herbs/botanicals should be well investigated before recommended for their safe use, and such information must be disseminated to the allied stakeholders.

  13. Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients.

    PubMed

    Pfleger, Christian; Meierhoff, Guido; Kolb, Hubert; Schloot, Nanette C

    2010-03-01

    The aim of the current study was to investigate whether autoantigen directed T-cell reactivity relates to beta-cell function during the first 78 weeks after diagnosis of type 1 diabetes. 50 adults and 49 children (mean age 27.3 and 10.9 years respectively) with recent onset type 1 diabetes who participated in a placebo-controlled trial of immune intervention with DiaPep277 were analyzed. Secretion of interferon (IFN)-gamma, interleukin (IL)-5, IL-13 and IL-10 by single peripheral mononuclear cells (PBMC) upon stimulation with islet antigens GAD65, heat shock protein 60 (Hsp60) protein-tyrosine-phosphatase-like-antigen (pIA2) or tetanus toxoid (TT) was determined applying ELISPOT; beta-cell function was evaluated by glucagon stimulated C-peptide. Multivariate regression analysis was applied. In general, number of islet antigen-reactive cells decreased over 78 weeks in both adults and children, whereas reactivity to TT was not reduced. In addition, there was an association between the quality of immune cell responses and beta-cell function. Overall, increased responses by IFN-gamma secreting cells were associated with lower beta-cell function whereas IL-5, IL-13 and IL-10 cytokine responses were positively associated with beta-cell function in adults and children. Essentially, the same results were obtained with three different models of regression analysis. The number of detectable islet-reactive immune cells decreases within 1-2 years after diagnosis of type 1 diabetes. Cytokine production by antigen-specific PBMC reactivity is related to beta-cell function as measured by stimulated C-peptide. Cellular immunity appears to regress soon after disease diagnosis and begin of insulin therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Health Literacy, Cognitive Ability, and Functional Health Status among Older Adults

    PubMed Central

    Serper, Marina; Patzer, Rachel E; Curtis, Laura M; Smith, Samuel G; O'Conor, Rachel; Baker, David W; Wolf, Michael S

    2014-01-01

    Objective To investigate whether previously noted associations between health literacy and functional health status might be explained by cognitive function. Data Sources/Study Setting Health Literacy and Cognition in Older Adults (“LitCog,” prospective study funded by National Institute on Aging). Data presented are from interviews conducted among 784 adults, ages 55–74 years receiving care at an academic general medicine clinic or one of four federally qualified health centers in Chicago from 2008 to 2010. Study Design Study participants completed structured, in-person interviews administered by trained research assistants. Data Collection Health literacy was measured using the Test of Functional Health Literacy in Adults, Rapid Estimate of Adult Literacy in Medicine, and Newest Vital Sign. Cognitive function was assessed using measures of long-term and working memory, processing speed, reasoning, and verbal ability. Functional health was assessed with SF-36 physical health summary scale and Patient Reported Outcomes Measurement Information System short form subscales for depression and anxiety. Principal Findings All health literacy measures were significantly correlated with all cognitive domains. In multivariable analyses, inadequate health literacy was associated with worse physical health and more depressive symptoms. After adjusting for cognitive abilities, associations between health literacy, physical health, and depressive symptoms were attenuated and no longer significant. Conclusions Cognitive function explains a significant proportion of the associations between health literacy, physical health, and depression among older adults. Interventions to reduce literacy disparities in health care should minimize the cognitive burden in behaviors patients must adopt to manage personal health. PMID:24476068

  15. The twilight of immunity: emerging concepts in aging of the immune system.

    PubMed

    Nikolich-Žugich, Janko

    2018-01-01

    Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.

