Sample records for adult mammalian cns

  1. Can injured adult CNS axons regenerate by recapitulating development?

    PubMed

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  2. Virally mediated gene manipulation in the adult CNS

    PubMed Central

    Edry, Efrat; Lamprecht, Raphael; Wagner, Shlomo; Rosenblum, Kobi

    2011-01-01

    Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics—recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV) systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance. PMID:22207836

  3. Control of Cell Survival in Adult Mammalian Neurogenesis.

    PubMed

    Kuhn, H Georg

    2015-10-28

    The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Stereotyped Synaptic Connectivity Is Restored during Circuit Repair in the Adult Mammalian Retina.

    PubMed

    Beier, Corinne; Palanker, Daniel; Sher, Alexander

    2018-06-04

    Proper function of the central nervous system (CNS) depends on the specificity of synaptic connections between cells of various types. Cellular and molecular mechanisms responsible for the establishment and refinement of these connections during development are the subject of an active area of research [1-6]. However, it is unknown if the adult mammalian CNS can form new type-selective synapses following neural injury or disease. Here, we assess whether selective synaptic connections can be reestablished after circuit disruption in the adult mammalian retina. The stereotyped circuitry at the first synapse in the retina, as well as the relatively short distances new neurites must travel compared to other areas of the CNS, make the retina well suited to probing for synaptic specificity during circuit reassembly. Selective connections between short-wavelength sensitive cone photoreceptors (S-cones) and S-cone bipolar cells provides the foundation of the primordial blue-yellow vision, common to all mammals [7-18]. We take advantage of the ground squirrel retina, which has a one-to-one S-cone-to-S-cone-bipolar-cell connection, to test if this connectivity can be reestablished following local photoreceptor loss [8, 19]. We find that after in vivo selective photoreceptor ablation, deafferented S-cone bipolar cells expand their dendritic trees. The new dendrites randomly explore the proper synaptic layer, bypass medium-wavelength sensitive cone photoreceptors (M-cones), and selectively synapse with S-cones. However, non-connected dendrites are not pruned back to resemble unperturbed S-cone bipolar cells. We show, for the first time, that circuit repair in the adult mammalian retina can recreate stereotypic selective wiring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Role of the Cellular Prion Protein in Oligodendrocyte Precursor Cell Proliferation and Differentiation in the Developing and Adult Mouse CNS

    PubMed Central

    Bribián, Ana; Gavín, Rosalina; Reina, Manuel; García-Verdugo, José Manuel; Torres, Juan María; de Castro, Fernando; del Río, José Antonio

    2012-01-01

    There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells. PMID:22529900

  6. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells

    PubMed Central

    Li, Hedong; Chen, Gong

    2017-01-01

    Neuroregeneration in the central nervous system (CNS) has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart and liver, and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient’s own internal cells for tissue repair. PMID:27537482

  7. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury.

    PubMed

    Patel, Bharatkumar N; Dunn, Robert J; Jeong, Suh Young; Zhu, Qinzhang; Julien, Jean-Pierre; David, Samuel

    2002-08-01

    Ceruloplasmin is a ferroxidase that oxidizes toxic ferrous iron to its nontoxic ferric form. We have previously reported that a glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed in the mammalian CNS. To better understand the role of ceruloplasmin in iron homeostasis in the CNS, we generated a ceruloplasmin gene-deficient (Cp(-/-)) mouse. Adult Cp(-/-) mice showed increased iron deposition in several regions of the CNS such as the cerebellum and brainstem. Increased lipid peroxidation was also seen in some CNS regions. Cerebellar cells from neonatal Cp(-/-) mice were also more susceptible to oxidative stress in vitro. Cp(-/-) mice showed deficits in motor coordination that were associated with a loss of brainstem dopaminergic neurons. These results indicate that ceruloplasmin plays an important role in maintaining iron homeostasis in the CNS and in protecting the CNS from iron-mediated free radical injury. Therefore, the antioxidant effects of ceruloplasmin could have important implications for various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease in which iron deposition is known to occur.

  8. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair

    PubMed Central

    Larson, Tracy A.

    2018-01-01

    Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration. PMID:29760681

  9. Adult murine CNS stem cells express aquaporin channels.

    PubMed

    La Porta, Caterina A M; Gena, Patrizia; Gritti, Angela; Fascio, Umberto; Svelto, Maria; Calamita, Giuseppe

    2006-02-01

    Fluid homoeostasis is of critical importance in many functions of the CNS (central nervous system) as indicated by the fact that dysregulation of cell volume underlies clinical conditions such as brain oedema and hypoxia. Water balance is also important during neurogenesis as neural stem cells move considerable amounts of water into or out of the cell to rapidly change their volume during differentiation. Consistent with the relevance of water transport in CNS, multiple AQP (aquaporin) water channels have been recognized and partially characterized in brain cell function. However, the presence and distribution of AQPs in CNS stem cells has not yet been assessed. In the present study, we investigate the expression and subcellular localization of AQPs in murine ANSCs (adult neural stem cells). Considerable AQP8 mRNAs were found in ANSCs where, as expected, the transcript of two additional AQPs, AQP4 and AQP9, was also detected. Immunoblotting with subcellular membrane fractions of ANSCs showed predominant expression of AQP8 in the mitochondria-enriched fraction. This result was consistent with the spotted immunoreactivity profile encountered within the ANSCs by confocal immunofluorescence. AQP8 may have a role in mitochondrial volume regulation during ANSC differentiation. Recognition of AQPs in ANSCs is a step forward in our knowledge of water homoeostasis in the CNS and provides useful information for the purposes of stem cell technology.

  10. Treatment-induced hearing loss and adult social outcomes in survivors of childhood CNS and non-CNS solid tumors: Results from the St. Jude Lifetime Cohort Study.

    PubMed

    Brinkman, Tara M; Bass, Johnnie K; Li, Zhenghong; Ness, Kirsten K; Gajjar, Amar; Pappo, Alberto S; Armstrong, Gregory T; Merchant, Thomas E; Srivastava, Deo Kumar; Robison, Leslie L; Hudson, Melissa M; Gurney, James G

    2015-11-15

    Survivors of childhood cancer who are treated with platinum-based chemotherapy and/or cranial radiation are at risk of treatment-induced hearing loss. However, the effects of such hearing loss on adult social attainment have not been well elucidated. Adult survivors of pediatric central nervous system (CNS) solid tumors (180 survivors) and non-CNS solid tumors (226 survivors) who were treated with potentially ototoxic cancer therapy completed audiologic evaluations and questionnaires assessing their perception of social functioning and social attainment (ie, independent living, marriage, and employment). Audiograms were graded with the Chang ototoxicity grading scale. Analyses were stratified by tumor type (ie, CNS vs non-CNS). Multivariable logistic regression models were conducted with adjustment for age; sex; chronic health conditions; and, for the CNS group, IQ. Adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) were reported. Serious hearing loss (that requiring a hearing aid or deafness) was detected in 36% of survivors of CNS tumors and 39% of survivors of non-CNS tumors. Serious hearing loss was associated with an increased risk of perceived negative impact in ≥1 areas of social functioning (survivors of non-CNS tumors: OR, 1.83 [95% CI, 1.00-3.34]). Among survivors of non-CNS tumors, serious hearing loss was associated with 2-fold increased risk of nonindependent living (OR, 2.19; 95% CI, 1.19-4.04) and unemployment or not graduating from high school (OR, 1.85; 95% CI, 1.00-3.34). A substantial proportion of adult survivors of childhood cancer treated with potentially ototoxic therapy have serious hearing loss. Treatment-induced hearing loss was found to be associated with reduced social attainment, both perceived and actual, in this study sample. © 2015 American Cancer Society.

  11. Tailored central nervous system-directed treatment strategy for isolated CNS recurrence of adult acute myeloid leukemia.

    PubMed

    Zheng, Changcheng; Liu, Xin; Zhu, Weibo; Cai, Xiaoyan; Wu, Jingsheng; Sun, Zimin

    2014-06-01

    The aim of this report was to investigate the tailored treatment strategies for isolated central nervous system (CNS) recurrence in adult patients with acute myeloid leukemia (AML). Isolated CNS recurrence was documented in 34 patients: there were 18, 6, and 10 patients with meningeal involvement type (type A), cranial nerve palsy type (type B), and myeloid sarcoma type (type C), respectively. For patients with type A, intrathecal chemotherapy was the predominant strategy. For type B, systemic HD-Ara-C with four cycles was the main treatment. For type C, cranial irradiation or craniospinal irradiation was adopted and two cycles of HD-Ara-C were given after the irradiation. The 5-year cumulative incidence of CNS recurrence was 12.8%. There was a significantly higher WBC count (32.6∼60.8 × 10(9)/l) in patients at first diagnosis who developed CNS recurrence (all of the three types) compared with patients with no CNS recurrence (10.1 × 10(9)/l) (P = 0.005). We found that a significantly more patients with AML-M5 and 11q23 abnormalities developed CNS recurrence in type A (P < 0.001, 0.005). Twenty-four out of 34 patients (70.6%) with CNS recurrence achieved CNS complete remission at a median of 58 days (range, 30-120). The 3-year disease-free survival and overall survival estimates for all CNS recurrence patients were 21.6 and 25.3%, respectively. This report indicates that the tailored CNS-directed strategy is an effective modality to treat CNS recurrence in adult AML, but further studies are needed to improve the long-term survival.

  12. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and CNS Homeostasis

    PubMed Central

    Tran, Khiem A.; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F.; Göthert, Joachim R.; Malik, Asrar B.; Valyi-Nagy, Tibor; Zhao, You-Yang

    2015-01-01

    Background The blood-brain barrier (BBB) formed by brain endothelial cells (ECs) interconnected by tight junctions (TJs) is essential for the homeostasis of the central nervous system (CNS). Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Methods and Results Using a mouse model with tamoxifen-inducible EC-restricted disruption of ctnnb1 (iCKO), here we show that endothelial β-catenin signaling is essential for maintaining BBB integrity and CNS homeostasis in adult. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and CNS inflammation, and all died postictal. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of specific TJ proteins Claudin-1 and -3 in adult brain ECs. The clinical relevance of the data is indicated by the observation of decreased expression of Claudin-1 and nuclear β-catenin in brain ECs of hemorrhagic lesions of hemorrhagic stroke patients. Conclusion These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity and CNS inflammation. PMID:26538583

  13. Adult oligodendrocyte progenitor cells - multifaceted regulators of the CNS in health and disease

    PubMed Central

    Fernandez-Castaneda, Anthony; Gaultier, Alban

    2016-01-01

    Oligodendrocyte progenitor cells (OPCs) are the often-overlooked fourth glial cell type in the central nervous system (CNS), comprising about 5% of the CNS. For a long time, our vision of OPC function was limited to the generation of mature oligodendrocytes. However, new studies have highlighted the multifaceted nature of the OPCs. During homeostatic and pathological conditions, OPCs are the most proliferative cell type in the CNS, a property not consistent with the need to generate new oligodendrocytes. Indeed, OPCs modulate neuronal activity and OPC depletion in the brain can trigger depressive-like behavior. More importantly, OPCs are actively recruited to injury sites, where they orchestrate glial scar formation and contribute to the immune response. The following is a comprehensive analysis of the literature on OPC function beyond myelination, in the context of the healthy and diseased adult CNS. PMID:26796621

  14. Enhancing Psychosocial Outcomes for Young Adult Childhood CNS Cancer Survivors: Importance of Addressing Vocational Identity and Community Integration

    ERIC Educational Resources Information Center

    Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.

    2012-01-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…

  15. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  16. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    ERIC Educational Resources Information Center

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  17. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis

    PubMed Central

    Song, Juan; Olsen, Reid H.J.; Sun, Jiaqi; Ming, Guo-li; Song, Hongjun

    2017-01-01

    The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb. PMID:27143698

  18. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation.

    PubMed

    Cho, Chris; Smallwood, Philip M; Nathans, Jeremy

    2017-08-30

    Reck, a GPI-anchored membrane protein, and Gpr124, an orphan GPCR, have been implicated in Wnt7a/Wnt7b signaling in the CNS vasculature. We show here that vascular endothelial cell (EC)-specific reduction in Reck impairs CNS angiogenesis and that EC-specific postnatal loss of Reck, combined with loss of Norrin, impairs blood-brain barrier (BBB) maintenance. The most N-terminal domain of Reck binds to the leucine-rich repeat (LRR) and immunoglobulin (Ig) domains of Gpr124, and weakening this interaction by targeted mutagenesis reduces Reck/Gpr124 stimulation of Wnt7a signaling in cell culture and impairs CNS angiogenesis. Finally, a soluble Gpr124(LRR-Ig) probe binds to cells expressing Frizzled, Wnt7a or Wnt7b, and Reck, and a soluble Reck(CC1-5) probe binds to cells expressing Frizzled, Wnt7a or Wnt7b, and Gpr124. These experiments indicate that Reck and Gpr124 are part of the cell surface protein complex that transduces Wnt7a- and Wnt7b-specific signals in mammalian CNS ECs to promote angiogenesis and regulate the BBB. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Organotypic Cultures from the Adult CNS: A Novel Model to Study Demyelination and Remyelination Ex Vivo.

    PubMed

    Tan, Glaiza A; Furber, Kendra L; Thangaraj, Merlin P; Sobchishin, LaRhonda; Doucette, J Ronald; Nazarali, Adil J

    2018-01-01

    Experimental models of multiple sclerosis (MS) have significantly advanced our understanding of pathophysiology and therapeutic interventions. Although in vivo rodent models are considered to most closely represent the complex cellular and molecular disease states of the human central nervous system (CNS), these can be costly to maintain and require long timelines. Organotypic slice cultures maintain the cytotypic organization observed in the intact CNS, yet provide many of the experimental advantages of in vitro cell culture models. Cerebellar organotypic cultures have proven useful for studying myelination and remyelination, but this model has only been established using early postnatal tissue. This young brain tissue allows for neuro development ex vivo to mimic the 'mature' CNS; however, there are many differences between postnatal and adult organotypic cultures. This may be particularly relevant to MS, as a major barrier to myelin regeneration is age. This paper describes a modified protocol to study demyelination and remyelination in adult cerebellar tissue, which has been used to demonstrate neuroprotection with omega-3 fatty acids. Thus, adult cerebellar organotypic cultures provide a novel ex vivo platform for screening potential therapies in myelin degeneration and repair.

  20. Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions

    PubMed Central

    Ming, Guo-li; Song, Hongjun

    2011-01-01

    Summary Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining questions related to adult neural stem cells and their niches, underlying regulatory mechanisms and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new technologies, the adult neurogenesis field is poised to leap forward in the next decade. PMID:21609825

  1. General Information about Primary CNS Lymphoma

    MedlinePlus

    ... Primary CNS Lymphoma Treatment (PDQ®)–Patient Version General Information About Primary CNS Lymphoma Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  2. Mutations in RNA Polymerase III genes and defective DNA sensing in adults with varicella-zoster virus CNS infection.

    PubMed

    Carter-Timofte, Madalina E; Hansen, Anders F; Christiansen, Mette; Paludan, Søren R; Mogensen, Trine H

    2018-05-01

    Recently, deficiency in the cytosolic DNA sensor RNA Polymerase III was described in children with severe primary varicella-zoster virus (VZV) infection in the CNS and lungs. In the present study we examined adult patients with VZV CNS infection caused by viral reactivation. By whole exome sequencing we identified mutations in POL III genes in two of eight patients. These mutations were located in the coding regions of the subunits POLR3A and POLR3E. In functional assays, we found impaired expression of antiviral and inflammatory cytokines in response to the POL III agonist Poly(dA:dT) as well as increased viral replication in patient cells compared to controls. Altogether, this study provides significant extension on the current knowledge on susceptibility to VZV infection by demonstrating mutations in POL III genes associated with impaired immunological sensing of AT-rich DNA in adult patients with VZV CNS infection.

  3. High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors.

    PubMed

    Hughes, Julie A I; Cooke-Yarborough, Claire M; Chadwick, Nigel C; Schevzov, Galina; Arbuckle, Susan M; Gunning, Peter; Weinberger, Ron P

    2003-04-01

    Tropomyosin has been implicated in the control of actin filament dynamics during cell migration, morphogenesis, and cytokinesis. In order to gain insight into the role of tropomyosins in cell division, we examined their expression in developing and neoplastic brain tissue. We found that the high-molecular-weight tropomyosins are downregulated at birth, which correlates with glial cell differentiation and withdrawal of most cells from the cell cycle. Expression of these isoforms was restricted to proliferative areas in the embryonic brain and was absent from the adult, where the majority of cells are quiescent. However, they were induced under conditions where glial cells became proliferative in response to injury. During cytokinesis, these tropomyosin isoforms were associated with the contractile ring. We also investigated tropomyosin expression in neoplastic CNS tissues. Low-grade astrocytic tumors expressed high-molecular-weight tropomyosins, while highly malignant CNS tumors of diverse origin did not (P CNS tumors are still able to undergo cell division in their absence. Additionally, the correlation between high-molecular-weight tropomyosin expression and tumor grade suggests that tropomyosins are potentially useful as indicators of CNS tumor grade. Copyright 2003 Wiley-Liss, Inc.

  4. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  5. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.

  6. Adult Mammalian Neurogenesis and Motivated Behaviors.

    PubMed

    Jorgensen, Claudia

    2018-05-31

    Adult neurogenesis continues to captivate the curiosity of the scientific community; and researchers seem to have a particular interest in identifying the functional implications of such plasticity. While the majority of research focuses on the association between adult neurogenesis and learning and memory (including spatial learning associated with hippocampal neurogenesis and olfactory discrimination associated with neurogenesis in the olfactory system), the following review will explore the link to motivated behaviors. In particular, goal-directed behaviors such as sociosexual, parental, aggressive, as well as depression- and anxiety-like behaviors and their reciprocal association to adult neurogenesis will be evaluated. The review will detail research in humans and other mammalian species. Furthermore, the potential mechanisms underlying these neurogenic alterations will be highlighted. Lastly, the review will conclude with a discussion on the functional significance of these newly generated cells in mediating goal-directed behaviors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Antiretroviral therapy CNS penetration and HIV-1-associated CNS disease.

    PubMed

    Garvey, L; Winston, A; Walsh, J; Post, F; Porter, K; Gazzard, B; Fisher, M; Leen, C; Pillay, D; Hill, T; Johnson, M; Gilson, R; Anderson, J; Easterbrook, P; Bansi, L; Orkin, C; Ainsworth, J; Palfreeman, A; Gompels, M; Phillips, A N; Sabin, C A

    2011-02-22

    The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. The median (interquartile range) CPE score for initial cART regimen increased from 7 (5-8) in 1996-1997 to 9 (8-10) in 2000-2001 and subsequently declined to 6 (7-8) in 2006-2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤ 4, and less frequently in those with scores ≥ 10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤ 4 were independently associated with increased risk of death. Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses.

  8. Antiretroviral therapy CNS penetration and HIV-1–associated CNS disease

    PubMed Central

    Winston, A.; Walsh, J.; Post, F.; Porter, K.; Gazzard, B.; Fisher, M.; Leen, C.; Pillay, D.; Hill, T.; Johnson, M.; Gilson, R.; Anderson, J.; Easterbrook, P.; Bansi, L.; Orkin, C.; Ainsworth, J.; Palfreeman, A.; Gompels, M.; Phillips, A.N.; Sabin, C.A.

    2011-01-01

    Objective: The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Methods: Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. Results: The median (interquartile range) CPE score for initial cART regimen increased from 7 (5–8) in 1996–1997 to 9 (8–10) in 2000–2001 and subsequently declined to 6 (7–8) in 2006–2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤4, and less frequently in those with scores ≥10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤4 were independently associated with increased risk of death. Conclusion: Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses. PMID:21339496

  9. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    PubMed Central

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  10. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system

    PubMed Central

    Polito, Annabella; Reynolds, Richard

    2005-01-01

    The mammalian adult central nervous system (CNS) is known to respond rapidly to demyelinating insults by regenerating oligodendrocytes for remyelination from a dividing precursor population. A widespread population of cells exists within the adult CNS that is thought to belong to the oligodendrocyte lineage, but which do not express proteins characteristic of mature myelinating oligodendrocytes, such as myelin basic protein (MBP) and 2,3-cyclic nucleotide 3-phosphodiesterase (CNP). Instead, these cells have phenotypic characteristics of a more immature stage of the oligodendrocyte lineage. They express the NG2 chondroitin sulphate proteoglycan, in addition to O4 and the platelet-derived growth factor α-receptor, all widely accepted as markers for oligodendrocyte progenitor cells (OPCs) throughout development. However, NG2+ cells residing in the adult CNS do not resemble embryonic or neonatal NG2+ cells in terms of their morphology or proliferation characteristics, but instead represent a unique type of glial cell that has the ability to react rapidly to CNS damage. In this review, we present the evidence that adult NG2+ cells are part of the oligodendrocyte lineage and are capable of giving rise to new oligodendrocytes under both normal and demyelinating conditions. We also review the literature that these cells may have multiple functional roles within the adult CNS, notwithstanding their primary role as OPCs. PMID:16367798

  11. Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle

    PubMed Central

    Kirsch, Wolfgang G; Uttenweiler, Dietmar; Fink, Rainer H A

    2001-01-01

    Using laser scanning confocal microscopy, we show for the first time elementary Ca2+ release events (ECRE) from the sarcoplasmic reticulum in chemically and mechanically skinned fibres from adult mammalian muscle and compare them with ECRE from amphibian skinned fibres. Hundreds of spontaneously occurring events could be measured from individual single skinned mammalian fibres. In addition to spark-like events, we found ember-like events, i.e. long-lasting events of steady amplitude. These two different fundamental release types in mammalian muscle could occur in combination at the same location. The two peaks of the frequency of occurrence for ECRE of mammalian skeletal muscle coincided with the expected locations of the transverse tubular system within the sarcomere, suggesting that ECRE mainly originate at triadic junctions. ECRE in adult mammalian muscle could also be identified at the onset of the global Ca2+ release evoked by membrane depolarisation in mechanically skinned fibres. In addition, the frequency of ECRE was significantly increased by application of 0.5 mm caffeine and reduced by application of 2 mm tetracaine. We conclude that the excitation-contraction coupling process in adult mammalian muscle involves the activation of both spark- and ember-like elementary Ca2+ release events. PMID:11731572

  12. Population mixing for leukaemia, lymphoma and CNS tumours in teenagers and young adults in England, 1996-2005.

    PubMed

    van Laar, Marlous; Stark, Daniel P; McKinney, Patricia; Parslow, Roger C; Kinsey, Sally E; Picton, Susan V; Feltbower, Richard G

    2014-09-23

    Little aetiological epidemiological research has been undertaken for major cancers occurring in teenagers and young adults (TYA). Population mixing, as a possible proxy for infectious exposure, has been well researched for childhood malignancies. We aimed to investigate effects of population mixing in this older age group using an English national cancer dataset. Cases of leukaemia, lymphoma and central nervous system (CNS) tumours amongst 15-24 year olds in England (diagnosed 1996-2005) were included in the study. Data were obtained by ward of diagnosis and linked to 1991 census variables including population mixing (Shannon index); data on person-weighted population density and deprivation (Townsend score) were also used and considered as explanatory variables. Associations between TYA cancer incidence and census variables were investigated using negative binomial regression, and results presented as incidence rate ratios (IRR) with 95% confidence intervals (CI). A total of 6251 cases of leukaemia (21%), lymphoma (49%) and CNS tumours (30%) were analysed. Higher levels of population mixing were associated with a significant decrease in the incidence of CNS tumours (IRR=0.83, 95% CI=0.75-0.91), accounted for by astrocytomas and 'other CNS tumours'; however, there was no association with leukaemia or lymphoma. Incidence of CNS tumours and lymphoma was 3% lower in more deprived areas (IRR=0.97, 95% CI=0.96-0.99 and IRR=0.97, 95% CI=.96-0.98 respectively). Population density was not associated with the incidence of leukaemia, lymphoma or CNS tumours. Our results suggest a possible role for environmental risk factors with population correlates in the aetiology of CNS tumours amongst TYAs. Unlike studies of childhood cancer, associations between population mixing and the incidence of leukaemia and lymphoma were not observed.

  13. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    NASA Astrophysics Data System (ADS)

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-09-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.

  14. CNS Tumors in Neurofibromatosis.

    PubMed

    Campian, Jian; Gutmann, David H

    2017-07-20

    Neurofibromatosis (NF) encompasses a group of distinct genetic disorders in which affected children and adults are prone to the development of benign and malignant tumors of the nervous system. The purpose of this review is to discuss the spectrum of CNS tumors arising in individuals with NF type 1 (NF1) and NF type 2 (NF2), their pathogenic etiologies, and the rational treatment options for people with these neoplasms. This article is a review of preclinical and clinical data focused on the treatment of the most common CNS tumors encountered in children and adults with NF1 and NF2. Although children with NF1 are at risk for developing low-grade gliomas of the optic pathway and brainstem, individuals with NF2 typically manifest low-grade tumors affecting the cranial nerves (vestibular schwannomas), meninges (meningiomas), and spinal cord (ependymomas). With the identification of the NF1 and NF2 genes, molecularly targeted therapies are beginning to emerge, as a result of a deeper understanding of the mechanisms underlying NF1 and NF2 protein function. As we enter into an era of precision oncology, a more comprehensive awareness of the factors that increase the risk of developing CNS cancers in affected individuals, coupled with a greater appreciation of the cellular and molecular determinants that maintain tumor growth, will undoubtedly yield more effective therapies for these cancer predisposition syndromes.

  15. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration.

    PubMed

    Cartoni, Romain; Norsworthy, Michael W; Bei, Fengfeng; Wang, Chen; Li, Siwei; Zhang, Yiling; Gabel, Christopher V; Schwarz, Thomas L; He, Zhigang

    2016-12-21

    Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this high regeneration condition. Armcx1 overexpression enhances mitochondrial transport in adult retinal ganglion cells (RGCs). Importantly, Armcx1 also promotes both neuronal survival and axon regeneration after injury, and these effects depend on its mitochondrial localization. Furthermore, Armcx1 knockdown undermines both neuronal survival and axon regeneration in the high regenerative capacity model, further supporting a key role of Armcx1 in regulating neuronal injury responses in the adult central nervous system (CNS). Our findings suggest that Armcx1 controls mitochondrial transport during neuronal repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  18. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS.

    PubMed

    Moreno, S; Farioli-Vecchioli, S; Cerù, M P

    2004-01-01

    Peroxisome proliferator-activated and retinoid X receptors (PPARs and RXRs) are transcription factors belonging to the steroid hormone receptor superfamily. Upon activation by their ligands, PPARs and RXRs bind to their target genes as heterodimers. Ligands of these receptors include lipophylic molecules, such as retinoids, fatty acids and eicosanoids, the importance of which in the metabolism and functioning of the nervous tissue is well documented. The immunohistochemical distribution of PPARs and RXRs in the CNS of the adult rat was studied by means of a sensitive biotinyl-tyramide method. All PPAR (alpha, beta/delta and gamma) and RXR (alpha, beta and gamma) isotypes were detected and found to exhibit specific patterns of localization in the different areas of the brain and spinal cord. The presence of the nuclear receptors was observed in both neuronal and glial cells. While PPAR beta/delta and RXR beta showed a widespread distribution, alpha and gamma isotypes exhibited a more restricted pattern of expression. The frontal cortex, basal ganglia, reticular formation, some cranial nerve nuclei, deep cerebellar nuclei, and cerebellar Golgi cells appeared rather rich in all studied receptors. Based on our data, we suggest that in the adult CNS, PPARs and RXRs, besides playing roles common to many other tissues, may have specific functions in regulating the expression of genes involved in neurotransmission, and therefore play roles in complex processes, such as aging, neurodegeneration, learning and memory.

  19. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System

    PubMed Central

    Baer, Matthew L.; Henderson, Scott C.; Colello, Raymond J.

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50–100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair. PMID:26562295

  20. NCI-CONNECT - Comprehensive Oncology Network Evaluating Rare CNS Tumors | Center for Cancer Research

    Cancer.gov

    NCI-CONNECT:  Comprehensive Oncology Network Evaluating Rare CNS Tumors Purpose NCI-CONNECT aims to advance the understanding of rare adult central nervous system (CNS) cancers by establishing and fostering patient-advocacy-provider partnerships and networks to improve approaches to care and treatment.

  1. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur

    2009-12-18

    With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFR{alpha}-1 in lumbar cord were not alteredmore » significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.« less

  2. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders

    PubMed Central

    Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.

    2015-01-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  3. Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders.

    PubMed

    Bey, K; Ciron, C; Dubreil, L; Deniaud, J; Ledevin, M; Cristini, J; Blouin, V; Aubourg, P; Colle, M-A

    2017-05-01

    Adeno-associated virus (AAV) gene therapy constitutes a powerful tool for the treatment of neurodegenerative diseases. While AAVs are generally administered systemically to newborns in preclinical studies of neurological disorders, in adults the maturity of the blood-brain barrier (BBB) must be considered when selecting the route of administration. Delivery of AAVs into the cerebrospinal fluid (CSF) represents an attractive approach to target the central nervous system (CNS) and bypass the BBB. In this study, we investigated the efficacy of intra-CSF delivery of a single-stranded (ss) AAV9-CAG-GFP vector in adult mice via intracisternal (iCist) or intralumbar (it-Lumb) administration. It-Lumb ssAAV9 delivery resulted in greater diffusion throughout the entire spinal cord and green fluorescent protein (GFP) expression mainly in the cerebellum, cortex and olfactory bulb. By contrast, iCist delivery led to strong GFP expression throughout the entire brain. Comparison of the transduction efficiency of ssAAV9-CAG-GFP versus ssAAV9-SYN1-GFP following it-Lumb administration revealed widespread and specific GFP expression in neurons and motoneurons of the spinal cord and brain when the neuron-specific synapsin 1 (SYN1) promoter was used. Our findings demonstrate that it-Lumb ssAAV9 delivery is a safe and highly efficient means of targeting the CNS in adult mice.

  4. Altered self-perception in adult survivors treated for a CNS tumor in childhood or adolescence: population-based outcomes compared with the general population

    PubMed Central

    Hörnquist, Lina; Rickardsson, Jenny; Lannering, Birgitta; Gustafsson, Göran; Boman, Krister K.

    2015-01-01

    Background Survivors of pediatric CNS tumors are at risk for persistent tumor/treatment-related morbidity, physical disability and social consequences that may alter self-perception, vital for self-identity, mental health and quality of survival. We studied the long-term impact of childhood CNS tumors and their treatment on the self-perception of adult survivors and compared outcomes with those of the general population. Methods The cohort included 697 Swedish survivors diagnosed with a primary CNS tumor during 1982–2001. Comparison data were randomly collected from a stratified general population sample. Survivors and general population individuals were compared as regards self-perception in 5 domains: body image, sports/physical activities, peers, work, and family, and with a global self-esteem index. Within the survivor group, determinants of impact on self-perception were identified. Results The final analyzed sample included 528 survivors, 75.8% of the entire national cohort. The control sample consisted of 995, 41% of 2500 addressed. Survivors had significantly poorer self-perception outcomes in domains of peers, work, body image, and sports/physical activities, and in the global self-perception measure, compared with those of the general population (all P < .001). Within the survivor group, female gender and persistent visible physical sequelae predicted poorer outcomes in several of the studied domains. Tumor type and a history of cranial radiation therapy were associated with outcomes. Conclusion An altered self-perception is a potential late effect in adult survivors of pediatric CNS tumors. Self-perception and self-esteem are significant elements of identity, mental health and quality of survival. Therefore, care and psychosocial follow-up of survivors should include measures for identifying disturbances and for assessing the need for psychosocial intervention. PMID:25332406

  5. Altered self-perception in adult survivors treated for a CNS tumor in childhood or adolescence: population-based outcomes compared with the general population.

    PubMed

    Hörnquist, Lina; Rickardsson, Jenny; Lannering, Birgitta; Gustafsson, Göran; Boman, Krister K

    2015-05-01

    Survivors of pediatric CNS tumors are at risk for persistent tumor/treatment-related morbidity, physical disability and social consequences that may alter self-perception, vital for self-identity, mental health and quality of survival. We studied the long-term impact of childhood CNS tumors and their treatment on the self-perception of adult survivors and compared outcomes with those of the general population. The cohort included 697 Swedish survivors diagnosed with a primary CNS tumor during 1982-2001. Comparison data were randomly collected from a stratified general population sample. Survivors and general population individuals were compared as regards self-perception in 5 domains: body image, sports/physical activities, peers, work, and family, and with a global self-esteem index. Within the survivor group, determinants of impact on self-perception were identified. The final analyzed sample included 528 survivors, 75.8% of the entire national cohort. The control sample consisted of 995, 41% of 2500 addressed. Survivors had significantly poorer self-perception outcomes in domains of peers, work, body image, and sports/physical activities, and in the global self-perception measure, compared with those of the general population (all P < .001). Within the survivor group, female gender and persistent visible physical sequelae predicted poorer outcomes in several of the studied domains. Tumor type and a history of cranial radiation therapy were associated with outcomes. An altered self-perception is a potential late effect in adult survivors of pediatric CNS tumors. Self-perception and self-esteem are significant elements of identity, mental health and quality of survival. Therefore, care and psychosocial follow-up of survivors should include measures for identifying disturbances and for assessing the need for psychosocial intervention. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For

  6. Mosaic serine proteases in the mammalian central nervous system.

    PubMed

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  7. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders

    PubMed Central

    Kubo, Takekazu; Yamaguchi, Atsushi; Iwata, Nobuyoshi; Yamashita, Toshihide

    2008-01-01

    Rho-kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes an attractive target for the development of drugs for treating central nervous system (CNS) disorders, since it has been recently revealed that this pathway is closely related to the pathogenesis of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer’s disease (AD). In the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal growth inhibitors such as myelin-associated glycoprotein (MAG), Nogo, oligodendrocyte-myelin glycoprotein (OMgp), and the recently identified repulsive guidance molecule (RGM). The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, and the inhibition of this pathway promotes axonal regeneration and functional recovery in the injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been demonstrated in animal models of stroke. In this review, we summarize the involvement of the Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders. PMID:18827856

  8. The role of the NG2 proteoglycan in OPC and CNS network function.

    PubMed

    Sakry, Dominik; Trotter, Jacqueline

    2016-05-01

    In the normal mammalian CNS, the NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPC) but not by any other neural cell-type. NG2 is a type-1 membrane protein, exerting multiple roles in the CNS including intracellular signaling within the OPC, with effects on migration, cytoskeleton interaction and target gene regulation. It has been recently shown that the extracellular region of NG2, in addition to an adhesive function, acts as a soluble ECM component with the capacity to alter defined neuronal network properties. This region of NG2 is thus endowed with neuromodulatory properties. In order to generate biologically active fragments yielding these properties, the sequential cleavage of the NG2 protein by α- and γ-secretases occurs. The basal level of constitutive cleavage is stimulated by neuronal network activity. This processing leads to 4 major NG2 fragments which all have been associated with distinct biological functions. Here we summarize these functions, focusing on recent discoveries and their implications for the CNS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Generation of Demyelination Models by Targeted Ablation of Oligodendrocytes in the Zebrafish CNS

    PubMed Central

    Chung, Ah-Young; Kim, Pan-Soo; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Kim, Hwan-Ki; Ryu, Jae-Ho; Kim, Cheol-Hee; Choi, June; Seo, Jin-Ho; Park, Hae-Chul

    2013-01-01

    Demyelination is the pathological process by which myelin sheaths are lost from around axons, and is usually caused by a direct insult targeted at the oligodendrocytes in the vertebrate central nervous system (CNS). A demyelinated CNS is usually remyelinated by a population of oligodendrocyte progenitor cells, which are widely distributed throughout the adult CNS. However, myelin disruption and remyelination failure affect the normal function of the nervous system, causing human diseases such as multiple sclerosis. In spite of numerous studies aimed at understanding the remyelination process, many questions still remain unanswered. Therefore, to study remyelination mechanisms in vivo, a demyelination animal model was generated using a transgenic zebrafish system in which oligodendrocytes are conditionally ablated in the larval and adult CNS. In this transgenic system, bacterial nitroreductase enzyme (NTR), which converts the prodrug metronidazole (Mtz) into a cytotoxic DNA cross-linking agent, is expressed in oligodendrocyte lineage cells under the control of the mbp and sox10 promoter. Exposure of transgenic zebrafish to Mtz-containing media resulted in rapid ablation of oligodendrocytes and CNS demyelination within 48 h, but removal of Mtz medium led to efficient remyelination of the demyelinated CNS within 7 days. In addition, the demyelination and remyelination processes could be easily observed in living transgenic zebrafish by detecting the fluorescent protein, mCherry, indicating that this transgenic system can be used as a valuable animal model to study the remyelination process in vivo, and to conduct high-throughput primary screens for new drugs that facilitate remyelination. PMID:23807048

  10. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system

    PubMed Central

    Randall, Andrew D; Kurihara, Mai; Brandon, Nicholas J; Brown, Jon T

    2014-01-01

    The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS. PMID:24712987

  11. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery

    PubMed Central

    2011-01-01

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  12. Applications of Genomic Sequencing in Pediatric CNS Tumors.

    PubMed

    Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams

    2016-05-01

    Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers.

  13. CNS role evolution.

    PubMed

    Payne, J L; Baumgartner, R G

    1996-01-01

    THE CNS ROLE has been actualized in a variety of ways. Flexibility-inherent in the role-and the revolution in health care consciousness tend to place the CNS at risk for criticism regarding value to the organization. At Vanderbilt University Medical Center, a CNS task force evaluated the current reality of CNS practice and recommended role changes to include the financial analysis of patient care. After incorporating a financial perspective into our present practice, we have embarked on an interesting journey of post-Master's degree study, that of the tertiary care nurse practitioner. This practice option could elevated the clinical and financial aspects of providing cost-effective health care to a more autonomous role form; however, the transition has been challenging. Since 1990, the American Nurses Association has recommended that nursing school curricula change to meet the needs of the health care environment and provide increased career flexibility through creating one advanced degree incorporating both CNS and NP functions. Swiftly moving past differences and toward similarities will bridge the gap for advanced practice nurses in the future.

  14. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart.

    PubMed

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D; van den Hoff, Maurice J B; Butte, Manish J; Yang, Phillip C; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2015-09-24

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.

  15. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  16. Therapeutic potential of agmatine for CNS disorders.

    PubMed

    Neis, Vivian B; Rosa, Priscila B; Olescowicz, Gislaine; Rodrigues, Ana Lúcia S

    2017-09-01

    Agmatine is a neuromodulator that regulates multiple neurotransmitters and signaling pathways. Several studies have focused on elucidating the mechanisms underlying the neuroprotective effects of this molecule, which seems to be mediated by a reduction in oxidative damage, neuroinflammation, and proapoptotic signaling. Since these events are implicated in acute and chronic excitotoxicity-related disorders (ischemia, epilepsy, traumatic brain injury, spinal cord injury, neurodegenerative, and psychiatric disorders) as well as in nociception, agmatine has been proposed as a therapeutic strategy for the treatment of central nervous system (CNS) disorders. Agmatine also stimulates the expression of trophic factors and adult neurogenesis, contributing to its ability to induce endogenous repair mechanisms. Therefore, considering its wide range of biological effects, this review summarizes the current knowledge about its protective and regenerative properties in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  18. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury.

    PubMed

    Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming

    2018-06-28

    The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.

  19. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury

    PubMed Central

    Forbes, Lindsey H.

    2018-01-01

    The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554

  20. Myotonic Dystrophies: State of the Art of New Therapeutic Developments for the CNS

    PubMed Central

    Gourdon, Genevieve; Meola, Giovanni

    2017-01-01

    Myotonic dystrophies are multisystemic diseases characterized not only by muscle and heart dysfunction but also by CNS alteration. They are now recognized as brain diseases affecting newborns and children for myotonic dystrophy type 1 and adults for both myotonic dystrophy type 1 and type 2. In the past two decades, much progress has been made in understanding the mechanisms underlying the DM symptoms allowing development of new molecular therapeutic tools with the ultimate aim of curing the disease. This review describes the state of the art for the characterization of CNS related symptoms, the development of molecular strategies to target the CNS as well as the available tools for screening and testing new possible treatments. PMID:28473756

  1. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    PubMed Central

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  2. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  3. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

    PubMed

    Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann

    2015-02-01

    Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage. © 2014 AlphaMed Press.

  4. Palmitoylethanolamide in CNS health and disease.

    PubMed

    Mattace Raso, Giuseppina; Russo, Roberto; Calignano, Antonio; Meli, Rosaria

    2014-08-01

    The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases. Copyright © 2014. Published by Elsevier Ltd.

  5. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes

    PubMed Central

    Shu, Yilai; Tao, Yong; Wang, Zhengmin; Tang, Yong; Li, Huawei; Dai, Pu; Gao, Guangping; Chen, Zheng-Yi

    2016-01-01

    The mammalian inner ear consists of diverse cell types with important functions. Gene mutations in these diverse cell types have been found to underlie different forms of genetic hearing loss. Targeting these mutations for gene therapy development represents a future therapeutic strategy to treat hearing loss. Adeno-associated viral (AAV) vectors have become the vector of choice for gene delivery in animal models in vivo. To identify AAV vectors that target inner ear cell subtypes, we systemically screened 12 AAV vectors with different serotypes (AAV1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39, and rh.43) that carry a reporter gene GFP in neonatal and adult mice by microinjection in vivo. We found that most AAVs infect both neonatal and adult inner ear, with different specificities and expression levels. The inner ear cochlear sensory epithelial region, which includes auditory hair cells and supporting cells, is most frequently targeted for gene delivery. Expression of the transgene is sustained, and neonatal inner ear delivery does not adversely affect hearing. Adult inner ear injection of AAV has a similar infection pattern as the younger inner ear, with the exception that outer hair cell death caused by the injection procedure can lead to hearing loss. In the adult, more so than in the neonatal mice, cell types infected and efficiency of infection are correlated with the site of injection. Most infected cells survive in neonatal and adult inner ears. The study adds to the list of AAV vectors that transduce the mammalian inner ear efficiently, providing the tools that are important to study inner ear gene function and for the development of gene therapy to treat hearing loss. PMID:27342665

  6. A β-Lactam Antibiotic Dampens Excitotoxic Inflammatory CNS Damage in a Mouse Model of Multiple Sclerosis

    PubMed Central

    Torres-Salazar, Delany; Bittner, Stefan; Zozulya, Alla L.; Weidenfeller, Christian; Kotsiari, Alexandra; Stangel, Martin; Fahlke, Christoph; Wiendl, Heinz

    2008-01-01

    In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis. PMID:18773080

  7. Nanomedicines for the Treatment of CNS Diseases.

    PubMed

    Reynolds, Jessica L; Mahato, Ram I

    2017-03-01

    Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.

  8. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro.

    PubMed

    Kegler, Kristel; Imbschweiler, Ilka; Ulrich, Reiner; Kovermann, Peter; Fahlke, Christoph; Deschl, Ulrich; Kalkuhl, Arno; Baumgärnter, Wolfgang; Wewetzer, Konstantin

    2014-06-01

    Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.

  10. Thiazole containing Heterocycles with CNS activity.

    PubMed

    Kalal, Priyanka; Gandhi, Divyani; Prajapat, Prakash; Agarwal, Shikha

    2017-07-24

    Thiazoles are promising scaffolds in the area of medicinal and pharmaceutical chemistry and have accounted to show different pharmacophoric properties. For the last years, thiazole derivatives have focused too much attention to develop different new CNS active agents. It has been broadly used to generate diverse therapeutic agents against various CNS targets. Histamine H3 receptors are seriously involved in the pathophysiology of numerous disorders of the central nervous system. The literature survey has been done using different database from peer-reviewed journals. The quality of repossessed papers was evaluated using standard tools. The details of important papers were described to focus on the potency of thiazole containing heterocycles with CNS activity. Eighty nine papers were included in the review indicating thiazole containing heterocycles with CNS activity. (1) to (30) papers included different thiazole derivatives impregnated withCNS activity. Different CNS agents have been shown in references (37) to (56). The remaining papers have been searched for anticonvulsant agents (57) to (78) and other miscellaneous activities from (79) to (89). A detailed investigation has been carried out on thiazoles and its derivatives to judge its efficacy to overcome several CNS disorders. This article covers the recent updates of thiazole and its derivative with CNS activity already present in literature and will definitely provide a better platform for the production and development of potent thiazole based CNS vigorous drugs in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Scar modulation in subacute and chronic CNS lesions: Effects on axonal regeneration.

    PubMed

    Stichel, Christine C.; Lausberg, Friederike; Hermanns, Susanne; Müller, Hans Werner

    1999-01-01

    After injury of the adult mammalian CNS axonal regeneration across or around the lesion scar is negligible. Previously, we have shown that the lesion-induced basal membrane (BM) within the lesion center participates in a growth barrier for axon regeneration and that its reduction by means of pharmacological or immunochemical treatment is a prerequisite and sufficient condition for regrowing axons to cross the lesion site. The present study was designed to further investigate this observation by analyzing the effect of a delayed treatment on the regeneration of both subacutely and chronically lesioned axons.Adult rats underwent unilateral transection of the postcommissural fornix. At one to five days after transection one group of animals received a local injection of 2, 2'-dipyridyl (DPY), an inhibitor of collagen triple helix formation and synthesis. Another group received a second transection within the former lesion site followed by an immediate DPY-injection at five days or 4 weeks after transection. Six weeks after the last surgery BM deposition and axonal regeneration were analysed using immunocytochemical methods.A local injection of DPY clearly reduced the lesion-induced BM deposition when applied within the first 3 days after transection. Under these conditions regrowing axons still crossed the former impermeable lesion site and regenerated within their normal pathway up to their former target, the mammillary body. However, in late subacute (5 d) and chronic stages (4 w) the double transection+injection paradigm failed to reduce BM deposition and, in consequence, also to induce axonal regeneration.These results demonstrate the potential of the collagen IV-reducing strategy to promote axonal regeneration across the lesion scar not only in acute but also in early subacute traumatic injuries.

  12. Adult neural stem cells: The promise of the future

    PubMed Central

    Taupin, Philippe

    2007-01-01

    Stem cells are self-renewing undifferentiated cells that give rise to multiple types of specialized cells of the body. In the adult, stem cells are multipotents and contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs) reside in the adult central nervous system (CNS), the adult brain has the potential to regenerate and may be amenable to repair. The function(s) of NSCs in the adult CNS remains the source of intense research and debates. The promise of the future of adult NSCs is to redefine the functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases and injuries. PMID:19300610

  13. Cellular responses to recurrent pentylenetetrazole-induced seizures in the adult zebrafish brain

    PubMed Central

    Duy, Phan Q; Berberoglu, Michael A; Beattie, Christine E; Hall, Charles W

    2017-01-01

    A seizure is a sustained increase in brain electrical activity that can result in loss of consciousness and injury. Understanding how the brain responds to seizures is important for development of new treatment strategies for epilepsy, a neurological condition characterized by recurrent and unprovoked seizures. Pharmacological induction of seizures in rodent models results in a myriad of cellular alterations, including inflammation, angiogenesis, and adult neurogenesis. The purpose of this study is to investigate the cellular responses to recurrent pentylenetetrazole seizures in the adult zebrafish brain. We subjected zebrafish to five once daily pentylenetetrazole induced seizures and characterized the cellular consequences of these seizures. In response to recurrent seizures, we found histologic evidence of vasodilatation, perivascular leukocyte egress and leukocyte proliferation suggesting seizure-induced acute CNS inflammation. We also found evidence of increased proliferation, neurogenesis, and reactive gliosis. Collectively, our results suggest that the cellular responses to seizures in the adult zebrafish brain are similar to those observed in mammalian brains. PMID:28238851

  14. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  15. Cumulative incidence rates for CNS and non-CNS progression in two phase II studies of alectinib in ALK-positive NSCLC.

    PubMed

    Gadgeel, Shirish; Shaw, Alice T; Barlesi, Fabrice; Crinò, Lucio; Yang, James Chih-Hsin; Dingemans, Anne-Marie C; Kim, Dong-Wan; de Marinis, Filippo; Schulz, Mathias; Liu, Shiyao; Gupta, Ravindra; Kotb, Ahmed; Ou, Sai-Hong Ignatius

    2018-01-01

    We evaluated the cumulative incidence rate (CIR) of central nervous system (CNS) and non-CNS progression in alectinib-treated patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) to determine the extent to which alectinib may treat or control CNS disease. Patients with crizotinib-pretreated locally advanced or metastatic disease received alectinib 600 mg orally twice daily in two phase II trials. All patients underwent baseline imaging and regular centrally reviewed scans. At 24 months, the CIR for CNS progression was lower in patients without vs with baseline CNS metastases (8.0 vs 43.9%). Patients with baseline CNS disease and prior radiotherapy had a higher CIR of CNS progression than radiotherapy-naive patients (50.5 vs 27.4%) and a lower CIR of non-CNS progression (25.8 vs 42.5%). Adverse events leading to withdrawal occurred in 5.9% and 6.7% of patients with and without baseline CNS metastases, respectively. This analysis indicates a potential role for alectinib in controlling and preventing CNS metastases.

  16. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo

    PubMed Central

    Zhang, Kuan; Chen, Chunhai; Yang, Zhiqi; He, Wenjing; Liao, Xiang; Ma, Qinlong; Deng, Ping; Lu, Jian; Li, Jingcheng; Wang, Meng; Li, Mingli; Zheng, Lianghong; Zhou, Zhuan; Sun, Wei; Wang, Liting; Jia, Hongbo; Yu, Zhengping; Zhou, Zhou; Chen, Xiaowei

    2016-01-01

    Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca2+ imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca2+ signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo. PMID:27405333

  17. Delayed grafting of fetal CNS tissue into chronic compression lesions of the adult cat spinal cord.

    PubMed

    Anderson, D K; Reier, P J; Wirth Iii, E D; Theele, D P; Mareci, T; Brown, S A

    1991-01-01

    This review summarizes a series of experiments involving transplants of embryonic feline CNS tissue into chronic compression lesions of the adult cat spinal cord. Fetal spinal cord (FSC), caudal brainstem (BSt), neocortex (NCx) or a combination of either FSC/NCx or FSC/BSt was transplanted as solid pieces or as a suspension of dissociated cells into the developed cystic cavities produced by static-load compression trauma 2-10 weeks prior to grafting. All cats were immunosuppressed with cyclosporin A and their locomotor function was assessed for 6-30 weeks. Following the period of evaluation, all recipients were perfused with fixative and tissue specimens, taken at the transplantation site, were processed for general histological and/or immunocytochemical analysis. Viable graft tissue was found in all animals with the exception of two cats which showed active rejection of their transplants. All of the viable intraspinal grafts were extensively vascularized and did not show any signs of imminent or on-going tissue rejection. Fetal cat CNS grafts showed an extended maturational phase in that features of immature neural tissue (e.g. a paucity of myelination) were still seen even 6-9 weeks after transplantation. By 20-30 weeks, FSC and BSt grafts had attained a more advanced stage of maturation. Transplants in these chronic lesions were extensively blended with both the gray and white matter of the host spinal cord and could be visualized by magnetic resonance imaging (MRI). MRI could also detect regions of cavitation at the graft-host interface, as well as within some transplants. While preliminary evidence from behavioral studies suggest that the FSC and BSt grafts may improve or spare locomotor function in some recipients, a more rigorous analysis of post-grafting locomotor function is required to determine conclusively the functionality of these transplants.

  18. The distribution of the orphan bombesin receptor subtype-3 in the rat CNS.

    PubMed

    Jennings, C A; Harrison, D C; Maycox, P R; Crook, B; Smart, D; Hervieu, G J

    2003-01-01

    Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor that shares between 47 and 51% homology with other known bombesin receptors. The natural ligand for BRS-3 is currently unknown and little is known about the mechanisms regulating BRS-3 gene expression. Unlike other mammalian bombesin receptors that have been shown to be predominantly expressed in the CNS and gastrointestinal tract, expression of the BRS-3 receptor in the rat brain has previously not been observed. To gain further understanding of the biology of BRS-3, we have studied the distribution of BRS-3 mRNA and protein in the rat CNS. The mRNA expression pattern was studied using reverse transcription followed by quantitative polymerase chain reaction. Using immunohistological techniques, the distribution of BRS-3 protein in the rat brain was investigated using a rabbit affinity-purified polyclonal antiserum raised against an N-terminal peptide. The BRS-3 receptor was found to be widely expressed in the rat brain at both mRNA and protein levels. Particularly strong immunosignals were observed in the cerebral cortex, hippocampal formation, hypothalamus and thalamus. Other regions of the brain such as the basal ganglia, midbrain and reticular formation were also immunopositive for BRS-3. In conclusion, our neuroanatomical data provide evidence that BRS-3 is as widely expressed in the rat brain as other bombesin-like peptide receptors and suggest that this receptor may also have important roles in the CNS, mediating the functions of a so far unidentified ligand.

  19. The Processing of Airspace Concept Evaluations Using FASTE-CNS as a Pre- or Post-Simulation CNS Analysis Tool

    NASA Technical Reports Server (NTRS)

    Mainger, Steve

    2004-01-01

    As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing

  20. Gene Manipulation Strategies to Identify Molecular Regulators of Axon Regeneration in the Central Nervous System

    PubMed Central

    Ribas, Vinicius T.; Costa, Marcos R.

    2017-01-01

    Limited axon regeneration in the injured adult mammalian central nervous system (CNS) usually results in irreversible functional deficits. Both the presence of extrinsic inhibitory molecules at the injury site and the intrinsically low capacity of adult neurons to grow axons are responsible for the diminished capacity of regeneration in the adult CNS. Conversely, in the embryonic CNS, neurons show a high regenerative capacity, mostly due to the expression of genes that positively control axon growth and downregulation of genes that inhibit axon growth. A better understanding of the role of these key genes controlling pro-regenerative mechanisms is pivotal to develop strategies to promote robust axon regeneration following adult CNS injury. Genetic manipulation techniques have been widely used to investigate the role of specific genes or a combination of different genes in axon regrowth. This review summarizes a myriad of studies that used genetic manipulations to promote axon growth in the injured CNS. We also review the roles of some of these genes during CNS development and suggest possible approaches to identify new candidate genes. Finally, we critically address the main advantages and pitfalls of gene-manipulation techniques, and discuss new strategies to promote robust axon regeneration in the mature CNS. PMID:28824380

  1. A Novel Biopsy Method for Isolating Neural Stem Cells from the Subventricular Zone of the Adult Rat Brain for Autologous Transplantation in CNS Injuries.

    PubMed

    Aligholi, Hadi; Hassanzadeh, Gholamreza; Gorji, Ali; Azari, Hassan

    2016-01-01

    Despite all attempts the problem of regeneration in damaged central nervous system (CNS) has remained challenging due to its cellular complexity and highly organized and sophisticated connections. In this regard, stem cell therapy might serve as a viable therapeutic approach aiming either to support the damaged tissue and hence to reduce the subsequent neurological dysfunctions and impairments or to replace the lost cells and re-establish damaged circuitries. Adult neural stem/progenitor cells (NS/PCs) are one of the outstanding cell sources that can be isolated from the subventricular zone (SVZ) of the lateral ventricles. These cells can differentiate into neurons, astrocytes, and oligodendrocytes. Implanting autologous NS/PCs will greatly benefit the patients by avoiding immune rejection after implantation, better survival, and integration with the host tissue. Developing safe and efficient methods in small animal models will provide us with the opportunity to optimize procedures required to achieve successful human autologous NS/PC transplantation in near future. In this chapter, a highly controlled and safe biopsy method for harvesting stem cell containing tissue from the SVZ of adult rat brain is introduced. Then, isolation and expansion of NS/PCs from harvested specimen as well as the techniques to verify proliferation and differentiation capacity of the resulting NS/PCs are discussed. Finally, a method for assessing the biopsy lesion volume in the brain is described. This safe biopsy method in rat provides a unique tool to study autologous NS/PC transplantation in different CNS injury models.

  2. Mechanisms underlying sexual and affiliative behaviors of mice: relation to generalized CNS arousal

    PubMed Central

    Shelley, Deborah N.; Choleris, Elena; Kavaliers, Martin

    2006-01-01

    The field of social neuroscience has grown dramatically in recent years and certain social responses have become amenable to mechanistic investigations. Toward that end, there has been remarkable progress in determining mechanisms for a simple sexual behavior, lordosis behavior. This work has proven that specific hormone-dependent biochemical reactions in specific parts of the mammalian brain regulate a biologically important behavior. On one hand, this sex behavior depends on underlying mechanisms of CNS arousal. On the other hand, it serves as a prototypical social behavior. The same sex hormones and the genes that encode their receptors as are involved in lordosis, also affect social recognition. Here we review evidence for a micronet of genes promoting social recognition in mice and discuss their biological roles. PMID:18985112

  3. The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo R.

    1988-12-01

    This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhytmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

  4. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C-dependent pathway.

    PubMed

    Kalra, Dinesh; Sivasubramanian, Natarajan; Mann, Douglas L

    2002-05-07

    Previous studies suggest that angiotensin II (Ang II) upregulates the expression of tumor necrosis factor (TNF) in nonmyocyte cell types; however, the effect of Ang II on TNF expression in the adult mammalian heart is not known. To determine whether Ang II was sufficient to provoke TNF biosynthesis in the adult heart, we examined the effects of Ang II in isolated buffer-perfused Langendorff feline hearts. Ang II (10(-7) mol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF mRNA and protein biosynthesis in the heart as well as in cultured adult cardiac myocytes. The effects of Ang II on myocardial TNF mRNA and protein synthesis were mediated through the angiotensin type 1 receptor (AT1R), insofar as an AT1R antagonist (AT1a) blocked the effects of Ang II, whereas an angiotensin type 2 receptor (AT2R) antagonist (AT2a) had no effect. Stimulation with Ang II led to the activation of nuclear factor-kappaB and activator protein-1 (AP-1), two transcription factors that are important for TNF gene expression. Nuclear factor-kappaB activation was accompanied by phosphorylation of IkappaBalpha on serine 32 as well as degradation of IkappaBalpha, suggesting that the effects of Ang II were mediated through an IkappaBalpha-dependent pathway. The important role of protein kinase C (PKC) was suggested by studies in which a phorbol ester triggered TNF biosynthesis, and a PKC inhibitor abrogated Ang II-induced TNF biosynthesis. These studies suggest that Ang II provokes TNF biosynthesis in the adult mammalian heart through a PKC-dependent pathway.

  5. Requirements for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise

    2017-01-01

    Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.

  6. Clinical Applications Involving CNS Gene Transfer

    PubMed Central

    Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.

    2015-01-01

    Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921

  7. Microbial induction of vascular pathology in the CNS.

    PubMed

    Kang, Silvia S; McGavern, Dorian B

    2010-09-01

    The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe.

  8. Microbial Induction of Vascular Pathology in the CNS

    PubMed Central

    Kang, Silvia S.

    2016-01-01

    The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe. PMID:20401700

  9. Antiretroviral drug treatment of CNS HIV-1 infection.

    PubMed

    Yilmaz, Aylin; Price, Richard W; Gisslén, Magnus

    2012-02-01

    The advent of combination antiretroviral treatment has had a profound impact on CNS HIV infection and its clinical complications, but neurological impairment still occurs in patients on systemically effective combination therapy, and in some patients it may be important to consider antiretroviral drug entry and effects within the CNS. There are now data on the CNS exposure for most antiretroviral drugs. This review focuses on the CNS pharmacokinetics and pharmacodynamics of antiretroviral drugs in humans, and also discusses controversies in this field.

  10. Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expectations in the era of regenerative biology.

    PubMed

    Kazanis, Ilias

    2012-02-01

    Since the first experimental reports showing the persistence of neurogenic activity in the adult mammalian brain, this field of neurosciences has expanded significantly. It is now widely accepted that neural stem and precursor cells survive during adulthood and are able to respond to various endogenous and exogenous cues by altering their proliferation and differentiation activity. Nevertheless, the pathway to therapeutic applications still seems to be long. This review attempts to summarize and revisit the available data regarding the plasticity potential of adult neural stem cells and of their normal microenvironment, the neurogenic niche. Recent data have demonstrated that adult neural stem cells retain a high level of pluripotency and that adult neurogenic systems can switch the balance between neurogenesis and gliogenesis and can generate a range of cell types with an efficiency that was not initially expected. Moreover, adult neural stem and precursor cells seem to be able to self-regulate their interaction with the microenvironment and even to contribute to its synthesis, altogether revealing a high level of plasticity potential. The next important step will be to elucidate the factors that limit this plasticity in vivo, and such a restrictive role for the microenvironment is discussed in more details.

  11. Nanotechnology—novel therapeutics for CNS disorders

    PubMed Central

    Srikanth, Maya; Kessler, John A.

    2013-01-01

    Research into treatments for diseases of the CNS has made impressive strides in the past few decades, but therapeutic options are limited for many patients with CNS disorders. Nanotechnology has emerged as an exciting and promising new means of treating neurological disease, with the potential to fundamentally change the way we approach CNS-targeted therapeutics. Molecules can be nanoengineered to cross the blood–brain barrier, target specific cell or signalling systems, respond to endogenous stimuli, or act as vehicles for gene delivery, or as a matrix to promote axon elongation and support cell survival. The wide variety of available nanotechnologies allows the selection of a nanoscale material with the characteristics best suited to the therapeutic challenges posed by an individual CNS disorder. In this Review, we describe recent advances in the development of nanotechnology for the treatment of neurological disorders—in particular, neurodegenerative disease and malignant brain tumours—and for the promotion of neuroregeneration. PMID:22526003

  12. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  13. Soluble forms of the cell adhesion molecule L1 produced by insect and baculovirus-transduced mammalian cells enhance Schwann cell motility.

    PubMed

    Lavdas, Alexandros A; Efrose, Rodica; Douris, Vassilis; Gaitanou, Maria; Papastefanaki, Florentia; Swevers, Luc; Thomaidou, Dimitra; Iatrou, Kostas; Matsas, Rebecca

    2010-12-01

    For biotechnological applications, insect cell lines are primarily known as hosts for the baculovirus expression system that is capable to direct synthesis of high levels of recombinant proteins through use of powerful viral promoters. Here, we demonstrate the implementation of two alternative approaches based on the baculovirus system for production of a mammalian recombinant glycoprotein, comprising the extracellular part of the cell adhesion molecule L1, with potential important therapeutic applications in nervous system repair. In the first approach, the extracellular part of L1 bearing a myc tag is produced in permanently transformed insect cell lines and purified by affinity chromatography. In the second approach, recombinant baculoviruses that express L1-Fc chimeric protein, derived from fusion of the extracellular part of L1 with the Fc part of human IgG1, under the control of a mammalian promoter are used to infect mammalian HEK293 and primary Schwann cells. Both the extracellular part of L1 bearing a myc tag accumulating in the supernatants of insect cultures as well as L1-Fc secreted by transduced HEK293 or Schwann cells are capable of increasing the motility of Schwann cells with similar efficiency in a gap bridging bioassay. In addition, baculovirus-transduced Schwann cells show enhanced motility when grafted on organotypic cultures of neonatal brain slices while they retain their ability to myelinate CNS axons. This proof-of-concept that the migratory properties of myelin-forming cells can be modulated by recombinant protein produced in insect culture as well as by means of baculovirus-mediated adhesion molecule expression in mammalian cells may have beneficial applications in the field of CNS therapies. ©2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  14. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.

    PubMed

    Noda, Mami

    2018-01-01

    The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.

  15. Air Pollution: Mechanisms of Neuroinflammation & CNS Disease

    PubMed Central

    Block, Michelle L.; Calderón-Garcidueñas, Lilian

    2009-01-01

    Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187

  16. Enamel formation and growth in non-mammalian cynodonts

    PubMed Central

    Dirks, Wendy; Martinelli, Agustín G.

    2018-01-01

    The early evolution of mammals is associated with the linked evolutionary origin of diphyodont tooth replacement, rapid juvenile growth and determinate adult growth. However, specific relationships among these characters during non-mammalian cynodont evolution require further exploration. Here, polarized light microscopy revealed incremental lines, resembling daily laminations of extant mammals, in histological sections of enamel in eight non-mammalian cynodont species. In the more basal non-probainognathian group, enamel extends extremely rapidly from cusp to cervix. By contrast, the enamel of mammaliamorphs is gradually accreted, with slow rates of crown extension, more typical of the majority of non-hypsodont crown mammals. These results are consistent with the reduction in dental replacement rate across the non-mammalian cynodont lineage, with greater rates of crown extension required in most non-probainognathians, and slower crown extension rates permitted in mammaliamorphs, which have reduced patterns of dental replacement in comparison with many non-probainognathians. The evolution of mammal-like growth patterns, with faster juvenile growth and more abruptly terminating adult growth, is linked with this reduction in dental replacement rates and may provide an additional explanation for the observed pattern in enamel growth rates. It is possible that the reduction in enamel extension rates in mammaliamorphs reflects an underlying reduction in skeletal growth rates at the time of postcanine formation, due to a more abruptly terminating pattern of adult growth in these more mammal-like, crownward species. PMID:29892415

  17. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  18. Models of CNS radiation damage during space flight

    NASA Astrophysics Data System (ADS)

    Hopewell, J. W.

    1994-10-01

    The primary structural and functional arrangement of the different cell types within the CNS are reviewed. This was undertaken with a view to providing a better understanding of the complex interrelationships that may contribute to the pathogenesis of lesions in this tissue after exposure to ionizing radiation. The spectrum of possible CNS radiation-induced syndromes are discussed although not all have an immediate relevance to exposure during space flight. The specific characteristics of the lesions observed would appear to be dose related. Very high doses may produce an acute CNS syndrome that can cause death. Of the delayed lesions, selective coagulation necrosis of white matter and a later appearing vascular microangiopathy, have been reported in patients after cancer therapy doses. Lower doses, perhaps very low doses, may produce a delayed generalised CNS atrophy; this effect and the probability of the induction of CNS tumors could potentially have the greatest significance for space flight.

  19. CNS embryonal tumours: WHO 2016 and beyond.

    PubMed

    Pickles, J C; Hawkins, C; Pietsch, T; Jacques, T S

    2018-02-01

    Embryonal tumours of the central nervous system (CNS) present a significant clinical challenge. Many of these neoplasms affect young children, have a very high mortality and therapeutic strategies are often aggressive with poor long-term outcomes. There is a great need to accurately diagnose embryonal tumours, predict their outcome and adapt therapy to the individual patient's risk. For the first time in 2016, the WHO classification took into account molecular characteristics for the diagnosis of CNS tumours. This integration of histological features with genetic information has significantly changed the diagnostic work-up and reporting of tumours of the CNS. However, this remains challenging in embryonal tumours due to their previously unaccounted tumour heterogeneity. We describe the recent revisions made to the 4th edition of the WHO classification of CNS tumours and review the main changes, while highlighting some of the more common diagnostic testing strategies. © 2017 British Neuropathological Society.

  20. Requirements for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.

  1. Air pollution: mechanisms of neuroinflammation and CNS disease.

    PubMed

    Block, Michelle L; Calderón-Garcidueñas, Lilian

    2009-09-01

    Air pollution has been implicated as a chronic source of neuroinflammation and reactive oxygen species (ROS) that produce neuropathology and central nervous system (CNS) disease. Stroke incidence and Alzheimer's and Parkinson's disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain; systemic effects that impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that microglial activation and changes in the blood-brain barrier are key components. Here we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS, culminating in CNS disease.

  2. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  3. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS.

    PubMed

    Turlejski, Kris; Djavadian, Ruzanna

    2002-01-01

    In this chapter we provide an extensive review of 100 years of research on the stability of neurons in the mammalian brain, with special emphasis on humans. Although Cajal formulated the Neuronal Doctrine, he was wrong in his beliefs that adult neurogenesis did not occur and adult neurons are dying throughout life. These two beliefs became accepted "common knowledge" and have shaped much of neuroscience research and provided much of the basis for clinical treatment of age-related brain diseases. In this review, we consider adult neurogenesis from a historical and evolutionary perspective. It is concluded, that while adult neurogenesis is a factor in the dynamics of the dentate gyrus and olfactory bulb, it is probably not a major factor during the life-span in most brain areas. Likewise, the acceptance of neuronal death as an explanation for normal age-related senility is challenged with evidence collected over the last fifty years. Much of the problem in changing this common belief of dying neurons was the inadequacies of neuronal counting methods. In this review we discuss in detail implications of recent improvements in neuronal quantification. We conclude: First, age-related neuronal atrophy is the major factor in functional deterioration of existing neurons and could be slowed down, or even reversed by various pharmacological interventions. Second, in most cases neuronal degeneration during aging is a pathology that in principle may be avoided. Third, loss of myelin and of the white matter is more frequent and important than the limited neuronal death in normal aging.

  4. More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration

    PubMed Central

    Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim

    2014-01-01

    Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875

  5. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival.

    PubMed

    Nakano, Masayuki; Tamura, Yasuhisa; Yamato, Masanori; Kume, Satoshi; Eguchi, Asami; Takata, Kumi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-02-14

    NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function.

  6. Perspectives and new aspects of metalloproteinases' inhibitors in therapy of CNS disorders: from chemistry to medicine.

    PubMed

    Boguszewska-Czubara, Anna; Budzynska, Barbara; Skalicka-Wozniak, Krystyna; Kurzepa, Jacek

    2018-05-13

    Matrix metalloproteinases (MMPs) play a key role in remodelling of the extracellular matrix (ECM) and, at the same time, influence cell differentiation, migration, proliferation and survival. Their importance in variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders has been known for many years but special attention should be paid on the role of MMPs in the central nervous system (CNS) disorders. Till now, there are not many well documented physiological MMP target proteins in the brain and only some pathological ones. Numerous neurodegenerative diseases is a consequence or result in disturbed remodeling of brain ECM, therefore proper action of MMPs as well as control of their activity may play crucial roles in the development and the progress of these diseases. In present review we discuss the role of metalloproteinase inhibitors, from the well-known natural endogenous tissue inhibitors of metalloproteinases (TIMPs) through exogenous synthetic ones like (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT), tetracyclines, batimastat (BB-94) and FN-439. As the MMP-TIMP system has been well described in physiological development as well as in pathological conditions mainly in neoplasctic diseases, the knowledge about the enzymatic system in mammalian brain tissue remain still poorly understood in this context. Therefore, we focus on MMPs inhibition in the context of physiological function of adult brain as well as pathological conditions including neurodegenerative diseases, brain injuries and others. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice

    PubMed Central

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Evercooren, Anne Baron-Van

    2015-01-01

    Induced pluripotent stem cell–derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent–derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin–derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS. PMID:26301815

  8. Herpes simplex and varicella zoster CNS infections: clinical presentations, treatments and outcomes.

    PubMed

    Kaewpoowat, Quanhathai; Salazar, Lucrecia; Aguilera, Elizabeth; Wootton, Susan H; Hasbun, Rodrigo

    2016-06-01

    To describe the clinical manifestations, cerebrospinal fluid (CSF) characteristics, imaging studies and prognostic factors of adverse clinical outcomes (ACO) among adults with herpes simplex virus (HSV) or varicella zoster virus (VZV) CNS infections. Retrospective review of adult patients with positive HSV or VZV polymerase chain reaction on CSF from an observational study of meningitis or encephalitis in Houston, TX (2004-2014), and New Orleans, LA (1999-2008). Ninety-eight adults patients were identified; 25 had encephalitis [20 (20.4 %) HSV, 5 (5.1 %) VZV], and 73 had meningitis [60 (61.1 %) HSV and 13 (13.3 %) VZV]. HSV and VZV had similar presentations except for nausea (P < 0.01) and rash (P < 0.001). The CSF profile did not differ between HSV and VZV infection. Abnormal neuroimaging findings were found in 11.6 % (10/86) brain CTs and 21.3 % (16/75) brain MRIs. The EEG was abnormal in 57.9 % (11/19). Sixteen patients (16.3 %) had an ACO (10 HSV encephalitis, 3 VZV encephalitis and 3 VZV meningitis). Intravenous acyclovir administered within 48 h was protective against an ACO [OR 0.19 (0.04-0.80), P = 0.02). However, on logistic regression only Charlson comorbidity score >1 and an encephalitis presentation were independently associated with an ACO. The treatment for HSV meningitis was variable, and all patients had a good clinical outcome. Alpha herpes CNS infections due to HSV and VZV infections have similar clinical and laboratory manifestations. ACO was observed more frequently in those patients with comorbidities and an encephalitis presentation.

  9. Survival Advantage of Neonatal CNS Gene Transfer for Late Infantile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Sondhi, Dolan; Peterson, Daniel A.; Edelstein, Andrew M.; del Fierro, Katrina; Hackett, Neil R.; Crystal, Ronald G.

    2009-01-01

    Summary Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal autosomal recessive neurodegenerative lysosomal storage disorder of childhood, is caused by mutations in the CLN2 gene, resulting in deficiency of the protein tripeptidyl peptidase I (TPP-I). We have previously shown that direct CNS administration of AAVrh.10hCLN2 to adult CLN2 knockout mice, a serotype rh.10 adeno-associated virus expressing the wild type CLN2 cDNA, will partially improve neurological function and survival. In this study, we explore the hypothesis that administration of AAVrh.10hCLN2 to the neonatal brain will significantly improve the results of AAVrh.10hCLN2 therapy. To assess this concept, AAVrh.10hCLN2 vector was administered directly to the CNS of CLN2 knockout mice at 2 days, 3 wk and 7 wk of age. While all treatment groups show a marked increase in total TPP-I activity over wild-type mice, neonatally treated mice displayed high levels of TPP-I activity in the CNS 1 yr after administration which was spread throughout the brain. Using behavioral markers, 2 day treated mice demonstrate marked improvement over 3 wk, 7 wk or untreated mice. Finally, neonatal administration of AAVrh.10hCLN2 was associated with markedly enhanced survival, with a median time of death 376 days for neonatal treated mice, 277 days for 3 wk treated mice, 168 days for 7 wk treated mice, and 121 days for untreated mice. These data suggest that neonatal treatment offers many unique advantages, and that early detection and treatment may be essential for maximal gene therapy for childhood lysosomal storage disorders affecting the CNS. PMID:18639872

  10. Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury.

    PubMed

    Wang, Wei Eric; Li, Liangpeng; Xia, Xuewei; Fu, Wenbin; Liao, Qiao; Lan, Cong; Yang, Dezhong; Chen, Hongmei; Yue, Rongchuan; Zeng, Cindy; Zhou, Lin; Zhou, Bin; Duan, Dayue Darrel; Chen, Xiongwen; Houser, Steven R; Zeng, Chunyu

    2017-08-29

    Adult mammalian hearts have a limited ability to generate new cardiomyocytes. Proliferation of existing adult cardiomyocytes (ACMs) is a potential source of new cardiomyocytes. Understanding the fundamental biology of ACM proliferation could be of great clinical significance for treating myocardial infarction (MI). We aim to understand the process and regulation of ACM proliferation and its role in new cardiomyocyte formation of post-MI mouse hearts. β-Actin-green fluorescent protein transgenic mice and fate-mapping Myh6-MerCreMer-tdTomato/lacZ mice were used to trace the fate of ACMs. In a coculture system with neonatal rat ventricular myocytes, ACM proliferation was documented with clear evidence of cytokinesis observed with time-lapse imaging. Cardiomyocyte proliferation in the adult mouse post-MI heart was detected by cell cycle markers and 5-ethynyl-2-deoxyuridine incorporation analysis. Echocardiography was used to measure cardiac function, and histology was performed to determine infarction size. In vitro, mononucleated and bi/multinucleated ACMs were able to proliferate at a similar rate (7.0%) in the coculture. Dedifferentiation proceeded ACM proliferation, which was followed by redifferentiation. Redifferentiation was essential to endow the daughter cells with cardiomyocyte contractile function. Intercellular propagation of Ca 2+ from contracting neonatal rat ventricular myocytes into ACM daughter cells was required to activate the Ca 2+ -dependent calcineurin-nuclear factor of activated T-cell signaling pathway to induce ACM redifferentiation. The properties of neonatal rat ventricular myocyte Ca 2+ transients influenced the rate of ACM redifferentiation. Hypoxia impaired the function of gap junctions by dephosphorylating its component protein connexin 43, the major mediator of intercellular Ca 2+ propagation between cardiomyocytes, thereby impairing ACM redifferentiation. In vivo, ACM proliferation was found primarily in the MI border zone. An ischemia

  11. Telomerase expression in the mammalian heart

    PubMed Central

    Richardson, Gavin D.; Breault, David; Horrocks, Grace; Cormack, Suzanne; Hole, Nicholas; Owens, W. Andrew

    2012-01-01

    While the mammalian heart has low, but functionally significant, levels of telomerase expression, the cellular population responsible remains incompletely characterized. This study aimed to identify the cell types responsible for cardiac telomerase activity in neonatal, adult, and cryoinjured adult hearts using transgenic mice expressing green fluorescent protein (GFP), driven by the promoter for murine telomerase reverse transcriptase (mTert), which is a necessary and rate-limiting component of telomerase. A rare population of mTert-GFP-expressing cells was identified that possessed all detectable cardiac telomerase RNA and telomerase activity. It was heterogeneous and included cells coexpressing markers of cardiomyocytic, endothelial, and mesenchymal lineages, putative cardiac stem cell markers, and, interestingly, cardiomyocytes with a differentiated phenotype. Quantification using both flow cytometry and immunofluorescence identified a significant decline in mTert-GFP cells in adult animals compared to neonates (∼9- and ∼20-fold, respectively). Cardiac injury resulted in a ∼6.45-fold expansion of this population (P<0.005) compared with sham-operated controls. This study identifies the cells responsible for cardiac telomerase activity, demonstrates a significant diminution with age but a marked response to injury, and, given the relationship between telomerase activity and stem cell populations, suggests that they represent a potential target for further investigation of cardiac regenerative potential.—Richardson, G. D., Breault, D., Horrocks, G., Cormack, S., Hole, N., Owens, W. A. Telomerase expression in the mammalian heart. PMID:22919071

  12. Neurocognitive Status in Long-Term Survivors of Childhood CNS Malignancies: A Report from the Childhood Cancer Survivor Study

    PubMed Central

    Ellenberg, Leah; Liu, Qi; Gioia, Gerard; Yasui, Yutaka; Packer, Roger J.; Mertens, Ann; Donaldson, Sarah S.; Stovall, Marilyn; Kadan-Lottick, Nina; Armstrong, Gregory; Robison, Leslie L.; Zeltzer, Lonnie K.

    2009-01-01

    irradiation, with smaller effect sizes (.49 and .43, respectively). Ventriculoperitoneal (VP) shunt placement was associated with small deficits on the same scales (Effect sizes: Task Efficiency .26, Memory .32). Female gender predicted a greater likelihood of impaired scores on 2 scales, with small effect sizes (Task Efficiency .38, Emotional Regulation .45), while diagnosis before age 2 years resulted in less likelihood of reported impairment on the Memory factor with a moderate effect size (.64). CNS malignancy survivors with more impaired CCSS-NCQ scores demonstrated significantly lower educational attainment (p<.01), less household income (p<.001) and less full time employment (p<.001). Conclusions Survivors of childhood CNS malignancy are at significant risk for impairment in neurocognitive functioning in adulthood, particularly if they have received cranial radiation, had a VP shunt placed, suffered a cerebrovascular incident or are left with hearing or motor impairments. Reported neurocognitive impairment adversely affected important adult outcomes, including education, employment, income and marital status. PMID:19899829

  13. Thyroid Hormone Regulates the Expression of the Sonic Hedgehog Signaling Pathway in the Embryonic and Adult Mammalian Brain

    PubMed Central

    Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha

    2011-01-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T3 administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh+/LacZ mice. Further, acute T3 treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T3 administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone. PMID:21363934

  14. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain.

    PubMed

    Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A

    2011-05-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.

  15. Immunohistological localization of serotonin in the CNS and feeding system of the stable fly stomoxys calcitrans L. (Diptera: muscidae)

    USDA-ARS?s Scientific Manuscript database

    Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR)to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stab...

  16. CNS Macrophages Control Neurovascular Development via CD95L.

    PubMed

    Chen, Si; Tisch, Nathalie; Kegel, Marcel; Yerbes, Rosario; Hermann, Robert; Hudalla, Hannes; Zuliani, Cecilia; Gülcüler, Gülce Sila; Zwadlo, Klara; von Engelhardt, Jakob; Ruiz de Almodóvar, Carmen; Martin-Villalba, Ana

    2017-05-16

    The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. CNS Anticancer Drug Discovery and Development Conference White Paper

    PubMed Central

    Levin, Victor A.; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang; Sarkaria, Jann N.; Samala, Ramakrishna; Wen, Patrick Y.; Berry, Donald A.; Petter, Russell C.

    2015-01-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric “Accelerating Drug Discovery and Development for Brain Tumors,” further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167

  18. Structural stabilization of CNS synapses during postnatal development in rat cortex.

    PubMed

    Khaing, Zin Z; Fidler, Lazar; Nandy, Nina; Phillips, Greg R

    2006-07-01

    CNS synapses are produced rapidly upon pre- and post-synaptic recruitment. However, their composition is known to change during development and we reasoned that this may be reflected in the gross biochemical properties of synapses. We found synaptic structure in adult cortical synaptosomes to be resistant to digestion with trypsin in the presence and absence of calcium ions, contrasting with previous observations. We evaluated the divalent cation dependence and trypsin sensitivities of synapses using synaptosomes from different developmental stages. In contrast to adult synapses, at postnatal day (P) 10 EDTA treatment eliminated approximately 60% of the synapses, and trypsin and EDTA, together, eliminated all junctions. Trypsinization in the presence of calcium eliminated approximately 60% of the junctions at P10. By P35, all synapses were calcium independent, whereas full trypsin resistance was not attained until P49. To compare the calcium dependence and trypsin sensitivity of synapses in another region of the adult brain, we examined synapses from adult (P50) hippocampus. Adult hippocampus maintained a population of synapses that resembled that of P35 cortex. Our results show that synapses are modified over a long time period in the developing cortex. We propose a model in which the addition of synergistic calcium-dependent and -independent adhesive systems stabilize synapses.

  19. Primary CNS Lymphoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Primary central nervous system (CNS) lymphoma treatment options include radiation, chemotherapy, and corticosteroids. Get detailed information about the treatment of newly diagnosed and recurrent primary CNS lymphoma cancer in this clinician summary.

  20. Protective and pathological immunity during CNS infections

    PubMed Central

    Klein, Robyn S.; Hunter, Christopher A.

    2017-01-01

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted the innate pathways that limit pathogen invasion of the CNS and that adaptive immunity mediates control of many neural infections. Because protective responses can result in bystander damage there are regulatory mechanisms that balance protective and pathological inflammation but which may also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. PMID:28636958

  1. 21. Increased FDG uptake in Childhood CNS Tumors is Associated with Tumor Malignancy.

    PubMed

    Borgwardt; Carstensen; Schmiegelow; Højgaard

    2000-07-01

    Background: In adults PET scanning of CNS tumors with the tracer FDG (18F-flourodeoxyglucose) can provide information about the degree of malignancy, tumor extent, and dissemination. FDG PET can also be able to assess tumor response to therapy and to differentiate recurrence from necrosis. Although CNS tumors are the most common solid tumor in childhood, so far only few PET-studies have been reported. Pre-operative assessment of malignancy would facilitate surgical planning and the use of pre-operative chemotherapy.Materials and Methods: 21 children with CNS tumors were referred to clinical FDG PET prior to therapy (M/F = 12/9, median age: 9 (range 0-16)), (4 PNET/medulloblastomas; 1 gr. III ependymoma, 16 benign tumors)). Image processing included co-registration with MRI and image fusion. The FDG uptake in the tumors was ranked 0-5 by a hotspot/cortex-ratio by two observers independently. The FDG uptake in grey and white matter was used as reference for the grading system with FDG uptakes defined as 4 and 2 respectively.Results: 15 of 16 patients with tumors WHO gr. I-II had FDG-uptake of 1-2, and all 5 patients with tumors WHO gr. III-IV had FDG-uptake of 3-4. A WHO gr. I papilloma, known to have a high metabolism caused by high mitochondrial activity, had FDG uptake of 5. Except for this tumor, the FDG uptake was positively correlated with tumor malignancy. MRI/PET co-registration and image fusion increased the specificity of tumor location, as well as of tumor extent, and of heterogeneity (e.g., areas of necrosis).Conclusion: FDG PET with MRI/PET co-registration and image fusion could be an important adjunct in the diagnostic work up of pediatric CNS tumors, and could help define patients eligible for pre-operative chemotherapy.

  2. The effects of Chinese medicines on cAMP/PKA signaling in central nervous system dysfunction.

    PubMed

    Li, Lin; Fan, Xiang; Zhang, Xi-Ting; Yue, Shao-Qian; Sun, Zuo-Yan; Zhu, Jin-Qiang; Zhang, Jun-Hua; Gao, Xiu-Mei; Zhang, Han

    2017-06-01

    Neuropathological injury in the mammalian adult central nervous system (CNS) may cause axon disruption, neuronal death and lasting neurological deficits. Failure of axon regeneration is one of the major challenges for CNS functional recovery. Recently, the cAMP/PKA signaling pathway has been proven to be a critical regulator for neuronal regeneration, neuroplasticity, learning and memory. Also, previous studies have shown the effects of Chinese medicines on the prevention and treatment of CNS dysfunction mediated in part by cAMP/PKA signaling. In this review, the authors discuss current knowledge of the role of cAMP/PKA signaling pathway in neuronal regeneration and provide an overview of the Chinese medicines that may enable CNS functional recovery via this signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Career readiness, developmental work personality and age of onset in young adult central nervous system survivors.

    PubMed

    Strauser, David; Wagner, Stacia; Wong, Alex W K; O'Sullivan, Deidre

    2013-04-01

    The primary purpose of this paper is to undertake foundational research in the area of career readiness, work personality and age of onset with young adult central nervous system (CNS) survivors. Participants for this study consisted of 43 individuals whose age range from 18 to 30 (M = 21.64, SD = 3.46), an average age of brain tumor onset of 9.50 years (SD = 4.73) and average years off of treatment of 7.25 years (SD = 5.80). Packets were distributed to survivors who were participating in a psychosocial cancer treatment program. Participants completed multiple career instruments and a demographic form. Differences between groups and among the variables were examined and size effect sizes were analyzed. Young adult CNS survivors had significantly lower levels of work personality and career readiness when compared to young adult non-cancer survivors with CNS cancer with those between the ages of 6 and 12 reported significantly lower levels when compared to individuals diagnosed before age 6 and after the age of 13. Young adult CNS survivors at an increased risk for having lower levels of work personality and career readiness then a norm group comparison. Age of onset (between 6 and 12) may be at significant risk factor for developing poor or dysfunctional work and career behaviors. • Young adults with central nervous system (CNS) cancer are at particular risk for experiencing difficulties related to career and employment. • Work personality and career readiness are two constructs that have been found to be related to one's ability to meet the demands of work. • Young adult CNS cancer survivors have lower levels of work personality and career readiness. • Individuals diagnosed between the ages of 6 and 12 may be at particular risk and may need specific vocational rehabilitation interventions. • The results of this study point to the need for comprehensive career and vocational services for young adult CNS cancer survivors.

  4. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  5. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels.

    PubMed

    Podda, Maria Vittoria; Grassi, Claudio

    2014-07-01

    Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.

  6. GNSS real time performance monitoring and CNS/ATM implementation

    DOT National Transportation Integrated Search

    2006-07-01

    The global transition to communications, navigation, surveillance / air traffic management (CNS/ATM) technology is moving forward at an increasing pace. A critical part of the CNS/ATM concept is the ability to monitor, analyze, and distribute aeronau...

  7. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS.

    PubMed

    Delvendahl, Igor; Hallermann, Stefan

    2016-11-01

    The speed of neuronal information processing depends on neuronal firing frequency. Here, we describe the evolutionary advantages and ubiquitous occurrence of high-frequency firing within the mammalian nervous system in general. The highest firing frequencies so far have been observed at the cerebellar mossy fiber to granule cell synapse. The mechanisms enabling high-frequency transmission at this synapse are reviewed and compared with other synapses. Finally, information coding of high-frequency signals at the mossy fiber synapse is discussed. The exceptionally high firing frequencies and amenability to high-resolution technical approaches both in vitro and in vivo establish the cerebellar mossy fiber synapse as an attractive model to investigate high-frequency signaling from the molecular up to the network level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice

    PubMed Central

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A.; Stumpf, Sina K.; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions. PMID:28149504

  9. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice.

    PubMed

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A; Stumpf, Sina K; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  10. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology

    PubMed Central

    Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.

    2007-01-01

    The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal CNS development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research

  11. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS.

    PubMed

    Cario, Gunnar; Izraeli, Shai; Teichert, Anja; Rhein, Peter; Skokowa, Julia; Möricke, Anja; Zimmermann, Martin; Schrauder, Andre; Karawajew, Leonid; Ludwig, Wolf-Dieter; Welte, Karl; Schünemann, Holger J; Schlegelberger, Brigitte; Schrappe, Martin; Stanulla, Martin

    2007-10-20

    Applying current diagnostic methods, overt CNS involvement is a rare event in childhood acute lymphoblastic leukemia (ALL). In contrast, CNS-directed therapy is essential for all patients with ALL because without it, the majority of patients eventually will experience relapse. To approach this discrepancy and to explore potential distinct biologic properties of leukemic cells that migrate into the CNS, we compared gene expression profiles of childhood ALL patients with initial CNS involvement with the profiles of CNS-negative patients. We evaluated leukemic gene expression profiles from the bone marrow of 17 CNS-positive patients and 26 CNS-negative patients who were frequency matched for risk factors associated with CNS involvement. Results were confirmed by real-time quantitative polymerase chain reaction analysis and validated using independent patient samples. Interleukin-15 (IL-15) expression was consistently upregulated in leukemic cells of CNS-positive patients compared with CNS-negative patients. In multivariate analysis, IL-15 expression levels greater than the median were associated with CNS involvement compared with expression equal to or less than the median (odds ratio [OR] = 10.70; 95% CI, 2.95 to 38.81). Diagnostic likelihood ratios for CNS positivity were 0.09 (95% CI, 0.01 to 0.65) for the first and 6.93 (95% CI, 2.55 to 18.83) for the fourth IL-15 expression quartiles. In patients who were CNS negative at diagnosis, IL-15 levels greater than the median were associated with subsequent CNS relapse compared with expression equal to or less than the median (OR = 13.80; 95% CI, 3.38 to 56.31). Quantification of leukemic IL-15 expression at diagnosis predicts CNS status and could be a new tool to further tailor CNS-directed therapy in childhood ALL.

  12. Considerations for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navitation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of

  13. Considerations for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navigation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of

  14. CNS drug development: part III: future directions.

    PubMed

    Preskorn, Sheldon H

    2011-01-01

    This column, the third in a series on central nervous system (CNS) drug development, discusses advances during the first decade of the 21st century and directions the field may take in the next 10 years. By identifying many possible new drug targets, the human genome project has created the potential to develop novel central nervous system (CNS) drugs with new mechanisms of action. At the same time, this proliferation of possible new targets has complicated the drug development process, since research has not yet provided guidance as to which targets may be most fruitful. This and other factors (eg, increasing regulatory requirements) have increased the cost and complexity of the drug development process. In addition, as more is learned about the biology of psychiatric illnesses, syndromes may be subdivided into more specific entities that are better understood from a pathophysiological and pathoetiological perspective. This is likely to lead to development of more targeted treatments focused on underlying causes of illness as well as prevention. The development of drugs for Alzheimer's disease is discussed as a possible model for future CNS drug development. We are at the beginning of an era when it is likely that the way in which CNS drugs are developed will need to be rethought, which will call for flexibility and creativity on the part of both drug developers and clinical researchers.

  15. Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease.

    PubMed

    Lepoutre, Veronique; Jain, Pooja; Quann, Kevin; Wigdahl, Brian; Khan, Zafar K

    2009-01-01

    Human T cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiologic agent for a number of disorders; the two most common pathologies include adult T cell leukemia (ATL) and a progressive demyelinating neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The neurologic dysfunction associated with HAM/TSP is a result of viral intrusion into the central nervous system (CNS) and the generation of a hyperstimulated host response within the peripheral and central nervous system that includes expanded populations of CD4+ and CD8+ T cells and proinflammatory cytokines/chemokines in the cerebrospinal fluid (CSF). This robust, yet detrimental immune response likely contributes to the death of myelin producing oligodendrocytes and degeneration of neuronal axons. The mechanisms of neurological degeneration in HAM/TSP have yet to be fully delineated in vivo and may involve the immunogenic properties of the HTLV-1 transactivator protein Tax. This comprehensive review characterizes the available knowledge to date concerning the effects of HTLV-1 on CNS resident cell populations with emphasis on both viral and host factors contributing to the genesis of HAM/TSP.

  16. Amyloid-β efflux from the CNS into the plasma

    PubMed Central

    Roberts, Kaleigh Filisa; Elbert, Donald L.; Kasten, Tom P.; Patterson, Bruce W.; Sigurdson, Wendy C.; Connors, Rose E.; Ovod, Vitaliy; Munsell, Ling Y.; Mawuenyega, Kwasi G.; Miller-Thomas, Michelle M.; Moran, Christopher J.; Cross, Dewitte T.; Derdeyn, Colin P.; Bateman, Randall J.

    2015-01-01

    Objective The aim of this study was to measure the flux of amyloid-β (Aβ) across the human cerebral capillary bed in order to determine if transport into the blood is a significant mechanism of clearance for Aβ produced in the central nervous system (CNS). Methods Time-matched blood samples were simultaneously collected from a cerebral vein (including the sigmoid sinus, inferior petrosal sinus, and the internal jugular vein), femoral vein, and radial artery of patients undergoing Inferior Petrosal Sinus Sampling (IPSS). For each plasma sample, Aβ concentration was assessed by three assays and the venous to arterial Aβ concentration ratios were determined. Results Aβ concentration was increased by ~7.5% in venous blood leaving the CNS capillary bed compared to arterial blood, indicating efflux from the CNS into the peripheral blood (p < 0.0001). There was no difference in peripheral venous Aβ concentration compared to arterial blood concentration. Interpretation Our results are consistent with clearance of CNS-derived Aβ into the venous blood supply with no increase from a peripheral capillary bed. Modeling these results suggests that direct transport of Aβ across the blood-brain barrier accounts for ~25% of Aβ clearance, and reabsorption of cerebrospinal fluid Aβ accounts for ~25% of the total CNS Aβ clearance in humans. PMID:25205593

  17. CNS angiogenesis and barriergenesis occur simultaneously.

    PubMed

    Umans, Robyn A; Henson, Hannah E; Mu, Fangzhou; Parupalli, Chaithanyarani; Ju, Bensheng; Peters, Jennifer L; Lanham, Kevin A; Plavicki, Jessica S; Taylor, Michael R

    2017-05-15

    The blood-brain barrier (BBB) plays a vital role in the central nervous system (CNS). A comprehensive understanding of BBB development has been hampered by difficulties in observing the differentiation of brain endothelial cells (BECs) in real-time. Here, we generated two transgenic zebrafish line, Tg(glut1b:mCherry) and Tg(plvap:EGFP), to serve as in vivo reporters of BBB development. We showed that barriergenesis (i.e. the induction of BEC differentiation) occurs immediately as endothelial tips cells migrate into the brain parenchyma. Using the Tg(glut1b:mCherry) transgenic line, we performed a genetic screen and identified a zebrafish mutant with a nonsense mutation in gpr124, a gene known to play a role in CNS angiogenesis and BBB development. We also showed that our transgenic plvap:EGFP line, a reporter of immature brain endothelium, is initially expressed in newly formed brain endothelial cells, but subsides during BBB maturation. Our results demonstrate the ability to visualize the in vivo differentiation of brain endothelial cells into the BBB phenotype and establish that CNS angiogenesis and barriergenesis occur simultaneously. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. CNS infections in Greenland: A nationwide register-based cohort study

    PubMed Central

    Nordholm, Anne Christine; Søborg, Bolette; Andersson, Mikael; Hoffmann, Steen; Skinhøj, Peter; Koch, Anders

    2017-01-01

    Background Indigenous Arctic people suffer from high rates of infectious diseases. However, the burden of central nervous system (CNS) infections is poorly documented. This study aimed to estimate incidence rates and mortality of CNS infections among Inuits and non-Inuits in Greenland and in Denmark. Methods We conducted a nationwide cohort study using the populations of Greenland and Denmark 1990–2012. Information on CNS infection hospitalizations and pathogens was retrieved from national registries and laboratories. Incidence rates were estimated as cases per 100,000 person-years. Incidence rate ratios were calculated using log-linear Poisson-regression. Mortality was estimated using Kaplan-Meier curves and Log Rank test. Results The incidence rate of CNS infections was twice as high in Greenland (35.6 per 100,000 person years) as in Denmark (17.7 per 100,000 person years), but equally high among Inuits in Greenland and Denmark (38.2 and 35.4, respectively). Mortality from CNS infections was 2 fold higher among Inuits (10.5%) than among non-Inuits (4.8%) with a fivefold higher case fatality rate in Inuit toddlers. Conclusion Overall, Inuits living in Greenland and Denmark suffer from twice the rate of CNS infections compared with non-Inuits, and Inuit toddlers carried the highest risk of mortality. Further studies regarding risk factors such as genetic susceptibility, life style and socioeconomic factors are warranted. PMID:28158207

  19. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS.