  16. The Role of TAM Family Receptors in Immune Cell Function: Implications for Cancer Therapy.

    PubMed

    Paolino, Magdalena; Penninger, Josef M

    2016-10-21

    The TAM receptor protein tyrosine kinases-Tyro3, Axl, and Mer-are essential regulators of immune homeostasis. Guided by their cognate ligands Growth arrest-specific gene 6 (Gas6) and Protein S (Pros1), these receptors ensure the resolution of inflammation by dampening the activation of innate cells as well as by restoring tissue function through promotion of tissue repair and clearance of apoptotic cells. Their central role as negative immune regulators is highlighted by the fact that deregulation of TAM signaling has been linked to the pathogenesis of autoimmune, inflammatory, and infectious diseases. Importantly, TAM receptors have also been associated with cancer development and progression. In a cancer setting, TAM receptors have a dual regulatory role, controlling the initiation and progression of tumor development and, at the same time, the associated anti-tumor responses of diverse immune cells. Thus, modulation of TAM receptors has emerged as a potential novel strategy for cancer treatment. In this review, we discuss our current understanding of how TAM receptors control immunity, with a particular focus on the regulation of anti-tumor responses and its implications for cancer immunotherapy.

  17. The Role of TAM Family Receptors in Immune Cell Function: Implications for Cancer Therapy

    PubMed Central

    Paolino, Magdalena; Penninger, Josef M.

    2016-01-01

    The TAM receptor protein tyrosine kinases—Tyro3, Axl, and Mer—are essential regulators of immune homeostasis. Guided by their cognate ligands Growth arrest-specific gene 6 (Gas6) and Protein S (Pros1), these receptors ensure the resolution of inflammation by dampening the activation of innate cells as well as by restoring tissue function through promotion of tissue repair and clearance of apoptotic cells. Their central role as negative immune regulators is highlighted by the fact that deregulation of TAM signaling has been linked to the pathogenesis of autoimmune, inflammatory, and infectious diseases. Importantly, TAM receptors have also been associated with cancer development and progression. In a cancer setting, TAM receptors have a dual regulatory role, controlling the initiation and progression of tumor development and, at the same time, the associated anti-tumor responses of diverse immune cells. Thus, modulation of TAM receptors has emerged as a potential novel strategy for cancer treatment. In this review, we discuss our current understanding of how TAM receptors control immunity, with a particular focus on the regulation of anti-tumor responses and its implications for cancer immunotherapy. PMID:27775650

  18. Resilience and amygdala function in older healthy and depressed adults.

    PubMed

    Leaver, Amber M; Yang, Hongyu; Siddarth, Prabha; Vlasova, Roza M; Krause, Beatrix; St Cyr, Natalie; Narr, Katherine L; Lavretsky, Helen

    2018-09-01

    Previous studies suggest that low emotional resilience may correspond with increased or over-active amygdala function. Complementary studies suggest that emotional resilience increases with age; older adults tend to have decreased attentional bias to negative stimuli compared to younger adults. Amygdala nuclei and related brain circuits have been linked to negative affect, and depressed patients have been demonstrated to have abnormal amygdala function. In the current study, we correlated psychological resilience measures with amygdala function measured with resting-state arterial spin-labelled (ASL) and blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in older adults with and without depression. Specifically, we targeted the basolateral, centromedial, and superficial nuclei groups of the amygdala, which have different functions and brain connections. High levels of psychological resilience correlated with lower basal levels of amygdala activity measured with ASL fMRI. High resilience also correlated with decreased connectivity between amygdala nuclei and the ventral default-mode network independent of depression status. Instead, lower depression symptoms were associated with higher connectivity between the amygdalae and dorsal frontal networks. Future multi-site studies with larger sample size and improved neuroimaging technologies are needed. Longitudinal studies that target resilience to naturalistic stressors will also be a powerful contribution to the field. Our results suggest that resilience in older adults is more closely related to function in ventral amygdala networks, while late-life depression is related to reduced connectivity between the amygdala and dorsal frontal regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Adult T-Cell Leukemia/Lymphoma

    MedlinePlus

    ... Adult T-Cell Leukemia/Lymphoma Adult T-Cell Leukemia/Lymphoma Adult T-cell A type of white ... immune responses by destroying harmful substances or cells. leukemia Disease generally characterized by the overproduction of abnormal ...