    PubMed

    Fleischmann, Alexander; Hvalby, Oivind; Jensen, Vidar; Strekalova, Tatyana; Zacher, Christiane; Layer, Liliana E; Kvello, Ane; Reschke, Markus; Spanagel, Rainer; Sprengel, Rolf; Wagner, Erwin F; Gass, Peter

    2003-10-08

    The immediate early gene c-fos is part of the activator protein-1 transcription factor and has been postulated to participate in the molecular mechanisms of learning and memory. To test this hypothesis in vivo, we generated mice with a nervous system-specific c-fos knock-out using the Cre-loxP system. Adult mice lacking c-Fos in the CNS (c-fosDeltaCNS) showed normal general and emotional behavior but were specifically impaired in hippocampus-dependent spatial and associative learning tasks. These learning deficits correlated with a reduction of long-term potentiation (LTP) in hippocampal CA3-CA1 synapses. The magnitude of LTP was restored by a repeated tetanization procedure, suggesting impaired LTP induction in c-fosDeltaCNS mice. This rescue was blocked by a selective inhibitor of NR2B-type NMDA receptors. This blockade was compensated in wild-type mice by NR2A-type NMDA receptor-activated signaling pathways, thus indicating that these pathways are compromised in c-fosDeltaCNS mice. In summary, our data suggest a role for c-Fos in hippocampus-dependent learning and memory as well as in NMDA receptor-dependent LTP formation.

  20. Liposomal cytarabine in the prophylaxis and treatment of CNS lymphoma: toxicity analysis in a retrospective case series study conducted at Polish Lymphoma Research Group Centers.

    PubMed

    Jurczak, Wojciech; Kroll-Balcerzak, Renata; Giebel, Sebastian; Machaczka, Maciej; Giza, Agnieszka; Ogórka, Tomasz; Fornagiel, Szymon; Rybka, Justyna; Wróbel, Tomasz; Kumiega, Beata; Skotnicki, Aleksander B; Komarnicki, Mieczysław

    2015-04-01

    Lymphomas with primary or secondary involvement of central nervous system (CNS) have poor prognosis despite specific treatment protocols which include whole brain radiotherapy and high-dose systemic and/or intrathecal chemotherapy. Toxicity of intrathecal liposomal cytarabine-based regimens collected between November 2006 and January 2012 was assessed retrospectively. Data from 120 adult lymphoma patients with, or at high risk of CNS involvement who received intrathecal liposomal cytarabine-based regimens at six Polish Lymphoma Research Group centres between November 2006 and January 2012 were assessed retrospectively. Patients were divided into three cohorts: A (high risk of CNS disease, n = 88), B (cerebrospinal fluid pleocytosis without neurological symptoms or pathological imaging findings, n = 7), and C (CNS disease/neurological involvement; n = 25). In all examined groups, toxicity of treatment was found to be acceptable (including the prophylactic setting). None of the patients in cohorts A or B who took intrathecal liposomal cytarabine 50 mg, repeated every 2-4 weeks (mean 3.8 doses) had experienced a CNS relapse at a median follow-up time of 3 years. Patients in cohort C had a 76 % overall neurological response rate (including a 40 % complete response rate) and median overall survival of 4.8 years. Regimens incorporating liposomal cytarabine seem to be safe and effective treatments for lymphomas with CNS involvement.

  1. Vocational identity, positive affect, and career thoughts in a group of young adult central nervous system cancer survivors.

    PubMed

    Lange, Dustin D; Wong, Alex W K; Strauser, David R; Wagner, Stacia

    2014-12-01

    The aims of this study were as follows: (a) to compare levels of career thoughts and vocational identity between young adult childhood central nervous system (CNS) cancer survivors and noncancer peers and (b) to investigate the contribution of vocational identity and affect on career thoughts among cancer survivors. Participants included 45 young adult CNS cancer survivors and a comparison sample of 60 college students. Participants completed Career Thoughts Inventory, My Vocational Situation, and the Positive and Negative Affect Schedule. Multivariate analysis of variance and multiple regression analysis were used to analyze the data in this study. CNS cancer survivors had a higher level of decision-making confusion than the college students. Multiple regression analysis indicated that vocational identity and positive affect significantly predicted the career thoughts of CNS survivors. The differences in decision-making confusion suggest that young adult CNS survivors would benefit from interventions that focus on providing knowledge of how to make decisions, while increasing vocational identity and positive affect for this specific population could also be beneficial.

  2. Immunolocalization of ciliary neurotrophic factor receptor alpha (CNTFRalpha) in mammalian photoreceptor cells.

    PubMed

    Beltran, William A; Rohrer, Hermann; Aguirre, Gustavo D

    2005-04-01

    To characterize the site of expression of the alpha subunit of the receptor for ciliary neurotrophic factor (CNTFRalpha) in the retina of a variety of mammalian species, and determine whether CNTFRalpha is localized to photoreceptor cells. The cellular distribution of CNTFRalpha(protein) was examined by immunocytochemistry in the adult retinas of several mammalian species that included mouse, rat, dog, cat, sheep, pig, horse, monkey, and human. Developing retinas from 3-day-old and 6-day-old rats were also included in this study. The molecular weight of CNTFRalpha in rat, dog, cat, pig, and human retinas was determined by immunoblotting. CNTFRalpha immunolabeling was present in the retina of all species. A common pattern was observed in all species, and represented labeling of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL). CNTFRalpha did not immunolocalize to photoreceptor cells in both adult and developing rodent retinas, but was consistently observed in both rods and cones of non-rodent species. The molecular weight of CNTFRalpha in mammalian retinas was approximately 61-64 kDa. These findings highlight a significant difference in the expression of CNTFRalpha in the retina of rodent and non-rodent mammalian species. The expression of CNTFRalpha by rods and cones in non-rodent species may suggest a direct mechanism of action if CNTF administration results in photoreceptor rescue.

  3. Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair?

    PubMed

    Lindsay, Susan L; Barnett, Susan C

    2017-06-01

    In recent years there has been a great deal of research within the stem cell field which has led to the definition and classification of a range of stem cells from a plethora of tissues and organs. Stem cells, by classification, are considered to be pluri- or multipotent and have both self-renewal and multi-differentiation capabilities. Presently there is a great deal of interest in stem cells isolated from both embryonic and adult tissues in the hope they hold the therapeutic key to restoring or treating damaged cells in a number of central nervous system (CNS) disorders. In this review we will discuss the role of mesenchymal stromal cells (MSCs) isolated from human olfactory mucosa, with particular emphasis on their potential role as a candidate for transplant mediated repair in the CNS. Since nestin expression defines the entire population of olfactory mucosal derived MSCs, we will compare these cells to a population of neural crest derived nestin positive population of bone marrow-MSCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Fibrin Glue Used as an Adhesive Agent in CNS Tissues

    PubMed Central

    Cheng, Henrich; Almström, Susanne; Olson, Lars

    1994-01-01

    glue joined and control double intraocular grafts. In conclusion, fibrin glue can be used as an adhesive agent in CNS tissues without hampering the outgrowth of neurites or causing adverse tissue reactions in fetal or adult nervous tissues. PMID:7578439

  5. Integrated Stress Response as a Therapeutic Target for CNS Injuries.

    PubMed

    Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Barreda-Manso, M Asunción

    2017-01-01

    Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.

  6. Advances in the diagnosis and treatment of fungal infections of the CNS.

    PubMed

    Schwartz, Stefan; Kontoyiannis, Dimitrios P; Harrison, Thomas; Ruhnke, Markus

    2018-04-01

    Fungal infections of the CNS are challenging to treat and their optimal management requires knowledge of their epidemiology, host characteristics, diagnostic criteria, and therapeutic options. Aspergillus and Cryptococcus species predominate among fungal infections of the CNS. Most of these fungi are ubiquitous, but some have restricted geographical distribution. Fungal infections of the CNS usually originate from primary sites outside the CNS (eg, fungal pneumonia) or occur after inoculation (eg, invasive procedures). Most patients with these infections have immunodeficiencies, but immunocompetent individuals can also be infected through heavy exposure. The infecting fungi can be grouped into moulds, yeasts, and dimorphic fungi. Substantial progress has been made with new diagnostic approaches and the introduction of novel antifungal drugs, but fungal infections of the CNS are frequently lethal because of diagnostic delays, impaired drug penetration, resistance to antifungal treatments, and inadequate restoration of immune function. To improve outcomes, future research should advance diagnostic methods (eg, molecular detection and fungus identification), develop antifungal compounds with enhanced CNS-directed efficacy, and further investigate crucial host defence mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mechanisms of Hypothermia, Delayed Hyperthermia and Fever Following CNS Injury

    EPA Science Inventory

    Central nervous system (CNS) damage is often associated with robust body temperature changes, such as hypothermia and delayed hyperthermia. Hypothermia is one of the most common body temperature changes to CNS insults in rodents and is often associated with improved outcome. Alth...

  8. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence.

    PubMed

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-07-02

    Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration.

  9. The Coordinated Noninvasive Studies (CNS) Project. Phase 1

    DTIC Science & Technology

    1991-12-01

    may reveal functional asymmetries that represent the influence of two factors: 1) the "contralateral effect ," based on the side -of-space source of...asymmetries, where processing on that side of the CNS opposite the side of input is favored, and 2) an effect based J.L. Lauter [CNS Project/AFOSR 88-0352...extent that these exist over and above sidedness bias as well as side -of-space asymmetries -- since in these experiments, contralateral effects are

  10. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era

    PubMed Central

    Huang, Hongyun; Chen, Lin; Sanberg, Paul

    2010-01-01

    Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology. PMID:21359168

  11. Sensitization to the mammalian oligosaccharide galactose-alpha-1,3-galactose (alpha-gal): experience in a Flemish case series.

    PubMed

    Ebo, D G; Faber, M; Sabato, V; Leysen, J; Gadisseur, A; Bridts, C H; De Clerck, L S

    2013-01-01

    Recent observations have disclosed that the galactose-alpha (1,3)-galactose (alpha-gal) moiety of non-primate glycoproteins can constitute a target for meat allergy. To describe adults with allergic reactions to mammalian meat, dairy products and gelatin. To investigate whether patients could demonstrate sensitization to activated recombinant human coagulation factor VII ectapog alpha that is produced in baby hamster kidney cells. Ten adults with mammalian meat, dairy products and gelatin allergies were examined using quantification of specific IgE and/or skin prick test for red meat, milk, milk components, gelatin, cetuximab and eptacog alpha. Most patients demonstrate quite typical clinical histories and serological profiles, with anti-alpha-gal titers varying from less than 1% to over 25% of total serum IgE. All patients demonstrate negative sIgE for gelatin, except the patient with a genuine gelatin allergy. All patients also demonstrated a negative sIgE to recombinant milk components casein, lactalbumin and lactoglobulin. Specific IgE to eptacog was positive in 5 out of the 9 patients sensitized to alpha-gal and none of the 10 control individuals. This series confirms the importance of the alpha-gal carbohydrate moiety as a potential target for allergy to mammalian meat, dairy products and gelatin (oral, topical or parenteral) in a Flemish population of meat allergic adults. It also confirms in vitro tests to mammalian meat generally to be more reliable than mammalian meat skin tests, but that diagnosis can benefit from skin testing with cetuximab. Specific IgE to gelatin is far too insensitive to diagnose alphaa-gal related gelatin allergy. IgE binding studies indicate a potential risk of alpha-gal-containing human recombinant proteins produced in mammalians.

  12. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence

    PubMed Central

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-01-01

    ABSTRACT Background: Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. Case presentation: A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. Discussion: CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. Conclusion: In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration. PMID:27105248

  13. Concise Review: Adult Mesenchymal Stem Cells, Adult Neural Crest Stem Cells, and Therapy of Neurological Pathologies: A State of Play

    PubMed Central

    Neirinckx, Virginie; Coste, Cécile; Rogister, Bernard

    2013-01-01

    Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions. PMID:23486833

  14. Presynaptic Inputs to Any CNS Projection Neuron Identified by Dual Recombinant Virus Infection

    PubMed Central

    Bráz, João M.; Wang, Fan; Basbaum, Allan I.

    2015-01-01

    Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN) of the central nervous system (CNS), there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat. PMID:26470056

  15. Allogeneic stem cell transplantation for adult patients with acute lymphoblastic leukemia who had central nervous system involvement: a study from the Adult ALL Working Group of the Japan Society for Hematopoietic Cell Transplantation.

    PubMed

    Shigematsu, Akio; Kako, Shinichi; Mitsuhashi, Kenjiro; Iwato, Koji; Uchida, Naoyuki; Kanda, Yoshinobu; Fukuda, Takahiro; Sawa, Masashi; Senoo, Yasushi; Ogawa, Hiroyasu; Miyamura, Koichi; Takada, Satoru; Nagamura-Inoue, Tokiko; Morishima, Yasuo; Ichinohe, Tatsuo; Atsuta, Yoshiko; Mizuta, Shuichi; Tanaka, Junji

    2017-06-01

    The prognosis for adult acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement (CNS+) who received allogeneic hematopoietic stem cell transplantation (allo-SCT) remains unclear. We retrospectively compared the outcomes of allo-SCT for patients with CNS involvement and for patients without CNS involvement (CNS-) using a database in Japan. The eligibility criteria for this study were as follows: diagnosis of ALL, aged more than 16 years, allo-SCT between 2005 and 2012, and first SCT. Data for 2582 patients including 136 CNS+ patients and 2446 CNS- patients were used for analyses. As compared with CNS- patients, CNS+ patients were younger, had worse disease status at SCT and had poorer performance status (PS) at SCT (P < 0.01). Incidence of relapse was higher in CNS+ patients (P = 0.02), and incidence of CNS relapse was also higher (P < 0.01). The probability of 3-year overall survival (OS) was better in CNS- patients (P < 0.01) by univariate analysis. However, in patients who received SCT in CR, there was no difference in the probability of OS between CNS+ and CNS- patients (P = 0.38) and CNS involvement did not have an unfavorable effect on OS by multivariate analysis. CNS+ patients who achieved CR showed OS comparable to that of CNS- patients.

  16. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  17. Adult-specific insulin-producing neurons in Drosophila melanogaster.

    PubMed

    Ohhara, Yuya; Kobayashi, Satoru; Yamakawa-Kobayashi, Kimiko; Yamanaka, Naoki

    2018-06-01

    Holometabolous insects undergo metamorphosis to reorganize their behavioral and morphological features into adult-specific ones. In the central nervous system (CNS), some larval neurons undergo programmed cell death, whereas others go through remodeling of axonal and dendritic arbors to support functions of re-established adult organs. Although there are multiple neuropeptides that have stage-specific roles in holometabolous insects, the reorganization pattern of the entire neuropeptidergic system through metamorphosis still remains largely unclear. In this study, we conducted a mapping and lineage tracing of peptidergic neurons in the larval and adult CNS by using Drosophila genetic tools. We found that Diuretic hormone 44-producing median neurosecretory cells start expressing Insulin-like peptide 2 in the pharate adult stage. This neuronal cluster projects to the corpora cardiaca and dorsal vessel in both larval and adult stages, and also innervates an adult-specific structure in the digestive tract, the crop. We propose that the adult-specific insulin-producing cells may regulate functions of the digestive system in a stage-specific manner. Our study provides a neuroanatomical basis for understanding remodeling of the neuropeptidergic system during insect development and evolution. © 2018 Wiley Periodicals, Inc.

  18. Activity-dependent plasticity in spinal cord injury

    PubMed Central

    Lynskey, James V.; Belanger, Adam; Jung, Ranu

    2008-01-01

    The adult mammalian central nervous system (CNS) is capable of considerable plasticity, both in health and disease. After spinal neurotrauma, the degrees and extent of neuroplasticity and recovery depend on multiple factors, including the level and extent of injury, postinjury medical and surgical care, and rehabilitative interventions. Rehabilitation strategies focus less on repairing lost connections and more on influencing CNS plasticity for regaining function. Current evidence indicates that strategies for rehabilitation, including passive exercise, active exercise with some voluntary control, and use of neuroprostheses, can enhance sensorimotor recovery after spinal cord injury (SCI) by promoting adaptive structural and functional plasticity while mitigating maladaptive changes at multiple levels of the neuraxis. In this review, we will discuss CNS plasticity that occurs both spontaneously after SCI and in response to rehabilitative therapies. PMID:18566941

  19. Immune privilege as an intrinsic CNS property: astrocytes protect the CNS against T-cell-mediated neuroinflammation.

    PubMed

    Gimsa, Ulrike; Mitchison, N Avrion; Brunner-Weinzierl, Monika C

    2013-01-01

    Astrocytes have many functions in the central nervous system (CNS). They support differentiation and homeostasis of neurons and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB) and make up the glia limitans. Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the CNS. Depending on the microenvironment, they may become potent antigen-presenting cells for T cells and they may contribute to inflammatory processes. They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory mediators. We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with lymphocytes, which may either aggravate or suppress neuroinflammation.

  20. Oligodendrocyte Regeneration and CNS Remyelination Require TACE/ADAM17.

    PubMed

    Palazuelos, Javier; Klingener, Michael; Raines, Elaine W; Crawford, Howard C; Aguirre, Adan

    2015-09-02

    The identification of the molecular network that supports oligodendrocyte (OL) regeneration under demyelinating conditions has been a primary goal for regenerative medicine in demyelinating disorders. We recently described an essential function for TACE/ADAM17 in regulating oligodendrogenesis during postnatal myelination, but it is unknown whether this protein also plays a role in OL regeneration and remyelination under demyelinating conditions. By using genetic mouse models to achieve selective gain- or loss-of-function of TACE or EGFR in OL lineage cells in vivo, we found that TACE is critical for EGFR activation in OLs following demyelination, and therefore, for sustaining OL regeneration and CNS remyelination. TACE deficiency in oligodendrocyte progenitor cells following demyelination disturbs OL lineage cell expansion and survival, leading to a delay in the remyelination process. EGFR overexpression in TACE deficient OLs in vivo restores OL development and postnatal CNS myelination, but also OL regeneration and CNS remyelination following demyelination. Our study reveals an essential function of TACE in supporting OL regeneration and CNS remyelination that may contribute to the design of new strategies for therapeutic intervention in demyelinating disorders by promoting oligodendrocyte regeneration and myelin repair. Oligodendrocyte (OL) regeneration has emerged as a promising new approach for the treatment of demyelinating disorders. By using genetic mouse models to selectively delete TACE expression in oligodendrocyte progenitors cells (OPs), we found that TACE/ADAM17 is required for supporting OL regeneration following demyelination. TACE genetic depletion in OPs abrogates EGFR activation in OL lineage cells, and perturbs cell expansion and survival, blunting the process of CNS remyelination. Moreover, EGFR overexpression in TACE-deficient OPs in vivo overcomes the defects in OL development during postnatal development but also OL regeneration during CNS

  1. Adverse CNS-effects of beta-adrenoceptor blockers.

    PubMed

    Gleiter, C H; Deckert, J

    1996-11-01

    In 1962 propranolol, the first beta adrenoceptor antagonist (beta blocker), was brought on to the market. There is now a host of different beta blockers available, and these compounds are among the most commonly prescribed groups of drugs. The efficacy of beta blockers has been proven predominantly for the treatment of cardiovascular diseases. Beta blockers are also used for certain types of CNS disorders, such as anxiety disorders, essential tremor and migraine. While low toxicity means that they have a favorable risk-benefit ratio, given the high intensity of use, it is essential to have a comprehensive knowledge of adverse events. Adverse events of beta blockers that can be related to the CNS are quite often neglected, even in textbooks of clinical pharmacology or review articles, and thus often misdiagnosed. The following article, therefore, after summarizing the use of beta blockers for CNS indications, critically reviews the literature on centrally mediated adverse events. General pharmacological features of beta blockers and their molecular basis of action will briefly be addressed to the extent that they are or may become relevant for central nervous pharmacotherapy and side-effects.

  2. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications.more » Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.« less

  3. Central nervous system involvement in adults with haemophagocytic lymphohistiocytosis: a single-center study.

    PubMed

    Cai, Guilan; Wang, Yini; Liu, Xiaojing; Han, Yanfei; Wang, Zhao

    2017-08-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare multisystem disorder characterized by proliferation and diffuse infiltration multiple organs with histiocytes, including the central nervous system (CNS). Neurological manifestations of HLH have been recognized in different studies with children, but they remain relatively ill-defined in adults with HLH. From March 2008 to October 2014, 289 adult patients with HLH were admitted to our center. Clinical, radiological, and cerebral spinal fluid (CSF) data of the patients with CNS involvement were reviewed, and a retrospective study in our single-center was carried out. CNS involvement was observed in 29 patients (10%) either in their diagnosis process or during disease course. CNS symptoms included disturbance of consciousness, cranial nerve palsies, seizures, headache, limb paralysis, irritability, meningism, and memory loss. CSF analysis was conducted in 17 patients (59%). Among them, 11 patients (65%) were reported as having abnormal CSF. Neuroradiological studies were performed in 25 patients (86%). Among the 13 cases that underwent CT scan, one patient hemorrhaged. Single or multiple hypodense foci were detected in the other 2 patients. Magnetic resonance imaging (MRI) abnormalities were found in 15 patients, including focal lesions in cortical and adjacent subcortical regions with or without variable nodular or ring contrast-enhancement, multiple lesions in white matter, diffuse white matter signal changes, and meningeal enhancement. Basal ganglia, cerebellum, and brainstem lesions were also observed. CNS involvement could also be found in adult patients with HLH, but not as frequent as it was in children. The clinical manifestations could be diversified. By carrying out rigorous CNS examinations, an early diagnosis could be made and it was of the utmost importance for the prevention of further lesions.

  4. Pluripotency and lineages in the mammalian blastocyst: an evolutionary view.

    PubMed

    Cañon, Susana; Fernandez-Tresguerres, Beatriz; Manzanares, Miguel

    2011-06-01

    Early mammalian development is characterized by a highly specific stage, the blastocyst, by which embryonic and extraembryonic lineages have been determined, but pattern formation has not yet begun. The blastocyst is also of interest because cell precursors of the embryo proper retain for a certain time the capability to generate all the cell types of the adult animal. This embryonic pluripotency is established and maintained by a regulatory network under the control of a small set of transcription factors, comprising Oct4, Sox2 and Nanog. This network is largely conserved in eutherian mammals, but there is scarce information about how it arose in vertebrates. We have analysed the conservation of gene regulatory networks controlling blastocyst lineages and pluripotency in the mouse by comparison with the chick. We found that few of elements of the network are novel to mammals; rather, most of them were present before the separation of the mammalian lineage from other amniotes, but acquired novel expression domains during early mammalian development. Our results strongly support the hypothesis that mammalian blastocyst regulatory networks evolved through rewiring of pre-existing components, involving the co-option and duplication of existing genes and the establishment of new regulatory interactions among them.

  5. PRELIMINARY RESULTS OF A PROSPECTIVE FEASIBILITY PILOT STUDY OF “GEMPOX” (GEMCITABINE, OXALIPLATIN, AND PACLITAXEL) IN PEDIATRIC AND ADULT PATIENTS WITH REFRACTORY OR RECURRENT CENTRAL NERVOUS SYSTEM (CNS) GERM CELL TUMORS (GCT): THE INTERNATIONAL CNS GCT CONSORTIUM TRIAL, CNS GCT-4

    PubMed Central

    Finlay, Jonathan L.; Liu, Yin; Haley, Kelley; Erdreich-Epstein, Anat; Rushing, Teresa; Grimm, John; Wong, Kenneth E.; Kiehna, Erin; Krieger, Mark D.; Gilles, Floyd; Badie, Benham; D'Apuzzo, Massimo; Dhall, Girish

    2014-01-01

    BACKGROUND: The optimal management of patients with recurrent CNS GCT, especially those with non-germinomatous (mixed malignant) GCT (MMGCT), remains unclear. Preliminary results are presented on the response rate, toxicity and early outcomes of a re-induction regimen of gemcitabine, oxaliplatin and paclitaxel (GEMPOX) administered, in responsive patients, prior to myeloablative chemotherapy and autologous hematopoietic cell rescue (HDCx + AuHCR). METHODS: Since December 2004, 13 recurrent or refractory patients (12 MMGCT, 1 germinoma; 12 males; mean age 16.5 years, range 7-34 years) have been treated with up to 4 cycles of gemcitabine (800 mg/m2), oxaliplatin (100 mg/m2) and paclitaxel (170 mg/m2), administered on one day at 14 days intervals. RESULTS: Of 13 patients, five were treated on a preceding feasibility pilot with 1-3 cycles of GEMPOX, and seven have been formally enrolled on an ongoing prospective multi-center trial. Six patients achieved complete remissions (tumor marker and/or imaging studies), five achieved partial remissions and two developed progressive disease (PD) while on GEMPOX; one patient with PD after 1 cycle had pathologically confirmed malignant transformation to pure embryonal rhabdomyosarcoma.; the second patient, with pure pineal choriocarcinoma, progressed following the second cycle of GEMPOX. Eleven of the 13 patents subsequently underwent HDCx + AuHCR. Six of them subsequently received irradiation. Transient hepatotoxicity and pancytopenia were the most commonly observed toxicities. Other toxicities included: paclitaxel anaphylaxis (1), transient encephalopathy (1), peripheral neuropathy (1), hyperesthesia (4), mucositis (2) and electrolyte imbalances (3). Four of the 12 patients with MMGCT continue alive and disease-free for 8+ , 10+ , 14+ and 16+ months since discontinuation of all therapy. One patient (with pure yolk sac tumor) relapsed in a loco-regional extra-CNS location (cavernous and ethmoid/sphenoid sinuses) and remains alive

  6. Three urocortins in medaka: identification and spatial expression in the central nervous system.

    PubMed

    Hosono, K; Yamashita, J; Kikuchi, Y; Hiraki-Kajiyama, T; Okubo, K

    2017-05-01

    The urocortin (UCN) group of neuropeptides includes urocortin 1/sauvagine/urotensin 1 (UTS1), urocortin 2 (UCN2) and urocortin 3 (UCN3). In recent years, evidence has accumulated showing that UCNs play pivotal roles in mediating stress response and anxiety in mammals. Evidence has also emerged regarding the evolutionary conservation of UCNs in vertebrates, but very little information is available about UCNs in non-mammalian vertebrates. Indeed, at present, there are no reports of the empirical identification of ucn2 in non-mammalian vertebrates or of the distribution of ucn2 and ucn3 expression in the adult central nervous system (CNS) of these animals. To gain insight into the evolutionary nature of UCNs in vertebrates, we cloned uts1, ucn2 and ucn3 in a teleost fish, medaka and examined the spatial expression of these genes in the adult brain and spinal cord. Although all known UCN2 genes except those in rodents have been reported to likely lack the necessary structural features to produce a functional pre-pro-protein, all three UCN genes in medaka, including ucn2, displayed all of these features, suggesting their functionality. The three UCN genes exhibited distinct spatial expression patterns in the medaka brain: uts1 was primarily expressed in broad regions of the dorsal telencephalon, ucn2 was expressed in restricted regions of the thalamus and brainstem and ucn3 was expressed in discrete nuclei throughout many regions of the brain. We also found that these genes were all expressed throughout the medaka spinal cord, each with a distinct spatial pattern. Given that many of these regions have been implicated in stress responses and anxiety, the three UCNs may serve distinct physiological roles in the medaka CNS, including those involved in stress and anxiety, as shown in the mammalian CNS. © 2017 British Society for Neuroendocrinology.

  7. Sparse genetic tracing reveals regionally specific functional organization of mammalian nociceptors.

    PubMed

    Olson, William; Abdus-Saboor, Ishmail; Cui, Lian; Burdge, Justin; Raabe, Tobias; Ma, Minghong; Luo, Wenqin

    2017-10-12

    The human distal limbs have a high spatial acuity for noxious stimuli but a low density of pain-sensing neurites. To elucidate mechanisms underlying regional differences in processing nociception, we sparsely traced non-peptidergic nociceptors across the body using a newly generated Mrgprd CreERT2 mouse line. We found that mouse plantar paw skin is also innervated by a low density of Mrgprd + nociceptors, while individual arbors in different locations are comparable in size. Surprisingly, the central arbors of plantar paw and trunk innervating nociceptors have distinct morphologies in the spinal cord. This regional difference is well correlated with a heightened signal transmission for plantar paw circuits, as revealed by both spinal cord slice recordings and behavior assays. Taken together, our results elucidate a novel somatotopic functional organization of the mammalian pain system and suggest that regional central arbor structure could facilitate the "enlarged representation" of plantar paw regions in the CNS.

  8. Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat

    PubMed Central

    Bautista, W.; McCrea, D. A.; Nagy, J. I.

    2014-01-01

    Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter1 (vglut1) in spinal cord and trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabelling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabelling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labelled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5. PMID:24406437

  9. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease?

    PubMed

    Rezai-Zadeh, Kavon; Gate, David; Town, Terrence

    2009-12-01

    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as "immune privilege," it is now clear that immune responses do occur in the CNS-giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue.

  10. CNS Injury: Posttranslational Modification of the Tau Protein as a Biomarker.

    PubMed

    Caprelli, Mitchell T; Mothe, Andrea J; Tator, Charles H

    2017-11-01

    The ideal biomarker for central nervous system (CNS) trauma in patients would be a molecular marker specific for injured nervous tissue that would provide a consistent and reliable assessment of the presence and severity of injury and the prognosis for recovery. One candidate biomarker is the protein tau, a microtubule-associated protein abundant in the axonal compartment of CNS neurons. Following axonal injury, tau becomes modified primarily by hyperphosphorylation of its various amino acid residues and cleavage into smaller fragments. These posttrauma products can leak into the cerebrospinal fluid or bloodstream and become candidate biomarkers of CNS injury. This review examines the primary molecular changes that tau undergoes following traumatic brain injury and spinal cord injury, and reviews the current literature in traumatic CNS biomarker research with a focus on the potential for hyperphosphorylated and cleaved tau as sensitive biomarkers of injury.

  11. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    PubMed

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.

  12. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    PubMed

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  13. A comparison of human natural monoclonal antibodies and aptamer conjugates for promotion of CNS remyelination: where are we now and what comes next?

    PubMed

    Perwein, Maria K; Smestad, John A; Warrington, Arthur E; Heider, Robin M; Kaczor, Mark W; Maher, Louis J; Wootla, Bharath; Kunbaz, Ahmad; Rodriguez, Moses

    2018-05-01

    Multiple sclerosis (MS) is a chronic and progressive inflammatory demyelinating disease of the human central nervous system (CNS) and is the most common disabling neurological condition in young adults, resulting in severe neurological defects. No curative or long-term progression-inhibiting therapy has yet been developed. However, recent investigation has revealed potential strategies that do not merely modulate potentially pathogenic autoimmune responses, but stimulate remyelination within CNS lesions. Areas covered: We discuss the history and development of natural human IgM-isotype immunoglobulins (HIgMs) and recently-identified aptamer-conjugates that have been shown to enhance endogenous myelin repair in animal models of demyelination by acting on myelin-producing oligodendrocytes (OLs) or oligodendrocyte progenitor cells (OPCs) within CNS lesions. We also discuss future development aims and applications for these important novel technologies. Expert opinion: Aptamer conjugate Myaptavin-3064 and recombinant human IgM-isotype antibody rHIgM22 regenerate CNS myelin, thereby reducing axonal degeneration and offering the potential of recovery from MS relapses, reversal of disability and prevention of disease progression. Advancement of these technologies into the clinic for MS treatment is therefore a top priority. It remains unclear to what extent the therapeutic modalities of remyelinating antibodies and aptamers may synergize with other currently-approved therapies to yield enhanced therapeutic effects.

  14. Microglia in CNS development: Shaping the brain for the future.

    PubMed

    Mosser, Coralie-Anne; Baptista, Sofia; Arnoux, Isabelle; Audinat, Etienne

    Microglial cells are the resident macrophages of the central nervous system (CNS) and are mainly known for their roles in neuropathologies. However, major recent developments have revealed that these immune cells actively interact with neurons in physiological conditions and can modulate the fate and functions of synapses. Originating from myeloid precursors born in the yolk sac, microglial cells invade the CNS during early embryonic development. As a consequence they can potentially influence neuronal proliferation, migration and differentiation as well as the formation and maturation of neuronal networks, thereby contributing to the entire shaping of the CNS. We review here recent evidence indicating that microglial cells are indeed involved in crucial steps of the CNS development, including neuronal survival and apoptosis, axonal growth, migration of neurons, pruning of supernumerary synapses and functional maturation of developing synapses. We also discuss current hypotheses proposing that diverting microglial cells of their physiological functions, by promoting the expression of an immune phenotype during development, may be central to neurodevelopmental disorders such as autism, schizophrenia and epilepsy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Causes of CNS inflammation and potential targets for anticonvulsants.

    PubMed

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  16. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  17. Relationships between performance on the Cogstate Brief Battery, neurodegeneration, and Aβ accumulation in cognitively normal older adults and adults with MCI.

    PubMed

    Lim, Yen Ying; Pietrzak, Robert H; Bourgeat, Pierrick; Ames, David; Ellis, Kathryn A; Rembach, Alan; Harrington, Karra; Salvado, Olivier; Martins, Ralph N; Snyder, Peter J; Masters, Colin L; Rowe, Christopher C; Villemagne, Victor L; Maruff, Paul

    2015-02-01

    We investigated the extent to which decline in memory and working memory in beta-amyloid (Aβ) positive non-demented individuals was related to hippocampal atrophy and Aβ accumulation over 36 months. Cognitively normal older adults (CN) (n = 178) and adults with mild cognitive impairment (MCI) (n = 49) underwent positron emission tomography neuroimaging, magnetic resonance imaging, and cognitive assessments at baseline, 18- and 36-months. Relative to Aβ- CNs, Aβ+ CNs and Aβ+ MCIs showed greater rates of cognitive decline, Aβ accumulation, and hippocampal atrophy. Analysis of interrelationships between these Alzheimer's disease markers in Aβ+ CNs and MCIs indicated that rate of Aβ accumulation was associated with rate of hippocampal atrophy (β = -0.05, p = .037), which was in turn associated independently with rate of decline in memory (β = -0.03, p = .032). This suggests that Aβ accumulation precedes any neurodegeneration or clinical symptoms, and that the relationship between Aβ and cognitive decline is mediated by hippocampal atrophy. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Biocompatability of carbon nanotubes with stem cells to treat CNS injuries.

    PubMed

    Bokara, Kiran Kumar; Kim, Jong Youl; Lee, Young Il; Yun, Kyungeun; Webster, Tom J; Lee, Jong Eun

    2013-06-01

    Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy in regenerative medicine has been extensively examined to replace lost cells during CNS injuries. But, given the complexity of CNS injuries oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine for the prevention, diagnosis and therapy of certain diseases, including CNS diseases. In particular, the use of CNTs as substrates/scaffolds for supporting the stem cell differentiation has been an area of active research. Single-walled and multi-walled CNT's have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. This review summarizes recent research on the application of CNT-based materials to direct the differentiation of progenitor and stem cells toward specific neurons and to enhance axon regeneration and synaptogenesis for the effective treatment of CNS injuries. Nonetheless, accumulating data support the use of CNTs as a biocompatible and permissive substrate/scaffold for neural cells and such application holds great potential in neurological research.

  19. Biocompatability of carbon nanotubes with stem cells to treat CNS injuries

    PubMed Central

    Bokara, Kiran Kumar; Kim, Jong Youl; Lee, Young Il; Yun, Kyungeun; Webster, Tom J

    2013-01-01

    Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy in regenerative medicine has been extensively examined to replace lost cells during CNS injuries. But, given the complexity of CNS injuries oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine for the prevention, diagnosis and therapy of certain diseases, including CNS diseases. In particular, the use of CNTs as substrates/scaffolds for supporting the stem cell differentiation has been an area of active research. Single-walled and multi-walled CNT's have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. This review summarizes recent research on the application of CNT-based materials to direct the differentiation of progenitor and stem cells toward specific neurons and to enhance axon regeneration and synaptogenesis for the effective treatment of CNS injuries. Nonetheless, accumulating data support the use of CNTs as a biocompatible and permissive substrate/scaffold for neural cells and such application holds great potential in neurological research. PMID:23869255

  20. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain.

    PubMed

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-11-19

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx , which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand ( Smed-hh ), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.

  1. Cerebral venous thrombosis in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma during induction chemotherapy with l-asparaginase: The GRAALL experience.

    PubMed

    Couturier, Marie-Anne; Huguet, Françoise; Chevallier, Patrice; Suarez, Felipe; Thomas, Xavier; Escoffre-Barbe, Martine; Cacheux, Victoria; Pignon, Jean-Michel; Bonmati, Caroline; Sanhes, Laurence; Bories, Pierre; Daguindau, Etienne; Dorvaux, Véronique; Reman, Oumedaly; Frayfer, Jamile; Orvain, Corentin; Lhéritier, Véronique; Ifrah, Norbert; Dombret, Hervé; Hunault-Berger, Mathilde; Tanguy-Schmidt, Aline

    2015-11-01

    Central nervous system (CNS) thrombotic events are a well-known complication of acute lymphoblastic leukemia (ALL) induction therapy, especially with treatments including l-asparaginase (l-ASP). Data on risk factors and clinical evolution is still lacking in adult patients. We report on the clinical evolution of 22 CNS venous thrombosis cases occurring in 708 adults treated for ALL or lymphoblastic lymphoma (LL) with the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-induction protocol, which included eight L-ASP (6,000 IU/m(2) ) infusions. The prevalence of CNS thrombosis was 3.1%. CNS thrombosis occurred after a median of 18 days (range: 11-31) when patients had received a median of three l-ASP injections (range: 2-7). Patients with CNS thrombosis exhibited a median antithrombin (AT) nadir of 47.5% (range: 36-67%) at Day 17 (range: D3-D28), and 95% of them exhibited AT levels lower than 60%. There were no evident increase in hereditary thrombotic risk factors prevalence, and thrombosis occurred despite heparin prophylaxis which was performed in 90% of patients. Acquired AT deficiency was frequently detected in patients with l-ASP-based therapy, and patients with CNS thrombosis received AT prophylaxis (45%) less frequently than patients without CNS thrombosis (83%), P = 0.0002). CNS thrombosis was lethal in 5% of patients, while 20% had persistent sequelae. One patient received all planned l-ASP infusions without recurrence of CNS thrombotic whereas l-ASP injections were discontinued in 20 patients during the management of thrombosis without a significant impact on overall survival (P = 0.4). © 2015 Wiley Periodicals, Inc.

  2. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    PubMed Central

    Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.

    2017-01-01

    ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap

  3. The retina as a window to the brain-from eye research to CNS disorders.

    PubMed

    London, Anat; Benhar, Inbal; Schwartz, Michal

    2013-01-01

    Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.

  4. Proteomics Identification of Potential Candidates Involved in Cell Proliferation for Early Stage of Brain Regeneration in the Adult Zebrafish.

    PubMed

    Lim, Fei Tieng; Ogawa, Satoshi; Smith, A Ian; Parhar, Ishwar S

    2017-02-01

    The central nervous system (CNS) of the non-mammalian vertebrates has better neuroregenerative capability as compared with the mammalian CNS. Regeneration of habenula was observed 40 days after damage in zebrafish. During the early stage of regeneration, we found a significant increase of apoptotic cells on day-1 post-damage and of proliferative cells on day-3 post-damage. To identify the molecular factor(s) involved in the early stages of neuroregeneration, differentially expressed proteins during sham, 20- and 40-h post-habenula damage were investigated by proteomic approach by using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-ToF) and tandem mass spectrometry. Protein profiles revealed 17 differentially (>1.5-fold) expressed proteins: 10 upregulated, 4 downregulated, 2 proteins were found to be downregulated at the early stage but upregulated at a later stage, and 1 protein was found to be upregulated at 2 different time points. All proteins identified can be summarized under few molecular processes involved in the early stages of neuroregeneration in zebrafish CNS: apoptosis regulation (Wnt inhibitory factor 1 [WIF1]), neuroprotection (metallothionein), cell proliferation (Spred2, ependymin, Lhx1, and Wnts), differentiation (Spred2, Lhx9, and Wnts), and morphogenesis (cytoplasmic actins and draculin). These protein profiling results suggest that drastic molecular changes occur in the neuroregenerative process during this period, which includes cell proliferation, differentiation, and protection.

  5. CNS Plasmacytoid Dendritic Cells Regulate the Severity of Relapsing Experimental Autoimmune Encephalomyelitis1

    PubMed Central

    Bailey-Bucktrout, Samantha L.; Caulkins, Sarah C.; Goings, Gwendolyn; Fischer, Jens A. A.; Dzionek, Andrzej; Miller, Stephen D.

    2010-01-01

    Plasmacytoid dendritic cells (pDC) have both stimulatory and regulatory effects on T cells. pDCs are a major CNS-infiltrating DC population during experimental autoimmune encephalomyelitis (EAE), but unlike myeloid DCs (mDC) have a minor role in T cell activation and epitope spreading. We show that depletion of pDCs during either the acute or relapse phases of EAE resulted in exacerbation of disease severity. pDC depletion significantly enhanced CNS but not peripheral CD4+ T cell activation, as well as IL-17 and IFN-γ production. Moreover, CNS pDCs suppressed CNS mDC-driven production of IL-17, IFN-γ and IL-10 in an IDO-independent manner. The data demonstrate that pDCs play a critical regulatory role in negatively regulating pathogenic CNS CD4+ T cell responses highlighting a new role for pDCs in inflammatory autoimmune disease. PMID:18453561

  6. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy.

    PubMed

    Frishman-Levy, Liron; Izraeli, Shai

    2017-01-01

    Central nervous system acute lymphoblastic leukaemia (CNS-ALL) is a major clinical problem. CNS-directed 'prophylactic' chemo- or radio - therapy is associated with significant early and long-term toxicity. Moreover, greater than a third of the relapses occur in the CNS. To design specific, more effective and less toxic therapy and for personalized precise adjustment of prophylactic therapy there is a need for better understanding of the biology of this disease. Specifically, the precise neurotropic mechanisms of ALL are currently unclear, as is the pathogenesis of CNS relapse. Here we review and contrast the recent findings with earlier studies of pathogenesis of CNS leukaemia. We also describe the challenges in research of this devastating complication of ALL. © 2016 John Wiley & Sons Ltd.

  7. Argonaute identity defines the length of mature mammalian microRNAs.

    PubMed

    Juvvuna, Prasanna Kumar; Khandelia, Piyush; Lee, Li Ming; Makeyev, Eugene V

    2012-08-01

    MicroRNAs (miRNAs) are 19- to 25-nt-long non-coding RNAs that regulate gene expression by base-pairing with target mRNAs and reducing their stability or translational efficiency. Mammalian miRNAs function in association with four closely related Argonaute proteins, AGO1-4. All four proteins contain the PAZ and the MID domains interacting with the miRNA 3' and 5' termini, respectively, as well as the PIWI domain comprising an mRNA 'slicing' activity in the case of AGO2 but not AGO1, AGO3 and AGO4. However, the slicing mode of the miRNA-programmed AGO2 is rarely realized in vivo and the four Argonautes are thought to play largely overlapping roles in the mammalian miRNA pathway. Here, we show that the average length of many miRNAs is diminished during nervous system development as a result of progressive shortening of the miRNA 3' ends. We link this modification with an increase in the fractional abundance of Ago2 in the adult brain and identify a specific structural motif within the PAZ domain that enables efficient trimming of miRNAs associated with this but not the other three Argonautes. Taken together, our data suggest that mammalian Argonautes may define the length and possibly biological activity of mature mammalian miRNAs in a developmentally controlled manner.

  8. CNS Anticancer Drug Discovery and Development: 2016 conference insights

    PubMed Central

    Levin, Victor A; Abrey, Lauren E; Heffron, Timothy P; Tonge, Peter J; Dar, Arvin C; Weiss, William A; Gallo, James M

    2017-01-01

    CNS Anticancer Drug Discovery and Development, 16-17 November 2016, Scottsdale, AZ, USA The 2016 second CNS Anticancer Drug Discovery and Development Conference addressed diverse viewpoints about why new drug discovery/development focused on CNS cancers has been sorely lacking. Despite more than 70,000 individuals in the USA being diagnosed with a primary brain malignancy and 151,669–286,486 suffering from metastatic CNS cancer, in 1999, temozolomide was the last drug approved by the US FDA as an anticancer agent for high-grade gliomas. Among the topics discussed were economic factors and pharmaceutical risk assessments, regulatory constraints and perceptions and the need for improved imaging surrogates of drug activity. Included were modeling tumor growth and drug effects in a medical environment in which direct tumor sampling for biological effects can be problematic, potential new drugs under investigation and targets for drug discovery and development. The long trajectory and diverse impediments to novel drug discovery, and expectation that more than one drug will be needed to adequately inhibit critical intracellular tumor pathways were viewed as major disincentives for most pharmaceutical/biotechnology companies. While there were a few unanimities, one consensus is the need for continued and focused discussion among academic and industry scientists and clinicians to address tumor targets, new drug chemistry, and more time- and cost-efficient clinical trials based on surrogate end points. PMID:28718326

  9. Delivery of therapeutic peptides and proteins to the CNS.

    PubMed

    Salameh, Therese S; Banks, William A

    2014-01-01

    Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation. © 2014 Elsevier Inc. All rights reserved.

  10. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  11. Cerebral blood flow variations in CNS lupus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushner, M.J.; Tobin, M.; Fazekas, F.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebralmore » ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.« less

  12. Tick-borne encephalitis virus and the immune response of the mammalian host.

    PubMed

    Dörrbecker, Bastian; Dobler, Gerhard; Spiegel, Martin; Hufert, Frank T

    2010-07-01

    Tick-borne encephalitis (TBE) is caused by Tick-borne encephalitis virus (TBEV), one of the most prevalent arboviruses in Europe and in many parts of Asia. Transmission of TBEV to humans usually occurs by bite of an infected tick or rarely by ingestion of unpasteurized milk products of infected livestock. TBEV infection induces an innate and adaptive immune response, nevertheless it is able to replicate in several cell types of the immune system at the same time which probably contributes to the spread of the virus in the human host. Furthermore, TBEV can enter the central nervous system (CNS) by yet not well understood mechanisms via the blood brain barrier (BBB) or the olfactory neurons which leads to serious neurological disorders like meningitis, encephalitis or even meningoencephalitis. In this article we review the known facts and possible hypotheses of interaction of TBEV with components of the mammalian immune system and their implications for TBEV-mediated pathogenesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Immune privilege of the CNS is not the consequence of limited antigen sampling

    NASA Astrophysics Data System (ADS)

    Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna

    2014-03-01

    Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.

  14. Cerebrospinal fluid Alzheimer's biomarker profiles in CNS infections.

    PubMed

    Krut, Jan Jessen; Zetterberg, Henrik; Blennow, Kaj; Cinque, Paola; Hagberg, Lars; Price, Richard W; Studahl, Marie; Gisslén, Magnus

    2013-02-01

    The cerebrospinal fluid (CSF) biomarker profile in Alzheimer's disease (AD) is characterized by decreased beta amyloid (Aβ(1-42)), increased total and hyperphosphorylated tau (t-tau and p-tau, respectively), which is a useful diagnostic tool and gives insight in the pathogenesis of AD. It is of importance to study how these biomarkers react in other CNS diseases; therefore, we decided to analyse amyloid and tau biomarkers in different CNS infections. We also included analysis of soluble amyloid precursor proteins (sAPPα and -β). CSF Aβ(1-42), sAPPα and -β, t-tau and p-tau were analysed in bacterial meningitis (n = 12), Lyme neuroborreliosis (n = 13), herpes simplex virus type 1 (HSV-1) encephalitis (n = 10), HIV-associated dementia (HAD) (n = 21), AD (n = 21) and healthy controls (n = 42). Concurrent with AD, Aβ(1-42) was decreased in all groups except neuroborreliosis compared to controls. HSV-1 encephalitis, bacterial meningitis and HAD showed lower concentrations of sAPPα and -β compared to AD. T-tau was increased in AD and HSV-1 encephalitis compared to all other groups. P-tau was higher in AD and HSV-1 encephalitis compared to bacterial meningitis, HAD and control. Decreased CSF Aβ(1-42), sAPPα and -β in various CNS infections imply an effect of neuroinflammation on amyloid metabolism which is similar in regard to AD concerning Aβ(1-42), but differs concerning sAPPα and -β. These results clearly indicate different pathologic pathways in AD and infectious CNS disease and may provide help in the differential biomarker diagnostics. Increased p-tau in HSV-1 encephalitis probably reflect acute neuronal damage and necrosis.

  15. Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS.

    PubMed

    McIlroy, Graham; Foldi, Istvan; Aurikko, Jukka; Wentzell, Jill S; Lim, Mei Ann; Fenton, Janine C; Gay, Nicholas J; Hidalgo, Alicia

    2013-09-01

    Neurotrophin receptors corresponding to vertebrate Trk, p75(NTR) or Sortilin have not been identified in Drosophila, thus it is unknown how neurotrophism may be implemented in insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary origins and a universal function in innate immunity. Here we show that Toll paralogs unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in fruit flies. Toll-6 and Toll-7 are expressed in the CNS throughout development and regulate locomotion, motor axon targeting and neuronal survival. DNT1 (also known as NT1 and spz2) and DNT2 (also known as NT2 and spz5) interact genetically with Toll-6 and Toll-7, and DNT1 and DNT2 bind to Toll-6 and Toll-7 promiscuously and are distributed in vivo in domains complementary to or overlapping with those of Toll-6 and Toll-7. We conclude that in fruit flies, Tolls are not only involved in development and immunity but also in neurotrophism, revealing an unforeseen relationship between the neurotrophin and Toll protein families.

  16. Patterns of diagnostic marker assessment in adult diffuse glioma: a survey of the European Confederation of Neuropathological Societies (Euro-CNS)

    PubMed Central

    Woehrer, Adelheid; Kristensen, Bjarne W.; Vital, Anne; Hainfellner, Johannes A.

    2017-01-01

    The 2016 update of the WHO classification has introduced an integrated diagnostic approach that incorporates both tumor morphology and molecular information. This conceptual change has far-reaching implications, especially for neuropathologists who are in the forefront of translating molecular markers to routine diagnostic use. Adult diffuse glioma is a prototypic example for a group of tumors that underwent substantial regrouping, and it represents a major workload for surgical neuropathologists. Hence, we conducted a survey among members of the European Confederation of Neuropathological Societies (Euro-CNS) in order to assess 1) the extent to which molecular markers have already been incorporated in glioma diagnoses, 2) which molecular techniques are in daily use, and 3) to set a baseline for future surveys in this field. Based on 130 responses from participants across 40 nations neuropathologists uniformly rate molecular marker testing as highly relevant and already incorporate molecular information in their diagnostic assessments. At the same time however, the survey documents substantial differences in access to crucial biomarkers and molecular techniques across geographic regions and within individual countries. Concerns are raised concerning the validity of test assays with MGMT, 1p19q, and ATRX; being perceived as most problematic. Neuropathologists advocate the need for international harmonization of standards and consensus guidelines, and the majority is willing to actively engage in interlaboratory trials aiming at quality control (Figure 1). PMID:27966427

  17. Novel agents in CNS myeloma treatment.

    PubMed

    Gozzetti, Alessandro; Cerase, Alfonso

    2014-01-01

    Central nervous system localization of multiple myeloma (CNS-MM) accounts for about 1% of all MM.Treatment is still unsatisfactory. Many treatments have been described in the literature: chemotherapy (CHT), intrathecal therapy (IT), and radiotherapy (RT), with survivals reported between one month and six months. Recent drugs such as the immunomodulatory drugs (IMiDs) and proteasome inhibitors (bortezomib) have changed the treatment of patients with MM, both younger and older, with a significant improvement in response and survival. The activity of new drugs in CNSMM has been reported but is still not well known. Bortezomib does not cross the blood brain barrier (BBB), and IMID’s seem to have only a minimal crossover. The role of novel agents in CNS MM management will be discussed as well as the potential role of other new immunomodulatory drugs (pomalidomide) and proteasome inhibitors that seem to cross the BBB and hold promise into the treatment of this rare and still incurable localization of the disease.

  18. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination

    PubMed Central

    Dutta, Dipankar J.; Zameer, Andleeb; Mariani, John N.; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M.; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V.; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P.; Brown, Chester W.; John, Gareth R.

    2014-01-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb−/− embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3−/− mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. PMID:24917498

  19. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination.

    PubMed

    Dutta, Dipankar J; Zameer, Andleeb; Mariani, John N; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P; Brown, Chester W; John, Gareth R

    2014-06-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. © 2014. Published by The Company of Biologists Ltd.

  20. Secondary osteons scale allometrically in mammalian humerus and femur

    PubMed Central

    Phillips, C.; Cornish, H.; Cooke, M.; Hutchinson, J. R.; Doube, M.

    2017-01-01

    Intra-cortical bone remodelling is a cell-driven process that replaces existing bone tissue with new bone tissue in the bone cortex, leaving behind histological features called secondary osteons. While the scaling of bone dimensions on a macroscopic scale is well known, less is known about how the spatial dimensions of secondary osteons vary in relation to the adult body size of the species. We measured the cross-sectional area of individual intact secondary osteons and their central Haversian canals in transverse sections from 40 stylopodal bones of 39 mammalian species (body mass 0.3–21 000 kg). Scaling analysis of our data shows that mean osteonal resorption area (negative allometry, exponent 0.23,R2 0.54,p<0.005) and Haversian canal area (negative allometry, exponent 0.31,R2 0.45,p<0.005) are significantly related to body mass, independent of phylogeny. This study is the most comprehensive of its kind to date, and allows us to describe overall trends in the scaling behaviour of secondary osteon dimensions, supporting the inference that the osteonal resorption area may be limited by the need to avoid fracture in smaller mammalian species, but the need to maintain osteocyte viability in larger mammalian species. PMID:29291052

  1. Kinase inhibitors for CNS diseases: an analysis of the recent patent literature.

    PubMed

    Amigoni, Federica; Legnaghi, Elena; Pevarello, Paolo

    2012-05-01

    Protein kinases (PKs), as members of an important target class in current pharmaceutical research, have been mostly exploited so far in therapeutic areas such as oncology and inflammation. However, basic research on some PKs as key components of molecular mechanisms underlying neurodegeneration and neuroprotection may translate into new medicines for CNS diseases in the next few years. This review is an account of recent patents dealing with kinase inhibitors primarily designed for CNS indications. CNS-directed patents on kinase modulators published after 2008 were surveyed using SciFinder(®) and public patent search engines. Some PK targets, such as GSK-3β, CDK5, ROCK and p38α MAPK, continue to attract interest even though a clinical proof-of-concept is yet to be attained in a CNS setting. Less established PKs such as LRRK2, MLK, PAK and DAPK-1 hold promise as valuable targets of the future.

  2. Is there a relationship between adult neurogenesis and neuron generation following injury across evolution?

    PubMed

    Ferretti, Patrizia

    2011-09-01

    All vertebrates can produce new neurons postnatally in discrete regions of their nervous system, but only some lower vertebrates (fish and amphibians) can significantly repair several neural structures, including brain, spinal cord, retina, olfactory and auditory-vestibular system, to compensate for neural tissue loss and recover significant functionality. Some regenerative ability, however, is found also in reptiles and birds, and even in mammals. The recognition that neurogenesis indeed occurs in the CNS of all adult vertebrates challenges the view that there is a simple relationship between maintenance of neurogenic regions in the adult CNS and regenerative capability. The aim of this review is to revisit this relationship in the light of recent literature focusing on selected examples of neurogenesis and regeneration, and discuss possible frameworks that may help to elucidate the relationship between adult neurogenesis and regeneration. This could provide useful paradigms for harnessing regeneration in the human CNS. © 2011 The Author. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Can Functional Magnetic Resonance Imaging Improve Success Rates in CNS Drug Discovery?

    PubMed Central

    Borsook, David; Hargreaves, Richard; Becerra, Lino

    2011-01-01

    Introduction The bar for developing new treatments for CNS disease is getting progressively higher and fewer novel mechanisms are being discovered, validated and developed. The high costs of drug discovery necessitate early decisions to ensure the best molecules and hypotheses are tested in expensive late stage clinical trials. The discovery of brain imaging biomarkers that can bridge preclinical to clinical CNS drug discovery and provide a ‘language of translation’ affords the opportunity to improve the objectivity of decision-making. Areas Covered This review discusses the benefits, challenges and potential issues of using a science based biomarker strategy to change the paradigm of CNS drug development and increase success rates in the discovery of new medicines. The authors have summarized PubMed and Google Scholar based publication searches to identify recent advances in functional, structural and chemical brain imaging and have discussed how these techniques may be useful in defining CNS disease state and drug effects during drug development. Expert opinion The use of novel brain imaging biomarkers holds the bold promise of making neuroscience drug discovery smarter by increasing the objectivity of decision making thereby improving the probability of success of identifying useful drugs to treat CNS diseases. Functional imaging holds the promise to: (1) define pharmacodynamic markers as an index of target engagement (2) improve translational medicine paradigms to predict efficacy; (3) evaluate CNS efficacy and safety based on brain activation; (4) determine brain activity drug dose-response relationships and (5) provide an objective evaluation of symptom response and disease modification. PMID:21765857

  4. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  5. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases.

    PubMed

    Newman, T A; Woolley, S T; Hughes, P M; Sibson, N R; Anthony, D C; Perry, V H

    2001-11-01

    Recent evidence has highlighted the fact that axon injury is an important component of multiple sclerosis pathology. The issue of whether a CNS antigen-specific immune response is required to produce axon injury remains unresolved. We investigated the extent and time course of axon injury in a rodent model of a delayed-type hypersensitivity (DTH) reaction directed against the mycobacterium bacille Calmette-Guérin (BCG). Using MRI, we determined whether the ongoing axon injury is restricted to the period during which the blood-brain barrier is compromised. DTH lesions were initiated in adult rats by intracerebral injection of heat-killed BCG followed by a peripheral challenge with BCG. Our findings demonstrate that a DTH reaction to a non-CNS antigen within a CNS white matter tract leads to axon injury. Ongoing axon injury persisted throughout the 3-month period studied and was not restricted to the period of blood-brain barrier breakdown, as detected by MRI enhancing lesions. We have previously demonstrated that matrix metalloproteinases (MMPs) are upregulated in multiple sclerosis plaques and DTH lesions. In this study we demonstrated that microinjection of activated MMPs into the cortical white matter results in axon injury. Our results show that axon injury, possibly mediated by MMPs, is immunologically non-specific and may continue behind an intact blood-brain barrier.

  6. Argonaute identity defines the length of mature mammalian microRNAs

    PubMed Central

    Juvvuna, Prasanna Kumar; Khandelia, Piyush; Lee, Li Ming; Makeyev, Eugene V.

    2012-01-01

    MicroRNAs (miRNAs) are 19- to 25-nt-long non-coding RNAs that regulate gene expression by base-pairing with target mRNAs and reducing their stability or translational efficiency. Mammalian miRNAs function in association with four closely related Argonaute proteins, AGO1–4. All four proteins contain the PAZ and the MID domains interacting with the miRNA 3′ and 5′ termini, respectively, as well as the PIWI domain comprising an mRNA ‘slicing’ activity in the case of AGO2 but not AGO1, AGO3 and AGO4. However, the slicing mode of the miRNA-programmed AGO2 is rarely realized in vivo and the four Argonautes are thought to play largely overlapping roles in the mammalian miRNA pathway. Here, we show that the average length of many miRNAs is diminished during nervous system development as a result of progressive shortening of the miRNA 3′ ends. We link this modification with an increase in the fractional abundance of Ago2 in the adult brain and identify a specific structural motif within the PAZ domain that enables efficient trimming of miRNAs associated with this but not the other three Argonautes. Taken together, our data suggest that mammalian Argonautes may define the length and possibly biological activity of mature mammalian miRNAs in a developmentally controlled manner. PMID:22505576

  7. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    PubMed

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  8. EMMPRIN, an upstream regulator of MMPs, in CNS biology.

    PubMed

    Kaushik, Deepak Kumar; Hahn, Jennifer Nancy; Yong, V Wee

    2015-01-01

    Matrix metalloproteinases (MMPs) are engaged in pathologies associated with infections, tumors, autoimmune disorders and neurological dysfunctions. With the identification of an upstream regulator of MMPs, EMMPRIN (Extracellular matrix metalloproteinase inducer, CD147), it is relevant to address if EMMPRIN plays a role in the pathology of central nervous system (CNS) diseases. This would enable the possibility of a more upstream and effective therapeutic target. Indeed, conditions including gliomas, Alzheimer's disease (AD), multiple sclerosis (MS), and other insults such as hypoxia/ischemia show elevated levels of EMMPRIN which correlate with MMP production. In contrast, given EMMPRIN's role in CNS homeostasis with respect to regulation of monocarboxylate transporters (MCTs) and interactions with adhesion molecules including integrins, we need to consider that EMMPRIN may also serve important regulatory or protective functions. This review summarizes the current understanding of EMMPRIN's involvement in CNS homeostasis, its possible roles in escalating or reducing neural injury, and the mechanisms of EMMPRIN including and apart from MMP induction. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  9. The Social Environment and Neurogenesis in the Adult Mammalian Brain

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2012-01-01

    Adult neurogenesis – the formation of new neurons in adulthood – has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed. PMID:22586385

  10. Mechanisms of CNS invasion and damage by parasites.

    PubMed

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. IL-1β Signaling Promotes CNS-Intrinsic Immune Control of West Nile Virus Infection

    PubMed Central

    Ramos, Hilario J.; Lanteri, Marion C.; Blahnik, Gabriele; Negash, Amina; Suthar, Mehul S.; Brassil, Margaret M.; Sodhi, Khushbu; Treuting, Piper M.; Busch, Michael P.; Norris, Philip J.; Gale, Michael

    2012-01-01

    West Nile virus (WNV) is an emerging flavivirus capable of infecting the central nervous system (CNS) and mediating neuronal cell death and tissue destruction. The processes that promote inflammation and encephalitis within the CNS are important for control of WNV disease but, how inflammatory signaling pathways operate to control CNS infection is not defined. Here, we identify IL-1β signaling and the NLRP3 inflammasome as key host restriction factors involved in viral control and CNS disease associated with WNV infection. Individuals presenting with acute WNV infection displayed elevated levels of IL-1β in their plasma over the course of infection, suggesting a role for IL-1β in WNV immunity. Indeed, we found that in a mouse model of infection, WNV induced the acute production of IL-1β in vivo, and that animals lacking the IL-1 receptor or components involved in inflammasome signaling complex exhibited increased susceptibility to WNV pathogenesis. This outcome associated with increased accumulation of virus within the CNS but not peripheral tissues and was further associated with altered kinetics and magnitude of inflammation, reduced quality of the effector CD8+ T cell response and reduced anti-viral activity within the CNS. Importantly, we found that WNV infection triggers production of IL-1β from cortical neurons. Furthermore, we found that IL-1β signaling synergizes with type I IFN to suppress WNV replication in neurons, thus implicating antiviral activity of IL-1β within neurons and control of virus replication within the CNS. Our studies thus define the NLRP3 inflammasome pathway and IL-1β signaling as key features controlling WNV infection and immunity in the CNS, and reveal a novel role for IL-1β in antiviral action that restricts virus replication in neurons. PMID:23209411

  12. Risk of tumor transmission after thoracic allograft transplantation from adult donors with central nervous system neoplasm-A UNOS database study.

    PubMed

    Hynes, Conor F; Ramakrishnan, Karthik; Alfares, Fahad A; Endicott, Kendal M; Hammond-Jack, Katrina; Zurakowski, David; Jonas, Richard A; Nath, Dilip S

    2017-04-01

    We analyzed the UNOS database to better define the risk of transmission of central nervous system (CNS) tumors from donors to adult recipients of thoracic organs. Data were procured from the Standard Transplant Analysis and Research dataset files. Donors with CNS tumors were identified, and recipients from these donors comprised the study group (Group I). The remaining recipients of organs from donors who did not have CNS tumors formed the control group (Group II). Incidence of recipient CNS tumors, donor-related malignancies, and overall survival were calculated and compared in addition to multivariable logistic regression. A cohort of 58 314 adult thoracic organ recipients were included, of which 337 received organs from donors who had documented CNS tumors (Group I). None of these recipients developed CNS tumors at a median follow-up of 72 months (IR: 30-130 months). Although overall mortality in terms of the percentage was higher in Group I than Group II (163/320=51% vs 22 123/52 691=42%), Kaplan-Meier curves indicate no significant difference in the time to death between the two groups (P=.92). There is little risk of transmission of the common nonaggressive CNS tumors to recipients of thoracic organs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS 1

    PubMed Central

    Lee, JangEun; Ling, Changying; Kosmalski, Michelle M.; Hulseberg, Paul; Schreiber, Heidi A.; Sandor, Matyas; Fabry, Zsuzsanna

    2010-01-01

    To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-γ+CD4+ T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-γIL-17 double-positive CD4+ T cells is unique to the CNS. The major CNS source of TNF-α is microglia, with modest production by CD4+ T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3+CD4+ T cells and PD-L2+ dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection. PMID:19535154

  14. Information needs of survivors and families after childhood CNS tumor treatment: a population-based study.

    PubMed

    Hovén, Emma; Lannering, Birgitta; Gustafsson, Göran; Boman, Krister K

    2018-05-01

    This study examines information needs and satisfaction with provided information among childhood central nervous system (CNS) tumor survivors and their parents. In a population-based sample of 697 adult survivors in Sweden, 518 survivors and 551 parents provided data. Information needs and satisfaction with information were studied using a multi-dimensional standardized questionnaire addressing information-related issues. Overall, 52% of the survivors and 48% of the parents reported no, or only minor, satisfaction with the extent of provided information, and 51% of the survivors expressed a need for more information than provided. The information received was found useful (to some extent/very much) by 53%, while 47% did not find it useful, or to a minor degree only. Obtaining written material was associated with greater satisfaction and usefulness of information. Dissatisfaction with information was associated with longer time since diagnosis, poorer current health status and female sex. The survivors experienced unmet information needs vis-à-vis late effects, illness education, rehabilitation and psychological services. Overall, parents were more dissatisfied than the survivors. These findings have implications for improvements in information delivery. Information in childhood CNS tumor care and follow-up should specifically address issues where insufficiency was identified, and recognize persistent and with time changing needs at the successive stages of long-term survivorship.

  15. A Combination of Ontogeny and CNS Environment Establishes Microglial Identity.

    PubMed

    Bennett, F Chris; Bennett, Mariko L; Yaqoob, Fazeela; Mulinyawe, Sara B; Grant, Gerald A; Hayden Gephart, Melanie; Plowey, Edward D; Barres, Ben A

    2018-05-22

    Microglia, the brain's resident macrophages, are dynamic CNS custodians with surprising origins in the extra-embryonic yolk sac. The consequences of their distinct ontogeny are unknown but critical to understanding and treating brain diseases. We created a brain macrophage transplantation system to disentangle how environment and ontogeny specify microglial identity. We find that donor cells extensively engraft in the CNS of microglia-deficient mice, and even after exposure to a cell culture environment, microglia fully regain their identity when returned to the CNS. Though transplanted macrophages from multiple tissues can express microglial genes in the brain, only those of yolk-sac origin fully attain microglial identity. Transplanted macrophages of inappropriate origin, including primary human cells in a humanized host, express disease-associated genes and specific ontogeny markers. Through brain macrophage transplantation, we discover new principles of microglial identity that have broad applications to the study of disease and development of myeloid cell therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Aging, the Central Nervous System, and Mobility in Older Adults: Interventions

    PubMed Central

    Hausdorff, Jeffrey M.; Studenski, Stephanie A.; Rosano, Caterina; Camicioli, Richard; Alexander, Neil B.; Chen, Wen G.; Lipsitz, Lewis A.; Carlson, Michelle C.

    2016-01-01

    Background: Research suggests that the central nervous system (CNS) and mobility are closely linked. CNS-mediated mobility impairment may represent a potentially new and prevalent syndrome within the older adult populations. Interventions targeting this group may have the potential to improve mobility and cognition and prevent disability. Methods: In 2012, the Gerontological Society of America (GSA) and the National Institute on Aging (NIA) sponsored a 3-year conference workshop series, “Aging, the CNS, and Mobility.” The goal of this third and final conference was to (i) report on the state of the science of interventions targeting CNS-mediated mobility impairment among community-dwelling older adults and (ii) partnering with the NIA, explore the future of research and intervention design focused on a potentially novel aging syndrome. Results: Evidence was presented in five main intervention areas: (i) pharmacology and diet; (ii) exercise; (iii) electrical stimulation; (iv) sensory stimulation/deprivation; and (v) a combined category of multimodal interventions. Workshop participants identified important gaps in knowledge and key recommendations for future interventions related to recruitment and sample selection, intervention design, and methods to measure effectiveness. Conclusions: In order to develop effective preventive interventions for this prevalent syndrome, multidisciplinary teams are essential particularly because of the complex nature of the syndrome. Additionally, integrating innovative methods into the design of interventions may help researchers better measure complex mechanisms, and finally, the value of understanding the link between the CNS and mobility should be conveyed to researchers across disciplines in order to incorporate cognitive and mobility measurements into study protocols. PMID:27154905

  17. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen.

    PubMed

    Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S

    2016-07-01

    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.

  18. Estrogen receptor β and Liver X receptor β: biology and therapeutic potential in CNS diseases.

    PubMed

    Warner, M; Gustafsson, J-A

    2015-02-01

    In the last decade of the twentieth century, two nuclear receptors were discovered in our laboratory and, very surprisingly, were found to have key roles in the central nervous system. These receptors have provided some novel insights into the etiology and progression of neurodegenerative diseases and anxiety disorders. The two receptors are estrogen receptor beta (ERβ) and liver X receptor beta (LXRβ). Both ERβ and LXRβ have potent anti-inflammatory activities and, in addition, LXRβ is involved in the genesis of dopaminergic neurons during development and protection of these neurons against neurodegeneration in adult life. ERβ is involved in migration of cortical neurons and calretinin-positive GABAergic interneurons during development and maintenance of serotonergic neurons in adults. Both receptors are present in magnocellular neurons of the hypothalamic preoptic area including those expressing vasopressin and oxytocin. As both ERβ and LXRβ are ligand-activated transcription factors, their ligands hold great potential in the treatment of diseases of the CNS.

  19. A Novel Model of Traumatic Brain Injury in Adult Zebrafish Demonstrates Response to Injury and Treatment Comparable with Mammalian Models.

    PubMed

    McCutcheon, Victoria; Park, Eugene; Liu, Elaine; Sobhebidari, Pooya; Tavakkoli, Jahan; Wen, Xiao-Yan; Baker, Andrew J

    2017-04-01

    Traumatic brain injury (TBI) is a leading cause of death and morbidity in industrialized countries with considerable associated health care costs. The cost and time associated with pre-clinical development of TBI therapeutics is lengthy and expensive with a poor track record of successful translation to the clinic. The zebrafish is an emerging model organism in research with unique technical and genomic strengths in the study of disease and development. Its high degree of genetic homology and cell signaling pathways relative to mammalian species and amenability to high and medium throughput assays has potential to accelerate the rate of therapeutic drug identification. Accordingly, we developed a novel closed-head model of TBI in adult zebrafish using a targeted, pulsed, high-intensity focused ultrasound (pHIFU) to induce mechanical injury of the brain. Western blot results indicated altered microtubule and neurofilament expression as well as increased expression of cleaved caspase-3 and beta APP (β-APP; p < 0.05). We used automated behavioral tracking software to evaluate locomotor deficits 24 and 48 h post-injury. Significant behavioral impairment included decreased swim distance and velocity (p < 0.05), as well as heightened anxiety and altered group social dynamics. Responses to injury were pHIFU dose-dependent and modifiable with MK-801, MDL-28170, or temperature modulation. Together, results indicate that the zebrafish exhibits responses to injury and intervention similar to mammalian TBI pathophysiology and suggest the potential for use to rapidly evaluate therapeutic compounds with high efficiency.

  20. Prospero-related homeobox 1 (Prox1) at the crossroads of diverse pathways during adult neural fate specification

    PubMed Central

    Stergiopoulos, Athanasios; Elkouris, Maximilianos; Politis, Panagiotis K.

    2015-01-01

    Over the last decades, adult neurogenesis in the central nervous system (CNS) has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG) of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation vs. differentiation decisions of neural stem cells (NSCs), promoting cell cycle exit and neuronal differentiation, while inhibiting astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs), differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis. PMID:25674048

  1. Predicting Drug Concentration‐Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically‐Based Pharmacokinetic Model

    PubMed Central

    Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201

  2. Agile delivery of protein therapeutics to CNS.

    PubMed

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Agile Delivery of Protein Therapeutics to CNS

    PubMed Central

    Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.

    2014-01-01

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  4. CNS response to osimertinib in patients with T790M-positive advanced NSCLC: pooled data from two phase II trials.

    PubMed

    Goss, G; Tsai, C-M; Shepherd, F A; Ahn, M-J; Bazhenova, L; Crinò, L; de Marinis, F; Felip, E; Morabito, A; Hodge, R; Cantarini, M; Johnson, M; Mitsudomi, T; Jänne, P A; Yang, J C-H

    2018-03-01

    Central nervous system (CNS) metastases are common in patients with non-small-cell lung cancer (NSCLC). Osimertinib has shown systemic efficacy in patients with CNS metastases, and early clinical evidence shows efficacy in the CNS. To evaluate osimertinib activity further, we present a pre-specified subgroup analysis of CNS response using pooled data from two phase II studies: AURA extension (NCT01802632) and AURA2 (NCT02094261). Patients with T790M-positive advanced NSCLC, who had progressed following prior epidermal growth factor receptor-tyrosine kinase inhibitor treatment, received osimertinib 80 mg od (n = 411). Patients with stable, asymptomatic CNS metastases were eligible for enrolment; prior CNS treatment was allowed. Patients with ≥1 measurable CNS lesion (per RECIST 1.1) on baseline brain scan by blinded independent central neuroradiology review (BICR) were included in the evaluable for CNS response set (cEFR). The primary outcome for this CNS analysis was CNS objective response rate (ORR) by BICR; secondary outcomes included CNS duration of response, disease control rate (DCR) and progression-free survival (PFS). Of 128 patients with CNS metastases on baseline brain scans, 50 were included in the cEFR. Confirmed CNS ORR and DCR were 54% [27/50; 95% confidence interval (CI) 39-68] and 92% (46/50; 95% CI 81-98), respectively. CNS response was observed regardless of prior radiotherapy to the brain. Median CNS duration of response (22% maturity) was not reached (range, 1-15 months); at 9 months, 75% (95% CI 53-88) of patients were estimated to remain in response. Median follow-up for CNS PFS was 11 months; median CNS PFS was not reached (95% CI, 7, not calculable). The safety profile observed in the cEFR was consistent with the overall patient population. Osimertinib demonstrated clinically meaningful efficacy against CNS metastases, with a high DCR, encouraging ORR, and safety profile consistent with that reported previously. NCT01802632

  5. Putrescine biosynthesis in mammalian tissues.

    PubMed Central

    Coleman, Catherine S; Hu, Guirong; Pegg, Anthony E

    2004-01-01

    L-ornithine decarboxylase provides de novo putrescine biosynthesis in mammals. Alternative pathways to generate putrescine that involve ADC (L-arginine decarboxylase) occur in non-mammalian organisms. It has been suggested that an ADC-mediated pathway may generate putrescine via agmatine in mammalian tissues. Published evidence for a mammalian ADC is based on (i) assays using mitochondrial extracts showing production of 14CO2 from [1-14C]arginine and (ii) cloned cDNA sequences that have been claimed to represent ADC. We have reinvestigated this evidence and were unable to find any evidence supporting a mammalian ADC. Mitochondrial extracts prepared from freshly isolated rodent liver and kidney using a metrizamide/Percoll density gradient were assayed for ADC activity using L-[U-14C]-arginine in the presence or absence of arginine metabolic pathway inhibitors. Although 14CO2 was produced in substantial amounts, no labelled agmatine or putrescine was detected. [14C]Agmatine added to liver extracts was not degraded significantly indicating that any agmatine derived from a putative ADC activity was not lost due to further metabolism. Extensive searches of current genome databases using non-mammalian ADC sequences did not identify a viable candidate ADC gene. One of the putative mammalian ADC sequences appears to be derived from bacteria and the other lacks several residues that are essential for decarboxylase activity. These results indicate that 14CO2 release from [1-14C]arginine is not adequate evidence for a mammalian ADC. Although agmatine is a known constituent of mammalian cells, it can be transported from the diet. Therefore L-ornithine decarboxylase remains the only established route for de novo putrescine biosynthesis in mammals. PMID:14763899

  6. Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL.

    PubMed

    Farrell, Brian T; Hamilton, Bronwyn E; Dósa, Edit; Rimely, Endre; Nasseri, Morad; Gahramanov, Seymur; Lacy, Cynthia A; Frenkel, Eugene P; Doolittle, Nancy D; Jacobs, Paula M; Neuwelt, Edward A

    2013-07-16

    The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma. Twenty patients with presumptive or known CNS lesions underwent MRI study. Eighteen patients received both gadolinium-based contrast agents (GBCAs) and 1 of 2 USPIO contrast agents (ferumoxytol and ferumoxtran-10) 24 hours apart, which allowed direct comparative analysis. The remaining 2 patients had only USPIO-enhanced MRI because of a renal contraindication to GBCA. Conventional T1- and T2-weighted MRI were acquired before and after contrast administration in all patients, and perfusion MRI for relative cerebral blood volume (rCBV) assessment was obtained in all 9 patients receiving ferumoxytol. USPIO-enhanced MRI showed an equal number of enhancing brain lesions in 9 of 18 patients (50%), more enhancing lesions in 2 of 18 patients (11%), and fewer enhancing lesions in 3 of 18 patients (17%) compared with GBCA-enhanced MRI. Four of 18 patients (22%) showed no MRI enhancement. Dynamic susceptibility-weighted contrast-enhanced perfusion MRI using ferumoxytol showed low rCBV (ratio <1.0) in 3 cases of demyelination or inflammation, modestly elevated rCBV in 5 cases of CNS lymphoma or lymphoproliferative disorder (range: 1.3-4.1), and no measurable disease in one case. This study showed that USPIO-enhanced brain MRI can be useful in the diagnosis of CNS inflammatory disorders and lymphoma, and is also useful for patients with renal compromise at risk of nephrogenic systemic fibrosis who are unable to receive GBCA.

  7. The shifting landscape of metastatic breast cancer to the CNS.

    PubMed

    Quigley, Matthew R; Fukui, Olivia; Chew, Brandon; Bhatia, Sanjay; Karlovits, Steven

    2013-07-01

    The improved survival following the diagnosis of breast cancer has potentially altered the characteristics and course of patients presenting with CNS involvement. We therefore sought to define our current cohort of breast cancer patients with metastatic disease to the CNS in regard to modern biomarkers and clinical outcome. Review of clinical and radiographic records of women presenting to a tertiary medical center with the new diagnosis of CNS metastatic disease from breast cancer. This was a retrospective review from patients identities obtained from two prospective databases. There were 88 women analyzed who were treated over the period of January 2003 to February 2010, average age 56.9 years. At the time of initial presentation of CNS disease, 68 % of patients had multiple brain metastases, 17 % had a solitary metastasis, and 15 % had only leptomeningeal disease (LMD). The median survival for all patients from the time of diagnosis of breast disease was 50.0 months, and 9.7 months from diagnosis of CNS involvement. The only factor related to overall survival was estrogen receptor-positive pathology (57.6 v. 38.2 months, p = .02 log-rank); those related to survival post CNS diagnosis were presentation with LMD (p = .004, HR = 3.1, Cox regression) and triple-negative hormonal/HER2 status (p = .02, HR = 2.3, Cox regression). Patients with either had a median survival of 3.1 months (no patients in common). Of the 75 patients who initially presented with metastatic brain lesions, 20 (26 %) subsequently developed LMD in the course of their disease (median 10.4 months), following which survival was grim (1.8 months median). Symptoms of LMD were most commonly lower extremity weakness (14/33), followed by cranial nerve deficits (11/33). The recently described Graded Prognostic Assessment (GPA) tumor index stratified median survival at 2.5, 5.9, 13.1, and 21.7 months, respectively, for indices of 1-4 (p = .004, log-rank), which

  8. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.

    PubMed

    Palazuelos, Javier; Crawford, Howard C; Klingener, Michael; Sun, Bingru; Karelis, Jason; Raines, Elaine W; Aguirre, Adan

    2014-09-03

    Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination. Copyright © 2014 the authors 0270-6474/14/3411884-13$15.00/0.

  9. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less

  10. The CNS glycoprotein Shadoo has PrPC-like protective properties and displays reduced levels in prion infections

    PubMed Central

    Watts, Joel C; Drisaldi, Bettina; Ng, Vivian; Yang, Jing; Strome, Bob; Horne, Patrick; Sy, Man-Sun; Yoong, Larry; Young, Rebecca; Mastrangelo, Peter; Bergeron, Catherine; Fraser, Paul E; Carlson, George A; Mount, Howard T J; Schmitt-Ulms, Gerold; Westaway, David

    2007-01-01

    The cellular prion protein, PrPC, is neuroprotective in a number of settings and in particular prevents cerebellar degeneration mediated by CNS-expressed Doppel or internally deleted PrP (‘ΔPrP'). This paradigm has facilitated mapping of activity determinants in PrPC and implicated a cryptic PrPC-like protein, ‘π'. Shadoo (Sho) is a hypothetical GPI-anchored protein encoded by the Sprn gene, exhibiting homology and domain organization similar to the N-terminus of PrP. Here we demonstrate Sprn expression and Sho protein in the adult CNS. Sho expression overlaps PrPC, but is low in cerebellar granular neurons (CGNs) containing PrPC and high in PrPC-deficient dendritic processes. In Prnp0/0 CGNs, Sho transgenes were PrPC-like in their ability to counteract neurotoxic effects of either Doppel or ΔPrP. Additionally, prion-infected mice exhibit a dramatic reduction in endogenous Sho protein. Sho is a candidate for π, and since it engenders a PrPC-like neuroprotective activity, compromised neuroprotective activity resulting from reduced levels may exacerbate damage in prion infections. Sho may prove useful in deciphering several unresolved facets of prion biology. PMID:17703189

  11. Adults with suspected central nervous system infection: A prospective study of diagnostic accuracy.

    PubMed

    Khatib, Ula; van de Beek, Diederik; Lees, John A; Brouwer, Matthijs C

    2017-01-01

    To study the diagnostic accuracy of clinical and laboratory features in the diagnosis of central nervous system (CNS) infection and bacterial meningitis. We included consecutive adult episodes with suspected CNS infection who underwent cerebrospinal fluid (CSF) examination. The reference standard was the diagnosis classified into five categories: 1) CNS infection; 2) CNS inflammation without infection; 3) other neurological disorder; 4) non-neurological infection; and 5) other systemic disorder. Between 2012 and 2015, 363 episodes of suspected CNS infection were included. CSF examination showed leucocyte count >5/mm 3 in 47% of episodes. Overall, 89 of 363 episodes were categorized as CNS infection (25%; most commonly viral meningitis [7%], bacterial meningitis [7%], and viral encephalitis [4%]), 36 (10%) episodes as CNS inflammatory disorder, 111 (31%) as systemic infection, in 119 (33%) as other neurological disorder, and 8 (2%) as other systemic disorders. Diagnostic accuracy of individual clinical characteristics and blood tests for the diagnosis of CNS infection or bacterial meningitis was low. CSF leucocytosis differentiated best between bacterial meningitis and other diagnoses (area under the curve [AUC] 0.95) or any neurological infection versus other diagnoses (AUC 0.93). Clinical characteristics fail to differentiate between neurological infections and other diagnoses, and CSF analysis is the main contributor to the final diagnosis. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status.

    PubMed

    Gluckman, Peter D; Lillycrop, Karen A; Vickers, Mark H; Pleasants, Anthony B; Phillips, Emma S; Beedle, Alan S; Burdge, Graham C; Hanson, Mark A

    2007-07-31

    Developmental plasticity in response to environmental cues can take the form of polyphenism, as for the discrete morphs of some insects, or of an apparently continuous spectrum of phenotype, as for most mammalian traits. The metabolic phenotype of adult rats, including the propensity to obesity, hyperinsulinemia, and hyperphagia, shows plasticity in response to prenatal nutrition and to neonatal administration of the adipokine leptin. Here, we report that the effects of neonatal leptin on hepatic gene expression and epigenetic status in adulthood are directionally dependent on the animal's nutritional status in utero. These results demonstrate that, during mammalian development, the direction of the response to one cue can be determined by previous exposure to another, suggesting the potential for a discontinuous distribution of environmentally induced phenotypes, analogous to the phenomenon of polyphenism.

  13. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  14. Histological and immunohistochemical characterization of the inflammatory and glial cells in the central nervous system of goat fetuses and adult male goats naturally infected with Neospora caninum.

    PubMed

    Costa, Rafael Carneiro; Orlando, Débora Ribeiro; Abreu, Camila Costa; Nakagaki, Karen Yumi Ribeiro; Mesquita, Leonardo Pereira; Nascimento, Lismara Castro; Silva, Aline Costa; Maiorka, Paulo César; Peconick, Ana Paula; Raymundo, Djeison Lutier; Varaschin, Mary Suzan

    2014-12-14

    Neospora caninum is an apicomplexan protozoan that is considered one of the main agents responsible for abortion in ruminants. The lesions found in the central nervous system (CNS) of aborted fetuses show multifocal necrosis, gliosis, and perivascular cuffs of mononuclear cells, but the inflammatory and glial cells have not been immunophenotypically characterized. The lesions in the CNS of infected adult animals have rarely been described. Therefore, in this study, we characterized the lesions, the immunophenotypes of the inflammatory and glial cells and the expression of MHC-II and PCNA in the CNS of goats infected with N. caninum. The CNS of eight aborted fetuses and six adult male goats naturally infected with N. caninum were analyzed with lectin histochemistry (RCA1) and immunohistochemistry (with anti-CD3, -CD79α, -GFAP, -MHC-II, and -PCNA antibodies). All animals were the offspring of dams naturally infected with N. caninum. The microscopic lesions in the CNS of the aborted fetuses consisted of perivascular cuffs composed mainly of macrophages (RCA1(+)), rare T lymphocytes (CD3(+)), and rare B lymphocytes (CD79α(+)). Multifocal necrosis surrounded by astrocytes (GFAP(+)), gliosis composed predominantly of monocytic-lineage cells (macrophages and microglia, RCA1(+)), and the cysts of N. caninum, related (or not) to the lesions were present. Similar lesions were found in four of the six male goats, and multinucleate giant cells related to focal gliosis were also found in three adult goats. Anti-GFAP immunostaining showed astrocytes characterizing areas of glial scarring. Cysts of N. caninum were found in three adult male goats. The presence of N. caninum was evaluated with histopathology, immunohistochemistry, and PCR. Immunohistochemistry demonstrated anti-PCNA labeling of macrophages and microglia in the perivascular cuffs and the expression of MHC-II by microglia and endothelial cells in the CNS of the aborted fetuses and adult male goats. Macrophages and

  15. Orchestrating brain-cell renewal: the role of immune cells in adult neurogenesis in health and disease.

    PubMed

    Ziv, Yaniv; Schwartz, Michal

    2008-11-01

    Immune cells and immune molecules have recently been shown to support neurogenesis from neural stem and progenitor cells in the adult brain. This non-classical immune activity takes place constantly under normal physiological conditions and is extended under acute pathological conditions to include the attraction of progenitor cells and induction of neurogenesis in regions of the adult central nervous system (CNS) in which formation of new neurons does not normally occur. We suggest that the immune system should be viewed as a novel player in the adult neural stem cell niche and a coordinator of cell renewal processes after injury. We discuss these notions in light of the well-known facts that both immune-cell activity and cell renewal are inherently limited in the adult CNS and that immune and stem cells provide the body's mechanisms of repair.

  16. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis.

    PubMed

    Fleck, Ann-Katrin; Schuppan, Detlef; Wiendl, Heinz; Klotz, Luisa

    2017-07-14

    In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.

  17. Aging, the Central Nervous System, and Mobility in Older Adults: Interventions.

    PubMed

    Varma, Vijay R; Hausdorff, Jeffrey M; Studenski, Stephanie A; Rosano, Caterina; Camicioli, Richard; Alexander, Neil B; Chen, Wen G; Lipsitz, Lewis A; Carlson, Michelle C

    2016-11-01

    Research suggests that the central nervous system (CNS) and mobility are closely linked. CNS-mediated mobility impairment may represent a potentially new and prevalent syndrome within the older adult populations. Interventions targeting this group may have the potential to improve mobility and cognition and prevent disability. In 2012, the Gerontological Society of America (GSA) and the National Institute on Aging (NIA) sponsored a 3-year conference workshop series, "Aging, the CNS, and Mobility." The goal of this third and final conference was to (i) report on the state of the science of interventions targeting CNS-mediated mobility impairment among community-dwelling older adults and (ii) partnering with the NIA, explore the future of research and intervention design focused on a potentially novel aging syndrome. Evidence was presented in five main intervention areas: (i) pharmacology and diet; (ii) exercise; (iii) electrical stimulation; (iv) sensory stimulation/deprivation; and (v) a combined category of multimodal interventions. Workshop participants identified important gaps in knowledge and key recommendations for future interventions related to recruitment and sample selection, intervention design, and methods to measure effectiveness. In order to develop effective preventive interventions for this prevalent syndrome, multidisciplinary teams are essential particularly because of the complex nature of the syndrome. Additionally, integrating innovative methods into the design of interventions may help researchers better measure complex mechanisms, and finally, the value of understanding the link between the CNS and mobility should be conveyed to researchers across disciplines in order to incorporate cognitive and mobility measurements into study protocols. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo.

    PubMed

    Kaid, Carolini; Goulart, Ernesto; Caires-Júnior, Luiz C; Araujo, Bruno H S; Soares-Schanoski, Alessandra; Bueno, Heloisa M S; Telles-Silva, Kayque A; Astray, Renato M; Assoni, Amanda F; Júnior, Antônio F R; Ventini, Daniella C; Puglia, Ana L P; Gomes, Roselane P; Zatz, Mayana; Okamoto, Oswaldo K

    2018-06-15

    Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV BR ) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV BR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV BR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV BR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKV BR -induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV BR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects. Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.

    PubMed

    Malik, Jai; Karan, Maninder; Vasisht, Karan

    2011-12-01

    Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p < 0.001). E. alsinoides extract (EAE) and C. ternatea extract (CTE) showed maximum memory-enhancing and anxiolytic activity (p < 0.001) at 200 and 100?mg/kg, respectively. Amongst the three plants, EAE and CTE showed significant (p < 0.05), while CPE did not exhibit any antidepressant activity. All the three plants showed CNS-depressant action at higher dose levels. The above results showed all the three plants possess nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.

  20. Progressive solitary sclerosis: Gradual motor impairment from a single CNS demyelinating lesion.

    PubMed

    Keegan, B Mark; Kaufmann, Timothy J; Weinshenker, Brian G; Kantarci, Orhun H; Schmalstieg, William F; Paz Soldan, M Mateo; Flanagan, Eoin P

    2016-10-18

    To report patients with progressive motor impairment resulting from an isolated CNS demyelinating lesion in cerebral, brainstem, or spinal cord white matter that we call progressive solitary sclerosis. Thirty patients were identified with (1) progressive motor impairment for over 1 year with a single radiologically identified CNS demyelinating lesion along corticospinal tracts, (2) absence of other demyelinating CNS lesions, and (3) no history of relapses affecting other CNS pathways. Twenty-five were followed prospectively in our multiple sclerosis (MS) clinic and 5 were identified retrospectively from our progressive MS database. Patients were excluded if an alternative etiology for progressive motor impairment was found. Multiple brain and spinal cord MRI were reviewed by a neuroradiologist blinded to the clinical details. The patients' median age was 48.5 years (range 23-71) and 15 (50%) were women. The median follow-up from symptom onset was 100 months (range 15-343 months). All had insidiously progressive upper motor neuron weakness attributable to the solitary demyelinating lesion found on MRI. Clinical presentations were hemiparesis/monoparesis (n = 24), quadriparesis (n = 5), and paraparesis (n = 1). Solitary MRI lesions involved cervical spinal cord (n = 18), cervico-medullary/brainstem region (n = 6), thoracic spinal cord (n = 4), and subcortical white matter (n = 2). CSF abnormalities consistent with MS were found in 13 of 26 (50%). Demyelinating disease was confirmed pathologically in 2 (biopsy, 1; autopsy, 1). Progressive solitary sclerosis results from an isolated CNS demyelinating lesion. Future revisions to MS diagnostic criteria could incorporate this presentation of demyelinating disease. © 2016 American Academy of Neurology.

  1. CNS Diseases and Uveitis

    PubMed Central

    Allegri, Pia; Rissotto, Roberto; Herbort, Carl P.; Murialdo, Ugo

    2011-01-01

    A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist’s perspective thereby neurologic involvement is stressed. PMID:22454751

  2. Awards, lectures, and fellowships sponsored by the AANS/CNS Section on Tumors.

    PubMed

    Lau, Darryl; Barker, Fred G; Aghi, Manish K

    2014-09-01

    A major goal of the Section on Tumors of the American Association of Neurological Surgery (AANS) and Congress of Neurological Surgeons (CNS) since it was founded in 1984 has been to foster both education and research in the field of brain tumor treatment and development. In support of this goal, the Section sponsors a number of awards, named lectures, and fellowships at the annual meetings of the AANS and CNS. In this article, we describe the awards given by the AANS/CNS Section on Tumors since its foundation, the recipients of the awards, and their philanthropic donors. The subsequent history of awardees and their work is briefly examined. Specifically for the Preuss and Mahaley Awards, this article also examines the rates of publication among the award-winning abstracts and achievement of grant funding by awardees.

  3. Evolution and development of the mammalian cerebral cortex.

    PubMed

    Molnár, Zoltán; Kaas, Jon H; de Carlos, Juan A; Hevner, Robert F; Lein, Ed; Němec, Pavel

    2014-01-01

    Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of the brain. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals, which helps to elucidate how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration whereas others migrate radially. A number of recent studies have begun to characterize the chick, mouse and human and nonhuman primate cortical transcriptome to help us understand how gene expression relates to the development and anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. © 2014 S. Karger AG, Basel.

  4. Elabela-Apelin Receptor Signaling Pathway is Functional in Mammalian Systems

    PubMed Central

    Wang, Zhi; Yu, Daozhan; Wang, Mengqiao; Wang, Qilong; Kouznetsova, Jennifer; Yang, Rongze; Qian, Kun; Wu, Wenjun; Shuldiner, Alan; Sztalryd, Carole; Zou, Minghui; Zheng, Wei; Gong, Da-Wei

    2015-01-01

    Elabela (ELA) or Toddler is a recently discovered hormone which is required for normal development of heart and vasculature through activation of apelin receptor (APJ), a G protein-coupled receptor (GPCR), in zebrafish. The present study explores whether the ELA-APJ signaling pathway is functional in the mammalian system. Using reverse-transcription PCR, we found that ELA is restrictedly expressed in human pluripotent stem cells and adult kidney whereas APJ is more widely expressed. We next studied ELA-APJ signaling pathway in reconstituted mammalian cell systems. Addition of ELA to HEK293 cells over-expressing GFP-AJP fusion protein resulted in rapid internalization of the fusion receptor. In Chinese hamster ovarian (CHO) cells over-expressing human APJ, ELA suppresses cAMP production with EC50 of 11.1 nM, stimulates ERK1/2 phosphorylation with EC50 of 14.3 nM and weakly induces intracellular calcium mobilization. Finally, we tested ELA biological function in human umbilical vascular endothelial cells and showed that ELA induces angiogenesis and relaxes mouse aortic blood vessel in a dose-dependent manner through a mechanism different from apelin. Collectively, we demonstrate that the ELA-AJP signaling pathways are functional in mammalian systems, indicating that ELA likely serves as a hormone regulating the circulation system in adulthood as well as in embryonic development. PMID:25639753

  5. Elabela-apelin receptor signaling pathway is functional in mammalian systems.

    PubMed

    Wang, Zhi; Yu, Daozhan; Wang, Mengqiao; Wang, Qilong; Kouznetsova, Jennifer; Yang, Rongze; Qian, Kun; Wu, Wenjun; Shuldiner, Alan; Sztalryd, Carole; Zou, Minghui; Zheng, Wei; Gong, Da-Wei

    2015-02-02

    Elabela (ELA) or Toddler is a recently discovered hormone which is required for normal development of heart and vasculature through activation of apelin receptor (APJ), a G protein-coupled receptor (GPCR), in zebrafish. The present study explores whether the ELA-APJ signaling pathway is functional in the mammalian system. Using reverse-transcription PCR, we found that ELA is restrictedly expressed in human pluripotent stem cells and adult kidney whereas APJ is more widely expressed. We next studied ELA-APJ signaling pathway in reconstituted mammalian cell systems. Addition of ELA to HEK293 cells over-expressing GFP-AJP fusion protein resulted in rapid internalization of the fusion receptor. In Chinese hamster ovarian (CHO) cells over-expressing human APJ, ELA suppresses cAMP production with EC50 of 11.1 nM, stimulates ERK1/2 phosphorylation with EC50 of 14.3 nM and weakly induces intracellular calcium mobilization. Finally, we tested ELA biological function in human umbilical vascular endothelial cells and showed that ELA induces angiogenesis and relaxes mouse aortic blood vessel in a dose-dependent manner through a mechanism different from apelin. Collectively, we demonstrate that the ELA-AJP signaling pathways are functional in mammalian systems, indicating that ELA likely serves as a hormone regulating the circulation system in adulthood as well as in embryonic development.

  6. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  7. T-bet promotes the accumulation of encephalitogenic Th17 cells in the CNS.

    PubMed

    Grifka-Walk, Heather M; Segal, Benjamin M

    2017-03-15

    T-bet enhances the encephalitogenicity of myelin-reactive CD4 + T cells, however its mechanism of action is unknown. In this study we show that T-bet confers a competitive advantage for the accumulation of IL-23 conditioned Th17 effector cells in the central nervous system (CNS). Impaired migration of T-bet deficient Th17 cells to the CNS is associated with altered expression of adhesion molecules and chemokine receptors on their cell surface. Our data suggest that therapeutic targeting of T-bet in individuals with Th17-mediated autoimmune demyelinating disease may inhibit inflammatory infiltration of the CNS and, hence, clinical exacerbations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Strategies for Utilizing Neuroimaging Biomarkers in CNS Drug Discovery and Development: CINP/JSNP Working Group Report.