  20. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    PubMed

    Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

  1. Functional Programming of the Autonomic Nervous System by Early Life Immune Exposure: Implications for Anxiety

    PubMed Central

    Sominsky, Luba; Fuller, Erin A.; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R.; Dickson, Phillip W.; Hodgson, Deborah M.

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes

  2. Physical Function, Hyperuricemia, and Gout in Older Adults.

    PubMed

    Burke, Bridget Teevan; Köttgen, Anna; Law, Andrew; Windham, Beverly Gwen; Segev, Dorry; Baer, Alan N; Coresh, Josef; McAdams-DeMarco, Mara A

    2015-12-01

    Gout prevalence is high in older adults and those affected are at risk of physical disability, yet it is unclear whether they have worse physical function. We studied gout, hyperuricemia, and physical function in 5,819 older adults (age ≥65 years) attending the 2011-2013 Atherosclerosis Risk in Communities Study visit, a prospective US population-based cohort. Differences in lower extremity function (Short Physical Performance Battery [SPPB] and 4-meter walking speed) and upper extremity function (grip strength) by gout status and by hyperuricemia prevalence were estimated in adjusted ordinal logistic regression (SPPB) and linear regression (walking speed and grip strength) models. Lower scores or times signify worse function. The prevalence of poor physical performance (first quartile) by gout and hyperuricemia was estimated using adjusted modified Poisson regression. Ten percent of participants reported a history of gout and 21% had hyperuricemia. There was no difference in grip strength by history of gout (P = 0.77). Participants with gout performed worse on the SPPB test; they had 0.77 times (95% confidence interval [95% CI] 0.65, 0.90, P = 0.001) the prevalence odds of a 1-unit increase in SPPB score and were 1.18 times (95% CI 1.07, 1.32, P = 0.002) more likely to have poor SPPB performance. Participants with a history of gout had slower walking speed (mean difference -0.03; 95% CI -0.05, -0.01, P < 0.001) and were 1.19 times (95% CI 1.06, 1.34, P = 0.003) more likely to have poor walking speed. Similarly, SPPB score and walking speed, but not grip strength, were worse in participants with hyperuricemia. Older adults with gout and hyperuricemia are more likely to have worse lower extremity, but not upper extremity, function. © 2015, American College of Rheumatology.

  3. Melatonin: Buffering the Immune System

    PubMed Central

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  4. Functional neuroimaging of the Iowa Gambling Task in older adults.

    PubMed

    Halfmann, Kameko; Hedgcock, William; Bechara, Antoine; Denburg, Natalie L

    2014-11-01

    The neural systems most susceptible to age-related decline mirror the systems linked to decision making. Yet, the neural processes underlying decision-making disparities among older adults are not well understood. We sought to identify neural response patterns that distinguish 2 groups of older adults who exhibit divergent decision-making patterns. Participants were 31 healthy older adults (ages 59-88, 53% female), defined as advantageous or disadvantageous decision-makers based on Iowa Gambling Task (IGT) performance, who completed an alternate version of the IGT while undergoing functional MRI. The groups were indistinguishable on neuropsychological testing. We contrasted the BOLD signal between groups during 3 phases of the decision-making process: Prechoice (preselection), Prefeedback (postselection), and Feedback (receipt of gains/losses). We further examined whether BOLD signal varied as a function of age in each group. We observed greater activation among the IGT-Disadvantageous relative to -Advantageous older adults in the prefrontal cortex during the early phases of the decision-making process (Prechoice), and in posterior brain regions (e.g., the precuneus) during the later phases (Prefeedback and Feedback). We also found that with increasing age, IGT-Advantageous older adults showed increasing activation in the prefrontal cortex during all phases and increasing activation in the posterior cingulate during earlier phases of the decision process. By contrast, the IGT-Disadvantageous older adults exhibited a reduced or reversed trend. These functional differences may be a consequence of altered reward processing or differing compensatory strategies between IGT-Disadvantageous and -Advantageous older adults. This supports the notion that divergent neurobiological aging trajectories underlie disparate decision-making patterns. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults.