    PubMed

    Suhara, Tetsuya; Chaki, Shigeyuki; Kimura, Haruhide; Furusawa, Makoto; Matsumoto, Mitsuyuki; Ogura, Hiroo; Negishi, Takaaki; Saijo, Takeaki; Higuchi, Makoto; Omura, Tomohiro; Watanabe, Rira; Miyoshi, Sosuke; Nakatani, Noriaki; Yamamoto, Noboru; Liou, Shyh-Yuh; Takado, Yuhei; Maeda, Jun; Okamoto, Yasumasa; Okubo, Yoshiaki; Yamada, Makiko; Ito, Hiroshi; Walton, Noah M; Yamawaki, Shigeto

    2017-04-01

    Despite large unmet medical needs in the field for several decades, CNS drug discovery and development has been largely unsuccessful. Biomarkers, particularly those utilizing neuroimaging, have played important roles in aiding CNS drug development, including dosing determination of investigational new drugs (INDs). A recent working group was organized jointly by CINP and Japanese Society of Neuropsychopharmacology (JSNP) to discuss the utility of biomarkers as tools to overcome issues of CNS drug development.The consensus statement from the working group aimed at creating more nuanced criteria for employing biomarkers as tools to overcome issues surrounding CNS drug development. To accomplish this, a reverse engineering approach was adopted, in which criteria for the utilization of biomarkers were created in response to current challenges in the processes of drug discovery and development for CNS disorders. Based on this analysis, we propose a new paradigm containing 5 distinct tiers to further clarify the use of biomarkers and establish new strategies for decision-making in the context of CNS drug development. Specifically, we discuss more rational ways to incorporate biomarker data to determine optimal dosing for INDs with novel mechanisms and targets, and propose additional categorization criteria to further the use of biomarkers in patient stratification and clinical efficacy prediction. Finally, we propose validation and development of new neuroimaging biomarkers through public-private partnerships to further facilitate drug discovery and development for CNS disorders. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  9. Incidence of CNS tumors in Appalachian children

    PubMed Central

    Huang, Bin; Luo, Alice; Durbin, Eric B.; Lycan, Ellen; Tucker, Thomas; Chen, Quan; Horbinski, Craig; Villano, John L.

    2017-01-01

    Objective Determine whether the risk of astrocytomas in Appalachian children is higher than the national average. Methods We compared the incidence of pediatric brain tumors in Appalachia versus non-Appalachia regions, covering years 2000–2011. The North American Association of Central Cancer Registries (NAACCR) collects population-based data from 55 cancer registries throughout United States and Canada. All invasive primary (i.e. non-metastatic tumors), with age at diagnosis 0–19 years old, were included. Nearly 27,000 and 2,200 central nervous system (CNS) tumors from non-Appalachia and Appalachia, respectively comprise the cohorts. Age-adjusted incidence rates of each main brain tumor subtype were compared. Results The incidence rate of pediatric CNS tumors was 8% higher in Appalachia, 3.31 [95% CI, 3.17–3.45] versus non–Appalachia, 3.06, [95% CI, 3.02–3.09] for the years 2001–2011, all rates are per 100,000 population. Astrocytomas accounted for the majority of this difference, with the rate being 16% higher in Appalachian children, 1.77, [95% CI, 1.67–1.87] versus non-Appalachian children, 1.52, [95% CI, 1.50–1.55]. Among astrocytomas, World Health Organization (WHO) grade I astrocytomas were 41% higher in Appalachia, 0.63 [95% CI, 0.56–0.70] versus non-Appalachia 0.44 [95% CI, 0.43–0.46] for the years 2004–2011. Conclusions and Relevance This is the first study to demonstrate that Appalachian children are at greater risk of CNS neoplasms, and that much of this difference is in WHO grade I astrocytomas, 41% more common. The cause of this increased incidence is unknown and we discuss the importance of this in relation to genetic and environmental findings in Appalachia. PMID:28285334

  10. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.

    PubMed

    Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E

    2014-01-01

    The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.

  11. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    PubMed Central

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  12. slc7a6os gene plays a critical role in defined areas of the developing CNS in zebrafish.

    PubMed

    Benini, Anna; Cignarella, Francesca; Calvarini, Laura; Mantovanelli, Silvia; Giacopuzzi, Edoardo; Zizioli, Daniela; Borsani, Giuseppe

    2015-01-01

    The aim of this study is to shed light on the functional role of slc7a6os, a gene highly conserved in vertebrates. The Danio rerio slc7a6os gene encodes a protein of 326 amino acids with 46% identity to human SLC7A6OS and 14% to Saccharomyces cerevisiae polypeptide Iwr1. Yeast Iwr1 specifically binds RNA pol II, interacts with the basal transcription machinery and regulates the transcription of specific genes. In this study we investigated for the first time the biological role of SLC7A6OS in vertebrates. Zebrafish slc7a6os is a maternal gene that is expressed throughout development, with a prevalent localization in the developing central nervous system (CNS). The gene is also expressed, although at different levels, in various tissues of the adult fish. To determine the functional role of slc7a6os during zebrafish development, we knocked-down the gene by injecting a splice-blocking morpholino. At 24 hpf morphants show morphological defects in the CNS, particularly the interface between hindbrain and midbrain is not well-defined. At 28 hpf the morpholino injected embryos present an altered somite morphology and appear partially or completely immotile. At this stage the midbrain, hindbrain and cerebellum are compromised and not well defined compared with control embryos. The observed alterations persist at later developmental stages. Consistently, the expression pattern of two markers specifically expressed in the developing CNS, pax2a and neurod, is significantly altered in morphants. The co-injection of embryos with synthetic slc7a6os mRNA, rescues the morphant phenotype and restores the wild type expression pattern of pax2a and neurod. Our data suggest that slc7a6os might play a critical role in defined areas of the developing CNS in vertebrates, probably by regulating the expression of key genes.

  13. slc7a6os Gene Plays a Critical Role in Defined Areas of the Developing CNS in Zebrafish

    PubMed Central

    Benini, Anna; Cignarella, Francesca; Calvarini, Laura; Mantovanelli, Silvia; Giacopuzzi, Edoardo; Zizioli, Daniela; Borsani, Giuseppe

    2015-01-01

    The aim of this study is to shed light on the functional role of slc7a6os, a gene highly conserved in vertebrates. The Danio rerio slc7a6os gene encodes a protein of 326 amino acids with 46% identity to human SLC7A6OS and 14% to Saccharomyces cerevisiae polypeptide Iwr1. Yeast Iwr1 specifically binds RNA pol II, interacts with the basal transcription machinery and regulates the transcription of specific genes. In this study we investigated for the first time the biological role of SLC7A6OS in vertebrates. Zebrafish slc7a6os is a maternal gene that is expressed throughout development, with a prevalent localization in the developing central nervous system (CNS). The gene is also expressed, although at different levels, in various tissues of the adult fish. To determine the functional role of slc7a6os during zebrafish development, we knocked-down the gene by injecting a splice-blocking morpholino. At 24 hpf morphants show morphological defects in the CNS, particularly the interface between hindbrain and midbrain is not well-defined. At 28 hpf the morpholino injected embryos present an altered somite morphology and appear partially or completely immotile. At this stage the midbrain, hindbrain and cerebellum are compromised and not well defined compared with control embryos. The observed alterations persist at later developmental stages. Consistently, the expression pattern of two markers specifically expressed in the developing CNS, pax2a and neurod, is significantly altered in morphants. The co-injection of embryos with synthetic slc7a6os mRNA, rescues the morphant phenotype and restores the wild type expression pattern of pax2a and neurod. Our data suggest that slc7a6os might play a critical role in defined areas of the developing CNS in vertebrates, probably by regulating the expression of key genes. PMID:25803583

  14. Transporters at CNS Barrier Sites: Obstacles or Opportunities for Drug Delivery?

    PubMed Central

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M.; Thompson, Brandon J.; Davis, Thomas P.; Ronaldson, Patrick T.

    2014-01-01

    The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from “brute force” approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters. PMID:23789948

  15. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination.

    PubMed

    Vidal, Marie; Maniglier, Madlyne; Deboux, Cyrille; Bachelin, Corinne; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2015-06-01

    It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine. © 2015 AlphaMed Press.

  16. Impact of Cranial Irradiation Added to Intrathecal Conditioning in Hematopoietic Cell Transplantation in Adult Acute Myeloid Leukemia With Central Nervous System Involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayadev, Jyoti S.; Department of Radiation Oncology University of California-Davis Medical Center, Davis, CA; Douglas, James G., E-mail: drjay@u.washington.ed

    Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patientsmore » had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.« less

  17. Role of Academic Drug Discovery in the Quest for New CNS Therapeutics.

    PubMed

    Yokley, Brian H; Hartman, Matthew; Slusher, Barbara S

    2017-03-15

    There was a greater than 50% decline in central nervous system (CNS) drug discovery and development programs by major pharmaceutical companies from 2009 to 2014. This decline was paralleled by a rise in the number of university led drug discovery centers, many in the CNS area, and a growth in the number of public-private drug discovery partnerships. Diverse operating models have emerged as the academic drug discovery centers adapt to this changing ecosystem.

  18. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    NASA Astrophysics Data System (ADS)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  19. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. In vivo imaging of the neurovascular unit in CNS disease

    PubMed Central

    Merlini, Mario; Davalos, Dimitrios; Akassoglou, Katerina

    2014-01-01

    The neurovascular unit—comprised of glia, pericytes, neurons and cerebrovasculature—is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets. PMID:25197615

  1. Central nervous system (CNS) neuroblastoma. A case-based update.

    PubMed

    Bianchi, Federico; Tamburrini, Gianpiero; Gessi, Marco; Frassanito, Paolo; Massimi, Luca; Caldarelli, Massimo

    2018-05-01

    Primary central nervous system (CNS) neuroblastoma is a rare intracranial tumor affecting children mainly in the first years of life. It is usually a supratentorial tumor with a wide spectrum of clinical presentation, seizures, and focal neurological deficits being the most common presenting signs. A 2-year-old child was admitted to our ward after a generalized seizure. Neurological examination was normal. Radiological studies showed a small DWI hyperintense lesion of the right rectus gyrus. Follow-up brain MRI 8 months later showed a huge growth of the tumor (90 × 80 × 65 mm) with polycyclic and apparently defined margins, cystic components, and diffuse contrast enhancement. Complete tumor removal was performed in two planned surgical steps. Histological diagnosis was CNS neuroblastoma. At a follow-up of 8 months, the child is in good clinical and neurological condition and is completing chemotherapy treatment according to the SIOP PNET 4 protocol. A thorough review of the literature confirms that primary CNS neuroblastoma has to be considered a distinct entity. The disease related mortality is 12.5%, lower than the one usually reported for other previously described as PNETs tumors. The most relevant factors influencing prognosis are the possibility of obtaining a complete tumor removal and age more than 3 years, which allows to include radiotherapy among treatment options.

  2. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes

    PubMed Central

    Zebrowski, David C; Vergarajauregui, Silvia; Wu, Chi-Chung; Piatkowski, Tanja; Becker, Robert; Leone, Marina; Hirth, Sofia; Ricciardi, Filomena; Falk, Nathalie; Giessl, Andreas; Just, Steffen; Braun, Thomas; Weidinger, Gilbert; Engel, Felix B

    2015-01-01

    Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI: http://dx.doi.org/10.7554/eLife.05563.001 PMID:26247711

  3. Treatment options for Primary CNS Lymphoma.

    PubMed

    Laghari, Altaf Ali; Ahmed, Syed Ijlal; Jabbar, Adnan; Shamim, Muhammad Shahzad

    2018-03-01

    Primary CNS lymphoma (PCNSL) is a rare and aggressive brain tumour that is uniformly fatal. The rarity of the disease and the poor response to treatment makes it difficult to reach a consensus with regards to treatment options. In this review, the authors have discussed different treatment modalities used in the management of PCNSL including chemotherapy, surgery and radiation, as well as the results of recent clinical trials on treatment options for PCNSL.

  4. Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery

    PubMed Central

    Ronaldson, Patrick T; Davis, Thomas P

    2012-01-01

    The blood–brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery. PMID:22468221

  5. Validation of the CNS Penetration-Effectiveness Rank for Quantifying Antiretroviral Penetration Into the Central Nervous System

    PubMed Central

    Letendre, Scott; Marquie-Beck, Jennifer; Capparelli, Edmund; Best, Brookie; Clifford, David; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Morgello, Susan; Simpson, David; Grant, Igor; Ellis, Ronald J.

    2009-01-01

    Objective To evaluate whether penetration of a combination regimen into the central nervous system (CNS), as estimated by the CNS Penetration-Effectiveness (CPE) rank, is associated with lower cerebrospinal fluid (CSF) viral load. Design Data were analyzed from 467 participants who were human immunodeficiency virus (HIV) seropositive and who reported antiretroviral (ARV) drug use. Individual ARV drugs were assigned a penetration rank of 0 (low), 0.5 (intermediate), or 1 (high) based on their chemical properties, concentrations in CSF, and/or effectiveness in the CNS in clinical studies. The CPE rank was calculated by summing the individual penetration ranks for each ARV in the regimen. Results The median CPE rank was 1.5 (interquartile range, 1–2). Lower CPE ranks correlated with higher CSF viral loads. Ranks less than 2 were associated with an 88% increase in the odds of detectable CSF viral load. In multivariate regression, lower CPE ranks were associated with detectable CSF viral loads even after adjusting for total number of ARV drugs, ARV drug adherence, plasma viral load, duration and type of the current regimen, and CD4 count. Conclusions Poorer penetration of ARV drugs into the CNS appears to allow continued HIV replication in the CNS as indicated by higher CSF HIV viral loads. Because inhibition of HIV replication in the CNS is probably critical in treating patients who have HIV-associated neurocognitive disorders, ARV treatment strategies that account for CNS penetration should be considered in consensus treatment guidelines and validated in clinical studies. PMID:18195140

  6. Neonatal CNS infection and inflammation caused by Ureaplasma species: rare or relevant?

    PubMed

    Glaser, Kirsten; Speer, Christian P

    2015-02-01

    Colonization with Ureaplasma species has been associated with adverse pregnancy outcome, and perinatal transmission has been implicated in the development of bronchopulmonary dysplasia in preterm neonates. Little is known about Ureaplasma-mediated infection and inflammation of the CNS in neonates. Controversy remains concerning its incidence and implication in the pathogenesis of neonatal brain injury. In vivo and in vitro data are limited. Despite improving care options for extremely immature preterm infants, relevant complications remain. Systematic knowledge of ureaplasmal infection may be of great benefit. This review aims to summarize pathogenic mechanisms, clinical data and diagnostic pitfalls. Studies in preterm and term neonates are critically discussed with regard to their limitations. Clinical questions concerning therapy or prophylaxis are posed. We conclude that ureaplasmas may be true pathogens, especially in preterm neonates, and may cause CNS inflammation in a complex interplay of host susceptibility, serovar pathogenicity and gestational age-dependent CNS vulnerability.

  7. Alcohol intake alters immune responses and promotes CNS viral persistence in mice.

    PubMed

    Loftis, Jennifer M; Taylor, Jonathan; Raué, Hans-Peter; Slifka, Mark K; Huang, Elaine

    2016-10-01

    Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection. Published by Elsevier B.V.

  8. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  9. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  10. IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity.

    PubMed

    Kocur, Magdalena; Schneider, Reiner; Pulm, Ann-Kathrin; Bauer, Jens; Kropp, Sonja; Gliem, Michael; Ingwersen, Jens; Goebels, Norbert; Alferink, Judith; Prozorovski, Timour; Aktas, Orhan; Scheu, Stefanie

    2015-04-03

    Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris.

  11. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    PubMed

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

  12. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    PubMed Central

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  13. Structure and diversity in mammalian accessory olfactory bulb.

    PubMed

    Meisami, E; Bhatnagar, K P

    1998-12-15

    The accessory olfactory bulb (AOB) is the first neural integrative center for the olfactory-like vomeronasal sensory system. In this article, we first briefly present an overview of vomeronasal system organization and review the history of the discovery of mammalian AOB. Next, we briefly review the evolution of the vomeronasal system in vertebrates, in particular the reptiles. Following these introductory aspects, the structure of the rodent AOB, as typical of the well-developed mammalian AOB, is presented, detailing laminar organization and cell types as well as aspects of the homology with the main olfactory bulb. Then, the evolutionary origin and diversity of the AOB in mammalian orders and species is discussed, describing structural, phylogenetic, and species-specific variation in the AOB location, shape, and size and morphologic differentiation and development. The AOB is believed to be absent in fishes but present in terrestrial tetrapods including amphibians; among the reptiles AOB is absent in crocodiles, present in turtles, snakes, and some lizards where it may be as large or larger than the main bulb. The AOB is absent in bird and in the aquatic mammals (whales, porpoises, manatees). Among other mammals, AOB is present in the monotremes and marsupials, edentates, and in the majority of the placental mammals like carnivores, herbivores, as well as rodents and lagomorphs. Most bat species do not have an AOB and among those where one is found, it shows marked variation in size and morphologic development. Among insectivores and primates, AOB shows marked variation in occurrence, size, and morphologic development. It is small in shrews and moles, large in hedgehogs and prosimians; AOB continues to persist in New World monkeys but is not found in the adults of the higher primates such as the Old World monkeys, apes, and humans. In many species where AOB is absent in the adult, it often develops in the embryo and fetus but regresses in later stages of

  14. Cancers of the Brain and CNS: Global Patterns and Trends in Incidence.

    PubMed

    Mortazavi, S M J; Mortazavi, S A R; Paknahad, M

    2018-03-01

    Miranda-Filho et al. in their recently published paper entitled "Cancers of the brain and CNS: global patterns and trends in incidence" provided a global status report of the geographic and temporal variations in the incidence of brain and CNS cancers in different countries across continents worldwide. While the authors confirm the role of genetic risk factors and ionizing radiation exposures, they claimed that no firm conclusion could be drawn about the role of exposure to non-ionizing radiation. The paper authored by Miranda-Filho et al. not only addresses a challenging issue, it can be considered as a good contribution in the field of brain and CNS cancers. However, our correspondence addresses a basic shortcoming of this paper about the role of electromagnetic fields and cancers and provides evidence showing that exposure to radiofrequency electromagnetic fields (RF-EMFs), at least at high levels and long durations, can increases the risk of cancer.

  15. Engineering therapies in the CNS: what works and what can be translated.

    PubMed

    Shoffstall, Andrew J; Taylor, Dawn M; Lavik, Erin B

    2012-06-25

    Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Engineering Therapies in the CNS: What works and what can be translated

    PubMed Central

    Shoffstall, Andrew J.; Taylor, Dawn M.; Lavik, Erin B.

    2012-01-01

    Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS. PMID:22330751

  17. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  18. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com; Kennedy, Derek; Reed, Randall P.

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mildmore » increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV

  19. Natural Host Genetic Resistance to Lentiviral CNS Disease: A Neuroprotective MHC Class I Allele in SIV-Infected Macaques

    PubMed Central

    Mankowski, Joseph L.; Queen, Suzanne E.; Fernandez, Caroline S.; Tarwater, Patrick M.; Karper, Jami M.; Adams, Robert J.; Kent, Stephen J.

    2008-01-01

    Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease. PMID:18978944

  20. Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth

    PubMed Central

    Awal, Mehraj R.; Shay, James; McLoed, Melissa M.; Mazur, Eric; Gabel, Christopher V.

    2016-01-01

    During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system’s intrinsic regenerative capacity. PMID:27078101

  1. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. CD11c-expressing cells affect Treg behavior in the meninges during CNS infection1

    PubMed Central

    O’Brien, Carleigh A.; Overall, Christopher; Konradt, Christoph; O’Hara Hall, Aisling C.; Hayes, Nikolas W.; Wagage, Sagie; John, Beena; Christian, David A.; Hunter, Christopher A.; Harris, Tajie H.

    2017-01-01

    Treg cells play an important role in the CNS during multiple infections as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, the Treg cells in the CNS during T. gondii infection are Th1-polarized, exemplified by T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC Class II tetramer reagent specific for T. gondii did not recognize Treg cells isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector and regulatory T cells in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Treg cells were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, while Treg cells moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 antibodies to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg cell migration. These data suggest that Treg cells are anatomically restricted within the CNS and the interaction with CD11c+ populations regulates their local behavior during T. gondii infection. PMID:28389591

  3. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  4. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT

  5. Spinal cord dysmyelination caused by an anti-PLP IgM antibody: implications for the mechanism of CNS myelin formation

    PubMed Central

    Rosenbluth, J.; Schiff, R.

    2008-01-01

    Antiglycolipid IgM antibodies are known to induce formation of ‘wide-spaced’ or ‘expanded’ myelin, a distinctive form of dysmylination characterized by a repeat period ~2X or 3X normal, seen also in diseases including multiple sclerosis. To determine whether an antibody directed against a myelin protein would cause equivalent pathology, we implanted O10 hybridoma cells into the spinal cord of adult or juvenile rats. O10 produces an IgM directed against PLP, the major protein of CNS myelin. Subsequent examination of the cords showed focal demyelination and remyelination. In addition, however, some juvenile cords, but none of the adults, displayed wide-spaced myelin with lamellae separated by an extracellular material comprised of elements consistent with IgM molecules in appearance. Wide spacing tended to involve the outer layers of the sheath and in some cases alternated with normally spaced lamellae. A feature not seen previously consists of multiple expanded myelin lamellae in one sector of a sheath continuous with normally spaced lamellae in another, resulting in variation in sheath thickness around the axonal circumference. This uneven distribution of wide-spaced lamellae is most simply explained based on incorporation of IgM molecules into immature sheaths during myelin formation and implies a model of CNS myelinogenesis more complex than simple spiraling. The periaxonal space never displays widening of this kind, but the interface with adjacent myelin sheaths or oligodendrocytes may. Thus, wide spacing appears to require that IgM molecules bridge between two PLP-containing membranes and does not reflect the mere presence of immunoglobulin within the extracellular space. PMID:18951490

  6. Generating mammalian stable cell lines by electroporation.

    PubMed

    A Longo, Patti; Kavran, Jennifer M; Kim, Min-Sung; Leahy, Daniel J

    2013-01-01

    Expression of functional, recombinant mammalian proteins often requires expression in mammalian cells (see Single Cell Cloning of a Stable Mammalian Cell Line). If the expressed protein needs to be made frequently, it can be best to generate a stable cell line instead of performing repeated transient transfections into mammalian cells. Here, we describe a method to generate stable cell lines via electroporation followed by selection steps. This protocol will be limited to the CHO dhfr-Urlaub et al. (1983) and LEC1 cell lines, which in our experience perform the best with this method. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  8. Mapping the accumulation of co-infiltrating CNS dendritic cells and encephalitogenic T cells during EAE

    PubMed Central

    Clarkson, Benjamin D; Walker, Alec; Harris, Melissa; Rayasam, Aditya; Sandor, Matyas; Fabry, Zsuzsanna

    2014-01-01

    Evidence from experimental autoimmune encephalomyelitis (EAE) suggests that CNS-infiltrating dendritic cells (DCs) are crucial for restimulation of coinfiltrating T cells. Here we systematically quantified and visualized the distribution and interaction of CNS DCs and T cells during EAE. We report marked periventricular accumulation of DCs and myelin-specific T cells during EAE disease onset prior to accumulation in the spinal cord, indicating that the choroid plexus-CSF axis is a CNS entry portal. Moreover, despite emphasis on spinal cord inflammation in EAE and in correspondence with MS pathology, inflammatory lesions containing interacting DCs and T cells are present in specific brain regions. PMID:25288303

  9. Large Amplitude Cortical Evoked Potentials in Nonepileptic Patients. Reviving an Old Neurophysiologic Tool to Help Detect CNS Pathology.

    PubMed

    Martín-Palomeque, Guillermo; Castro-Ortiz, Antonio; Pamplona-Valenzuela, Pilar; Saiz-Sepúlveda, Miguel Á; Cabañes-Martínez, Lidia; López, Jaime R

    2017-01-01

    Although large amplitude evoked potentials (EPs) are typically associated with progressive myoclonic epilepsy patients, giant EPs imply central nervous system (CNS) hyperexcitability and can be seen in various nonepileptic disorders. We performed a retrospective chart review including history, physical examination, imaging and diagnostic studies of nonepileptic patients with large amplitude somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs) during 2007 to 2013. Large amplitude EPs were defined as follows: VEPs (N75-P100) >18 μV; and SSEPs (N20-P25) >6.4 μV. Recording montage for VEPs was Oz-Cz and SSEPs C3'/C4'-Fz. Fifty-two patients (33 females, 19 males; age range, 9-90 years) were identified. No CNS pathology was detected in 7 patients. All remaining patients were diagnosed with new CNS disorders including: vascular (37%); myelopathies (13%); demyelinating (11%); space occupying lesions (8.7%); syringomyelia (8.7%); hydrocephalus (6.5%); Vitamin B-12 deficiency (4.3%); multiple system atrophy (4.3%); and toxins (2.2%). This study supports the notion that large amplitude EP implies CNS hyperexcitability and CNS disease. These results confirm the utility of EP studies in patients with suspected CNS pathology.

  10. Joint morphogenetic cells in the adult mammalian synovium

    PubMed Central

    Roelofs, Anke J.; Zupan, Janja; Riemen, Anna H. K.; Kania, Karolina; Ansboro, Sharon; White, Nathan; Clark, Susan M.; De Bari, Cosimo

    2017-01-01

    The stem cells that safeguard synovial joints in adulthood are undefined. Studies on mesenchymal stromal/stem cells (MSCs) have mainly focused on bone marrow. Here we show that lineage tracing of Gdf5-expressing joint interzone cells identifies in adult mouse synovium an MSC population largely negative for the skeletal stem cell markers Nestin-GFP, Leptin receptor and Gremlin1. Following cartilage injury, Gdf5-lineage cells underpin synovial hyperplasia through proliferation, are recruited to a Nestin-GFPhigh perivascular population, and contribute to cartilage repair. The transcriptional co-factor Yap is upregulated after injury, and its conditional ablation in Gdf5-lineage cells prevents synovial lining hyperplasia and decreases contribution of Gdf5-lineage cells to cartilage repair. Cultured Gdf5-lineage cells exhibit progenitor activity for stable chondrocytes and are able to self-organize three-dimensionally to form a synovial lining-like layer. Finally, human synovial MSCs transduced with Bmp7 display morphogenetic properties by patterning a joint-like organ in vivo. Our findings further the understanding of the skeletal stem/progenitor cells in adult life. PMID:28508891

  11. The cellular code for mammalian thermosensation.

    PubMed

    Pogorzala, Leah A; Mishra, Santosh K; Hoon, Mark A

    2013-03-27

    Mammalian somatosenory neurons respond to thermal stimuli and allow animals to reliably discriminate hot from cold and to select their preferred environments. Previously, we generated mice that are completely insensitive to temperatures from noxious cold to painful heat (-5 to 55°C) by ablating several different classes of nociceptor early in development. In the present study, we have adopted a selective ablation strategy in adult mice to study this phenotype and have demonstrated that separate populations of molecularly defined neurons respond to hot and cold. TRPV1-expressing neurons are responsible for all behavioral responses to temperatures between 40 and 50°C, whereas TRPM8 neurons are required for cold aversion. We also show that more extreme cold and heat activate additional populations of nociceptors, including cells expressing Mrgprd. Therefore, although eliminating Mrgprd neurons alone does not affect behavioral responses to temperature, when combined with ablation of TRPV1 or TRPM8 cells, it significantly decreases responses to extreme heat and cold, respectively. Ablation of TRPM8 neurons distorts responses to preferred temperatures, suggesting that the pleasant thermal sensation of warmth may in fact just reflect reduced aversive input from TRPM8 and TRPV1 neurons. As predicted by this hypothesis, mice lacking both classes of thermosensor exhibited neither aversive nor attractive responses to temperatures between 10 and 50°C. Our results provide a simple cellular basis for mammalian thermosensation whereby two molecularly defined classes of sensory neurons detect and encode both attractive and aversive cues.

  12. CNS-targets in control of energy and glucose homeostasis.

    PubMed

    Kleinridders, André; Könner, A Christine; Brüning, Jens C

    2009-12-01

    The exceeding efforts in understanding the signals initiated by nutrients and hormones in the central nervous system (CNS) to regulate glucose and energy homeostasis have largely revolutionized our understanding of the neurocircuitry in control of peripheral metabolism. The ability of neurons to sense nutrients and hormones and to adopt a coordinated response to these signals is of crucial importance in controlling food intake, energy expenditure, glucose and lipid metabolism. Anatomical lesion experiments, pharmacological inhibition of signaling pathways, and, more recently, the analysis of conditional mouse mutants with modifications of hormone and nutrient signaling in defined neuronal populations have broadened our understanding of these complex neurocircuits. This review summarizes recent findings regarding the role of the CNS in sensing and transmitting nutritional and hormonal signals to control energy and glucose homeostasis and aims to define them as potential novel drug targets for the treatment of obesity and type 2 diabetes mellitus.

  13. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation.

    PubMed

    Franco, Bénédicte; Malgrange, Brigitte

    2017-03-01

    It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556. © 2017 AlphaMed Press.

  14. Lost in the jungle: new hurdles for optic nerve axon regeneration.

    PubMed

    Pernet, Vincent; Schwab, Martin E

    2014-07-01

    The poor regenerative capacity of injured central nervous system (CNS) axons leads to permanent neurological deficits after brain, spinal cord, or optic nerve lesions. In the optic nerve, recent studies showed that stimulation of the cytokine or mammalian target of rapamycin (mTOR) signaling pathways potently enhances sprouting and regeneration of injured retinal ganglion cell axons in adult mice, but does not allow the majority of axons to reach their main cerebral targets. New analyses have revealed axon navigation defects in the optic nerve and at the optic chiasm under conditions of strong growth stimulation. We propose that a balanced growth stimulatory treatment will have to be combined with guidance factors and suppression of local growth inhibitory factors to obtain the full regeneration of long CNS axonal tracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Seasonal- and temperature-dependent variation in CNS ascorbate and glutathione levels in anoxia-tolerant turtles.

    PubMed

    Pérez-Pinzón, M A; Rice, M E

    1995-12-24

    We determined the ascorbic acid (ascorbate) and glutathione (GSH) contents of eight regions of the CNS from anoxia-tolerant turtles collected in summer and in winter. Ascorbate was of special interest because it is found in exceptionally high levels in the turtle CNS. The temperature-dependence of CNS ascorbate content was established by comparing levels in animals collected from two geographic zones with different average winter temperatures and in animals re-acclimated to different temperatures in the laboratory. The analytical method was liquid chromatography with electrochemical detection. Turtle ascorbate levels were 30-40% lower in animals acclimatized to winter (2 degrees C) than to summer (23 degrees C) in all regions of the CNS. Similarly, GSH levels were 20-30% lower in winter than in summer. Winter ascorbate levels were higher in turtles from Louisiana (19 degrees C) than in turtles acclimatized to winter in Wisconsin (2 degrees C). Summer and winter levels of ascorbate could be reversed by re-acclimating animals to cold (1 degree C) or warm (23 degrees C) temperatures for at least one week. CNS water content did not differ between cold- and warm-acclimated turtles. Taken together, the data indicated that ascorbate and GSH undergo significant seasonal variation and that the catalyst for change is environmental temperature. Steady-state ascorbate content showed a linear dependence on temperature, with a slope of 1.5% per degree C that was independent of CNS region. Lower levels of cerebral antioxidants in turtles exposed to colder temperatures were consistent with the decreased rate of cerebral metabolism that accompanies winter hibernation. Cerebral ascorbate and GSH levels in the turtle remained similar to or higher than those in mammals, even during winter, however. These findings support the notion that unique mechanisms of antioxidant regulation in the turtle contribute to their tolerance of the hypoxia-reoxygenation that characterizes diving

  16. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    PubMed

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  17. Viral CNS infections in children from a malaria-endemic area of Malawi: a prospective cohort study

    PubMed Central

    Mallewa, Macpherson; Vallely, Pam; Faragher, Brian; Banda, Dan; Klapper, Paul; Mukaka, Mavuto; Khofi, Harriet; Pensulo, Paul; Taylor, Terrie; Molyneux, Malcolm; Solomon, Tom

    2013-01-01

    Summary Background Fever with reduced consciousness is an important cause of hospital admission of children in sub-Saharan Africa, with high mortality. Cerebral malaria, diagnosed when acute Plasmodium falciparum infection and coma are recorded with no other apparent reason, is one important cause. We investigated whether viruses could also be an important cause of CNS infection in such patients, and examined the relative contribution of viral pathogens and malaria parasitaemia. Methods We did a prospective cohort study in Blantyre, Malawi. From March 1, 2002, to Aug 31, 2004, we enrolled children aged between 2 months and 15 years who were admitted to hospital with suspected non-bacterial CNS infections. Children with a cerebrospinal fluid (CSF) white cell count of less than 1000 cells per μL and negative bacterial microscopy and culture were deemed to have suspected viral CNS infection. Blood was examined for asexual forms of P falciparum. PCR was done on CSF or on post-mortem brain biopsy specimens to detect 15 viruses known to cause CNS infection. Findings Full outcome data were available for 513 children with suspected viral CNS infection, of whom 94 (18%) died. 163 children (32%) had P falciparum parasitaemia, of whom 34 (21%) died. At least one virus was detected in the CNS in 133 children (26%), of whom 43 (33%) died. 12 different viruses were detected; adenovirus was the most common, affecting 42 children; mumps, human herpes virus 6, rabies, cytomegalovirus, herpes simplex virus 1, and enterovirus were also important. 45 (9%) of the 513 children had both parasitaemia and viral infection, including 27 (35%) of 78 diagnosed clinically with cerebral malaria. Children with dual infection were more likely to have seizures than were those with parasitaemia alone, viral infection only, or neither (p<0·0001). 17 (38%) of the 45 children with dual infection died, compared with 26 (30%) of 88 with viral infection only, 17 (14%) of 118 with parasitaemia only, and

  18. Viral CNS infections in children from a malaria-endemic area of Malawi: a prospective cohort study.

    PubMed

    Mallewa, Macpherson; Vallely, Pam; Faragher, Brian; Banda, Dan; Klapper, Paul; Mukaka, Mavuto; Khofi, Harriet; Pensulo, Paul; Taylor, Terrie; Molyneux, Malcolm; Solomon, Tom

    2013-09-01

    Fever with reduced consciousness is an important cause of hospital admission of children in sub-Saharan Africa, with high mortality. Cerebral malaria, diagnosed when acute Plasmodium falciparum infection and coma are recorded with no other apparent reason, is one important cause. We investigated whether viruses could also be an important cause of CNS infection in such patients, and examined the relative contribution of viral pathogens and malaria parasitaemia. We did a prospective cohort study in Blantyre, Malawi. From March 1, 2002, to Aug 31, 2004, we enrolled children aged between 2 months and 15 years who were admitted to hospital with suspected non-bacterial CNS infections. Children with a cerebrospinal fluid (CSF) white cell count of less than 1000 cells per μL and negative bacterial microscopy and culture were deemed to have suspected viral CNS infection. Blood was examined for asexual forms of P falciparum. PCR was done on CSF or on post-mortem brain biopsy specimens to detect 15 viruses known to cause CNS infection. Full outcome data were available for 513 children with suspected viral CNS infection, of whom 94 (18%) died. 163 children (32%) had P falciparum parasitaemia, of whom 34 (21%) died. At least one virus was detected in the CNS in 133 children (26%), of whom 43 (33%) died. 12 different viruses were detected; adenovirus was the most common, affecting 42 children; mumps, human herpes virus 6, rabies, cytomegalovirus, herpes simplex virus 1, and enterovirus were also important. 45 (9%) of the 513 children had both parasitaemia and viral infection, including 27 (35%) of 78 diagnosed clinically with cerebral malaria. Children with dual infection were more likely to have seizures than were those with parasitaemia alone, viral infection only, or neither (p<0·0001). 17 (38%) of the 45 children with dual infection died, compared with 26 (30%) of 88 with viral infection only, 17 (14%) of 118 with parasitaemia only, and 34 (13%) of 262 with neither (p<0

  19. Primary CNS Lymphoma in Children and Adolescents: A Descriptive Analysis from the International Primary CNS Lymphoma Collaborative Group (IPCG)

    PubMed Central

    Abla, Oussama; Weitzman, Sheila; Blay, Jean-Yves; O’Neill, Brian Patrick; Abrey, Lauren E.; Neuwelt, Edward; Doolittle, Nancy D.; Baehring, Joachim; Pradhan, Kamnesh; Martin, S. Eric; Guerrera, Michael; Shah, Shafqat; Ghesquieres, Hervé; Silver, Michael; Betensky, Rebecca A.; Batchelor, Tracy

    2014-01-01

    Purpose To describe the demographic and clinical features and outcomes for children and adolescents with primary CNS lymphoma (PCNSL). Experimental Design A retrospective series of children and adolescents with PCNSL was assembled from ten cancer centers in three countries. Results Twenty-nine patients with a median age of 14 years were identified. Sixteen (55%) had Eastern Cooperative Oncology Group (ECOG) performance status (PS) ≥ 1. Front line therapy consisted of chemotherapy (CT) only in twenty patients (69%), while 9 (31%) had CT plus cranial radiotherapy. Most patients received methotrexate (MTX)-based regimens. Overall response rate was 86% (CR 69%, PR 17%). The 2 year PFS and OS rates were 61% and 86%, respectively; the 3 year OS was 82%. Univariate analyses were conducted for age (≤ 14 vs > 14 years), PS (0 or 1 vs >1), deep brain lesions, MTX dose, primary treatment with CT alone, intrathecal chemotherapy and high-dose therapy. Primary treatment with CT alone was associated with better overall response rates with an OR of 0.125 (p=0.02). There was a marginally significant relationship between higher doses of MTX and response (OR =1.5, p = 0.06). ECOG-PS of 0–1 was the only factor associated with better outcome with hazard ratios of 0.136 (p = 0.017) and 0.073(p = 0.033) for PFS and OS, respectively. Conclusion This is the largest series collected of pediatric PCNSL. The outcome of children and adolescents appears to be better than in adults. PS of 0–1 is associated with better survival. PMID:21224370

  20. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System.

    PubMed

    Yu, Fei; Lv, Chongyang; Dong, Qianhui

    2016-03-18

    Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.

  1. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  2. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling.

    PubMed

    Zhou, Yulian; Nathans, Jeremy

    2014-10-27

    Canonical Wnt signaling in endothelial cells (ECs) is required for vascularization of the central nervous system (CNS) and for formation and maintenance of barrier properties unique to CNS vasculature. Gpr124 is an orphan member of the adhesion G protein-coupled receptor family that is expressed in ECs and is essential for CNS angiogenesis and barrier formation via an unknown mechanism. Using canonical Wnt signaling assays in cell culture and genetic loss- and gain-of-function experiments in mice, we show that Gpr124 functions as a coactivator of Wnt7a- and Wnt7b-stimulated canonical Wnt signaling via a Frizzled receptor and Lrp coreceptor and that Gpr124-stimulated signaling functions in concert with Norrin/Frizzled4 signaling to control CNS vascular development. These experiments identify Gpr124 as a ligand-specific coactivator of canonical Wnt signaling.

  3. Enhancer Evolution across 20 Mammalian Species

    PubMed Central

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  4. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter

    PubMed Central

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-01-01

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369

  5. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter.

    PubMed

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-02-03

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.

  6. Pooled Analysis of CNS Response to Alectinib in Two Studies of Pretreated Patients With ALK-Positive Non-Small-Cell Lung Cancer.

    PubMed

    Gadgeel, Shirish M; Shaw, Alice T; Govindan, Ramaswamy; Gandhi, Leena; Socinski, Mark A; Camidge, D Ross; De Petris, Luigi; Kim, Dong-Wan; Chiappori, Alberto; Moro-Sibilot, Denis L; Duruisseaux, Michael; Crino, Lucio; De Pas, Tommaso; Dansin, Eric; Tessmer, Antje; Yang, James Chih-Hsin; Han, Ji-Youn; Bordogna, Walter; Golding, Sophie; Zeaiter, Ali; Ou, Sai-Hong Ignatius

    2016-12-01

    Purpose Alectinib has shown activity in the CNS in phase I and II studies. To further evaluate this activity, we pooled efficacy and safety data from two single-arm phase II studies (NP28761 and NP28673; ClinicalTrials.gov identifiers: NCT01871805 and NCT01801111, respectively) in patients with ALK-positive non-small-cell lung cancer (NSCLC). Patients and Methods Both studies included patients with ALK-positive NSCLC who had previously received crizotinib; all patients received alectinib 600 mg twice per day. The primary end point in both studies was independent review committee (IRC)-assessed objective response rate (ORR; by Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1). Additional end points (all by IRC) included CNS ORR (CORR), CNS disease control rate (CDCR), and CNS duration of response (CDOR). Results One hundred thirty-six patients had baseline CNS metastases (60% of the overall study populations); 50 patients (37%) had measurable CNS disease at baseline. Ninety-five patients (70%) had prior CNS radiotherapy; 55 patients completed the CNS radiotherapy more than 6 months before starting alectinib. Median follow-up time was 12.4 months (range, 0.9 to 19.7 months). For patients with baseline measurable CNS disease, IRC CORR was 64.0% (95% CI, 49.2% to 77.1%), CDCR was 90.0% (95% CI, 78.2% to 96.7%), and median CDOR was 10.8 months (95% CI, 7.6 to 14.1 months). For patients with measurable and/or nonmeasurable baseline CNS disease, IRC CORR was 42.6% (95% CI, 34.2% to 51.4%), CDCR was 85.3% (95% CI, 78.2% to 90.8%), and median CDOR was 11.1 months (95% CI, 10.3 months to not evaluable). CORR was 35.8% (95% CI, 26.2% to 46.3%) for patients with prior radiotherapy (n = 95) and 58.5% (95% CI, 42.1% to 73.7%) for patients without prior radiotherapy (n = 41). As previously reported, alectinib was well tolerated, regardless of baseline CNS disease. Conclusion Alectinib showed good efficacy against CNS metastases, in addition to systemic activity

  7. Enrichment and isolation of neurons from adult mouse brain for ex vivo analysis.

    PubMed

    Berl, Sabina; Karram, Khalad; Scheller, Anja; Jungblut, Melanie; Kirchhoff, Frank; Waisman, Ari

    2017-05-01

    Isolation of neurons from the adult mouse CNS is important in order to study their gene expression during development or the course of different diseases. Here we present two different methods for the enrichment or isolation of neurons from adult mouse CNS. These methods: are either based on flow cytometry sorting of eYFP expressing neurons, or by depletion of non-neuronal cells by sorting with magnetic-beads. Enrichment by FACS sorting of eYFP positive neurons results in a population of 62.4% NeuN positive living neurons. qPCR data shows a 3-5fold upregulation of neuronal markers. The isolation of neurons based on depletion of non-neuronal cells using the Miltenyi Neuron Isolation Kit, reaches a purity of up to 86.5%. qPCR data of these isolated neurons shows an increase in neuronal markers and an absence of glial markers, proving pure neuronal RNA isolation. Former data related to neuronal gene expression are mainly based on histology, which does not allow for high-throughput transcriptome analysis to examine differential gene expression. These protocols can be used to study cell type specific gene expression of neurons to unravel their function in the process of damage to the CNS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Protein and genome evolution in Mammalian cells for biotechnology applications.

    PubMed

    Majors, Brian S; Chiang, Gisela G; Betenbaugh, Michael J

    2009-06-01

    Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.

  9. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging.

    PubMed

    Badawi, Yomna; Nishimune, Hiroshi

    2018-02-01

    Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  10. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict.

    PubMed

    Samstein, Robert M; Josefowicz, Steven Z; Arvey, Aaron; Treuting, Piper M; Rudensky, Alexander Y

    2012-07-06

    Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective

    PubMed Central

    Soni, Shringika; Ruhela, Rakesh Kumar; Medhi, Bikash

    2016-01-01

    Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go. PMID:27766216

  12. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions

    USDA-ARS?s Scientific Manuscript database

    This work aims to extract and characterize fibrous, rod-like and spherical cellulose nanoparticles (CNs) from cottonseed hull and to investigate the structure-morphology-rheology relationships. The rheological behavior of poly(vinyl alcohol) (PVA)/CNs suspensions was also examined to guide the solve...

  13. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    PubMed

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  14. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.

  15. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  16. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System

    PubMed Central

    Yu, Fei; Lv, Chongyang; Dong, Qianhui

    2016-01-01

    Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter. PMID:26999153

  17. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    NASA Astrophysics Data System (ADS)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  18. CNS Langerhans cell histiocytosis: Common hematopoietic origin for LCH-associated neurodegeneration and mass lesions.

    PubMed

    McClain, Kenneth L; Picarsic, Jennifer; Chakraborty, Rikhia; Zinn, Daniel; Lin, Howard; Abhyankar, Harshal; Scull, Brooks; Shih, Albert; Lim, Karen Phaik Har; Eckstein, Olive; Lubega, Joseph; Peters, Tricia L; Olea, Walter; Burke, Thomas; Ahmed, Nabil; Hicks, M John; Tran, Brandon; Jones, Jeremy; Dauser, Robert; Jeng, Michael; Baiocchi, Robert; Schiff, Deborah; Goldman, Stanton; Heym, Kenneth M; Wilson, Harry; Carcamo, Benjamin; Kumar, Ashish; Rodriguez-Galindo, Carlos; Whipple, Nicholas S; Campbell, Patrick; Murdoch, Geoffrey; Kofler, Julia; Heales, Simon; Malone, Marian; Woltjer, Randy; Quinn, Joseph F; Orchard, Paul; Kruer, Michael C; Jaffe, Ronald; Manz, Markus G; Lira, Sergio A; Parsons, D Williams; Merad, Miriam; Man, Tsz-Kwong; Allen, Carl E

    2018-06-15

    Central nervous system Langerhans cell histiocytosis (CNS-LCH) brain involvement may include mass lesions and/or a neurodegenerative disease (LCH-ND) of unknown etiology. The goal of this study was to define the mechanisms of pathogenesis that drive CNS-LCH. Cerebrospinal fluid (CSF) biomarkers including CSF proteins and extracellular BRAFV600E DNA were analyzed in CSF from patients with CNS-LCH lesions compared with patients with brain tumors and other neurodegenerative conditions. Additionally, the presence of BRAFV600E was tested in peripheral mononuclear blood cells (PBMCs) as well as brain biopsies from LCH-ND patients, and the response to BRAF-V600E inhibitor was evaluated in 4 patients with progressive disease. Osteopontin was the only consistently elevated CSF protein in patients with CNS-LCH compared with patients with other brain pathologies. BRAFV600E DNA was detected in CSF of only 2/20 (10%) cases, both with LCH-ND and active lesions outside the CNS. However, BRAFV600E + PBMCs were detected with significantly higher frequency at all stages of therapy in LCH patients who developed LCH-ND. Brain biopsies of patients with LCH-ND demonstrated diffuse perivascular infiltration by BRAFV600E + cells with monocyte phenotype (CD14 + CD33 + CD163 + P2RY12 - ) and associated osteopontin expression. Three of 4 patients with LCH-ND treated with BRAF-V600E inhibitor experienced significant clinical and radiologic improvement. In LCH-ND patients, BRAFV600E + cells in PBMCs and infiltrating myeloid/monocytic cells in the brain is consistent with LCH-ND as an active demyelinating process arising from a mutated hematopoietic precursor from which LCH lesion CD207 + cells are also derived. Therapy directed against myeloid precursors with activated MAPK signaling may be effective for LCH-ND. Cancer 2018;124:2607-20. © 2018 American Cancer Society. © 2018 American Cancer Society.

  19. Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 ...

    MedlinePlus

    ... Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 Increased between 2005 and 2011 Central nervous system (CNS) stimulants include prescription drugs, like those used ...

  20. Diagnosis and early detection of CNS-SLE in MRL/lpr mice using peptide microarrays.

    PubMed

    Williams, Stephanie; Stafford, Phillip; Hoffman, Steven A

    2014-06-07

    An accurate method that can diagnose and predict lupus and its neuropsychiatric manifestations is essential since currently there are no reliable methods. Autoantibodies to a varied panel of antigens in the body are characteristic of lupus. In this study we investigated whether serum autoantibody binding patterns on random-sequence peptide microarrays (immunosignaturing) can be used for diagnosing and predicting the onset of lupus and its central nervous system (CNS) manifestations. We also tested the techniques for identifying potentially pathogenic autoantibodies in CNS-Lupus. We used the well-characterized MRL/lpr lupus animal model in two studies as a first step to develop and evaluate future studies in humans. In study one we identified possible diagnostic peptides for both lupus and altered behavior in the forced swim test. When comparing the results of study one to that of study two (carried out in a similar manner), we further identified potential peptides that may be diagnostic and predictive of both lupus and altered behavior in the forced swim test. We also characterized five potentially pathogenic brain-reactive autoantibodies, as well as suggested possible brain targets. These results indicate that immunosignaturing could predict and diagnose lupus and its CNS manifestations. It can also be used to characterize pathogenic autoantibodies, which may help to better understand the underlying mechanisms of CNS-Lupus.