    PubMed

    Ivory, Kamal; Prieto, Elena; Spinks, Caroline; Armah, Charlotte N; Goldson, Andrew J; Dainty, Jack R; Nicoletti, Claudio

    2017-04-01

    unaffected by Se-supplementation. Se-supplementation in healthy human adults with marginal Se status resulted in both beneficial and detrimental effects on cellular immunity to flu that was affected by the form of Se, supplemental dose and delivery matrix. These observations call for a thorough evaluation of the risks and benefits associated with Se-supplementation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Tn (N-acetyl-d-galactosamine-O-serine/threonine) immunization protects against hyperoxia-induced lung injury in adult mice through inhibition of the nuclear factor kappa B activity.

    PubMed

    Chen, Chung-Ming; Hwang, Jaulang; Chou, Hsiu-Chu; Shiah, Her-Shyong

    2018-06-01

    Prolonged hyperoxia exposure leads to inflammation and acute lung injury. Since hyperoxia activates nuclear factor kappa B (NF-κB) and proinflammatory mediators in lung fibroblasts and murine lungs, and proinflammatory cytokines upregulate Tn (N-acetyl-d-galactosamine-O-serine/threonine) expression in human gingival fibroblasts. We hypothesized connections exist between Tn expression and inflammation regulation. Thus, we immunized adult mice with Tn antigen to examine whether Tn vaccine can protect against hyperoxia-induced lung injury by inhibiting NF-κB activity and cytokine expression through the action of anti-Tn antibodies. Five-week-old female C57BL/6NCrlBltw mice were subcutaneously immunized with Tn antigen four times at biweekly intervals, and one additional immunization was performed at 1 week after the fourth immunization. Four days after the last immunization, mice were exposed to room air (RA) or hyperoxia (100% O 2 ) for up to 96 h. Four study groups were examined: carrier protein + RA (n = 6), Tn vaccine + RA (n = 6), carrier protein + O 2 (n = 6), and Tn vaccine + O 2 (n = 5). We observed that hyperoxia exposure reduced body weight, increased alveolar protein and cytokine (interleukin-6 and tumor necrosis factor-α) levels, increased mean linear intercept (MLI) values and lung injury scores, and increased lung NF-κB activity. By contrast, Tn immunization increased serum anti-Tn antibody titers and reduced the cytokine levels, MLI values, and lung injury scores. Furthermore, the alleviation of lung injury was accompanied by a reduction in NF-κB activity. Therefore, we proposed that Tn immunization attenuates hyperoxia-induced lung injury in adult mice by inhibiting the NF-κB activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Sleep duration and functional limitations in older adult].

    PubMed

    Eumann Mesas, Arthur; López-García, Esther; Rodríguez-Artalejo, Fernando

    2011-04-30

    To examine the association between sleep duration and functional limitation in older adults from Spain. Cross-sectional study with 3,708 individuals representative of the non-institutionalized population aged ≥ 60 years in Spain. Sleep duration was self-reported, and the functional limitations in the instrumental activities of daily living (IADL) were assessed. Functional limitations in IADL were identified in 1,424 (38.4%) participants. In analyses adjusted for sociodemographic and lifestyle variables, the percentage of participants with limitation in IADL was higher in those who slept ≤ 5 hours (odds ratio [OR]=1.56; 95% confidence interval [CI]=1.18-2.06) or ≥ 10 hours (OR=2.08; 95%CI=1.67-2.60; p for trend<0.001) than in those who slept 8 hours. The association between long sleep (≥ 10 hours) and functional limitations held even after adjustment for comorbidity and sleep quality (OR=1.77; 95%CI=1.38-2.28) while the association between short sleep (≤ 5 hours) and functional limitation no longer held after this adjustment (OR=1.10; 95%CI=0.80-1.50). In older adults, long sleep duration is a marker of functional limitations independent of comorbidity. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  8. Functional food awareness and perceptions in relation to information sources in older adults

    PubMed Central

    2014-01-01

    Background The functional food industry has experienced innovative and economic expansion, yet research into consumer perceptions of functional foods and their associated health claims is limited. Among consumers, older adults could benefit from functional foods due to age-related issues pertaining to food and health. The purpose of this research was to identify the need for information related to functional foods among older adults (≥60 years old) and to assess awareness and perceptions of health claims on functional food packages. Methods Community-dwelling older adults (n = 200) completed a researcher administered questionnaire designed to collect information about functional foods including current consumption, motivating factors for consumption, perceived need for information, sources of information for functional foods and awareness of health claims. Results Prevalence of functional food consumption among participants was 93.0%. Increased awareness and knowledge was the most commonly reported factor that would promote functional food consumption (85.5%) and 63.5% of participants wanted more information about functional foods with preferred sources being newspapers/magazines/books (68.5%) and food labels (66.1%). Participants were predominately (93.5%) aware of health claims on functional foods and those with more education were more likely to report being aware of health claims (p = 0.045). Conclusions Although functional food consumption among older adults in this sample is high, there is a need for further information regarding functional foods. These results inform stakeholders regarding the potential for information to influence functional food acceptance among older adult consumers. PMID:24886306

  9. Functionalized iron oxide nanoparticles for controlling the movement of immune cells

    NASA Astrophysics Data System (ADS)

    White, Ethan E.; Pai, Alex; Weng, Yiming; Suresh, Anil K.; van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M.

    2015-04-01

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed ``cell box'' was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain.Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were

  10. Objectively Measured Physical Activity and Cognitive Function in Older Adults.

    PubMed

    Zhu, Wenfei; Wadley, Virginia G; Howard, Virginia J; Hutto, Brent; Blair, Steven N; Hooker, Steven P

    2017-01-01

    Emerging evidence suggests physical activity (PA) is associated with cognitive function. To overcome limitations of self-report PA measures, this study investigated the association of accelerometer-measured PA with incident cognitive impairment and longitudinal cognition among older adults. Participants were recruited from the cohort study Reasons for Geographic and Racial Differences in Stroke in the United States. Accelerometers provided PA measures, including the percentage of total accelerometer wearing time spent in moderate-to-vigorous-intensity PA (MVPA%), light-intensity PA, and sedentary time for four to seven consecutive days at baseline. Cognitive impairment was defined by the Six-Item Screener. Letter fluency, animal fluency, word list learning, and Montreal Cognitive Assessment (orientation and recall) were conducted to assess executive function and memory. Participants (N = 6452, 69.7 ± 8.5 yr, 55.3% women, 30.5% Black) with usable accelerometer and cognition measures spent extremely limited time in MVPA (1.5% ± 1.9% of accelerometer wearing time). During an average of 3 yr of follow-up, 346 cases of incident cognitive impairment were observed. After adjustments, participants in higher MVPA% quartiles had a lower risk of cognitive impairment (i.e., quartile 2: odds ratio = 0.64, 95% confidence interval = 0.48-0.84) and better maintenance in executive function (≥0.03 z-score units) and memory (≥0.12 z-score units) compared with quartile 1 (P < 0.05). Stratified analyses showed the same association among White adults, but higher MVPA% was associated with better maintenance of only memory among Black adults. No significance was found for light-intensity PA or sedentary time. There was a dose-response relationship between MVPA% and cognitive function in older adults, with higher levels associated with a 36% or lower risk of cognitive impairment and better maintenance of memory and executive function over time, particularly in White adults.