  1. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells.

    PubMed

    Dileepan, Thamotharampillai; Smith, Erica D; Knowland, Daniel; Hsu, Martin; Platt, Maryann; Bittner-Eddy, Peter; Cohen, Brenda; Southern, Peter; Latimer, Elizabeth; Harley, Earl; Agalliu, Dritan; Cleary, P Patrick

    2016-01-01

    Group A streptococcal (GAS) infection induces the production of Abs that cross-react with host neuronal proteins, and these anti-GAS mimetic Abs are associated with autoimmune diseases of the CNS. However, the mechanisms that allow these Abs to cross the blood-brain barrier (BBB) and induce neuropathology remain unresolved. We have previously shown that GAS infection in mouse models induces a robust Th17 response in nasal-associated lymphoid tissue (NALT). Here, we identified GAS-specific Th17 cells in tonsils of humans naturally exposed to GAS, prompting us to explore whether GAS-specific CD4+ T cells home to mouse brains following i.n. infection. Intranasal challenge of repeatedly GAS-inoculated mice promoted migration of GAS-specific Th17 cells from NALT into the brain, BBB breakdown, serum IgG deposition, microglial activation, and loss of excitatory synaptic proteins under conditions in which no viable bacteria were detected in CNS tissue. CD4+ T cells were predominantly located in the olfactory bulb (OB) and in other brain regions that receive direct input from the OB. Together, these findings provide insight into the immunopathology of neuropsychiatric complications that are associated with GAS infections and suggest that crosstalk between the CNS and cellular immunity may be a general mechanism by which infectious agents exacerbate symptoms associated with other CNS autoimmune disorders.

  2. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease.

    PubMed

    Argaw, Azeb Tadesse; Asp, Linnea; Zhang, Jingya; Navrazhina, Kristina; Pham, Trinh; Mariani, John N; Mahase, Sean; Dutta, Dipankar J; Seto, Jeremy; Kramer, Elisabeth G; Ferrara, Napoleone; Sofroniew, Michael V; John, Gareth R

    2012-07-01

    In inflammatory CNS conditions such as multiple sclerosis (MS), current options to treat clinical relapse are limited, and more selective agents are needed. Disruption of the blood-brain barrier (BBB) is an early feature of lesion formation that correlates with clinical exacerbation, leading to edema, excitotoxicity, and entry of serum proteins and inflammatory cells. Here, we identify astrocytic expression of VEGF-A as a key driver of BBB permeability in mice. Inactivation of astrocytic Vegfa expression reduced BBB breakdown, decreased lymphocyte infiltration and neuropathology in inflammatory and demyelinating lesions, and reduced paralysis in a mouse model of MS. Knockdown studies in CNS endothelium indicated activation of the downstream effector eNOS as the principal mechanism underlying the effects of VEGF-A on the BBB. Systemic administration of the selective eNOS inhibitor cavtratin in mice abrogated VEGF-A-induced BBB disruption and pathology and protected against neurologic deficit in the MS model system. Collectively, these data identify blockade of VEGF-A signaling as a protective strategy to treat inflammatory CNS disease.

  3. Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS

    PubMed Central

    Zozulya, Alla L.; Ortler, Sonja; Lee, JangEun; Weidenfeller, Christian; Sandor, Matyas; Wiendl, Heinz; Fabry, Zsuzsanna

    2010-01-01

    Dendritic cells (DCs) appear in higher numbers within the CNS as a consequence of inflammation associated with autoimmune disorders, such as multiple sclerosis (MS), but the contribution of these cells to the outcome of disease is not yet clear. Here we show that stimulatory or tolerogenic functional states of intracerebral DCs regulate the systemic activation of neuroantigen-specific T cells, the recruitment of these cells into the CNS and the onset and progression of experimental autoimmune encephalomyelitis (EAE). Intracerebral microinjection of stimulatory DCs exacerbated the onset and clinical course of EAE, accompanied with an early T-cell infiltration and a decreased proportion of regulatory FoxP3-expressing cells in the brain. In contrast, the intracerebral microinjection of DCs modified by tumor necrosis factor alpha (TNF-α) induced their tolerogenic functional state and delayed or prevented EAE onset. This triggered the generation of interleukin 10 (IL-10)-producing neuroantigen-specific lymphocytes in the periphery and restricted IL-17 production in the CNS. Our findings suggest that DCs are a rate-limiting factor for neuroinflammation. PMID:19129392

  4. Commercial viability of CNS drugs: balancing the risk/reward profile.

    PubMed

    Johnson, Ginger S

    2014-01-01

    CNS has historically been a formidable therapeutic area in which to innovate owing to biological (e.g., complex neurobiology, difficulty reaching the target), as well as clinical (e.g., subjective clinical endpoints, high placebo response, lack of biomarkers) challenges. In the current market where many of the larger diseases are dominated by a generic standard of care, commercial challenges now make the triple threat of scientific-clinical-commercial risk too much for many players to tackle. However, opportunities do exist for smaller biotech companies to concentrate on narrowly focused patient populations associated with high unmet need for which risk can be tightly defined. In CNS, there are two major areas to balance the risk/reward profile and create commercially viable opportunities: To realize value, all companies (start-ups and big players) must define, measure and quantify clear and meaningful value to all stakeholders: physicians, patients, caregivers and payers. © 2013.

  5. Toxoplasmosis-associated IRIS involving the CNS: a case report with longitudinal analysis of T cell subsets.

    PubMed

    Rb-Silva, Rita; Nobrega, Claudia; Reiriz, Eugénia; Almeida, Soraia; Sarmento-Castro, Rui; Correia-Neves, Margarida; Horta, Ana

    2017-01-13

    HIV-infected patients may present an unforeseen clinical worsening after initiating antiretroviral therapy known as immune reconstitution inflammatory syndrome (IRIS). This syndrome is characterized by a heightened inflammatory response toward infectious or non-infectious triggers, and it may affect different organs. Diagnosis of IRIS involving the central nervous system (CNS-IRIS) is challenging due to heterogeneous manifestations, absence of biomarkers to identify this condition, risk of long-term sequelae and high mortality. Hence, a deeper knowledge of CNS-IRIS pathogenesis is needed. A 37-year-old man was diagnosed with AIDS and cerebral toxoplasmosis. Anti-toxoplasma treatment was initiated immediately, followed by active antiretroviral therapy (HAART) 1 month later. At 2 months of HAART, he presented with progressive hyposensitivity of the right lower limb associated with brain and dorsal spinal cord lesions, compatible with paradoxical toxoplasmosis-associated CNS-IRIS, a condition with very few reported cases. A stereotactic biopsy was planned but was postponed based on its inherent risks. Patient showed clinical improvement with no requirement of corticosteroid therapy. Routine laboratorial analysis was complemented with longitudinal evaluation of blood T cell subsets at 0, 1, 2, 3 and 6 months upon HAART initiation. A control group composed by 9 HIV-infected patients from the same hospital but with no IRIS was analysed for comparison. The CNS-IRIS patient showed lower percentage of memory CD4 + T cells and higher percentage of activated CD4 + T cells at HAART initiation. The percentage of memory CD4 + T cells drastically increased at 1 month after HAART initiation and became higher in comparison to the control group until clinical recovery onset; the percentage of memory CD8 + T cells was consistently lower throughout follow-up. Interestingly, the percentage of regulatory T cells (Treg) on the CNS-IRIS patient reached a minimum around 1

  6. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation

    PubMed Central

    Duraes, Fernanda V.; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. PMID:26341385

  7. Wnt signalling pathway parameters for mammalian cells.

    PubMed

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters

  8. Primary CNS lymphoma as a cause of Korsakoff syndrome.

    PubMed

    Toth, Cory; Voll, Chris; Macaulay, Robert

    2002-01-01

    Korsakoff syndrome presents with memory dysfunction with retrograde amnesia, anterograde amnesia, limited insight into dysfunction, and confabulation. The most common etiology of Korsakoff syndrome is thiamine deficiency secondary to alcoholism. There are limited case reports of structural lesions causing Korsakoff syndrome. A 46-year-old male with a long history of alcoholism presented with a history of confusion, amnesia, and confabulation with no localizing features on neurological examination. The patient showed no clinical change with intravenous thiamine. Computed tomography of the brain revealed a heterogenous, enhancing mass lesion centered within the third ventricle, with other lesions found throughout cortical and subcortical regions. The patient was given dexamethasone i.v. without noticeable clinical improvement but with marked radiological improvement with mass reduction. Stereotactic biopsy revealed a diagnosis of primary central nervous system (CNS) lymphoma. Most patients presenting with Korsakoff syndrome have thiamine deficiency; however, mass lesions can produce an identical clinical picture. This is the first case report of a patient with primary CNS lymphoma presenting as Korsakoff syndrome.

  9. Surveillance imaging in children with malignant CNS tumors: low yield of spine MRI.

    PubMed

    Perreault, Sébastien; Lober, Robert M; Carret, Anne-Sophie; Zhang, Guohua; Hershon, Linda; Décarie, Jean-Claude; Vogel, Hannes; Yeom, Kristen W; Fisher, Paul G; Partap, Sonia

    2014-02-01

    Magnetic resonance imaging (MRI) is routinely obtained in patients with central nervous system (CNS) tumors, but few studies have been conducted to evaluate this practice. We assessed the benefits of surveillance MRI and more specifically spine MRI in a contemporary cohort. We evaluated MRI results of children diagnosed with CNS tumors from January 2000 to December 2011. Children with at least one surveillance MRI following the diagnosis of medulloblastoma (MB), atypical teratoid rhabdoid tumor (ATRT), pineoblastoma (PB), supratentorial primitive neuroectodermal tumor, supratentorial high-grade glioma (World Health Organization grade III-IV), CNS germ cell tumors or ependymoma were included. A total of 2,707 brain and 1,280 spine MRI scans were obtained in 258 patients. 97% of all relapses occurred in the brain and 3% were isolated to the spine. Relapse was identified in 226 (8%) brain and 48 (4%) spine MRI scans. The overall rate of detecting isolated spinal relapse was 9/1,000 and 7/1,000 for MB patients. MRI performed for PB showed the highest rate for detecting isolated spinal recurrence with 49/1,000. No initial isolated spinal relapse was identified in patients with glioma, supratentorial primitive neuroectodermal tumor and ATRT. Isolated spinal recurrences are infrequent in children with malignant CNS tumors and the yield of spine MRI is very low. Tailoring surveillance spine MRI to patients with higher spinal relapse risk such as PB, MB with metastatic disease and within 3 years of diagnosis could improve allocation of resources without compromising patient care.

  10. Blood-brain barrier structure and function and the challenges for CNS drug delivery.

    PubMed

    Abbott, N Joan

    2013-05-01

    The neurons of the central nervous system (CNS) require precise control of their bathing microenvironment for optimal function, and an important element in this control is the blood-brain barrier (BBB). The BBB is formed by the endothelial cells lining the brain microvessels, under the inductive influence of neighbouring cell types within the 'neurovascular unit' (NVU) including astrocytes and pericytes. The endothelium forms the major interface between the blood and the CNS, and by a combination of low passive permeability and presence of specific transport systems, enzymes and receptors regulates molecular and cellular traffic across the barrier layer. A number of methods and models are available for examining BBB permeation in vivo and in vitro, and can give valuable information on the mechanisms by which therapeutic agents and constructs permeate, ways to optimize permeation, and implications for drug discovery, delivery and toxicity. For treating lysosomal storage diseases (LSDs), models can be included that mimic aspects of the disease, including genetically-modified animals, and in vitro models can be used to examine the effects of cells of the NVU on the BBB under pathological conditions. For testing CNS drug delivery, several in vitro models now provide reliable prediction of penetration of drugs including large molecules and artificial constructs with promising potential in treating LSDs. For many of these diseases it is still not clear how best to deliver appropriate drugs to the CNS, and a concerted approach using a variety of models and methods can give critical insights and indicate practical solutions.

  11. Auto Transplant for High Risk or Relapsed Solid or CNS Tumors

    ClinicalTrials.gov

    2018-04-24

    Ewing's Family Tumors; Renal Tumors; Hepatoblastoma; Rhabdomyosarcoma; Soft Tissue Sarcoma; Primary Malignant Brain Neoplasms; Retinoblastoma; Medulloblastoma; Supra-tentorial Primative Neuro-Ectodermal Tumor (PNET); Atypical Teratoid/Rhabdoid Tumor (AT/RT); CNS Tumors; Germ Cell Tumors

  12. Apoptosis of Oligodendrocytes during Early Development Delays Myelination and Impairs Subsequent Responses to Demyelination

    PubMed Central

    Caprariello, Andrew V.; Batt, Courtney E.; Zippe, Ingrid; Romito-DiGiacomo, Rita R.; Karl, Molly

    2015-01-01

    During mammalian development, myelin-forming oligodendrocytes are generated and axons ensheathed according to a tightly regulated sequence of events. Excess premyelinating oligodendrocytes are eliminated by apoptosis and the timing of the onset of myelination in any specific CNS region is highly reproducible. Although the developing CNS recovers more effectively than the adult CNS from similar insults, it is unknown whether early loss of oligodendrocyte lineage cells leads to long-term functional deficits. To directly assess whether the loss of oligodendrocytes during early postnatal spinal cord development impacted oligodendrogenesis, myelination, and remyelination, transgenic mouse lines were generated in which a modified caspase-9 molecule allowed spatial and temporal control of the apoptotic pathway specifically in mature, myelin basic protein expressing oligodendrocytes (MBP-iCP9). Activating apoptosis in MBP+ cells of the developing spinal cord during the first postnatal week inhibited myelination. This inhibition was transient, and the levels of myelination largely returned to normal after 2 weeks. Despite robust developmental plasticity, MBP-iCP9-induced oligodendrocyte apoptosis compromised the rate and extent of adult remyelination. Remyelination failure correlated with a truncated proliferative response of oligodendrocyte progenitor cells, suggesting that depleting the oligodendrocyte pool during critical developmental periods compromises the regenerative response to subsequent demyelinating lesions. SIGNIFICANCE STATEMENT This manuscript demonstrates that early insults leading to oligodendrocyte apoptosis result in the impairment of recovery from demyelinating diseases in the adult. These studies begin to provide an initial understanding of the potential failure of recovery in insults, such as periventricular leukomalacia and multiple sclerosis. PMID:26468203

  13. Leptin and the CNS Control of Glucose Metabolism

    PubMed Central

    Morton, Gregory J.; Schwartz, Michael W.

    2012-01-01

    The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system (CNS) plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders. PMID:21527729

  14. Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    PubMed Central

    Brunert, Daniela; Kurtenbach, Stefan; Isik, Sonnur; Benecke, Heike; Gisselmann, Günter; Schuhmann, Wolfgang; Hatt, Hanns; Wetzel, Christian H.

    2009-01-01

    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis. PMID:19430528

  15. Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival

    PubMed Central

    Sun, Shengyi; Shi, Guojun; Han, Xuemei; Francisco, Adam B.; Ji, Yewei; Mendonça, Nuno; Liu, Xiaojing; Locasale, Jason W.; Simpson, Kenneth W.; Duhamel, Gerald E.; Kersten, Sander; Yates, John R.; Long, Qiaoming; Qi, Ling

    2014-01-01

    Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L’s physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival. PMID:24453213

  16. Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers

    PubMed Central

    DiFranco, Marino; Herrera, Alvaro

    2011-01-01

    Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (ICl) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward ICl, and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and ICl acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be ICl dependent since its magnitude varied in close correlation with the amplitude and time course of ICl. While the properties of ICl, and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (PCl) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if PCl was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded ICl arises from TTS contributions

  17. Esterified Trehalose Analogues Protect Mammalian Cells from Heat Shock.

    PubMed

    Bragg, Jack T; D'Ambrosio, Hannah K; Smith, Timothy J; Gorka, Caroline A; Khan, Faraz A; Rose, Joshua T; Rouff, Andrew J; Fu, Terence S; Bisnett, Brittany J; Boyce, Michael; Khetan, Sudhir; Paulick, Margot G

    2017-09-19

    Trehalose is a disaccharide produced by many organisms to better enable them to survive environmental stresses, including heat, cold, desiccation, and reactive oxygen species. Mammalian cells do not naturally biosynthesize trehalose; however, when introduced into mammalian cells, trehalose provides protection from damage associated with freezing and drying. One of the major difficulties in using trehalose as a cellular protectant for mammalian cells is the delivery of this disaccharide into the intracellular environment; mammalian cell membranes are impermeable to the hydrophilic sugar trehalose. A panel of cell-permeable trehalose analogues, in which the hydrophilic hydroxyl groups of trehalose are masked as esters, have been synthesized and the ability of these analogues to load trehalose into mammalian cells has been evaluated. Two of these analogues deliver millimolar concentrations of free trehalose into a variety of mammalian cells. Critically, Jurkat cells incubated with these analogues show improved survival after heat shock, relative to untreated Jurkat cells. The method reported herein thus paves the way for the use of esterified analogues of trehalose as a facile means to deliver high concentrations of trehalose into mammalian cells for use as a cellular protectant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CSF Hypocretin-1 Levels and Clinical Profiles in Narcolepsy and Idiopathic CNS Hypersomnia in Norway

    PubMed Central

    Heier, Mona Skard; Evsiukova, Tatiana; Vilming, Steinar; Gjerstad, Michaela D.; Schrader, Harald; Gautvik, Kaare

    2007-01-01

    Objective: To evaluate the relationship between CSF hypocretin-1 levels and clinical profiles in narcolepsy and CNS hypersomnia in Norwegian patients. Method: CSF hypocretin-1 was measured by a sensitive radioimmunoassay in 47 patients with narcolepsy with cataplexy, 7 with narcolepsy without cataplexy, 10 with idiopathic CNS hypersomnia, and a control group. Results: Low hypocretin-1 values were found in 72% of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy. Patients with low CSF hypocretin-1 levels reported more extensive muscular involvement during cataplectic attacks than patients with normal levels. Hypnagogic hallucinations and sleep paralysis occurred more frequently in patients with cataplexy than in the other patient groups, but with no correlation to hypocretin-1 levels. Conclusion: About three quarters of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy had low CSF hypocretin-1 values, and appear to form a distinct clinical entity. Narcolepsy without cataplexy could not be distinguished from idiopathic CNS hypersomnia by clinical symptoms or biochemical findings. Citation: Heier MS; Evsiukova T; Vilming S; Gjerstad MD; Schrader H; Gautvik K. CSF hypocretin-1 levels and clinical profiles in narcolepsy and idiopathic CNS hypersomnia in norway. SLEEP 2007;30(8):969-973. PMID:17702265

  19. New experimental models of the blood-brain barrier for CNS drug discovery

    PubMed Central

    Kaisar, Mohammad A.; Sajja, Ravi K.; Prasad, Shikha; Abhyankar, Vinay V.; Liles, Taylor; Cucullo, Luca

    2017-01-01

    Introduction The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms. PMID:27782770

  20. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  1. Quercetin attenuates AZT-induced neuroinflammation in the CNS.

    PubMed

    Yang, Yi; Liu, Xiaokang; Wu, Ting; Zhang, Wenping; Shu, Jianhong; He, Yulong; Tang, Shao-Jun

    2018-04-18

    Highly active anti-retroviral therapy (HAART) is very effective in suppressing HIV-1 replication in patients. However, continuous HAART is required to prevent viral rebound, which may have detrimental effects in various tissues, including persistent neuroinflammation in the central nervous system (CNS). Here, we show that quercetin (3,5,7,3',4'-pentahydroxy flavones), a natural antioxidant used in Chinese traditional medicines, suppresses the neuroinflammation that is induced by chronic exposure to Zidovudine (azidothymidine, AZT), a nucleoside reverse transcriptase inhibitor (NRTI) that is commonly part of HAART regimens. We found that the up-regulation of pro-inflammatory cytokines and microglial and astrocytic markers induced by AZT (100 mg/kg/day; 8 days) was significantly inhibited by co-administration of quercetin (50 mg/kg/day) in the mouse cortex, hippocampus and spinal cord. We further showed that quercetin attenuated AZT-induced up-regulation of Wnt5a, a key regulator of neuroinflammation. These results suggest that quercetin has an inhibitory effect on AZT-induced neuroinflammation in the CNS, and Wnt5a signaling may play an important role in this process. Our results may further our understanding of the mechanisms of HAART-related neurotoxicity and help in the development of effective adjuvant therapy.

  2. CNS syndromes associated with antibodies against metabotropic receptors.

    PubMed

    Lancaster, Eric

    2017-06-01

    Autoantibodies to Central nervous system (CNS) metabotropic receptors are associated with a growing family of autoimmune brain diseases, including encephalitis, basal ganglia encephalitis, Ophelia syndrome, and cerebellitis. The purpose of this review is to summarize the state of knowledge regarding the target receptors, the neurological autoimmune disorders, and the pathogenic mechanisms. Antibodies to the γ-aminobutyric acid B receptor are associate with limbic encephalitis and severe seizures, often with small cell lung cancers. Metabotropic glutamate receptor 5 (mGluR5) antibodies associate with Ophelia syndrome, a relatively mild form of encephalitis linked to Hodgkin lymphoma. mGluR1 antibodies associate with a form of cerebellar degeneration, and also Hodgkin lymphoma. Antibodies to Homer 3, a protein associated with mGluR1, have also been reported in two patients with cerebellar syndromes. Dopamine-2 receptor antibodies have been reported by one group in children with basal ganglia encephalitis and other disorders. CNS metabotropic receptor antibodies may exert direct inhibitory effects on their target receptors, but the evidence is more limited than with autoantibodies to ionotropic glutamate receptors. In the future, improved recognition of these patients may lead to better outcomes. Understanding the molecular mechanisms of the diseases may uncover novel treatment strategies.

  3. Cognitive Impairment in Adults with Non-CNS Cancers (PDQ®)—Health Professional Version

    Cancer.gov

    Cognitive impairment in adult cancer survivors may include problems with memory, concentration, information processing, and executive function. Get comprehensive information about assessing and managing cognitive impairment in this summary for clinicians.

  4. Dose escalating safety study of CNS 5161 HCl, a new neuronal glutamate receptor antagonist (NMDA) for the treatment of neuropathic pain

    PubMed Central

    Forst, Thomas; Smith, Terry; Schütte, Klemens; Marcus, Paul; Pfützner, Andreas

    2007-01-01

    What is already known about this subject Despite encouraging effects of N-methyl-D-aspartate (NMDA) receptor antagonists in reducing neuropathic pain of different aetiologies, the clinical use of these agents has been limited by their mainly psychotropic side-effects. In a recent study in healthy volunteers, CNS 5161, a novel noncompetetive NMDA receptor antagonist, was well tolerated up to a dosage of 2000 µg without psychotropic side-effects. This is the first study to evaluate the maximal tolerated dosage of CNS 5161 and to gain experience about the analgesic effect of CNS 5161 in patients with different pain syndromes. What this study adds In patients with neuropathic pain CNS 5161 is well tolerated up to a dosage of 500 µg with the most common side-effect of increasing blood pressure, mild visual disturbances and headaches. While no therapeutic effect can be observed in a dosage up to 250 µg, treatment with 500 µg CNS 5161 provides some indications of analgesic activity. It appears that this effect occurs predominantly in patients with diabetic neuropathy. Aims The purpose of the current study was to establish the safety and maximal tolerated dose of CNS 5161 HCl. Methods Forty patients with chronic neuropathic pain (23 male, 17 female) were treated with escalating dosages of CNS 5161. All adverse events to study drug, blood pressure, heart rate, ECG, drug level and clinical laboratory values were monitored. Actual pain was measured on a 100-mm visual analogue scale (VAS) and ordinal verbal pain scores. Results The most commonly occurring nervous system disorder was headache, which was found more often during placebo than during CNS 5161 HCl treatment. Visual disturbances were experienced by 16.7% of patients receiving 250 µg and by 33.3% receiving 500 µg CNS 5161 HCl, but not during placebo treatment. An increase in blood pressure was observed in 8.3% of patients receiving 250 µg and in 50% of patients receiving 500 µg CNS 5161 HCl, compared with 15

  5. Pharmacological Evaluation of Naproxen Metal Complexes on Antinociceptive, Anxiolytic, CNS Depressant, and Hypoglycemic Properties

    PubMed Central

    Das, Narhari; Abdur Rahman, S. M.

    2016-01-01

    Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435

  6. Crossroads between Bacterial and Mammalian Glycosyltransferases

    PubMed Central

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  7. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  8. Mosaic evolution of the mammalian auditory periphery.

    PubMed

    Manley, Geoffrey A

    2013-01-01

    The classical mammalian auditory periphery, i.e., the type of middle ear and coiled cochlea seen in modern therian mammals, did not arise as one unit and did not arise in all mammals. It is also not the only kind of auditory periphery seen in modern mammals. This short review discusses the fact that the constituents of modern mammalian auditory peripheries arose at different times over an extremely long period of evolution (230 million years; Ma). It also attempts to answer questions as to the selective pressures that led to three-ossicle middle ears and the coiled cochlea. Mammalian middle ears arose de novo, without an intermediate, single-ossicle stage. This event was the result of changes in eating habits of ancestral animals, habits that were unrelated to hearing. The coiled cochlea arose only after 60 Ma of mammalian evolution, driven at least partly by a change in cochlear bone structure that improved impedance matching with the middle ear of that time. This change only occurred in the ancestors of therian mammals and not in other mammalian lineages. There is no single constellation of structural features of the auditory periphery that characterizes all mammals and not even all modern mammals.

  9. Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury

    PubMed Central

    van der Merwe, Yolandi

    2015-01-01

    Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910

  10. Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans.

    PubMed

    Clinton, Brian K; Cunningham, Christopher L; Kriegstein, Arnold R; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-01-01

    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions.

  11. Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans

    PubMed Central

    Clinton, Brian K; Cunningham, Christopher L; Kriegstein, Arnold R; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-01-01

    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions. PMID:27504470

  12. Deriving Therapies for Children with Primary CNS Tumors Using Pharmacokinetic Modeling and Simulation of Cerebral Microdialysis Data

    PubMed Central

    Jacus, M.O.; Throm, S.L.; Turner, D.C.; Patel, Y.T.; Freeman, B.B.; Morfouace, M.; Boulos, N.; Stewart, C. F.

    2014-01-01

    The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to

  13. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation.

    PubMed

    Duraes, Fernanda V; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders

    PubMed Central

    Johnson, M. Brittany; Young, Ada D.; Marriott, Ian

    2017-01-01

    The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson’s disease, Alzheimer’s disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions. PMID:28101005

  15. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  16. An autopsy case of chronic active Epstein-Barr virus infection (CAEBV): distribution of central nervous system (CNS) lesions.

    PubMed

    Kobayashi, Zen; Tsuchiya, Kuniaki; Takahashi, Makoto; Yokota, Osamu; Sasaki, Atsushi; Bhunchet, Ekapot; Arai, Tetsuaki; Akiyama, Haruhiko; Kamoshita, Masaharu; Kotera, Minoru; Mizusawa, Hidehiro

    2008-12-15

    A 27-year-old Japanese man developed recurrent respiratory and central nervous system (CNS) symptoms, and hemophagocytic syndromes with a clinical course of 6 years. CT demonstrated multiple nodular lesions in the bilateral lungs, and MRI revealed multiple abnormal intensity areas in the brain and spinal cord. Cerebrospinal fluid (CSF) examination disclosed mild pleocytosis and the presence of Epstein-Barr virus (EBV)-DNA detected by polymerase chain reaction (PCR). The patient died of a hemorrhagic shock associated with a hemophagocytic syndrome. A postmortem study revealed massive hemorrhage in the abdominal cavity and iliopsoas muscles, as well as diffuse infiltration of lymphocytes and/or macrophages into the lungs, liver, kidneys, spleen, cardiac muscle, bone marrow, and CNS. The severe involvement was demonstrated in the CNS, especially in the spinal cord and brainstem. The CD3 positive cells of the brainstem were EBV-encoded RNA 1 positive. This is the first autopsy case of chronic active EBV infection (CAEBV) in which severe and extensive CNS involvement was demonstrated.

  17. Evidence toward an expanded international civil aviation organization (ICAO) concept of a single unified global communication navigation surveillance air traffic management (CNS/ATM) system: A quantitative analysis of ADS-B technology within a CNS/ATM system

    NASA Astrophysics Data System (ADS)

    Gardner, Gregory S.

    This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).

  18. Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Shrivastava, Amit Kumar; Rao, K. Seshagiri

    2018-01-01

    Despite their frequent natural occurrence, filled discontinuities under constant normal stiffness (CNS) boundary conditions have been studied much less systematically, perhaps because of the difficulties arising from the increased number of variable parameters. Because of the lack of reliable and realistic theoretical or empirical relations and the difficulties in obtaining and testing representative samples, engineers rely on judgment and often consider the shear strength of the infilled material itself as shear strength of rock joints. This assumption leads to uneconomical and also sometimes the unsafe design of underground structures, slopes, rock-socketed piles and foundations. To study the effect of infill on the shear behavior of rock joints, tests were performed on the modeled infilled rock joint having different joint roughness under constant normal load (CNL) and CNS boundary conditions at various initial normal stress and varying thickness of the infilled material. The test results indicate that shear strength decreases with an increase in t/ a ratio for both CNL and CNS conditions, but the reduction in shear strength is more for CNL than for CNS condition for a given initial normal stress. The detailed account of the effect of thickness of infilled material on shear and deformation behavior of infilled rock joint is discussed in this paper, and a model is proposed to predict shear strength of infilled rock joint.

  19. In vivo kinetic approach reveals slow SOD1 turnover in the CNS

    PubMed Central

    Crisp, Matthew J.; Mawuenyega, Kwasi G.; Patterson, Bruce W.; Reddy, Naveen C.; Chott, Robert; Self, Wade K.; Weihl, Conrad C.; Jockel-Balsarotti, Jennifer; Varadhachary, Arun S.; Bucelli, Robert C.; Yarasheski, Kevin E.; Bateman, Randall J.; Miller, Timothy M.

    2015-01-01

    Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life. Here, we applied a stable isotope-labeling technique in combination with mass spectrometric detection and determined the in vivo kinetics of superoxide dismutase 1 (SOD1), mutation of which causes amyotrophic lateral sclerosis. Application of this method to human SOD1-expressing rats demonstrated that SOD1 is a long-lived protein, with a similar half-life in both the cerebral spinal fluid (CSF) and the CNS. Additionally, in these animals, the half-life of SOD1 was longest in the CNS when compared with other tissues. Evaluation of this method in human subjects demonstrated successful incorporation of the isotope label in the CSF and confirmed that SOD1 is a long-lived protein in the CSF of healthy individuals. Together, the results of this study provide important insight into SOD1 kinetics and support application of this technique to the design and implementation of clinical trials that target long-lived CNS proteins. PMID:26075819

  20. In vivo kinetic approach reveals slow SOD1 turnover in the CNS.

    PubMed

    Crisp, Matthew J; Mawuenyega, Kwasi G; Patterson, Bruce W; Reddy, Naveen C; Chott, Robert; Self, Wade K; Weihl, Conrad C; Jockel-Balsarotti, Jennifer; Varadhachary, Arun S; Bucelli, Robert C; Yarasheski, Kevin E; Bateman, Randall J; Miller, Timothy M

    2015-07-01

    Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life. Here, we applied a stable isotope-labeling technique in combination with mass spectrometric detection and determined the in vivo kinetics of superoxide dismutase 1 (SOD1), mutation of which causes amyotrophic lateral sclerosis. Application of this method to human SOD1-expressing rats demonstrated that SOD1 is a long-lived protein, with a similar half-life in both the cerebral spinal fluid (CSF) and the CNS. Additionally, in these animals, the half-life of SOD1 was longest in the CNS when compared with other tissues. Evaluation of this method in human subjects demonstrated successful incorporation of the isotope label in the CSF and confirmed that SOD1 is a long-lived protein in the CSF of healthy individuals. Together, the results of this study provide important insight into SOD1 kinetics and support application of this technique to the design and implementation of clinical trials that target long-lived CNS proteins.

  1. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke

    PubMed Central

    Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina

    2013-01-01

    Clinical stroke induces inflammatory processes leading to cerebral injury. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and increased numbers of activated T-cells, monocytes and microglial cells in the brain, thus implicating a regulatory role of B-cell subpopulations in limiting CNS damage from stroke. The aim of this study was to determine whether the IL-10-producing regulatory B-cell subset can limit CNS inflammation and reduce infarct volume following ischemic stroke in B-cell deficient (µMT−/−) mice. Five million IL-10-producing B-cells were obtained from IL-10-GFP reporter mice and transferred i.v. to µMT−/− mice. After 24 h following this transfer, recipients were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 48 hours of reperfusion. Compared to vehicle-treated controls, the IL-10+ B-cell-replenished µMT−/− mice had reduced infarct volume and fewer infiltrating activated T-cells and monocytes in the affected brain hemisphere. These effects in CNS were accompanied by significant increases in regulatory T-cells and expression of the co-inhibitory receptor, PD-1, with a significant reduction in the proinflammatory milieu in the periphery. These novel observations provide the first proof of both immunoregulatory and protective functions of IL-10-secreting B-cells in MCAO that potentially could impart significant benefit for stroke patients in the clinic. PMID:23640015

  2. Mammalian touch catches up

    PubMed Central

    Walsh, Carolyn M.; Bautista, Diana M.; Lumpkin, Ellen A.

    2015-01-01

    An assortment of touch receptors innervate the skin and encode different tactile features of the environment. Compared with invertebrate touch and other sensory systems, our understanding of the molecular and cellular underpinnings of mammalian touch lags behind. Two recent breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers allowed the functional and anatomical properties of sensory neurons to be matched, thereby unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of Piezo genes as a new family of mechanically activated channels has fueled the discovery of molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors. PMID:26100741

  3. Homogenization of Mammalian Cells.

    PubMed

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  4. Comparative antibiogram of coagulase-negative Staphylococci (CNS) associated with subclinical and clinical mastitis in dairy cows.

    PubMed

    Bansal, B K; Gupta, D K; Shafi, T A; Sharma, S

    2015-03-01

    The present study was planned to determine the in vitro antibiotic susceptibility of coagulase-negative Staphylococci (CNS) strains isolated from clinical and subclinical cases of mastitis in dairy cows. Antibiotic sensitivity profile will be helpful to recommend early therapy at the field level prior to availability of CST results. The milk samples from cases of clinical mastitis received in Mastitis Laboratory, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana and those of subclinical mastitis collected during routine screening of state dairy farms, were subjected to microbial culture. Identification of CNS organisms was done by standard biochemical tests. Antibiotic sensitivity testing, based on 30 antibiotics belonging to 12 groups, was done on 58 randomly selected CNS isolates (clinical isolates: 41, subclinical isolates: 17). Isolates were highly susceptible to chloramphenicol (98.3%), gentamicin (93.1%), streptomycin (91.4%), linezolid (91.4%), ceftixozime (87.9%), cloxacillin (86.2%), clotrimazole (86.2%), bacitracin (86.2%), enrofloxacin (84.5%) and ceftrioxone + tazobactum (70.7%), while resistance was observed against amoxicillin (77.6%), penicillin (75.9%), ampicillin (74.1%) and cefoperazone (51.7%). Overall, isolates from clinical cases of mastitis had a higher resistance than subclinical isolates. CNS isolates were susceptible to chloramphenicol, gentamicin and streptomycin, while higher resistance was recorded against routinely used penicillin group.

  5. Array tomography of physiologically-characterized CNS synapses.

    PubMed

    Valenzuela, Ricardo A; Micheva, Kristina D; Kiraly, Marianna; Li, Dong; Madison, Daniel V

    2016-08-01

    The ability to correlate plastic changes in synaptic physiology with changes in synaptic anatomy has been very limited in the central nervous system because of shortcomings in existing methods for recording the activity of specific CNS synapses and then identifying and studying the same individual synapses on an anatomical level. We introduce here a novel approach that combines two existing methods: paired neuron electrophysiological recording and array tomography, allowing for the detailed molecular and anatomical study of synapses with known physiological properties. The complete mapping of a neuronal pair allows determining the exact number of synapses in the pair and their location. We have found that the majority of close appositions between the presynaptic axon and the postsynaptic dendrite in the pair contain synaptic specializations. The average release probability of the synapses between the two neurons in the pair is low, below 0.2, consistent with previous studies of these connections. Other questions, such as receptor distribution within synapses, can be addressed more efficiently by identifying only a subset of synapses using targeted partial reconstructions. In addition, time sensitive events can be captured with fast chemical fixation. Compared to existing methods, the present approach is the only one that can provide detailed molecular and anatomical information of electrophysiologically-characterized individual synapses. This method will allow for addressing specific questions about the properties of identified CNS synapses, even when they are buried within a cloud of millions of other brain circuit elements. Copyright © 2016. Published by Elsevier B.V.

  6. Hyperphagia and Increased Fat Accumulation in Two Models of Chronic CNS Glucagon-Like Peptide-1 Loss of Function

    PubMed Central

    Jones, Kenneth R.; Herman, James P.; D'Alessio, David A.; Woods, Stephen C.; Seeley, Randy J.

    2011-01-01

    Central administration of glucagon-like peptide-1 (GLP-1) causes a dose-dependent reduction in food intake, but the role of endogenous CNS GLP-1 in the regulation of energy balance remains unclear. Here, we tested the hypothesis that CNS GLP-1 activity is required for normal energy balance by using two independent methods to achieve chronic CNS GLP-1 loss of function in rats. Specifically, lentiviral-mediated expression of RNA interference was used to knock down nucleus of the solitary tract (NTS) preproglucagon (PPG), and chronic intracerebroventricular (ICV) infusion of the GLP-1 receptor (GLP-1r) antagonist exendin (9-39) (Ex9) was used to block CNS GLP-1r. NTS PPG knockdown caused hyperphagia and exacerbated high-fat diet (HFD)-induced fat accumulation and glucose intolerance. Moreover, in control virus-treated rats fed the HFD, NTS PPG expression levels correlated positively with fat mass. Chronic ICV Ex9 also caused hyperphagia; however, increased fat accumulation and glucose intolerance occurred regardless of diet. Collectively, these data provide the strongest evidence to date that CNS GLP-1 plays a physiologic role in the long-term regulation of energy balance. Moreover, they suggest that this role is distinct from that of circulating GLP-1 as a short-term satiation signal. Therefore, it may be possible to tailor GLP-1-based therapies for the prevention and/or treatment of obesity. PMID:21389245

  7. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function.

    PubMed

    Barrera, Jason G; Jones, Kenneth R; Herman, James P; D'Alessio, David A; Woods, Stephen C; Seeley, Randy J

    2011-03-09

    Central administration of glucagon-like peptide-1 (GLP-1) causes a dose-dependent reduction in food intake, but the role of endogenous CNS GLP-1 in the regulation of energy balance remains unclear. Here, we tested the hypothesis that CNS GLP-1 activity is required for normal energy balance by using two independent methods to achieve chronic CNS GLP-1 loss of function in rats. Specifically, lentiviral-mediated expression of RNA interference was used to knock down nucleus of the solitary tract (NTS) preproglucagon (PPG), and chronic intracerebroventricular (ICV) infusion of the GLP-1 receptor (GLP-1r) antagonist exendin (9-39) (Ex9) was used to block CNS GLP-1r. NTS PPG knockdown caused hyperphagia and exacerbated high-fat diet (HFD)-induced fat accumulation and glucose intolerance. Moreover, in control virus-treated rats fed the HFD, NTS PPG expression levels correlated positively with fat mass. Chronic ICV Ex9 also caused hyperphagia; however, increased fat accumulation and glucose intolerance occurred regardless of diet. Collectively, these data provide the strongest evidence to date that CNS GLP-1 plays a physiologic role in the long-term regulation of energy balance. Moreover, they suggest that this role is distinct from that of circulating GLP-1 as a short-term satiation signal. Therefore, it may be possible to tailor GLP-1-based therapies for the prevention and/or treatment of obesity.

  8. Early wound site seeding in a patient with CNS high-grade neuroepithelial tumor with BCOR alteration: A case report.

    PubMed

    Kirkman, Matthew A; Pickles, Jessica C; Fairchild, Amy R; Avery, Aimee; Pietsch, Torsten; Jacques, Thomas S; Aquilina, Kristian

    2018-05-30

    Advances in molecular profiling have facilitated the emergence of newly defined entities of central nervous system tumor, including CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR). Relatively little is known about the clinical behaviour of these newly-characterized tumors. We describe a pediatric male patient with CNS HGNET-BCOR who developed seeding of the tumor into the site of the surgical wound within months of surgery for resection of a residual posterior fossa tumor. This case emphasises three important points. First, CNS HGNET-BCOR can be aggressive tumors that necessitate close clinical and radiological surveillance. Second, surveillance imaging in such cases should incorporate the surgical incision site into the field of view, and this should be closely scrutinised to ensure the timely detection of wound site seeding. Third, wound site seeding may still occur despite the use of meticulous surgical techniques. Copyright © 2018. Published by Elsevier Inc.

  9. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain

    PubMed Central

    Deverman, Benjamin E.; Pravdo, Piers L.; Simpson, Bryan P.; Kumar, Sripriya Ravindra; Chan, Ken Y.; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P.; Gradinaru, Viviana

    2015-01-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer1-6. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics7-13. Here we describe a capsid selection method, called Cre-recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV914-17, and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications. PMID:26829320

  10. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats.

    PubMed

    Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R

    2016-05-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.

  11. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats

    PubMed Central

    Kaplan, Kara; Echert, Ashley E.; Massat, Ben; Puissant, Madeleine M.; Palygin, Oleg; Geurts, Aron M.

    2016-01-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DATph2−/−) rats. DATph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DATph2−/− rats. Body temperature was also maintained in adult DATph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DATph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. PMID:26869713

  12. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury

    PubMed Central

    Yang, Zhaoyang; Zhang, Aifeng; Duan, Hongmei; Zhang, Sa; Hao, Peng; Ye, Keqiang; Sun, Yi E.; Li, Xiaoguang

    2015-01-01

    Neural stem cells (NSCs) in the adult mammalian central nervous system (CNS) hold the key to neural regeneration through proper activation, differentiation, and maturation, to establish nascent neural networks, which can be integrated into damaged neural circuits to repair function. However, the CNS injury microenvironment is often inhibitory and inflammatory, limiting the ability of activated NSCs to differentiate into neurons and form nascent circuits. Here we report that neurotrophin-3 (NT3)-coupled chitosan biomaterial, when inserted into a 5-mm gap of completely transected and excised rat thoracic spinal cord, elicited robust activation of endogenous NSCs in the injured spinal cord. Through slow release of NT3, the biomaterial attracted NSCs to migrate into the lesion area, differentiate into neurons, and form functional neural networks, which interconnected severed ascending and descending axons, resulting in sensory and motor behavioral recovery. Our study suggests that enhancing endogenous neurogenesis could be a novel strategy for treatment of spinal cord injury. PMID:26460015

  13. A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury

    PubMed Central

    Koch, Marta; Nicolas, Maya; Zschaetzsch, Marlen; de Geest, Natalie; Claeys, Annelies; Yan, Jiekun; Morgan, Matthew J.; Erfurth, Maria-Luise; Holt, Matthew; Schmucker, Dietmar; Hassan, Bassem A.

    2018-01-01

    Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3′-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism. PMID:29472843

  14. Evolutionary Patterns of RNA-Based Duplication in Non-Mammalian Chordates

    PubMed Central

    Li, Xin; Vibranovski, Maria D.; Gan, Xiaoni; Wang, Dengqiang; Wang, Wen; Long, Manyuan; He, Shunping

    2011-01-01

    The role of RNA-based duplication, or retroposition, in the evolution of new gene functions in mammals, plants, and Drosophila has been widely reported. However, little is known about RNA-based duplication in non-mammalian chordates. In this study, we screened ten non-mammalian chordate genomes for retrocopies and investigated their evolutionary patterns. We identified numerous retrocopies in these species. Examination of the age distribution of these retrocopies revealed no burst of young retrocopies in ancient chordate species. Upon comparing these non-mammalian chordate species to the mammalian species, we observed that a larger fraction of the non-mammalian retrocopies was under strong evolutionary constraints than mammalian retrocopies are, as evidenced by signals of purifying selection and expression profiles. For the Western clawed frog, Medaka, and Sea squirt, many retrogenes have evolved gonad and brain expression patterns, similar to what was observed in human. Testing of retrogene movement in the Medaka genome, where the nascent sex chrosomes have been well assembled, did not reveal any significant gene movement. Taken together, our analyses demonstrate that RNA-based duplication generates many functional genes and can make a significant contribution to the evolution of non-mammalian genomes. PMID:21779328

  15. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration

    PubMed Central

    Lu, Li; Finegold, Milton J; Johnson, Randy L

    2018-01-01

    The mammalian liver has a remarkable capacity for repair following injury. Removal of up to two-third of liver mass results in a series of events that include extracellular matrix remodeling, coordinated hepatic cell cycle re-entry, restoration of liver mass and tissue remodeling to return the damaged liver to its normal state. Although there has been considerable advancement of our knowledge concerning the regenerative capacity of the mammalian liver, many outstanding questions remaining, such as: how does the regenerating liver stop proliferating when appropriate mass is restored and how do these mechanisms relate to normal regulation of organ size during development? Hippo pathway has been proposed to be central in mediating both events: organ size control during development and following regeneration. In this report, we examined the role of Yap and Taz, key components of the Hippo pathway in liver organ size regulation, both in the context of development and homeostasis. Our studies reveal that contrary to the current paradigms that Yap/Taz are not required for developmental regulation of liver size but are required for proper liver regeneration. In livers depleted of Yap and Taz, liver mass is elevated in neonates and adults. However, Yap/Taz-depleted livers exhibit profound defects in liver regeneration, including an inability to restore liver mass and to properly coordinate cell cycle entry. Taken together, our results highlight requirements for the Hippo pathway during liver regeneration and indicate that there are additional pathways that cooperate with Hippo signaling to control liver size during development and in the adult. PMID:29303509

  16. The impact of transposable elements on mammalian development

    PubMed Central

    Garcia-Perez, Jose L.; Widmann, Thomas J.; Adams, Ian R.

    2018-01-01

    Summary Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that significantly impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and how the somatic activity of TEs can influence gene regulatory networks. PMID:27875251

  17. A PML/Slit Axis Controls Physiological Cell Migration and Cancer Invasion in the CNS.

    PubMed

    Amodeo, Valeria; A, Deli; Betts, Joanne; Bartesaghi, Stefano; Zhang, Ying; Richard-Londt, Angela; Ellis, Matthew; Roshani, Rozita; Vouri, Mikaella; Galavotti, Sara; Oberndorfer, Sarah; Leite, Ana Paula; Mackay, Alan; Lampada, Aikaterini; Stratford, Eva Wessel; Li, Ningning; Dinsdale, David; Grimwade, David; Jones, Chris; Nicotera, Pierluigi; Michod, David; Brandner, Sebastian; Salomoni, Paolo

    2017-07-11

    Cell migration through the brain parenchyma underpins neurogenesis and glioblastoma (GBM) development. Since GBM cells and neuroblasts use the same migratory routes, mechanisms underlying migration during neurogenesis and brain cancer pathogenesis may be similar. Here, we identify a common pathway controlling cell migration in normal and neoplastic cells in the CNS. The nuclear scaffold protein promyelocytic leukemia (PML), a regulator of forebrain development, promotes neural progenitor/stem cell (NPC) and neuroblast migration in the adult mouse brain. The PML pro-migratory role is active also in transformed mouse NPCs and in human primary GBM cells. In both normal and neoplastic settings, PML controls cell migration via Polycomb repressive complex 2 (PRC2)-mediated repression of Slits, key regulators of axon guidance. Finally, a PML/SLIT1 axis regulates sensitivity to the PML-targeting drug arsenic trioxide in primary GBM cells. Taken together, these findings uncover a drug-targetable molecular axis controlling cell migration in both normal and neoplastic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Neuropsychological screening as a standard of care during discharge from psychiatric hospitalization: the preliminary psychometrics of the CNS Screen.

    PubMed

    Levy, Boaz; Celen-Demirtas, Selda; Surguladze, Tinatin; Eranio, Sara; Ellison, James

    2014-03-30

    Cost-prohibitive factors currently prevent a warranted integration of neuropsychological screenings into routine psychiatric evaluations, as a standard of care. To overcome this challenge, the current study examined the psychometric properties of a new computerized measure-the CNS Screen. One hundred and twenty six psychiatric inpatients completed the CNS Screen, the Montreal Cognitive Assessment (MoCA), and the Quick Inventory of Depressive Symptomatology-Self Rated (QIDS-SR₁₆) on the day of hospital discharge. Statistical analysis established convergent validity with a moderate correlation between the self-administered CNS Screen and the clinician-administered MoCA (r=0.64). Discriminant validity was implicated by a non-significant correlation with the QIDS-SR₁₆. Concurrent validity was supported by a moderate, negative correlation with patients' age (r=-0.62). In addition, consistent with previous findings, patients with psychotic disorders exhibited significantly poorer performance on the CNS Screen than patients with a mood disorder. Similarly, patients with a formal disability status scored significantly lower than other patients. The CNS Screen was well tolerated by all patients. With further development, this type of measure may provide a cost-effective approach to expanding neuropsychological screenings on inpatient psychiatric units. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery

    PubMed Central

    2012-01-01

    Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naïve CD4 cells and demonstrate their efficacy in the EAE model. Methods CD4+ T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery. Results The engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptom-free mice were rechallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs. Conclusion CNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms. PMID:22647574

  20. Mammalian diversity: gametes, embryos and reproduction.

    PubMed

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  1. Chemical sensing in mammalian host-bacterial commensal associations

    USDA-ARS?s Scientific Manuscript database

    The mammalian gastrointestinal (GI) tract is colonized by a complex consortium of bacterial species. Bacteria engage in chemical signaling to coordinate population-wide behavior. However, it is unclear if chemical sensing plays a role in establishing mammalian host–bacterial commensal relationships....

  2. TRTH-30. PRELIMINARY EXPERIENCE WITH SERIAL WHOLE EXOME SEQUENCING OF PEDIATRIC CNS TUMORS AT DIAGNOSIS AND RECURRENCE.

    PubMed Central

    Szalontay, Luca; Pendrick, Danielle; Feldstein, Neil; Anderson, Richard; Stark, Eileen; Bender, Julia Glade; Oberg, Jennifer; Hsiao, Susan; Turk, Andrew; Sireci, Anthony; Mansukhani, Mahesh; Garvin, James

    2017-01-01

    Abstract INTRODUCTION: Whole exome sequencing (WES) of newly diagnosed pediatric central nervous system (CNS) tumors is quickly becoming part of routine care. Through the Precision in Pediatric Sequencing (PiPseq) program at Columbia University, we have found potentially actionable mutations in more than 40% of evaluable CNS cases at diagnosis. More recently, we have integrated this approach into the management of patients undergoing surgery for CNS tumor recurrence. METHOD: After obtaining informed consent, tumor-normal WES with transcriptome analysis was performed in a CLIA-certified laboratory on fresh frozen or paraffin embedded CNS tumor samples and peripheral blood. RESULTS: 7 cases (5 male, 2 female; median age 5 years) with adequate diagnostic and recurrent tumor tissue were tested. No case had a somatic mutation of established clinical utility (tier 1). Among 3 embryonal tumors, a splice site variant in TSC1 (tier 2 mutation of potential utility) was detected in a medulloblastoma, but only at recurrence and not at initial diagnosis. FOXR2 overexpression was detected at diagnosis and confirmed at early progression of a temporal lobe tumor, prompting revision of the initial diagnosis of high grade glioma to CNS neuroblastoma subtype of PNET, and treated accordingly. In a third patient initially diagnosed with medulloblastoma, overexpression of PDGFRA, MDM4, CDKN2A, EGFR, OLIG2, and GFAP supported a change in diagnosis to glioblastoma. Two gliomas had tier 2 mutations detected at initial diagnosis and progression: SETD2 p.R2040* (optic nerve lesion, called pseudotumor initially but glioma at progression), and H3F3A p.K28M (thalamic low grade glioma). In one patient with ependymoma, copy number gain of 1q25 (associated with poor prognosis) was seen only in the recurrence specimen. CONCLUSION: Our preliminary experience suggests that in pediatric CNS tumor patients referred for reoperation at recurrence, repeat WES may reveal a previously unrecognized

  3. Mesozoic mammals from Arizona: new evidence on Mammalian evolution.

    PubMed

    Jenkins, F A; Crompton, A W; Downs, W R

    1983-12-16

    Knowledge of early mammalian evolution has been based on Old World Late Triassic-Early Jurassic faunas. The discovery of mammalian fossils of approximately equivalent age in the Kayenta Formation of northeastern Arizona gives evidence of greater diversity than known previously. A new taxon documents the development of an angular region of the jaw as a neomorphic process, and represents an intermediate stage in the origin of mammalian jaw musculature.

  4. Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    NASA Technical Reports Server (NTRS)

    Schorn, Julia M.; Moyer, Eric L.; Lowe, Moniece M.; Morgan, Jonathan; Tulbert, Christina D.; Olson, John; Olson, John; Horita, David A.; Kleven, Gale A.

    2017-01-01

    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.

  5. PHOX2B Is A Reliable Immunomarker in Distinguishing Peripheral Neuroblastic Tumors From CNS Embryonal Tumors.

    PubMed

    Alexandrescu, Sanda; Paulson, Vera; Dubuc, Adrian; Ligon, Azra; Lidov, Hart G

    2018-05-14

    The PHOX2B gene regulates neuronal maturation in the brain stem nuclei associated with cardiorespiratory function, and in the autonomic sympathetic and enteric nervous system. PHOX2B expression is a reliable immunomarker for peripheral neuroblastic tumors, however no systematic evaluation of CNS embryonal tumors was included in the studies. We encountered two cases in which the differential diagnosis included neuroblastoma and CNS embryonal tumor, and we hypothesized that PHOX2B immunostain would be helpful establishing the diagnosis. PHOX2B immunostain was performed on 29 pediatric cases, with adequate controls: 1 retroperitoneal embryonal tumor in a child with retinoblastoma (index1), 1 posterior fossa embryonal tumor in a child with a neuroblastoma (index2), 7 medulloblastomas, 4 atypical teratoid/rhabdoid tumors (ATRT), 4 retinoblastomas, 6 pineoblastomas, 4 embryonal tumors with multilayered rosettes (ETMR), and 2 CNS embryonal tumors, NEC. Cell lineage immunomarkers (GFAP, OLIG2, Synaptophysin, NeuN, CRX, PGP9.5), immunosurrogates for molecular alterations (beta-catenin, INI1, Lin28), array CGH and OncoPanel were performed as needed. Medulloblastomas, ATRTs, ETMRs, retinoblastomas and CNS embryonal tumors NOS were essentially negative for PHOX2B. Two (2) of 6 pineoblastomas had significant PHOX2B expression, while the rest were negative. Index1 was negative for PHOX2B and PGP 9.5, and positive for CRX, consistent with retinoblastoma. Index2 had diffuse PHOX2B expression, MYCN amplification and no copy number changes of medulloblastoma, in keeping with neuroblastoma. PHOX2B antibody is helpful in distinguishing between peripheral neuroblastic and CNS embryonal tumors, which are immunonegative, with the caveat that a subset of pineoblastomas has significant expression. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. The impact of transposable elements on mammalian development.

    PubMed

    Garcia-Perez, Jose L; Widmann, Thomas J; Adams, Ian R

    2016-11-15

    Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks. © 2016. Published by The Company of Biologists Ltd.

  7. A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis.

    PubMed

    Boiziau, Claudine; Nikolski, Macha; Mordelet, Elodie; Aussudre, Justine; Vargas-Sanchez, Karina; Petry, Klaus G

    2018-06-01

    Multiple sclerosis is characterized by inflammatory lesions dispersed throughout the central nervous system (CNS) leading to severe neurological handicap. Demyelination, axonal damage, and blood brain barrier alterations are hallmarks of this pathology, whose precise processes are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) rat model that mimics many features of human multiple sclerosis, the phage display strategy was applied to select peptide ligands targeting inflammatory sites in CNS. Due to the large diversity of sequences after phage display selection, a bioinformatics procedure called "PepTeam" designed to identify peptides mimicking naturally occurring proteins was used, with the goal to predict peptides that were not background noise. We identified a circular peptide CLSTASNSC called "Ph48" as an efficient binder of inflammatory regions of EAE CNS sections including small inflammatory lesions of both white and gray matter. Tested on human brain endothelial cells hCMEC/D3, Ph48 was able to bind efficiently when these cells were activated with IL1β to mimic inflammatory conditions. The peptide is therefore a candidate for further analyses of the molecular alterations in inflammatory lesions.

  8. Simplified Bioreactor For Growing Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  9. Novel method to load multiple genes onto a mammalian artificial chromosome.

    PubMed

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  10. Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary.

    PubMed

    Bhartiya, Deepa

    2015-11-05

    Existing dogma that a female is born with fixed number of eggs was challenged by the detection of stem cells in adult mammalian ovary. Data has accumulated in support of ovarian stem cells (OSCs) proliferation, maintenance in culture, formation of germ cell nests and differentiation into oocytes and primordial follicle assembly using different strategies. Flow cytometry analysis identified >8 μm OSCs which are DDX1 positive and are considered equivalent to spermatogonial stem cells (SSCs) in testis. Analysis of both ovarian and testicular smears obtained after enzymatic digestion has led to the identification of an additional stem cell population termed very small embryonic-like stem cells (VSELs). VSELs and OSCs/SSCs differ from each other in their size and OCT-4 expression. VSELs express pluripotent markers including nuclear OCT-4 whereas OSCs/SSCs express cytoplasmic OCT-4 suggesting a differentiated state. VSELs can be studied by flow cytometry as small sized cells which are LIN-/CD45-/Sca-1+. We have reported 0.02 ± 0.008, 0.03 ± 0.017 and 0.08 ± 0.03 % of total cells as VSELs in normal, chemoablated and after FSH treatment to chemoablated mouse ovary. VSELs have remained poorly studied till now because of their very small size and rare occurrence. Spinning cells obtained after enzymatic digestion of ovarian tissue at a speed of 1000G (rather than 1200 rpm) throughout processing allows reliable detection of the VSELs by flow cytometry. VSELs exist in aged, chemoablated and non-functional ovary and providing a healthy niche to support their function offers an interesting strategy to manage infertility.

  11. Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways.

    PubMed

    Higgins, Gerald A; Allyn-Feuer, Ari; Georgoff, Patrick; Nikolian, Vahagn; Alam, Hasan B; Athey, Brian D

    2017-07-01

    The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS. Copyright © 2017. Published by Elsevier Inc.

  12. MERP1: a mammalian ependymin-related protein gene differentially expressed in hematopoietic cells.

    PubMed

    Gregorio-King, Claudia C; McLeod, Janet L; Collier, Fiona McL; Collier, Gregory R; Bolton, Karyn A; Van Der Meer, Gavin J; Apostolopoulos, Jim; Kirkland, Mark A

    2002-03-20

    We have utilized differential display polymerase chain reaction to investigate the gene expression of hematopoietic progenitor cells from adult bone marrow and umbilical cord blood. A differentially expressed gene was identified in CD34+ hematopoietic progenitor cells, with low expression in CD34- cells. We have obtained the full coding sequence of this gene which we designated human mammalian ependymin-related protein 1 (MERP1). Expression of MERP1 was found in a variety of normal human tissues, and is 4- and 10-fold higher in adult bone marrow and umbilical cord blood CD34+ cells, respectively, compared to CD34- cells. Additionally, MERP1 expression in a hematopoietic stem cell enriched population was down-regulated with proliferation and differentiation. Conceptual translation of the MERP1 open reading frame reveals significant homology to two families of glycoprotein calcium-dependant cell adhesion molecules: ependymins and protocadherins.

  13. Biopsychosocial Profiles and Functional Correlates in Older Adults with Chronic Low Back Pain: A Preliminary Study.

    PubMed

    Weiner, Debra K; Gentili, Angela; Coffey-Vega, Katherine; Morone, Natalia; Rossi, Michelle; Perera, Subashan

    2018-04-16

    To describe key peripheral and central nervous system (CNS) conditions in a group of older adults with chronic low back pain (CLBP) and their association with pain severity and self-reported and performance-based physical function. Cross-sectional. Outpatient VA clinics. Forty-seven community-dwelling veterans with CLBP (age 68.0 ± 6.5 years, range = 60-88 years, 12.8% female, 66% white) participated. Data were collected on peripheral pain generators-body mass index, American College of Rheumatology hip osteoarthritis criteria, neurogenic claudication (i.e., spinal stenosis), sacroiliac joint (SIJ) pain, myofascial pain, leg length discrepancy (LLD), and iliotibial band pain; and CNS pain generators-anxiety (GAD-7), depression (PHQ-9), insomnia (Insomnia Severity Index), maladaptive coping (Fear Avoidance Beliefs Questionnaire, Cognitive Strategies Questionnaire), and fibromyalgia (fibromyalgia survey). Outcomes were pain severity (0 to 10 scale, seven-day average and worst), self-reported pain interference (Roland Morris [RM] questionnaire), and gait speed. Approximately 96% had at least one peripheral CLBP contributor, 83% had at least one CNS contributor, and 80.9% had both peripheral and CNS contributors. Of the peripheral conditions, only SIJ pain and LLD were associated with outcomes. All of the CNS conditions and SIJ pain were related to RM score. Only depression/anxiety and LLD were associated with gait speed. In this sample of older veterans, CLBP was a multifaceted condition. Both CNS and peripheral conditions were associated with self-reported and performance-based function. Additional investigation is required to determine the impact of treating these conditions on patient outcomes and health care utilization.

  14. In-vivo RGB marking and multicolour single-cell tracking in the adult brain

    PubMed Central

    Gomez-Nicola, Diego; Riecken, Kristoffer; Fehse, Boris; Perry, V. Hugh

    2014-01-01

    In neuroscience it is a technical challenge to identify and follow the temporal and spatial distribution of cells as they differentiate. We hypothesised that RGB marking, the tagging of individual cells with unique hues resulting from simultaneous expression of the three basic colours red, green and blue, provides a convenient toolbox for the study of the CNS anatomy at the single-cell level. Using γ-retroviral and lentiviral vector sets we describe for the first time the in-vivo multicolour RGB marking of neurons in the adult brain. RGB marking also enabled us to track the spatial and temporal fate of neural stem cells in the adult brain. The application of different viral envelopes and promoters provided a useful approach to track the generation of neurons vs. glial cells at the neurogenic niche, allowing the identification of the prominent generation of new astrocytes to the striatum. Multicolour RGB marking could serve as a universal and reproducible method to study and manipulate the CNS at the single-cell level, in both health and disease. PMID:25531807

  15. Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy?

    PubMed

    Shaw, Christopher A; Li, Dan; Tomljenovic, Lucija

    2014-01-01

    In spite of a common view that aluminum (Al) salts are inert and therefore harmless as vaccine adjuvants or in immunotherapy, the reality is quite different. In the following article we briefly review the literature on Al neurotoxicity and the use of Al salts as vaccine adjuvants and consider not only direct toxic actions on the nervous system, but also the potential impact for triggering autoimmunity. Autoimmune and inflammatory responses affecting the CNS appear to underlie some forms of neurological disease, including developmental disorders. Al has been demonstrated to impact the CNS at every level, including by changing gene expression. These outcomes should raise concerns about the increasing use of Al salts as vaccine adjuvants and for the application as more general immune stimulants.

  16. High-speed atomic force microscopy imaging of live mammalian cells

    PubMed Central

    Shibata, Mikihiro; Watanabe, Hiroki; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2017-01-01

    Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons. PMID:28900590

  17. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii

    PubMed Central

    David, Clément N.; Frias, Elma S.; Szu, Jenny I.; Vieira, Philip A.; Hubbard, Jacqueline A.; Lovelace, Jonathan; Michael, Marena; Worth, Danielle; McGovern, Kathryn E.; Ethell, Iryna M.; Stanley, B. Glenn; Korzus, Edward; Fiacco, Todd A.; Binder, Devin K.; Wilson, Emma H.

    2016-01-01

    The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. PMID:27281462

  18. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    PubMed Central

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  19. Tick-induced allergies: mammalian meat allergy, tick anaphylaxis and their significance

    PubMed Central

    2015-01-01

    Serious tick-induced allergies comprise mammalian meat allergy following tick bites and tick anaphylaxis. Mammalian meat allergy is an emergent allergy, increasingly prevalent in tick-endemic areas of Australia and the United States, occurring worldwide where ticks are endemic. Sensitisation to galactose-α-1,3-galactose (α-Gal) has been shown to be the mechanism of allergic reaction in mammalian meat allergy following tick bite. Whilst other carbohydrate allergens have been identified, this allergen is unique amongst carbohydrate food allergens in provoking anaphylaxis. Treatment of mammalian meat anaphylaxis involves avoidance of mammalian meat and mammalian derived products in those who also react to gelatine and mammalian milks. Before initiating treatment with certain therapeutic agents (e.g., cetuximab, gelatine-containing substances), a careful assessment of the risk of anaphylaxis, including serological analysis for α-Gal specific-IgE, should be undertaken in any individual who works, lives, volunteers or recreates in a tick endemic area. Prevention of tick bites may ameliorate mammalian meat allergy. Tick anaphylaxis is rare in countries other than Australia. Tick anaphylaxis is secondarily preventable by prevention and appropriate management of tick bites. Analysis of tick removal techniques in tick anaphylaxis sufferers offers insights into primary prevention of both tick and mammalian meat anaphylaxis. Recognition of the association between mammalian meat allergy and tick bites has established a novel cause and effect relationship between an environmental exposure and subsequent development of a food allergy, directing us towards examining environmental exposures as provoking factors pivotal to the development of other food allergies and refocusing our attention upon causation of allergy in general. PMID:25653915

  20. "Scleroderma linearis: hemiatrophia faciei progressiva (Parry-Romberg syndrom) without any changes in CNS and linear scleroderma "en coup de sabre" with CNS tumor

    PubMed Central

    Bergler-Czop, Beata; Lis-Święty, Anna; Brzezińska-Wcisło, Ligia

    2009-01-01

    Background Hemifacial atrophy (Parry-Romberg syndrome) is a relatively rare disease. The etiology of the disease is not clear. Some authors postulate its relation with limited scleroderma linearis. Linear scleroderma "en coup de sabre" is characterized by clinical presence of most commonly one-sided linear syndrome. In a number of patients, neurological affection is the medium of the disease. The treatment of both scleroderma varieties is similar to the treatment of limited systemic sclerosis. Case presentation We present two cases of a disease: a case of a 49-year-old woman with a typical image of hemifacial atrophy, without any changes of the nervous system and a case of a 33-year-old patient with an "en coup de sabre" scleroderma and with CNS tumor. Conclusion We described typical cases of a rare diseases, hemifacial atrophy and "en coup de sabre" scleroderma. In the patient diagnosed with Parry-Romberg syndrome, with Borrelia burgdoferi infection and with minor neurological symptoms, despite a four-year case history, there was a lack of proper diagnosis and treatment. In the second patient only skin changes without any neurological symptoms could be observed and only a precise neurological diagnosis revealed the presence of CNS tumor. PMID:19635150

  1. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis

    PubMed Central

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P.; Voskuhl, Rhonda R.

    2014-01-01

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease. PMID:24550311

  2. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    PubMed

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  3. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    PubMed

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multi-cellular, three-dimensional living mammalian tissue

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor)

    1994-01-01

    The present invention relates to a multicellular, three-dimensional, living mammalian tissue. The tissue is produced by a co-culture process wherein two distinct types of mammalian cells are co-cultured in a rotating bioreactor which is completely filled with culture media and cell attachment substrates. As the size of the tissue assemblies formed on the attachment substrates changes, the rotation of the bioreactor is adjusted accordingly.

  5. CNS tau efflux via exosomes is likely increased in Parkinson disease but not in Alzheimer disease

    PubMed Central

    Shi, Min; Kovac, Andrej; Korff, Ane; Cook, Travis J.; Ginghina, Carmen; Bullock, Kristin M.; Yang, Li; Stewart, Tessandra; Zheng, Danfeng; Aro, Patrick; Atik, Anzari; Kerr, Kathleen F.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Montine, Thomas J.; Banks, William A.; Zhang, Jing

    2016-01-01

    Background Alzheimer disease (AD) and Parkinson disease (PD) involve tau pathology. Tau is detectable in blood, but its clearance from neuronal cells and the brain is poorly understood. Methods Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. Central nervous system (CNS)-derived tau in L1CAM-containing exosomes was further characterized extensively in human plasma, including by Single Molecule Array technology with 303 subjects. Results The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. In human plasma, tau was explicitly identified within L1CAM exosomes. In contrast to AD patients, L1CAM exosomal tau was significantly higher in PD patients than controls, and correlated with cerebrospinal fluid tau. Conclusions Tau is readily transported from the brain to the blood. The mechanisms of CNS tau efflux are likely different between AD and PD. PMID:27234211

  6. Behavioral and Genetic Evidence for GIRK Channels in the CNS: Role in Physiology, Pathophysiology, and Drug Addiction.

    PubMed

    Mayfield, Jody; Blednov, Yuri A; Harris, R Adron

    2015-01-01

    G protein-coupled inwardly rectifying potassium (GIRK) channels are widely expressed throughout the brain and mediate the inhibitory effects of many neurotransmitters. As a result, these channels are important for normal CNS function and have also been implicated in Down syndrome, Parkinson's disease, psychiatric disorders, epilepsy, and drug addiction. Knockout mouse models have provided extensive insight into the significance of GIRK channels under these conditions. This review examines the behavioral and genetic evidence from animal models and genetic association studies in humans linking GIRK channels with CNS disorders. We further explore the possibility that subunit-selective modulators and other advanced research tools will be instrumental in establishing the role of individual GIRK subunits in drug addiction and other relevant CNS diseases and in potentially advancing treatment options for these disorders. © 2015 Elsevier Inc. All rights reserved.

  7. A method to predict different mechanisms for blood-brain barrier permeability of CNS activity compounds in Chinese herbs using support vector machine.

    PubMed

    Jiang, Ludi; Chen, Jiahua; He, Yusu; Zhang, Yanling; Li, Gongyu

    2016-02-01

    The blood-brain barrier (BBB), a highly selective barrier between central nervous system (CNS) and the blood stream, restricts and regulates the penetration of compounds from the blood into the brain. Drugs that affect the CNS interact with the BBB prior to their target site, so the prediction research on BBB permeability is a fundamental and significant research direction in neuropharmacology. In this study, we combed through the available data and then with the help of support vector machine (SVM), we established an experiment process for discovering potential CNS compounds and investigating the mechanisms of BBB permeability of them to advance the research in this field four types of prediction models, referring to CNS activity, BBB permeability, passive diffusion and efflux transport, were obtained in the experiment process. The first two models were used to discover compounds which may have CNS activity and also cross the BBB at the same time; the latter two were used to elucidate the mechanism of BBB permeability of those compounds. Three optimization parameter methods, Grid Search, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), were used to optimize the SVM models. Then, four optimal models were selected with excellent evaluation indexes (the accuracy, sensitivity and specificity of each model were all above 85%). Furthermore, discrimination models were utilized to study the BBB properties of the known CNS activity compounds in Chinese herbs and this may guide the CNS drug development. With the relatively systematic and quick approach, the application rationality of traditional Chinese medicines for treating nervous system disease in the clinical practice will be improved.

  8. Proteolipid Protein Is Required for Transport of Sirtuin 2 into CNS Myelin

    PubMed Central

    Werner, Hauke B.; Kuhlmann, Katja; Shen, Siming; Uecker, Marina; Schardt, Anke; Dimova, Kalina; Orfaniotou, Foteini; Dhaunchak, Ajit; Brinkmann, Bastian G.; Möbius, Wiebke; Guarente, Lenny; Casaccia-Bonnefil, Patrizia; Jahn, Olaf; Nave, Klaus-Armin

    2009-01-01

    Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genuine model for spastic paraplegia (SPG-2). Their axons are well myelinated but exhibit impaired axonal transport and progressive degeneration, which is difficult to attribute to the absence of a single myelin protein. We hypothesized that secondary molecular changes in PLPnull myelin contribute to the loss of PLP/DM20-dependent neuroprotection and provide more insight into glia-axonal interactions in this disease model. By gel-based proteome analysis, we identified >160 proteins in purified myelin membranes, which allowed us to systematically monitor the CNS myelin proteome of adult PLPnull mice, before the onset of disease. We identified three proteins of the septin family to be reduced in abundance, but the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 2 (SIRT2) was virtually absent. SIRT2 is expressed throughout the oligodendrocyte lineage, and immunoelectron microscopy revealed its association with myelin. Loss of SIRT2 in PLPnull was posttranscriptional, suggesting that PLP/DM20 is required for its transport into the myelin compartment. Because normal SIRT2 activity is controlled by the NAD+/NADH ratio, its function may be coupled to the axo-glial metabolism and the long-term support of axons by oligodendrocytes. PMID:17634366

  9. Surgical manipulation of mammalian embryos in vitro.

    PubMed

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  10. The case for DNA methylation based molecular profiling to improve diagnostic accuracy for central nervous system embryonal tumors (not otherwise specified) in adults.

    PubMed

    Halliday, Gail C; Junckerstorff, Reimar C; Bentel, Jacqueline M; Miles, Andrew; Jones, David T W; Hovestadt, Volker; Capper, David; Endersby, Raelene; Cole, Catherine H; van Hagen, Tom; Gottardo, Nicholas G

    2018-01-01

    Central nervous system primitive neuro-ectodermal tumors (CNS-PNETs), have recently been re-classified in the most recent 2016 WHO Classification into a standby catch all category, "CNS Embryonal Tumor, not otherwise specified" (CNS embryonal tumor, NOS) based on epigenetic, biologic and histopathologic criteria. CNS embryonal tumors (NOS) are a rare, histologically and molecularly heterogeneous group of tumors that predominantly affect children, and occasionally adults. Diagnosis of this entity continues to be challenging and the ramifications of misdiagnosis of this aggressive class of brain tumors are significant. We report the case of a 45-year-old woman who was diagnosed with a central nervous system embryonal tumor (NOS) based on immunohistochemical analysis of the patient's tumor at diagnosis. However, later genome-wide methylation profiling of the diagnostic tumor undertaken to guide treatment, revealed characteristics most consistent with IDH-mutant astrocytoma. DNA sequencing and immunohistochemistry confirmed the presence of IDH1 and ATRX mutations resulting in a revised diagnosis of high-grade small cell astrocytoma, and the implementation of a less aggressive treatment regime tailored more appropriately to the patient's tumor type. This case highlights the inadequacy of histology alone for the diagnosis of brain tumours and the utility of methylation profiling and integrated genomic analysis for the diagnostic verification of adults with suspected CNS embryonal tumor (NOS), and is consistent with the increasing realization in the field that a combined diagnostic approach based on clinical, histopathological and molecular data is required to more accurately distinguish brain tumor subtypes and inform more effective therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection.

    PubMed

    Campbell, Jennifer H; Ratai, Eva-Maria; Autissier, Patrick; Nolan, David J; Tse, Samantha; Miller, Andrew D; González, R Gilberto; Salemi, Marco; Burdo, Tricia H; Williams, Kenneth C

    2014-12-01

    Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab) once a week for three weeks beginning on 28 days post-infection (late). Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS), and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+) in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early) for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV - RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity.

  12. Adult neuronal ceroid-lipofuscinosis.

    PubMed

    Goebel, H H; Braak, H

    1989-01-01

    Among the different clinical forms of neuronal ceroid-lipofuscinosis (NCL), the adult type is the least frequent, most sporadic and most difficult one to diagnose. Clinical symptomatology differs from the classical childhood NCL forms in that ocular symptoms are absent while changes of behavior, dementia and seizures dominate the clinical picture. Excessive accumulation of NCL-specific lipopigments has largely been explored in the nervous system, where pigmento-architectonic investigations disclose layer-specific cortical pathology similar to but less pronounced than that of juvenile and protracted juvenile NCL. Ultrastructural analysis of lipopigments in adult NCL reveals diversity of lipopigment fine structure, but less impressive than in the childhood forms of NCL. Abnormal accretion of lipopigments outside the nervous system has rarely been demonstrated and requires ampler documentation, making in vivo diagnosis of adult NCL often difficult and sometimes equivocal. Adult NCL is now frequently considered identical to "Kufs' disease". However, in the past, the latter term has comprised a heterogeneous spectrum of lipidoses the NCL-nature of which had not been unequivocally established. Thus, one may either speak of "Kufs' syndrome" or abandon this term altogether. Although patients afflicted with adult NCL may suffer from Kufs' disease, not all who have and had Kufs disease may have or have had adult NCL. The current debate on adult NCL centers around scepticism concerning many of the earlier reports, on incorporating diagnostic studies of non-CNS organs in presumptive patients and on distinguishing adult NCL from "atypical" patients or forms of NCL, as well as other disorders marked by non-specific abnormal accumulation of lipofuscin.

  13. Learning to swim, again: Axon regeneration in fish.

    PubMed

    Rasmussen, Jeffrey P; Sagasti, Alvaro

    2017-01-01

    Damage to the central nervous system (CNS) of fish can often be repaired to restore function, but in mammals recovery from CNS injuries usually fails due to a lack of axon regeneration. The relatively growth-permissive environment of the fish CNS may reflect both the absence of axon inhibitors found in the mammalian CNS and the presence of pro-regenerative environmental factors. Despite their different capacities for axon regeneration, many of the physiological processes, intrinsic molecular pathways, and cellular behaviors that control an axon's ability to regrow are conserved between fish and mammals. Fish models have thus been useful both for identifying factors differing between mammals and fish that may account for differences in CNS regeneration and for characterizing conserved intrinsic pathways that regulate axon regeneration in all vertebrates. The majority of adult axon regeneration studies have focused on the optic nerve or spinal axons of the teleosts goldfish and zebrafish, which have been productive models for identifying genes associated with axon regeneration, cellular mechanisms of circuit reestablishment, and the basis of functional recovery. Lampreys, which are jawless fish lacking myelin, have provided an opportunity to study regeneration of well defined spinal cord circuits. Newer larval zebrafish models offer numerous genetic tools and the ability to monitor the dynamic behaviors of extrinsic cell types regulating axon regeneration in live animals. Recent advances in imaging and gene editing methods are making fish models yet more powerful for investigating the cellular and molecular underpinnings of axon regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The glymphatic system in CNS health and disease: past, present and future

    PubMed Central

    Plog, Benjamin A.; Nedergaard, Maiken

    2018-01-01

    The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudo-lymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here we review the role of the glymphatic pathway in CNS physiology, factors known to regulate glymphatic flow, and pathologic processes where a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, will also be discussed. PMID:29195051

  15. Dose Intensification of Daunorubicin and Cytarabine during Treatment of Adult Acute Lymphoblastic Leukemia: Results of Cancer and Leukemia Group B Study 19802

    PubMed Central

    Stock, Wendy; Johnson, Jeffrey L.; Stone, Richard M.; Kolitz, Jonathan E.; Powell, Bayard L.; Wetzler, Meir; Westervelt, Peter; Marcucci, Guido; DeAngelo, Daniel J.; Vardiman, James W.; McDonnell, Diane; Mrózek, Krzysztof; Bloomfield, Clara D.; Larson, Richard A.

    2014-01-01

    Purpose CALGB 19802, a phase II study, evaluated whether dose intensification of daunorubicin and cytarabine could improve disease-free survival (DFS) of adults with acute lymphoblastic leukemia (ALL), and whether high-dose systemic and intrathecal methotrexate could replace cranial radiotherapy for central nervous system (CNS) prophylaxis. Patients and Methods One hundred sixty-one eligible, previously untreated patients age 16–82 years (median, 40 years) were enrolled; 33 (20%) were ≥60years old. Results One hundred twenty-eight patients (80%) achieved a complete remission (CR). Dose intensification of daunorubicin and cytarabine was feasible. With a median follow-up of 10.4 years for surviving patients, 5-year DFS was 25% (95% CI, 18–33%) and overall survival (OS) was 30% (95% CI, 23–37%). Patients <60 years who received the 80 mg/m2 dose of daunorubicin had a DFS of 33% (22–44%) and OS of 39% (29–49%) at 5 years. Eighty-four (52%) patients relapsed, including nine (6%) with isolated CNS relapses. Omission of cranial irradiation did not result in higher than historical CNS relapse rates. Conclusion Intensive systemic, oral, and intrathecal methotrexate dosing permitted omission of CNS irradiation. This intensive approach using higher doses of daunorubicin and cytarabine failed to result in an overall improvement in DFS or OS compared with historical CALGB studies. Future therapeutic strategies for adults with ALL should be tailored to specific age and molecular genetic subsets. PMID:22744771

  16. Gut-derived factors promote neurogenesis of CNS-neural stem cells and nudge their differentiation to an enteric-like neuronal phenotype.

    PubMed

    Kulkarni, Subhash; Zou, Bende; Hanson, Jesse; Micci, Maria-Adelaide; Tiwari, Gunjan; Becker, Laren; Kaiser, Martin; Xie, Xinmin Simon; Pasricha, Pankaj Jay

    2011-10-01

    Recent studies have explored the potential of central nervous system-derived neural stem cells (CNS-NSC) to repopulate the enteric nervous system. However, the exact phenotypic fate of gut-transplanted CNS-NSC has not been characterized. The aim of this study was to investigate the effect of the gut microenvironment on phenotypic fate of CNS-NSC in vitro. With the use of Transwell culture, differentiation of mouse embryonic CNS-NSC was studied when cocultured without direct contact with mouse intestinal longitudinal muscle-myenteric plexus preparations (LM-MP) compared with control noncocultured cells, in a differentiating medium. Differentiated cells were analyzed by immunocytochemistry and quantitative RT-PCR to assess the expression of specific markers and by whole cell patch-clamp studies for functional characterization of their phenotype. We found that LM-MP cocultured cells had a significant increase in the numbers of cells that were immune reactive against the panneuronal marker β-tubulin, neurotransmitters neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and neuropeptide vasoactive intestinal peptide (VIP) and showed an increase in expression of these genes, compared with control cells. Whole cell patch-clamp analysis showed that coculture with LM-MP decreases cell excitability and reduces voltage-gated Na(+) currents but significantly enhances A-current and late afterhyperpolarization (AHP) and increases the expression of the four AHP-generating Ca(2+)-dependent K(+) channel genes (KCNN), compared with control cells. In a separate experiment, differentiation of LM-MP cocultured CNS-NSC produced a significant increase in the numbers of cells that were immune reactive against the neurotransmitters nNOS, ChAT, and the neuropeptide VIP compared with CNS-NSC differentiated similarly in the presence of neonatal brain tissue. Our results show that the gut microenvironment induces CNS-NSC to produce neurons that share some of the

  17. Computational modeling of the cell-autonomous mammalian circadian oscillator.

    PubMed

    Podkolodnaya, Olga A; Tverdokhleb, Natalya N; Podkolodnyy, Nikolay L

    2017-02-24

    This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator models. This work compares existing mathematical models of circadian oscillator and the results of the computational studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian oscillator for solving specific problems in circadian rhythm biology.

  18. Evaluation of CNS activities of aerial parts of Cynodon dactylon Pers. in mice.

    PubMed

    Pal, Dilipkumar

    2008-01-01

    The dried extracts of aerial parts of Cynodon dactylon Pers. (Graminae) were evaluated for CNS activities in mice. The ethanol extract of aerial parts of C. dactylon (EECD) was found to cause significant depression in general behavioral profiles in mice. EECD significantly potentiated the sleeping time in mice induced by standard hypnotics viz. pentobarbitone sodium, diazepam, and meprobamate in a dose dependant manner. EECD showed significant analgesic properties as evidenced by the significant reduction in the number of writhes and stretches induced in mice by 1.2% acetic acid solution. It also potentiated analgesia induced by morphine and pethidine in mice. EECD inhibited the onset and the incidence of convulsion in a dose dependent manner against pentylenetetrazole (PTZ)-induced convulsion. The present study indicates that EECD has significant CNS depressant activities.

  19. Identification of novel host factors via conserved domain search: Cns1 cochaperone is a novel restriction factor of tombusvirus replication in yeast.

    PubMed

    Lin, Jing-Yi; Nagy, Peter D

    2013-12-01

    A large number of host-encoded proteins affect the replication of plus-stranded RNA viruses by acting as susceptibility factors. Many other cellular proteins are known to function as restriction factors of viral infections. Previous studies with tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the inhibitory function of TPR (tetratricopeptide repeat) domain-containing cyclophilins, which are members of the large family of host prolyl isomerases, in TBSV replication. In this paper, we tested additional TPR-containing yeast proteins in a cell-free TBSV replication assay and identified the Cns1p cochaperone for heat shock protein 70 (Hsp70) and Hsp90 chaperones as a strong inhibitor of TBSV replication. Cns1p interacted with the viral replication proteins and inhibited the assembly of the viral replicase complex and viral RNA synthesis in vitro. Overexpression of Cns1p inhibited TBSV replication in yeast. The use of a temperature-sensitive (TS) mutant of Cns1p in yeast revealed that at a semipermissive temperature, TS Cns1p could not inhibit TBSV replication. Interestingly, Cns1p and the TPR-containing Cpr7p cyclophilin have similar inhibitory functions during TBSV replication, although some of the details of their viral restriction mechanisms are different. Our observations indicate that TPR-containing cellular proteins could act as virus restriction factors.

  20. Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    NASA Technical Reports Server (NTRS)

    Schorn, Julia M.; Moyer, Eric L.; Lowe, M.; Morgan, Jonathan A.; Tulbert, Christina D.; Olson, John; Horita, David A.; Klevin, Gale A.; Ronca, April E.

    2017-01-01

    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority multigenerational research that will enable studies of the first truly space-developed mammals.

  1. Stage progression and neurological symptoms in Trypanosoma brucei rhodesiense sleeping sickness: role of the CNS inflammatory response.

    PubMed

    MacLean, Lorna; Reiber, Hansotto; Kennedy, Peter G E; Sternberg, Jeremy M

    2012-01-01

    Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance. This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF. Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the

  2. Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems

    PubMed Central

    Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.

    2013-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224

  3. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  4. Isolated CNS relapse following stem cell transplantation for juvenile myelomonocytic leukemia.

    PubMed

    Wilson, David B; Michalski, Jeff M; Grossman, William J; Hayashi, Robert J

    2003-11-01

    A 1-year-old girl with juvenile myelomonocytic leukemia (JMML) underwent allogeneic bone marrow transplantation (BMT) from her HLA-matched brother. A few months after BMT she experienced a bone marrow relapse that did not respond to withdrawal of immunosuppression. To enhance the graft-versus-leukemia (GVL) effect, she underwent peripheral stem cell transplantation (PSCT) from the same donor, using a nonmyeloablative conditioning regimen. She achieved clinical remission and developed chronic graft-versus-host disease (GVHD), which was treated with prednisone and cyclosporine A. One year after PSCT she experienced an isolated central nervous system (CNS) relapse. She was treated with intrathecal Ara-C followed by craniospinal irradiation and achieved a third clinical remission. While extramedullary relapses have been described in JMML, this is the first report of a CNS relapse. Based on this case and others in the literature, the authors suggest that newer therapies are changing the natural history of JMML. By manipulating the GVL effect it is possible to achieve a prolonged bone marrow remission, but only at the expense of unmasking the risk of late extramedullary relapse.

  5. Central nervous system involvement in adult patients with invasive infection caused by Streptococcus agalactiae.

    PubMed

    Oyanguren, B; Esteban, L; Guillán, M; de Felipe, A; Alonso Cánovas, A; Navas, E; Quereda, C; Corral, I

    2015-04-01

    Streptococcus agalactiae is frequently an asymptomatic coloniser and a cause of neonatal and puerperal sepsis. Infections in nonpregnant adults are uncommon. The frequency of neurological complications caused by invasive infection with this microorganism in adults remains unknown. Here, we study the frequency and characteristics of central nervous system (CNS) involvement in adults with invasive S. agalactiae infection. Review of all adults with invasive S. agalactiae infection between 2003 and 2011 in a tertiary hospital. S. agalactiae was isolated from blood, CSF or synovial fluid in 75 patients. Among them, 7 (9,3%) displayed neurological involvement: 5 men and 2 nonpregnant women, aged between 20 and 62 years. Diagnoses were spinal epidural abscess due to spondylodiscitis with spinal cord compression; acute bacterial meningitis; ischemic stroke as presentation of bacterial endocarditis (2 patients each); and meningoventriculitis after neurosurgery and ventricular shunting. One patient with endocarditis caused by S. agalactiae and S. aureus died in the acute phase, and another died 3 months later from metastatic cancer. The other patients recovered without sequelae. All patients had systemic predisposing factors for infection and 5 (71,4%) had experienced disruption of the mucocutaneous barrier as a possible origin of the infection. CNS involvement is not uncommon in adult patients with invasive infection caused by S. agalactiae. Isolating S. agalactiae, especially in cases of meningitis, should lead doctors to search for predisposing systemic disease and causes of mucocutaneous barrier disruption. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  6. The soft mechanical signature of glial scars in the central nervous system

    NASA Astrophysics Data System (ADS)

    Moeendarbary, Emad; Weber, Isabell P.; Sheridan, Graham K.; Koser, David E.; Soleman, Sara; Haenzi, Barbara; Bradbury, Elizabeth J.; Fawcett, James; Franze, Kristian

    2017-03-01

    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

  7. Impact of Zika Virus on adult human brain structure and functional organization.

    PubMed

    Bido-Medina, Richard; Wirsich, Jonathan; Rodríguez, Minelly; Oviedo, Jairo; Miches, Isidro; Bido, Pamela; Tusen, Luis; Stoeter, Peter; Sadaghiani, Sepideh

    2018-06-01

    To determine the impact of Zika virus (ZIKV) infection on brain structure and functional organization of severely affected adult patients with neurological complications that extend beyond Guillain-Barré Syndrome (GBS)-like manifestations and include symptoms of the central nervous system (CNS). In this first case-control neuroimaging study, we obtained structural and functional magnetic resonance images in nine rare adult patients in the subacute phase, and healthy age- and sex-matched controls. ZIKV patients showed atypical descending and rapidly progressing peripheral nervous system (PNS) manifestations, and importantly, additional CNS presentations such as perceptual deficits. Voxel-based morphometry was utilized to evaluate gray matter volume, and resting state functional connectivity and Network Based Statistics were applied to assess the functional organization of the brain. Gray matter volume was decreased bilaterally in motor areas (supplementary motor cortex, specifically Frontal Eye Fields) and beyond (left inferior frontal sulcus). Additionally, gray matter volume increased in right middle frontal gyrus. Functional connectivity increased in a widespread network within and across temporal lobes. We provide preliminary evidence for a link between ZIKV neurological complications and changes in adult human brain structure and functional organization, comprising both motor-related regions potentially secondary to prolonged PNS weakness, and nonsomatomotor regions indicative of PNS-independent alternations. The latter included the temporal lobes, particularly vulnerable in a range of neurological conditions. While future studies into the ZIKV-related neuroinflammatory mechanisms in adults are urgently needed, this study indicates that ZIKV infection can lead to an impact on the brain.

  8. Fatal human eosinophilic meningo-encephalitis caused by CNS co-infection with Halicephalobus gingivalis and West Nile virus.

    PubMed

    Anwar, M A; Gokozan, H N; Ball, M K; Otero, J; McGwire, B S

    2015-10-01

    The saprophytic nematode Halicephalobus is a rare cause of fatal human meningo-encephalitis, and West Nile virus is neurotropic flavivirus implicated in a variety of clinical neurologic syndromes. Here we report a case of rapidly progressive CNS encephalopathy and death. Serologic, immuno-histochemical, histopathologic and nucleic acid studies demonstrate the presence of active Halicephalobus and West Nile virus in the CNS tissue. This is the first reported case of co-infection with these neurotropic pathogens. Copyright © 2015. Published by Elsevier Ireland Ltd.

  9. [Creatine kinase BB and lactate in the cerebrospinal fluid of neonates and infants with perinatal injuries of the CNS].

    PubMed

    Alatyrtsev, V V; Iakunin, Iu A; Burkova, A S; Podkopaev, V N; Afonina, L G

    1989-01-01

    A study was made of the content of creatine kinase-BB (CK-BB) and lactate in cerebrospinal fluid (CSF) of 202 neonates and infants with perinatal CNS injuries. The relationship was found between the rise of the CK-BB content and the gravity of perinatal CNS injuries. The highest content of CK-BB in CSF was marked in neonates with cerebral disorders complicated by infectious and inflammatory diseases (pneumonia, sepsis). Within the first 5 days of life, the children of this group demonstrated the relationship between the content of CK-BB and lactate of CSF. The measurement of the content of CK-BB in CSF should be used for early diagnosis, assessment of the gravity and course of perinatal CNS injuries in neonates and in infants.

  10. Long-Term Outcomes Among Adult Survivors of Childhood Central Nervous System Malignancies in the Childhood Cancer Survivor Study

    PubMed Central

    Liu, Qi; Yasui, Yutaka; Huang, Sujuan; Ness, Kirsten K.; Leisenring, Wendy; Hudson, Melissa M.; Donaldson, Sarah S.; King, Allison A.; Stovall, Marilyn; Krull, Kevin R.; Robison, Leslie L.; Packer, Roger J.

    2009-01-01

    Background Adult survivors of childhood central nervous system (CNS) malignancies are at high risk for long-term morbidity and late mortality. However, patterns of late mortality, the long-term risks of subsequent neoplasms and debilitating medical conditions, and sociodemographic outcomes have not been comprehensively characterized for individual diagnostic and treatment groups. Methods We collected information on treatment, mortality, chronic medical conditions, and neurocognitive functioning of adult 5-year survivors of CNS malignancies diagnosed between 1970 and 1986 within the Childhood Cancer Survivor Study. Using competing risk framework, we calculated cumulative mortality according to cause of death and cumulative incidence of subsequent neoplasms according to exposure and dose of cranial radiation therapy (RT). Neurocognitive impairment and socioeconomic outcomes were assessed with respect to dose of CNS radiotherapy to specific brain regions. Cumulative incidence of chronic medical conditions was compared between survivors and siblings using Cox regression models. All tests of statistical significance were two-sided. Results Among all eligible 5-year survivors (n = 2821), cumulative late mortality at 30 years was 25.8% (95% confidence interval [CI] = 23.4% to 28.3%), due primarily to recurrence and/or progression of primary disease. Patients who received cranial RT of 50 Gy or more (n = 813) had a cumulative incidence of a subsequent neoplasm within the CNS of 7.1% (95% CI = 4.5% to 9.6%) at 25 years from diagnosis compared with 1.0% (95% CI = 0% to 2.3%) for patients who had no RT. Survivors had higher risk than siblings of developing new endocrine, neurological, or sensory complications 5 or more years after diagnosis. Neurocognitive impairment was high and proportional to radiation dose for specific tumor types. There was a dose-dependent association between RT to the frontal and/or temporal lobes and lower rates of employment, and marriage

  11. Amino acids in the cultivation of mammalian cells.

    PubMed

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  12. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    PubMed

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  13. Quantitative genetic-interaction mapping in mammalian cells

    PubMed Central

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  14. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  15. Regulation of immune cell infiltration into the CNS by regional neural inputs explained by the gate theory.

    PubMed

    Arima, Yasunobu; Kamimura, Daisuke; Sabharwal, Lavannya; Yamada, Moe; Bando, Hidenori; Ogura, Hideki; Atsumi, Toru; Murakami, Masaaki

    2013-01-01

    The central nervous system (CNS) is an immune-privileged environment protected by the blood-brain barrier (BBB), which consists of specific endothelial cells that are brought together by tight junctions and tight liner sheets formed by pericytes and astrocytic end-feet. Despite the BBB, various immune and tumor cells can infiltrate the CNS parenchyma, as seen in several autoimmune diseases like multiple sclerosis (MS), cancer metastasis, and virus infections. Aside from a mechanical disruption of the BBB like trauma, how and where these cells enter and accumulate in the CNS from the blood is a matter of debate. Recently, using experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we found a "gateway" at the fifth lumber cord where pathogenic autoreactive CD4+ T cells can cross the BBB. Interestingly, this gateway is regulated by regional neural stimulations that can be mechanistically explained by the gate theory. In this review, we also discuss this theory and its potential for treating human diseases.

  16. In-depth characterization of the secretome of mouse CNS cell lines by LC-MS/MS without prefractionation.

    PubMed

    Woo, Jongmin; Han, Dohyun; Park, Joonho; Kim, Sang Jeong; Kim, Youngsoo

    2015-11-01

    Microglia, astrocytes, and neurons, which have important functions in the central nervous system (CNS), communicate mutually to generate a signal through secreted proteins or small molecules, but many of which have not been identified. Because establishing a reference for the secreted proteins from CNS cells could be invaluable in examining cell-to-cell communication in the brain, we analyzed the secretome of three murine CNS cell lines without prefractionation by high-resolution mass spectrometry. In this study, 2795 proteins were identified from conditioned media of the three cell lines, and 2125 proteins were annotated as secreted proteins by bioinformatics analysis. Further, approximately 500 secreted proteins were quantifiable as differentially expressed proteins by label-free quantitation. As a result, our secretome references are useful datasets for the future study of neuronal diseases. All MS data have been deposited in the ProteomeXchange with identifier PXD001597 (http://proteomecentral.proteomexchange.org/dataset/PXD001597). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Localization of the RNA-binding proteins Staufen1 and Staufen2 at the mammalian neuromuscular junction.