  11. Effects of psycho-behavioral interventions on immune functioning in cancer patients: a systematic review.

    PubMed

    Tong, Guixian; Geng, Qingqing; Cheng, Jing; Chai, Jing; Xia, Yi; Feng, Rui; Zhang, Lu; Wang, Debin

    2014-01-01

    This study aimed at summarizing evidence about effects of psycho-behavioral interventions (PBIs) on immune responses among cancer patients and analyzing quality of published studies so as to inform future researches. Literature retrieval utilized both highly inclusive algorithms searching randomized controlled studies published in English and Chinese and manual searching of eligible studies from references of relevant review papers. Two researchers examined the articles selected separately and extracted the information using a pre-designed form for soliciting data about the trials (e.g., sample size, disease status, intervention, immune responses) and quality ratings of the studies. Both narrative descriptions and meta-analysis (via Review manager 5) were used synthesizing the effects of PBIs on immune responses among cancer patients and state of art of the researches in this area. Seventy-six RCTs met inclusion criteria. PBIs implemented were divided into three major categories including psychological state adjustment, physical activity and dietary modification. Immune indicators measured included CD4+ cells, CD8+ cells, CD4/CDC8+ ratio, CD3+ cells, NK cell activity, etc. Effects of PBIs on immune responses documented in individual papers were mixed and pooled analysis of CD4+ cells, CD4+/CD8+ ratio, CD3+ cells, NKCA, IgG, IgM and IL-2 showed modest effects. However, there were huge discrepancies in intervention effects between studies published in English and Chinese and the results should be interpreted with caution. Besides, most studies suffer from some quality flaws concerning blinding, randomization procedures, compliance, attrition and intention-to-treat analyses, etc. Although there are considerable evidences of PBI effects on some immune indicators, the effect sizes are modest and it is still premature to conclude whether PBIs have effects on immune functions among cancer patients. There is a clear need for much more rigorous efforts in this area

  12. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation

    PubMed Central

    Douglas, Steven D.; Leeman, Susan E.

    2010-01-01

    The G-protein coupled receptor (GPCR), Neurokinin-1 Receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and substance P are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa-b (NF-κb) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by substance P are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major Class 1, rhodopsin-like GPCR ligand-receptor interaction. PMID:21091716

  13. Effects of modified FOLFOX-6 chemotherapy on cellular immune function in patients with gastric cancer

    PubMed Central

    Wang, Liang; Zhou, Donger; Ren, Haitao; Chen, Yan

    2018-01-01

    Tumor immunosuppression serves an important role in the occurrence and development of gastric cancer. However, the effect of chemotherapy on the immune function of patients remains unclear. The present study aimed to investigate changes in cellular immune function and regulatory T cells (Tregs) in patients with gastric cancer prior to and following chemotherapy. In the peripheral blood of patients with gastric cancer, the percentage of CD4+ T cells was substantially decreased compared with that of healthy controls (11.39±5.91 vs. 22.34±3.37%, respectively; P<0.05). High frequencies of CD8+ T cells and Tregs were also observed in the peripheral blood of patients. Although the number of T cells decreased following chemotherapy (the proportions of CD4+ and CD8+ cells were 8.99±7.31 and 16.00±4.51%, respectively), the ratio of CD4+/CD8+ T cells increased (0.31±0.17 vs. 0.56±0.22; P<0.05). Furthermore, the level of C-C motif chemokine ligand 20 (CCL20) was increased in patients prior to chemotherapy compared with healthy controls. As the sole receptor for CCL20, a high level of expression of C-C motif chemokine receptor 6 on circulating Tregs was also identified in the patients, which decreased following chemotherapy. These results suggest that chemotherapy may efficiently promote cellular immune function and inhibit immunosuppression in patients with gastric cancer.

  14. The Moderating Role of Executive Functioning in Older Adults' Responses to a Reminder of Mortality

    PubMed Central

    Maxfield, Molly; Pyszczynski, Tom; Greenberg, Jeff; Pepin, Renee; Davis, Hasker P.