    PubMed

    Bélanger, Guy; Stocksley, Mark A; Vandromme, Marie; Schaeffer, Laurent; Furic, Luc; DesGroseillers, Luc; Jasmin, Bernard J

    2003-08-01

    Staufen is an RNA-binding protein, first identified for its role in oogenesis and CNS development in Drosophila. Two mammalian homologs of Staufen have been identified and shown to bind double-stranded RNA and tubulin, and to function in the somatodendritic transport of mRNA in neurons. Here, we examined whether Staufen proteins are expressed in skeletal muscle in relation to the neuromuscular junction. Immunofluorescence experiments revealed that Staufen1 (Stau1) and Staufen2 (Stau2) accumulate preferentially within the postsynaptic sarcoplasm of muscle fibers as well as at newly formed ectopic synapses. Western blot analyses showed that the levels of Stau1 and Stau2 are greater in slow muscles than in fast-twitch muscles. Muscle denervation induced a significant increase in the expression of Stau1 and Stau2 in the extrasynaptic compartment of both fast and slow muscles. Consistent with these observations, we also demonstrated that expression of Stau1 and Stau2 is increased during myogenic differentiation and that treatment of myotubes with agrin and neuregulin induces a further increase in the expression of both Staufen proteins. We propose that Stau1 and Stau2 are key components of the postsynaptic apparatus in muscle, and that they contribute to the maturation and plasticity of the neuromuscular junction.

  18. Peroxisome Proliferator-Activated Receptors (PPARs) as Potential Inducers of Antineoplastic Effects in CNS Tumors

    PubMed Central

    Tatenhorst, Lars; Hahnen, Eric; Heneka, Michael T.

    2008-01-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS). The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy. PMID:18725982

  19. Anaplastic lymphoma kinase inhibitors in brain metastases from ALK+ non-small cell lung cancer: hitting the target even in the CNS.

    PubMed

    Klempner, Samuel J; Ou, Sai-Hong Ignatius

    2015-06-01

    The paradigm shift occurring in non-small cell lung cancer (NSCLC) is encapsulated by the management of patients harboring oncogenic anaplastic lymphoma kinase (ALK) rearrangements. The unprecedented improvements in patient outcomes resulting from ALK-directed therapy have led to the appreciation of patterns of disease progression. Early studies have suggested that some tyrosine kinase inhibitors (TKIs), including ALK TKIs, inefficiently penetrated the blood brain barrier. With the increasing appreciation of the CNS as a sanctuary site in ALK TKI-treated patients, there is increasing focus and importance on the prevention and control of CNS metastases in ALK-rearranged NSCLC. The spectrum of CNS activity is variable among the currently available ALK TKI therapies and further studies are ongoing. In the following review we discuss the ability of current and future ALK inhibitors (ALK-i) to control and prevent CNS progression in patients with ALK-rearranged NSCLC. The potential implications for TKI sequencing and important future research directions are discussed.

  20. Next-generation mammalian genetics toward organism-level systems biology.

    PubMed

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  1. The role of cannabinoids in adult neurogenesis

    PubMed Central

    Prenderville, Jack A; Kelly, Áine M; Downer, Eric J

    2015-01-01

    The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain. PMID:25951750

  2. Current status of non-viral gene therapy for CNS disorders

    PubMed Central

    Jayant, Rahul Dev; Sosa, Daniela; Kaushik, Ajeet; Atluri, Venkata; Vashist, Arti; Tomitaka, Asahi; Nair, Madhavan

    2017-01-01

    Introduction Viral and non-viral vectors have been used as methods of delivery in gene therapy for many CNS diseases. Currently, viral vectors such as adeno-associated viruses (AAV), retroviruses, lentiviruses, adenoviruses and herpes simplex viruses (HHV) are being used as successful vectors in gene therapy at clinical trial levels. However, many disadvantages have risen from their usage. Non-viral vectors like cationic polymers, cationic lipids, engineered polymers, nanoparticles, and naked DNA offer a much safer option and can therefore be explored for therapeutic purposes. Areas covered This review discusses different types of viral and non-viral vectors for gene therapy and explores clinical trials for CNS diseases that have used these types of vectors for gene delivery. Highlights include non-viral gene delivery and its challenges, possible strategies to improve transfection, regulatory issues concerning vector usage, and future prospects for clinical applications. Expert opinion Transfection efficiency of cationic lipids and polymers can be improved through manipulation of molecules used. Efficacy of cationic lipids is dependent on cationic charge, saturation levels, and stability of linkers. Factors determining efficacy of cationic polymers are total charge density, molecular weights, and complexity of molecule. All of the above mentioned parameters must be taken care for efficient gene delivery. PMID:27249310

  3. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634

  4. CCL2 binding is CCR2 independent in primary adult human astrocytes.

    PubMed

    Fouillet, A; Mawson, J; Suliman, O; Sharrack, B; Romero, I A; Woodroofe, M N

    2012-02-09

    Chemokines are low relative molecular mass proteins, which have chemoattractant actions on many cell types. The chemokine, CCL2, has been shown to play a major role in the recruitment of monocytes in central nervous system (CNS) lesions in multiple sclerosis (MS). Since resident astrocytes constitute a major source of chemokine synthesis including CCL2, we were interested to assess the regulation of CCL2 by astrocytes. We showed that CCL2 bound to the cell surface of astrocytes and binding was not modulated by inflammatory conditions. However, CCR2 protein was not detected nor was activation of the classical CCR2 downstream signaling pathways. Recent studies have shown that non-signaling decoy chemokine receptors bind and modulate the expression of chemokines at site of inflammation. Here, we show that the D6 chemokine decoy receptor is constitutively expressed by primary human adult astrocytes at both mRNA and protein level. In addition, CCL3, which binds to D6, but not CCL19, which does not bind to D6, displaced CCL2 binding to astrocytes; indicating that CCL2 may bind to this cell type via the D6 receptor. Our results suggest that CCL2 binding to primary adult human astrocytes is CCR2-independent and is likely to be mediated via the D6 decoy chemokine receptor. Therefore we propose that astrocytes are implicated in both the establishment of chemokine gradients for the migration of leukocytes into and within the CNS and in the regulation of CCL2 levels at inflammatory sites in the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder

    PubMed Central

    Callegari, Ernesto; Malhotra, Bimal; Bungay, Peter J; Webster, Rob; Fenner, Katherine S; Kempshall, Sarah; LaPerle, Jennifer L; Michel, Martin C; Kay, Gary G

    2011-01-01

    AIMS To assess and compare the mechanisms of central nervous system (CNS) penetration of antimuscarinic overactive bladder (OAB) agents. METHODS Physical properties were computed or compiled from the literature. Rats were administered 5-hydroxymethyl tolterodine (HMT), darifenacin, oxybutynin, solifenacin, tolterodine or trospium subcutaneously. At 1 h postdose, plasma, brain and cerebrospinal fluid (CSF) concentrations were determined using LC-MS/MS assays. Brain and plasma protein binding were determined in vitro. Permeability in the presence and absence of the efflux transporter P-glycoprotein (P-gp) was assessed in RRCK and MDCK-MDR1 transwell assays. RESULTS Oxybutynin displayed extensive CNS penetration, with brain : plasma ratios (B : P), unbound brain : unbound plasma ratios (Kp,free) and CSF : free plasma ratios each >1. Tolterodine (B : P = 2.95, Kp,free = 0.23 and CSF : free plasma = 0.16) and solifenacin (B : P = 3.04, Kp,free = 0.28 and CSF : free plasma = 1.41) showed significant CNS penetration but with some restriction from CNS as indicated by Kp,free values significantly <1. 5-HMT, darifenacin and trospium displayed much lower B : P (0.03–0.16), Kp,free (0.01–0.04) and CSF : free plasma (0.004–0.06), consistent with poor CNS penetration. Permeability in RRCK cells was low for trospium (0.63 × 10−6 cm s−1), moderate for 5-HMT (11.7 × 10−6 cm s−1) and high for darifenacin, solifenacin, tolterodine and oxybutynin (21.5–38.2 × 10−6 cm s−1). In MDCK-MDR1 cells 5-HMT, darifenacin and trospium, were P-gp substrates, whereas oxybutynin, solifenacin and tolterodine were not P-gp substrates. CONCLUSIONS Brain penetration was low for antimuscarinics that are P-gp substrates (5-HMT, darifenacin and trospium), and significant for those that are not P-gp substrates (oxybutynin, solifenacin and tolterodine). CNS adverse events reported in randomized controlled clinical trials show general alignment with the preclinical data described in

  6. Acute central nervous system infections in adults--a retrospective cohort study in the NHS North West region.

    PubMed

    Michael, B D; Sidhu, M; Stoeter, D; Roberts, M; Beeching, N J; Bonington, A; Hart, I J; Kneen, R; Miller, A; Solomon, T

    2010-10-01

    Over the last 15 years, bacterial meningitis has received considerable attention, including national guidelines, whilst viral central nervous system (CNS) infections have been relatively neglected. A recent pilot study suggested that management of patients with suspected viral encephalitis was often suboptimal. To examine the relative incidence, clinical features and management of suspected acute CNS infections in adults across the NHS North West Region. A multicentre cross-sectional retrospective cohort study at 10 hospitals across the region over 3 months (from September to December 2007). Following a screen of all patients who had cerebrospinal fluid (CSF) analysis or received intravenous aciclovir and/or third-generation cephalosporin, those with clinical features suspicious of a CNS infection were included. Management was compared with the national meningitis and regional encephalitis guidelines. Three hundred and eighty-five patients were screened; 217 patients had a suspected CNS infection and 44 (20%) had a CNS infection: 18 aseptic meningitis (one herpes simplex virus [HSV]-2), 13 purulent meningitis (four Streptococcus pneumoniae) and 13 encephalitis (three HSV-1). The median (range) time from admission to suspicion of CNS infection and to LP was longer for patients with encephalitis than meningitis [4 (0.3-312) vs. 0.3 (0.1-12) h, P<0.001, and 23 (4-360) vs. 12 (2-48) h, P=0.042, respectively]; and the median time to treatment was longer for aciclovir than cephalosporin [7 (0.5-312) vs. 3 (0.3-312) h, P=0.002]. Encephalitis was as common as purulent meningitis, and HSV as common as Streptococcus pneumoniae. However, the management of patients with encephalitis was worse than meningitis. National encephalitis guidelines are needed.

  7. Fibroblast Growth Factor 1 (FGFR1) Modulation Regulates Repair Capacity of Oligodendrocyte Progenitor Cells Following Chronic Demyelination

    PubMed Central

    Zhou, Yong-Xing; Pannu, Ravinder; Le, Tuan Q.; Armstrong, Regina C.

    2011-01-01

    The adult mammalian brain contains multiple populations of endogenous progenitor cell types. However, following CNS trauma or disease, the regenerative capacity of progenitor populations is typically insufficient and may actually be limited by non-permissive or inhibitory signals in the damaged parenchyma. Remyelination is the most effective and simplest regenerative process in the adult CNS yet is still insufficient following repeated or chronic demyelination. Our previous in vitro studies demonstrated that fibroblast growth factor receptor 1 (FGFR1) signaling inhibited oligodendrocyte progenitor (OP) differentiation into mature oligodendrocytes. Therefore, we questioned whether FGFR1 signaling may inhibit the capacity of OP cells to generate oligodendrocytes in a demyelinating disease model and whether genetically reducing FGFR1 signaling in oligodendrocyte lineage cells could enhance the capacity for remyelination. FGFR1 was found to be upregulated in the corpus callosum during cuprizone mediated demyelination and expressed on OP cells just prior to remyelination. Plp/CreERT:Fgfr1fl/flmice were administered tamoxifen to induce conditional Fgfr1 deletion in oligodendrocyte lineage cells. Tamoxifen administration during chronic demyelination resulted in reduced FGFR1 expression in OP cells. OP proliferation and population size were not altered one week after tamoxifen treatment. Tamoxifen was then administered during chronic demyelination and mice were given a six week recovery period without cuprizone in the chow. After the recovery period, OP numbers were reduced and the number of mature oligodendrocytes was increased, indicating an effect of FGFR1 reduction on OP differentiation. Importantly, tamoxifen administration in Plp/CreERT:Fgfr1fl/fl mice significantly promoted remyelination and axon integrity. These results demonstrate a direct effect of FGFR1 signaling in oligodendrocyte lineage cells as inhibiting the repair capacity of OP cells following chronic

  8. Phylogenetic Analysis of Genome Rearrangements among Five Mammalian Orders

    PubMed Central

    Luo, Haiwei; Arndt, William; Zhang, Yiwei; Shi, Guanqun; Alekseyev, Max; Tang, Jijun; Hughes, Austin L.; Friedman, Robert

    2015-01-01

    Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction. PMID:22929217

  9. Mammalian Synthetic Biology: Engineering Biological Systems.

    PubMed

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  10. MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer’s Disease (AD)-Novel and Unique Pathological Features

    PubMed Central

    Zhao, Yuhai; Pogue, Aileen I.; Lukiw, Walter J.

    2015-01-01

    Of the approximately ~2.65 × 103 mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset—about 35–40—are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA–mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer’s disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS. PMID:26694372

  11. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.

    PubMed

    Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2016-09-11

    A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Size variation, growth strategies, and the evolution of modularity in the mammalian skull.

    PubMed

    Porto, Arthur; Shirai, Leila Teruko; de Oliveira, Felipe Bandoni; Marroig, Gabriel

    2013-11-01

    Allometry is a major determinant of within-population patterns of association among traits and, therefore, a major component of morphological integration studies. Even so, the influence of size variation over evolutionary change has been largely unappreciated. Here, we explore the interplay between allometric size variation, modularity, and life-history strategies in the skull from representatives of 35 mammalian families. We start by removing size variation from within-species data and analyzing its influence on integration magnitudes, modularity patterns, and responses to selection. We also carry out a simulation in which we artificially alter the influence of size variation in within-taxa matrices. Finally, we explore the relationship between size variation and different growth strategies. We demonstrate that a large portion of the evolution of modularity in the mammalian skull is associated to the evolution of growth strategies. Lineages with highly altricial neonates have adult variation patterns dominated by size variation, leading to high correlations among traits regardless of any underlying modular process and impacting directly their potential to respond to selection. Greater influence of size variation is associated to larger intermodule correlations, less individualized modules, and less flexible responses to natural selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  13. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications.

    PubMed

    Katona, Robert L

    2015-02-01

    Mammalian artificial chromosomes (MACs) are non-integrating, autonomously replicating natural chromosome-based vectors that may carry a vast amount of genetic material, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in target cells. Satellite-DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian and plant species. These artificially generated accessory chromosomes are composed of predictable DNA sequences, and they contain defined genetic information. SATACs have already passed a number of obstacles crucial to their further development as gene therapy vectors, including large-scale purification, transfer of purified artificial chromosomes into different cells and embryos, generation of transgenic animals and germline transmission with purified SATACs, and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals. SATACs could be used in cell therapy protocols. For these methods, the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells.

  14. Validation of the CNS emotional lability scale for pseudobulbar affect (pathological laughing and crying) in multiple sclerosis patients.

    PubMed

    Smith, Richard A; Berg, James E; Pope, Laura E; Callahan, Janice D; Wynn, Daniel; Thisted, Ronald A

    2004-12-01

    Pseudobulbar affect (PBA) or pathological laughing and crying (PLC) is a disorder of affect that occurs in about 10% of multiple sclerosis (MS) patients. The objective of this study was to validate the CNS Emotional Lability Scale (CNS-LS) in MS patients and to correlate the results with the frequency and intensity of episodes of PLC. Physicians at seven private practice referral centers in the United States made a diagnosis concerning PLC based on patient interviews. Clinical coordinators separately administered the CNS-LS, a self-report measure of PLC with seven questions, to MS patients, including patients known to exhibit PLC, patients thought to be free of PLC, and newly diagnosed patients where PLC status was unknown, and the physician was blinded as to the results. A receiver operating characteristic (ROC) curve analysis was performed to define a cut-off best correlating with the physician's diagnosis. Of 90 MS patients selected to complete the survey, 50 were physician diagnosed with PLC; 40 were without PLC, and 15 of these 90 patients were newly diagnosed with MS (<6 months). Scores of 17 or higher corresponded to a sensitivity of 0.94 and a specificity of 0.83 (LR+ = 5.5, LR- = 0.07); 89% of patients were correctly diagnosed. The area under the ROC curve was 0.95. Symptoms were greater in patients diagnosed as PLC than in non-PLC patients as evidenced by mean number of episodes/week, number of days/week with episodes, duration of an episode and total time in an episode. Similar results were observed if patients were classified as PLC or non-PLC according to CNS-LS score > or = 17, suggesting that the CNS-LS is a valid measure for the assessment of PLC in MS patients and could be a useful instrument for clinical and research purposes.

  15. Chronic restraint stress during early Theiler’s virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity

    PubMed Central

    Young, Erin E.; Sieve, Amy N.; Vichaya, Elisabeth G.; Carcoba, Luis M.; Young, Colin R.; Ambrus, Andrew; Storts, Ralph; Welsh, C. Jane R.; Meagher, Mary W.

    2010-01-01

    Theiler’s murine encephalomyelitis virus (TMEV) infection is a well-characterized model of multiple sclerosis (MS). Previous research has shown that chronic restraint stress (RS) during early TMEV infection exacerbates behavioral signs of disease. The present data suggest RS-induced increases in CNS inflammation, demyelination, and axonal degeneration may underlie this exacerbation. In addition, we report that males exhibit greater CNS inflammation and higher numbers of demyelinating lesions while females show greater susceptibility to RS-induced exacerbation. These findings indicate RS during early TMEV infection increases CNS lesion formation during the late phase and suggest the effects of RS are sex-dependent. PMID:20167380

  16. Biomarkers for CNS involvement in pediatric lupus

    PubMed Central

    Rubinstein, Tamar B; Putterman, Chaim; Goilav, Beatrice

    2015-01-01

    CNS disease, or central neuropsychiatric lupus erythematosus (cNPSLE), occurs frequently in pediatric lupus, leading to significant morbidity and poor long-term outcomes. Diagnosing cNPSLE is especially difficult in pediatrics; many current diagnostic tools are invasive and/or costly, and there are no current accepted screening mechanisms. The most complicated aspect of diagnosis is differentiating primary disease from other etiologies; research to discover new biomarkers is attempting to address this dilemma. With many mechanisms involved in the pathogenesis of cNPSLE, biomarker profiles across several modalities (molecular, psychometric and neuroimaging) will need to be used. For the care of children with lupus, the challenge will be to develop biomarkers that are accessible by noninvasive measures and reliable in a pediatric population. PMID:26079959

  17. The mammalian homologue of mago nashi encodes a serum-inducible protein.

    PubMed

    Zhao, X F; Colaizzo-Anas, T; Nowak, N J; Shows, T B; Elliott, R W; Aplan, P D

    1998-01-15

    The products of at least 11 maternal effect genes have been shown to be essential for proper germ plasm assembly in Drosophila melanogaster embryos. Here we report the isolation and characterization of the mammalian counterpart for one of these genes (named MAGOH for mago nashi homologue). The predicted amino acid sequence of mouse and human MAGOH are completely identical; MAGOH homologues from the nematode Caenorhabditis elegans and rice grain Oryza sativa also show a remarkable degree of amino acid conservation. MAGOH was mapped to chromosome 1p33-p34 in the human and a syntenic region of chromosome 4 in the mouse. Of note, MAGOH mRNA expression is not limited to germ plasm, but is expressed ubiquitously in adult tissues and can be induced by serum stimulation of quiescent fibroblasts.

  18. Structure and Function of Mammalian Carbohydrate-Lectin Interactions

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Evers, David; Rice, Kevin G.

    Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.

  19. Analytical validation of viral CNS Flow Chip kit for detection of acute meningitis and encephalitis.

    PubMed

    Pérez-Ruiz, Mercedes; Pedrosa-Corral, Irene; Sanbonmatsu-Gámez, Sara; Gómez-Camarasa, Cristina; Navarro-Marí, José María

    2018-06-12

    A new molecular assay (Viral CNS Flow Chip kit, Master Diagnóstica, Spain) has been developed for the detection of eight viruses causing acute meningitis and encephalitis, i.e. herpes simplex viruses 1-2, varicella zoster virus, human enterovirus, human parechovirus, Toscana virus, human cytomegalovirus and Epstein Barr virus. The new assay is a multiplex one-step RT-PCR followed by automatic flow-through hybridization, colorimetric detection and image analysis. The limit of detection was 50 copies/reaction, and 10 copies/reaction for human enterovirus and the other seven viruses, respectively. The analytical validation was performed with nucleic acids extracted from 268 cerebrospinal fluid samples and the results were compared with routine molecular assays. An excellent coefficient of agreement was observed between V-CNS and routine assays [kappa index: 0.948 (95%CI: 0.928-0.968)]. The overall sensitivity and specificity was 95.9% (95%CI: 91.2-98.3%) and 99.9% (95%CI: 99.6-100%), respectively. Viral CNS Flow Chip kit is an efficient multiplex platform for the detection of the main viruses involved in acute meningitis and encephalitis. The inclusion of a TOSV genome target may improve the laboratory diagnosis of viral neurological infections in endemic areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Essentials and Perspectives of Computational Modelling Assistance for CNS-oriented Nanoparticle-based Drug Delivery Systems.

    PubMed

    Kisała, Joanna; Heclik, Kinga I; Pogocki, Krzysztof; Pogocki, Dariusz

    2018-05-16

    The blood-brain barrier (BBB) is a complex system controlling two-way substances traffic between circulatory (cardiovascular) system and central nervous system (CNS). It is almost perfectly crafted to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. For potential drug candidates, the CNS-oriented neuropharmaceuticals as well as for those of primary targets in the periphery, the extent to which a substance in the circulation gains access to the CNS seems crucial. With the advent of nanopharmacology the problem of the BBB permeability for drug nano-carriers gains new significance. Compare to some other fields of medicinal chemistry, the computational science of nanodelivery is still prematured to offer the black-box type solutions, especially for the BBB-case. However, even its enormous complexity can be spell out the physical principles, and as such subjected to computation. Basic understanding of various physico-chemical parameters describing the brain uptake is required to take advantage of their usage for the BBB-nanodelivery. This mini-review provides a sketchy introduction into essential concepts allowing application of computational simulation to the BBB-nanodelivery design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.

    PubMed

    Suchak, Sachin K; Baloyianni, Nicoletta V; Perkinton, Michael S; Williams, Robert J; Meldrum, Brian S; Rattray, Marcus

    2003-02-01

    The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.

  2. Kynurenines in CNS disease: regulation by inflammatory cytokines

    PubMed Central

    Campbell, Brian M.; Charych, Erik; Lee, Anna W.; Möller, Thomas

    2014-01-01

    The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders. PMID:24567701

  3. Advance statement of consent from patients with primary CNS tumours to organ donation and elective ventilation.

    PubMed

    Patel, Umang Jash

    2013-03-01

    A deficit in the number of organs available for transplantation persists even with an increase in donation rates. One possible choice of donor for organs that appears under-referred and/or unaccepted is patients with primary brain tumours. In spite of advances in the treatment of high-grade primary central nervous system (CNS) tumours, the prognosis remains dire. A working group on organs from donors with primary CNS tumours showed that the risk of transmission is small and outweighs the benefits of waiting for a normal donor, in survival and organ life-years, with caveats. This paper explores the possibility that, if information on organ donation were made available to patients and their families with knowledge of their inevitable fate, perhaps some will choose to donate. It would be explained that to achieve this, elective ventilation would be performed in their final moments. This would obviate the consent question because of an advance statement. It is accepted that these are sensitive matters and there will be logistic issues. This will need discussion with the public and other professionals, but it could increase the number of donors and can be extrapolated to encompass other primary CNS tumours.

  4. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  5. Gene transfer and gene mapping in mammalian cells in culture.

    PubMed

    Shows, T B; Sakaguchi, A Y

    1980-01-01

    The ability to transfer mammalian genes parasexually has opened new possibilities for gene mapping and fine structure mapping and offers great potential for contributing to several aspects of mammalian biology, including gene expression and genetic engineering. The DNA transferred has ranged from whole genomes to single genes and smaller segments of DNA. The transfer of whole genomes by cell fusion forms cell hybrids, which has promoted the extensive mapping of human and mouse genes. Transfer, by cell fusion, of rearranged chromosomes has contributed significantly to determining close linkage and the assignment of genes to specific chromosomal regions. Transfer of single chromosomes has been achieved utilizing microcells fused to recipient cells. Metaphase chromosomes have been isolated and used to transfer single-to-multigenic DNA segments. DNA-mediated gene transfer, simulating bacterial transformation, has achieved transfer of single-copy genes. By utilizing DNA cleaved with restriction endonucleases, gene transfer is being empolyed as a bioassay for the purification of genes. Gene mapping and the fate of transferred genes can be examined now at the molecular level using sequence-specific probles. Recently, single genes have been cloned into eucaryotic and procaryotic vectors for transfer into mammalian cells. Moreover, recombinant libraries in which entire mammalian genomes are represented collectively are a rich new source of transferable genes. Methodology for transferring mammalian genetic information and applications for mapping mammalian genes is presented and prospects for the future discussed.

  6. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans. PMID:27499871

  7. Better Smelling Through Genetics: Mammalian Odor Perception

    PubMed Central

    Keller, Andreas; Vosshall, Leslie B.

    2008-01-01

    SUMMARY The increasing availability of genomic and genetic tools to study olfaction—the sense of smell—has brought important new insights into how this chemosensory modality functions in different species. Newly sequenced mammalian genomes—from platypus to dog—have made it possible to infer how smell has evolved to suit the needs of a given species and how variation within a species may affect individual olfactory perception. This review will focus on recent advances in the genetics and genomics of mammalian smell, with a primary focus on rodents and humans. PMID:18938244

  8. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study.

    PubMed

    Gisslén, Magnus; Price, Richard W; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik

    2016-01-01

    Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P < 0.0001). While NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4(+) T cells. These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings.

  9. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study

    PubMed Central

    Gisslén, Magnus; Price, Richard W.; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik

    2015-01-01

    Background Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. Methods To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Findings Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P < 0.0001). While NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4+ T cells. Interpretation These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings. PMID:26870824

  10. PERSPECTIVE: Electrical activity enhances neuronal survival and regeneration

    NASA Astrophysics Data System (ADS)

    Corredor, Raul G.; Goldberg, Jeffrey L.

    2009-10-01

    The failure of regeneration in the central nervous system (CNS) remains an enormous scientific and clinical challenge. After injury or in degenerative diseases, neurons in the adult mammalian CNS fail to regrow their axons and reconnect with their normal targets, and furthermore the neurons frequently die and are not normally replaced. While significant progress has been made in understanding the molecular basis for this lack of regenerative ability, a second approach has gained momentum: replacing lost neurons or lost connections with artificial electrical circuits that interface with the nervous system. In the visual system, gene therapy-based 'optogenetics' prostheses represent a competing technology. Now, the two approaches are converging, as recent data suggest that electrical activity itself, via the molecular signaling pathways such activity stimulates, is sufficient to induce neuronal survival and regeneration, particularly in retinal ganglion cells. Here, we review these data, discuss the effects of electrical activity on neurons' molecular signaling pathways and propose specific mechanisms by which exogenous electrical activity may be acting to enhance survival and regeneration.

  11. GSK3β regulates AKT-induced central nervous system axon regeneration via an eIF2Bε-dependent, mTORC1-independent pathway.

    PubMed

    Guo, Xinzheng; Snider, William D; Chen, Bo

    2016-03-14

    Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3β plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3β promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3β reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3β in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3β and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3β-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS.

  12. Oligodendrocyte Precursor Cells Synthesize Neuromodulatory Factors

    PubMed Central

    Sakry, Dominik; Yigit, Hatice; Dimou, Leda; Trotter, Jacqueline

    2015-01-01

    NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling. PMID:25966014

  13. Baculovirus GP64-mediated entry into mammalian cells.

    PubMed

    Kataoka, Chikako; Kaname, Yuuki; Taguwa, Shuhei; Abe, Takayuki; Fukuhara, Takasuke; Tani, Hideki; Moriishi, Kohji; Matsuura, Yoshiharu

    2012-03-01

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.

  14. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    PubMed

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  15. A patterned recombinant human IgM guides neurite outgrowth of CNS neurons

    PubMed Central

    Xu, Xiaohua; Wittenberg, Nathan J.; Jordan, Luke R.; Kumar, Shailabh; Watzlawik, Jens O.; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses

    2013-01-01

    Matrix molecules convey biochemical and physical guiding signals to neurons in the central nervous system (CNS) and shape the trajectory of neuronal fibers that constitute neural networks. We have developed recombinant human IgMs that bind to epitopes on neural cells, with the aim of treating neurological diseases. Here we test the hypothesis that recombinant human IgMs (rHIgM) can guide neurite outgrowth of CNS neurons. Microcontact printing was employed to pattern rHIgM12 and rHIgM22, antibodies that were bioengineered to have variable regions capable of binding to neurons or oligodendrocytes, respectively. rHIgM12 promoted neuronal attachment and guided outgrowth of neurites from hippocampal neurons. Processes from spinal neurons followed grid patterns of rHIgM12 and formed a physical network. Comparison between rHIgM12 and rHIgM22 suggested the biochemistry that facilitates anchoring the neuronal surfaces is a prerequisite for the function of IgM, and spatial properties cooperate in guiding the assembly of neuronal networks. PMID:23881231

  16. Synaptogenesis in the CNS: An Odyssey from Wiring Together to Firing Together

    PubMed Central

    Munno, David W; Syed, Naweed I

    2003-01-01

    To acquire a better comprehension of nervous system function, it is imperative to understand how synapses are assembled during development and subsequently altered throughout life. Despite recent advances in the fields of neurodevelopment and synaptic plasticity, relatively little is known about the mechanisms that guide synapse formation in the central nervous system (CNS). Although many structural components of the synaptic machinery are pre-assembled prior to the arrival of growth cones at the site of their potential targets, innumerable changes, central to the proper wiring of the brain, must subsequently take place through contact-mediated cell-cell communications. Identification of such signalling molecules and a characterization of various events underlying synaptogenesis are pivotal to our understanding of how a brain cell completes its odyssey from ‘wiring together to firing together’. Here we attempt to provide a comprehensive overview that pertains directly to the cellular and molecular mechanisms of selection, formation and refinement of synapses during the development of the CNS in both vertebrates and invertebrates. PMID:12897180

  17. Use of multiplex PCR based molecular diagnostics in diagnosis of suspected CNS infections in tertiary care setting-A retrospective study.

    PubMed

    Javali, Mahendra; Acharya, Purushottam; Mehta, Aneesh; John, Aju Abraham; Mahale, Rohan; Srinivasa, R

    2017-10-01

    CNS infections like meningitis and encephalitis pose enormous healthcare challenges due to mortality, sequelae and socioeconomic burden. In tertiary setting, clinical, microbiological, cytological and radiological investigations are not distinctive enough for diagnosing microbial etiology. Molecular diagnostics is filling this gap. We evaluated the clinical impact of a commercially available multiplex molecular diagnostic system - SES for diagnosing suspected CNS infections. This study was conducted in our tertiary level Neurology ICU. 110 patients admitted during Nov-2010 to April-2014 were included. CSF samples of patients clinically suspected of having CNS infections were subjected to routine investigation in our laboratory and SES test at XCyton Diagnostics. We studied the impact of SES in diagnosis of CNS infections and its efficacy in helping therapeutic management. SES showed detection rate of 42.18% and clinical specificity of 100%. It had 10 times higher detection rate than conventional tests. Streptococcus pneumoniae and Mycobacterium tuberculosis were two top bacterial pathogens. VZV was most detected viral pathogen. SES results elicited changes in therapy in both positive and negative cases. We observed superior patient outcomes as measured by GCS scale. 75% and 82.14% of the patients positive and negative on SES respectively, recovered fully. Detecting causative organism and ruling out infectious etiology remain the most critical aspect for management and prognosis of patients with suspected CNS infections. In this study, we observed higher detection rate of pathogens, target specific escalation and evidence based de-escalation of antimicrobials using SES. Institution of appropriate therapy helped reduce unnecessary use of antimicrobials. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Genetic variability, individuality and the evolution of the mammalian brain.

    PubMed

    Lipp, H P

    1995-12-01

    The neo-Darwinian theory of evolution has difficulty in explaining the rapid evolution of mammalian brain and behavior. I shall argue that the plasticity mechanisms of the brain (i.e., system homeostasis, developmental reorganization, structural adult plasticity, and cognition and learning) have evolved primarily as genetic buffer systems which protect subtle mutations influencing brain structures from natural selection. These buffer systems permit accumulation of genetic variation in the higher system levels of the brain (simply defined as structures with late differentiation), while low-level systems are kept constant by natural selection. The organization of this intrinsic genetic buffering system provides several features facilitating neo-Darwinian evolution: In conclusion, the evolutionary appearance of cognition and intelligence is an ordinary biological mechanism compensating evolutionary drags such as long lifespans and fewer offspring. The concept has heuristic value for identifying gene-brain-behavior relationships and for explaining behavioral consequences of artifical gene deletions.

  19. ROCK in CNS: Different Roles of Isoforms and Therapeutic Target for Neurodegenerative Disorders.

    PubMed

    Chong, Cheong-Meng; Ai, Nana; Lee, Simon Ming-Yuen

    2017-01-01

    Rho-associated protein kinase (ROCK) is a serine-threonine kinase originally identified as a crucial regulator of actin cytoskeleton. Recent studies have defined new functions of ROCK as a critical component of diverse signaling pathways in neurons. In addition, inhibition of ROCK causes several biological events such as increase of neurite outgrowth, axonal regeneration, and activation of prosurvival Akt. Thus, it has attracted scientist's strong attentions and considered ROCK as a promising therapeutic target for the treatment of neurodegenerative disorders including Alzheimer disease, Parkinson's disease, Huntington';s disease, multiple sclerosis, and amyotrophic lateral sclerosis. However, ROCK has two highly homologous isoforms, ROCK1 and ROCK2. Accumulated evidences indicate that ROCK1 and ROCK2 might involve in distinct cellular functions in central nervous system (CNS) and neurodegenerative processes. This review summarizes recent updates regarding ROCK isoformspecific functions in CNS and the progress of ROCK inhibitors in preclinical studies for neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity.

    PubMed

    Nogueiras, Ruben; Pérez-Tilve, Diego; Veyrat-Durebex, Christelle; Morgan, Donald A; Varela, Luis; Haynes, William G; Patterson, James T; Disse, Emmanuel; Pfluger, Paul T; López, Miguel; Woods, Stephen C; DiMarchi, Richard; Diéguez, Carlos; Rahmouni, Kamal; Rohner-Jeanrenaud, Françoise; Tschöp, Matthias H

    2009-05-06

    We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.

  1. CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: a retrospective substudy of the HERA trial (BIG 1-01).

    PubMed

    Pestalozzi, Bernhard C; Holmes, Eileen; de Azambuja, Evandro; Metzger-Filho, Otto; Hogge, Laurence; Scullion, Matt; Láng, István; Wardley, Andrew; Lichinitser, Mikhail; Sanchez, Roberto I Lopez; Müller, Volkmar; Dodwell, David; Gelber, Richard D; Piccart-Gebhart, Martine J; Cameron, David

    2013-03-01

    Several randomised trials have confirmed the benefit of adjuvant trastuzumab for patients with HER2-positive early breast cancer. However, concern has been expressed that adjuvant trastuzumab might be associated with an increased frequency of CNS relapses. We assessed the frequency and course of CNS relapses, either as first event or at any time, using data from the HERA trial. We estimated the cumulative incidence of first disease-free survival (DFS) events in the CNS versus other sites by competing risks analysis in patients with HER2-positive early breast cancer who had been randomly assigned to receive 1 year of trastuzumab or to observation in the HERA trial after a median follow-up of 4 years (IQR 3·5-4·8). To obtain further information about CNS relapse at any time before death, we circulated a data collection form to investigators to obtain standardised information about CNS events that occurred in all patients who had died before July, 2009. We estimated the cumulative incidence of CNS relapse at any time with a competing risks analysis. Of 3401 patients who had been assigned to receive 1 year of trastuzumab or to observation, 69 (2%) had a CNS relapse as first DFS event and 747 (22%) had a first DFS event not in the CNS. The frequency of CNS relapses as first DFS event did not differ between the group given 1 year of trastuzumab (37 [2%] of 1703 patients) and the observation group (32 [2%] of 1698; p=0·55 [Gray's test]). 481 data collection forms were distributed, of which 413 (86%) were returned. The proportion of patients who had died and experienced a CNS relapse was numerically higher in the observation group (129 [57%] of 227) than in the group given trastuzumab for 1 year (88 [47%] of 186; p=0·06 [Gray's test]). Most CNS relapses were symptomatic (189 [87%] of 217). Adjuvant trastuzumab does not increase the risk of CNS relapse in patients with HER2-positive early breast cancer. None. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body.

    PubMed

    Annese, Valentina; Navarro-Guerrero, Elena; Rodríguez-Prieto, Ismael; Pardal, Ricardo

    2017-04-18

    Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Rapid intranasal delivery of chloramphenicol acetyltransferase in the active form to different brain regions as a model for enzyme therapy in the CNS.

    PubMed

    Appu, Abhilash P; Arun, Peethambaran; Krishnan, Jishnu K S; Moffett, John R; Namboodiri, Aryan M A

    2016-02-01

    The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders. Published by Elsevier B.V.

  4. Architecture of the Mammalian Golgi

    PubMed Central

    Klumperman, Judith

    2011-01-01

    Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described. PMID:21502307

  5. HIPPOCAMPAL ADULT NEUROGENESIS: ITS REGULATION AND POTENTIAL ROLE IN SPATIAL LEARNING AND MEMORY

    PubMed Central

    Lieberwirth, Claudia; Pan, Yongliang; Liu, Yan; Zhang, Zhibin; Wang, Zuoxin

    2016-01-01

    Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk). PMID:27174001

  6. An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host.

    PubMed

    Woolsey, Ian David; Fredensborg, Brian L; Jensen, Per M; Kapel, Christian M O; Meyling, Nicolai V

    2015-07-01

    Invertebrate models provide several important advantages over their vertebrate counterparts including fewer legislative stipulations and faster, more cost-effective experimental procedures. Furthermore, various similarities between insect and mammalian systems have been highlighted. To obtain maximum use of invertebrate models in pharmacology, their fidelity as analogues of vertebrate systems requires verification. We utilised a flour beetle (Tenebrio molitor)-tapeworm (Hymenolepis diminuta) model to evaluate the efficacy of known anthelmintic compounds, praziquantel, mebendazole and levamisole against H. diminuta cysticercoid larvae in vitro. Inhibition of cysticercoid activity during the excystation procedure was used as a proxy for worm removal. The effects of the three compounds mirrored their relative efficacy in treatment against adult worms in mammalian systems; however, further study is required to determine the fidelity of this model in relation to dose administered. The model precludes comparison of consecutive daily administration of pharmaceuticals in mammals due to cysticercoids not surviving outside of the host for multiple days. Treatment of beetles in vivo, followed by excystation of cysticercoids postdissection could potentially allow for such comparisons. Further model validation will include analysis of pharmaceutical efficacy in varying H. diminuta isolates and pharmaceutical dilution in solvents other than water. Notwithstanding, our results demonstrate that this model holds promise as a method to efficiently identify promising new cestocidal candidates.

  7. Application of intraoperative indocyanine green angiography for CNS tumors: results on the first 100 cases.

    PubMed

    Ferroli, P; Acerbi, F; Albanese, E; Tringali, G; Broggi, M; Franzini, A; Broggi, G

    2011-01-01

    To investigate the application of indocyanine green (ICG) videoangiography during microsurgery for central nervous system (CNS) tumors. One hundred patients with CNS tumors who underwent microsurgical resection from December 2006 to December 2008 were retrospectively analyzed. The diagnosis was high grade glioma in 54 cases, low grade in 17 cases, meningioma in 14 cases, metastasis in 12 cases and hemangioblastoma in 3 cases. Overall, ICG was injected intraoperatively 194 times. The standard dose of 25mg of dye was injected intravenously and intravascular fluorescence from within the blood vessels was imaged through an ad hoc microscope with dedicated software (Pentero, Carl Zeiss Co., Oberkochen, Germany). Pre-resection and post-resection arterial, capillary and venous ICG videoangiographic phases were intraoperatively observed and recorded. ICG videangiography allowed for a good evaluation of blood flow in the tumoral and peritumoral exposed vessels in all cases. No side effects due to ICG were observed. ICG video-angiography is a significant method for monitoring blood flow in the exposed vessels during microsurgical removal of CNS tumors. Pre-resection videoangiography provides useful information on the tumoral circulation and the pathology-induced alteration in surrounding brain circulation. Post-resection examination allows for an immediate check of patency of those vessels that are closely related to the tumor mass and that the surgeon does not want to damage.

  8. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability.

    PubMed

    Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D

    2018-06-01

    The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned

    PubMed Central

    Gudi, Viktoria; Gingele, Stefan; Skripuletz, Thomas; Stangel, Martin

    2014-01-01

    Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS) and other central nervous system (CNS) lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and gray matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and gray matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination. The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models. PMID:24659953

  10. Potential Application of Centrifuges to Protect the CNS in Space and on Earth.

    PubMed

    Hashimoto, Makoto; Ho, Gilbert; Shimizu, Yuka; Sugama, Shuei; Takenouchi, Takato; Waragai, Masaaki; Wei, Jianshe; Takamatsu, Yoshiki

    2018-01-01

    Centrifuges are the principal means of generating physiological hypergravity and have been used for many medical purposes, including the therapy of psychiatric diseases and evaluation of vestibular system in the pilots. In particular, modern centrifuges have evolved into mechanically sophisticated precision instruments compared to primitive ones in old times, indicating that centrifuges might possess great potential in modern medicine. Indeed, studies are in progress to apply centrifuges to musculoskeletal degenerative diseases, such as osteoporosis and sarcopenia. Given that the agingrelated diseases are manifested under microgravity conditions, including astronauts and the bed-ridden elderly, it is reasonable to speculate that centrifuge-induced hypergravity may counteract the progression of these diseases. Such a view may also be important for neurodegenerative diseases for which the radical treatments are yet to be established. Therefore, the main objective of this paper is to discuss a potential therapeutic use of centrifuges for protection against the central nervous system (CNS) disorders, both in space and on Earth. Mechanistically hypergravity may exert stimulatory effects on preconditioning, chaperone expression, synapse plasticity, and growth and differentiation in the nervous system. Furthermore, hypergravity may suppress the progress of type II diabetes mellitus (T2DM), leading to inhibition of T2DM-triggered CNS disorders, including neurodegenerative diseases, ischemia and depression. Moreover, it is possible that hypergravity may counteract the neurodegeneration in hippocampus induced by the microgravity conditions and psychiatric diseases. Collectively, further investigations are warranted to demonstrate that centrifuge-induced hypergravity may be beneficial for the therapy of the CNS disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    PubMed Central

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  12. Residential exposure to extremely low-frequency magnetic fields and risk of childhood leukaemia, CNS tumour and lymphoma in Denmark.

    PubMed

    Pedersen, Camilla; Johansen, Christoffer; Schüz, Joachim; Olsen, Jørgen H; Raaschou-Nielsen, Ole

    2015-11-03

    We previously reported that children exposed to elevated extremely low-frequency magnetic fields (ELF-MF) had a five to six times higher risk of leukaemia, central nervous system (CNS) tumour and malignant lymphoma. Here we extend the study from 1968 to 1986 through 2003. We included 3277 children with leukaemia, CNS tumour or malignant lymphoma during 1968-2003 recorded in the Danish Cancer Registry and 9129 controls randomly selected from the Danish childhood population. ELF-MF from 50 to 400 kV facilities were calculated at the residences. For recently diagnosed cases (1987-2003), the relative risk (RR) was 0.88 (95% confidence interval (CI): 0.32-2.42), while for the total period (1968-2003) it was 1.63 (95% CI: 0.77-3.46) for leukaemia, CNS tumour and malignant lymphoma combined for exposures ⩾0.4 μT compared with <0.1 μT. These results were based on five cases (recent period) and 11 cases (total period) in the highest exposure group. We did not confirm the previous finding of a five- to six-fold higher risk for leukaemia, CNS tumour and malignant lymphoma when including data from the more recent time period. For the total time period, the results for childhood leukaemia were in line with large pooled analyses showing RRs between 1.5 and 2.

  13. Rapid adaptation to microgravity in mammalian macrophage cells.

    PubMed

    Thiel, Cora S; de Zélicourt, Diane; Tauber, Svantje; Adrian, Astrid; Franz, Markus; Simmet, Dana M; Schoppmann, Kathrin; Hauschild, Swantje; Krammer, Sonja; Christen, Miriam; Bradacs, Gesine; Paulsen, Katrin; Wolf, Susanne A; Braun, Markus; Hatton, Jason; Kurtcuoglu, Vartan; Franke, Stefanie; Tanner, Samuel; Cristoforetti, Samantha; Sick, Beate; Hock, Bertold; Ullrich, Oliver

    2017-02-27

    Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The International Space Station (ISS) experiment TRIPLE LUX A, performed in the BIOLAB laboratory of the ISS COLUMBUS module, allowed for the first time the direct measurement of a cellular function in real time and on orbit. We measured the oxidative burst reaction in mammalian macrophages (NR8383 rat alveolar macrophages) exposed to a centrifuge regime of internal 0 g and 1 g controls and step-wise increase or decrease of the gravitational force in four independent experiments. Surprisingly, we found that these macrophages adapted to microgravity in an ultra-fast manner within seconds, after an immediate inhibitory effect on the oxidative burst reaction. For the first time, we provided direct evidence of cellular sensitivity to gravity, through real-time on orbit measurements and by using an experimental system, in which all factors except gravity were constant. The surprisingly ultra-fast adaptation to microgravity indicates that mammalian macrophages are equipped with a highly efficient adaptation potential to a low gravity environment. This opens new avenues for the exploration of adaptation of mammalian cells to gravitational changes.

  14. Ancient genomic architecture for mammalian olfactory receptor clusters

    PubMed Central

    Aloni, Ronny; Olender, Tsviya; Lancet, Doron

    2006-01-01

    Background Mammalian olfactory receptor (OR) genes reside in numerous genomic clusters of up to several dozen genes. Whole-genome sequence alignment nets of five mammals allow their comprehensive comparison, aimed at reconstructing the ancestral olfactory subgenome. Results We developed a new and general tool for genome-wide definition of genomic gene clusters conserved in multiple species. Syntenic orthologs, defined as gene pairs showing conservation of both genomic location and coding sequence, were subjected to a graph theory algorithm for discovering CLICs (clusters in conservation). When applied to ORs in five mammals, including the marsupial opossum, more than 90% of the OR genes were found within a framework of 48 multi-species CLICs, invoking a general conservation of gene order and composition. A detailed analysis of individual CLICs revealed multiple differences among species, interpretable through species-specific genomic rearrangements and reflecting complex mammalian evolutionary dynamics. One significant instance involves CLIC #1, which lacks a human member, implying the human-specific deletion of an OR cluster, whose mouse counterpart has been tentatively associated with isovaleric acid odorant detection. Conclusion The identified multi-species CLICs demonstrate that most of the mammalian OR clusters have a common ancestry, preceding the split between marsupials and placental mammals. However, only two of these CLICs were capable of incorporating chicken OR genes, parsimoniously implying that all other CLICs emerged subsequent to the avian-mammalian divergence. PMID:17010214

  15. Understanding and utilising mammalian venom via a platypus venom transcriptome.

    PubMed

    Whittington, Camilla M; Koh, Jennifer M S; Warren, Wesley C; Papenfuss, Anthony T; Torres, Allan M; Kuchel, Philip W; Belov, Katherine

    2009-03-06

    Only five mammalian species are known to be venomous, and while a large amount of research has been carried out on reptile venom, mammalian venom has been poorly studied to date. Here we describe the status of current research into the venom of the platypus, a semi-aquatic egg-laying Australian mammal, and discuss our approach to platypus venom transcriptomics. We propose that such construction and analysis of mammalian venom transcriptomes from small samples of venom gland, in tandem with proteomics studies, will allow the identification of the full range of mammalian venom components. Functional studies and pharmacological evaluation of the identified toxins will then lay the foundations for the future development of novel biomedical substances. A large range of useful molecules have already been identified in snake venom, and many of these are currently in use in human medicine. It is therefore hoped that this basic research to identify the constituents of platypus venom will eventually yield novel drugs and new targets for painkillers.

  16. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  17. Development of allosteric modulators of GPCRs for treatment of CNS disorders

    PubMed Central

    Nickols, Hilary Highfield; Conn, P. Jeffrey

    2013-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than do orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as “bitopic” ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. PMID:24076101

  18. Development of allosteric modulators of GPCRs for treatment of CNS disorders.

    PubMed

    Nickols, Hilary Highfield; Conn, P Jeffrey

    2014-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. © 2013.

  19. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates

    PubMed Central

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-01-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy. PMID:26022732

  20. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates.

    PubMed

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-08-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.