    2011-01-01

    In previous research, older adults responded to mortality salience (MS) with increased tolerance, whereas younger persons responded with increased punitiveness. One possible explanation for this is that many older adults adapt to challenges of later life, such as the prospect of mortality, by becoming more flexible. Recent studies suggest that positively-oriented adaptation is more likely for older adults with high levels of executive functioning. We thus hypothesized that the better an older adult's executive functioning, the more likely MS would result in increased tolerance. Older and younger adults were randomly assigned to MS or control conditions, and then evaluated moral transgressors. As in previous research, younger adults were more punitive following reminders of mortality; executive functioning did not affect their responses. Among older adults, high functioning individuals responded to MS with increased tolerance rather than intolerance, whereas those low in functioning became more punitive. PMID:21728445

  15. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    PubMed Central

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  16. NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism.

    PubMed

    Zorzatto, Cristiane; Machado, João Paulo B; Lopes, Kênia V G; Nascimento, Kelly J T; Pereira, Welison A; Brustolini, Otávio J B; Reis, Pedro A B; Calil, Iara P; Deguchi, Michihito; Sachetto-Martins, Gilberto; Gouveia, Bianca C; Loriato, Virgílio A P; Silva, Marcos A C; Silva, Fabyano F; Santos, Anésia A; Chory, Joanne; Fontes, Elizabeth P B

    2015-04-30

    Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security. In virus-plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts. In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections. Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses. Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP), leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.

  17. Immunity against measles, mumps, rubella, varicella, diphtheria, tetanus, polio, hepatitis A and hepatitis B among adult asylum seekers in the Netherlands, 2016.

    PubMed

    Freidl, Gudrun S; Tostmann, Alma; Curvers, Moud; Ruijs, Wilhelmina L M; Smits, Gaby; Schepp, Rutger; Duizer, Erwin; Boland, Greet; de Melker, Hester; van der Klis, Fiona R M; Hautvast, Jeannine L A; Veldhuijzen, Irene K

    2018-03-14

    Asylum seekers are a vulnerable population for contracting infectious diseases. Outbreaks occur among children and adults. In the Netherlands, asylum seeker children are offered vaccination according to the National Immunization Program. Little is known about protection against vaccine-preventable diseases (VPD) in adult asylum seekers. In this 2016 study, we assessed the immunity of adult asylum seekers against nine VPD to identify groups that might benefit from additional vaccinations. We invited asylum seekers from Syria, Iran, Iraq, Afghanistan, Eritrea and Ethiopia to participate in a serosurvey. Participants provided informed consent and a blood sample, and completed a questionnaire. We measured prevalence of protective antibodies to measles, mumps, rubella, varicella, diphtheria, tetanus, polio type 1-3 and hepatitis A and B, stratified them by country of origin and age groups. The median age of the 622 participants was 28 years (interquartile range: 23-35), 81% were male and 48% originated from Syria. Overall, seroprotection was 88% for measles (range between countries: 83-93%), 91% for mumps (81-95%), 94% for rubella (84-98%), 96% for varicella (92-98%), 82% for diphtheria (65-88%), 98% for tetanus (86-100%), 91% (88-94%) for polio type 1, 95% (90-98%) for polio type 2, 82% (76-86%) for polio type 3, 84% (54-100%) for hepatitis A and 27% for hepatitis B (anti-HBs; 8-42%). Our results indicate insufficient protection against certain VPD in some subgroups. For all countries except Eritrea, measles seroprotection was below the 95% threshold required for elimination. Measles seroprevalence was lowest among adults younger than 25 years. In comparison, seroprevalence in the Dutch general population was 96% in 2006/07. The results of this study can help prioritizing vaccination of susceptible subgroups of adult asylum seekers, in general and in outbreak situations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Immune function and brain abnormalities in patients with systemic lupus erythematosus without overt neuropsychiatric manifestations.

    PubMed

    Kozora, E; Filley, C M; Zhang, L; Brown, M S; Miller, D E; Arciniegas, D B; Pelzman, J L; West, S G

    2012-04-01

    This study examined the relationship between immune, cognitive and neuroimaging assessments in subjects with systemic lupus erythematosus (SLE) without histories of overt neuropsychiatric (NP) disorders. In total, 84 subjects with nonNPSLE and 37 healthy controls completed neuropsychological testing from the American College of Rheumatology SLE battery. Serum autoantibody and cytokine measures, volumetric magnetic resonance imaging, and magnetic resonance spectroscopy data were collected on a subset of subjects. NonNPSLE subjects had lower scores on measures of visual/complex attention, visuomotor speed and verbal memory compared with controls. No clinically significant differences between nonNPSLE patients and controls were found on serum measures of lupus anticoagulant, anticardiolipin antibodies, beta 2-glycoproteins, or pro-inflammatory cytokines (interleukin (IL)-1, IL-6, interferon alpha (IFN-alpha), and interferon gamma (IFN-gamma)). Higher scores on a global cognitive impairment index and a memory impairment index were correlated with lower IFN-alpha. Few associations between immune functions and neuroimaging parameters were found. Results indicated that nonNPSLE patients demonstrated cognitive impairment but not immune differences compared with controls. In these subjects, who were relatively young and with mild disease, no relationship between cognitive dysfunction, immune parameters, or previously documented neuroimaging abnormalities were noted. Immune measures acquired from cerebrospinal fluid instead of serum may yield stronger associations.

  19. Residential Mobility and Cognitive Function Among Middle-Aged and Older Adults in China.

    PubMed

    Xu, Hanzhang; Dupre, Matthew E; Østbye, Truls; Vorderstrasse, Allison A; Wu, Bei

    2018-01-01

    To assess the association between rural and urban residential mobility and cognitive function among middle-aged and older adults in China. We used data from the World Health Organization Study on global AGEing and adult health that included adults age 50+ from China ( N = 12,410). We used multivariate linear regressions to examine how residential mobility and age at migration were associated with cognitive function. Urban and urban-to-urban residents had the highest level of cognitive function, whereas rural and rural-to-rural residents had the poorest cognitive function. Persons who migrated to/within rural areas before age 20 had poorer cognitive function than those who migrated during later adulthood. Socioeconomic factors played a major role in accounting for the disparities in cognition; however, the association remained significant after inclusion of all covariates. Residential mobility and age at migration have significant implications for cognitive function among middle-aged and older adults in China.

  20. Pain and Cognitive Function Among Older Adults Living in the Community

    PubMed Central

    van der Leeuw, Guusje; Eggermont, Laura H. P.; Shi, Ling; Milberg, William P.; Gross, Alden L.; Hausdorff, Jeffrey M.; Bean, Jonathan F.

    2016-01-01

    Background. Pain related to many age-related chronic conditions is a burdensome problem in elderly adults and may also interfere with cognitive functioning. The purpose of this study was to examine the cross-sectional relationship between measures of pain severity and pain interference and cognitive performance in community-living older adults. Methods. We studied 765 participants in the Maintenance of Balance Independent Living Intellect and Zest (MOBILIZE) Boston Study, a population-based study of persons aged 70 and older. Global pain severity and interference were measured using the Brief Pain Inventory subscales. The neuropsychological battery included measures of attentional capacity (Trail Making Test A, WORLD Test), executive function (Trail Making Test B and Delta, Clock-in-a-Box, Letter Fluency), memory (Hopkins Verbal Learning Test), and a global composite measure of cognitive function. Multivariable linear regression models were used to analyze the relationship between pain and cognitive functioning. Results. Elderly adults with more severe pain or more pain interference had poorer performance on memory tests and executive functioning compared to elders with none or less pain. Pain interference was also associated with impaired attentional capacity. Additional adjustment for chronic conditions, behaviors, and psychiatric medication resulted in attenuation of many of the observed associations. However, the association between pain interference and general cognitive function persisted. Conclusions. Our findings point to the need for further research to understand how chronic pain may contribute to decline in cognitive function and to determine strategies that may help in preventing or managing these potential consequences of pain on cognitive function in older adults. PMID:26433218